1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-into-ssa.h"
44 #include "tree-pass.h"
46 #include "hash-table.h"
47 #include "tree-affine.h"
48 #include "pointer-set.h"
49 #include "tree-ssa-propagate.h"
50 #include "trans-mem.h"
52 /* TODO: Support for predicated code motion. I.e.
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
74 /* The auxiliary data kept for each statement. */
78 struct loop
*max_loop
; /* The outermost loop in that the statement
81 struct loop
*tgt_loop
; /* The loop out of that we want to move the
84 struct loop
*always_executed_in
;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
89 unsigned cost
; /* Cost of the computation performed by the
92 vec
<gimple
> depends
; /* Vector of statements that must be also
93 hoisted out of the loop when this statement
94 is hoisted; i.e. those that define the
95 operands of the statement and are inside of
99 /* Maps statements to their lim_aux_data. */
101 static struct pointer_map_t
*lim_aux_data_map
;
103 /* Description of a memory reference location. */
105 typedef struct mem_ref_loc
107 tree
*ref
; /* The reference itself. */
108 gimple stmt
; /* The statement in that it occurs. */
112 /* Description of a memory reference. */
114 typedef struct mem_ref
116 unsigned id
; /* ID assigned to the memory reference
117 (its index in memory_accesses.refs_list) */
118 hashval_t hash
; /* Its hash value. */
120 /* The memory access itself and associated caching of alias-oracle
124 bitmap_head stored
; /* The set of loops in that this memory location
126 vec
<vec
<mem_ref_loc
> > accesses_in_loop
;
127 /* The locations of the accesses. Vector
128 indexed by the loop number. */
130 /* The following sets are computed on demand. We keep both set and
131 its complement, so that we know whether the information was
132 already computed or not. */
133 bitmap_head indep_loop
; /* The set of loops in that the memory
134 reference is independent, meaning:
135 If it is stored in the loop, this store
136 is independent on all other loads and
138 If it is only loaded, then it is independent
139 on all stores in the loop. */
140 bitmap_head dep_loop
; /* The complement of INDEP_LOOP. */
143 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
144 to record (in)dependence against stores in the loop and its subloops, the
145 second to record (in)dependence against all references in the loop
147 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
149 /* Mem_ref hashtable helpers. */
151 struct mem_ref_hasher
: typed_noop_remove
<mem_ref
>
153 typedef mem_ref value_type
;
154 typedef tree_node compare_type
;
155 static inline hashval_t
hash (const value_type
*);
156 static inline bool equal (const value_type
*, const compare_type
*);
159 /* A hash function for struct mem_ref object OBJ. */
162 mem_ref_hasher::hash (const value_type
*mem
)
167 /* An equality function for struct mem_ref object MEM1 with
168 memory reference OBJ2. */
171 mem_ref_hasher::equal (const value_type
*mem1
, const compare_type
*obj2
)
173 return operand_equal_p (mem1
->mem
.ref
, (const_tree
) obj2
, 0);
177 /* Description of memory accesses in loops. */
181 /* The hash table of memory references accessed in loops. */
182 hash_table
<mem_ref_hasher
> refs
;
184 /* The list of memory references. */
185 vec
<mem_ref_p
> refs_list
;
187 /* The set of memory references accessed in each loop. */
188 vec
<bitmap_head
> refs_in_loop
;
190 /* The set of memory references stored in each loop. */
191 vec
<bitmap_head
> refs_stored_in_loop
;
193 /* The set of memory references stored in each loop, including subloops . */
194 vec
<bitmap_head
> all_refs_stored_in_loop
;
196 /* Cache for expanding memory addresses. */
197 struct pointer_map_t
*ttae_cache
;
200 /* Obstack for the bitmaps in the above data structures. */
201 static bitmap_obstack lim_bitmap_obstack
;
203 static bool ref_indep_loop_p (struct loop
*, mem_ref_p
);
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
219 static struct lim_aux_data
*
220 init_lim_data (gimple stmt
)
222 void **p
= pointer_map_insert (lim_aux_data_map
, stmt
);
224 *p
= XCNEW (struct lim_aux_data
);
225 return (struct lim_aux_data
*) *p
;
228 static struct lim_aux_data
*
229 get_lim_data (gimple stmt
)
231 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
235 return (struct lim_aux_data
*) *p
;
238 /* Releases the memory occupied by DATA. */
241 free_lim_aux_data (struct lim_aux_data
*data
)
243 data
->depends
.release ();
248 clear_lim_data (gimple stmt
)
250 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
254 free_lim_aux_data ((struct lim_aux_data
*) *p
);
259 /* The possibilities of statement movement. */
262 MOVE_IMPOSSIBLE
, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION
, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE
/* Unlimited movement. */
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
277 movement_possibility (gimple stmt
)
280 enum move_pos ret
= MOVE_POSSIBLE
;
282 if (flag_unswitch_loops
283 && gimple_code (stmt
) == GIMPLE_COND
)
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE
;
290 if (gimple_code (stmt
) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt
) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt
))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt
)))
294 return MOVE_POSSIBLE
;
296 if (gimple_get_lhs (stmt
) == NULL_TREE
)
297 return MOVE_IMPOSSIBLE
;
299 if (gimple_vdef (stmt
))
300 return MOVE_IMPOSSIBLE
;
302 if (stmt_ends_bb_p (stmt
)
303 || gimple_has_volatile_ops (stmt
)
304 || gimple_has_side_effects (stmt
)
305 || stmt_could_throw_p (stmt
))
306 return MOVE_IMPOSSIBLE
;
308 if (is_gimple_call (stmt
))
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
313 char *s = something ();
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret
= MOVE_PRESERVE_EXECUTION
;
329 lhs
= gimple_call_lhs (stmt
);
331 else if (is_gimple_assign (stmt
))
332 lhs
= gimple_assign_lhs (stmt
);
334 return MOVE_IMPOSSIBLE
;
336 if (TREE_CODE (lhs
) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
338 return MOVE_IMPOSSIBLE
;
340 if (TREE_CODE (lhs
) != SSA_NAME
341 || gimple_could_trap_p (stmt
))
342 return MOVE_PRESERVE_EXECUTION
;
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
348 && gimple_in_transaction (stmt
)
349 && gimple_assign_single_p (stmt
))
351 tree rhs
= gimple_assign_rhs1 (stmt
);
352 if (DECL_P (rhs
) && is_global_var (rhs
))
356 fprintf (dump_file
, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file
, rhs
, TDF_SLIM
);
358 fprintf (dump_file
, " because it is in a transaction.\n");
360 return MOVE_IMPOSSIBLE
;
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
373 outermost_invariant_loop (tree def
, struct loop
*loop
)
377 struct loop
*max_loop
;
378 struct lim_aux_data
*lim_data
;
381 return superloop_at_depth (loop
, 1);
383 if (TREE_CODE (def
) != SSA_NAME
)
385 gcc_assert (is_gimple_min_invariant (def
));
386 return superloop_at_depth (loop
, 1);
389 def_stmt
= SSA_NAME_DEF_STMT (def
);
390 def_bb
= gimple_bb (def_stmt
);
392 return superloop_at_depth (loop
, 1);
394 max_loop
= find_common_loop (loop
, def_bb
->loop_father
);
396 lim_data
= get_lim_data (def_stmt
);
397 if (lim_data
!= NULL
&& lim_data
->max_loop
!= NULL
)
398 max_loop
= find_common_loop (max_loop
,
399 loop_outer (lim_data
->max_loop
));
400 if (max_loop
== loop
)
402 max_loop
= superloop_at_depth (loop
, loop_depth (max_loop
) + 1);
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
420 add_dependency (tree def
, struct lim_aux_data
*data
, struct loop
*loop
,
423 gimple def_stmt
= SSA_NAME_DEF_STMT (def
);
424 basic_block def_bb
= gimple_bb (def_stmt
);
425 struct loop
*max_loop
;
426 struct lim_aux_data
*def_data
;
431 max_loop
= outermost_invariant_loop (def
, loop
);
435 if (flow_loop_nested_p (data
->max_loop
, max_loop
))
436 data
->max_loop
= max_loop
;
438 def_data
= get_lim_data (def_stmt
);
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb
->loop_father
== loop
)
448 data
->cost
+= def_data
->cost
;
450 data
->depends
.safe_push (def_stmt
);
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
459 stmt_cost (gimple stmt
)
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt
) == GIMPLE_COND
463 || gimple_code (stmt
) == GIMPLE_PHI
)
464 return LIM_EXPENSIVE
;
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt
))
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl
= gimple_call_fndecl (stmt
);
475 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
476 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
)
479 return LIM_EXPENSIVE
;
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt
))
484 return LIM_EXPENSIVE
;
486 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
489 switch (gimple_assign_rhs_code (stmt
))
492 case WIDEN_MULT_EXPR
:
493 case WIDEN_MULT_PLUS_EXPR
:
494 case WIDEN_MULT_MINUS_EXPR
:
507 /* Division and multiplication are usually expensive. */
508 return LIM_EXPENSIVE
;
512 case WIDEN_LSHIFT_EXPR
:
515 /* Shifts and rotates are usually expensive. */
516 return LIM_EXPENSIVE
;
519 /* Make vector construction cost proportional to the number
521 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt
));
525 /* Whether or not something is wrapped inside a PAREN_EXPR
526 should not change move cost. Nor should an intermediate
527 unpropagated SSA name copy. */
535 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
536 REF is independent. If REF is not independent in LOOP, NULL is returned
540 outermost_indep_loop (struct loop
*outer
, struct loop
*loop
, mem_ref_p ref
)
544 if (bitmap_bit_p (&ref
->stored
, loop
->num
))
549 aloop
= superloop_at_depth (loop
, loop_depth (aloop
) + 1))
550 if (!bitmap_bit_p (&ref
->stored
, aloop
->num
)
551 && ref_indep_loop_p (aloop
, ref
))
554 if (ref_indep_loop_p (loop
, ref
))
560 /* If there is a simple load or store to a memory reference in STMT, returns
561 the location of the memory reference, and sets IS_STORE according to whether
562 it is a store or load. Otherwise, returns NULL. */
565 simple_mem_ref_in_stmt (gimple stmt
, bool *is_store
)
569 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
570 if (!gimple_assign_single_p (stmt
))
573 lhs
= gimple_assign_lhs_ptr (stmt
);
574 rhs
= gimple_assign_rhs1_ptr (stmt
);
576 if (TREE_CODE (*lhs
) == SSA_NAME
&& gimple_vuse (stmt
))
581 else if (gimple_vdef (stmt
)
582 && (TREE_CODE (*rhs
) == SSA_NAME
|| is_gimple_min_invariant (*rhs
)))
591 /* Returns the memory reference contained in STMT. */
594 mem_ref_in_stmt (gimple stmt
)
597 tree
*mem
= simple_mem_ref_in_stmt (stmt
, &store
);
605 hash
= iterative_hash_expr (*mem
, 0);
606 ref
= memory_accesses
.refs
.find_with_hash (*mem
, hash
);
608 gcc_assert (ref
!= NULL
);
612 /* From a controlling predicate in DOM determine the arguments from
613 the PHI node PHI that are chosen if the predicate evaluates to
614 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
615 they are non-NULL. Returns true if the arguments can be determined,
616 else return false. */
619 extract_true_false_args_from_phi (basic_block dom
, gimple phi
,
620 tree
*true_arg_p
, tree
*false_arg_p
)
622 basic_block bb
= gimple_bb (phi
);
623 edge true_edge
, false_edge
, tem
;
624 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
626 /* We have to verify that one edge into the PHI node is dominated
627 by the true edge of the predicate block and the other edge
628 dominated by the false edge. This ensures that the PHI argument
629 we are going to take is completely determined by the path we
630 take from the predicate block.
631 We can only use BB dominance checks below if the destination of
632 the true/false edges are dominated by their edge, thus only
633 have a single predecessor. */
634 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
635 tem
= EDGE_PRED (bb
, 0);
637 || (single_pred_p (true_edge
->dest
)
638 && (tem
->src
== true_edge
->dest
639 || dominated_by_p (CDI_DOMINATORS
,
640 tem
->src
, true_edge
->dest
))))
641 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
642 else if (tem
== false_edge
643 || (single_pred_p (false_edge
->dest
)
644 && (tem
->src
== false_edge
->dest
645 || dominated_by_p (CDI_DOMINATORS
,
646 tem
->src
, false_edge
->dest
))))
647 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
650 tem
= EDGE_PRED (bb
, 1);
652 || (single_pred_p (true_edge
->dest
)
653 && (tem
->src
== true_edge
->dest
654 || dominated_by_p (CDI_DOMINATORS
,
655 tem
->src
, true_edge
->dest
))))
656 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
657 else if (tem
== false_edge
658 || (single_pred_p (false_edge
->dest
)
659 && (tem
->src
== false_edge
->dest
660 || dominated_by_p (CDI_DOMINATORS
,
661 tem
->src
, false_edge
->dest
))))
662 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
676 /* Determine the outermost loop to that it is possible to hoist a statement
677 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
678 the outermost loop in that the value computed by STMT is invariant.
679 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
680 we preserve the fact whether STMT is executed. It also fills other related
681 information to LIM_DATA (STMT).
683 The function returns false if STMT cannot be hoisted outside of the loop it
684 is defined in, and true otherwise. */
687 determine_max_movement (gimple stmt
, bool must_preserve_exec
)
689 basic_block bb
= gimple_bb (stmt
);
690 struct loop
*loop
= bb
->loop_father
;
692 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
696 if (must_preserve_exec
)
697 level
= ALWAYS_EXECUTED_IN (bb
);
699 level
= superloop_at_depth (loop
, 1);
700 lim_data
->max_loop
= level
;
702 if (gimple_code (stmt
) == GIMPLE_PHI
)
705 unsigned min_cost
= UINT_MAX
;
706 unsigned total_cost
= 0;
707 struct lim_aux_data
*def_data
;
709 /* We will end up promoting dependencies to be unconditionally
710 evaluated. For this reason the PHI cost (and thus the
711 cost we remove from the loop by doing the invariant motion)
712 is that of the cheapest PHI argument dependency chain. */
713 FOR_EACH_PHI_ARG (use_p
, stmt
, iter
, SSA_OP_USE
)
715 val
= USE_FROM_PTR (use_p
);
716 if (TREE_CODE (val
) != SSA_NAME
)
718 if (!add_dependency (val
, lim_data
, loop
, false))
720 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
723 min_cost
= MIN (min_cost
, def_data
->cost
);
724 total_cost
+= def_data
->cost
;
728 lim_data
->cost
+= min_cost
;
730 if (gimple_phi_num_args (stmt
) > 1)
732 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
734 if (gsi_end_p (gsi_last_bb (dom
)))
736 cond
= gsi_stmt (gsi_last_bb (dom
));
737 if (gimple_code (cond
) != GIMPLE_COND
)
739 /* Verify that this is an extended form of a diamond and
740 the PHI arguments are completely controlled by the
742 if (!extract_true_false_args_from_phi (dom
, stmt
, NULL
, NULL
))
745 /* Fold in dependencies and cost of the condition. */
746 FOR_EACH_SSA_TREE_OPERAND (val
, cond
, iter
, SSA_OP_USE
)
748 if (!add_dependency (val
, lim_data
, loop
, false))
750 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
752 total_cost
+= def_data
->cost
;
755 /* We want to avoid unconditionally executing very expensive
756 operations. As costs for our dependencies cannot be
757 negative just claim we are not invariand for this case.
758 We also are not sure whether the control-flow inside the
760 if (total_cost
- min_cost
>= 2 * LIM_EXPENSIVE
762 && total_cost
/ min_cost
<= 2))
765 /* Assume that the control-flow in the loop will vanish.
766 ??? We should verify this and not artificially increase
767 the cost if that is not the case. */
768 lim_data
->cost
+= stmt_cost (stmt
);
774 FOR_EACH_SSA_TREE_OPERAND (val
, stmt
, iter
, SSA_OP_USE
)
775 if (!add_dependency (val
, lim_data
, loop
, true))
778 if (gimple_vuse (stmt
))
780 mem_ref_p ref
= mem_ref_in_stmt (stmt
);
785 = outermost_indep_loop (lim_data
->max_loop
, loop
, ref
);
786 if (!lim_data
->max_loop
)
791 if ((val
= gimple_vuse (stmt
)) != NULL_TREE
)
793 if (!add_dependency (val
, lim_data
, loop
, false))
799 lim_data
->cost
+= stmt_cost (stmt
);
804 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
805 and that one of the operands of this statement is computed by STMT.
806 Ensure that STMT (together with all the statements that define its
807 operands) is hoisted at least out of the loop LEVEL. */
810 set_level (gimple stmt
, struct loop
*orig_loop
, struct loop
*level
)
812 struct loop
*stmt_loop
= gimple_bb (stmt
)->loop_father
;
813 struct lim_aux_data
*lim_data
;
817 stmt_loop
= find_common_loop (orig_loop
, stmt_loop
);
818 lim_data
= get_lim_data (stmt
);
819 if (lim_data
!= NULL
&& lim_data
->tgt_loop
!= NULL
)
820 stmt_loop
= find_common_loop (stmt_loop
,
821 loop_outer (lim_data
->tgt_loop
));
822 if (flow_loop_nested_p (stmt_loop
, level
))
825 gcc_assert (level
== lim_data
->max_loop
826 || flow_loop_nested_p (lim_data
->max_loop
, level
));
828 lim_data
->tgt_loop
= level
;
829 FOR_EACH_VEC_ELT (lim_data
->depends
, i
, dep_stmt
)
830 set_level (dep_stmt
, orig_loop
, level
);
833 /* Determines an outermost loop from that we want to hoist the statement STMT.
834 For now we chose the outermost possible loop. TODO -- use profiling
835 information to set it more sanely. */
838 set_profitable_level (gimple stmt
)
840 set_level (stmt
, gimple_bb (stmt
)->loop_father
, get_lim_data (stmt
)->max_loop
);
843 /* Returns true if STMT is a call that has side effects. */
846 nonpure_call_p (gimple stmt
)
848 if (gimple_code (stmt
) != GIMPLE_CALL
)
851 return gimple_has_side_effects (stmt
);
854 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
857 rewrite_reciprocal (gimple_stmt_iterator
*bsi
)
859 gimple stmt
, stmt1
, stmt2
;
860 tree name
, lhs
, type
;
862 gimple_stmt_iterator gsi
;
864 stmt
= gsi_stmt (*bsi
);
865 lhs
= gimple_assign_lhs (stmt
);
866 type
= TREE_TYPE (lhs
);
868 real_one
= build_one_cst (type
);
870 name
= make_temp_ssa_name (type
, NULL
, "reciptmp");
871 stmt1
= gimple_build_assign_with_ops (RDIV_EXPR
, name
, real_one
,
872 gimple_assign_rhs2 (stmt
));
874 stmt2
= gimple_build_assign_with_ops (MULT_EXPR
, lhs
, name
,
875 gimple_assign_rhs1 (stmt
));
877 /* Replace division stmt with reciprocal and multiply stmts.
878 The multiply stmt is not invariant, so update iterator
879 and avoid rescanning. */
881 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
882 gsi_replace (&gsi
, stmt2
, true);
884 /* Continue processing with invariant reciprocal statement. */
888 /* Check if the pattern at *BSI is a bittest of the form
889 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
892 rewrite_bittest (gimple_stmt_iterator
*bsi
)
894 gimple stmt
, use_stmt
, stmt1
, stmt2
;
895 tree lhs
, name
, t
, a
, b
;
898 stmt
= gsi_stmt (*bsi
);
899 lhs
= gimple_assign_lhs (stmt
);
901 /* Verify that the single use of lhs is a comparison against zero. */
902 if (TREE_CODE (lhs
) != SSA_NAME
903 || !single_imm_use (lhs
, &use
, &use_stmt
)
904 || gimple_code (use_stmt
) != GIMPLE_COND
)
906 if (gimple_cond_lhs (use_stmt
) != lhs
907 || (gimple_cond_code (use_stmt
) != NE_EXPR
908 && gimple_cond_code (use_stmt
) != EQ_EXPR
)
909 || !integer_zerop (gimple_cond_rhs (use_stmt
)))
912 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
913 stmt1
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
914 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
917 /* There is a conversion in between possibly inserted by fold. */
918 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1
)))
920 t
= gimple_assign_rhs1 (stmt1
);
921 if (TREE_CODE (t
) != SSA_NAME
922 || !has_single_use (t
))
924 stmt1
= SSA_NAME_DEF_STMT (t
);
925 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
929 /* Verify that B is loop invariant but A is not. Verify that with
930 all the stmt walking we are still in the same loop. */
931 if (gimple_assign_rhs_code (stmt1
) != RSHIFT_EXPR
932 || loop_containing_stmt (stmt1
) != loop_containing_stmt (stmt
))
935 a
= gimple_assign_rhs1 (stmt1
);
936 b
= gimple_assign_rhs2 (stmt1
);
938 if (outermost_invariant_loop (b
, loop_containing_stmt (stmt1
)) != NULL
939 && outermost_invariant_loop (a
, loop_containing_stmt (stmt1
)) == NULL
)
941 gimple_stmt_iterator rsi
;
944 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (a
),
945 build_int_cst (TREE_TYPE (a
), 1), b
);
946 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
947 stmt1
= gimple_build_assign (name
, t
);
950 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (a
), a
, name
);
951 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
952 stmt2
= gimple_build_assign (name
, t
);
954 /* Replace the SSA_NAME we compare against zero. Adjust
955 the type of zero accordingly. */
957 gimple_cond_set_rhs (use_stmt
, build_int_cst_type (TREE_TYPE (name
), 0));
959 /* Don't use gsi_replace here, none of the new assignments sets
960 the variable originally set in stmt. Move bsi to stmt1, and
961 then remove the original stmt, so that we get a chance to
962 retain debug info for it. */
964 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
965 gsi_insert_before (&rsi
, stmt2
, GSI_SAME_STMT
);
966 gsi_remove (&rsi
, true);
974 /* For each statement determines the outermost loop in that it is invariant,
975 - statements on whose motion it depends and the cost of the computation.
976 - This information is stored to the LIM_DATA structure associated with
978 class invariantness_dom_walker
: public dom_walker
981 invariantness_dom_walker (cdi_direction direction
)
982 : dom_walker (direction
) {}
984 virtual void before_dom_children (basic_block
);
987 /* Determine the outermost loops in that statements in basic block BB are
988 invariant, and record them to the LIM_DATA associated with the statements.
989 Callback for dom_walker. */
992 invariantness_dom_walker::before_dom_children (basic_block bb
)
995 gimple_stmt_iterator bsi
;
997 bool maybe_never
= ALWAYS_EXECUTED_IN (bb
) == NULL
;
998 struct loop
*outermost
= ALWAYS_EXECUTED_IN (bb
);
999 struct lim_aux_data
*lim_data
;
1001 if (!loop_outer (bb
->loop_father
))
1004 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1005 fprintf (dump_file
, "Basic block %d (loop %d -- depth %d):\n\n",
1006 bb
->index
, bb
->loop_father
->num
, loop_depth (bb
->loop_father
));
1008 /* Look at PHI nodes, but only if there is at most two.
1009 ??? We could relax this further by post-processing the inserted
1010 code and transforming adjacent cond-exprs with the same predicate
1011 to control flow again. */
1012 bsi
= gsi_start_phis (bb
);
1013 if (!gsi_end_p (bsi
)
1014 && ((gsi_next (&bsi
), gsi_end_p (bsi
))
1015 || (gsi_next (&bsi
), gsi_end_p (bsi
))))
1016 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1018 stmt
= gsi_stmt (bsi
);
1020 pos
= movement_possibility (stmt
);
1021 if (pos
== MOVE_IMPOSSIBLE
)
1024 lim_data
= init_lim_data (stmt
);
1025 lim_data
->always_executed_in
= outermost
;
1027 if (!determine_max_movement (stmt
, false))
1029 lim_data
->max_loop
= NULL
;
1033 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1035 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1036 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1037 loop_depth (lim_data
->max_loop
),
1041 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1042 set_profitable_level (stmt
);
1045 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1047 stmt
= gsi_stmt (bsi
);
1049 pos
= movement_possibility (stmt
);
1050 if (pos
== MOVE_IMPOSSIBLE
)
1052 if (nonpure_call_p (stmt
))
1057 /* Make sure to note always_executed_in for stores to make
1058 store-motion work. */
1059 else if (stmt_makes_single_store (stmt
))
1061 struct lim_aux_data
*lim_data
= init_lim_data (stmt
);
1062 lim_data
->always_executed_in
= outermost
;
1067 if (is_gimple_assign (stmt
)
1068 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1069 == GIMPLE_BINARY_RHS
))
1071 tree op0
= gimple_assign_rhs1 (stmt
);
1072 tree op1
= gimple_assign_rhs2 (stmt
);
1073 struct loop
*ol1
= outermost_invariant_loop (op1
,
1074 loop_containing_stmt (stmt
));
1076 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1077 to be hoisted out of loop, saving expensive divide. */
1078 if (pos
== MOVE_POSSIBLE
1079 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
1080 && flag_unsafe_math_optimizations
1081 && !flag_trapping_math
1083 && outermost_invariant_loop (op0
, ol1
) == NULL
)
1084 stmt
= rewrite_reciprocal (&bsi
);
1086 /* If the shift count is invariant, convert (A >> B) & 1 to
1087 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1088 saving an expensive shift. */
1089 if (pos
== MOVE_POSSIBLE
1090 && gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
1091 && integer_onep (op1
)
1092 && TREE_CODE (op0
) == SSA_NAME
1093 && has_single_use (op0
))
1094 stmt
= rewrite_bittest (&bsi
);
1097 lim_data
= init_lim_data (stmt
);
1098 lim_data
->always_executed_in
= outermost
;
1100 if (maybe_never
&& pos
== MOVE_PRESERVE_EXECUTION
)
1103 if (!determine_max_movement (stmt
, pos
== MOVE_PRESERVE_EXECUTION
))
1105 lim_data
->max_loop
= NULL
;
1109 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1111 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1112 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1113 loop_depth (lim_data
->max_loop
),
1117 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1118 set_profitable_level (stmt
);
1122 class move_computations_dom_walker
: public dom_walker
1125 move_computations_dom_walker (cdi_direction direction
)
1126 : dom_walker (direction
), todo_ (0) {}
1128 virtual void before_dom_children (basic_block
);
1133 /* Return true if CODE is an operation that when operating on signed
1134 integer types involves undefined behavior on overflow and the
1135 operation can be expressed with unsigned arithmetic. */
1138 arith_code_with_undefined_signed_overflow (tree_code code
)
1146 case POINTER_PLUS_EXPR
:
1153 /* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
1154 operation that can be transformed to unsigned arithmetic by converting
1155 its operand, carrying out the operation in the corresponding unsigned
1156 type and converting the result back to the original type.
1158 Returns a sequence of statements that replace STMT and also contain
1159 a modified form of STMT itself. */
1162 rewrite_to_defined_overflow (gimple stmt
)
1164 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1166 fprintf (dump_file
, "rewriting stmt with undefined signed "
1168 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1171 tree lhs
= gimple_assign_lhs (stmt
);
1172 tree type
= unsigned_type_for (TREE_TYPE (lhs
));
1173 gimple_seq stmts
= NULL
;
1174 for (unsigned i
= 1; i
< gimple_num_ops (stmt
); ++i
)
1176 gimple_seq stmts2
= NULL
;
1177 gimple_set_op (stmt
, i
,
1178 force_gimple_operand (fold_convert (type
,
1179 gimple_op (stmt
, i
)),
1180 &stmts2
, true, NULL_TREE
));
1181 gimple_seq_add_seq (&stmts
, stmts2
);
1183 gimple_assign_set_lhs (stmt
, make_ssa_name (type
, stmt
));
1184 if (gimple_assign_rhs_code (stmt
) == POINTER_PLUS_EXPR
)
1185 gimple_assign_set_rhs_code (stmt
, PLUS_EXPR
);
1186 gimple_seq_add_stmt (&stmts
, stmt
);
1187 gimple cvt
= gimple_build_assign_with_ops
1188 (NOP_EXPR
, lhs
, gimple_assign_lhs (stmt
), NULL_TREE
);
1189 gimple_seq_add_stmt (&stmts
, cvt
);
1194 /* Hoist the statements in basic block BB out of the loops prescribed by
1195 data stored in LIM_DATA structures associated with each statement. Callback
1196 for walk_dominator_tree. */
1199 move_computations_dom_walker::before_dom_children (basic_block bb
)
1202 gimple_stmt_iterator bsi
;
1205 struct lim_aux_data
*lim_data
;
1207 if (!loop_outer (bb
->loop_father
))
1210 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); )
1213 stmt
= gsi_stmt (bsi
);
1215 lim_data
= get_lim_data (stmt
);
1216 if (lim_data
== NULL
)
1222 cost
= lim_data
->cost
;
1223 level
= lim_data
->tgt_loop
;
1224 clear_lim_data (stmt
);
1232 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1234 fprintf (dump_file
, "Moving PHI node\n");
1235 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1236 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1240 if (gimple_phi_num_args (stmt
) == 1)
1242 tree arg
= PHI_ARG_DEF (stmt
, 0);
1243 new_stmt
= gimple_build_assign_with_ops (TREE_CODE (arg
),
1244 gimple_phi_result (stmt
),
1249 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1250 gimple cond
= gsi_stmt (gsi_last_bb (dom
));
1251 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, t
;
1252 /* Get the PHI arguments corresponding to the true and false
1254 extract_true_false_args_from_phi (dom
, stmt
, &arg0
, &arg1
);
1255 gcc_assert (arg0
&& arg1
);
1256 t
= build2 (gimple_cond_code (cond
), boolean_type_node
,
1257 gimple_cond_lhs (cond
), gimple_cond_rhs (cond
));
1258 new_stmt
= gimple_build_assign_with_ops (COND_EXPR
,
1259 gimple_phi_result (stmt
),
1261 todo_
|= TODO_cleanup_cfg
;
1263 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1264 remove_phi_node (&bsi
, false);
1267 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); )
1271 stmt
= gsi_stmt (bsi
);
1273 lim_data
= get_lim_data (stmt
);
1274 if (lim_data
== NULL
)
1280 cost
= lim_data
->cost
;
1281 level
= lim_data
->tgt_loop
;
1282 clear_lim_data (stmt
);
1290 /* We do not really want to move conditionals out of the loop; we just
1291 placed it here to force its operands to be moved if necessary. */
1292 if (gimple_code (stmt
) == GIMPLE_COND
)
1295 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1297 fprintf (dump_file
, "Moving statement\n");
1298 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1299 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1303 e
= loop_preheader_edge (level
);
1304 gcc_assert (!gimple_vdef (stmt
));
1305 if (gimple_vuse (stmt
))
1307 /* The new VUSE is the one from the virtual PHI in the loop
1308 header or the one already present. */
1309 gimple_stmt_iterator gsi2
;
1310 for (gsi2
= gsi_start_phis (e
->dest
);
1311 !gsi_end_p (gsi2
); gsi_next (&gsi2
))
1313 gimple phi
= gsi_stmt (gsi2
);
1314 if (virtual_operand_p (gimple_phi_result (phi
)))
1316 gimple_set_vuse (stmt
, PHI_ARG_DEF_FROM_EDGE (phi
, e
));
1321 gsi_remove (&bsi
, false);
1322 /* In case this is a stmt that is not unconditionally executed
1323 when the target loop header is executed and the stmt may
1324 invoke undefined integer or pointer overflow rewrite it to
1325 unsigned arithmetic. */
1326 if (is_gimple_assign (stmt
)
1327 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt
)))
1328 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt
)))
1329 && arith_code_with_undefined_signed_overflow
1330 (gimple_assign_rhs_code (stmt
))
1331 && (!ALWAYS_EXECUTED_IN (bb
)
1332 || !(ALWAYS_EXECUTED_IN (bb
) == level
1333 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb
), level
))))
1334 gsi_insert_seq_on_edge (e
, rewrite_to_defined_overflow (stmt
));
1336 gsi_insert_on_edge (e
, stmt
);
1340 /* Hoist the statements out of the loops prescribed by data stored in
1341 LIM_DATA structures associated with each statement.*/
1344 move_computations (void)
1346 move_computations_dom_walker
walker (CDI_DOMINATORS
);
1347 walker
.walk (cfun
->cfg
->x_entry_block_ptr
);
1349 gsi_commit_edge_inserts ();
1350 if (need_ssa_update_p (cfun
))
1351 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1353 return walker
.todo_
;
1356 /* Checks whether the statement defining variable *INDEX can be hoisted
1357 out of the loop passed in DATA. Callback for for_each_index. */
1360 may_move_till (tree ref
, tree
*index
, void *data
)
1362 struct loop
*loop
= (struct loop
*) data
, *max_loop
;
1364 /* If REF is an array reference, check also that the step and the lower
1365 bound is invariant in LOOP. */
1366 if (TREE_CODE (ref
) == ARRAY_REF
)
1368 tree step
= TREE_OPERAND (ref
, 3);
1369 tree lbound
= TREE_OPERAND (ref
, 2);
1371 max_loop
= outermost_invariant_loop (step
, loop
);
1375 max_loop
= outermost_invariant_loop (lbound
, loop
);
1380 max_loop
= outermost_invariant_loop (*index
, loop
);
1387 /* If OP is SSA NAME, force the statement that defines it to be
1388 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1391 force_move_till_op (tree op
, struct loop
*orig_loop
, struct loop
*loop
)
1396 || is_gimple_min_invariant (op
))
1399 gcc_assert (TREE_CODE (op
) == SSA_NAME
);
1401 stmt
= SSA_NAME_DEF_STMT (op
);
1402 if (gimple_nop_p (stmt
))
1405 set_level (stmt
, orig_loop
, loop
);
1408 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1409 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1415 struct loop
*orig_loop
;
1419 force_move_till (tree ref
, tree
*index
, void *data
)
1421 struct fmt_data
*fmt_data
= (struct fmt_data
*) data
;
1423 if (TREE_CODE (ref
) == ARRAY_REF
)
1425 tree step
= TREE_OPERAND (ref
, 3);
1426 tree lbound
= TREE_OPERAND (ref
, 2);
1428 force_move_till_op (step
, fmt_data
->orig_loop
, fmt_data
->loop
);
1429 force_move_till_op (lbound
, fmt_data
->orig_loop
, fmt_data
->loop
);
1432 force_move_till_op (*index
, fmt_data
->orig_loop
, fmt_data
->loop
);
1437 /* A function to free the mem_ref object OBJ. */
1440 memref_free (struct mem_ref
*mem
)
1443 vec
<mem_ref_loc
> *accs
;
1445 FOR_EACH_VEC_ELT (mem
->accesses_in_loop
, i
, accs
)
1447 mem
->accesses_in_loop
.release ();
1452 /* Allocates and returns a memory reference description for MEM whose hash
1453 value is HASH and id is ID. */
1456 mem_ref_alloc (tree mem
, unsigned hash
, unsigned id
)
1458 mem_ref_p ref
= XNEW (struct mem_ref
);
1459 ao_ref_init (&ref
->mem
, mem
);
1462 bitmap_initialize (&ref
->stored
, &lim_bitmap_obstack
);
1463 bitmap_initialize (&ref
->indep_loop
, &lim_bitmap_obstack
);
1464 bitmap_initialize (&ref
->dep_loop
, &lim_bitmap_obstack
);
1465 ref
->accesses_in_loop
.create (0);
1470 /* Records memory reference location *LOC in LOOP to the memory reference
1471 description REF. The reference occurs in statement STMT. */
1474 record_mem_ref_loc (mem_ref_p ref
, struct loop
*loop
, gimple stmt
, tree
*loc
)
1478 if (ref
->accesses_in_loop
.length ()
1479 <= (unsigned) loop
->num
)
1480 ref
->accesses_in_loop
.safe_grow_cleared (loop
->num
+ 1);
1484 ref
->accesses_in_loop
[loop
->num
].safe_push (aref
);
1487 /* Marks reference REF as stored in LOOP. */
1490 mark_ref_stored (mem_ref_p ref
, struct loop
*loop
)
1492 while (loop
!= current_loops
->tree_root
1493 && bitmap_set_bit (&ref
->stored
, loop
->num
))
1494 loop
= loop_outer (loop
);
1497 /* Gathers memory references in statement STMT in LOOP, storing the
1498 information about them in the memory_accesses structure. Marks
1499 the vops accessed through unrecognized statements there as
1503 gather_mem_refs_stmt (struct loop
*loop
, gimple stmt
)
1512 if (!gimple_vuse (stmt
))
1515 mem
= simple_mem_ref_in_stmt (stmt
, &is_stored
);
1518 /* We use the shared mem_ref for all unanalyzable refs. */
1519 id
= UNANALYZABLE_MEM_ID
;
1520 ref
= memory_accesses
.refs_list
[id
];
1521 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1523 fprintf (dump_file
, "Unanalyzed memory reference %u: ", id
);
1524 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1526 is_stored
= gimple_vdef (stmt
);
1530 hash
= iterative_hash_expr (*mem
, 0);
1531 slot
= memory_accesses
.refs
.find_slot_with_hash (*mem
, hash
, INSERT
);
1534 ref
= (mem_ref_p
) *slot
;
1539 id
= memory_accesses
.refs_list
.length ();
1540 ref
= mem_ref_alloc (*mem
, hash
, id
);
1541 memory_accesses
.refs_list
.safe_push (ref
);
1544 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1546 fprintf (dump_file
, "Memory reference %u: ", id
);
1547 print_generic_expr (dump_file
, ref
->mem
.ref
, TDF_SLIM
);
1548 fprintf (dump_file
, "\n");
1552 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1554 bitmap_set_bit (&memory_accesses
.refs_in_loop
[loop
->num
], ref
->id
);
1557 bitmap_set_bit (&memory_accesses
.refs_stored_in_loop
[loop
->num
], ref
->id
);
1558 mark_ref_stored (ref
, loop
);
1563 static unsigned *bb_loop_postorder
;
1565 /* qsort sort function to sort blocks after their loop fathers postorder. */
1568 sort_bbs_in_loop_postorder_cmp (const void *bb1_
, const void *bb2_
)
1570 basic_block bb1
= *(basic_block
*)const_cast<void *>(bb1_
);
1571 basic_block bb2
= *(basic_block
*)const_cast<void *>(bb2_
);
1572 struct loop
*loop1
= bb1
->loop_father
;
1573 struct loop
*loop2
= bb2
->loop_father
;
1574 if (loop1
->num
== loop2
->num
)
1576 return bb_loop_postorder
[loop1
->num
] < bb_loop_postorder
[loop2
->num
] ? -1 : 1;
1579 /* Gathers memory references in loops. */
1582 analyze_memory_references (void)
1584 gimple_stmt_iterator bsi
;
1585 basic_block bb
, *bbs
;
1586 struct loop
*loop
, *outer
;
1589 /* Initialize bb_loop_postorder with a mapping from loop->num to
1590 its postorder index. */
1592 bb_loop_postorder
= XNEWVEC (unsigned, number_of_loops (cfun
));
1593 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1594 bb_loop_postorder
[loop
->num
] = i
++;
1595 /* Collect all basic-blocks in loops and sort them after their
1598 bbs
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
1600 if (bb
->loop_father
!= current_loops
->tree_root
)
1603 qsort (bbs
, n
, sizeof (basic_block
), sort_bbs_in_loop_postorder_cmp
);
1604 free (bb_loop_postorder
);
1606 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1607 That results in better locality for all the bitmaps. */
1608 for (i
= 0; i
< n
; ++i
)
1610 basic_block bb
= bbs
[i
];
1611 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1612 gather_mem_refs_stmt (bb
->loop_father
, gsi_stmt (bsi
));
1617 /* Propagate the information about accessed memory references up
1618 the loop hierarchy. */
1619 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1621 /* Finalize the overall touched references (including subloops). */
1622 bitmap_ior_into (&memory_accesses
.all_refs_stored_in_loop
[loop
->num
],
1623 &memory_accesses
.refs_stored_in_loop
[loop
->num
]);
1625 /* Propagate the information about accessed memory references up
1626 the loop hierarchy. */
1627 outer
= loop_outer (loop
);
1628 if (outer
== current_loops
->tree_root
)
1631 bitmap_ior_into (&memory_accesses
.all_refs_stored_in_loop
[outer
->num
],
1632 &memory_accesses
.all_refs_stored_in_loop
[loop
->num
]);
1636 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1637 tree_to_aff_combination_expand. */
1640 mem_refs_may_alias_p (mem_ref_p mem1
, mem_ref_p mem2
,
1641 struct pointer_map_t
**ttae_cache
)
1643 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1644 object and their offset differ in such a way that the locations cannot
1645 overlap, then they cannot alias. */
1646 double_int size1
, size2
;
1647 aff_tree off1
, off2
;
1649 /* Perform basic offset and type-based disambiguation. */
1650 if (!refs_may_alias_p_1 (&mem1
->mem
, &mem2
->mem
, true))
1653 /* The expansion of addresses may be a bit expensive, thus we only do
1654 the check at -O2 and higher optimization levels. */
1658 get_inner_reference_aff (mem1
->mem
.ref
, &off1
, &size1
);
1659 get_inner_reference_aff (mem2
->mem
.ref
, &off2
, &size2
);
1660 aff_combination_expand (&off1
, ttae_cache
);
1661 aff_combination_expand (&off2
, ttae_cache
);
1662 aff_combination_scale (&off1
, double_int_minus_one
);
1663 aff_combination_add (&off2
, &off1
);
1665 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
1671 /* Iterates over all locations of REF in LOOP and its subloops calling
1672 fn.operator() with the location as argument. When that operator
1673 returns true the iteration is stopped and true is returned.
1674 Otherwise false is returned. */
1676 template <typename FN
>
1678 for_all_locs_in_loop (struct loop
*loop
, mem_ref_p ref
, FN fn
)
1682 struct loop
*subloop
;
1684 if (ref
->accesses_in_loop
.length () > (unsigned) loop
->num
)
1685 FOR_EACH_VEC_ELT (ref
->accesses_in_loop
[loop
->num
], i
, loc
)
1689 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
1690 if (for_all_locs_in_loop (subloop
, ref
, fn
))
1696 /* Rewrites location LOC by TMP_VAR. */
1698 struct rewrite_mem_ref_loc
1700 rewrite_mem_ref_loc (tree tmp_var_
) : tmp_var (tmp_var_
) {}
1701 bool operator () (mem_ref_loc_p loc
);
1706 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc
)
1708 *loc
->ref
= tmp_var
;
1709 update_stmt (loc
->stmt
);
1713 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1716 rewrite_mem_refs (struct loop
*loop
, mem_ref_p ref
, tree tmp_var
)
1718 for_all_locs_in_loop (loop
, ref
, rewrite_mem_ref_loc (tmp_var
));
1721 /* Stores the first reference location in LOCP. */
1723 struct first_mem_ref_loc_1
1725 first_mem_ref_loc_1 (mem_ref_loc_p
*locp_
) : locp (locp_
) {}
1726 bool operator () (mem_ref_loc_p loc
);
1727 mem_ref_loc_p
*locp
;
1731 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc
)
1737 /* Returns the first reference location to REF in LOOP. */
1739 static mem_ref_loc_p
1740 first_mem_ref_loc (struct loop
*loop
, mem_ref_p ref
)
1742 mem_ref_loc_p locp
= NULL
;
1743 for_all_locs_in_loop (loop
, ref
, first_mem_ref_loc_1 (&locp
));
1747 struct prev_flag_edges
{
1748 /* Edge to insert new flag comparison code. */
1749 edge append_cond_position
;
1751 /* Edge for fall through from previous flag comparison. */
1752 edge last_cond_fallthru
;
1755 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1758 The store is only done if MEM has changed. We do this so no
1759 changes to MEM occur on code paths that did not originally store
1762 The common case for execute_sm will transform:
1782 This function will generate:
1801 execute_sm_if_changed (edge ex
, tree mem
, tree tmp_var
, tree flag
)
1803 basic_block new_bb
, then_bb
, old_dest
;
1804 bool loop_has_only_one_exit
;
1805 edge then_old_edge
, orig_ex
= ex
;
1806 gimple_stmt_iterator gsi
;
1808 struct prev_flag_edges
*prev_edges
= (struct prev_flag_edges
*) ex
->aux
;
1810 /* ?? Insert store after previous store if applicable. See note
1813 ex
= prev_edges
->append_cond_position
;
1815 loop_has_only_one_exit
= single_pred_p (ex
->dest
);
1817 if (loop_has_only_one_exit
)
1818 ex
= split_block_after_labels (ex
->dest
);
1820 old_dest
= ex
->dest
;
1821 new_bb
= split_edge (ex
);
1822 then_bb
= create_empty_bb (new_bb
);
1823 if (current_loops
&& new_bb
->loop_father
)
1824 add_bb_to_loop (then_bb
, new_bb
->loop_father
);
1826 gsi
= gsi_start_bb (new_bb
);
1827 stmt
= gimple_build_cond (NE_EXPR
, flag
, boolean_false_node
,
1828 NULL_TREE
, NULL_TREE
);
1829 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
1831 gsi
= gsi_start_bb (then_bb
);
1832 /* Insert actual store. */
1833 stmt
= gimple_build_assign (unshare_expr (mem
), tmp_var
);
1834 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
1836 make_edge (new_bb
, then_bb
, EDGE_TRUE_VALUE
);
1837 make_edge (new_bb
, old_dest
, EDGE_FALSE_VALUE
);
1838 then_old_edge
= make_edge (then_bb
, old_dest
, EDGE_FALLTHRU
);
1840 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, new_bb
);
1844 basic_block prevbb
= prev_edges
->last_cond_fallthru
->src
;
1845 redirect_edge_succ (prev_edges
->last_cond_fallthru
, new_bb
);
1846 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, prevbb
);
1847 set_immediate_dominator (CDI_DOMINATORS
, old_dest
,
1848 recompute_dominator (CDI_DOMINATORS
, old_dest
));
1851 /* ?? Because stores may alias, they must happen in the exact
1852 sequence they originally happened. Save the position right after
1853 the (_lsm) store we just created so we can continue appending after
1854 it and maintain the original order. */
1856 struct prev_flag_edges
*p
;
1859 orig_ex
->aux
= NULL
;
1860 alloc_aux_for_edge (orig_ex
, sizeof (struct prev_flag_edges
));
1861 p
= (struct prev_flag_edges
*) orig_ex
->aux
;
1862 p
->append_cond_position
= then_old_edge
;
1863 p
->last_cond_fallthru
= find_edge (new_bb
, old_dest
);
1864 orig_ex
->aux
= (void *) p
;
1867 if (!loop_has_only_one_exit
)
1868 for (gsi
= gsi_start_phis (old_dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1870 gimple phi
= gsi_stmt (gsi
);
1873 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1874 if (gimple_phi_arg_edge (phi
, i
)->src
== new_bb
)
1876 tree arg
= gimple_phi_arg_def (phi
, i
);
1877 add_phi_arg (phi
, arg
, then_old_edge
, UNKNOWN_LOCATION
);
1881 /* Remove the original fall through edge. This was the
1882 single_succ_edge (new_bb). */
1883 EDGE_SUCC (new_bb
, 0)->flags
&= ~EDGE_FALLTHRU
;
1886 /* When REF is set on the location, set flag indicating the store. */
1888 struct sm_set_flag_if_changed
1890 sm_set_flag_if_changed (tree flag_
) : flag (flag_
) {}
1891 bool operator () (mem_ref_loc_p loc
);
1896 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc
)
1898 /* Only set the flag for writes. */
1899 if (is_gimple_assign (loc
->stmt
)
1900 && gimple_assign_lhs_ptr (loc
->stmt
) == loc
->ref
)
1902 gimple_stmt_iterator gsi
= gsi_for_stmt (loc
->stmt
);
1903 gimple stmt
= gimple_build_assign (flag
, boolean_true_node
);
1904 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
1909 /* Helper function for execute_sm. On every location where REF is
1910 set, set an appropriate flag indicating the store. */
1913 execute_sm_if_changed_flag_set (struct loop
*loop
, mem_ref_p ref
)
1916 char *str
= get_lsm_tmp_name (ref
->mem
.ref
, ~0, "_flag");
1917 flag
= create_tmp_reg (boolean_type_node
, str
);
1918 for_all_locs_in_loop (loop
, ref
, sm_set_flag_if_changed (flag
));
1922 /* Executes store motion of memory reference REF from LOOP.
1923 Exits from the LOOP are stored in EXITS. The initialization of the
1924 temporary variable is put to the preheader of the loop, and assignments
1925 to the reference from the temporary variable are emitted to exits. */
1928 execute_sm (struct loop
*loop
, vec
<edge
> exits
, mem_ref_p ref
)
1930 tree tmp_var
, store_flag
;
1933 struct fmt_data fmt_data
;
1935 struct lim_aux_data
*lim_data
;
1936 bool multi_threaded_model_p
= false;
1937 gimple_stmt_iterator gsi
;
1939 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1941 fprintf (dump_file
, "Executing store motion of ");
1942 print_generic_expr (dump_file
, ref
->mem
.ref
, 0);
1943 fprintf (dump_file
, " from loop %d\n", loop
->num
);
1946 tmp_var
= create_tmp_reg (TREE_TYPE (ref
->mem
.ref
),
1947 get_lsm_tmp_name (ref
->mem
.ref
, ~0));
1949 fmt_data
.loop
= loop
;
1950 fmt_data
.orig_loop
= loop
;
1951 for_each_index (&ref
->mem
.ref
, force_move_till
, &fmt_data
);
1953 if (bb_in_transaction (loop_preheader_edge (loop
)->src
)
1954 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES
))
1955 multi_threaded_model_p
= true;
1957 if (multi_threaded_model_p
)
1958 store_flag
= execute_sm_if_changed_flag_set (loop
, ref
);
1960 rewrite_mem_refs (loop
, ref
, tmp_var
);
1962 /* Emit the load code on a random exit edge or into the latch if
1963 the loop does not exit, so that we are sure it will be processed
1964 by move_computations after all dependencies. */
1965 gsi
= gsi_for_stmt (first_mem_ref_loc (loop
, ref
)->stmt
);
1967 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1968 load altogether, since the store is predicated by a flag. We
1969 could, do the load only if it was originally in the loop. */
1970 load
= gimple_build_assign (tmp_var
, unshare_expr (ref
->mem
.ref
));
1971 lim_data
= init_lim_data (load
);
1972 lim_data
->max_loop
= loop
;
1973 lim_data
->tgt_loop
= loop
;
1974 gsi_insert_before (&gsi
, load
, GSI_SAME_STMT
);
1976 if (multi_threaded_model_p
)
1978 load
= gimple_build_assign (store_flag
, boolean_false_node
);
1979 lim_data
= init_lim_data (load
);
1980 lim_data
->max_loop
= loop
;
1981 lim_data
->tgt_loop
= loop
;
1982 gsi_insert_before (&gsi
, load
, GSI_SAME_STMT
);
1985 /* Sink the store to every exit from the loop. */
1986 FOR_EACH_VEC_ELT (exits
, i
, ex
)
1987 if (!multi_threaded_model_p
)
1990 store
= gimple_build_assign (unshare_expr (ref
->mem
.ref
), tmp_var
);
1991 gsi_insert_on_edge (ex
, store
);
1994 execute_sm_if_changed (ex
, ref
->mem
.ref
, tmp_var
, store_flag
);
1997 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1998 edges of the LOOP. */
2001 hoist_memory_references (struct loop
*loop
, bitmap mem_refs
,
2008 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2010 ref
= memory_accesses
.refs_list
[i
];
2011 execute_sm (loop
, exits
, ref
);
2015 struct ref_always_accessed
2017 ref_always_accessed (struct loop
*loop_
, tree base_
, bool stored_p_
)
2018 : loop (loop_
), base (base_
), stored_p (stored_p_
) {}
2019 bool operator () (mem_ref_loc_p loc
);
2026 ref_always_accessed::operator () (mem_ref_loc_p loc
)
2028 struct loop
*must_exec
;
2030 if (!get_lim_data (loc
->stmt
))
2033 /* If we require an always executed store make sure the statement
2034 stores to the reference. */
2038 if (!gimple_get_lhs (loc
->stmt
))
2040 lhs
= get_base_address (gimple_get_lhs (loc
->stmt
));
2043 if (INDIRECT_REF_P (lhs
)
2044 || TREE_CODE (lhs
) == MEM_REF
)
2045 lhs
= TREE_OPERAND (lhs
, 0);
2050 must_exec
= get_lim_data (loc
->stmt
)->always_executed_in
;
2054 if (must_exec
== loop
2055 || flow_loop_nested_p (must_exec
, loop
))
2061 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2062 make sure REF is always stored to in LOOP. */
2065 ref_always_accessed_p (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2067 tree base
= ao_ref_base (&ref
->mem
);
2068 if (TREE_CODE (base
) == MEM_REF
)
2069 base
= TREE_OPERAND (base
, 0);
2071 return for_all_locs_in_loop (loop
, ref
,
2072 ref_always_accessed (loop
, base
, stored_p
));
2075 /* Returns true if REF1 and REF2 are independent. */
2078 refs_independent_p (mem_ref_p ref1
, mem_ref_p ref2
)
2083 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2084 fprintf (dump_file
, "Querying dependency of refs %u and %u: ",
2085 ref1
->id
, ref2
->id
);
2087 if (mem_refs_may_alias_p (ref1
, ref2
, &memory_accesses
.ttae_cache
))
2089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2090 fprintf (dump_file
, "dependent.\n");
2095 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2096 fprintf (dump_file
, "independent.\n");
2101 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2102 and its super-loops. */
2105 record_dep_loop (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2107 /* We can propagate dependent-in-loop bits up the loop
2108 hierarchy to all outer loops. */
2109 while (loop
!= current_loops
->tree_root
2110 && bitmap_set_bit (&ref
->dep_loop
, LOOP_DEP_BIT (loop
->num
, stored_p
)))
2111 loop
= loop_outer (loop
);
2114 /* Returns true if REF is independent on all other memory references in
2118 ref_indep_loop_p_1 (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2120 bitmap refs_to_check
;
2126 refs_to_check
= &memory_accesses
.refs_in_loop
[loop
->num
];
2128 refs_to_check
= &memory_accesses
.refs_stored_in_loop
[loop
->num
];
2130 if (bitmap_bit_p (refs_to_check
, UNANALYZABLE_MEM_ID
))
2133 EXECUTE_IF_SET_IN_BITMAP (refs_to_check
, 0, i
, bi
)
2135 aref
= memory_accesses
.refs_list
[i
];
2136 if (!refs_independent_p (ref
, aref
))
2143 /* Returns true if REF is independent on all other memory references in
2144 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2147 ref_indep_loop_p_2 (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2149 stored_p
|= bitmap_bit_p (&ref
->stored
, loop
->num
);
2151 if (bitmap_bit_p (&ref
->indep_loop
, LOOP_DEP_BIT (loop
->num
, stored_p
)))
2153 if (bitmap_bit_p (&ref
->dep_loop
, LOOP_DEP_BIT (loop
->num
, stored_p
)))
2156 struct loop
*inner
= loop
->inner
;
2159 if (!ref_indep_loop_p_2 (inner
, ref
, stored_p
))
2161 inner
= inner
->next
;
2164 bool indep_p
= ref_indep_loop_p_1 (loop
, ref
, stored_p
);
2166 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2167 fprintf (dump_file
, "Querying dependencies of ref %u in loop %d: %s\n",
2168 ref
->id
, loop
->num
, indep_p
? "independent" : "dependent");
2170 /* Record the computed result in the cache. */
2173 if (bitmap_set_bit (&ref
->indep_loop
, LOOP_DEP_BIT (loop
->num
, stored_p
))
2176 /* If it's independend against all refs then it's independent
2177 against stores, too. */
2178 bitmap_set_bit (&ref
->indep_loop
, LOOP_DEP_BIT (loop
->num
, false));
2183 record_dep_loop (loop
, ref
, stored_p
);
2186 /* If it's dependent against stores it's dependent against
2188 record_dep_loop (loop
, ref
, true);
2195 /* Returns true if REF is independent on all other memory references in
2199 ref_indep_loop_p (struct loop
*loop
, mem_ref_p ref
)
2201 gcc_checking_assert (MEM_ANALYZABLE (ref
));
2203 return ref_indep_loop_p_2 (loop
, ref
, false);
2206 /* Returns true if we can perform store motion of REF from LOOP. */
2209 can_sm_ref_p (struct loop
*loop
, mem_ref_p ref
)
2213 /* Can't hoist unanalyzable refs. */
2214 if (!MEM_ANALYZABLE (ref
))
2217 /* It should be movable. */
2218 if (!is_gimple_reg_type (TREE_TYPE (ref
->mem
.ref
))
2219 || TREE_THIS_VOLATILE (ref
->mem
.ref
)
2220 || !for_each_index (&ref
->mem
.ref
, may_move_till
, loop
))
2223 /* If it can throw fail, we do not properly update EH info. */
2224 if (tree_could_throw_p (ref
->mem
.ref
))
2227 /* If it can trap, it must be always executed in LOOP.
2228 Readonly memory locations may trap when storing to them, but
2229 tree_could_trap_p is a predicate for rvalues, so check that
2231 base
= get_base_address (ref
->mem
.ref
);
2232 if ((tree_could_trap_p (ref
->mem
.ref
)
2233 || (DECL_P (base
) && TREE_READONLY (base
)))
2234 && !ref_always_accessed_p (loop
, ref
, true))
2237 /* And it must be independent on all other memory references
2239 if (!ref_indep_loop_p (loop
, ref
))
2245 /* Marks the references in LOOP for that store motion should be performed
2246 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2247 motion was performed in one of the outer loops. */
2250 find_refs_for_sm (struct loop
*loop
, bitmap sm_executed
, bitmap refs_to_sm
)
2252 bitmap refs
= &memory_accesses
.all_refs_stored_in_loop
[loop
->num
];
2257 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs
, sm_executed
, 0, i
, bi
)
2259 ref
= memory_accesses
.refs_list
[i
];
2260 if (can_sm_ref_p (loop
, ref
))
2261 bitmap_set_bit (refs_to_sm
, i
);
2265 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2266 for a store motion optimization (i.e. whether we can insert statement
2270 loop_suitable_for_sm (struct loop
*loop ATTRIBUTE_UNUSED
,
2276 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2277 if (ex
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
2283 /* Try to perform store motion for all memory references modified inside
2284 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2285 store motion was executed in one of the outer loops. */
2288 store_motion_loop (struct loop
*loop
, bitmap sm_executed
)
2290 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2291 struct loop
*subloop
;
2292 bitmap sm_in_loop
= BITMAP_ALLOC (&lim_bitmap_obstack
);
2294 if (loop_suitable_for_sm (loop
, exits
))
2296 find_refs_for_sm (loop
, sm_executed
, sm_in_loop
);
2297 hoist_memory_references (loop
, sm_in_loop
, exits
);
2301 bitmap_ior_into (sm_executed
, sm_in_loop
);
2302 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
2303 store_motion_loop (subloop
, sm_executed
);
2304 bitmap_and_compl_into (sm_executed
, sm_in_loop
);
2305 BITMAP_FREE (sm_in_loop
);
2308 /* Try to perform store motion for all memory references modified inside
2315 bitmap sm_executed
= BITMAP_ALLOC (&lim_bitmap_obstack
);
2317 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
2318 store_motion_loop (loop
, sm_executed
);
2320 BITMAP_FREE (sm_executed
);
2321 gsi_commit_edge_inserts ();
2324 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2325 for each such basic block bb records the outermost loop for that execution
2326 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2327 blocks that contain a nonpure call. */
2330 fill_always_executed_in_1 (struct loop
*loop
, sbitmap contains_call
)
2332 basic_block bb
= NULL
, *bbs
, last
= NULL
;
2335 struct loop
*inn_loop
= loop
;
2337 if (ALWAYS_EXECUTED_IN (loop
->header
) == NULL
)
2339 bbs
= get_loop_body_in_dom_order (loop
);
2341 for (i
= 0; i
< loop
->num_nodes
; i
++)
2346 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2349 if (bitmap_bit_p (contains_call
, bb
->index
))
2352 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2353 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
2358 /* A loop might be infinite (TODO use simple loop analysis
2359 to disprove this if possible). */
2360 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
2363 if (!flow_bb_inside_loop_p (inn_loop
, bb
))
2366 if (bb
->loop_father
->header
== bb
)
2368 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2371 /* In a loop that is always entered we may proceed anyway.
2372 But record that we entered it and stop once we leave it. */
2373 inn_loop
= bb
->loop_father
;
2379 SET_ALWAYS_EXECUTED_IN (last
, loop
);
2380 if (last
== loop
->header
)
2382 last
= get_immediate_dominator (CDI_DOMINATORS
, last
);
2388 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
2389 fill_always_executed_in_1 (loop
, contains_call
);
2392 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2393 for each such basic block bb records the outermost loop for that execution
2394 of its header implies execution of bb. */
2397 fill_always_executed_in (void)
2399 sbitmap contains_call
= sbitmap_alloc (last_basic_block
);
2403 bitmap_clear (contains_call
);
2406 gimple_stmt_iterator gsi
;
2407 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2409 if (nonpure_call_p (gsi_stmt (gsi
)))
2413 if (!gsi_end_p (gsi
))
2414 bitmap_set_bit (contains_call
, bb
->index
);
2417 for (loop
= current_loops
->tree_root
->inner
; loop
; loop
= loop
->next
)
2418 fill_always_executed_in_1 (loop
, contains_call
);
2420 sbitmap_free (contains_call
);
2424 /* Compute the global information needed by the loop invariant motion pass. */
2427 tree_ssa_lim_initialize (void)
2431 bitmap_obstack_initialize (&lim_bitmap_obstack
);
2432 lim_aux_data_map
= pointer_map_create ();
2435 compute_transaction_bits ();
2437 alloc_aux_for_edges (0);
2439 memory_accesses
.refs
.create (100);
2440 memory_accesses
.refs_list
.create (100);
2441 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2442 memory_accesses
.refs_list
.quick_push
2443 (mem_ref_alloc (error_mark_node
, 0, UNANALYZABLE_MEM_ID
));
2445 memory_accesses
.refs_in_loop
.create (number_of_loops (cfun
));
2446 memory_accesses
.refs_in_loop
.quick_grow (number_of_loops (cfun
));
2447 memory_accesses
.refs_stored_in_loop
.create (number_of_loops (cfun
));
2448 memory_accesses
.refs_stored_in_loop
.quick_grow (number_of_loops (cfun
));
2449 memory_accesses
.all_refs_stored_in_loop
.create (number_of_loops (cfun
));
2450 memory_accesses
.all_refs_stored_in_loop
.quick_grow (number_of_loops (cfun
));
2452 for (i
= 0; i
< number_of_loops (cfun
); i
++)
2454 bitmap_initialize (&memory_accesses
.refs_in_loop
[i
],
2455 &lim_bitmap_obstack
);
2456 bitmap_initialize (&memory_accesses
.refs_stored_in_loop
[i
],
2457 &lim_bitmap_obstack
);
2458 bitmap_initialize (&memory_accesses
.all_refs_stored_in_loop
[i
],
2459 &lim_bitmap_obstack
);
2462 memory_accesses
.ttae_cache
= NULL
;
2465 /* Cleans up after the invariant motion pass. */
2468 tree_ssa_lim_finalize (void)
2474 free_aux_for_edges ();
2477 SET_ALWAYS_EXECUTED_IN (bb
, NULL
);
2479 bitmap_obstack_release (&lim_bitmap_obstack
);
2480 pointer_map_destroy (lim_aux_data_map
);
2482 memory_accesses
.refs
.dispose ();
2484 FOR_EACH_VEC_ELT (memory_accesses
.refs_list
, i
, ref
)
2486 memory_accesses
.refs_list
.release ();
2488 memory_accesses
.refs_in_loop
.release ();
2489 memory_accesses
.refs_stored_in_loop
.release ();
2490 memory_accesses
.all_refs_stored_in_loop
.release ();
2492 if (memory_accesses
.ttae_cache
)
2493 free_affine_expand_cache (&memory_accesses
.ttae_cache
);
2496 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2497 i.e. those that are likely to be win regardless of the register pressure. */
2504 tree_ssa_lim_initialize ();
2506 /* Gathers information about memory accesses in the loops. */
2507 analyze_memory_references ();
2509 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2510 fill_always_executed_in ();
2512 /* For each statement determine the outermost loop in that it is
2513 invariant and cost for computing the invariant. */
2514 invariantness_dom_walker (CDI_DOMINATORS
)
2515 .walk (cfun
->cfg
->x_entry_block_ptr
);
2517 /* Execute store motion. Force the necessary invariants to be moved
2518 out of the loops as well. */
2521 /* Move the expressions that are expensive enough. */
2522 todo
= move_computations ();
2524 tree_ssa_lim_finalize ();
2529 /* Loop invariant motion pass. */
2532 tree_ssa_loop_im (void)
2534 if (number_of_loops (cfun
) <= 1)
2537 return tree_ssa_lim ();
2541 gate_tree_ssa_loop_im (void)
2543 return flag_tree_loop_im
!= 0;
2548 const pass_data pass_data_lim
=
2550 GIMPLE_PASS
, /* type */
2552 OPTGROUP_LOOP
, /* optinfo_flags */
2553 true, /* has_gate */
2554 true, /* has_execute */
2556 PROP_cfg
, /* properties_required */
2557 0, /* properties_provided */
2558 0, /* properties_destroyed */
2559 0, /* todo_flags_start */
2560 0, /* todo_flags_finish */
2563 class pass_lim
: public gimple_opt_pass
2566 pass_lim (gcc::context
*ctxt
)
2567 : gimple_opt_pass (pass_data_lim
, ctxt
)
2570 /* opt_pass methods: */
2571 opt_pass
* clone () { return new pass_lim (m_ctxt
); }
2572 bool gate () { return gate_tree_ssa_loop_im (); }
2573 unsigned int execute () { return tree_ssa_loop_im (); }
2575 }; // class pass_lim
2580 make_pass_lim (gcc::context
*ctxt
)
2582 return new pass_lim (ctxt
);