1 /* Code sinking for trees
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "stor-layout.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-inline.h"
31 #include "gimple-iterator.h"
32 #include "gimple-ssa.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
37 #include "tree-iterator.h"
38 #include "alloc-pool.h"
39 #include "tree-pass.h"
45 1. Sinking store only using scalar promotion (IE without moving the RHS):
65 Store copy propagation will take care of the store elimination above.
68 2. Sinking using Partial Dead Code Elimination. */
73 /* The number of statements sunk down the flowgraph by code sinking. */
79 /* Given a PHI, and one of its arguments (DEF), find the edge for
80 that argument and return it. If the argument occurs twice in the PHI node,
84 find_bb_for_arg (gimple phi
, tree def
)
87 bool foundone
= false;
88 basic_block result
= NULL
;
89 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
90 if (PHI_ARG_DEF (phi
, i
) == def
)
95 result
= gimple_phi_arg_edge (phi
, i
)->src
;
100 /* When the first immediate use is in a statement, then return true if all
101 immediate uses in IMM are in the same statement.
102 We could also do the case where the first immediate use is in a phi node,
103 and all the other uses are in phis in the same basic block, but this
104 requires some expensive checking later (you have to make sure no def/vdef
105 in the statement occurs for multiple edges in the various phi nodes it's
106 used in, so that you only have one place you can sink it to. */
109 all_immediate_uses_same_place (gimple stmt
)
111 gimple firstuse
= NULL
;
113 imm_use_iterator imm_iter
;
117 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, op_iter
, SSA_OP_ALL_DEFS
)
119 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
121 if (is_gimple_debug (USE_STMT (use_p
)))
123 if (firstuse
== NULL
)
124 firstuse
= USE_STMT (use_p
);
126 if (firstuse
!= USE_STMT (use_p
))
134 /* Find the nearest common dominator of all of the immediate uses in IMM. */
137 nearest_common_dominator_of_uses (gimple stmt
, bool *debug_stmts
)
139 bitmap blocks
= BITMAP_ALLOC (NULL
);
140 basic_block commondom
;
144 imm_use_iterator imm_iter
;
148 bitmap_clear (blocks
);
149 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, op_iter
, SSA_OP_ALL_DEFS
)
151 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
153 gimple usestmt
= USE_STMT (use_p
);
154 basic_block useblock
;
156 if (gimple_code (usestmt
) == GIMPLE_PHI
)
158 int idx
= PHI_ARG_INDEX_FROM_USE (use_p
);
160 useblock
= gimple_phi_arg_edge (usestmt
, idx
)->src
;
162 else if (is_gimple_debug (usestmt
))
169 useblock
= gimple_bb (usestmt
);
172 /* Short circuit. Nothing dominates the entry block. */
173 if (useblock
== ENTRY_BLOCK_PTR
)
175 BITMAP_FREE (blocks
);
178 bitmap_set_bit (blocks
, useblock
->index
);
181 commondom
= BASIC_BLOCK (bitmap_first_set_bit (blocks
));
182 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, j
, bi
)
183 commondom
= nearest_common_dominator (CDI_DOMINATORS
, commondom
,
185 BITMAP_FREE (blocks
);
189 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
190 tree, return the best basic block between them (inclusive) to place
193 We want the most control dependent block in the shallowest loop nest.
195 If the resulting block is in a shallower loop nest, then use it. Else
196 only use the resulting block if it has significantly lower execution
197 frequency than EARLY_BB to avoid gratutious statement movement. We
198 consider statements with VOPS more desirable to move.
200 This pass would obviously benefit from PDO as it utilizes block
201 frequencies. It would also benefit from recomputing frequencies
202 if profile data is not available since frequencies often get out
203 of sync with reality. */
206 select_best_block (basic_block early_bb
,
210 basic_block best_bb
= late_bb
;
211 basic_block temp_bb
= late_bb
;
214 while (temp_bb
!= early_bb
)
216 /* If we've moved into a lower loop nest, then that becomes
218 if (bb_loop_depth (temp_bb
) < bb_loop_depth (best_bb
))
221 /* Walk up the dominator tree, hopefully we'll find a shallower
223 temp_bb
= get_immediate_dominator (CDI_DOMINATORS
, temp_bb
);
226 /* If we found a shallower loop nest, then we always consider that
227 a win. This will always give us the most control dependent block
228 within that loop nest. */
229 if (bb_loop_depth (best_bb
) < bb_loop_depth (early_bb
))
232 /* Get the sinking threshold. If the statement to be moved has memory
233 operands, then increase the threshold by 7% as those are even more
234 profitable to avoid, clamping at 100%. */
235 threshold
= PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD
);
236 if (gimple_vuse (stmt
) || gimple_vdef (stmt
))
243 /* If BEST_BB is at the same nesting level, then require it to have
244 significantly lower execution frequency to avoid gratutious movement. */
245 if (bb_loop_depth (best_bb
) == bb_loop_depth (early_bb
)
246 && best_bb
->frequency
< (early_bb
->frequency
* threshold
/ 100.0))
249 /* No better block found, so return EARLY_BB, which happens to be the
250 statement's original block. */
254 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
255 determine the location to sink the statement to, if any.
256 Returns true if there is such location; in that case, TOGSI points to the
257 statement before that STMT should be moved. */
260 statement_sink_location (gimple stmt
, basic_block frombb
,
261 gimple_stmt_iterator
*togsi
)
264 use_operand_p one_use
= NULL_USE_OPERAND_P
;
269 imm_use_iterator imm_iter
;
271 /* We only can sink assignments. */
272 if (!is_gimple_assign (stmt
))
275 /* We only can sink stmts with a single definition. */
276 def_p
= single_ssa_def_operand (stmt
, SSA_OP_ALL_DEFS
);
277 if (def_p
== NULL_DEF_OPERAND_P
)
280 /* Return if there are no immediate uses of this stmt. */
281 if (has_zero_uses (DEF_FROM_PTR (def_p
)))
284 /* There are a few classes of things we can't or don't move, some because we
285 don't have code to handle it, some because it's not profitable and some
286 because it's not legal.
288 We can't sink things that may be global stores, at least not without
289 calculating a lot more information, because we may cause it to no longer
290 be seen by an external routine that needs it depending on where it gets
293 We don't want to sink loads from memory.
295 We can't sink statements that end basic blocks without splitting the
296 incoming edge for the sink location to place it there.
298 We can't sink statements that have volatile operands.
300 We don't want to sink dead code, so anything with 0 immediate uses is not
303 Don't sink BLKmode assignments if current function has any local explicit
304 register variables, as BLKmode assignments may involve memcpy or memset
305 calls or, on some targets, inline expansion thereof that sometimes need
306 to use specific hard registers.
309 if (stmt_ends_bb_p (stmt
)
310 || gimple_has_side_effects (stmt
)
311 || gimple_has_volatile_ops (stmt
)
312 || (gimple_vuse (stmt
) && !gimple_vdef (stmt
))
313 || (cfun
->has_local_explicit_reg_vars
314 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
))) == BLKmode
))
317 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p
)))
320 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
322 tree use
= USE_FROM_PTR (use_p
);
323 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
))
329 /* If stmt is a store the one and only use needs to be the VOP
331 if (gimple_vdef (stmt
))
333 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, DEF_FROM_PTR (def_p
))
335 gimple use_stmt
= USE_STMT (use_p
);
337 /* A killing definition is not a use. */
338 if ((gimple_has_lhs (use_stmt
)
339 && operand_equal_p (gimple_assign_lhs (stmt
),
340 gimple_get_lhs (use_stmt
), 0))
341 || stmt_kills_ref_p (use_stmt
, gimple_assign_lhs (stmt
)))
343 /* If use_stmt is or might be a nop assignment then USE_STMT
344 acts as a use as well as definition. */
346 && ref_maybe_used_by_stmt_p (use_stmt
,
347 gimple_assign_lhs (stmt
)))
352 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
364 /* If all the immediate uses are not in the same place, find the nearest
365 common dominator of all the immediate uses. For PHI nodes, we have to
366 find the nearest common dominator of all of the predecessor blocks, since
367 that is where insertion would have to take place. */
368 else if (!all_immediate_uses_same_place (stmt
))
370 bool debug_stmts
= false;
371 basic_block commondom
= nearest_common_dominator_of_uses (stmt
,
374 if (commondom
== frombb
)
377 /* Our common dominator has to be dominated by frombb in order to be a
378 trivially safe place to put this statement, since it has multiple
380 if (!dominated_by_p (CDI_DOMINATORS
, commondom
, frombb
))
383 commondom
= select_best_block (frombb
, commondom
, stmt
);
385 if (commondom
== frombb
)
388 *togsi
= gsi_after_labels (commondom
);
394 FOR_EACH_IMM_USE_FAST (one_use
, imm_iter
, DEF_FROM_PTR (def_p
))
396 if (is_gimple_debug (USE_STMT (one_use
)))
400 use
= USE_STMT (one_use
);
402 if (gimple_code (use
) != GIMPLE_PHI
)
404 sinkbb
= gimple_bb (use
);
405 sinkbb
= select_best_block (frombb
, gimple_bb (use
), stmt
);
407 if (sinkbb
== frombb
)
410 *togsi
= gsi_for_stmt (use
);
416 sinkbb
= find_bb_for_arg (use
, DEF_FROM_PTR (def_p
));
418 /* This can happen if there are multiple uses in a PHI. */
422 sinkbb
= select_best_block (frombb
, sinkbb
, stmt
);
423 if (!sinkbb
|| sinkbb
== frombb
)
426 /* If the latch block is empty, don't make it non-empty by sinking
427 something into it. */
428 if (sinkbb
== frombb
->loop_father
->latch
429 && empty_block_p (sinkbb
))
432 *togsi
= gsi_after_labels (sinkbb
);
437 /* Perform code sinking on BB */
440 sink_code_in_bb (basic_block bb
)
443 gimple_stmt_iterator gsi
;
448 /* If this block doesn't dominate anything, there can't be any place to sink
449 the statements to. */
450 if (first_dom_son (CDI_DOMINATORS
, bb
) == NULL
)
453 /* We can't move things across abnormal edges, so don't try. */
454 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
455 if (e
->flags
& EDGE_ABNORMAL
)
458 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
460 gimple stmt
= gsi_stmt (gsi
);
461 gimple_stmt_iterator togsi
;
463 if (!statement_sink_location (stmt
, bb
, &togsi
))
465 if (!gsi_end_p (gsi
))
472 fprintf (dump_file
, "Sinking ");
473 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
);
474 fprintf (dump_file
, " from bb %d to bb %d\n",
475 bb
->index
, (gsi_bb (togsi
))->index
);
478 /* Update virtual operands of statements in the path we
480 if (gimple_vdef (stmt
))
482 imm_use_iterator iter
;
486 FOR_EACH_IMM_USE_STMT (vuse_stmt
, iter
, gimple_vdef (stmt
))
487 if (gimple_code (vuse_stmt
) != GIMPLE_PHI
)
488 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
489 SET_USE (use_p
, gimple_vuse (stmt
));
492 /* If this is the end of the basic block, we need to insert at the end
493 of the basic block. */
494 if (gsi_end_p (togsi
))
495 gsi_move_to_bb_end (&gsi
, gsi_bb (togsi
));
497 gsi_move_before (&gsi
, &togsi
);
501 /* If we've just removed the last statement of the BB, the
502 gsi_end_p() test below would fail, but gsi_prev() would have
503 succeeded, and we want it to succeed. So we keep track of
504 whether we're at the last statement and pick up the new last
508 gsi
= gsi_last_bb (bb
);
513 if (!gsi_end_p (gsi
))
518 for (son
= first_dom_son (CDI_POST_DOMINATORS
, bb
);
520 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
522 sink_code_in_bb (son
);
526 /* Perform code sinking.
527 This moves code down the flowgraph when we know it would be
528 profitable to do so, or it wouldn't increase the number of
529 executions of the statement.
542 a_6 = PHI (a_5, a_1);
545 we'll transform this into:
556 a_6 = PHI (a_5, a_1);
559 Note that this reduces the number of computations of a = b + c to 1
560 when we take the else edge, instead of 2.
563 execute_sink_code (void)
565 loop_optimizer_init (LOOPS_NORMAL
);
567 connect_infinite_loops_to_exit ();
568 memset (&sink_stats
, 0, sizeof (sink_stats
));
569 calculate_dominance_info (CDI_DOMINATORS
);
570 calculate_dominance_info (CDI_POST_DOMINATORS
);
571 sink_code_in_bb (EXIT_BLOCK_PTR
);
572 statistics_counter_event (cfun
, "Sunk statements", sink_stats
.sunk
);
573 free_dominance_info (CDI_POST_DOMINATORS
);
574 remove_fake_exit_edges ();
575 loop_optimizer_finalize ();
578 /* Gate and execute functions for PRE. */
583 execute_sink_code ();
590 return flag_tree_sink
!= 0;
595 const pass_data pass_data_sink_code
=
597 GIMPLE_PASS
, /* type */
599 OPTGROUP_NONE
, /* optinfo_flags */
601 true, /* has_execute */
602 TV_TREE_SINK
, /* tv_id */
603 ( PROP_no_crit_edges
| PROP_cfg
| PROP_ssa
), /* properties_required */
604 0, /* properties_provided */
605 0, /* properties_destroyed */
606 0, /* todo_flags_start */
607 ( TODO_update_ssa
| TODO_verify_ssa
608 | TODO_verify_flow
), /* todo_flags_finish */
611 class pass_sink_code
: public gimple_opt_pass
614 pass_sink_code (gcc::context
*ctxt
)
615 : gimple_opt_pass (pass_data_sink_code
, ctxt
)
618 /* opt_pass methods: */
619 bool gate () { return gate_sink (); }
620 unsigned int execute () { return do_sink (); }
622 }; // class pass_sink_code
627 make_pass_sink_code (gcc::context
*ctxt
)
629 return new pass_sink_code (ctxt
);