1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "stor-layout.h"
28 #include "basic-block.h"
29 #include "gimple-pretty-print.h"
33 #include "gimple-iterator.h"
34 #include "gimple-ssa.h"
36 #include "tree-phinodes.h"
37 #include "ssa-iterators.h"
38 #include "stringpool.h"
39 #include "tree-ssanames.h"
41 #include "diagnostic-core.h"
42 #include "tree-ssa-live.h"
43 #include "tree-ssa-ter.h"
44 #include "tree-ssa-coalesce.h"
45 #include "tree-outof-ssa.h"
47 /* FIXME: A lot of code here deals with expanding to RTL. All that code
48 should be in cfgexpand.c. */
51 /* Return TRUE if expression STMT is suitable for replacement. */
54 ssa_is_replaceable_p (gimple stmt
)
60 /* Only consider modify stmts. */
61 if (!is_gimple_assign (stmt
))
64 /* If the statement may throw an exception, it cannot be replaced. */
65 if (stmt_could_throw_p (stmt
))
68 /* Punt if there is more than 1 def. */
69 def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
);
73 /* Only consider definitions which have a single use. */
74 if (!single_imm_use (def
, &use_p
, &use_stmt
))
77 /* Used in this block, but at the TOP of the block, not the end. */
78 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
81 /* There must be no VDEFs. */
82 if (gimple_vdef (stmt
))
85 /* Float expressions must go through memory if float-store is on. */
87 && FLOAT_TYPE_P (gimple_expr_type (stmt
)))
90 /* An assignment with a register variable on the RHS is not
92 if (gimple_assign_rhs_code (stmt
) == VAR_DECL
93 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt
)))
96 /* No function calls can be replaced. */
97 if (is_gimple_call (stmt
))
100 /* Leave any stmt with volatile operands alone as well. */
101 if (gimple_has_volatile_ops (stmt
))
108 /* Used to hold all the components required to do SSA PHI elimination.
109 The node and pred/succ list is a simple linear list of nodes and
110 edges represented as pairs of nodes.
112 The predecessor and successor list: Nodes are entered in pairs, where
113 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
114 predecessors, all the odd elements are successors.
117 When implemented as bitmaps, very large programs SSA->Normal times were
118 being dominated by clearing the interference graph.
120 Typically this list of edges is extremely small since it only includes
121 PHI results and uses from a single edge which have not coalesced with
122 each other. This means that no virtual PHI nodes are included, and
123 empirical evidence suggests that the number of edges rarely exceed
124 3, and in a bootstrap of GCC, the maximum size encountered was 7.
125 This also limits the number of possible nodes that are involved to
126 rarely more than 6, and in the bootstrap of gcc, the maximum number
127 of nodes encountered was 12. */
129 typedef struct _elim_graph
{
130 /* Size of the elimination vectors. */
133 /* List of nodes in the elimination graph. */
136 /* The predecessor and successor edge list. */
139 /* Source locus on each edge */
140 vec
<source_location
> edge_locus
;
142 /* Visited vector. */
145 /* Stack for visited nodes. */
148 /* The variable partition map. */
151 /* Edge being eliminated by this graph. */
154 /* List of constant copies to emit. These are pushed on in pairs. */
155 vec
<int> const_dests
;
156 vec
<tree
> const_copies
;
158 /* Source locations for any constant copies. */
159 vec
<source_location
> copy_locus
;
163 /* For an edge E find out a good source location to associate with
164 instructions inserted on edge E. If E has an implicit goto set,
165 use its location. Otherwise search instructions in predecessors
166 of E for a location, and use that one. That makes sense because
167 we insert on edges for PHI nodes, and effects of PHIs happen on
168 the end of the predecessor conceptually. */
171 set_location_for_edge (edge e
)
175 set_curr_insn_location (e
->goto_locus
);
179 basic_block bb
= e
->src
;
180 gimple_stmt_iterator gsi
;
184 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
186 gimple stmt
= gsi_stmt (gsi
);
187 if (is_gimple_debug (stmt
))
189 if (gimple_has_location (stmt
) || gimple_block (stmt
))
191 set_curr_insn_location (gimple_location (stmt
));
195 /* Nothing found in this basic block. Make a half-assed attempt
196 to continue with another block. */
197 if (single_pred_p (bb
))
198 bb
= single_pred (bb
);
202 while (bb
!= e
->src
);
206 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
207 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
208 which we deduce the size to copy in that case. */
211 emit_partition_copy (rtx dest
, rtx src
, int unsignedsrcp
, tree sizeexp
)
217 if (GET_MODE (src
) != VOIDmode
&& GET_MODE (src
) != GET_MODE (dest
))
218 src
= convert_to_mode (GET_MODE (dest
), src
, unsignedsrcp
);
219 if (GET_MODE (src
) == BLKmode
)
221 gcc_assert (GET_MODE (dest
) == BLKmode
);
222 emit_block_move (dest
, src
, expr_size (sizeexp
), BLOCK_OP_NORMAL
);
225 emit_move_insn (dest
, src
);
233 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
236 insert_partition_copy_on_edge (edge e
, int dest
, int src
, source_location locus
)
240 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 "Inserting a partition copy on edge BB%d->BB%d :"
246 e
->dest
->index
, dest
, src
);
247 fprintf (dump_file
, "\n");
250 gcc_assert (SA
.partition_to_pseudo
[dest
]);
251 gcc_assert (SA
.partition_to_pseudo
[src
]);
253 set_location_for_edge (e
);
254 /* If a locus is provided, override the default. */
256 set_curr_insn_location (locus
);
258 var
= partition_to_var (SA
.map
, src
);
259 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
260 SA
.partition_to_pseudo
[src
],
261 TYPE_UNSIGNED (TREE_TYPE (var
)),
264 insert_insn_on_edge (seq
, e
);
267 /* Insert a copy instruction from expression SRC to partition DEST
271 insert_value_copy_on_edge (edge e
, int dest
, tree src
, source_location locus
)
274 enum machine_mode dest_mode
, src_mode
;
278 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
281 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
283 e
->dest
->index
, dest
);
284 print_generic_expr (dump_file
, src
, TDF_SLIM
);
285 fprintf (dump_file
, "\n");
288 gcc_assert (SA
.partition_to_pseudo
[dest
]);
290 set_location_for_edge (e
);
291 /* If a locus is provided, override the default. */
293 set_curr_insn_location (locus
);
297 var
= SSA_NAME_VAR (partition_to_var (SA
.map
, dest
));
298 src_mode
= TYPE_MODE (TREE_TYPE (src
));
299 dest_mode
= GET_MODE (SA
.partition_to_pseudo
[dest
]);
300 gcc_assert (src_mode
== TYPE_MODE (TREE_TYPE (var
)));
301 gcc_assert (!REG_P (SA
.partition_to_pseudo
[dest
])
302 || dest_mode
== promote_decl_mode (var
, &unsignedp
));
304 if (src_mode
!= dest_mode
)
306 x
= expand_expr (src
, NULL
, src_mode
, EXPAND_NORMAL
);
307 x
= convert_modes (dest_mode
, src_mode
, x
, unsignedp
);
309 else if (src_mode
== BLKmode
)
311 x
= SA
.partition_to_pseudo
[dest
];
312 store_expr (src
, x
, 0, false);
315 x
= expand_expr (src
, SA
.partition_to_pseudo
[dest
],
316 dest_mode
, EXPAND_NORMAL
);
318 if (x
!= SA
.partition_to_pseudo
[dest
])
319 emit_move_insn (SA
.partition_to_pseudo
[dest
], x
);
323 insert_insn_on_edge (seq
, e
);
326 /* Insert a copy instruction from RTL expression SRC to partition DEST
330 insert_rtx_to_part_on_edge (edge e
, int dest
, rtx src
, int unsignedsrcp
,
331 source_location locus
)
334 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
337 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
339 e
->dest
->index
, dest
);
340 print_simple_rtl (dump_file
, src
);
341 fprintf (dump_file
, "\n");
344 gcc_assert (SA
.partition_to_pseudo
[dest
]);
346 set_location_for_edge (e
);
347 /* If a locus is provided, override the default. */
349 set_curr_insn_location (locus
);
351 /* We give the destination as sizeexp in case src/dest are BLKmode
352 mems. Usually we give the source. As we result from SSA names
353 the left and right size should be the same (and no WITH_SIZE_EXPR
354 involved), so it doesn't matter. */
355 seq
= emit_partition_copy (SA
.partition_to_pseudo
[dest
],
357 partition_to_var (SA
.map
, dest
));
359 insert_insn_on_edge (seq
, e
);
362 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
366 insert_part_to_rtx_on_edge (edge e
, rtx dest
, int src
, source_location locus
)
370 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
373 "Inserting a temp copy on edge BB%d->BB%d : ",
376 print_simple_rtl (dump_file
, dest
);
377 fprintf (dump_file
, "= PART.%d\n", src
);
380 gcc_assert (SA
.partition_to_pseudo
[src
]);
382 set_location_for_edge (e
);
383 /* If a locus is provided, override the default. */
385 set_curr_insn_location (locus
);
387 var
= partition_to_var (SA
.map
, src
);
388 seq
= emit_partition_copy (dest
,
389 SA
.partition_to_pseudo
[src
],
390 TYPE_UNSIGNED (TREE_TYPE (var
)),
393 insert_insn_on_edge (seq
, e
);
397 /* Create an elimination graph with SIZE nodes and associated data
401 new_elim_graph (int size
)
403 elim_graph g
= (elim_graph
) xmalloc (sizeof (struct _elim_graph
));
405 g
->nodes
.create (30);
406 g
->const_dests
.create (20);
407 g
->const_copies
.create (20);
408 g
->copy_locus
.create (10);
409 g
->edge_list
.create (20);
410 g
->edge_locus
.create (10);
411 g
->stack
.create (30);
413 g
->visited
= sbitmap_alloc (size
);
419 /* Empty elimination graph G. */
422 clear_elim_graph (elim_graph g
)
424 g
->nodes
.truncate (0);
425 g
->edge_list
.truncate (0);
426 g
->edge_locus
.truncate (0);
430 /* Delete elimination graph G. */
433 delete_elim_graph (elim_graph g
)
435 sbitmap_free (g
->visited
);
437 g
->edge_list
.release ();
438 g
->const_copies
.release ();
439 g
->const_dests
.release ();
441 g
->copy_locus
.release ();
442 g
->edge_locus
.release ();
448 /* Return the number of nodes in graph G. */
451 elim_graph_size (elim_graph g
)
453 return g
->nodes
.length ();
457 /* Add NODE to graph G, if it doesn't exist already. */
460 elim_graph_add_node (elim_graph g
, int node
)
465 FOR_EACH_VEC_ELT (g
->nodes
, x
, t
)
468 g
->nodes
.safe_push (node
);
472 /* Add the edge PRED->SUCC to graph G. */
475 elim_graph_add_edge (elim_graph g
, int pred
, int succ
, source_location locus
)
477 g
->edge_list
.safe_push (pred
);
478 g
->edge_list
.safe_push (succ
);
479 g
->edge_locus
.safe_push (locus
);
483 /* Remove an edge from graph G for which NODE is the predecessor, and
484 return the successor node. -1 is returned if there is no such edge. */
487 elim_graph_remove_succ_edge (elim_graph g
, int node
, source_location
*locus
)
491 for (x
= 0; x
< g
->edge_list
.length (); x
+= 2)
492 if (g
->edge_list
[x
] == node
)
494 g
->edge_list
[x
] = -1;
495 y
= g
->edge_list
[x
+ 1];
496 g
->edge_list
[x
+ 1] = -1;
497 *locus
= g
->edge_locus
[x
/ 2];
498 g
->edge_locus
[x
/ 2] = UNKNOWN_LOCATION
;
501 *locus
= UNKNOWN_LOCATION
;
506 /* Find all the nodes in GRAPH which are successors to NODE in the
507 edge list. VAR will hold the partition number found. CODE is the
508 code fragment executed for every node found. */
510 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
514 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
516 y_ = (GRAPH)->edge_list[x_]; \
519 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
520 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
526 /* Find all the nodes which are predecessors of NODE in the edge list for
527 GRAPH. VAR will hold the partition number found. CODE is the
528 code fragment executed for every node found. */
530 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
534 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
536 y_ = (GRAPH)->edge_list[x_ + 1]; \
539 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
540 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
546 /* Add T to elimination graph G. */
549 eliminate_name (elim_graph g
, int T
)
551 elim_graph_add_node (g
, T
);
554 /* Return true if this phi argument T should have a copy queued when using
555 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
556 test for ssa_name is definitely simpler, but don't let invalid contents
557 slip through in the meantime. */
560 queue_phi_copy_p (var_map map
, tree t
)
562 if (TREE_CODE (t
) == SSA_NAME
)
564 if (var_to_partition (map
, t
) == NO_PARTITION
)
568 gcc_checking_assert (is_gimple_min_invariant (t
));
572 /* Build elimination graph G for basic block BB on incoming PHI edge
576 eliminate_build (elim_graph g
)
580 gimple_stmt_iterator gsi
;
582 clear_elim_graph (g
);
584 for (gsi
= gsi_start_phis (g
->e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
586 gimple phi
= gsi_stmt (gsi
);
587 source_location locus
;
589 p0
= var_to_partition (g
->map
, gimple_phi_result (phi
));
590 /* Ignore results which are not in partitions. */
591 if (p0
== NO_PARTITION
)
594 Ti
= PHI_ARG_DEF (phi
, g
->e
->dest_idx
);
595 locus
= gimple_phi_arg_location_from_edge (phi
, g
->e
);
597 /* If this argument is a constant, or a SSA_NAME which is being
598 left in SSA form, just queue a copy to be emitted on this
600 if (queue_phi_copy_p (g
->map
, Ti
))
602 /* Save constant copies until all other copies have been emitted
604 g
->const_dests
.safe_push (p0
);
605 g
->const_copies
.safe_push (Ti
);
606 g
->copy_locus
.safe_push (locus
);
610 pi
= var_to_partition (g
->map
, Ti
);
613 eliminate_name (g
, p0
);
614 eliminate_name (g
, pi
);
615 elim_graph_add_edge (g
, p0
, pi
, locus
);
622 /* Push successors of T onto the elimination stack for G. */
625 elim_forward (elim_graph g
, int T
)
628 source_location locus
;
630 bitmap_set_bit (g
->visited
, T
);
631 FOR_EACH_ELIM_GRAPH_SUCC (g
, T
, S
, locus
,
633 if (!bitmap_bit_p (g
->visited
, S
))
636 g
->stack
.safe_push (T
);
640 /* Return 1 if there unvisited predecessors of T in graph G. */
643 elim_unvisited_predecessor (elim_graph g
, int T
)
646 source_location locus
;
648 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
650 if (!bitmap_bit_p (g
->visited
, P
))
656 /* Process predecessors first, and insert a copy. */
659 elim_backward (elim_graph g
, int T
)
662 source_location locus
;
664 bitmap_set_bit (g
->visited
, T
);
665 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
667 if (!bitmap_bit_p (g
->visited
, P
))
669 elim_backward (g
, P
);
670 insert_partition_copy_on_edge (g
->e
, P
, T
, locus
);
675 /* Allocate a new pseudo register usable for storing values sitting
676 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
679 get_temp_reg (tree name
)
681 tree var
= TREE_CODE (name
) == SSA_NAME
? SSA_NAME_VAR (name
) : name
;
682 tree type
= TREE_TYPE (var
);
684 enum machine_mode reg_mode
= promote_decl_mode (var
, &unsignedp
);
685 rtx x
= gen_reg_rtx (reg_mode
);
686 if (POINTER_TYPE_P (type
))
687 mark_reg_pointer (x
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var
))));
691 /* Insert required copies for T in graph G. Check for a strongly connected
692 region, and create a temporary to break the cycle if one is found. */
695 elim_create (elim_graph g
, int T
)
698 source_location locus
;
700 if (elim_unvisited_predecessor (g
, T
))
702 tree var
= partition_to_var (g
->map
, T
);
703 rtx U
= get_temp_reg (var
);
704 int unsignedsrcp
= TYPE_UNSIGNED (TREE_TYPE (var
));
706 insert_part_to_rtx_on_edge (g
->e
, U
, T
, UNKNOWN_LOCATION
);
707 FOR_EACH_ELIM_GRAPH_PRED (g
, T
, P
, locus
,
709 if (!bitmap_bit_p (g
->visited
, P
))
711 elim_backward (g
, P
);
712 insert_rtx_to_part_on_edge (g
->e
, P
, U
, unsignedsrcp
, locus
);
718 S
= elim_graph_remove_succ_edge (g
, T
, &locus
);
721 bitmap_set_bit (g
->visited
, T
);
722 insert_partition_copy_on_edge (g
->e
, T
, S
, locus
);
728 /* Eliminate all the phi nodes on edge E in graph G. */
731 eliminate_phi (edge e
, elim_graph g
)
735 gcc_assert (g
->const_copies
.length () == 0);
736 gcc_assert (g
->copy_locus
.length () == 0);
738 /* Abnormal edges already have everything coalesced. */
739 if (e
->flags
& EDGE_ABNORMAL
)
746 if (elim_graph_size (g
) != 0)
750 bitmap_clear (g
->visited
);
751 g
->stack
.truncate (0);
753 FOR_EACH_VEC_ELT (g
->nodes
, x
, part
)
755 if (!bitmap_bit_p (g
->visited
, part
))
756 elim_forward (g
, part
);
759 bitmap_clear (g
->visited
);
760 while (g
->stack
.length () > 0)
763 if (!bitmap_bit_p (g
->visited
, x
))
768 /* If there are any pending constant copies, issue them now. */
769 while (g
->const_copies
.length () > 0)
773 source_location locus
;
775 src
= g
->const_copies
.pop ();
776 dest
= g
->const_dests
.pop ();
777 locus
= g
->copy_locus
.pop ();
778 insert_value_copy_on_edge (e
, dest
, src
, locus
);
783 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
784 check to see if this allows another PHI node to be removed. */
787 remove_gimple_phi_args (gimple phi
)
792 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
794 fprintf (dump_file
, "Removing Dead PHI definition: ");
795 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
798 FOR_EACH_PHI_ARG (arg_p
, phi
, iter
, SSA_OP_USE
)
800 tree arg
= USE_FROM_PTR (arg_p
);
801 if (TREE_CODE (arg
) == SSA_NAME
)
803 /* Remove the reference to the existing argument. */
804 SET_USE (arg_p
, NULL_TREE
);
805 if (has_zero_uses (arg
))
808 gimple_stmt_iterator gsi
;
810 stmt
= SSA_NAME_DEF_STMT (arg
);
812 /* Also remove the def if it is a PHI node. */
813 if (gimple_code (stmt
) == GIMPLE_PHI
)
815 remove_gimple_phi_args (stmt
);
816 gsi
= gsi_for_stmt (stmt
);
817 remove_phi_node (&gsi
, true);
825 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
828 eliminate_useless_phis (void)
831 gimple_stmt_iterator gsi
;
836 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
838 gimple phi
= gsi_stmt (gsi
);
839 result
= gimple_phi_result (phi
);
840 if (virtual_operand_p (result
))
842 #ifdef ENABLE_CHECKING
844 /* There should be no arguments which are not virtual, or the
845 results will be incorrect. */
846 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
848 tree arg
= PHI_ARG_DEF (phi
, i
);
849 if (TREE_CODE (arg
) == SSA_NAME
850 && !virtual_operand_p (arg
))
852 fprintf (stderr
, "Argument of PHI is not virtual (");
853 print_generic_expr (stderr
, arg
, TDF_SLIM
);
854 fprintf (stderr
, "), but the result is :");
855 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
856 internal_error ("SSA corruption");
860 remove_phi_node (&gsi
, true);
864 /* Also remove real PHIs with no uses. */
865 if (has_zero_uses (result
))
867 remove_gimple_phi_args (phi
);
868 remove_phi_node (&gsi
, true);
878 /* This function will rewrite the current program using the variable mapping
879 found in MAP. If the replacement vector VALUES is provided, any
880 occurrences of partitions with non-null entries in the vector will be
881 replaced with the expression in the vector instead of its mapped
885 rewrite_trees (var_map map ATTRIBUTE_UNUSED
)
887 #ifdef ENABLE_CHECKING
889 /* Search for PHIs where the destination has no partition, but one
890 or more arguments has a partition. This should not happen and can
891 create incorrect code. */
894 gimple_stmt_iterator gsi
;
895 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
897 gimple phi
= gsi_stmt (gsi
);
898 tree T0
= var_to_partition_to_var (map
, gimple_phi_result (phi
));
902 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
904 tree arg
= PHI_ARG_DEF (phi
, i
);
906 if (TREE_CODE (arg
) == SSA_NAME
907 && var_to_partition (map
, arg
) != NO_PARTITION
)
909 fprintf (stderr
, "Argument of PHI is in a partition :(");
910 print_generic_expr (stderr
, arg
, TDF_SLIM
);
911 fprintf (stderr
, "), but the result is not :");
912 print_gimple_stmt (stderr
, phi
, 0, TDF_SLIM
);
913 internal_error ("SSA corruption");
922 /* Given the out-of-ssa info object SA (with prepared partitions)
923 eliminate all phi nodes in all basic blocks. Afterwards no
924 basic block will have phi nodes anymore and there are possibly
925 some RTL instructions inserted on edges. */
928 expand_phi_nodes (struct ssaexpand
*sa
)
931 elim_graph g
= new_elim_graph (sa
->map
->num_partitions
);
934 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
935 if (!gimple_seq_empty_p (phi_nodes (bb
)))
939 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
940 eliminate_phi (e
, g
);
941 set_phi_nodes (bb
, NULL
);
942 /* We can't redirect EH edges in RTL land, so we need to do this
943 here. Redirection happens only when splitting is necessary,
944 which it is only for critical edges, normally. For EH edges
945 it might also be necessary when the successor has more than
946 one predecessor. In that case the edge is either required to
947 be fallthru (which EH edges aren't), or the predecessor needs
948 to end with a jump (which again, isn't the case with EH edges).
949 Hence, split all EH edges on which we inserted instructions
950 and whose successor has multiple predecessors. */
951 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
953 if (e
->insns
.r
&& (e
->flags
& EDGE_EH
)
954 && !single_pred_p (e
->dest
))
956 rtx insns
= e
->insns
.r
;
958 e
->insns
.r
= NULL_RTX
;
960 single_pred_edge (bb
)->insns
.r
= insns
;
967 delete_elim_graph (g
);
971 /* Remove the ssa-names in the current function and translate them into normal
972 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
973 should also be used. */
976 remove_ssa_form (bool perform_ter
, struct ssaexpand
*sa
)
978 bitmap values
= NULL
;
982 map
= coalesce_ssa_name ();
984 /* Return to viewing the variable list as just all reference variables after
985 coalescing has been performed. */
986 partition_view_normal (map
, false);
988 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
990 fprintf (dump_file
, "After Coalescing:\n");
991 dump_var_map (dump_file
, map
);
996 values
= find_replaceable_exprs (map
);
997 if (values
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
998 dump_replaceable_exprs (dump_file
, values
);
1001 rewrite_trees (map
);
1004 sa
->values
= values
;
1005 sa
->partition_has_default_def
= BITMAP_ALLOC (NULL
);
1006 for (i
= 1; i
< num_ssa_names
; i
++)
1008 tree t
= ssa_name (i
);
1009 if (t
&& SSA_NAME_IS_DEFAULT_DEF (t
))
1011 int p
= var_to_partition (map
, t
);
1012 if (p
!= NO_PARTITION
)
1013 bitmap_set_bit (sa
->partition_has_default_def
, p
);
1019 /* If not already done so for basic block BB, assign increasing uids
1020 to each of its instructions. */
1023 maybe_renumber_stmts_bb (basic_block bb
)
1026 gimple_stmt_iterator gsi
;
1031 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1033 gimple stmt
= gsi_stmt (gsi
);
1034 gimple_set_uid (stmt
, i
);
1040 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1041 of a PHI node) and ARG (one of its arguments) conflict. Return false
1042 otherwise, also when we simply aren't sure. */
1045 trivially_conflicts_p (basic_block bb
, tree result
, tree arg
)
1048 imm_use_iterator imm_iter
;
1049 gimple defa
= SSA_NAME_DEF_STMT (arg
);
1051 /* If ARG isn't defined in the same block it's too complicated for
1053 if (gimple_bb (defa
) != bb
)
1056 FOR_EACH_IMM_USE_FAST (use
, imm_iter
, result
)
1058 gimple use_stmt
= USE_STMT (use
);
1059 if (is_gimple_debug (use_stmt
))
1061 /* Now, if there's a use of RESULT that lies outside this basic block,
1062 then there surely is a conflict with ARG. */
1063 if (gimple_bb (use_stmt
) != bb
)
1065 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
1067 /* The use now is in a real stmt of BB, so if ARG was defined
1068 in a PHI node (like RESULT) both conflict. */
1069 if (gimple_code (defa
) == GIMPLE_PHI
)
1071 maybe_renumber_stmts_bb (bb
);
1072 /* If the use of RESULT occurs after the definition of ARG,
1073 the two conflict too. */
1074 if (gimple_uid (defa
) < gimple_uid (use_stmt
))
1082 /* Search every PHI node for arguments associated with backedges which
1083 we can trivially determine will need a copy (the argument is either
1084 not an SSA_NAME or the argument has a different underlying variable
1085 than the PHI result).
1087 Insert a copy from the PHI argument to a new destination at the
1088 end of the block with the backedge to the top of the loop. Update
1089 the PHI argument to reference this new destination. */
1092 insert_backedge_copies (void)
1095 gimple_stmt_iterator gsi
;
1097 mark_dfs_back_edges ();
1101 /* Mark block as possibly needing calculation of UIDs. */
1104 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1106 gimple phi
= gsi_stmt (gsi
);
1107 tree result
= gimple_phi_result (phi
);
1110 if (virtual_operand_p (result
))
1113 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1115 tree arg
= gimple_phi_arg_def (phi
, i
);
1116 edge e
= gimple_phi_arg_edge (phi
, i
);
1118 /* If the argument is not an SSA_NAME, then we will need a
1119 constant initialization. If the argument is an SSA_NAME with
1120 a different underlying variable then a copy statement will be
1122 if ((e
->flags
& EDGE_DFS_BACK
)
1123 && (TREE_CODE (arg
) != SSA_NAME
1124 || SSA_NAME_VAR (arg
) != SSA_NAME_VAR (result
)
1125 || trivially_conflicts_p (bb
, result
, arg
)))
1128 gimple stmt
, last
= NULL
;
1129 gimple_stmt_iterator gsi2
;
1131 gsi2
= gsi_last_bb (gimple_phi_arg_edge (phi
, i
)->src
);
1132 if (!gsi_end_p (gsi2
))
1133 last
= gsi_stmt (gsi2
);
1135 /* In theory the only way we ought to get back to the
1136 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1137 However, better safe than sorry.
1138 If the block ends with a control statement or
1139 something that might throw, then we have to
1140 insert this assignment before the last
1141 statement. Else insert it after the last statement. */
1142 if (last
&& stmt_ends_bb_p (last
))
1144 /* If the last statement in the block is the definition
1145 site of the PHI argument, then we can't insert
1146 anything after it. */
1147 if (TREE_CODE (arg
) == SSA_NAME
1148 && SSA_NAME_DEF_STMT (arg
) == last
)
1152 /* Create a new instance of the underlying variable of the
1154 name
= copy_ssa_name (result
, NULL
);
1155 stmt
= gimple_build_assign (name
,
1156 gimple_phi_arg_def (phi
, i
));
1158 /* copy location if present. */
1159 if (gimple_phi_arg_has_location (phi
, i
))
1160 gimple_set_location (stmt
,
1161 gimple_phi_arg_location (phi
, i
));
1163 /* Insert the new statement into the block and update
1165 if (last
&& stmt_ends_bb_p (last
))
1166 gsi_insert_before (&gsi2
, stmt
, GSI_NEW_STMT
);
1168 gsi_insert_after (&gsi2
, stmt
, GSI_NEW_STMT
);
1169 SET_PHI_ARG_DEF (phi
, i
, name
);
1174 /* Unmark this block again. */
1179 /* Free all memory associated with going out of SSA form. SA is
1180 the outof-SSA info object. */
1183 finish_out_of_ssa (struct ssaexpand
*sa
)
1185 free (sa
->partition_to_pseudo
);
1187 BITMAP_FREE (sa
->values
);
1188 delete_var_map (sa
->map
);
1189 BITMAP_FREE (sa
->partition_has_default_def
);
1190 memset (sa
, 0, sizeof *sa
);
1193 /* Take the current function out of SSA form, translating PHIs as described in
1194 R. Morgan, ``Building an Optimizing Compiler'',
1195 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1198 rewrite_out_of_ssa (struct ssaexpand
*sa
)
1200 /* If elimination of a PHI requires inserting a copy on a backedge,
1201 then we will have to split the backedge which has numerous
1202 undesirable performance effects.
1204 A significant number of such cases can be handled here by inserting
1205 copies into the loop itself. */
1206 insert_backedge_copies ();
1209 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1210 eliminate_useless_phis ();
1212 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1213 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);
1215 remove_ssa_form (flag_tree_ter
, sa
);
1217 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1218 gimple_dump_cfg (dump_file
, dump_flags
& ~TDF_DETAILS
);