1 /* Tree based points-to analysis
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "basic-block.h"
32 #include "stor-layout.h"
35 #include "gimple-iterator.h"
36 #include "gimple-ssa.h"
38 #include "stringpool.h"
39 #include "tree-ssanames.h"
40 #include "tree-into-ssa.h"
43 #include "tree-inline.h"
44 #include "diagnostic-core.h"
45 #include "hash-table.h"
47 #include "tree-pass.h"
48 #include "alloc-pool.h"
49 #include "splay-tree.h"
52 #include "pointer-set.h"
54 /* The idea behind this analyzer is to generate set constraints from the
55 program, then solve the resulting constraints in order to generate the
58 Set constraints are a way of modeling program analysis problems that
59 involve sets. They consist of an inclusion constraint language,
60 describing the variables (each variable is a set) and operations that
61 are involved on the variables, and a set of rules that derive facts
62 from these operations. To solve a system of set constraints, you derive
63 all possible facts under the rules, which gives you the correct sets
66 See "Efficient Field-sensitive pointer analysis for C" by "David
67 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
68 http://citeseer.ist.psu.edu/pearce04efficient.html
70 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
71 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
72 http://citeseer.ist.psu.edu/heintze01ultrafast.html
74 There are three types of real constraint expressions, DEREF,
75 ADDRESSOF, and SCALAR. Each constraint expression consists
76 of a constraint type, a variable, and an offset.
78 SCALAR is a constraint expression type used to represent x, whether
79 it appears on the LHS or the RHS of a statement.
80 DEREF is a constraint expression type used to represent *x, whether
81 it appears on the LHS or the RHS of a statement.
82 ADDRESSOF is a constraint expression used to represent &x, whether
83 it appears on the LHS or the RHS of a statement.
85 Each pointer variable in the program is assigned an integer id, and
86 each field of a structure variable is assigned an integer id as well.
88 Structure variables are linked to their list of fields through a "next
89 field" in each variable that points to the next field in offset
91 Each variable for a structure field has
93 1. "size", that tells the size in bits of that field.
94 2. "fullsize, that tells the size in bits of the entire structure.
95 3. "offset", that tells the offset in bits from the beginning of the
96 structure to this field.
108 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
109 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
110 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
113 In order to solve the system of set constraints, the following is
116 1. Each constraint variable x has a solution set associated with it,
119 2. Constraints are separated into direct, copy, and complex.
120 Direct constraints are ADDRESSOF constraints that require no extra
121 processing, such as P = &Q
122 Copy constraints are those of the form P = Q.
123 Complex constraints are all the constraints involving dereferences
124 and offsets (including offsetted copies).
126 3. All direct constraints of the form P = &Q are processed, such
127 that Q is added to Sol(P)
129 4. All complex constraints for a given constraint variable are stored in a
130 linked list attached to that variable's node.
132 5. A directed graph is built out of the copy constraints. Each
133 constraint variable is a node in the graph, and an edge from
134 Q to P is added for each copy constraint of the form P = Q
136 6. The graph is then walked, and solution sets are
137 propagated along the copy edges, such that an edge from Q to P
138 causes Sol(P) <- Sol(P) union Sol(Q).
140 7. As we visit each node, all complex constraints associated with
141 that node are processed by adding appropriate copy edges to the graph, or the
142 appropriate variables to the solution set.
144 8. The process of walking the graph is iterated until no solution
147 Prior to walking the graph in steps 6 and 7, We perform static
148 cycle elimination on the constraint graph, as well
149 as off-line variable substitution.
151 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
152 on and turned into anything), but isn't. You can just see what offset
153 inside the pointed-to struct it's going to access.
155 TODO: Constant bounded arrays can be handled as if they were structs of the
156 same number of elements.
158 TODO: Modeling heap and incoming pointers becomes much better if we
159 add fields to them as we discover them, which we could do.
161 TODO: We could handle unions, but to be honest, it's probably not
162 worth the pain or slowdown. */
164 /* IPA-PTA optimizations possible.
166 When the indirect function called is ANYTHING we can add disambiguation
167 based on the function signatures (or simply the parameter count which
168 is the varinfo size). We also do not need to consider functions that
169 do not have their address taken.
171 The is_global_var bit which marks escape points is overly conservative
172 in IPA mode. Split it to is_escape_point and is_global_var - only
173 externally visible globals are escape points in IPA mode. This is
174 also needed to fix the pt_solution_includes_global predicate
175 (and thus ptr_deref_may_alias_global_p).
177 The way we introduce DECL_PT_UID to avoid fixing up all points-to
178 sets in the translation unit when we copy a DECL during inlining
179 pessimizes precision. The advantage is that the DECL_PT_UID keeps
180 compile-time and memory usage overhead low - the points-to sets
181 do not grow or get unshared as they would during a fixup phase.
182 An alternative solution is to delay IPA PTA until after all
183 inlining transformations have been applied.
185 The way we propagate clobber/use information isn't optimized.
186 It should use a new complex constraint that properly filters
187 out local variables of the callee (though that would make
188 the sets invalid after inlining). OTOH we might as well
189 admit defeat to WHOPR and simply do all the clobber/use analysis
190 and propagation after PTA finished but before we threw away
191 points-to information for memory variables. WHOPR and PTA
192 do not play along well anyway - the whole constraint solving
193 would need to be done in WPA phase and it will be very interesting
194 to apply the results to local SSA names during LTRANS phase.
196 We probably should compute a per-function unit-ESCAPE solution
197 propagating it simply like the clobber / uses solutions. The
198 solution can go alongside the non-IPA espaced solution and be
199 used to query which vars escape the unit through a function.
201 We never put function decls in points-to sets so we do not
202 keep the set of called functions for indirect calls.
204 And probably more. */
206 static bool use_field_sensitive
= true;
207 static int in_ipa_mode
= 0;
209 /* Used for predecessor bitmaps. */
210 static bitmap_obstack predbitmap_obstack
;
212 /* Used for points-to sets. */
213 static bitmap_obstack pta_obstack
;
215 /* Used for oldsolution members of variables. */
216 static bitmap_obstack oldpta_obstack
;
218 /* Used for per-solver-iteration bitmaps. */
219 static bitmap_obstack iteration_obstack
;
221 static unsigned int create_variable_info_for (tree
, const char *);
222 typedef struct constraint_graph
*constraint_graph_t
;
223 static void unify_nodes (constraint_graph_t
, unsigned int, unsigned int, bool);
226 typedef struct constraint
*constraint_t
;
229 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
231 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
233 static struct constraint_stats
235 unsigned int total_vars
;
236 unsigned int nonpointer_vars
;
237 unsigned int unified_vars_static
;
238 unsigned int unified_vars_dynamic
;
239 unsigned int iterations
;
240 unsigned int num_edges
;
241 unsigned int num_implicit_edges
;
242 unsigned int points_to_sets_created
;
247 /* ID of this variable */
250 /* True if this is a variable created by the constraint analysis, such as
251 heap variables and constraints we had to break up. */
252 unsigned int is_artificial_var
: 1;
254 /* True if this is a special variable whose solution set should not be
256 unsigned int is_special_var
: 1;
258 /* True for variables whose size is not known or variable. */
259 unsigned int is_unknown_size_var
: 1;
261 /* True for (sub-)fields that represent a whole variable. */
262 unsigned int is_full_var
: 1;
264 /* True if this is a heap variable. */
265 unsigned int is_heap_var
: 1;
267 /* True if this field may contain pointers. */
268 unsigned int may_have_pointers
: 1;
270 /* True if this field has only restrict qualified pointers. */
271 unsigned int only_restrict_pointers
: 1;
273 /* True if this represents a global variable. */
274 unsigned int is_global_var
: 1;
276 /* True if this represents a IPA function info. */
277 unsigned int is_fn_info
: 1;
279 /* The ID of the variable for the next field in this structure
280 or zero for the last field in this structure. */
283 /* The ID of the variable for the first field in this structure. */
286 /* Offset of this variable, in bits, from the base variable */
287 unsigned HOST_WIDE_INT offset
;
289 /* Size of the variable, in bits. */
290 unsigned HOST_WIDE_INT size
;
292 /* Full size of the base variable, in bits. */
293 unsigned HOST_WIDE_INT fullsize
;
295 /* Name of this variable */
298 /* Tree that this variable is associated with. */
301 /* Points-to set for this variable. */
304 /* Old points-to set for this variable. */
307 typedef struct variable_info
*varinfo_t
;
309 static varinfo_t
first_vi_for_offset (varinfo_t
, unsigned HOST_WIDE_INT
);
310 static varinfo_t
first_or_preceding_vi_for_offset (varinfo_t
,
311 unsigned HOST_WIDE_INT
);
312 static varinfo_t
lookup_vi_for_tree (tree
);
313 static inline bool type_can_have_subvars (const_tree
);
315 /* Pool of variable info structures. */
316 static alloc_pool variable_info_pool
;
318 /* Map varinfo to final pt_solution. */
319 static pointer_map_t
*final_solutions
;
320 struct obstack final_solutions_obstack
;
322 /* Table of variable info structures for constraint variables.
323 Indexed directly by variable info id. */
324 static vec
<varinfo_t
> varmap
;
326 /* Return the varmap element N */
328 static inline varinfo_t
329 get_varinfo (unsigned int n
)
334 /* Return the next variable in the list of sub-variables of VI
335 or NULL if VI is the last sub-variable. */
337 static inline varinfo_t
338 vi_next (varinfo_t vi
)
340 return get_varinfo (vi
->next
);
343 /* Static IDs for the special variables. Variable ID zero is unused
344 and used as terminator for the sub-variable chain. */
345 enum { nothing_id
= 1, anything_id
= 2, readonly_id
= 3,
346 escaped_id
= 4, nonlocal_id
= 5,
347 storedanything_id
= 6, integer_id
= 7 };
349 /* Return a new variable info structure consisting for a variable
350 named NAME, and using constraint graph node NODE. Append it
351 to the vector of variable info structures. */
354 new_var_info (tree t
, const char *name
)
356 unsigned index
= varmap
.length ();
357 varinfo_t ret
= (varinfo_t
) pool_alloc (variable_info_pool
);
362 /* Vars without decl are artificial and do not have sub-variables. */
363 ret
->is_artificial_var
= (t
== NULL_TREE
);
364 ret
->is_special_var
= false;
365 ret
->is_unknown_size_var
= false;
366 ret
->is_full_var
= (t
== NULL_TREE
);
367 ret
->is_heap_var
= false;
368 ret
->may_have_pointers
= true;
369 ret
->only_restrict_pointers
= false;
370 ret
->is_global_var
= (t
== NULL_TREE
);
371 ret
->is_fn_info
= false;
373 ret
->is_global_var
= (is_global_var (t
)
374 /* We have to treat even local register variables
376 || (TREE_CODE (t
) == VAR_DECL
377 && DECL_HARD_REGISTER (t
)));
378 ret
->solution
= BITMAP_ALLOC (&pta_obstack
);
379 ret
->oldsolution
= NULL
;
385 varmap
.safe_push (ret
);
391 /* A map mapping call statements to per-stmt variables for uses
392 and clobbers specific to the call. */
393 static struct pointer_map_t
*call_stmt_vars
;
395 /* Lookup or create the variable for the call statement CALL. */
398 get_call_vi (gimple call
)
403 slot_p
= pointer_map_insert (call_stmt_vars
, call
);
405 return (varinfo_t
) *slot_p
;
407 vi
= new_var_info (NULL_TREE
, "CALLUSED");
411 vi
->is_full_var
= true;
413 vi2
= new_var_info (NULL_TREE
, "CALLCLOBBERED");
417 vi2
->is_full_var
= true;
421 *slot_p
= (void *) vi
;
425 /* Lookup the variable for the call statement CALL representing
426 the uses. Returns NULL if there is nothing special about this call. */
429 lookup_call_use_vi (gimple call
)
433 slot_p
= pointer_map_contains (call_stmt_vars
, call
);
435 return (varinfo_t
) *slot_p
;
440 /* Lookup the variable for the call statement CALL representing
441 the clobbers. Returns NULL if there is nothing special about this call. */
444 lookup_call_clobber_vi (gimple call
)
446 varinfo_t uses
= lookup_call_use_vi (call
);
450 return vi_next (uses
);
453 /* Lookup or create the variable for the call statement CALL representing
457 get_call_use_vi (gimple call
)
459 return get_call_vi (call
);
462 /* Lookup or create the variable for the call statement CALL representing
465 static varinfo_t ATTRIBUTE_UNUSED
466 get_call_clobber_vi (gimple call
)
468 return vi_next (get_call_vi (call
));
472 typedef enum {SCALAR
, DEREF
, ADDRESSOF
} constraint_expr_type
;
474 /* An expression that appears in a constraint. */
476 struct constraint_expr
478 /* Constraint type. */
479 constraint_expr_type type
;
481 /* Variable we are referring to in the constraint. */
484 /* Offset, in bits, of this constraint from the beginning of
485 variables it ends up referring to.
487 IOW, in a deref constraint, we would deref, get the result set,
488 then add OFFSET to each member. */
489 HOST_WIDE_INT offset
;
492 /* Use 0x8000... as special unknown offset. */
493 #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
495 typedef struct constraint_expr ce_s
;
496 static void get_constraint_for_1 (tree
, vec
<ce_s
> *, bool, bool);
497 static void get_constraint_for (tree
, vec
<ce_s
> *);
498 static void get_constraint_for_rhs (tree
, vec
<ce_s
> *);
499 static void do_deref (vec
<ce_s
> *);
501 /* Our set constraints are made up of two constraint expressions, one
504 As described in the introduction, our set constraints each represent an
505 operation between set valued variables.
509 struct constraint_expr lhs
;
510 struct constraint_expr rhs
;
513 /* List of constraints that we use to build the constraint graph from. */
515 static vec
<constraint_t
> constraints
;
516 static alloc_pool constraint_pool
;
518 /* The constraint graph is represented as an array of bitmaps
519 containing successor nodes. */
521 struct constraint_graph
523 /* Size of this graph, which may be different than the number of
524 nodes in the variable map. */
527 /* Explicit successors of each node. */
530 /* Implicit predecessors of each node (Used for variable
532 bitmap
*implicit_preds
;
534 /* Explicit predecessors of each node (Used for variable substitution). */
537 /* Indirect cycle representatives, or -1 if the node has no indirect
539 int *indirect_cycles
;
541 /* Representative node for a node. rep[a] == a unless the node has
545 /* Equivalence class representative for a label. This is used for
546 variable substitution. */
549 /* Pointer equivalence label for a node. All nodes with the same
550 pointer equivalence label can be unified together at some point
551 (either during constraint optimization or after the constraint
555 /* Pointer equivalence representative for a label. This is used to
556 handle nodes that are pointer equivalent but not location
557 equivalent. We can unite these once the addressof constraints
558 are transformed into initial points-to sets. */
561 /* Pointer equivalence label for each node, used during variable
563 unsigned int *pointer_label
;
565 /* Location equivalence label for each node, used during location
566 equivalence finding. */
567 unsigned int *loc_label
;
569 /* Pointed-by set for each node, used during location equivalence
570 finding. This is pointed-by rather than pointed-to, because it
571 is constructed using the predecessor graph. */
574 /* Points to sets for pointer equivalence. This is *not* the actual
575 points-to sets for nodes. */
578 /* Bitmap of nodes where the bit is set if the node is a direct
579 node. Used for variable substitution. */
580 sbitmap direct_nodes
;
582 /* Bitmap of nodes where the bit is set if the node is address
583 taken. Used for variable substitution. */
584 bitmap address_taken
;
586 /* Vector of complex constraints for each graph node. Complex
587 constraints are those involving dereferences or offsets that are
589 vec
<constraint_t
> *complex;
592 static constraint_graph_t graph
;
594 /* During variable substitution and the offline version of indirect
595 cycle finding, we create nodes to represent dereferences and
596 address taken constraints. These represent where these start and
598 #define FIRST_REF_NODE (varmap).length ()
599 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
601 /* Return the representative node for NODE, if NODE has been unioned
603 This function performs path compression along the way to finding
604 the representative. */
607 find (unsigned int node
)
609 gcc_checking_assert (node
< graph
->size
);
610 if (graph
->rep
[node
] != node
)
611 return graph
->rep
[node
] = find (graph
->rep
[node
]);
615 /* Union the TO and FROM nodes to the TO nodes.
616 Note that at some point in the future, we may want to do
617 union-by-rank, in which case we are going to have to return the
618 node we unified to. */
621 unite (unsigned int to
, unsigned int from
)
623 gcc_checking_assert (to
< graph
->size
&& from
< graph
->size
);
624 if (to
!= from
&& graph
->rep
[from
] != to
)
626 graph
->rep
[from
] = to
;
632 /* Create a new constraint consisting of LHS and RHS expressions. */
635 new_constraint (const struct constraint_expr lhs
,
636 const struct constraint_expr rhs
)
638 constraint_t ret
= (constraint_t
) pool_alloc (constraint_pool
);
644 /* Print out constraint C to FILE. */
647 dump_constraint (FILE *file
, constraint_t c
)
649 if (c
->lhs
.type
== ADDRESSOF
)
651 else if (c
->lhs
.type
== DEREF
)
653 fprintf (file
, "%s", get_varinfo (c
->lhs
.var
)->name
);
654 if (c
->lhs
.offset
== UNKNOWN_OFFSET
)
655 fprintf (file
, " + UNKNOWN");
656 else if (c
->lhs
.offset
!= 0)
657 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->lhs
.offset
);
658 fprintf (file
, " = ");
659 if (c
->rhs
.type
== ADDRESSOF
)
661 else if (c
->rhs
.type
== DEREF
)
663 fprintf (file
, "%s", get_varinfo (c
->rhs
.var
)->name
);
664 if (c
->rhs
.offset
== UNKNOWN_OFFSET
)
665 fprintf (file
, " + UNKNOWN");
666 else if (c
->rhs
.offset
!= 0)
667 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->rhs
.offset
);
671 void debug_constraint (constraint_t
);
672 void debug_constraints (void);
673 void debug_constraint_graph (void);
674 void debug_solution_for_var (unsigned int);
675 void debug_sa_points_to_info (void);
677 /* Print out constraint C to stderr. */
680 debug_constraint (constraint_t c
)
682 dump_constraint (stderr
, c
);
683 fprintf (stderr
, "\n");
686 /* Print out all constraints to FILE */
689 dump_constraints (FILE *file
, int from
)
693 for (i
= from
; constraints
.iterate (i
, &c
); i
++)
696 dump_constraint (file
, c
);
697 fprintf (file
, "\n");
701 /* Print out all constraints to stderr. */
704 debug_constraints (void)
706 dump_constraints (stderr
, 0);
709 /* Print the constraint graph in dot format. */
712 dump_constraint_graph (FILE *file
)
716 /* Only print the graph if it has already been initialized: */
720 /* Prints the header of the dot file: */
721 fprintf (file
, "strict digraph {\n");
722 fprintf (file
, " node [\n shape = box\n ]\n");
723 fprintf (file
, " edge [\n fontsize = \"12\"\n ]\n");
724 fprintf (file
, "\n // List of nodes and complex constraints in "
725 "the constraint graph:\n");
727 /* The next lines print the nodes in the graph together with the
728 complex constraints attached to them. */
729 for (i
= 1; i
< graph
->size
; i
++)
731 if (i
== FIRST_REF_NODE
)
735 if (i
< FIRST_REF_NODE
)
736 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
738 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
739 if (graph
->complex[i
].exists ())
743 fprintf (file
, " [label=\"\\N\\n");
744 for (j
= 0; graph
->complex[i
].iterate (j
, &c
); ++j
)
746 dump_constraint (file
, c
);
747 fprintf (file
, "\\l");
749 fprintf (file
, "\"]");
751 fprintf (file
, ";\n");
754 /* Go over the edges. */
755 fprintf (file
, "\n // Edges in the constraint graph:\n");
756 for (i
= 1; i
< graph
->size
; i
++)
762 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
], 0, j
, bi
)
764 unsigned to
= find (j
);
767 if (i
< FIRST_REF_NODE
)
768 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
770 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
771 fprintf (file
, " -> ");
772 if (to
< FIRST_REF_NODE
)
773 fprintf (file
, "\"%s\"", get_varinfo (to
)->name
);
775 fprintf (file
, "\"*%s\"", get_varinfo (to
- FIRST_REF_NODE
)->name
);
776 fprintf (file
, ";\n");
780 /* Prints the tail of the dot file. */
781 fprintf (file
, "}\n");
784 /* Print out the constraint graph to stderr. */
787 debug_constraint_graph (void)
789 dump_constraint_graph (stderr
);
794 The solver is a simple worklist solver, that works on the following
797 sbitmap changed_nodes = all zeroes;
799 For each node that is not already collapsed:
801 set bit in changed nodes
803 while (changed_count > 0)
805 compute topological ordering for constraint graph
807 find and collapse cycles in the constraint graph (updating
808 changed if necessary)
810 for each node (n) in the graph in topological order:
813 Process each complex constraint associated with the node,
814 updating changed if necessary.
816 For each outgoing edge from n, propagate the solution from n to
817 the destination of the edge, updating changed as necessary.
821 /* Return true if two constraint expressions A and B are equal. */
824 constraint_expr_equal (struct constraint_expr a
, struct constraint_expr b
)
826 return a
.type
== b
.type
&& a
.var
== b
.var
&& a
.offset
== b
.offset
;
829 /* Return true if constraint expression A is less than constraint expression
830 B. This is just arbitrary, but consistent, in order to give them an
834 constraint_expr_less (struct constraint_expr a
, struct constraint_expr b
)
836 if (a
.type
== b
.type
)
839 return a
.offset
< b
.offset
;
841 return a
.var
< b
.var
;
844 return a
.type
< b
.type
;
847 /* Return true if constraint A is less than constraint B. This is just
848 arbitrary, but consistent, in order to give them an ordering. */
851 constraint_less (const constraint_t
&a
, const constraint_t
&b
)
853 if (constraint_expr_less (a
->lhs
, b
->lhs
))
855 else if (constraint_expr_less (b
->lhs
, a
->lhs
))
858 return constraint_expr_less (a
->rhs
, b
->rhs
);
861 /* Return true if two constraints A and B are equal. */
864 constraint_equal (struct constraint a
, struct constraint b
)
866 return constraint_expr_equal (a
.lhs
, b
.lhs
)
867 && constraint_expr_equal (a
.rhs
, b
.rhs
);
871 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
874 constraint_vec_find (vec
<constraint_t
> vec
,
875 struct constraint lookfor
)
883 place
= vec
.lower_bound (&lookfor
, constraint_less
);
884 if (place
>= vec
.length ())
887 if (!constraint_equal (*found
, lookfor
))
892 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
895 constraint_set_union (vec
<constraint_t
> *to
,
896 vec
<constraint_t
> *from
)
901 FOR_EACH_VEC_ELT (*from
, i
, c
)
903 if (constraint_vec_find (*to
, *c
) == NULL
)
905 unsigned int place
= to
->lower_bound (c
, constraint_less
);
906 to
->safe_insert (place
, c
);
911 /* Expands the solution in SET to all sub-fields of variables included. */
914 solution_set_expand (bitmap set
)
919 /* In a first pass expand to the head of the variables we need to
920 add all sub-fields off. This avoids quadratic behavior. */
921 EXECUTE_IF_SET_IN_BITMAP (set
, 0, j
, bi
)
923 varinfo_t v
= get_varinfo (j
);
924 if (v
->is_artificial_var
927 bitmap_set_bit (set
, v
->head
);
930 /* In the second pass now expand all head variables with subfields. */
931 EXECUTE_IF_SET_IN_BITMAP (set
, 0, j
, bi
)
933 varinfo_t v
= get_varinfo (j
);
934 if (v
->is_artificial_var
938 for (v
= vi_next (v
); v
!= NULL
; v
= vi_next (v
))
939 bitmap_set_bit (set
, v
->id
);
943 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
947 set_union_with_increment (bitmap to
, bitmap from
, HOST_WIDE_INT inc
)
949 bool changed
= false;
953 /* If the solution of FROM contains anything it is good enough to transfer
955 if (bitmap_bit_p (from
, anything_id
))
956 return bitmap_set_bit (to
, anything_id
);
958 /* For zero offset simply union the solution into the destination. */
960 return bitmap_ior_into (to
, from
);
962 /* If the offset is unknown we have to expand the solution to
964 if (inc
== UNKNOWN_OFFSET
)
966 bitmap tmp
= BITMAP_ALLOC (&iteration_obstack
);
967 bitmap_copy (tmp
, from
);
968 solution_set_expand (tmp
);
969 changed
|= bitmap_ior_into (to
, tmp
);
974 /* For non-zero offset union the offsetted solution into the destination. */
975 EXECUTE_IF_SET_IN_BITMAP (from
, 0, i
, bi
)
977 varinfo_t vi
= get_varinfo (i
);
979 /* If this is a variable with just one field just set its bit
981 if (vi
->is_artificial_var
982 || vi
->is_unknown_size_var
984 changed
|= bitmap_set_bit (to
, i
);
987 unsigned HOST_WIDE_INT fieldoffset
= vi
->offset
+ inc
;
989 /* If the offset makes the pointer point to before the
990 variable use offset zero for the field lookup. */
992 && fieldoffset
> vi
->offset
)
995 vi
= first_or_preceding_vi_for_offset (vi
, fieldoffset
);
997 changed
|= bitmap_set_bit (to
, vi
->id
);
998 /* If the result is not exactly at fieldoffset include the next
999 field as well. See get_constraint_for_ptr_offset for more
1001 if (vi
->offset
!= fieldoffset
1003 changed
|= bitmap_set_bit (to
, vi
->next
);
1010 /* Insert constraint C into the list of complex constraints for graph
1014 insert_into_complex (constraint_graph_t graph
,
1015 unsigned int var
, constraint_t c
)
1017 vec
<constraint_t
> complex = graph
->complex[var
];
1018 unsigned int place
= complex.lower_bound (c
, constraint_less
);
1020 /* Only insert constraints that do not already exist. */
1021 if (place
>= complex.length ()
1022 || !constraint_equal (*c
, *complex[place
]))
1023 graph
->complex[var
].safe_insert (place
, c
);
1027 /* Condense two variable nodes into a single variable node, by moving
1028 all associated info from SRC to TO. */
1031 merge_node_constraints (constraint_graph_t graph
, unsigned int to
,
1037 gcc_checking_assert (find (from
) == to
);
1039 /* Move all complex constraints from src node into to node */
1040 FOR_EACH_VEC_ELT (graph
->complex[from
], i
, c
)
1042 /* In complex constraints for node src, we may have either
1043 a = *src, and *src = a, or an offseted constraint which are
1044 always added to the rhs node's constraints. */
1046 if (c
->rhs
.type
== DEREF
)
1048 else if (c
->lhs
.type
== DEREF
)
1053 constraint_set_union (&graph
->complex[to
], &graph
->complex[from
]);
1054 graph
->complex[from
].release ();
1058 /* Remove edges involving NODE from GRAPH. */
1061 clear_edges_for_node (constraint_graph_t graph
, unsigned int node
)
1063 if (graph
->succs
[node
])
1064 BITMAP_FREE (graph
->succs
[node
]);
1067 /* Merge GRAPH nodes FROM and TO into node TO. */
1070 merge_graph_nodes (constraint_graph_t graph
, unsigned int to
,
1073 if (graph
->indirect_cycles
[from
] != -1)
1075 /* If we have indirect cycles with the from node, and we have
1076 none on the to node, the to node has indirect cycles from the
1077 from node now that they are unified.
1078 If indirect cycles exist on both, unify the nodes that they
1079 are in a cycle with, since we know they are in a cycle with
1081 if (graph
->indirect_cycles
[to
] == -1)
1082 graph
->indirect_cycles
[to
] = graph
->indirect_cycles
[from
];
1085 /* Merge all the successor edges. */
1086 if (graph
->succs
[from
])
1088 if (!graph
->succs
[to
])
1089 graph
->succs
[to
] = BITMAP_ALLOC (&pta_obstack
);
1090 bitmap_ior_into (graph
->succs
[to
],
1091 graph
->succs
[from
]);
1094 clear_edges_for_node (graph
, from
);
1098 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1099 it doesn't exist in the graph already. */
1102 add_implicit_graph_edge (constraint_graph_t graph
, unsigned int to
,
1108 if (!graph
->implicit_preds
[to
])
1109 graph
->implicit_preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
1111 if (bitmap_set_bit (graph
->implicit_preds
[to
], from
))
1112 stats
.num_implicit_edges
++;
1115 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1116 it doesn't exist in the graph already.
1117 Return false if the edge already existed, true otherwise. */
1120 add_pred_graph_edge (constraint_graph_t graph
, unsigned int to
,
1123 if (!graph
->preds
[to
])
1124 graph
->preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
1125 bitmap_set_bit (graph
->preds
[to
], from
);
1128 /* Add a graph edge to GRAPH, going from FROM to TO if
1129 it doesn't exist in the graph already.
1130 Return false if the edge already existed, true otherwise. */
1133 add_graph_edge (constraint_graph_t graph
, unsigned int to
,
1144 if (!graph
->succs
[from
])
1145 graph
->succs
[from
] = BITMAP_ALLOC (&pta_obstack
);
1146 if (bitmap_set_bit (graph
->succs
[from
], to
))
1149 if (to
< FIRST_REF_NODE
&& from
< FIRST_REF_NODE
)
1157 /* Initialize the constraint graph structure to contain SIZE nodes. */
1160 init_graph (unsigned int size
)
1164 graph
= XCNEW (struct constraint_graph
);
1166 graph
->succs
= XCNEWVEC (bitmap
, graph
->size
);
1167 graph
->indirect_cycles
= XNEWVEC (int, graph
->size
);
1168 graph
->rep
= XNEWVEC (unsigned int, graph
->size
);
1169 /* ??? Macros do not support template types with multiple arguments,
1170 so we use a typedef to work around it. */
1171 typedef vec
<constraint_t
> vec_constraint_t_heap
;
1172 graph
->complex = XCNEWVEC (vec_constraint_t_heap
, size
);
1173 graph
->pe
= XCNEWVEC (unsigned int, graph
->size
);
1174 graph
->pe_rep
= XNEWVEC (int, graph
->size
);
1176 for (j
= 0; j
< graph
->size
; j
++)
1179 graph
->pe_rep
[j
] = -1;
1180 graph
->indirect_cycles
[j
] = -1;
1184 /* Build the constraint graph, adding only predecessor edges right now. */
1187 build_pred_graph (void)
1193 graph
->implicit_preds
= XCNEWVEC (bitmap
, graph
->size
);
1194 graph
->preds
= XCNEWVEC (bitmap
, graph
->size
);
1195 graph
->pointer_label
= XCNEWVEC (unsigned int, graph
->size
);
1196 graph
->loc_label
= XCNEWVEC (unsigned int, graph
->size
);
1197 graph
->pointed_by
= XCNEWVEC (bitmap
, graph
->size
);
1198 graph
->points_to
= XCNEWVEC (bitmap
, graph
->size
);
1199 graph
->eq_rep
= XNEWVEC (int, graph
->size
);
1200 graph
->direct_nodes
= sbitmap_alloc (graph
->size
);
1201 graph
->address_taken
= BITMAP_ALLOC (&predbitmap_obstack
);
1202 bitmap_clear (graph
->direct_nodes
);
1204 for (j
= 1; j
< FIRST_REF_NODE
; j
++)
1206 if (!get_varinfo (j
)->is_special_var
)
1207 bitmap_set_bit (graph
->direct_nodes
, j
);
1210 for (j
= 0; j
< graph
->size
; j
++)
1211 graph
->eq_rep
[j
] = -1;
1213 for (j
= 0; j
< varmap
.length (); j
++)
1214 graph
->indirect_cycles
[j
] = -1;
1216 FOR_EACH_VEC_ELT (constraints
, i
, c
)
1218 struct constraint_expr lhs
= c
->lhs
;
1219 struct constraint_expr rhs
= c
->rhs
;
1220 unsigned int lhsvar
= lhs
.var
;
1221 unsigned int rhsvar
= rhs
.var
;
1223 if (lhs
.type
== DEREF
)
1226 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1227 add_pred_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1229 else if (rhs
.type
== DEREF
)
1232 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1233 add_pred_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1235 bitmap_clear_bit (graph
->direct_nodes
, lhsvar
);
1237 else if (rhs
.type
== ADDRESSOF
)
1242 if (graph
->points_to
[lhsvar
] == NULL
)
1243 graph
->points_to
[lhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1244 bitmap_set_bit (graph
->points_to
[lhsvar
], rhsvar
);
1246 if (graph
->pointed_by
[rhsvar
] == NULL
)
1247 graph
->pointed_by
[rhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1248 bitmap_set_bit (graph
->pointed_by
[rhsvar
], lhsvar
);
1250 /* Implicitly, *x = y */
1251 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1253 /* All related variables are no longer direct nodes. */
1254 bitmap_clear_bit (graph
->direct_nodes
, rhsvar
);
1255 v
= get_varinfo (rhsvar
);
1256 if (!v
->is_full_var
)
1258 v
= get_varinfo (v
->head
);
1261 bitmap_clear_bit (graph
->direct_nodes
, v
->id
);
1266 bitmap_set_bit (graph
->address_taken
, rhsvar
);
1268 else if (lhsvar
> anything_id
1269 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1272 add_pred_graph_edge (graph
, lhsvar
, rhsvar
);
1273 /* Implicitly, *x = *y */
1274 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
,
1275 FIRST_REF_NODE
+ rhsvar
);
1277 else if (lhs
.offset
!= 0 || rhs
.offset
!= 0)
1279 if (rhs
.offset
!= 0)
1280 bitmap_clear_bit (graph
->direct_nodes
, lhs
.var
);
1281 else if (lhs
.offset
!= 0)
1282 bitmap_clear_bit (graph
->direct_nodes
, rhs
.var
);
1287 /* Build the constraint graph, adding successor edges. */
1290 build_succ_graph (void)
1295 FOR_EACH_VEC_ELT (constraints
, i
, c
)
1297 struct constraint_expr lhs
;
1298 struct constraint_expr rhs
;
1299 unsigned int lhsvar
;
1300 unsigned int rhsvar
;
1307 lhsvar
= find (lhs
.var
);
1308 rhsvar
= find (rhs
.var
);
1310 if (lhs
.type
== DEREF
)
1312 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1313 add_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1315 else if (rhs
.type
== DEREF
)
1317 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1318 add_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1320 else if (rhs
.type
== ADDRESSOF
)
1323 gcc_checking_assert (find (rhs
.var
) == rhs
.var
);
1324 bitmap_set_bit (get_varinfo (lhsvar
)->solution
, rhsvar
);
1326 else if (lhsvar
> anything_id
1327 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1329 add_graph_edge (graph
, lhsvar
, rhsvar
);
1333 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1334 receive pointers. */
1335 t
= find (storedanything_id
);
1336 for (i
= integer_id
+ 1; i
< FIRST_REF_NODE
; ++i
)
1338 if (!bitmap_bit_p (graph
->direct_nodes
, i
)
1339 && get_varinfo (i
)->may_have_pointers
)
1340 add_graph_edge (graph
, find (i
), t
);
1343 /* Everything stored to ANYTHING also potentially escapes. */
1344 add_graph_edge (graph
, find (escaped_id
), t
);
1348 /* Changed variables on the last iteration. */
1349 static bitmap changed
;
1351 /* Strongly Connected Component visitation info. */
1358 unsigned int *node_mapping
;
1360 vec
<unsigned> scc_stack
;
1364 /* Recursive routine to find strongly connected components in GRAPH.
1365 SI is the SCC info to store the information in, and N is the id of current
1366 graph node we are processing.
1368 This is Tarjan's strongly connected component finding algorithm, as
1369 modified by Nuutila to keep only non-root nodes on the stack.
1370 The algorithm can be found in "On finding the strongly connected
1371 connected components in a directed graph" by Esko Nuutila and Eljas
1372 Soisalon-Soininen, in Information Processing Letters volume 49,
1373 number 1, pages 9-14. */
1376 scc_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
1380 unsigned int my_dfs
;
1382 bitmap_set_bit (si
->visited
, n
);
1383 si
->dfs
[n
] = si
->current_index
++;
1384 my_dfs
= si
->dfs
[n
];
1386 /* Visit all the successors. */
1387 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[n
], 0, i
, bi
)
1391 if (i
> LAST_REF_NODE
)
1395 if (bitmap_bit_p (si
->deleted
, w
))
1398 if (!bitmap_bit_p (si
->visited
, w
))
1399 scc_visit (graph
, si
, w
);
1401 unsigned int t
= find (w
);
1402 gcc_checking_assert (find (n
) == n
);
1403 if (si
->dfs
[t
] < si
->dfs
[n
])
1404 si
->dfs
[n
] = si
->dfs
[t
];
1407 /* See if any components have been identified. */
1408 if (si
->dfs
[n
] == my_dfs
)
1410 if (si
->scc_stack
.length () > 0
1411 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
1413 bitmap scc
= BITMAP_ALLOC (NULL
);
1414 unsigned int lowest_node
;
1417 bitmap_set_bit (scc
, n
);
1419 while (si
->scc_stack
.length () != 0
1420 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
1422 unsigned int w
= si
->scc_stack
.pop ();
1424 bitmap_set_bit (scc
, w
);
1427 lowest_node
= bitmap_first_set_bit (scc
);
1428 gcc_assert (lowest_node
< FIRST_REF_NODE
);
1430 /* Collapse the SCC nodes into a single node, and mark the
1432 EXECUTE_IF_SET_IN_BITMAP (scc
, 0, i
, bi
)
1434 if (i
< FIRST_REF_NODE
)
1436 if (unite (lowest_node
, i
))
1437 unify_nodes (graph
, lowest_node
, i
, false);
1441 unite (lowest_node
, i
);
1442 graph
->indirect_cycles
[i
- FIRST_REF_NODE
] = lowest_node
;
1446 bitmap_set_bit (si
->deleted
, n
);
1449 si
->scc_stack
.safe_push (n
);
1452 /* Unify node FROM into node TO, updating the changed count if
1453 necessary when UPDATE_CHANGED is true. */
1456 unify_nodes (constraint_graph_t graph
, unsigned int to
, unsigned int from
,
1457 bool update_changed
)
1459 gcc_checking_assert (to
!= from
&& find (to
) == to
);
1461 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1462 fprintf (dump_file
, "Unifying %s to %s\n",
1463 get_varinfo (from
)->name
,
1464 get_varinfo (to
)->name
);
1467 stats
.unified_vars_dynamic
++;
1469 stats
.unified_vars_static
++;
1471 merge_graph_nodes (graph
, to
, from
);
1472 merge_node_constraints (graph
, to
, from
);
1474 /* Mark TO as changed if FROM was changed. If TO was already marked
1475 as changed, decrease the changed count. */
1478 && bitmap_clear_bit (changed
, from
))
1479 bitmap_set_bit (changed
, to
);
1480 varinfo_t fromvi
= get_varinfo (from
);
1481 if (fromvi
->solution
)
1483 /* If the solution changes because of the merging, we need to mark
1484 the variable as changed. */
1485 varinfo_t tovi
= get_varinfo (to
);
1486 if (bitmap_ior_into (tovi
->solution
, fromvi
->solution
))
1489 bitmap_set_bit (changed
, to
);
1492 BITMAP_FREE (fromvi
->solution
);
1493 if (fromvi
->oldsolution
)
1494 BITMAP_FREE (fromvi
->oldsolution
);
1496 if (stats
.iterations
> 0
1497 && tovi
->oldsolution
)
1498 BITMAP_FREE (tovi
->oldsolution
);
1500 if (graph
->succs
[to
])
1501 bitmap_clear_bit (graph
->succs
[to
], to
);
1504 /* Information needed to compute the topological ordering of a graph. */
1508 /* sbitmap of visited nodes. */
1510 /* Array that stores the topological order of the graph, *in
1512 vec
<unsigned> topo_order
;
1516 /* Initialize and return a topological info structure. */
1518 static struct topo_info
*
1519 init_topo_info (void)
1521 size_t size
= graph
->size
;
1522 struct topo_info
*ti
= XNEW (struct topo_info
);
1523 ti
->visited
= sbitmap_alloc (size
);
1524 bitmap_clear (ti
->visited
);
1525 ti
->topo_order
.create (1);
1530 /* Free the topological sort info pointed to by TI. */
1533 free_topo_info (struct topo_info
*ti
)
1535 sbitmap_free (ti
->visited
);
1536 ti
->topo_order
.release ();
1540 /* Visit the graph in topological order, and store the order in the
1541 topo_info structure. */
1544 topo_visit (constraint_graph_t graph
, struct topo_info
*ti
,
1550 bitmap_set_bit (ti
->visited
, n
);
1552 if (graph
->succs
[n
])
1553 EXECUTE_IF_SET_IN_BITMAP (graph
->succs
[n
], 0, j
, bi
)
1555 if (!bitmap_bit_p (ti
->visited
, j
))
1556 topo_visit (graph
, ti
, j
);
1559 ti
->topo_order
.safe_push (n
);
1562 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1563 starting solution for y. */
1566 do_sd_constraint (constraint_graph_t graph
, constraint_t c
,
1569 unsigned int lhs
= c
->lhs
.var
;
1571 bitmap sol
= get_varinfo (lhs
)->solution
;
1574 HOST_WIDE_INT roffset
= c
->rhs
.offset
;
1576 /* Our IL does not allow this. */
1577 gcc_checking_assert (c
->lhs
.offset
== 0);
1579 /* If the solution of Y contains anything it is good enough to transfer
1581 if (bitmap_bit_p (delta
, anything_id
))
1583 flag
|= bitmap_set_bit (sol
, anything_id
);
1587 /* If we do not know at with offset the rhs is dereferenced compute
1588 the reachability set of DELTA, conservatively assuming it is
1589 dereferenced at all valid offsets. */
1590 if (roffset
== UNKNOWN_OFFSET
)
1592 solution_set_expand (delta
);
1593 /* No further offset processing is necessary. */
1597 /* For each variable j in delta (Sol(y)), add
1598 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1599 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1601 varinfo_t v
= get_varinfo (j
);
1602 HOST_WIDE_INT fieldoffset
= v
->offset
+ roffset
;
1606 fieldoffset
= v
->offset
;
1607 else if (roffset
!= 0)
1608 v
= first_vi_for_offset (v
, fieldoffset
);
1609 /* If the access is outside of the variable we can ignore it. */
1617 /* Adding edges from the special vars is pointless.
1618 They don't have sets that can change. */
1619 if (get_varinfo (t
)->is_special_var
)
1620 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1621 /* Merging the solution from ESCAPED needlessly increases
1622 the set. Use ESCAPED as representative instead. */
1623 else if (v
->id
== escaped_id
)
1624 flag
|= bitmap_set_bit (sol
, escaped_id
);
1625 else if (v
->may_have_pointers
1626 && add_graph_edge (graph
, lhs
, t
))
1627 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1629 /* If the variable is not exactly at the requested offset
1630 we have to include the next one. */
1631 if (v
->offset
== (unsigned HOST_WIDE_INT
)fieldoffset
1636 fieldoffset
= v
->offset
;
1642 /* If the LHS solution changed, mark the var as changed. */
1645 get_varinfo (lhs
)->solution
= sol
;
1646 bitmap_set_bit (changed
, lhs
);
1650 /* Process a constraint C that represents *(x + off) = y using DELTA
1651 as the starting solution for x. */
1654 do_ds_constraint (constraint_t c
, bitmap delta
)
1656 unsigned int rhs
= c
->rhs
.var
;
1657 bitmap sol
= get_varinfo (rhs
)->solution
;
1660 HOST_WIDE_INT loff
= c
->lhs
.offset
;
1661 bool escaped_p
= false;
1663 /* Our IL does not allow this. */
1664 gcc_checking_assert (c
->rhs
.offset
== 0);
1666 /* If the solution of y contains ANYTHING simply use the ANYTHING
1667 solution. This avoids needlessly increasing the points-to sets. */
1668 if (bitmap_bit_p (sol
, anything_id
))
1669 sol
= get_varinfo (find (anything_id
))->solution
;
1671 /* If the solution for x contains ANYTHING we have to merge the
1672 solution of y into all pointer variables which we do via
1674 if (bitmap_bit_p (delta
, anything_id
))
1676 unsigned t
= find (storedanything_id
);
1677 if (add_graph_edge (graph
, t
, rhs
))
1679 if (bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1680 bitmap_set_bit (changed
, t
);
1685 /* If we do not know at with offset the rhs is dereferenced compute
1686 the reachability set of DELTA, conservatively assuming it is
1687 dereferenced at all valid offsets. */
1688 if (loff
== UNKNOWN_OFFSET
)
1690 solution_set_expand (delta
);
1694 /* For each member j of delta (Sol(x)), add an edge from y to j and
1695 union Sol(y) into Sol(j) */
1696 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1698 varinfo_t v
= get_varinfo (j
);
1700 HOST_WIDE_INT fieldoffset
= v
->offset
+ loff
;
1703 fieldoffset
= v
->offset
;
1705 v
= first_vi_for_offset (v
, fieldoffset
);
1706 /* If the access is outside of the variable we can ignore it. */
1712 if (v
->may_have_pointers
)
1714 /* If v is a global variable then this is an escape point. */
1715 if (v
->is_global_var
1718 t
= find (escaped_id
);
1719 if (add_graph_edge (graph
, t
, rhs
)
1720 && bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1721 bitmap_set_bit (changed
, t
);
1722 /* Enough to let rhs escape once. */
1726 if (v
->is_special_var
)
1730 if (add_graph_edge (graph
, t
, rhs
)
1731 && bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1732 bitmap_set_bit (changed
, t
);
1735 /* If the variable is not exactly at the requested offset
1736 we have to include the next one. */
1737 if (v
->offset
== (unsigned HOST_WIDE_INT
)fieldoffset
1742 fieldoffset
= v
->offset
;
1748 /* Handle a non-simple (simple meaning requires no iteration),
1749 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1752 do_complex_constraint (constraint_graph_t graph
, constraint_t c
, bitmap delta
)
1754 if (c
->lhs
.type
== DEREF
)
1756 if (c
->rhs
.type
== ADDRESSOF
)
1763 do_ds_constraint (c
, delta
);
1766 else if (c
->rhs
.type
== DEREF
)
1769 if (!(get_varinfo (c
->lhs
.var
)->is_special_var
))
1770 do_sd_constraint (graph
, c
, delta
);
1778 gcc_checking_assert (c
->rhs
.type
== SCALAR
&& c
->lhs
.type
== SCALAR
);
1779 solution
= get_varinfo (c
->rhs
.var
)->solution
;
1780 tmp
= get_varinfo (c
->lhs
.var
)->solution
;
1782 flag
= set_union_with_increment (tmp
, solution
, c
->rhs
.offset
);
1785 bitmap_set_bit (changed
, c
->lhs
.var
);
1789 /* Initialize and return a new SCC info structure. */
1791 static struct scc_info
*
1792 init_scc_info (size_t size
)
1794 struct scc_info
*si
= XNEW (struct scc_info
);
1797 si
->current_index
= 0;
1798 si
->visited
= sbitmap_alloc (size
);
1799 bitmap_clear (si
->visited
);
1800 si
->deleted
= sbitmap_alloc (size
);
1801 bitmap_clear (si
->deleted
);
1802 si
->node_mapping
= XNEWVEC (unsigned int, size
);
1803 si
->dfs
= XCNEWVEC (unsigned int, size
);
1805 for (i
= 0; i
< size
; i
++)
1806 si
->node_mapping
[i
] = i
;
1808 si
->scc_stack
.create (1);
1812 /* Free an SCC info structure pointed to by SI */
1815 free_scc_info (struct scc_info
*si
)
1817 sbitmap_free (si
->visited
);
1818 sbitmap_free (si
->deleted
);
1819 free (si
->node_mapping
);
1821 si
->scc_stack
.release ();
1826 /* Find indirect cycles in GRAPH that occur, using strongly connected
1827 components, and note them in the indirect cycles map.
1829 This technique comes from Ben Hardekopf and Calvin Lin,
1830 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1831 Lines of Code", submitted to PLDI 2007. */
1834 find_indirect_cycles (constraint_graph_t graph
)
1837 unsigned int size
= graph
->size
;
1838 struct scc_info
*si
= init_scc_info (size
);
1840 for (i
= 0; i
< MIN (LAST_REF_NODE
, size
); i
++ )
1841 if (!bitmap_bit_p (si
->visited
, i
) && find (i
) == i
)
1842 scc_visit (graph
, si
, i
);
1847 /* Compute a topological ordering for GRAPH, and store the result in the
1848 topo_info structure TI. */
1851 compute_topo_order (constraint_graph_t graph
,
1852 struct topo_info
*ti
)
1855 unsigned int size
= graph
->size
;
1857 for (i
= 0; i
!= size
; ++i
)
1858 if (!bitmap_bit_p (ti
->visited
, i
) && find (i
) == i
)
1859 topo_visit (graph
, ti
, i
);
1862 /* Structure used to for hash value numbering of pointer equivalence
1865 typedef struct equiv_class_label
1868 unsigned int equivalence_class
;
1870 } *equiv_class_label_t
;
1871 typedef const struct equiv_class_label
*const_equiv_class_label_t
;
1873 /* Equiv_class_label hashtable helpers. */
1875 struct equiv_class_hasher
: typed_free_remove
<equiv_class_label
>
1877 typedef equiv_class_label value_type
;
1878 typedef equiv_class_label compare_type
;
1879 static inline hashval_t
hash (const value_type
*);
1880 static inline bool equal (const value_type
*, const compare_type
*);
1883 /* Hash function for a equiv_class_label_t */
1886 equiv_class_hasher::hash (const value_type
*ecl
)
1888 return ecl
->hashcode
;
1891 /* Equality function for two equiv_class_label_t's. */
1894 equiv_class_hasher::equal (const value_type
*eql1
, const compare_type
*eql2
)
1896 return (eql1
->hashcode
== eql2
->hashcode
1897 && bitmap_equal_p (eql1
->labels
, eql2
->labels
));
1900 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1902 static hash_table
<equiv_class_hasher
> pointer_equiv_class_table
;
1904 /* A hashtable for mapping a bitmap of labels->location equivalence
1906 static hash_table
<equiv_class_hasher
> location_equiv_class_table
;
1908 /* Lookup a equivalence class in TABLE by the bitmap of LABELS with
1909 hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS
1910 is equivalent to. */
1912 static equiv_class_label
*
1913 equiv_class_lookup_or_add (hash_table
<equiv_class_hasher
> table
, bitmap labels
)
1915 equiv_class_label
**slot
;
1916 equiv_class_label ecl
;
1918 ecl
.labels
= labels
;
1919 ecl
.hashcode
= bitmap_hash (labels
);
1920 slot
= table
.find_slot_with_hash (&ecl
, ecl
.hashcode
, INSERT
);
1923 *slot
= XNEW (struct equiv_class_label
);
1924 (*slot
)->labels
= labels
;
1925 (*slot
)->hashcode
= ecl
.hashcode
;
1926 (*slot
)->equivalence_class
= 0;
1932 /* Perform offline variable substitution.
1934 This is a worst case quadratic time way of identifying variables
1935 that must have equivalent points-to sets, including those caused by
1936 static cycles, and single entry subgraphs, in the constraint graph.
1938 The technique is described in "Exploiting Pointer and Location
1939 Equivalence to Optimize Pointer Analysis. In the 14th International
1940 Static Analysis Symposium (SAS), August 2007." It is known as the
1941 "HU" algorithm, and is equivalent to value numbering the collapsed
1942 constraint graph including evaluating unions.
1944 The general method of finding equivalence classes is as follows:
1945 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1946 Initialize all non-REF nodes to be direct nodes.
1947 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1949 For each constraint containing the dereference, we also do the same
1952 We then compute SCC's in the graph and unify nodes in the same SCC,
1955 For each non-collapsed node x:
1956 Visit all unvisited explicit incoming edges.
1957 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1959 Lookup the equivalence class for pts(x).
1960 If we found one, equivalence_class(x) = found class.
1961 Otherwise, equivalence_class(x) = new class, and new_class is
1962 added to the lookup table.
1964 All direct nodes with the same equivalence class can be replaced
1965 with a single representative node.
1966 All unlabeled nodes (label == 0) are not pointers and all edges
1967 involving them can be eliminated.
1968 We perform these optimizations during rewrite_constraints
1970 In addition to pointer equivalence class finding, we also perform
1971 location equivalence class finding. This is the set of variables
1972 that always appear together in points-to sets. We use this to
1973 compress the size of the points-to sets. */
1975 /* Current maximum pointer equivalence class id. */
1976 static int pointer_equiv_class
;
1978 /* Current maximum location equivalence class id. */
1979 static int location_equiv_class
;
1981 /* Recursive routine to find strongly connected components in GRAPH,
1982 and label it's nodes with DFS numbers. */
1985 condense_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
1989 unsigned int my_dfs
;
1991 gcc_checking_assert (si
->node_mapping
[n
] == n
);
1992 bitmap_set_bit (si
->visited
, n
);
1993 si
->dfs
[n
] = si
->current_index
++;
1994 my_dfs
= si
->dfs
[n
];
1996 /* Visit all the successors. */
1997 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
1999 unsigned int w
= si
->node_mapping
[i
];
2001 if (bitmap_bit_p (si
->deleted
, w
))
2004 if (!bitmap_bit_p (si
->visited
, w
))
2005 condense_visit (graph
, si
, w
);
2007 unsigned int t
= si
->node_mapping
[w
];
2008 gcc_checking_assert (si
->node_mapping
[n
] == n
);
2009 if (si
->dfs
[t
] < si
->dfs
[n
])
2010 si
->dfs
[n
] = si
->dfs
[t
];
2013 /* Visit all the implicit predecessors. */
2014 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->implicit_preds
[n
], 0, i
, bi
)
2016 unsigned int w
= si
->node_mapping
[i
];
2018 if (bitmap_bit_p (si
->deleted
, w
))
2021 if (!bitmap_bit_p (si
->visited
, w
))
2022 condense_visit (graph
, si
, w
);
2024 unsigned int t
= si
->node_mapping
[w
];
2025 gcc_assert (si
->node_mapping
[n
] == n
);
2026 if (si
->dfs
[t
] < si
->dfs
[n
])
2027 si
->dfs
[n
] = si
->dfs
[t
];
2030 /* See if any components have been identified. */
2031 if (si
->dfs
[n
] == my_dfs
)
2033 while (si
->scc_stack
.length () != 0
2034 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
2036 unsigned int w
= si
->scc_stack
.pop ();
2037 si
->node_mapping
[w
] = n
;
2039 if (!bitmap_bit_p (graph
->direct_nodes
, w
))
2040 bitmap_clear_bit (graph
->direct_nodes
, n
);
2042 /* Unify our nodes. */
2043 if (graph
->preds
[w
])
2045 if (!graph
->preds
[n
])
2046 graph
->preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2047 bitmap_ior_into (graph
->preds
[n
], graph
->preds
[w
]);
2049 if (graph
->implicit_preds
[w
])
2051 if (!graph
->implicit_preds
[n
])
2052 graph
->implicit_preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2053 bitmap_ior_into (graph
->implicit_preds
[n
],
2054 graph
->implicit_preds
[w
]);
2056 if (graph
->points_to
[w
])
2058 if (!graph
->points_to
[n
])
2059 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2060 bitmap_ior_into (graph
->points_to
[n
],
2061 graph
->points_to
[w
]);
2064 bitmap_set_bit (si
->deleted
, n
);
2067 si
->scc_stack
.safe_push (n
);
2070 /* Label pointer equivalences.
2072 This performs a value numbering of the constraint graph to
2073 discover which variables will always have the same points-to sets
2074 under the current set of constraints.
2076 The way it value numbers is to store the set of points-to bits
2077 generated by the constraints and graph edges. This is just used as a
2078 hash and equality comparison. The *actual set of points-to bits* is
2079 completely irrelevant, in that we don't care about being able to
2082 The equality values (currently bitmaps) just have to satisfy a few
2083 constraints, the main ones being:
2084 1. The combining operation must be order independent.
2085 2. The end result of a given set of operations must be unique iff the
2086 combination of input values is unique
2090 label_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
2092 unsigned int i
, first_pred
;
2095 bitmap_set_bit (si
->visited
, n
);
2097 /* Label and union our incoming edges's points to sets. */
2099 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
2101 unsigned int w
= si
->node_mapping
[i
];
2102 if (!bitmap_bit_p (si
->visited
, w
))
2103 label_visit (graph
, si
, w
);
2105 /* Skip unused edges */
2106 if (w
== n
|| graph
->pointer_label
[w
] == 0)
2109 if (graph
->points_to
[w
])
2111 if (!graph
->points_to
[n
])
2113 if (first_pred
== -1U)
2117 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2118 bitmap_ior (graph
->points_to
[n
],
2119 graph
->points_to
[first_pred
],
2120 graph
->points_to
[w
]);
2124 bitmap_ior_into (graph
->points_to
[n
], graph
->points_to
[w
]);
2128 /* Indirect nodes get fresh variables and a new pointer equiv class. */
2129 if (!bitmap_bit_p (graph
->direct_nodes
, n
))
2131 if (!graph
->points_to
[n
])
2133 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2134 if (first_pred
!= -1U)
2135 bitmap_copy (graph
->points_to
[n
], graph
->points_to
[first_pred
]);
2137 bitmap_set_bit (graph
->points_to
[n
], FIRST_REF_NODE
+ n
);
2138 graph
->pointer_label
[n
] = pointer_equiv_class
++;
2139 equiv_class_label_t ecl
;
2140 ecl
= equiv_class_lookup_or_add (pointer_equiv_class_table
,
2141 graph
->points_to
[n
]);
2142 ecl
->equivalence_class
= graph
->pointer_label
[n
];
2146 /* If there was only a single non-empty predecessor the pointer equiv
2147 class is the same. */
2148 if (!graph
->points_to
[n
])
2150 if (first_pred
!= -1U)
2152 graph
->pointer_label
[n
] = graph
->pointer_label
[first_pred
];
2153 graph
->points_to
[n
] = graph
->points_to
[first_pred
];
2158 if (!bitmap_empty_p (graph
->points_to
[n
]))
2160 equiv_class_label_t ecl
;
2161 ecl
= equiv_class_lookup_or_add (pointer_equiv_class_table
,
2162 graph
->points_to
[n
]);
2163 if (ecl
->equivalence_class
== 0)
2164 ecl
->equivalence_class
= pointer_equiv_class
++;
2167 BITMAP_FREE (graph
->points_to
[n
]);
2168 graph
->points_to
[n
] = ecl
->labels
;
2170 graph
->pointer_label
[n
] = ecl
->equivalence_class
;
2174 /* Print the pred graph in dot format. */
2177 dump_pred_graph (struct scc_info
*si
, FILE *file
)
2181 /* Only print the graph if it has already been initialized: */
2185 /* Prints the header of the dot file: */
2186 fprintf (file
, "strict digraph {\n");
2187 fprintf (file
, " node [\n shape = box\n ]\n");
2188 fprintf (file
, " edge [\n fontsize = \"12\"\n ]\n");
2189 fprintf (file
, "\n // List of nodes and complex constraints in "
2190 "the constraint graph:\n");
2192 /* The next lines print the nodes in the graph together with the
2193 complex constraints attached to them. */
2194 for (i
= 1; i
< graph
->size
; i
++)
2196 if (i
== FIRST_REF_NODE
)
2198 if (si
->node_mapping
[i
] != i
)
2200 if (i
< FIRST_REF_NODE
)
2201 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
2203 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
2204 if (graph
->points_to
[i
]
2205 && !bitmap_empty_p (graph
->points_to
[i
]))
2207 fprintf (file
, "[label=\"%s = {", get_varinfo (i
)->name
);
2210 EXECUTE_IF_SET_IN_BITMAP (graph
->points_to
[i
], 0, j
, bi
)
2211 fprintf (file
, " %d", j
);
2212 fprintf (file
, " }\"]");
2214 fprintf (file
, ";\n");
2217 /* Go over the edges. */
2218 fprintf (file
, "\n // Edges in the constraint graph:\n");
2219 for (i
= 1; i
< graph
->size
; i
++)
2223 if (si
->node_mapping
[i
] != i
)
2225 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[i
], 0, j
, bi
)
2227 unsigned from
= si
->node_mapping
[j
];
2228 if (from
< FIRST_REF_NODE
)
2229 fprintf (file
, "\"%s\"", get_varinfo (from
)->name
);
2231 fprintf (file
, "\"*%s\"", get_varinfo (from
- FIRST_REF_NODE
)->name
);
2232 fprintf (file
, " -> ");
2233 if (i
< FIRST_REF_NODE
)
2234 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
2236 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
2237 fprintf (file
, ";\n");
2241 /* Prints the tail of the dot file. */
2242 fprintf (file
, "}\n");
2245 /* Perform offline variable substitution, discovering equivalence
2246 classes, and eliminating non-pointer variables. */
2248 static struct scc_info
*
2249 perform_var_substitution (constraint_graph_t graph
)
2252 unsigned int size
= graph
->size
;
2253 struct scc_info
*si
= init_scc_info (size
);
2255 bitmap_obstack_initialize (&iteration_obstack
);
2256 pointer_equiv_class_table
.create (511);
2257 location_equiv_class_table
.create (511);
2258 pointer_equiv_class
= 1;
2259 location_equiv_class
= 1;
2261 /* Condense the nodes, which means to find SCC's, count incoming
2262 predecessors, and unite nodes in SCC's. */
2263 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2264 if (!bitmap_bit_p (si
->visited
, si
->node_mapping
[i
]))
2265 condense_visit (graph
, si
, si
->node_mapping
[i
]);
2267 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
2269 fprintf (dump_file
, "\n\n// The constraint graph before var-substitution "
2270 "in dot format:\n");
2271 dump_pred_graph (si
, dump_file
);
2272 fprintf (dump_file
, "\n\n");
2275 bitmap_clear (si
->visited
);
2276 /* Actually the label the nodes for pointer equivalences */
2277 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2278 if (!bitmap_bit_p (si
->visited
, si
->node_mapping
[i
]))
2279 label_visit (graph
, si
, si
->node_mapping
[i
]);
2281 /* Calculate location equivalence labels. */
2282 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2288 if (!graph
->pointed_by
[i
])
2290 pointed_by
= BITMAP_ALLOC (&iteration_obstack
);
2292 /* Translate the pointed-by mapping for pointer equivalence
2294 EXECUTE_IF_SET_IN_BITMAP (graph
->pointed_by
[i
], 0, j
, bi
)
2296 bitmap_set_bit (pointed_by
,
2297 graph
->pointer_label
[si
->node_mapping
[j
]]);
2299 /* The original pointed_by is now dead. */
2300 BITMAP_FREE (graph
->pointed_by
[i
]);
2302 /* Look up the location equivalence label if one exists, or make
2304 equiv_class_label_t ecl
;
2305 ecl
= equiv_class_lookup_or_add (location_equiv_class_table
, pointed_by
);
2306 if (ecl
->equivalence_class
== 0)
2307 ecl
->equivalence_class
= location_equiv_class
++;
2310 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2311 fprintf (dump_file
, "Found location equivalence for node %s\n",
2312 get_varinfo (i
)->name
);
2313 BITMAP_FREE (pointed_by
);
2315 graph
->loc_label
[i
] = ecl
->equivalence_class
;
2319 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2320 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2322 unsigned j
= si
->node_mapping
[i
];
2325 fprintf (dump_file
, "%s node id %d ",
2326 bitmap_bit_p (graph
->direct_nodes
, i
)
2327 ? "Direct" : "Indirect", i
);
2328 if (i
< FIRST_REF_NODE
)
2329 fprintf (dump_file
, "\"%s\"", get_varinfo (i
)->name
);
2331 fprintf (dump_file
, "\"*%s\"",
2332 get_varinfo (i
- FIRST_REF_NODE
)->name
);
2333 fprintf (dump_file
, " mapped to SCC leader node id %d ", j
);
2334 if (j
< FIRST_REF_NODE
)
2335 fprintf (dump_file
, "\"%s\"\n", get_varinfo (j
)->name
);
2337 fprintf (dump_file
, "\"*%s\"\n",
2338 get_varinfo (j
- FIRST_REF_NODE
)->name
);
2343 "Equivalence classes for %s node id %d ",
2344 bitmap_bit_p (graph
->direct_nodes
, i
)
2345 ? "direct" : "indirect", i
);
2346 if (i
< FIRST_REF_NODE
)
2347 fprintf (dump_file
, "\"%s\"", get_varinfo (i
)->name
);
2349 fprintf (dump_file
, "\"*%s\"",
2350 get_varinfo (i
- FIRST_REF_NODE
)->name
);
2352 ": pointer %d, location %d\n",
2353 graph
->pointer_label
[i
], graph
->loc_label
[i
]);
2357 /* Quickly eliminate our non-pointer variables. */
2359 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2361 unsigned int node
= si
->node_mapping
[i
];
2363 if (graph
->pointer_label
[node
] == 0)
2365 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2367 "%s is a non-pointer variable, eliminating edges.\n",
2368 get_varinfo (node
)->name
);
2369 stats
.nonpointer_vars
++;
2370 clear_edges_for_node (graph
, node
);
2377 /* Free information that was only necessary for variable
2381 free_var_substitution_info (struct scc_info
*si
)
2384 free (graph
->pointer_label
);
2385 free (graph
->loc_label
);
2386 free (graph
->pointed_by
);
2387 free (graph
->points_to
);
2388 free (graph
->eq_rep
);
2389 sbitmap_free (graph
->direct_nodes
);
2390 pointer_equiv_class_table
.dispose ();
2391 location_equiv_class_table
.dispose ();
2392 bitmap_obstack_release (&iteration_obstack
);
2395 /* Return an existing node that is equivalent to NODE, which has
2396 equivalence class LABEL, if one exists. Return NODE otherwise. */
2399 find_equivalent_node (constraint_graph_t graph
,
2400 unsigned int node
, unsigned int label
)
2402 /* If the address version of this variable is unused, we can
2403 substitute it for anything else with the same label.
2404 Otherwise, we know the pointers are equivalent, but not the
2405 locations, and we can unite them later. */
2407 if (!bitmap_bit_p (graph
->address_taken
, node
))
2409 gcc_checking_assert (label
< graph
->size
);
2411 if (graph
->eq_rep
[label
] != -1)
2413 /* Unify the two variables since we know they are equivalent. */
2414 if (unite (graph
->eq_rep
[label
], node
))
2415 unify_nodes (graph
, graph
->eq_rep
[label
], node
, false);
2416 return graph
->eq_rep
[label
];
2420 graph
->eq_rep
[label
] = node
;
2421 graph
->pe_rep
[label
] = node
;
2426 gcc_checking_assert (label
< graph
->size
);
2427 graph
->pe
[node
] = label
;
2428 if (graph
->pe_rep
[label
] == -1)
2429 graph
->pe_rep
[label
] = node
;
2435 /* Unite pointer equivalent but not location equivalent nodes in
2436 GRAPH. This may only be performed once variable substitution is
2440 unite_pointer_equivalences (constraint_graph_t graph
)
2444 /* Go through the pointer equivalences and unite them to their
2445 representative, if they aren't already. */
2446 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2448 unsigned int label
= graph
->pe
[i
];
2451 int label_rep
= graph
->pe_rep
[label
];
2453 if (label_rep
== -1)
2456 label_rep
= find (label_rep
);
2457 if (label_rep
>= 0 && unite (label_rep
, find (i
)))
2458 unify_nodes (graph
, label_rep
, i
, false);
2463 /* Move complex constraints to the GRAPH nodes they belong to. */
2466 move_complex_constraints (constraint_graph_t graph
)
2471 FOR_EACH_VEC_ELT (constraints
, i
, c
)
2475 struct constraint_expr lhs
= c
->lhs
;
2476 struct constraint_expr rhs
= c
->rhs
;
2478 if (lhs
.type
== DEREF
)
2480 insert_into_complex (graph
, lhs
.var
, c
);
2482 else if (rhs
.type
== DEREF
)
2484 if (!(get_varinfo (lhs
.var
)->is_special_var
))
2485 insert_into_complex (graph
, rhs
.var
, c
);
2487 else if (rhs
.type
!= ADDRESSOF
&& lhs
.var
> anything_id
2488 && (lhs
.offset
!= 0 || rhs
.offset
!= 0))
2490 insert_into_complex (graph
, rhs
.var
, c
);
2497 /* Optimize and rewrite complex constraints while performing
2498 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2499 result of perform_variable_substitution. */
2502 rewrite_constraints (constraint_graph_t graph
,
2503 struct scc_info
*si
)
2508 #ifdef ENABLE_CHECKING
2509 for (unsigned int j
= 0; j
< graph
->size
; j
++)
2510 gcc_assert (find (j
) == j
);
2513 FOR_EACH_VEC_ELT (constraints
, i
, c
)
2515 struct constraint_expr lhs
= c
->lhs
;
2516 struct constraint_expr rhs
= c
->rhs
;
2517 unsigned int lhsvar
= find (lhs
.var
);
2518 unsigned int rhsvar
= find (rhs
.var
);
2519 unsigned int lhsnode
, rhsnode
;
2520 unsigned int lhslabel
, rhslabel
;
2522 lhsnode
= si
->node_mapping
[lhsvar
];
2523 rhsnode
= si
->node_mapping
[rhsvar
];
2524 lhslabel
= graph
->pointer_label
[lhsnode
];
2525 rhslabel
= graph
->pointer_label
[rhsnode
];
2527 /* See if it is really a non-pointer variable, and if so, ignore
2531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2534 fprintf (dump_file
, "%s is a non-pointer variable,"
2535 "ignoring constraint:",
2536 get_varinfo (lhs
.var
)->name
);
2537 dump_constraint (dump_file
, c
);
2538 fprintf (dump_file
, "\n");
2540 constraints
[i
] = NULL
;
2546 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2549 fprintf (dump_file
, "%s is a non-pointer variable,"
2550 "ignoring constraint:",
2551 get_varinfo (rhs
.var
)->name
);
2552 dump_constraint (dump_file
, c
);
2553 fprintf (dump_file
, "\n");
2555 constraints
[i
] = NULL
;
2559 lhsvar
= find_equivalent_node (graph
, lhsvar
, lhslabel
);
2560 rhsvar
= find_equivalent_node (graph
, rhsvar
, rhslabel
);
2561 c
->lhs
.var
= lhsvar
;
2562 c
->rhs
.var
= rhsvar
;
2566 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2567 part of an SCC, false otherwise. */
2570 eliminate_indirect_cycles (unsigned int node
)
2572 if (graph
->indirect_cycles
[node
] != -1
2573 && !bitmap_empty_p (get_varinfo (node
)->solution
))
2576 vec
<unsigned> queue
= vNULL
;
2578 unsigned int to
= find (graph
->indirect_cycles
[node
]);
2581 /* We can't touch the solution set and call unify_nodes
2582 at the same time, because unify_nodes is going to do
2583 bitmap unions into it. */
2585 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node
)->solution
, 0, i
, bi
)
2587 if (find (i
) == i
&& i
!= to
)
2590 queue
.safe_push (i
);
2595 queue
.iterate (queuepos
, &i
);
2598 unify_nodes (graph
, to
, i
, true);
2606 /* Solve the constraint graph GRAPH using our worklist solver.
2607 This is based on the PW* family of solvers from the "Efficient Field
2608 Sensitive Pointer Analysis for C" paper.
2609 It works by iterating over all the graph nodes, processing the complex
2610 constraints and propagating the copy constraints, until everything stops
2611 changed. This corresponds to steps 6-8 in the solving list given above. */
2614 solve_graph (constraint_graph_t graph
)
2616 unsigned int size
= graph
->size
;
2620 changed
= BITMAP_ALLOC (NULL
);
2622 /* Mark all initial non-collapsed nodes as changed. */
2623 for (i
= 1; i
< size
; i
++)
2625 varinfo_t ivi
= get_varinfo (i
);
2626 if (find (i
) == i
&& !bitmap_empty_p (ivi
->solution
)
2627 && ((graph
->succs
[i
] && !bitmap_empty_p (graph
->succs
[i
]))
2628 || graph
->complex[i
].length () > 0))
2629 bitmap_set_bit (changed
, i
);
2632 /* Allocate a bitmap to be used to store the changed bits. */
2633 pts
= BITMAP_ALLOC (&pta_obstack
);
2635 while (!bitmap_empty_p (changed
))
2638 struct topo_info
*ti
= init_topo_info ();
2641 bitmap_obstack_initialize (&iteration_obstack
);
2643 compute_topo_order (graph
, ti
);
2645 while (ti
->topo_order
.length () != 0)
2648 i
= ti
->topo_order
.pop ();
2650 /* If this variable is not a representative, skip it. */
2654 /* In certain indirect cycle cases, we may merge this
2655 variable to another. */
2656 if (eliminate_indirect_cycles (i
) && find (i
) != i
)
2659 /* If the node has changed, we need to process the
2660 complex constraints and outgoing edges again. */
2661 if (bitmap_clear_bit (changed
, i
))
2666 vec
<constraint_t
> complex = graph
->complex[i
];
2667 varinfo_t vi
= get_varinfo (i
);
2668 bool solution_empty
;
2670 /* Compute the changed set of solution bits. If anything
2671 is in the solution just propagate that. */
2672 if (bitmap_bit_p (vi
->solution
, anything_id
))
2674 /* If anything is also in the old solution there is
2676 ??? But we shouldn't ended up with "changed" set ... */
2678 && bitmap_bit_p (vi
->oldsolution
, anything_id
))
2680 bitmap_copy (pts
, get_varinfo (find (anything_id
))->solution
);
2682 else if (vi
->oldsolution
)
2683 bitmap_and_compl (pts
, vi
->solution
, vi
->oldsolution
);
2685 bitmap_copy (pts
, vi
->solution
);
2687 if (bitmap_empty_p (pts
))
2690 if (vi
->oldsolution
)
2691 bitmap_ior_into (vi
->oldsolution
, pts
);
2694 vi
->oldsolution
= BITMAP_ALLOC (&oldpta_obstack
);
2695 bitmap_copy (vi
->oldsolution
, pts
);
2698 solution
= vi
->solution
;
2699 solution_empty
= bitmap_empty_p (solution
);
2701 /* Process the complex constraints */
2702 FOR_EACH_VEC_ELT (complex, j
, c
)
2704 /* XXX: This is going to unsort the constraints in
2705 some cases, which will occasionally add duplicate
2706 constraints during unification. This does not
2707 affect correctness. */
2708 c
->lhs
.var
= find (c
->lhs
.var
);
2709 c
->rhs
.var
= find (c
->rhs
.var
);
2711 /* The only complex constraint that can change our
2712 solution to non-empty, given an empty solution,
2713 is a constraint where the lhs side is receiving
2714 some set from elsewhere. */
2715 if (!solution_empty
|| c
->lhs
.type
!= DEREF
)
2716 do_complex_constraint (graph
, c
, pts
);
2719 solution_empty
= bitmap_empty_p (solution
);
2721 if (!solution_empty
)
2724 unsigned eff_escaped_id
= find (escaped_id
);
2726 /* Propagate solution to all successors. */
2727 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
],
2733 unsigned int to
= find (j
);
2734 tmp
= get_varinfo (to
)->solution
;
2737 /* Don't try to propagate to ourselves. */
2741 /* If we propagate from ESCAPED use ESCAPED as
2743 if (i
== eff_escaped_id
)
2744 flag
= bitmap_set_bit (tmp
, escaped_id
);
2746 flag
= bitmap_ior_into (tmp
, pts
);
2749 bitmap_set_bit (changed
, to
);
2754 free_topo_info (ti
);
2755 bitmap_obstack_release (&iteration_obstack
);
2759 BITMAP_FREE (changed
);
2760 bitmap_obstack_release (&oldpta_obstack
);
2763 /* Map from trees to variable infos. */
2764 static struct pointer_map_t
*vi_for_tree
;
2767 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2770 insert_vi_for_tree (tree t
, varinfo_t vi
)
2772 void **slot
= pointer_map_insert (vi_for_tree
, t
);
2774 gcc_assert (*slot
== NULL
);
2778 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2779 exist in the map, return NULL, otherwise, return the varinfo we found. */
2782 lookup_vi_for_tree (tree t
)
2784 void **slot
= pointer_map_contains (vi_for_tree
, t
);
2788 return (varinfo_t
) *slot
;
2791 /* Return a printable name for DECL */
2794 alias_get_name (tree decl
)
2796 const char *res
= NULL
;
2798 int num_printed
= 0;
2803 if (TREE_CODE (decl
) == SSA_NAME
)
2805 res
= get_name (decl
);
2807 num_printed
= asprintf (&temp
, "%s_%u", res
, SSA_NAME_VERSION (decl
));
2809 num_printed
= asprintf (&temp
, "_%u", SSA_NAME_VERSION (decl
));
2810 if (num_printed
> 0)
2812 res
= ggc_strdup (temp
);
2816 else if (DECL_P (decl
))
2818 if (DECL_ASSEMBLER_NAME_SET_P (decl
))
2819 res
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
2822 res
= get_name (decl
);
2825 num_printed
= asprintf (&temp
, "D.%u", DECL_UID (decl
));
2826 if (num_printed
> 0)
2828 res
= ggc_strdup (temp
);
2840 /* Find the variable id for tree T in the map.
2841 If T doesn't exist in the map, create an entry for it and return it. */
2844 get_vi_for_tree (tree t
)
2846 void **slot
= pointer_map_contains (vi_for_tree
, t
);
2848 return get_varinfo (create_variable_info_for (t
, alias_get_name (t
)));
2850 return (varinfo_t
) *slot
;
2853 /* Get a scalar constraint expression for a new temporary variable. */
2855 static struct constraint_expr
2856 new_scalar_tmp_constraint_exp (const char *name
)
2858 struct constraint_expr tmp
;
2861 vi
= new_var_info (NULL_TREE
, name
);
2865 vi
->is_full_var
= 1;
2874 /* Get a constraint expression vector from an SSA_VAR_P node.
2875 If address_p is true, the result will be taken its address of. */
2878 get_constraint_for_ssa_var (tree t
, vec
<ce_s
> *results
, bool address_p
)
2880 struct constraint_expr cexpr
;
2883 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2884 gcc_assert (TREE_CODE (t
) == SSA_NAME
|| DECL_P (t
));
2886 /* For parameters, get at the points-to set for the actual parm
2888 if (TREE_CODE (t
) == SSA_NAME
2889 && SSA_NAME_IS_DEFAULT_DEF (t
)
2890 && (TREE_CODE (SSA_NAME_VAR (t
)) == PARM_DECL
2891 || TREE_CODE (SSA_NAME_VAR (t
)) == RESULT_DECL
))
2893 get_constraint_for_ssa_var (SSA_NAME_VAR (t
), results
, address_p
);
2897 /* For global variables resort to the alias target. */
2898 if (TREE_CODE (t
) == VAR_DECL
2899 && (TREE_STATIC (t
) || DECL_EXTERNAL (t
)))
2901 struct varpool_node
*node
= varpool_get_node (t
);
2902 if (node
&& node
->alias
&& node
->analyzed
)
2904 node
= varpool_variable_node (node
, NULL
);
2909 vi
= get_vi_for_tree (t
);
2911 cexpr
.type
= SCALAR
;
2913 /* If we determine the result is "anything", and we know this is readonly,
2914 say it points to readonly memory instead. */
2915 if (cexpr
.var
== anything_id
&& TREE_READONLY (t
))
2918 cexpr
.type
= ADDRESSOF
;
2919 cexpr
.var
= readonly_id
;
2922 /* If we are not taking the address of the constraint expr, add all
2923 sub-fiels of the variable as well. */
2925 && !vi
->is_full_var
)
2927 for (; vi
; vi
= vi_next (vi
))
2930 results
->safe_push (cexpr
);
2935 results
->safe_push (cexpr
);
2938 /* Process constraint T, performing various simplifications and then
2939 adding it to our list of overall constraints. */
2942 process_constraint (constraint_t t
)
2944 struct constraint_expr rhs
= t
->rhs
;
2945 struct constraint_expr lhs
= t
->lhs
;
2947 gcc_assert (rhs
.var
< varmap
.length ());
2948 gcc_assert (lhs
.var
< varmap
.length ());
2950 /* If we didn't get any useful constraint from the lhs we get
2951 &ANYTHING as fallback from get_constraint_for. Deal with
2952 it here by turning it into *ANYTHING. */
2953 if (lhs
.type
== ADDRESSOF
2954 && lhs
.var
== anything_id
)
2957 /* ADDRESSOF on the lhs is invalid. */
2958 gcc_assert (lhs
.type
!= ADDRESSOF
);
2960 /* We shouldn't add constraints from things that cannot have pointers.
2961 It's not completely trivial to avoid in the callers, so do it here. */
2962 if (rhs
.type
!= ADDRESSOF
2963 && !get_varinfo (rhs
.var
)->may_have_pointers
)
2966 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2967 if (!get_varinfo (lhs
.var
)->may_have_pointers
)
2970 /* This can happen in our IR with things like n->a = *p */
2971 if (rhs
.type
== DEREF
&& lhs
.type
== DEREF
&& rhs
.var
!= anything_id
)
2973 /* Split into tmp = *rhs, *lhs = tmp */
2974 struct constraint_expr tmplhs
;
2975 tmplhs
= new_scalar_tmp_constraint_exp ("doubledereftmp");
2976 process_constraint (new_constraint (tmplhs
, rhs
));
2977 process_constraint (new_constraint (lhs
, tmplhs
));
2979 else if (rhs
.type
== ADDRESSOF
&& lhs
.type
== DEREF
)
2981 /* Split into tmp = &rhs, *lhs = tmp */
2982 struct constraint_expr tmplhs
;
2983 tmplhs
= new_scalar_tmp_constraint_exp ("derefaddrtmp");
2984 process_constraint (new_constraint (tmplhs
, rhs
));
2985 process_constraint (new_constraint (lhs
, tmplhs
));
2989 gcc_assert (rhs
.type
!= ADDRESSOF
|| rhs
.offset
== 0);
2990 constraints
.safe_push (t
);
2995 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2998 static HOST_WIDE_INT
2999 bitpos_of_field (const tree fdecl
)
3001 if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl
))
3002 || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl
)))
3005 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl
)) * BITS_PER_UNIT
3006 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl
)));
3010 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
3011 resulting constraint expressions in *RESULTS. */
3014 get_constraint_for_ptr_offset (tree ptr
, tree offset
,
3017 struct constraint_expr c
;
3019 HOST_WIDE_INT rhsoffset
;
3021 /* If we do not do field-sensitive PTA adding offsets to pointers
3022 does not change the points-to solution. */
3023 if (!use_field_sensitive
)
3025 get_constraint_for_rhs (ptr
, results
);
3029 /* If the offset is not a non-negative integer constant that fits
3030 in a HOST_WIDE_INT, we have to fall back to a conservative
3031 solution which includes all sub-fields of all pointed-to
3032 variables of ptr. */
3033 if (offset
== NULL_TREE
3034 || TREE_CODE (offset
) != INTEGER_CST
)
3035 rhsoffset
= UNKNOWN_OFFSET
;
3038 /* Sign-extend the offset. */
3039 double_int soffset
= tree_to_double_int (offset
)
3040 .sext (TYPE_PRECISION (TREE_TYPE (offset
)));
3041 if (!soffset
.fits_shwi ())
3042 rhsoffset
= UNKNOWN_OFFSET
;
3045 /* Make sure the bit-offset also fits. */
3046 HOST_WIDE_INT rhsunitoffset
= soffset
.low
;
3047 rhsoffset
= rhsunitoffset
* BITS_PER_UNIT
;
3048 if (rhsunitoffset
!= rhsoffset
/ BITS_PER_UNIT
)
3049 rhsoffset
= UNKNOWN_OFFSET
;
3053 get_constraint_for_rhs (ptr
, results
);
3057 /* As we are eventually appending to the solution do not use
3058 vec::iterate here. */
3059 n
= results
->length ();
3060 for (j
= 0; j
< n
; j
++)
3064 curr
= get_varinfo (c
.var
);
3066 if (c
.type
== ADDRESSOF
3067 /* If this varinfo represents a full variable just use it. */
3068 && curr
->is_full_var
)
3070 else if (c
.type
== ADDRESSOF
3071 /* If we do not know the offset add all subfields. */
3072 && rhsoffset
== UNKNOWN_OFFSET
)
3074 varinfo_t temp
= get_varinfo (curr
->head
);
3077 struct constraint_expr c2
;
3079 c2
.type
= ADDRESSOF
;
3081 if (c2
.var
!= c
.var
)
3082 results
->safe_push (c2
);
3083 temp
= vi_next (temp
);
3087 else if (c
.type
== ADDRESSOF
)
3090 unsigned HOST_WIDE_INT offset
= curr
->offset
+ rhsoffset
;
3092 /* Search the sub-field which overlaps with the
3093 pointed-to offset. If the result is outside of the variable
3094 we have to provide a conservative result, as the variable is
3095 still reachable from the resulting pointer (even though it
3096 technically cannot point to anything). The last and first
3097 sub-fields are such conservative results.
3098 ??? If we always had a sub-field for &object + 1 then
3099 we could represent this in a more precise way. */
3101 && curr
->offset
< offset
)
3103 temp
= first_or_preceding_vi_for_offset (curr
, offset
);
3105 /* If the found variable is not exactly at the pointed to
3106 result, we have to include the next variable in the
3107 solution as well. Otherwise two increments by offset / 2
3108 do not result in the same or a conservative superset
3110 if (temp
->offset
!= offset
3113 struct constraint_expr c2
;
3114 c2
.var
= temp
->next
;
3115 c2
.type
= ADDRESSOF
;
3117 results
->safe_push (c2
);
3123 c
.offset
= rhsoffset
;
3130 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3131 If address_p is true the result will be taken its address of.
3132 If lhs_p is true then the constraint expression is assumed to be used
3136 get_constraint_for_component_ref (tree t
, vec
<ce_s
> *results
,
3137 bool address_p
, bool lhs_p
)
3140 HOST_WIDE_INT bitsize
= -1;
3141 HOST_WIDE_INT bitmaxsize
= -1;
3142 HOST_WIDE_INT bitpos
;
3145 /* Some people like to do cute things like take the address of
3148 while (handled_component_p (forzero
)
3149 || INDIRECT_REF_P (forzero
)
3150 || TREE_CODE (forzero
) == MEM_REF
)
3151 forzero
= TREE_OPERAND (forzero
, 0);
3153 if (CONSTANT_CLASS_P (forzero
) && integer_zerop (forzero
))
3155 struct constraint_expr temp
;
3158 temp
.var
= integer_id
;
3160 results
->safe_push (temp
);
3164 /* Handle type-punning through unions. If we are extracting a pointer
3165 from a union via a possibly type-punning access that pointer
3166 points to anything, similar to a conversion of an integer to
3172 TREE_CODE (u
) == COMPONENT_REF
|| TREE_CODE (u
) == ARRAY_REF
;
3173 u
= TREE_OPERAND (u
, 0))
3174 if (TREE_CODE (u
) == COMPONENT_REF
3175 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u
, 0))) == UNION_TYPE
)
3177 struct constraint_expr temp
;
3180 temp
.var
= anything_id
;
3181 temp
.type
= ADDRESSOF
;
3182 results
->safe_push (temp
);
3187 t
= get_ref_base_and_extent (t
, &bitpos
, &bitsize
, &bitmaxsize
);
3189 /* Pretend to take the address of the base, we'll take care of
3190 adding the required subset of sub-fields below. */
3191 get_constraint_for_1 (t
, results
, true, lhs_p
);
3192 gcc_assert (results
->length () == 1);
3193 struct constraint_expr
&result
= results
->last ();
3195 if (result
.type
== SCALAR
3196 && get_varinfo (result
.var
)->is_full_var
)
3197 /* For single-field vars do not bother about the offset. */
3199 else if (result
.type
== SCALAR
)
3201 /* In languages like C, you can access one past the end of an
3202 array. You aren't allowed to dereference it, so we can
3203 ignore this constraint. When we handle pointer subtraction,
3204 we may have to do something cute here. */
3206 if ((unsigned HOST_WIDE_INT
)bitpos
< get_varinfo (result
.var
)->fullsize
3209 /* It's also not true that the constraint will actually start at the
3210 right offset, it may start in some padding. We only care about
3211 setting the constraint to the first actual field it touches, so
3213 struct constraint_expr cexpr
= result
;
3217 for (curr
= get_varinfo (cexpr
.var
); curr
; curr
= vi_next (curr
))
3219 if (ranges_overlap_p (curr
->offset
, curr
->size
,
3220 bitpos
, bitmaxsize
))
3222 cexpr
.var
= curr
->id
;
3223 results
->safe_push (cexpr
);
3228 /* If we are going to take the address of this field then
3229 to be able to compute reachability correctly add at least
3230 the last field of the variable. */
3231 if (address_p
&& results
->length () == 0)
3233 curr
= get_varinfo (cexpr
.var
);
3234 while (curr
->next
!= 0)
3235 curr
= vi_next (curr
);
3236 cexpr
.var
= curr
->id
;
3237 results
->safe_push (cexpr
);
3239 else if (results
->length () == 0)
3240 /* Assert that we found *some* field there. The user couldn't be
3241 accessing *only* padding. */
3242 /* Still the user could access one past the end of an array
3243 embedded in a struct resulting in accessing *only* padding. */
3244 /* Or accessing only padding via type-punning to a type
3245 that has a filed just in padding space. */
3247 cexpr
.type
= SCALAR
;
3248 cexpr
.var
= anything_id
;
3250 results
->safe_push (cexpr
);
3253 else if (bitmaxsize
== 0)
3255 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3256 fprintf (dump_file
, "Access to zero-sized part of variable,"
3260 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3261 fprintf (dump_file
, "Access to past the end of variable, ignoring\n");
3263 else if (result
.type
== DEREF
)
3265 /* If we do not know exactly where the access goes say so. Note
3266 that only for non-structure accesses we know that we access
3267 at most one subfiled of any variable. */
3269 || bitsize
!= bitmaxsize
3270 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t
))
3271 || result
.offset
== UNKNOWN_OFFSET
)
3272 result
.offset
= UNKNOWN_OFFSET
;
3274 result
.offset
+= bitpos
;
3276 else if (result
.type
== ADDRESSOF
)
3278 /* We can end up here for component references on a
3279 VIEW_CONVERT_EXPR <>(&foobar). */
3280 result
.type
= SCALAR
;
3281 result
.var
= anything_id
;
3289 /* Dereference the constraint expression CONS, and return the result.
3290 DEREF (ADDRESSOF) = SCALAR
3291 DEREF (SCALAR) = DEREF
3292 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3293 This is needed so that we can handle dereferencing DEREF constraints. */
3296 do_deref (vec
<ce_s
> *constraints
)
3298 struct constraint_expr
*c
;
3301 FOR_EACH_VEC_ELT (*constraints
, i
, c
)
3303 if (c
->type
== SCALAR
)
3305 else if (c
->type
== ADDRESSOF
)
3307 else if (c
->type
== DEREF
)
3309 struct constraint_expr tmplhs
;
3310 tmplhs
= new_scalar_tmp_constraint_exp ("dereftmp");
3311 process_constraint (new_constraint (tmplhs
, *c
));
3312 c
->var
= tmplhs
.var
;
3319 /* Given a tree T, return the constraint expression for taking the
3323 get_constraint_for_address_of (tree t
, vec
<ce_s
> *results
)
3325 struct constraint_expr
*c
;
3328 get_constraint_for_1 (t
, results
, true, true);
3330 FOR_EACH_VEC_ELT (*results
, i
, c
)
3332 if (c
->type
== DEREF
)
3335 c
->type
= ADDRESSOF
;
3339 /* Given a tree T, return the constraint expression for it. */
3342 get_constraint_for_1 (tree t
, vec
<ce_s
> *results
, bool address_p
,
3345 struct constraint_expr temp
;
3347 /* x = integer is all glommed to a single variable, which doesn't
3348 point to anything by itself. That is, of course, unless it is an
3349 integer constant being treated as a pointer, in which case, we
3350 will return that this is really the addressof anything. This
3351 happens below, since it will fall into the default case. The only
3352 case we know something about an integer treated like a pointer is
3353 when it is the NULL pointer, and then we just say it points to
3356 Do not do that if -fno-delete-null-pointer-checks though, because
3357 in that case *NULL does not fail, so it _should_ alias *anything.
3358 It is not worth adding a new option or renaming the existing one,
3359 since this case is relatively obscure. */
3360 if ((TREE_CODE (t
) == INTEGER_CST
3361 && integer_zerop (t
))
3362 /* The only valid CONSTRUCTORs in gimple with pointer typed
3363 elements are zero-initializer. But in IPA mode we also
3364 process global initializers, so verify at least. */
3365 || (TREE_CODE (t
) == CONSTRUCTOR
3366 && CONSTRUCTOR_NELTS (t
) == 0))
3368 if (flag_delete_null_pointer_checks
)
3369 temp
.var
= nothing_id
;
3371 temp
.var
= nonlocal_id
;
3372 temp
.type
= ADDRESSOF
;
3374 results
->safe_push (temp
);
3378 /* String constants are read-only. */
3379 if (TREE_CODE (t
) == STRING_CST
)
3381 temp
.var
= readonly_id
;
3384 results
->safe_push (temp
);
3388 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
3390 case tcc_expression
:
3392 switch (TREE_CODE (t
))
3395 get_constraint_for_address_of (TREE_OPERAND (t
, 0), results
);
3403 switch (TREE_CODE (t
))
3407 struct constraint_expr cs
;
3409 get_constraint_for_ptr_offset (TREE_OPERAND (t
, 0),
3410 TREE_OPERAND (t
, 1), results
);
3413 /* If we are not taking the address then make sure to process
3414 all subvariables we might access. */
3418 cs
= results
->last ();
3419 if (cs
.type
== DEREF
3420 && type_can_have_subvars (TREE_TYPE (t
)))
3422 /* For dereferences this means we have to defer it
3424 results
->last ().offset
= UNKNOWN_OFFSET
;
3427 if (cs
.type
!= SCALAR
)
3430 vi
= get_varinfo (cs
.var
);
3431 curr
= vi_next (vi
);
3432 if (!vi
->is_full_var
3435 unsigned HOST_WIDE_INT size
;
3436 if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t
))))
3437 size
= TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t
)));
3440 for (; curr
; curr
= vi_next (curr
))
3442 if (curr
->offset
- vi
->offset
< size
)
3445 results
->safe_push (cs
);
3454 case ARRAY_RANGE_REF
:
3456 get_constraint_for_component_ref (t
, results
, address_p
, lhs_p
);
3458 case VIEW_CONVERT_EXPR
:
3459 get_constraint_for_1 (TREE_OPERAND (t
, 0), results
, address_p
,
3462 /* We are missing handling for TARGET_MEM_REF here. */
3467 case tcc_exceptional
:
3469 switch (TREE_CODE (t
))
3473 get_constraint_for_ssa_var (t
, results
, address_p
);
3480 vec
<ce_s
> tmp
= vNULL
;
3481 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
3483 struct constraint_expr
*rhsp
;
3485 get_constraint_for_1 (val
, &tmp
, address_p
, lhs_p
);
3486 FOR_EACH_VEC_ELT (tmp
, j
, rhsp
)
3487 results
->safe_push (*rhsp
);
3491 /* We do not know whether the constructor was complete,
3492 so technically we have to add &NOTHING or &ANYTHING
3493 like we do for an empty constructor as well. */
3500 case tcc_declaration
:
3502 get_constraint_for_ssa_var (t
, results
, address_p
);
3507 /* We cannot refer to automatic variables through constants. */
3508 temp
.type
= ADDRESSOF
;
3509 temp
.var
= nonlocal_id
;
3511 results
->safe_push (temp
);
3517 /* The default fallback is a constraint from anything. */
3518 temp
.type
= ADDRESSOF
;
3519 temp
.var
= anything_id
;
3521 results
->safe_push (temp
);
3524 /* Given a gimple tree T, return the constraint expression vector for it. */
3527 get_constraint_for (tree t
, vec
<ce_s
> *results
)
3529 gcc_assert (results
->length () == 0);
3531 get_constraint_for_1 (t
, results
, false, true);
3534 /* Given a gimple tree T, return the constraint expression vector for it
3535 to be used as the rhs of a constraint. */
3538 get_constraint_for_rhs (tree t
, vec
<ce_s
> *results
)
3540 gcc_assert (results
->length () == 0);
3542 get_constraint_for_1 (t
, results
, false, false);
3546 /* Efficiently generates constraints from all entries in *RHSC to all
3547 entries in *LHSC. */
3550 process_all_all_constraints (vec
<ce_s
> lhsc
,
3553 struct constraint_expr
*lhsp
, *rhsp
;
3556 if (lhsc
.length () <= 1 || rhsc
.length () <= 1)
3558 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
3559 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
3560 process_constraint (new_constraint (*lhsp
, *rhsp
));
3564 struct constraint_expr tmp
;
3565 tmp
= new_scalar_tmp_constraint_exp ("allalltmp");
3566 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
3567 process_constraint (new_constraint (tmp
, *rhsp
));
3568 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
3569 process_constraint (new_constraint (*lhsp
, tmp
));
3573 /* Handle aggregate copies by expanding into copies of the respective
3574 fields of the structures. */
3577 do_structure_copy (tree lhsop
, tree rhsop
)
3579 struct constraint_expr
*lhsp
, *rhsp
;
3580 vec
<ce_s
> lhsc
= vNULL
;
3581 vec
<ce_s
> rhsc
= vNULL
;
3584 get_constraint_for (lhsop
, &lhsc
);
3585 get_constraint_for_rhs (rhsop
, &rhsc
);
3588 if (lhsp
->type
== DEREF
3589 || (lhsp
->type
== ADDRESSOF
&& lhsp
->var
== anything_id
)
3590 || rhsp
->type
== DEREF
)
3592 if (lhsp
->type
== DEREF
)
3594 gcc_assert (lhsc
.length () == 1);
3595 lhsp
->offset
= UNKNOWN_OFFSET
;
3597 if (rhsp
->type
== DEREF
)
3599 gcc_assert (rhsc
.length () == 1);
3600 rhsp
->offset
= UNKNOWN_OFFSET
;
3602 process_all_all_constraints (lhsc
, rhsc
);
3604 else if (lhsp
->type
== SCALAR
3605 && (rhsp
->type
== SCALAR
3606 || rhsp
->type
== ADDRESSOF
))
3608 HOST_WIDE_INT lhssize
, lhsmaxsize
, lhsoffset
;
3609 HOST_WIDE_INT rhssize
, rhsmaxsize
, rhsoffset
;
3611 get_ref_base_and_extent (lhsop
, &lhsoffset
, &lhssize
, &lhsmaxsize
);
3612 get_ref_base_and_extent (rhsop
, &rhsoffset
, &rhssize
, &rhsmaxsize
);
3613 for (j
= 0; lhsc
.iterate (j
, &lhsp
);)
3615 varinfo_t lhsv
, rhsv
;
3617 lhsv
= get_varinfo (lhsp
->var
);
3618 rhsv
= get_varinfo (rhsp
->var
);
3619 if (lhsv
->may_have_pointers
3620 && (lhsv
->is_full_var
3621 || rhsv
->is_full_var
3622 || ranges_overlap_p (lhsv
->offset
+ rhsoffset
, lhsv
->size
,
3623 rhsv
->offset
+ lhsoffset
, rhsv
->size
)))
3624 process_constraint (new_constraint (*lhsp
, *rhsp
));
3625 if (!rhsv
->is_full_var
3626 && (lhsv
->is_full_var
3627 || (lhsv
->offset
+ rhsoffset
+ lhsv
->size
3628 > rhsv
->offset
+ lhsoffset
+ rhsv
->size
)))
3631 if (k
>= rhsc
.length ())
3645 /* Create constraints ID = { rhsc }. */
3648 make_constraints_to (unsigned id
, vec
<ce_s
> rhsc
)
3650 struct constraint_expr
*c
;
3651 struct constraint_expr includes
;
3655 includes
.offset
= 0;
3656 includes
.type
= SCALAR
;
3658 FOR_EACH_VEC_ELT (rhsc
, j
, c
)
3659 process_constraint (new_constraint (includes
, *c
));
3662 /* Create a constraint ID = OP. */
3665 make_constraint_to (unsigned id
, tree op
)
3667 vec
<ce_s
> rhsc
= vNULL
;
3668 get_constraint_for_rhs (op
, &rhsc
);
3669 make_constraints_to (id
, rhsc
);
3673 /* Create a constraint ID = &FROM. */
3676 make_constraint_from (varinfo_t vi
, int from
)
3678 struct constraint_expr lhs
, rhs
;
3686 rhs
.type
= ADDRESSOF
;
3687 process_constraint (new_constraint (lhs
, rhs
));
3690 /* Create a constraint ID = FROM. */
3693 make_copy_constraint (varinfo_t vi
, int from
)
3695 struct constraint_expr lhs
, rhs
;
3704 process_constraint (new_constraint (lhs
, rhs
));
3707 /* Make constraints necessary to make OP escape. */
3710 make_escape_constraint (tree op
)
3712 make_constraint_to (escaped_id
, op
);
3715 /* Add constraints to that the solution of VI is transitively closed. */
3718 make_transitive_closure_constraints (varinfo_t vi
)
3720 struct constraint_expr lhs
, rhs
;
3729 process_constraint (new_constraint (lhs
, rhs
));
3731 /* VAR = VAR + UNKNOWN; */
3737 rhs
.offset
= UNKNOWN_OFFSET
;
3738 process_constraint (new_constraint (lhs
, rhs
));
3741 /* Temporary storage for fake var decls. */
3742 struct obstack fake_var_decl_obstack
;
3744 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3747 build_fake_var_decl (tree type
)
3749 tree decl
= (tree
) XOBNEW (&fake_var_decl_obstack
, struct tree_var_decl
);
3750 memset (decl
, 0, sizeof (struct tree_var_decl
));
3751 TREE_SET_CODE (decl
, VAR_DECL
);
3752 TREE_TYPE (decl
) = type
;
3753 DECL_UID (decl
) = allocate_decl_uid ();
3754 SET_DECL_PT_UID (decl
, -1);
3755 layout_decl (decl
, 0);
3759 /* Create a new artificial heap variable with NAME.
3760 Return the created variable. */
3763 make_heapvar (const char *name
)
3768 heapvar
= build_fake_var_decl (ptr_type_node
);
3769 DECL_EXTERNAL (heapvar
) = 1;
3771 vi
= new_var_info (heapvar
, name
);
3772 vi
->is_artificial_var
= true;
3773 vi
->is_heap_var
= true;
3774 vi
->is_unknown_size_var
= true;
3778 vi
->is_full_var
= true;
3779 insert_vi_for_tree (heapvar
, vi
);
3784 /* Create a new artificial heap variable with NAME and make a
3785 constraint from it to LHS. Set flags according to a tag used
3786 for tracking restrict pointers. */
3789 make_constraint_from_restrict (varinfo_t lhs
, const char *name
)
3791 varinfo_t vi
= make_heapvar (name
);
3792 vi
->is_global_var
= 1;
3793 vi
->may_have_pointers
= 1;
3794 make_constraint_from (lhs
, vi
->id
);
3798 /* Create a new artificial heap variable with NAME and make a
3799 constraint from it to LHS. Set flags according to a tag used
3800 for tracking restrict pointers and make the artificial heap
3801 point to global memory. */
3804 make_constraint_from_global_restrict (varinfo_t lhs
, const char *name
)
3806 varinfo_t vi
= make_constraint_from_restrict (lhs
, name
);
3807 make_copy_constraint (vi
, nonlocal_id
);
3811 /* In IPA mode there are varinfos for different aspects of reach
3812 function designator. One for the points-to set of the return
3813 value, one for the variables that are clobbered by the function,
3814 one for its uses and one for each parameter (including a single
3815 glob for remaining variadic arguments). */
3817 enum { fi_clobbers
= 1, fi_uses
= 2,
3818 fi_static_chain
= 3, fi_result
= 4, fi_parm_base
= 5 };
3820 /* Get a constraint for the requested part of a function designator FI
3821 when operating in IPA mode. */
3823 static struct constraint_expr
3824 get_function_part_constraint (varinfo_t fi
, unsigned part
)
3826 struct constraint_expr c
;
3828 gcc_assert (in_ipa_mode
);
3830 if (fi
->id
== anything_id
)
3832 /* ??? We probably should have a ANYFN special variable. */
3833 c
.var
= anything_id
;
3837 else if (TREE_CODE (fi
->decl
) == FUNCTION_DECL
)
3839 varinfo_t ai
= first_vi_for_offset (fi
, part
);
3843 c
.var
= anything_id
;
3857 /* For non-IPA mode, generate constraints necessary for a call on the
3861 handle_rhs_call (gimple stmt
, vec
<ce_s
> *results
)
3863 struct constraint_expr rhsc
;
3865 bool returns_uses
= false;
3867 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3869 tree arg
= gimple_call_arg (stmt
, i
);
3870 int flags
= gimple_call_arg_flags (stmt
, i
);
3872 /* If the argument is not used we can ignore it. */
3873 if (flags
& EAF_UNUSED
)
3876 /* As we compute ESCAPED context-insensitive we do not gain
3877 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3878 set. The argument would still get clobbered through the
3880 if ((flags
& EAF_NOCLOBBER
)
3881 && (flags
& EAF_NOESCAPE
))
3883 varinfo_t uses
= get_call_use_vi (stmt
);
3884 if (!(flags
& EAF_DIRECT
))
3886 varinfo_t tem
= new_var_info (NULL_TREE
, "callarg");
3887 make_constraint_to (tem
->id
, arg
);
3888 make_transitive_closure_constraints (tem
);
3889 make_copy_constraint (uses
, tem
->id
);
3892 make_constraint_to (uses
->id
, arg
);
3893 returns_uses
= true;
3895 else if (flags
& EAF_NOESCAPE
)
3897 struct constraint_expr lhs
, rhs
;
3898 varinfo_t uses
= get_call_use_vi (stmt
);
3899 varinfo_t clobbers
= get_call_clobber_vi (stmt
);
3900 varinfo_t tem
= new_var_info (NULL_TREE
, "callarg");
3901 make_constraint_to (tem
->id
, arg
);
3902 if (!(flags
& EAF_DIRECT
))
3903 make_transitive_closure_constraints (tem
);
3904 make_copy_constraint (uses
, tem
->id
);
3905 make_copy_constraint (clobbers
, tem
->id
);
3906 /* Add *tem = nonlocal, do not add *tem = callused as
3907 EAF_NOESCAPE parameters do not escape to other parameters
3908 and all other uses appear in NONLOCAL as well. */
3913 rhs
.var
= nonlocal_id
;
3915 process_constraint (new_constraint (lhs
, rhs
));
3916 returns_uses
= true;
3919 make_escape_constraint (arg
);
3922 /* If we added to the calls uses solution make sure we account for
3923 pointers to it to be returned. */
3926 rhsc
.var
= get_call_use_vi (stmt
)->id
;
3929 results
->safe_push (rhsc
);
3932 /* The static chain escapes as well. */
3933 if (gimple_call_chain (stmt
))
3934 make_escape_constraint (gimple_call_chain (stmt
));
3936 /* And if we applied NRV the address of the return slot escapes as well. */
3937 if (gimple_call_return_slot_opt_p (stmt
)
3938 && gimple_call_lhs (stmt
) != NULL_TREE
3939 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt
))))
3941 vec
<ce_s
> tmpc
= vNULL
;
3942 struct constraint_expr lhsc
, *c
;
3943 get_constraint_for_address_of (gimple_call_lhs (stmt
), &tmpc
);
3944 lhsc
.var
= escaped_id
;
3947 FOR_EACH_VEC_ELT (tmpc
, i
, c
)
3948 process_constraint (new_constraint (lhsc
, *c
));
3952 /* Regular functions return nonlocal memory. */
3953 rhsc
.var
= nonlocal_id
;
3956 results
->safe_push (rhsc
);
3959 /* For non-IPA mode, generate constraints necessary for a call
3960 that returns a pointer and assigns it to LHS. This simply makes
3961 the LHS point to global and escaped variables. */
3964 handle_lhs_call (gimple stmt
, tree lhs
, int flags
, vec
<ce_s
> rhsc
,
3967 vec
<ce_s
> lhsc
= vNULL
;
3969 get_constraint_for (lhs
, &lhsc
);
3970 /* If the store is to a global decl make sure to
3971 add proper escape constraints. */
3972 lhs
= get_base_address (lhs
);
3975 && is_global_var (lhs
))
3977 struct constraint_expr tmpc
;
3978 tmpc
.var
= escaped_id
;
3981 lhsc
.safe_push (tmpc
);
3984 /* If the call returns an argument unmodified override the rhs
3986 flags
= gimple_call_return_flags (stmt
);
3987 if (flags
& ERF_RETURNS_ARG
3988 && (flags
& ERF_RETURN_ARG_MASK
) < gimple_call_num_args (stmt
))
3992 arg
= gimple_call_arg (stmt
, flags
& ERF_RETURN_ARG_MASK
);
3993 get_constraint_for (arg
, &rhsc
);
3994 process_all_all_constraints (lhsc
, rhsc
);
3997 else if (flags
& ERF_NOALIAS
)
4000 struct constraint_expr tmpc
;
4002 vi
= make_heapvar ("HEAP");
4003 /* We marking allocated storage local, we deal with it becoming
4004 global by escaping and setting of vars_contains_escaped_heap. */
4005 DECL_EXTERNAL (vi
->decl
) = 0;
4006 vi
->is_global_var
= 0;
4007 /* If this is not a real malloc call assume the memory was
4008 initialized and thus may point to global memory. All
4009 builtin functions with the malloc attribute behave in a sane way. */
4011 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
4012 make_constraint_from (vi
, nonlocal_id
);
4015 tmpc
.type
= ADDRESSOF
;
4016 rhsc
.safe_push (tmpc
);
4017 process_all_all_constraints (lhsc
, rhsc
);
4021 process_all_all_constraints (lhsc
, rhsc
);
4026 /* For non-IPA mode, generate constraints necessary for a call of a
4027 const function that returns a pointer in the statement STMT. */
4030 handle_const_call (gimple stmt
, vec
<ce_s
> *results
)
4032 struct constraint_expr rhsc
;
4035 /* Treat nested const functions the same as pure functions as far
4036 as the static chain is concerned. */
4037 if (gimple_call_chain (stmt
))
4039 varinfo_t uses
= get_call_use_vi (stmt
);
4040 make_transitive_closure_constraints (uses
);
4041 make_constraint_to (uses
->id
, gimple_call_chain (stmt
));
4042 rhsc
.var
= uses
->id
;
4045 results
->safe_push (rhsc
);
4048 /* May return arguments. */
4049 for (k
= 0; k
< gimple_call_num_args (stmt
); ++k
)
4051 tree arg
= gimple_call_arg (stmt
, k
);
4052 vec
<ce_s
> argc
= vNULL
;
4054 struct constraint_expr
*argp
;
4055 get_constraint_for_rhs (arg
, &argc
);
4056 FOR_EACH_VEC_ELT (argc
, i
, argp
)
4057 results
->safe_push (*argp
);
4061 /* May return addresses of globals. */
4062 rhsc
.var
= nonlocal_id
;
4064 rhsc
.type
= ADDRESSOF
;
4065 results
->safe_push (rhsc
);
4068 /* For non-IPA mode, generate constraints necessary for a call to a
4069 pure function in statement STMT. */
4072 handle_pure_call (gimple stmt
, vec
<ce_s
> *results
)
4074 struct constraint_expr rhsc
;
4076 varinfo_t uses
= NULL
;
4078 /* Memory reached from pointer arguments is call-used. */
4079 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
4081 tree arg
= gimple_call_arg (stmt
, i
);
4084 uses
= get_call_use_vi (stmt
);
4085 make_transitive_closure_constraints (uses
);
4087 make_constraint_to (uses
->id
, arg
);
4090 /* The static chain is used as well. */
4091 if (gimple_call_chain (stmt
))
4095 uses
= get_call_use_vi (stmt
);
4096 make_transitive_closure_constraints (uses
);
4098 make_constraint_to (uses
->id
, gimple_call_chain (stmt
));
4101 /* Pure functions may return call-used and nonlocal memory. */
4104 rhsc
.var
= uses
->id
;
4107 results
->safe_push (rhsc
);
4109 rhsc
.var
= nonlocal_id
;
4112 results
->safe_push (rhsc
);
4116 /* Return the varinfo for the callee of CALL. */
4119 get_fi_for_callee (gimple call
)
4121 tree decl
, fn
= gimple_call_fn (call
);
4123 if (fn
&& TREE_CODE (fn
) == OBJ_TYPE_REF
)
4124 fn
= OBJ_TYPE_REF_EXPR (fn
);
4126 /* If we can directly resolve the function being called, do so.
4127 Otherwise, it must be some sort of indirect expression that
4128 we should still be able to handle. */
4129 decl
= gimple_call_addr_fndecl (fn
);
4131 return get_vi_for_tree (decl
);
4133 /* If the function is anything other than a SSA name pointer we have no
4134 clue and should be getting ANYFN (well, ANYTHING for now). */
4135 if (!fn
|| TREE_CODE (fn
) != SSA_NAME
)
4136 return get_varinfo (anything_id
);
4138 if (SSA_NAME_IS_DEFAULT_DEF (fn
)
4139 && (TREE_CODE (SSA_NAME_VAR (fn
)) == PARM_DECL
4140 || TREE_CODE (SSA_NAME_VAR (fn
)) == RESULT_DECL
))
4141 fn
= SSA_NAME_VAR (fn
);
4143 return get_vi_for_tree (fn
);
4146 /* Create constraints for the builtin call T. Return true if the call
4147 was handled, otherwise false. */
4150 find_func_aliases_for_builtin_call (gimple t
)
4152 tree fndecl
= gimple_call_fndecl (t
);
4153 vec
<ce_s
> lhsc
= vNULL
;
4154 vec
<ce_s
> rhsc
= vNULL
;
4157 if (gimple_call_builtin_p (t
, BUILT_IN_NORMAL
))
4158 /* ??? All builtins that are handled here need to be handled
4159 in the alias-oracle query functions explicitly! */
4160 switch (DECL_FUNCTION_CODE (fndecl
))
4162 /* All the following functions return a pointer to the same object
4163 as their first argument points to. The functions do not add
4164 to the ESCAPED solution. The functions make the first argument
4165 pointed to memory point to what the second argument pointed to
4166 memory points to. */
4167 case BUILT_IN_STRCPY
:
4168 case BUILT_IN_STRNCPY
:
4169 case BUILT_IN_BCOPY
:
4170 case BUILT_IN_MEMCPY
:
4171 case BUILT_IN_MEMMOVE
:
4172 case BUILT_IN_MEMPCPY
:
4173 case BUILT_IN_STPCPY
:
4174 case BUILT_IN_STPNCPY
:
4175 case BUILT_IN_STRCAT
:
4176 case BUILT_IN_STRNCAT
:
4177 case BUILT_IN_STRCPY_CHK
:
4178 case BUILT_IN_STRNCPY_CHK
:
4179 case BUILT_IN_MEMCPY_CHK
:
4180 case BUILT_IN_MEMMOVE_CHK
:
4181 case BUILT_IN_MEMPCPY_CHK
:
4182 case BUILT_IN_STPCPY_CHK
:
4183 case BUILT_IN_STPNCPY_CHK
:
4184 case BUILT_IN_STRCAT_CHK
:
4185 case BUILT_IN_STRNCAT_CHK
:
4186 case BUILT_IN_TM_MEMCPY
:
4187 case BUILT_IN_TM_MEMMOVE
:
4189 tree res
= gimple_call_lhs (t
);
4190 tree dest
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (fndecl
)
4191 == BUILT_IN_BCOPY
? 1 : 0));
4192 tree src
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (fndecl
)
4193 == BUILT_IN_BCOPY
? 0 : 1));
4194 if (res
!= NULL_TREE
)
4196 get_constraint_for (res
, &lhsc
);
4197 if (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_MEMPCPY
4198 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPCPY
4199 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPNCPY
4200 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_MEMPCPY_CHK
4201 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPCPY_CHK
4202 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPNCPY_CHK
)
4203 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &rhsc
);
4205 get_constraint_for (dest
, &rhsc
);
4206 process_all_all_constraints (lhsc
, rhsc
);
4210 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4211 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4214 process_all_all_constraints (lhsc
, rhsc
);
4219 case BUILT_IN_MEMSET
:
4220 case BUILT_IN_MEMSET_CHK
:
4221 case BUILT_IN_TM_MEMSET
:
4223 tree res
= gimple_call_lhs (t
);
4224 tree dest
= gimple_call_arg (t
, 0);
4227 struct constraint_expr ac
;
4228 if (res
!= NULL_TREE
)
4230 get_constraint_for (res
, &lhsc
);
4231 get_constraint_for (dest
, &rhsc
);
4232 process_all_all_constraints (lhsc
, rhsc
);
4236 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4238 if (flag_delete_null_pointer_checks
4239 && integer_zerop (gimple_call_arg (t
, 1)))
4241 ac
.type
= ADDRESSOF
;
4242 ac
.var
= nothing_id
;
4247 ac
.var
= integer_id
;
4250 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4251 process_constraint (new_constraint (*lhsp
, ac
));
4255 case BUILT_IN_ASSUME_ALIGNED
:
4257 tree res
= gimple_call_lhs (t
);
4258 tree dest
= gimple_call_arg (t
, 0);
4259 if (res
!= NULL_TREE
)
4261 get_constraint_for (res
, &lhsc
);
4262 get_constraint_for (dest
, &rhsc
);
4263 process_all_all_constraints (lhsc
, rhsc
);
4269 /* All the following functions do not return pointers, do not
4270 modify the points-to sets of memory reachable from their
4271 arguments and do not add to the ESCAPED solution. */
4272 case BUILT_IN_SINCOS
:
4273 case BUILT_IN_SINCOSF
:
4274 case BUILT_IN_SINCOSL
:
4275 case BUILT_IN_FREXP
:
4276 case BUILT_IN_FREXPF
:
4277 case BUILT_IN_FREXPL
:
4278 case BUILT_IN_GAMMA_R
:
4279 case BUILT_IN_GAMMAF_R
:
4280 case BUILT_IN_GAMMAL_R
:
4281 case BUILT_IN_LGAMMA_R
:
4282 case BUILT_IN_LGAMMAF_R
:
4283 case BUILT_IN_LGAMMAL_R
:
4285 case BUILT_IN_MODFF
:
4286 case BUILT_IN_MODFL
:
4287 case BUILT_IN_REMQUO
:
4288 case BUILT_IN_REMQUOF
:
4289 case BUILT_IN_REMQUOL
:
4292 case BUILT_IN_STRDUP
:
4293 case BUILT_IN_STRNDUP
:
4294 if (gimple_call_lhs (t
))
4296 handle_lhs_call (t
, gimple_call_lhs (t
), gimple_call_flags (t
),
4298 get_constraint_for_ptr_offset (gimple_call_lhs (t
),
4300 get_constraint_for_ptr_offset (gimple_call_arg (t
, 0),
4304 process_all_all_constraints (lhsc
, rhsc
);
4310 /* String / character search functions return a pointer into the
4311 source string or NULL. */
4312 case BUILT_IN_INDEX
:
4313 case BUILT_IN_STRCHR
:
4314 case BUILT_IN_STRRCHR
:
4315 case BUILT_IN_MEMCHR
:
4316 case BUILT_IN_STRSTR
:
4317 case BUILT_IN_STRPBRK
:
4318 if (gimple_call_lhs (t
))
4320 tree src
= gimple_call_arg (t
, 0);
4321 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4322 constraint_expr nul
;
4323 nul
.var
= nothing_id
;
4325 nul
.type
= ADDRESSOF
;
4326 rhsc
.safe_push (nul
);
4327 get_constraint_for (gimple_call_lhs (t
), &lhsc
);
4328 process_all_all_constraints (lhsc
, rhsc
);
4333 /* Trampolines are special - they set up passing the static
4335 case BUILT_IN_INIT_TRAMPOLINE
:
4337 tree tramp
= gimple_call_arg (t
, 0);
4338 tree nfunc
= gimple_call_arg (t
, 1);
4339 tree frame
= gimple_call_arg (t
, 2);
4341 struct constraint_expr lhs
, *rhsp
;
4344 varinfo_t nfi
= NULL
;
4345 gcc_assert (TREE_CODE (nfunc
) == ADDR_EXPR
);
4346 nfi
= lookup_vi_for_tree (TREE_OPERAND (nfunc
, 0));
4349 lhs
= get_function_part_constraint (nfi
, fi_static_chain
);
4350 get_constraint_for (frame
, &rhsc
);
4351 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4352 process_constraint (new_constraint (lhs
, *rhsp
));
4355 /* Make the frame point to the function for
4356 the trampoline adjustment call. */
4357 get_constraint_for (tramp
, &lhsc
);
4359 get_constraint_for (nfunc
, &rhsc
);
4360 process_all_all_constraints (lhsc
, rhsc
);
4367 /* Else fallthru to generic handling which will let
4368 the frame escape. */
4371 case BUILT_IN_ADJUST_TRAMPOLINE
:
4373 tree tramp
= gimple_call_arg (t
, 0);
4374 tree res
= gimple_call_lhs (t
);
4375 if (in_ipa_mode
&& res
)
4377 get_constraint_for (res
, &lhsc
);
4378 get_constraint_for (tramp
, &rhsc
);
4380 process_all_all_constraints (lhsc
, rhsc
);
4386 CASE_BUILT_IN_TM_STORE (1):
4387 CASE_BUILT_IN_TM_STORE (2):
4388 CASE_BUILT_IN_TM_STORE (4):
4389 CASE_BUILT_IN_TM_STORE (8):
4390 CASE_BUILT_IN_TM_STORE (FLOAT
):
4391 CASE_BUILT_IN_TM_STORE (DOUBLE
):
4392 CASE_BUILT_IN_TM_STORE (LDOUBLE
):
4393 CASE_BUILT_IN_TM_STORE (M64
):
4394 CASE_BUILT_IN_TM_STORE (M128
):
4395 CASE_BUILT_IN_TM_STORE (M256
):
4397 tree addr
= gimple_call_arg (t
, 0);
4398 tree src
= gimple_call_arg (t
, 1);
4400 get_constraint_for (addr
, &lhsc
);
4402 get_constraint_for (src
, &rhsc
);
4403 process_all_all_constraints (lhsc
, rhsc
);
4408 CASE_BUILT_IN_TM_LOAD (1):
4409 CASE_BUILT_IN_TM_LOAD (2):
4410 CASE_BUILT_IN_TM_LOAD (4):
4411 CASE_BUILT_IN_TM_LOAD (8):
4412 CASE_BUILT_IN_TM_LOAD (FLOAT
):
4413 CASE_BUILT_IN_TM_LOAD (DOUBLE
):
4414 CASE_BUILT_IN_TM_LOAD (LDOUBLE
):
4415 CASE_BUILT_IN_TM_LOAD (M64
):
4416 CASE_BUILT_IN_TM_LOAD (M128
):
4417 CASE_BUILT_IN_TM_LOAD (M256
):
4419 tree dest
= gimple_call_lhs (t
);
4420 tree addr
= gimple_call_arg (t
, 0);
4422 get_constraint_for (dest
, &lhsc
);
4423 get_constraint_for (addr
, &rhsc
);
4425 process_all_all_constraints (lhsc
, rhsc
);
4430 /* Variadic argument handling needs to be handled in IPA
4432 case BUILT_IN_VA_START
:
4434 tree valist
= gimple_call_arg (t
, 0);
4435 struct constraint_expr rhs
, *lhsp
;
4437 get_constraint_for (valist
, &lhsc
);
4439 /* The va_list gets access to pointers in variadic
4440 arguments. Which we know in the case of IPA analysis
4441 and otherwise are just all nonlocal variables. */
4444 fi
= lookup_vi_for_tree (cfun
->decl
);
4445 rhs
= get_function_part_constraint (fi
, ~0);
4446 rhs
.type
= ADDRESSOF
;
4450 rhs
.var
= nonlocal_id
;
4451 rhs
.type
= ADDRESSOF
;
4454 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4455 process_constraint (new_constraint (*lhsp
, rhs
));
4457 /* va_list is clobbered. */
4458 make_constraint_to (get_call_clobber_vi (t
)->id
, valist
);
4461 /* va_end doesn't have any effect that matters. */
4462 case BUILT_IN_VA_END
:
4464 /* Alternate return. Simply give up for now. */
4465 case BUILT_IN_RETURN
:
4469 || !(fi
= get_vi_for_tree (cfun
->decl
)))
4470 make_constraint_from (get_varinfo (escaped_id
), anything_id
);
4471 else if (in_ipa_mode
4474 struct constraint_expr lhs
, rhs
;
4475 lhs
= get_function_part_constraint (fi
, fi_result
);
4476 rhs
.var
= anything_id
;
4479 process_constraint (new_constraint (lhs
, rhs
));
4483 /* printf-style functions may have hooks to set pointers to
4484 point to somewhere into the generated string. Leave them
4485 for a later exercise... */
4487 /* Fallthru to general call handling. */;
4493 /* Create constraints for the call T. */
4496 find_func_aliases_for_call (gimple t
)
4498 tree fndecl
= gimple_call_fndecl (t
);
4499 vec
<ce_s
> lhsc
= vNULL
;
4500 vec
<ce_s
> rhsc
= vNULL
;
4503 if (fndecl
!= NULL_TREE
4504 && DECL_BUILT_IN (fndecl
)
4505 && find_func_aliases_for_builtin_call (t
))
4508 fi
= get_fi_for_callee (t
);
4510 || (fndecl
&& !fi
->is_fn_info
))
4512 vec
<ce_s
> rhsc
= vNULL
;
4513 int flags
= gimple_call_flags (t
);
4515 /* Const functions can return their arguments and addresses
4516 of global memory but not of escaped memory. */
4517 if (flags
& (ECF_CONST
|ECF_NOVOPS
))
4519 if (gimple_call_lhs (t
))
4520 handle_const_call (t
, &rhsc
);
4522 /* Pure functions can return addresses in and of memory
4523 reachable from their arguments, but they are not an escape
4524 point for reachable memory of their arguments. */
4525 else if (flags
& (ECF_PURE
|ECF_LOOPING_CONST_OR_PURE
))
4526 handle_pure_call (t
, &rhsc
);
4528 handle_rhs_call (t
, &rhsc
);
4529 if (gimple_call_lhs (t
))
4530 handle_lhs_call (t
, gimple_call_lhs (t
), flags
, rhsc
, fndecl
);
4538 /* Assign all the passed arguments to the appropriate incoming
4539 parameters of the function. */
4540 for (j
= 0; j
< gimple_call_num_args (t
); j
++)
4542 struct constraint_expr lhs
;
4543 struct constraint_expr
*rhsp
;
4544 tree arg
= gimple_call_arg (t
, j
);
4546 get_constraint_for_rhs (arg
, &rhsc
);
4547 lhs
= get_function_part_constraint (fi
, fi_parm_base
+ j
);
4548 while (rhsc
.length () != 0)
4550 rhsp
= &rhsc
.last ();
4551 process_constraint (new_constraint (lhs
, *rhsp
));
4556 /* If we are returning a value, assign it to the result. */
4557 lhsop
= gimple_call_lhs (t
);
4560 struct constraint_expr rhs
;
4561 struct constraint_expr
*lhsp
;
4563 get_constraint_for (lhsop
, &lhsc
);
4564 rhs
= get_function_part_constraint (fi
, fi_result
);
4566 && DECL_RESULT (fndecl
)
4567 && DECL_BY_REFERENCE (DECL_RESULT (fndecl
)))
4569 vec
<ce_s
> tem
= vNULL
;
4570 tem
.safe_push (rhs
);
4575 FOR_EACH_VEC_ELT (lhsc
, j
, lhsp
)
4576 process_constraint (new_constraint (*lhsp
, rhs
));
4579 /* If we pass the result decl by reference, honor that. */
4582 && DECL_RESULT (fndecl
)
4583 && DECL_BY_REFERENCE (DECL_RESULT (fndecl
)))
4585 struct constraint_expr lhs
;
4586 struct constraint_expr
*rhsp
;
4588 get_constraint_for_address_of (lhsop
, &rhsc
);
4589 lhs
= get_function_part_constraint (fi
, fi_result
);
4590 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
4591 process_constraint (new_constraint (lhs
, *rhsp
));
4595 /* If we use a static chain, pass it along. */
4596 if (gimple_call_chain (t
))
4598 struct constraint_expr lhs
;
4599 struct constraint_expr
*rhsp
;
4601 get_constraint_for (gimple_call_chain (t
), &rhsc
);
4602 lhs
= get_function_part_constraint (fi
, fi_static_chain
);
4603 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
4604 process_constraint (new_constraint (lhs
, *rhsp
));
4609 /* Walk statement T setting up aliasing constraints according to the
4610 references found in T. This function is the main part of the
4611 constraint builder. AI points to auxiliary alias information used
4612 when building alias sets and computing alias grouping heuristics. */
4615 find_func_aliases (gimple origt
)
4618 vec
<ce_s
> lhsc
= vNULL
;
4619 vec
<ce_s
> rhsc
= vNULL
;
4620 struct constraint_expr
*c
;
4623 /* Now build constraints expressions. */
4624 if (gimple_code (t
) == GIMPLE_PHI
)
4629 /* For a phi node, assign all the arguments to
4631 get_constraint_for (gimple_phi_result (t
), &lhsc
);
4632 for (i
= 0; i
< gimple_phi_num_args (t
); i
++)
4634 tree strippedrhs
= PHI_ARG_DEF (t
, i
);
4636 STRIP_NOPS (strippedrhs
);
4637 get_constraint_for_rhs (gimple_phi_arg_def (t
, i
), &rhsc
);
4639 FOR_EACH_VEC_ELT (lhsc
, j
, c
)
4641 struct constraint_expr
*c2
;
4642 while (rhsc
.length () > 0)
4645 process_constraint (new_constraint (*c
, *c2
));
4651 /* In IPA mode, we need to generate constraints to pass call
4652 arguments through their calls. There are two cases,
4653 either a GIMPLE_CALL returning a value, or just a plain
4654 GIMPLE_CALL when we are not.
4656 In non-ipa mode, we need to generate constraints for each
4657 pointer passed by address. */
4658 else if (is_gimple_call (t
))
4659 find_func_aliases_for_call (t
);
4661 /* Otherwise, just a regular assignment statement. Only care about
4662 operations with pointer result, others are dealt with as escape
4663 points if they have pointer operands. */
4664 else if (is_gimple_assign (t
))
4666 /* Otherwise, just a regular assignment statement. */
4667 tree lhsop
= gimple_assign_lhs (t
);
4668 tree rhsop
= (gimple_num_ops (t
) == 2) ? gimple_assign_rhs1 (t
) : NULL
;
4670 if (rhsop
&& TREE_CLOBBER_P (rhsop
))
4671 /* Ignore clobbers, they don't actually store anything into
4674 else if (rhsop
&& AGGREGATE_TYPE_P (TREE_TYPE (lhsop
)))
4675 do_structure_copy (lhsop
, rhsop
);
4678 enum tree_code code
= gimple_assign_rhs_code (t
);
4680 get_constraint_for (lhsop
, &lhsc
);
4682 if (FLOAT_TYPE_P (TREE_TYPE (lhsop
)))
4683 /* If the operation produces a floating point result then
4684 assume the value is not produced to transfer a pointer. */
4686 else if (code
== POINTER_PLUS_EXPR
)
4687 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t
),
4688 gimple_assign_rhs2 (t
), &rhsc
);
4689 else if (code
== BIT_AND_EXPR
4690 && TREE_CODE (gimple_assign_rhs2 (t
)) == INTEGER_CST
)
4692 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4693 the pointer. Handle it by offsetting it by UNKNOWN. */
4694 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t
),
4697 else if ((CONVERT_EXPR_CODE_P (code
)
4698 && !(POINTER_TYPE_P (gimple_expr_type (t
))
4699 && !POINTER_TYPE_P (TREE_TYPE (rhsop
))))
4700 || gimple_assign_single_p (t
))
4701 get_constraint_for_rhs (rhsop
, &rhsc
);
4702 else if (code
== COND_EXPR
)
4704 /* The result is a merge of both COND_EXPR arms. */
4705 vec
<ce_s
> tmp
= vNULL
;
4706 struct constraint_expr
*rhsp
;
4708 get_constraint_for_rhs (gimple_assign_rhs2 (t
), &rhsc
);
4709 get_constraint_for_rhs (gimple_assign_rhs3 (t
), &tmp
);
4710 FOR_EACH_VEC_ELT (tmp
, i
, rhsp
)
4711 rhsc
.safe_push (*rhsp
);
4714 else if (truth_value_p (code
))
4715 /* Truth value results are not pointer (parts). Or at least
4716 very very unreasonable obfuscation of a part. */
4720 /* All other operations are merges. */
4721 vec
<ce_s
> tmp
= vNULL
;
4722 struct constraint_expr
*rhsp
;
4724 get_constraint_for_rhs (gimple_assign_rhs1 (t
), &rhsc
);
4725 for (i
= 2; i
< gimple_num_ops (t
); ++i
)
4727 get_constraint_for_rhs (gimple_op (t
, i
), &tmp
);
4728 FOR_EACH_VEC_ELT (tmp
, j
, rhsp
)
4729 rhsc
.safe_push (*rhsp
);
4734 process_all_all_constraints (lhsc
, rhsc
);
4736 /* If there is a store to a global variable the rhs escapes. */
4737 if ((lhsop
= get_base_address (lhsop
)) != NULL_TREE
4739 && is_global_var (lhsop
)
4741 || DECL_EXTERNAL (lhsop
) || TREE_PUBLIC (lhsop
)))
4742 make_escape_constraint (rhsop
);
4744 /* Handle escapes through return. */
4745 else if (gimple_code (t
) == GIMPLE_RETURN
4746 && gimple_return_retval (t
) != NULL_TREE
)
4750 || !(fi
= get_vi_for_tree (cfun
->decl
)))
4751 make_escape_constraint (gimple_return_retval (t
));
4752 else if (in_ipa_mode
4755 struct constraint_expr lhs
;
4756 struct constraint_expr
*rhsp
;
4759 lhs
= get_function_part_constraint (fi
, fi_result
);
4760 get_constraint_for_rhs (gimple_return_retval (t
), &rhsc
);
4761 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4762 process_constraint (new_constraint (lhs
, *rhsp
));
4765 /* Handle asms conservatively by adding escape constraints to everything. */
4766 else if (gimple_code (t
) == GIMPLE_ASM
)
4768 unsigned i
, noutputs
;
4769 const char **oconstraints
;
4770 const char *constraint
;
4771 bool allows_mem
, allows_reg
, is_inout
;
4773 noutputs
= gimple_asm_noutputs (t
);
4774 oconstraints
= XALLOCAVEC (const char *, noutputs
);
4776 for (i
= 0; i
< noutputs
; ++i
)
4778 tree link
= gimple_asm_output_op (t
, i
);
4779 tree op
= TREE_VALUE (link
);
4781 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
4782 oconstraints
[i
] = constraint
;
4783 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
,
4784 &allows_reg
, &is_inout
);
4786 /* A memory constraint makes the address of the operand escape. */
4787 if (!allows_reg
&& allows_mem
)
4788 make_escape_constraint (build_fold_addr_expr (op
));
4790 /* The asm may read global memory, so outputs may point to
4791 any global memory. */
4794 vec
<ce_s
> lhsc
= vNULL
;
4795 struct constraint_expr rhsc
, *lhsp
;
4797 get_constraint_for (op
, &lhsc
);
4798 rhsc
.var
= nonlocal_id
;
4801 FOR_EACH_VEC_ELT (lhsc
, j
, lhsp
)
4802 process_constraint (new_constraint (*lhsp
, rhsc
));
4806 for (i
= 0; i
< gimple_asm_ninputs (t
); ++i
)
4808 tree link
= gimple_asm_input_op (t
, i
);
4809 tree op
= TREE_VALUE (link
);
4811 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
4813 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0, oconstraints
,
4814 &allows_mem
, &allows_reg
);
4816 /* A memory constraint makes the address of the operand escape. */
4817 if (!allows_reg
&& allows_mem
)
4818 make_escape_constraint (build_fold_addr_expr (op
));
4819 /* Strictly we'd only need the constraint to ESCAPED if
4820 the asm clobbers memory, otherwise using something
4821 along the lines of per-call clobbers/uses would be enough. */
4823 make_escape_constraint (op
);
4832 /* Create a constraint adding to the clobber set of FI the memory
4833 pointed to by PTR. */
4836 process_ipa_clobber (varinfo_t fi
, tree ptr
)
4838 vec
<ce_s
> ptrc
= vNULL
;
4839 struct constraint_expr
*c
, lhs
;
4841 get_constraint_for_rhs (ptr
, &ptrc
);
4842 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4843 FOR_EACH_VEC_ELT (ptrc
, i
, c
)
4844 process_constraint (new_constraint (lhs
, *c
));
4848 /* Walk statement T setting up clobber and use constraints according to the
4849 references found in T. This function is a main part of the
4850 IPA constraint builder. */
4853 find_func_clobbers (gimple origt
)
4856 vec
<ce_s
> lhsc
= vNULL
;
4857 vec
<ce_s
> rhsc
= vNULL
;
4860 /* Add constraints for clobbered/used in IPA mode.
4861 We are not interested in what automatic variables are clobbered
4862 or used as we only use the information in the caller to which
4863 they do not escape. */
4864 gcc_assert (in_ipa_mode
);
4866 /* If the stmt refers to memory in any way it better had a VUSE. */
4867 if (gimple_vuse (t
) == NULL_TREE
)
4870 /* We'd better have function information for the current function. */
4871 fi
= lookup_vi_for_tree (cfun
->decl
);
4872 gcc_assert (fi
!= NULL
);
4874 /* Account for stores in assignments and calls. */
4875 if (gimple_vdef (t
) != NULL_TREE
4876 && gimple_has_lhs (t
))
4878 tree lhs
= gimple_get_lhs (t
);
4880 while (handled_component_p (tem
))
4881 tem
= TREE_OPERAND (tem
, 0);
4883 && !auto_var_in_fn_p (tem
, cfun
->decl
))
4884 || INDIRECT_REF_P (tem
)
4885 || (TREE_CODE (tem
) == MEM_REF
4886 && !(TREE_CODE (TREE_OPERAND (tem
, 0)) == ADDR_EXPR
4888 (TREE_OPERAND (TREE_OPERAND (tem
, 0), 0), cfun
->decl
))))
4890 struct constraint_expr lhsc
, *rhsp
;
4892 lhsc
= get_function_part_constraint (fi
, fi_clobbers
);
4893 get_constraint_for_address_of (lhs
, &rhsc
);
4894 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4895 process_constraint (new_constraint (lhsc
, *rhsp
));
4900 /* Account for uses in assigments and returns. */
4901 if (gimple_assign_single_p (t
)
4902 || (gimple_code (t
) == GIMPLE_RETURN
4903 && gimple_return_retval (t
) != NULL_TREE
))
4905 tree rhs
= (gimple_assign_single_p (t
)
4906 ? gimple_assign_rhs1 (t
) : gimple_return_retval (t
));
4908 while (handled_component_p (tem
))
4909 tem
= TREE_OPERAND (tem
, 0);
4911 && !auto_var_in_fn_p (tem
, cfun
->decl
))
4912 || INDIRECT_REF_P (tem
)
4913 || (TREE_CODE (tem
) == MEM_REF
4914 && !(TREE_CODE (TREE_OPERAND (tem
, 0)) == ADDR_EXPR
4916 (TREE_OPERAND (TREE_OPERAND (tem
, 0), 0), cfun
->decl
))))
4918 struct constraint_expr lhs
, *rhsp
;
4920 lhs
= get_function_part_constraint (fi
, fi_uses
);
4921 get_constraint_for_address_of (rhs
, &rhsc
);
4922 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4923 process_constraint (new_constraint (lhs
, *rhsp
));
4928 if (is_gimple_call (t
))
4930 varinfo_t cfi
= NULL
;
4931 tree decl
= gimple_call_fndecl (t
);
4932 struct constraint_expr lhs
, rhs
;
4935 /* For builtins we do not have separate function info. For those
4936 we do not generate escapes for we have to generate clobbers/uses. */
4937 if (gimple_call_builtin_p (t
, BUILT_IN_NORMAL
))
4938 switch (DECL_FUNCTION_CODE (decl
))
4940 /* The following functions use and clobber memory pointed to
4941 by their arguments. */
4942 case BUILT_IN_STRCPY
:
4943 case BUILT_IN_STRNCPY
:
4944 case BUILT_IN_BCOPY
:
4945 case BUILT_IN_MEMCPY
:
4946 case BUILT_IN_MEMMOVE
:
4947 case BUILT_IN_MEMPCPY
:
4948 case BUILT_IN_STPCPY
:
4949 case BUILT_IN_STPNCPY
:
4950 case BUILT_IN_STRCAT
:
4951 case BUILT_IN_STRNCAT
:
4952 case BUILT_IN_STRCPY_CHK
:
4953 case BUILT_IN_STRNCPY_CHK
:
4954 case BUILT_IN_MEMCPY_CHK
:
4955 case BUILT_IN_MEMMOVE_CHK
:
4956 case BUILT_IN_MEMPCPY_CHK
:
4957 case BUILT_IN_STPCPY_CHK
:
4958 case BUILT_IN_STPNCPY_CHK
:
4959 case BUILT_IN_STRCAT_CHK
:
4960 case BUILT_IN_STRNCAT_CHK
:
4962 tree dest
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (decl
)
4963 == BUILT_IN_BCOPY
? 1 : 0));
4964 tree src
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (decl
)
4965 == BUILT_IN_BCOPY
? 0 : 1));
4967 struct constraint_expr
*rhsp
, *lhsp
;
4968 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4969 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4970 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4971 process_constraint (new_constraint (lhs
, *lhsp
));
4973 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4974 lhs
= get_function_part_constraint (fi
, fi_uses
);
4975 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4976 process_constraint (new_constraint (lhs
, *rhsp
));
4980 /* The following function clobbers memory pointed to by
4982 case BUILT_IN_MEMSET
:
4983 case BUILT_IN_MEMSET_CHK
:
4985 tree dest
= gimple_call_arg (t
, 0);
4988 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4989 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4990 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4991 process_constraint (new_constraint (lhs
, *lhsp
));
4995 /* The following functions clobber their second and third
4997 case BUILT_IN_SINCOS
:
4998 case BUILT_IN_SINCOSF
:
4999 case BUILT_IN_SINCOSL
:
5001 process_ipa_clobber (fi
, gimple_call_arg (t
, 1));
5002 process_ipa_clobber (fi
, gimple_call_arg (t
, 2));
5005 /* The following functions clobber their second argument. */
5006 case BUILT_IN_FREXP
:
5007 case BUILT_IN_FREXPF
:
5008 case BUILT_IN_FREXPL
:
5009 case BUILT_IN_LGAMMA_R
:
5010 case BUILT_IN_LGAMMAF_R
:
5011 case BUILT_IN_LGAMMAL_R
:
5012 case BUILT_IN_GAMMA_R
:
5013 case BUILT_IN_GAMMAF_R
:
5014 case BUILT_IN_GAMMAL_R
:
5016 case BUILT_IN_MODFF
:
5017 case BUILT_IN_MODFL
:
5019 process_ipa_clobber (fi
, gimple_call_arg (t
, 1));
5022 /* The following functions clobber their third argument. */
5023 case BUILT_IN_REMQUO
:
5024 case BUILT_IN_REMQUOF
:
5025 case BUILT_IN_REMQUOL
:
5027 process_ipa_clobber (fi
, gimple_call_arg (t
, 2));
5030 /* The following functions neither read nor clobber memory. */
5031 case BUILT_IN_ASSUME_ALIGNED
:
5034 /* Trampolines are of no interest to us. */
5035 case BUILT_IN_INIT_TRAMPOLINE
:
5036 case BUILT_IN_ADJUST_TRAMPOLINE
:
5038 case BUILT_IN_VA_START
:
5039 case BUILT_IN_VA_END
:
5041 /* printf-style functions may have hooks to set pointers to
5042 point to somewhere into the generated string. Leave them
5043 for a later exercise... */
5045 /* Fallthru to general call handling. */;
5048 /* Parameters passed by value are used. */
5049 lhs
= get_function_part_constraint (fi
, fi_uses
);
5050 for (i
= 0; i
< gimple_call_num_args (t
); i
++)
5052 struct constraint_expr
*rhsp
;
5053 tree arg
= gimple_call_arg (t
, i
);
5055 if (TREE_CODE (arg
) == SSA_NAME
5056 || is_gimple_min_invariant (arg
))
5059 get_constraint_for_address_of (arg
, &rhsc
);
5060 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
5061 process_constraint (new_constraint (lhs
, *rhsp
));
5065 /* Build constraints for propagating clobbers/uses along the
5067 cfi
= get_fi_for_callee (t
);
5068 if (cfi
->id
== anything_id
)
5070 if (gimple_vdef (t
))
5071 make_constraint_from (first_vi_for_offset (fi
, fi_clobbers
),
5073 make_constraint_from (first_vi_for_offset (fi
, fi_uses
),
5078 /* For callees without function info (that's external functions),
5079 ESCAPED is clobbered and used. */
5080 if (gimple_call_fndecl (t
)
5081 && !cfi
->is_fn_info
)
5085 if (gimple_vdef (t
))
5086 make_copy_constraint (first_vi_for_offset (fi
, fi_clobbers
),
5088 make_copy_constraint (first_vi_for_offset (fi
, fi_uses
), escaped_id
);
5090 /* Also honor the call statement use/clobber info. */
5091 if ((vi
= lookup_call_clobber_vi (t
)) != NULL
)
5092 make_copy_constraint (first_vi_for_offset (fi
, fi_clobbers
),
5094 if ((vi
= lookup_call_use_vi (t
)) != NULL
)
5095 make_copy_constraint (first_vi_for_offset (fi
, fi_uses
),
5100 /* Otherwise the caller clobbers and uses what the callee does.
5101 ??? This should use a new complex constraint that filters
5102 local variables of the callee. */
5103 if (gimple_vdef (t
))
5105 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
5106 rhs
= get_function_part_constraint (cfi
, fi_clobbers
);
5107 process_constraint (new_constraint (lhs
, rhs
));
5109 lhs
= get_function_part_constraint (fi
, fi_uses
);
5110 rhs
= get_function_part_constraint (cfi
, fi_uses
);
5111 process_constraint (new_constraint (lhs
, rhs
));
5113 else if (gimple_code (t
) == GIMPLE_ASM
)
5115 /* ??? Ick. We can do better. */
5116 if (gimple_vdef (t
))
5117 make_constraint_from (first_vi_for_offset (fi
, fi_clobbers
),
5119 make_constraint_from (first_vi_for_offset (fi
, fi_uses
),
5127 /* Find the first varinfo in the same variable as START that overlaps with
5128 OFFSET. Return NULL if we can't find one. */
5131 first_vi_for_offset (varinfo_t start
, unsigned HOST_WIDE_INT offset
)
5133 /* If the offset is outside of the variable, bail out. */
5134 if (offset
>= start
->fullsize
)
5137 /* If we cannot reach offset from start, lookup the first field
5138 and start from there. */
5139 if (start
->offset
> offset
)
5140 start
= get_varinfo (start
->head
);
5144 /* We may not find a variable in the field list with the actual
5145 offset when when we have glommed a structure to a variable.
5146 In that case, however, offset should still be within the size
5148 if (offset
>= start
->offset
5149 && (offset
- start
->offset
) < start
->size
)
5152 start
= vi_next (start
);
5158 /* Find the first varinfo in the same variable as START that overlaps with
5159 OFFSET. If there is no such varinfo the varinfo directly preceding
5160 OFFSET is returned. */
5163 first_or_preceding_vi_for_offset (varinfo_t start
,
5164 unsigned HOST_WIDE_INT offset
)
5166 /* If we cannot reach offset from start, lookup the first field
5167 and start from there. */
5168 if (start
->offset
> offset
)
5169 start
= get_varinfo (start
->head
);
5171 /* We may not find a variable in the field list with the actual
5172 offset when when we have glommed a structure to a variable.
5173 In that case, however, offset should still be within the size
5175 If we got beyond the offset we look for return the field
5176 directly preceding offset which may be the last field. */
5178 && offset
>= start
->offset
5179 && !((offset
- start
->offset
) < start
->size
))
5180 start
= vi_next (start
);
5186 /* This structure is used during pushing fields onto the fieldstack
5187 to track the offset of the field, since bitpos_of_field gives it
5188 relative to its immediate containing type, and we want it relative
5189 to the ultimate containing object. */
5193 /* Offset from the base of the base containing object to this field. */
5194 HOST_WIDE_INT offset
;
5196 /* Size, in bits, of the field. */
5197 unsigned HOST_WIDE_INT size
;
5199 unsigned has_unknown_size
: 1;
5201 unsigned must_have_pointers
: 1;
5203 unsigned may_have_pointers
: 1;
5205 unsigned only_restrict_pointers
: 1;
5207 typedef struct fieldoff fieldoff_s
;
5210 /* qsort comparison function for two fieldoff's PA and PB */
5213 fieldoff_compare (const void *pa
, const void *pb
)
5215 const fieldoff_s
*foa
= (const fieldoff_s
*)pa
;
5216 const fieldoff_s
*fob
= (const fieldoff_s
*)pb
;
5217 unsigned HOST_WIDE_INT foasize
, fobsize
;
5219 if (foa
->offset
< fob
->offset
)
5221 else if (foa
->offset
> fob
->offset
)
5224 foasize
= foa
->size
;
5225 fobsize
= fob
->size
;
5226 if (foasize
< fobsize
)
5228 else if (foasize
> fobsize
)
5233 /* Sort a fieldstack according to the field offset and sizes. */
5235 sort_fieldstack (vec
<fieldoff_s
> fieldstack
)
5237 fieldstack
.qsort (fieldoff_compare
);
5240 /* Return true if T is a type that can have subvars. */
5243 type_can_have_subvars (const_tree t
)
5245 /* Aggregates without overlapping fields can have subvars. */
5246 return TREE_CODE (t
) == RECORD_TYPE
;
5249 /* Return true if V is a tree that we can have subvars for.
5250 Normally, this is any aggregate type. Also complex
5251 types which are not gimple registers can have subvars. */
5254 var_can_have_subvars (const_tree v
)
5256 /* Volatile variables should never have subvars. */
5257 if (TREE_THIS_VOLATILE (v
))
5260 /* Non decls or memory tags can never have subvars. */
5264 return type_can_have_subvars (TREE_TYPE (v
));
5267 /* Return true if T is a type that does contain pointers. */
5270 type_must_have_pointers (tree type
)
5272 if (POINTER_TYPE_P (type
))
5275 if (TREE_CODE (type
) == ARRAY_TYPE
)
5276 return type_must_have_pointers (TREE_TYPE (type
));
5278 /* A function or method can have pointers as arguments, so track
5279 those separately. */
5280 if (TREE_CODE (type
) == FUNCTION_TYPE
5281 || TREE_CODE (type
) == METHOD_TYPE
)
5288 field_must_have_pointers (tree t
)
5290 return type_must_have_pointers (TREE_TYPE (t
));
5293 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5294 the fields of TYPE onto fieldstack, recording their offsets along
5297 OFFSET is used to keep track of the offset in this entire
5298 structure, rather than just the immediately containing structure.
5299 Returns false if the caller is supposed to handle the field we
5303 push_fields_onto_fieldstack (tree type
, vec
<fieldoff_s
> *fieldstack
,
5304 HOST_WIDE_INT offset
)
5307 bool empty_p
= true;
5309 if (TREE_CODE (type
) != RECORD_TYPE
)
5312 /* If the vector of fields is growing too big, bail out early.
5313 Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5315 if (fieldstack
->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE
)
5318 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
5319 if (TREE_CODE (field
) == FIELD_DECL
)
5322 HOST_WIDE_INT foff
= bitpos_of_field (field
);
5324 if (!var_can_have_subvars (field
)
5325 || TREE_CODE (TREE_TYPE (field
)) == QUAL_UNION_TYPE
5326 || TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
)
5328 else if (!push_fields_onto_fieldstack
5329 (TREE_TYPE (field
), fieldstack
, offset
+ foff
)
5330 && (DECL_SIZE (field
)
5331 && !integer_zerop (DECL_SIZE (field
))))
5332 /* Empty structures may have actual size, like in C++. So
5333 see if we didn't push any subfields and the size is
5334 nonzero, push the field onto the stack. */
5339 fieldoff_s
*pair
= NULL
;
5340 bool has_unknown_size
= false;
5341 bool must_have_pointers_p
;
5343 if (!fieldstack
->is_empty ())
5344 pair
= &fieldstack
->last ();
5346 /* If there isn't anything at offset zero, create sth. */
5348 && offset
+ foff
!= 0)
5350 fieldoff_s e
= {0, offset
+ foff
, false, false, false, false};
5351 pair
= fieldstack
->safe_push (e
);
5354 if (!DECL_SIZE (field
)
5355 || !tree_fits_uhwi_p (DECL_SIZE (field
)))
5356 has_unknown_size
= true;
5358 /* If adjacent fields do not contain pointers merge them. */
5359 must_have_pointers_p
= field_must_have_pointers (field
);
5361 && !has_unknown_size
5362 && !must_have_pointers_p
5363 && !pair
->must_have_pointers
5364 && !pair
->has_unknown_size
5365 && pair
->offset
+ (HOST_WIDE_INT
)pair
->size
== offset
+ foff
)
5367 pair
->size
+= TREE_INT_CST_LOW (DECL_SIZE (field
));
5372 e
.offset
= offset
+ foff
;
5373 e
.has_unknown_size
= has_unknown_size
;
5374 if (!has_unknown_size
)
5375 e
.size
= TREE_INT_CST_LOW (DECL_SIZE (field
));
5378 e
.must_have_pointers
= must_have_pointers_p
;
5379 e
.may_have_pointers
= true;
5380 e
.only_restrict_pointers
5381 = (!has_unknown_size
5382 && POINTER_TYPE_P (TREE_TYPE (field
))
5383 && TYPE_RESTRICT (TREE_TYPE (field
)));
5384 fieldstack
->safe_push (e
);
5394 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5395 if it is a varargs function. */
5398 count_num_arguments (tree decl
, bool *is_varargs
)
5400 unsigned int num
= 0;
5403 /* Capture named arguments for K&R functions. They do not
5404 have a prototype and thus no TYPE_ARG_TYPES. */
5405 for (t
= DECL_ARGUMENTS (decl
); t
; t
= DECL_CHAIN (t
))
5408 /* Check if the function has variadic arguments. */
5409 for (t
= TYPE_ARG_TYPES (TREE_TYPE (decl
)); t
; t
= TREE_CHAIN (t
))
5410 if (TREE_VALUE (t
) == void_type_node
)
5418 /* Creation function node for DECL, using NAME, and return the index
5419 of the variable we've created for the function. */
5422 create_function_info_for (tree decl
, const char *name
)
5424 struct function
*fn
= DECL_STRUCT_FUNCTION (decl
);
5425 varinfo_t vi
, prev_vi
;
5428 bool is_varargs
= false;
5429 unsigned int num_args
= count_num_arguments (decl
, &is_varargs
);
5431 /* Create the variable info. */
5433 vi
= new_var_info (decl
, name
);
5436 vi
->fullsize
= fi_parm_base
+ num_args
;
5438 vi
->may_have_pointers
= false;
5441 insert_vi_for_tree (vi
->decl
, vi
);
5445 /* Create a variable for things the function clobbers and one for
5446 things the function uses. */
5448 varinfo_t clobbervi
, usevi
;
5449 const char *newname
;
5452 asprintf (&tempname
, "%s.clobber", name
);
5453 newname
= ggc_strdup (tempname
);
5456 clobbervi
= new_var_info (NULL
, newname
);
5457 clobbervi
->offset
= fi_clobbers
;
5458 clobbervi
->size
= 1;
5459 clobbervi
->fullsize
= vi
->fullsize
;
5460 clobbervi
->is_full_var
= true;
5461 clobbervi
->is_global_var
= false;
5462 gcc_assert (prev_vi
->offset
< clobbervi
->offset
);
5463 prev_vi
->next
= clobbervi
->id
;
5464 prev_vi
= clobbervi
;
5466 asprintf (&tempname
, "%s.use", name
);
5467 newname
= ggc_strdup (tempname
);
5470 usevi
= new_var_info (NULL
, newname
);
5471 usevi
->offset
= fi_uses
;
5473 usevi
->fullsize
= vi
->fullsize
;
5474 usevi
->is_full_var
= true;
5475 usevi
->is_global_var
= false;
5476 gcc_assert (prev_vi
->offset
< usevi
->offset
);
5477 prev_vi
->next
= usevi
->id
;
5481 /* And one for the static chain. */
5482 if (fn
->static_chain_decl
!= NULL_TREE
)
5485 const char *newname
;
5488 asprintf (&tempname
, "%s.chain", name
);
5489 newname
= ggc_strdup (tempname
);
5492 chainvi
= new_var_info (fn
->static_chain_decl
, newname
);
5493 chainvi
->offset
= fi_static_chain
;
5495 chainvi
->fullsize
= vi
->fullsize
;
5496 chainvi
->is_full_var
= true;
5497 chainvi
->is_global_var
= false;
5498 gcc_assert (prev_vi
->offset
< chainvi
->offset
);
5499 prev_vi
->next
= chainvi
->id
;
5501 insert_vi_for_tree (fn
->static_chain_decl
, chainvi
);
5504 /* Create a variable for the return var. */
5505 if (DECL_RESULT (decl
) != NULL
5506 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl
))))
5509 const char *newname
;
5511 tree resultdecl
= decl
;
5513 if (DECL_RESULT (decl
))
5514 resultdecl
= DECL_RESULT (decl
);
5516 asprintf (&tempname
, "%s.result", name
);
5517 newname
= ggc_strdup (tempname
);
5520 resultvi
= new_var_info (resultdecl
, newname
);
5521 resultvi
->offset
= fi_result
;
5523 resultvi
->fullsize
= vi
->fullsize
;
5524 resultvi
->is_full_var
= true;
5525 if (DECL_RESULT (decl
))
5526 resultvi
->may_have_pointers
= true;
5527 gcc_assert (prev_vi
->offset
< resultvi
->offset
);
5528 prev_vi
->next
= resultvi
->id
;
5530 if (DECL_RESULT (decl
))
5531 insert_vi_for_tree (DECL_RESULT (decl
), resultvi
);
5534 /* Set up variables for each argument. */
5535 arg
= DECL_ARGUMENTS (decl
);
5536 for (i
= 0; i
< num_args
; i
++)
5539 const char *newname
;
5541 tree argdecl
= decl
;
5546 asprintf (&tempname
, "%s.arg%d", name
, i
);
5547 newname
= ggc_strdup (tempname
);
5550 argvi
= new_var_info (argdecl
, newname
);
5551 argvi
->offset
= fi_parm_base
+ i
;
5553 argvi
->is_full_var
= true;
5554 argvi
->fullsize
= vi
->fullsize
;
5556 argvi
->may_have_pointers
= true;
5557 gcc_assert (prev_vi
->offset
< argvi
->offset
);
5558 prev_vi
->next
= argvi
->id
;
5562 insert_vi_for_tree (arg
, argvi
);
5563 arg
= DECL_CHAIN (arg
);
5567 /* Add one representative for all further args. */
5571 const char *newname
;
5575 asprintf (&tempname
, "%s.varargs", name
);
5576 newname
= ggc_strdup (tempname
);
5579 /* We need sth that can be pointed to for va_start. */
5580 decl
= build_fake_var_decl (ptr_type_node
);
5582 argvi
= new_var_info (decl
, newname
);
5583 argvi
->offset
= fi_parm_base
+ num_args
;
5585 argvi
->is_full_var
= true;
5586 argvi
->is_heap_var
= true;
5587 argvi
->fullsize
= vi
->fullsize
;
5588 gcc_assert (prev_vi
->offset
< argvi
->offset
);
5589 prev_vi
->next
= argvi
->id
;
5597 /* Return true if FIELDSTACK contains fields that overlap.
5598 FIELDSTACK is assumed to be sorted by offset. */
5601 check_for_overlaps (vec
<fieldoff_s
> fieldstack
)
5603 fieldoff_s
*fo
= NULL
;
5605 HOST_WIDE_INT lastoffset
= -1;
5607 FOR_EACH_VEC_ELT (fieldstack
, i
, fo
)
5609 if (fo
->offset
== lastoffset
)
5611 lastoffset
= fo
->offset
;
5616 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5617 This will also create any varinfo structures necessary for fields
5621 create_variable_info_for_1 (tree decl
, const char *name
)
5623 varinfo_t vi
, newvi
;
5624 tree decl_type
= TREE_TYPE (decl
);
5625 tree declsize
= DECL_P (decl
) ? DECL_SIZE (decl
) : TYPE_SIZE (decl_type
);
5626 vec
<fieldoff_s
> fieldstack
= vNULL
;
5631 || !tree_fits_uhwi_p (declsize
))
5633 vi
= new_var_info (decl
, name
);
5637 vi
->is_unknown_size_var
= true;
5638 vi
->is_full_var
= true;
5639 vi
->may_have_pointers
= true;
5643 /* Collect field information. */
5644 if (use_field_sensitive
5645 && var_can_have_subvars (decl
)
5646 /* ??? Force us to not use subfields for global initializers
5647 in IPA mode. Else we'd have to parse arbitrary initializers. */
5649 && is_global_var (decl
)
5650 && DECL_INITIAL (decl
)))
5652 fieldoff_s
*fo
= NULL
;
5653 bool notokay
= false;
5656 push_fields_onto_fieldstack (decl_type
, &fieldstack
, 0);
5658 for (i
= 0; !notokay
&& fieldstack
.iterate (i
, &fo
); i
++)
5659 if (fo
->has_unknown_size
5666 /* We can't sort them if we have a field with a variable sized type,
5667 which will make notokay = true. In that case, we are going to return
5668 without creating varinfos for the fields anyway, so sorting them is a
5672 sort_fieldstack (fieldstack
);
5673 /* Due to some C++ FE issues, like PR 22488, we might end up
5674 what appear to be overlapping fields even though they,
5675 in reality, do not overlap. Until the C++ FE is fixed,
5676 we will simply disable field-sensitivity for these cases. */
5677 notokay
= check_for_overlaps (fieldstack
);
5681 fieldstack
.release ();
5684 /* If we didn't end up collecting sub-variables create a full
5685 variable for the decl. */
5686 if (fieldstack
.length () <= 1
5687 || fieldstack
.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE
)
5689 vi
= new_var_info (decl
, name
);
5691 vi
->may_have_pointers
= true;
5692 vi
->fullsize
= TREE_INT_CST_LOW (declsize
);
5693 vi
->size
= vi
->fullsize
;
5694 vi
->is_full_var
= true;
5695 fieldstack
.release ();
5699 vi
= new_var_info (decl
, name
);
5700 vi
->fullsize
= TREE_INT_CST_LOW (declsize
);
5701 for (i
= 0, newvi
= vi
;
5702 fieldstack
.iterate (i
, &fo
);
5703 ++i
, newvi
= vi_next (newvi
))
5705 const char *newname
= "NULL";
5710 asprintf (&tempname
, "%s." HOST_WIDE_INT_PRINT_DEC
5711 "+" HOST_WIDE_INT_PRINT_DEC
, name
, fo
->offset
, fo
->size
);
5712 newname
= ggc_strdup (tempname
);
5715 newvi
->name
= newname
;
5716 newvi
->offset
= fo
->offset
;
5717 newvi
->size
= fo
->size
;
5718 newvi
->fullsize
= vi
->fullsize
;
5719 newvi
->may_have_pointers
= fo
->may_have_pointers
;
5720 newvi
->only_restrict_pointers
= fo
->only_restrict_pointers
;
5721 if (i
+ 1 < fieldstack
.length ())
5723 varinfo_t tem
= new_var_info (decl
, name
);
5724 newvi
->next
= tem
->id
;
5729 fieldstack
.release ();
5735 create_variable_info_for (tree decl
, const char *name
)
5737 varinfo_t vi
= create_variable_info_for_1 (decl
, name
);
5738 unsigned int id
= vi
->id
;
5740 insert_vi_for_tree (decl
, vi
);
5742 if (TREE_CODE (decl
) != VAR_DECL
)
5745 /* Create initial constraints for globals. */
5746 for (; vi
; vi
= vi_next (vi
))
5748 if (!vi
->may_have_pointers
5749 || !vi
->is_global_var
)
5752 /* Mark global restrict qualified pointers. */
5753 if ((POINTER_TYPE_P (TREE_TYPE (decl
))
5754 && TYPE_RESTRICT (TREE_TYPE (decl
)))
5755 || vi
->only_restrict_pointers
)
5757 make_constraint_from_global_restrict (vi
, "GLOBAL_RESTRICT");
5761 /* In non-IPA mode the initializer from nonlocal is all we need. */
5763 || DECL_HARD_REGISTER (decl
))
5764 make_copy_constraint (vi
, nonlocal_id
);
5766 /* In IPA mode parse the initializer and generate proper constraints
5770 struct varpool_node
*vnode
= varpool_get_node (decl
);
5772 /* For escaped variables initialize them from nonlocal. */
5773 if (!varpool_all_refs_explicit_p (vnode
))
5774 make_copy_constraint (vi
, nonlocal_id
);
5776 /* If this is a global variable with an initializer and we are in
5777 IPA mode generate constraints for it. */
5778 if (DECL_INITIAL (decl
)
5779 && vnode
->definition
)
5781 vec
<ce_s
> rhsc
= vNULL
;
5782 struct constraint_expr lhs
, *rhsp
;
5784 get_constraint_for_rhs (DECL_INITIAL (decl
), &rhsc
);
5788 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
5789 process_constraint (new_constraint (lhs
, *rhsp
));
5790 /* If this is a variable that escapes from the unit
5791 the initializer escapes as well. */
5792 if (!varpool_all_refs_explicit_p (vnode
))
5794 lhs
.var
= escaped_id
;
5797 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
5798 process_constraint (new_constraint (lhs
, *rhsp
));
5808 /* Print out the points-to solution for VAR to FILE. */
5811 dump_solution_for_var (FILE *file
, unsigned int var
)
5813 varinfo_t vi
= get_varinfo (var
);
5817 /* Dump the solution for unified vars anyway, this avoids difficulties
5818 in scanning dumps in the testsuite. */
5819 fprintf (file
, "%s = { ", vi
->name
);
5820 vi
= get_varinfo (find (var
));
5821 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
5822 fprintf (file
, "%s ", get_varinfo (i
)->name
);
5823 fprintf (file
, "}");
5825 /* But note when the variable was unified. */
5827 fprintf (file
, " same as %s", vi
->name
);
5829 fprintf (file
, "\n");
5832 /* Print the points-to solution for VAR to stdout. */
5835 debug_solution_for_var (unsigned int var
)
5837 dump_solution_for_var (stdout
, var
);
5840 /* Create varinfo structures for all of the variables in the
5841 function for intraprocedural mode. */
5844 intra_create_variable_infos (void)
5848 /* For each incoming pointer argument arg, create the constraint ARG
5849 = NONLOCAL or a dummy variable if it is a restrict qualified
5850 passed-by-reference argument. */
5851 for (t
= DECL_ARGUMENTS (current_function_decl
); t
; t
= DECL_CHAIN (t
))
5853 varinfo_t p
= get_vi_for_tree (t
);
5855 /* For restrict qualified pointers to objects passed by
5856 reference build a real representative for the pointed-to object.
5857 Treat restrict qualified references the same. */
5858 if (TYPE_RESTRICT (TREE_TYPE (t
))
5859 && ((DECL_BY_REFERENCE (t
) && POINTER_TYPE_P (TREE_TYPE (t
)))
5860 || TREE_CODE (TREE_TYPE (t
)) == REFERENCE_TYPE
)
5861 && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t
))))
5863 struct constraint_expr lhsc
, rhsc
;
5865 tree heapvar
= build_fake_var_decl (TREE_TYPE (TREE_TYPE (t
)));
5866 DECL_EXTERNAL (heapvar
) = 1;
5867 vi
= create_variable_info_for_1 (heapvar
, "PARM_NOALIAS");
5868 insert_vi_for_tree (heapvar
, vi
);
5873 rhsc
.type
= ADDRESSOF
;
5875 process_constraint (new_constraint (lhsc
, rhsc
));
5876 for (; vi
; vi
= vi_next (vi
))
5877 if (vi
->may_have_pointers
)
5879 if (vi
->only_restrict_pointers
)
5880 make_constraint_from_global_restrict (vi
, "GLOBAL_RESTRICT");
5882 make_copy_constraint (vi
, nonlocal_id
);
5887 if (POINTER_TYPE_P (TREE_TYPE (t
))
5888 && TYPE_RESTRICT (TREE_TYPE (t
)))
5889 make_constraint_from_global_restrict (p
, "PARM_RESTRICT");
5892 for (; p
; p
= vi_next (p
))
5894 if (p
->only_restrict_pointers
)
5895 make_constraint_from_global_restrict (p
, "PARM_RESTRICT");
5896 else if (p
->may_have_pointers
)
5897 make_constraint_from (p
, nonlocal_id
);
5902 /* Add a constraint for a result decl that is passed by reference. */
5903 if (DECL_RESULT (cfun
->decl
)
5904 && DECL_BY_REFERENCE (DECL_RESULT (cfun
->decl
)))
5906 varinfo_t p
, result_vi
= get_vi_for_tree (DECL_RESULT (cfun
->decl
));
5908 for (p
= result_vi
; p
; p
= vi_next (p
))
5909 make_constraint_from (p
, nonlocal_id
);
5912 /* Add a constraint for the incoming static chain parameter. */
5913 if (cfun
->static_chain_decl
!= NULL_TREE
)
5915 varinfo_t p
, chain_vi
= get_vi_for_tree (cfun
->static_chain_decl
);
5917 for (p
= chain_vi
; p
; p
= vi_next (p
))
5918 make_constraint_from (p
, nonlocal_id
);
5922 /* Structure used to put solution bitmaps in a hashtable so they can
5923 be shared among variables with the same points-to set. */
5925 typedef struct shared_bitmap_info
5929 } *shared_bitmap_info_t
;
5930 typedef const struct shared_bitmap_info
*const_shared_bitmap_info_t
;
5932 /* Shared_bitmap hashtable helpers. */
5934 struct shared_bitmap_hasher
: typed_free_remove
<shared_bitmap_info
>
5936 typedef shared_bitmap_info value_type
;
5937 typedef shared_bitmap_info compare_type
;
5938 static inline hashval_t
hash (const value_type
*);
5939 static inline bool equal (const value_type
*, const compare_type
*);
5942 /* Hash function for a shared_bitmap_info_t */
5945 shared_bitmap_hasher::hash (const value_type
*bi
)
5947 return bi
->hashcode
;
5950 /* Equality function for two shared_bitmap_info_t's. */
5953 shared_bitmap_hasher::equal (const value_type
*sbi1
, const compare_type
*sbi2
)
5955 return bitmap_equal_p (sbi1
->pt_vars
, sbi2
->pt_vars
);
5958 /* Shared_bitmap hashtable. */
5960 static hash_table
<shared_bitmap_hasher
> shared_bitmap_table
;
5962 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5963 existing instance if there is one, NULL otherwise. */
5966 shared_bitmap_lookup (bitmap pt_vars
)
5968 shared_bitmap_info
**slot
;
5969 struct shared_bitmap_info sbi
;
5971 sbi
.pt_vars
= pt_vars
;
5972 sbi
.hashcode
= bitmap_hash (pt_vars
);
5974 slot
= shared_bitmap_table
.find_slot_with_hash (&sbi
, sbi
.hashcode
,
5979 return (*slot
)->pt_vars
;
5983 /* Add a bitmap to the shared bitmap hashtable. */
5986 shared_bitmap_add (bitmap pt_vars
)
5988 shared_bitmap_info
**slot
;
5989 shared_bitmap_info_t sbi
= XNEW (struct shared_bitmap_info
);
5991 sbi
->pt_vars
= pt_vars
;
5992 sbi
->hashcode
= bitmap_hash (pt_vars
);
5994 slot
= shared_bitmap_table
.find_slot_with_hash (sbi
, sbi
->hashcode
, INSERT
);
5995 gcc_assert (!*slot
);
6000 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
6003 set_uids_in_ptset (bitmap into
, bitmap from
, struct pt_solution
*pt
)
6007 varinfo_t escaped_vi
= get_varinfo (find (escaped_id
));
6008 bool everything_escaped
6009 = escaped_vi
->solution
&& bitmap_bit_p (escaped_vi
->solution
, anything_id
);
6011 EXECUTE_IF_SET_IN_BITMAP (from
, 0, i
, bi
)
6013 varinfo_t vi
= get_varinfo (i
);
6015 /* The only artificial variables that are allowed in a may-alias
6016 set are heap variables. */
6017 if (vi
->is_artificial_var
&& !vi
->is_heap_var
)
6020 if (everything_escaped
6021 || (escaped_vi
->solution
6022 && bitmap_bit_p (escaped_vi
->solution
, i
)))
6024 pt
->vars_contains_escaped
= true;
6025 pt
->vars_contains_escaped_heap
= vi
->is_heap_var
;
6028 if (TREE_CODE (vi
->decl
) == VAR_DECL
6029 || TREE_CODE (vi
->decl
) == PARM_DECL
6030 || TREE_CODE (vi
->decl
) == RESULT_DECL
)
6032 /* If we are in IPA mode we will not recompute points-to
6033 sets after inlining so make sure they stay valid. */
6035 && !DECL_PT_UID_SET_P (vi
->decl
))
6036 SET_DECL_PT_UID (vi
->decl
, DECL_UID (vi
->decl
));
6038 /* Add the decl to the points-to set. Note that the points-to
6039 set contains global variables. */
6040 bitmap_set_bit (into
, DECL_PT_UID (vi
->decl
));
6041 if (vi
->is_global_var
)
6042 pt
->vars_contains_nonlocal
= true;
6048 /* Compute the points-to solution *PT for the variable VI. */
6050 static struct pt_solution
6051 find_what_var_points_to (varinfo_t orig_vi
)
6055 bitmap finished_solution
;
6059 struct pt_solution
*pt
;
6061 /* This variable may have been collapsed, let's get the real
6063 vi
= get_varinfo (find (orig_vi
->id
));
6065 /* See if we have already computed the solution and return it. */
6066 slot
= pointer_map_insert (final_solutions
, vi
);
6068 return *(struct pt_solution
*)*slot
;
6070 *slot
= pt
= XOBNEW (&final_solutions_obstack
, struct pt_solution
);
6071 memset (pt
, 0, sizeof (struct pt_solution
));
6073 /* Translate artificial variables into SSA_NAME_PTR_INFO
6075 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
6077 varinfo_t vi
= get_varinfo (i
);
6079 if (vi
->is_artificial_var
)
6081 if (vi
->id
== nothing_id
)
6083 else if (vi
->id
== escaped_id
)
6086 pt
->ipa_escaped
= 1;
6090 else if (vi
->id
== nonlocal_id
)
6092 else if (vi
->is_heap_var
)
6093 /* We represent heapvars in the points-to set properly. */
6095 else if (vi
->id
== readonly_id
)
6098 else if (vi
->id
== anything_id
6099 || vi
->id
== integer_id
)
6104 /* Instead of doing extra work, simply do not create
6105 elaborate points-to information for pt_anything pointers. */
6109 /* Share the final set of variables when possible. */
6110 finished_solution
= BITMAP_GGC_ALLOC ();
6111 stats
.points_to_sets_created
++;
6113 set_uids_in_ptset (finished_solution
, vi
->solution
, pt
);
6114 result
= shared_bitmap_lookup (finished_solution
);
6117 shared_bitmap_add (finished_solution
);
6118 pt
->vars
= finished_solution
;
6123 bitmap_clear (finished_solution
);
6129 /* Given a pointer variable P, fill in its points-to set. */
6132 find_what_p_points_to (tree p
)
6134 struct ptr_info_def
*pi
;
6138 /* For parameters, get at the points-to set for the actual parm
6140 if (TREE_CODE (p
) == SSA_NAME
6141 && SSA_NAME_IS_DEFAULT_DEF (p
)
6142 && (TREE_CODE (SSA_NAME_VAR (p
)) == PARM_DECL
6143 || TREE_CODE (SSA_NAME_VAR (p
)) == RESULT_DECL
))
6144 lookup_p
= SSA_NAME_VAR (p
);
6146 vi
= lookup_vi_for_tree (lookup_p
);
6150 pi
= get_ptr_info (p
);
6151 pi
->pt
= find_what_var_points_to (vi
);
6155 /* Query statistics for points-to solutions. */
6158 unsigned HOST_WIDE_INT pt_solution_includes_may_alias
;
6159 unsigned HOST_WIDE_INT pt_solution_includes_no_alias
;
6160 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias
;
6161 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias
;
6165 dump_pta_stats (FILE *s
)
6167 fprintf (s
, "\nPTA query stats:\n");
6168 fprintf (s
, " pt_solution_includes: "
6169 HOST_WIDE_INT_PRINT_DEC
" disambiguations, "
6170 HOST_WIDE_INT_PRINT_DEC
" queries\n",
6171 pta_stats
.pt_solution_includes_no_alias
,
6172 pta_stats
.pt_solution_includes_no_alias
6173 + pta_stats
.pt_solution_includes_may_alias
);
6174 fprintf (s
, " pt_solutions_intersect: "
6175 HOST_WIDE_INT_PRINT_DEC
" disambiguations, "
6176 HOST_WIDE_INT_PRINT_DEC
" queries\n",
6177 pta_stats
.pt_solutions_intersect_no_alias
,
6178 pta_stats
.pt_solutions_intersect_no_alias
6179 + pta_stats
.pt_solutions_intersect_may_alias
);
6183 /* Reset the points-to solution *PT to a conservative default
6184 (point to anything). */
6187 pt_solution_reset (struct pt_solution
*pt
)
6189 memset (pt
, 0, sizeof (struct pt_solution
));
6190 pt
->anything
= true;
6193 /* Set the points-to solution *PT to point only to the variables
6194 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
6195 global variables and VARS_CONTAINS_RESTRICT specifies whether
6196 it contains restrict tag variables. */
6199 pt_solution_set (struct pt_solution
*pt
, bitmap vars
,
6200 bool vars_contains_nonlocal
)
6202 memset (pt
, 0, sizeof (struct pt_solution
));
6204 pt
->vars_contains_nonlocal
= vars_contains_nonlocal
;
6205 pt
->vars_contains_escaped
6206 = (cfun
->gimple_df
->escaped
.anything
6207 || bitmap_intersect_p (cfun
->gimple_df
->escaped
.vars
, vars
));
6210 /* Set the points-to solution *PT to point only to the variable VAR. */
6213 pt_solution_set_var (struct pt_solution
*pt
, tree var
)
6215 memset (pt
, 0, sizeof (struct pt_solution
));
6216 pt
->vars
= BITMAP_GGC_ALLOC ();
6217 bitmap_set_bit (pt
->vars
, DECL_PT_UID (var
));
6218 pt
->vars_contains_nonlocal
= is_global_var (var
);
6219 pt
->vars_contains_escaped
6220 = (cfun
->gimple_df
->escaped
.anything
6221 || bitmap_bit_p (cfun
->gimple_df
->escaped
.vars
, DECL_PT_UID (var
)));
6224 /* Computes the union of the points-to solutions *DEST and *SRC and
6225 stores the result in *DEST. This changes the points-to bitmap
6226 of *DEST and thus may not be used if that might be shared.
6227 The points-to bitmap of *SRC and *DEST will not be shared after
6228 this function if they were not before. */
6231 pt_solution_ior_into (struct pt_solution
*dest
, struct pt_solution
*src
)
6233 dest
->anything
|= src
->anything
;
6236 pt_solution_reset (dest
);
6240 dest
->nonlocal
|= src
->nonlocal
;
6241 dest
->escaped
|= src
->escaped
;
6242 dest
->ipa_escaped
|= src
->ipa_escaped
;
6243 dest
->null
|= src
->null
;
6244 dest
->vars_contains_nonlocal
|= src
->vars_contains_nonlocal
;
6245 dest
->vars_contains_escaped
|= src
->vars_contains_escaped
;
6246 dest
->vars_contains_escaped_heap
|= src
->vars_contains_escaped_heap
;
6251 dest
->vars
= BITMAP_GGC_ALLOC ();
6252 bitmap_ior_into (dest
->vars
, src
->vars
);
6255 /* Return true if the points-to solution *PT is empty. */
6258 pt_solution_empty_p (struct pt_solution
*pt
)
6265 && !bitmap_empty_p (pt
->vars
))
6268 /* If the solution includes ESCAPED, check if that is empty. */
6270 && !pt_solution_empty_p (&cfun
->gimple_df
->escaped
))
6273 /* If the solution includes ESCAPED, check if that is empty. */
6275 && !pt_solution_empty_p (&ipa_escaped_pt
))
6281 /* Return true if the points-to solution *PT only point to a single var, and
6282 return the var uid in *UID. */
6285 pt_solution_singleton_p (struct pt_solution
*pt
, unsigned *uid
)
6287 if (pt
->anything
|| pt
->nonlocal
|| pt
->escaped
|| pt
->ipa_escaped
6288 || pt
->null
|| pt
->vars
== NULL
6289 || !bitmap_single_bit_set_p (pt
->vars
))
6292 *uid
= bitmap_first_set_bit (pt
->vars
);
6296 /* Return true if the points-to solution *PT includes global memory. */
6299 pt_solution_includes_global (struct pt_solution
*pt
)
6303 || pt
->vars_contains_nonlocal
6304 /* The following is a hack to make the malloc escape hack work.
6305 In reality we'd need different sets for escaped-through-return
6306 and escaped-to-callees and passes would need to be updated. */
6307 || pt
->vars_contains_escaped_heap
)
6310 /* 'escaped' is also a placeholder so we have to look into it. */
6312 return pt_solution_includes_global (&cfun
->gimple_df
->escaped
);
6314 if (pt
->ipa_escaped
)
6315 return pt_solution_includes_global (&ipa_escaped_pt
);
6317 /* ??? This predicate is not correct for the IPA-PTA solution
6318 as we do not properly distinguish between unit escape points
6319 and global variables. */
6320 if (cfun
->gimple_df
->ipa_pta
)
6326 /* Return true if the points-to solution *PT includes the variable
6327 declaration DECL. */
6330 pt_solution_includes_1 (struct pt_solution
*pt
, const_tree decl
)
6336 && is_global_var (decl
))
6340 && bitmap_bit_p (pt
->vars
, DECL_PT_UID (decl
)))
6343 /* If the solution includes ESCAPED, check it. */
6345 && pt_solution_includes_1 (&cfun
->gimple_df
->escaped
, decl
))
6348 /* If the solution includes ESCAPED, check it. */
6350 && pt_solution_includes_1 (&ipa_escaped_pt
, decl
))
6357 pt_solution_includes (struct pt_solution
*pt
, const_tree decl
)
6359 bool res
= pt_solution_includes_1 (pt
, decl
);
6361 ++pta_stats
.pt_solution_includes_may_alias
;
6363 ++pta_stats
.pt_solution_includes_no_alias
;
6367 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6371 pt_solutions_intersect_1 (struct pt_solution
*pt1
, struct pt_solution
*pt2
)
6373 if (pt1
->anything
|| pt2
->anything
)
6376 /* If either points to unknown global memory and the other points to
6377 any global memory they alias. */
6380 || pt2
->vars_contains_nonlocal
))
6382 && pt1
->vars_contains_nonlocal
))
6385 /* If either points to all escaped memory and the other points to
6386 any escaped memory they alias. */
6389 || pt2
->vars_contains_escaped
))
6391 && pt1
->vars_contains_escaped
))
6394 /* Check the escaped solution if required.
6395 ??? Do we need to check the local against the IPA escaped sets? */
6396 if ((pt1
->ipa_escaped
|| pt2
->ipa_escaped
)
6397 && !pt_solution_empty_p (&ipa_escaped_pt
))
6399 /* If both point to escaped memory and that solution
6400 is not empty they alias. */
6401 if (pt1
->ipa_escaped
&& pt2
->ipa_escaped
)
6404 /* If either points to escaped memory see if the escaped solution
6405 intersects with the other. */
6406 if ((pt1
->ipa_escaped
6407 && pt_solutions_intersect_1 (&ipa_escaped_pt
, pt2
))
6408 || (pt2
->ipa_escaped
6409 && pt_solutions_intersect_1 (&ipa_escaped_pt
, pt1
)))
6413 /* Now both pointers alias if their points-to solution intersects. */
6416 && bitmap_intersect_p (pt1
->vars
, pt2
->vars
));
6420 pt_solutions_intersect (struct pt_solution
*pt1
, struct pt_solution
*pt2
)
6422 bool res
= pt_solutions_intersect_1 (pt1
, pt2
);
6424 ++pta_stats
.pt_solutions_intersect_may_alias
;
6426 ++pta_stats
.pt_solutions_intersect_no_alias
;
6431 /* Dump points-to information to OUTFILE. */
6434 dump_sa_points_to_info (FILE *outfile
)
6438 fprintf (outfile
, "\nPoints-to sets\n\n");
6440 if (dump_flags
& TDF_STATS
)
6442 fprintf (outfile
, "Stats:\n");
6443 fprintf (outfile
, "Total vars: %d\n", stats
.total_vars
);
6444 fprintf (outfile
, "Non-pointer vars: %d\n",
6445 stats
.nonpointer_vars
);
6446 fprintf (outfile
, "Statically unified vars: %d\n",
6447 stats
.unified_vars_static
);
6448 fprintf (outfile
, "Dynamically unified vars: %d\n",
6449 stats
.unified_vars_dynamic
);
6450 fprintf (outfile
, "Iterations: %d\n", stats
.iterations
);
6451 fprintf (outfile
, "Number of edges: %d\n", stats
.num_edges
);
6452 fprintf (outfile
, "Number of implicit edges: %d\n",
6453 stats
.num_implicit_edges
);
6456 for (i
= 1; i
< varmap
.length (); i
++)
6458 varinfo_t vi
= get_varinfo (i
);
6459 if (!vi
->may_have_pointers
)
6461 dump_solution_for_var (outfile
, i
);
6466 /* Debug points-to information to stderr. */
6469 debug_sa_points_to_info (void)
6471 dump_sa_points_to_info (stderr
);
6475 /* Initialize the always-existing constraint variables for NULL
6476 ANYTHING, READONLY, and INTEGER */
6479 init_base_vars (void)
6481 struct constraint_expr lhs
, rhs
;
6482 varinfo_t var_anything
;
6483 varinfo_t var_nothing
;
6484 varinfo_t var_readonly
;
6485 varinfo_t var_escaped
;
6486 varinfo_t var_nonlocal
;
6487 varinfo_t var_storedanything
;
6488 varinfo_t var_integer
;
6490 /* Variable ID zero is reserved and should be NULL. */
6491 varmap
.safe_push (NULL
);
6493 /* Create the NULL variable, used to represent that a variable points
6495 var_nothing
= new_var_info (NULL_TREE
, "NULL");
6496 gcc_assert (var_nothing
->id
== nothing_id
);
6497 var_nothing
->is_artificial_var
= 1;
6498 var_nothing
->offset
= 0;
6499 var_nothing
->size
= ~0;
6500 var_nothing
->fullsize
= ~0;
6501 var_nothing
->is_special_var
= 1;
6502 var_nothing
->may_have_pointers
= 0;
6503 var_nothing
->is_global_var
= 0;
6505 /* Create the ANYTHING variable, used to represent that a variable
6506 points to some unknown piece of memory. */
6507 var_anything
= new_var_info (NULL_TREE
, "ANYTHING");
6508 gcc_assert (var_anything
->id
== anything_id
);
6509 var_anything
->is_artificial_var
= 1;
6510 var_anything
->size
= ~0;
6511 var_anything
->offset
= 0;
6512 var_anything
->fullsize
= ~0;
6513 var_anything
->is_special_var
= 1;
6515 /* Anything points to anything. This makes deref constraints just
6516 work in the presence of linked list and other p = *p type loops,
6517 by saying that *ANYTHING = ANYTHING. */
6519 lhs
.var
= anything_id
;
6521 rhs
.type
= ADDRESSOF
;
6522 rhs
.var
= anything_id
;
6525 /* This specifically does not use process_constraint because
6526 process_constraint ignores all anything = anything constraints, since all
6527 but this one are redundant. */
6528 constraints
.safe_push (new_constraint (lhs
, rhs
));
6530 /* Create the READONLY variable, used to represent that a variable
6531 points to readonly memory. */
6532 var_readonly
= new_var_info (NULL_TREE
, "READONLY");
6533 gcc_assert (var_readonly
->id
== readonly_id
);
6534 var_readonly
->is_artificial_var
= 1;
6535 var_readonly
->offset
= 0;
6536 var_readonly
->size
= ~0;
6537 var_readonly
->fullsize
= ~0;
6538 var_readonly
->is_special_var
= 1;
6540 /* readonly memory points to anything, in order to make deref
6541 easier. In reality, it points to anything the particular
6542 readonly variable can point to, but we don't track this
6545 lhs
.var
= readonly_id
;
6547 rhs
.type
= ADDRESSOF
;
6548 rhs
.var
= readonly_id
; /* FIXME */
6550 process_constraint (new_constraint (lhs
, rhs
));
6552 /* Create the ESCAPED variable, used to represent the set of escaped
6554 var_escaped
= new_var_info (NULL_TREE
, "ESCAPED");
6555 gcc_assert (var_escaped
->id
== escaped_id
);
6556 var_escaped
->is_artificial_var
= 1;
6557 var_escaped
->offset
= 0;
6558 var_escaped
->size
= ~0;
6559 var_escaped
->fullsize
= ~0;
6560 var_escaped
->is_special_var
= 0;
6562 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6564 var_nonlocal
= new_var_info (NULL_TREE
, "NONLOCAL");
6565 gcc_assert (var_nonlocal
->id
== nonlocal_id
);
6566 var_nonlocal
->is_artificial_var
= 1;
6567 var_nonlocal
->offset
= 0;
6568 var_nonlocal
->size
= ~0;
6569 var_nonlocal
->fullsize
= ~0;
6570 var_nonlocal
->is_special_var
= 1;
6572 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6574 lhs
.var
= escaped_id
;
6577 rhs
.var
= escaped_id
;
6579 process_constraint (new_constraint (lhs
, rhs
));
6581 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6582 whole variable escapes. */
6584 lhs
.var
= escaped_id
;
6587 rhs
.var
= escaped_id
;
6588 rhs
.offset
= UNKNOWN_OFFSET
;
6589 process_constraint (new_constraint (lhs
, rhs
));
6591 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6592 everything pointed to by escaped points to what global memory can
6595 lhs
.var
= escaped_id
;
6598 rhs
.var
= nonlocal_id
;
6600 process_constraint (new_constraint (lhs
, rhs
));
6602 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6603 global memory may point to global memory and escaped memory. */
6605 lhs
.var
= nonlocal_id
;
6607 rhs
.type
= ADDRESSOF
;
6608 rhs
.var
= nonlocal_id
;
6610 process_constraint (new_constraint (lhs
, rhs
));
6611 rhs
.type
= ADDRESSOF
;
6612 rhs
.var
= escaped_id
;
6614 process_constraint (new_constraint (lhs
, rhs
));
6616 /* Create the STOREDANYTHING variable, used to represent the set of
6617 variables stored to *ANYTHING. */
6618 var_storedanything
= new_var_info (NULL_TREE
, "STOREDANYTHING");
6619 gcc_assert (var_storedanything
->id
== storedanything_id
);
6620 var_storedanything
->is_artificial_var
= 1;
6621 var_storedanything
->offset
= 0;
6622 var_storedanything
->size
= ~0;
6623 var_storedanything
->fullsize
= ~0;
6624 var_storedanything
->is_special_var
= 0;
6626 /* Create the INTEGER variable, used to represent that a variable points
6627 to what an INTEGER "points to". */
6628 var_integer
= new_var_info (NULL_TREE
, "INTEGER");
6629 gcc_assert (var_integer
->id
== integer_id
);
6630 var_integer
->is_artificial_var
= 1;
6631 var_integer
->size
= ~0;
6632 var_integer
->fullsize
= ~0;
6633 var_integer
->offset
= 0;
6634 var_integer
->is_special_var
= 1;
6636 /* INTEGER = ANYTHING, because we don't know where a dereference of
6637 a random integer will point to. */
6639 lhs
.var
= integer_id
;
6641 rhs
.type
= ADDRESSOF
;
6642 rhs
.var
= anything_id
;
6644 process_constraint (new_constraint (lhs
, rhs
));
6647 /* Initialize things necessary to perform PTA */
6650 init_alias_vars (void)
6652 use_field_sensitive
= (MAX_FIELDS_FOR_FIELD_SENSITIVE
> 1);
6654 bitmap_obstack_initialize (&pta_obstack
);
6655 bitmap_obstack_initialize (&oldpta_obstack
);
6656 bitmap_obstack_initialize (&predbitmap_obstack
);
6658 constraint_pool
= create_alloc_pool ("Constraint pool",
6659 sizeof (struct constraint
), 30);
6660 variable_info_pool
= create_alloc_pool ("Variable info pool",
6661 sizeof (struct variable_info
), 30);
6662 constraints
.create (8);
6664 vi_for_tree
= pointer_map_create ();
6665 call_stmt_vars
= pointer_map_create ();
6667 memset (&stats
, 0, sizeof (stats
));
6668 shared_bitmap_table
.create (511);
6671 gcc_obstack_init (&fake_var_decl_obstack
);
6673 final_solutions
= pointer_map_create ();
6674 gcc_obstack_init (&final_solutions_obstack
);
6677 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6678 predecessor edges. */
6681 remove_preds_and_fake_succs (constraint_graph_t graph
)
6685 /* Clear the implicit ref and address nodes from the successor
6687 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
6689 if (graph
->succs
[i
])
6690 bitmap_clear_range (graph
->succs
[i
], FIRST_REF_NODE
,
6691 FIRST_REF_NODE
* 2);
6694 /* Free the successor list for the non-ref nodes. */
6695 for (i
= FIRST_REF_NODE
+ 1; i
< graph
->size
; i
++)
6697 if (graph
->succs
[i
])
6698 BITMAP_FREE (graph
->succs
[i
]);
6701 /* Now reallocate the size of the successor list as, and blow away
6702 the predecessor bitmaps. */
6703 graph
->size
= varmap
.length ();
6704 graph
->succs
= XRESIZEVEC (bitmap
, graph
->succs
, graph
->size
);
6706 free (graph
->implicit_preds
);
6707 graph
->implicit_preds
= NULL
;
6708 free (graph
->preds
);
6709 graph
->preds
= NULL
;
6710 bitmap_obstack_release (&predbitmap_obstack
);
6713 /* Solve the constraint set. */
6716 solve_constraints (void)
6718 struct scc_info
*si
;
6722 "\nCollapsing static cycles and doing variable "
6725 init_graph (varmap
.length () * 2);
6728 fprintf (dump_file
, "Building predecessor graph\n");
6729 build_pred_graph ();
6732 fprintf (dump_file
, "Detecting pointer and location "
6734 si
= perform_var_substitution (graph
);
6737 fprintf (dump_file
, "Rewriting constraints and unifying "
6739 rewrite_constraints (graph
, si
);
6741 build_succ_graph ();
6743 free_var_substitution_info (si
);
6745 /* Attach complex constraints to graph nodes. */
6746 move_complex_constraints (graph
);
6749 fprintf (dump_file
, "Uniting pointer but not location equivalent "
6751 unite_pointer_equivalences (graph
);
6754 fprintf (dump_file
, "Finding indirect cycles\n");
6755 find_indirect_cycles (graph
);
6757 /* Implicit nodes and predecessors are no longer necessary at this
6759 remove_preds_and_fake_succs (graph
);
6761 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
6763 fprintf (dump_file
, "\n\n// The constraint graph before solve-graph "
6764 "in dot format:\n");
6765 dump_constraint_graph (dump_file
);
6766 fprintf (dump_file
, "\n\n");
6770 fprintf (dump_file
, "Solving graph\n");
6772 solve_graph (graph
);
6774 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
6776 fprintf (dump_file
, "\n\n// The constraint graph after solve-graph "
6777 "in dot format:\n");
6778 dump_constraint_graph (dump_file
);
6779 fprintf (dump_file
, "\n\n");
6783 dump_sa_points_to_info (dump_file
);
6786 /* Create points-to sets for the current function. See the comments
6787 at the start of the file for an algorithmic overview. */
6790 compute_points_to_sets (void)
6796 timevar_push (TV_TREE_PTA
);
6800 intra_create_variable_infos ();
6802 /* Now walk all statements and build the constraint set. */
6805 gimple_stmt_iterator gsi
;
6807 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6809 gimple phi
= gsi_stmt (gsi
);
6811 if (! virtual_operand_p (gimple_phi_result (phi
)))
6812 find_func_aliases (phi
);
6815 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6817 gimple stmt
= gsi_stmt (gsi
);
6819 find_func_aliases (stmt
);
6825 fprintf (dump_file
, "Points-to analysis\n\nConstraints:\n\n");
6826 dump_constraints (dump_file
, 0);
6829 /* From the constraints compute the points-to sets. */
6830 solve_constraints ();
6832 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6833 cfun
->gimple_df
->escaped
= find_what_var_points_to (get_varinfo (escaped_id
));
6835 /* Make sure the ESCAPED solution (which is used as placeholder in
6836 other solutions) does not reference itself. This simplifies
6837 points-to solution queries. */
6838 cfun
->gimple_df
->escaped
.escaped
= 0;
6840 /* Compute the points-to sets for pointer SSA_NAMEs. */
6841 for (i
= 0; i
< num_ssa_names
; ++i
)
6843 tree ptr
= ssa_name (i
);
6845 && POINTER_TYPE_P (TREE_TYPE (ptr
)))
6846 find_what_p_points_to (ptr
);
6849 /* Compute the call-used/clobbered sets. */
6852 gimple_stmt_iterator gsi
;
6854 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6856 gimple stmt
= gsi_stmt (gsi
);
6857 struct pt_solution
*pt
;
6858 if (!is_gimple_call (stmt
))
6861 pt
= gimple_call_use_set (stmt
);
6862 if (gimple_call_flags (stmt
) & ECF_CONST
)
6863 memset (pt
, 0, sizeof (struct pt_solution
));
6864 else if ((vi
= lookup_call_use_vi (stmt
)) != NULL
)
6866 *pt
= find_what_var_points_to (vi
);
6867 /* Escaped (and thus nonlocal) variables are always
6868 implicitly used by calls. */
6869 /* ??? ESCAPED can be empty even though NONLOCAL
6876 /* If there is nothing special about this call then
6877 we have made everything that is used also escape. */
6878 *pt
= cfun
->gimple_df
->escaped
;
6882 pt
= gimple_call_clobber_set (stmt
);
6883 if (gimple_call_flags (stmt
) & (ECF_CONST
|ECF_PURE
|ECF_NOVOPS
))
6884 memset (pt
, 0, sizeof (struct pt_solution
));
6885 else if ((vi
= lookup_call_clobber_vi (stmt
)) != NULL
)
6887 *pt
= find_what_var_points_to (vi
);
6888 /* Escaped (and thus nonlocal) variables are always
6889 implicitly clobbered by calls. */
6890 /* ??? ESCAPED can be empty even though NONLOCAL
6897 /* If there is nothing special about this call then
6898 we have made everything that is used also escape. */
6899 *pt
= cfun
->gimple_df
->escaped
;
6905 timevar_pop (TV_TREE_PTA
);
6909 /* Delete created points-to sets. */
6912 delete_points_to_sets (void)
6916 shared_bitmap_table
.dispose ();
6917 if (dump_file
&& (dump_flags
& TDF_STATS
))
6918 fprintf (dump_file
, "Points to sets created:%d\n",
6919 stats
.points_to_sets_created
);
6921 pointer_map_destroy (vi_for_tree
);
6922 pointer_map_destroy (call_stmt_vars
);
6923 bitmap_obstack_release (&pta_obstack
);
6924 constraints
.release ();
6926 for (i
= 0; i
< graph
->size
; i
++)
6927 graph
->complex[i
].release ();
6928 free (graph
->complex);
6931 free (graph
->succs
);
6933 free (graph
->pe_rep
);
6934 free (graph
->indirect_cycles
);
6938 free_alloc_pool (variable_info_pool
);
6939 free_alloc_pool (constraint_pool
);
6941 obstack_free (&fake_var_decl_obstack
, NULL
);
6943 pointer_map_destroy (final_solutions
);
6944 obstack_free (&final_solutions_obstack
, NULL
);
6948 /* Compute points-to information for every SSA_NAME pointer in the
6949 current function and compute the transitive closure of escaped
6950 variables to re-initialize the call-clobber states of local variables. */
6953 compute_may_aliases (void)
6955 if (cfun
->gimple_df
->ipa_pta
)
6959 fprintf (dump_file
, "\nNot re-computing points-to information "
6960 "because IPA points-to information is available.\n\n");
6962 /* But still dump what we have remaining it. */
6963 dump_alias_info (dump_file
);
6969 /* For each pointer P_i, determine the sets of variables that P_i may
6970 point-to. Compute the reachability set of escaped and call-used
6972 compute_points_to_sets ();
6974 /* Debugging dumps. */
6976 dump_alias_info (dump_file
);
6978 /* Deallocate memory used by aliasing data structures and the internal
6979 points-to solution. */
6980 delete_points_to_sets ();
6982 gcc_assert (!need_ssa_update_p (cfun
));
6988 gate_tree_pta (void)
6990 return flag_tree_pta
;
6993 /* A dummy pass to cause points-to information to be computed via
6994 TODO_rebuild_alias. */
6998 const pass_data pass_data_build_alias
=
7000 GIMPLE_PASS
, /* type */
7002 OPTGROUP_NONE
, /* optinfo_flags */
7003 true, /* has_gate */
7004 false, /* has_execute */
7005 TV_NONE
, /* tv_id */
7006 ( PROP_cfg
| PROP_ssa
), /* properties_required */
7007 0, /* properties_provided */
7008 0, /* properties_destroyed */
7009 0, /* todo_flags_start */
7010 TODO_rebuild_alias
, /* todo_flags_finish */
7013 class pass_build_alias
: public gimple_opt_pass
7016 pass_build_alias (gcc::context
*ctxt
)
7017 : gimple_opt_pass (pass_data_build_alias
, ctxt
)
7020 /* opt_pass methods: */
7021 bool gate () { return gate_tree_pta (); }
7023 }; // class pass_build_alias
7028 make_pass_build_alias (gcc::context
*ctxt
)
7030 return new pass_build_alias (ctxt
);
7033 /* A dummy pass to cause points-to information to be computed via
7034 TODO_rebuild_alias. */
7038 const pass_data pass_data_build_ealias
=
7040 GIMPLE_PASS
, /* type */
7041 "ealias", /* name */
7042 OPTGROUP_NONE
, /* optinfo_flags */
7043 true, /* has_gate */
7044 false, /* has_execute */
7045 TV_NONE
, /* tv_id */
7046 ( PROP_cfg
| PROP_ssa
), /* properties_required */
7047 0, /* properties_provided */
7048 0, /* properties_destroyed */
7049 0, /* todo_flags_start */
7050 TODO_rebuild_alias
, /* todo_flags_finish */
7053 class pass_build_ealias
: public gimple_opt_pass
7056 pass_build_ealias (gcc::context
*ctxt
)
7057 : gimple_opt_pass (pass_data_build_ealias
, ctxt
)
7060 /* opt_pass methods: */
7061 bool gate () { return gate_tree_pta (); }
7063 }; // class pass_build_ealias
7068 make_pass_build_ealias (gcc::context
*ctxt
)
7070 return new pass_build_ealias (ctxt
);
7074 /* Return true if we should execute IPA PTA. */
7080 /* Don't bother doing anything if the program has errors. */
7084 /* IPA PTA solutions for ESCAPED. */
7085 struct pt_solution ipa_escaped_pt
7086 = { true, false, false, false, false, false, false, false, NULL
};
7088 /* Associate node with varinfo DATA. Worker for
7089 cgraph_for_node_and_aliases. */
7091 associate_varinfo_to_alias (struct cgraph_node
*node
, void *data
)
7093 if ((node
->alias
|| node
->thunk
.thunk_p
)
7095 insert_vi_for_tree (node
->decl
, (varinfo_t
)data
);
7099 /* Execute the driver for IPA PTA. */
7101 ipa_pta_execute (void)
7103 struct cgraph_node
*node
;
7104 struct varpool_node
*var
;
7111 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7113 dump_symtab (dump_file
);
7114 fprintf (dump_file
, "\n");
7117 /* Build the constraints. */
7118 FOR_EACH_DEFINED_FUNCTION (node
)
7121 /* Nodes without a body are not interesting. Especially do not
7122 visit clones at this point for now - we get duplicate decls
7123 there for inline clones at least. */
7124 if (!cgraph_function_with_gimple_body_p (node
) || node
->clone_of
)
7126 cgraph_get_body (node
);
7128 gcc_assert (!node
->clone_of
);
7130 vi
= create_function_info_for (node
->decl
,
7131 alias_get_name (node
->decl
));
7132 cgraph_for_node_and_aliases (node
, associate_varinfo_to_alias
, vi
, true);
7135 /* Create constraints for global variables and their initializers. */
7136 FOR_EACH_VARIABLE (var
)
7138 if (var
->alias
&& var
->analyzed
)
7141 get_vi_for_tree (var
->decl
);
7147 "Generating constraints for global initializers\n\n");
7148 dump_constraints (dump_file
, 0);
7149 fprintf (dump_file
, "\n");
7151 from
= constraints
.length ();
7153 FOR_EACH_DEFINED_FUNCTION (node
)
7155 struct function
*func
;
7158 /* Nodes without a body are not interesting. */
7159 if (!cgraph_function_with_gimple_body_p (node
) || node
->clone_of
)
7165 "Generating constraints for %s", node
->name ());
7166 if (DECL_ASSEMBLER_NAME_SET_P (node
->decl
))
7167 fprintf (dump_file
, " (%s)",
7169 (DECL_ASSEMBLER_NAME (node
->decl
)));
7170 fprintf (dump_file
, "\n");
7173 func
= DECL_STRUCT_FUNCTION (node
->decl
);
7176 /* For externally visible or attribute used annotated functions use
7177 local constraints for their arguments.
7178 For local functions we see all callers and thus do not need initial
7179 constraints for parameters. */
7180 if (node
->used_from_other_partition
7181 || node
->externally_visible
7182 || node
->force_output
)
7184 intra_create_variable_infos ();
7186 /* We also need to make function return values escape. Nothing
7187 escapes by returning from main though. */
7188 if (!MAIN_NAME_P (DECL_NAME (node
->decl
)))
7191 fi
= lookup_vi_for_tree (node
->decl
);
7192 rvi
= first_vi_for_offset (fi
, fi_result
);
7193 if (rvi
&& rvi
->offset
== fi_result
)
7195 struct constraint_expr includes
;
7196 struct constraint_expr var
;
7197 includes
.var
= escaped_id
;
7198 includes
.offset
= 0;
7199 includes
.type
= SCALAR
;
7203 process_constraint (new_constraint (includes
, var
));
7208 /* Build constriants for the function body. */
7209 FOR_EACH_BB_FN (bb
, func
)
7211 gimple_stmt_iterator gsi
;
7213 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
7216 gimple phi
= gsi_stmt (gsi
);
7218 if (! virtual_operand_p (gimple_phi_result (phi
)))
7219 find_func_aliases (phi
);
7222 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
7224 gimple stmt
= gsi_stmt (gsi
);
7226 find_func_aliases (stmt
);
7227 find_func_clobbers (stmt
);
7235 fprintf (dump_file
, "\n");
7236 dump_constraints (dump_file
, from
);
7237 fprintf (dump_file
, "\n");
7239 from
= constraints
.length ();
7242 /* From the constraints compute the points-to sets. */
7243 solve_constraints ();
7245 /* Compute the global points-to sets for ESCAPED.
7246 ??? Note that the computed escape set is not correct
7247 for the whole unit as we fail to consider graph edges to
7248 externally visible functions. */
7249 ipa_escaped_pt
= find_what_var_points_to (get_varinfo (escaped_id
));
7251 /* Make sure the ESCAPED solution (which is used as placeholder in
7252 other solutions) does not reference itself. This simplifies
7253 points-to solution queries. */
7254 ipa_escaped_pt
.ipa_escaped
= 0;
7256 /* Assign the points-to sets to the SSA names in the unit. */
7257 FOR_EACH_DEFINED_FUNCTION (node
)
7260 struct function
*fn
;
7264 struct pt_solution uses
, clobbers
;
7265 struct cgraph_edge
*e
;
7267 /* Nodes without a body are not interesting. */
7268 if (!cgraph_function_with_gimple_body_p (node
) || node
->clone_of
)
7271 fn
= DECL_STRUCT_FUNCTION (node
->decl
);
7273 /* Compute the points-to sets for pointer SSA_NAMEs. */
7274 FOR_EACH_VEC_ELT (*fn
->gimple_df
->ssa_names
, i
, ptr
)
7277 && POINTER_TYPE_P (TREE_TYPE (ptr
)))
7278 find_what_p_points_to (ptr
);
7281 /* Compute the call-use and call-clobber sets for all direct calls. */
7282 fi
= lookup_vi_for_tree (node
->decl
);
7283 gcc_assert (fi
->is_fn_info
);
7285 = find_what_var_points_to (first_vi_for_offset (fi
, fi_clobbers
));
7286 uses
= find_what_var_points_to (first_vi_for_offset (fi
, fi_uses
));
7287 for (e
= node
->callers
; e
; e
= e
->next_caller
)
7292 *gimple_call_clobber_set (e
->call_stmt
) = clobbers
;
7293 *gimple_call_use_set (e
->call_stmt
) = uses
;
7296 /* Compute the call-use and call-clobber sets for indirect calls
7297 and calls to external functions. */
7298 FOR_EACH_BB_FN (bb
, fn
)
7300 gimple_stmt_iterator gsi
;
7302 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
7304 gimple stmt
= gsi_stmt (gsi
);
7305 struct pt_solution
*pt
;
7309 if (!is_gimple_call (stmt
))
7312 /* Handle direct calls to external functions. */
7313 decl
= gimple_call_fndecl (stmt
);
7315 && (!(fi
= lookup_vi_for_tree (decl
))
7316 || !fi
->is_fn_info
))
7318 pt
= gimple_call_use_set (stmt
);
7319 if (gimple_call_flags (stmt
) & ECF_CONST
)
7320 memset (pt
, 0, sizeof (struct pt_solution
));
7321 else if ((vi
= lookup_call_use_vi (stmt
)) != NULL
)
7323 *pt
= find_what_var_points_to (vi
);
7324 /* Escaped (and thus nonlocal) variables are always
7325 implicitly used by calls. */
7326 /* ??? ESCAPED can be empty even though NONLOCAL
7329 pt
->ipa_escaped
= 1;
7333 /* If there is nothing special about this call then
7334 we have made everything that is used also escape. */
7335 *pt
= ipa_escaped_pt
;
7339 pt
= gimple_call_clobber_set (stmt
);
7340 if (gimple_call_flags (stmt
) & (ECF_CONST
|ECF_PURE
|ECF_NOVOPS
))
7341 memset (pt
, 0, sizeof (struct pt_solution
));
7342 else if ((vi
= lookup_call_clobber_vi (stmt
)) != NULL
)
7344 *pt
= find_what_var_points_to (vi
);
7345 /* Escaped (and thus nonlocal) variables are always
7346 implicitly clobbered by calls. */
7347 /* ??? ESCAPED can be empty even though NONLOCAL
7350 pt
->ipa_escaped
= 1;
7354 /* If there is nothing special about this call then
7355 we have made everything that is used also escape. */
7356 *pt
= ipa_escaped_pt
;
7361 /* Handle indirect calls. */
7363 && (fi
= get_fi_for_callee (stmt
)))
7365 /* We need to accumulate all clobbers/uses of all possible
7367 fi
= get_varinfo (find (fi
->id
));
7368 /* If we cannot constrain the set of functions we'll end up
7369 calling we end up using/clobbering everything. */
7370 if (bitmap_bit_p (fi
->solution
, anything_id
)
7371 || bitmap_bit_p (fi
->solution
, nonlocal_id
)
7372 || bitmap_bit_p (fi
->solution
, escaped_id
))
7374 pt_solution_reset (gimple_call_clobber_set (stmt
));
7375 pt_solution_reset (gimple_call_use_set (stmt
));
7381 struct pt_solution
*uses
, *clobbers
;
7383 uses
= gimple_call_use_set (stmt
);
7384 clobbers
= gimple_call_clobber_set (stmt
);
7385 memset (uses
, 0, sizeof (struct pt_solution
));
7386 memset (clobbers
, 0, sizeof (struct pt_solution
));
7387 EXECUTE_IF_SET_IN_BITMAP (fi
->solution
, 0, i
, bi
)
7389 struct pt_solution sol
;
7391 vi
= get_varinfo (i
);
7392 if (!vi
->is_fn_info
)
7394 /* ??? We could be more precise here? */
7396 uses
->ipa_escaped
= 1;
7397 clobbers
->nonlocal
= 1;
7398 clobbers
->ipa_escaped
= 1;
7402 if (!uses
->anything
)
7404 sol
= find_what_var_points_to
7405 (first_vi_for_offset (vi
, fi_uses
));
7406 pt_solution_ior_into (uses
, &sol
);
7408 if (!clobbers
->anything
)
7410 sol
= find_what_var_points_to
7411 (first_vi_for_offset (vi
, fi_clobbers
));
7412 pt_solution_ior_into (clobbers
, &sol
);
7420 fn
->gimple_df
->ipa_pta
= true;
7423 delete_points_to_sets ();
7432 const pass_data pass_data_ipa_pta
=
7434 SIMPLE_IPA_PASS
, /* type */
7436 OPTGROUP_NONE
, /* optinfo_flags */
7437 true, /* has_gate */
7438 true, /* has_execute */
7439 TV_IPA_PTA
, /* tv_id */
7440 0, /* properties_required */
7441 0, /* properties_provided */
7442 0, /* properties_destroyed */
7443 0, /* todo_flags_start */
7444 0, /* todo_flags_finish */
7447 class pass_ipa_pta
: public simple_ipa_opt_pass
7450 pass_ipa_pta (gcc::context
*ctxt
)
7451 : simple_ipa_opt_pass (pass_data_ipa_pta
, ctxt
)
7454 /* opt_pass methods: */
7455 bool gate () { return gate_ipa_pta (); }
7456 unsigned int execute () { return ipa_pta_execute (); }
7458 }; // class pass_ipa_pta
7462 simple_ipa_opt_pass
*
7463 make_pass_ipa_pta (gcc::context
*ctxt
)
7465 return new pass_ipa_pta (ctxt
);