1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
27 #include "coretypes.h"
31 #include "hard-reg-set.h"
34 #include "stor-layout.h"
39 #include "insn-config.h"
44 #include "diagnostic-core.h"
47 #include "langhooks.h"
53 #include "alloc-pool.h"
54 #include "pretty-print.h"
55 #include "pointer-set.h"
60 /* Functions and data structures for expanding case statements. */
62 /* Case label structure, used to hold info on labels within case
63 statements. We handle "range" labels; for a single-value label
64 as in C, the high and low limits are the same.
66 We start with a vector of case nodes sorted in ascending order, and
67 the default label as the last element in the vector. Before expanding
68 to RTL, we transform this vector into a list linked via the RIGHT
69 fields in the case_node struct. Nodes with higher case values are
72 Switch statements can be output in three forms. A branch table is
73 used if there are more than a few labels and the labels are dense
74 within the range between the smallest and largest case value. If a
75 branch table is used, no further manipulations are done with the case
78 The alternative to the use of a branch table is to generate a series
79 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
80 and PARENT fields to hold a binary tree. Initially the tree is
81 totally unbalanced, with everything on the right. We balance the tree
82 with nodes on the left having lower case values than the parent
83 and nodes on the right having higher values. We then output the tree
86 For very small, suitable switch statements, we can generate a series
87 of simple bit test and branches instead. */
91 struct case_node
*left
; /* Left son in binary tree */
92 struct case_node
*right
; /* Right son in binary tree; also node chain */
93 struct case_node
*parent
; /* Parent of node in binary tree */
94 tree low
; /* Lowest index value for this label */
95 tree high
; /* Highest index value for this label */
96 tree code_label
; /* Label to jump to when node matches */
97 int prob
; /* Probability of taking this case. */
98 /* Probability of reaching subtree rooted at this node */
102 typedef struct case_node case_node
;
103 typedef struct case_node
*case_node_ptr
;
105 extern basic_block
label_to_block_fn (struct function
*, tree
);
107 static bool check_unique_operand_names (tree
, tree
, tree
);
108 static char *resolve_operand_name_1 (char *, tree
, tree
, tree
);
109 static void balance_case_nodes (case_node_ptr
*, case_node_ptr
);
110 static int node_has_low_bound (case_node_ptr
, tree
);
111 static int node_has_high_bound (case_node_ptr
, tree
);
112 static int node_is_bounded (case_node_ptr
, tree
);
113 static void emit_case_nodes (rtx
, case_node_ptr
, rtx
, int, tree
);
115 /* Return the rtx-label that corresponds to a LABEL_DECL,
116 creating it if necessary. */
119 label_rtx (tree label
)
121 gcc_assert (TREE_CODE (label
) == LABEL_DECL
);
123 if (!DECL_RTL_SET_P (label
))
125 rtx r
= gen_label_rtx ();
126 SET_DECL_RTL (label
, r
);
127 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
128 LABEL_PRESERVE_P (r
) = 1;
131 return DECL_RTL (label
);
134 /* As above, but also put it on the forced-reference list of the
135 function that contains it. */
137 force_label_rtx (tree label
)
139 rtx ref
= label_rtx (label
);
140 tree function
= decl_function_context (label
);
142 gcc_assert (function
);
144 forced_labels
= gen_rtx_EXPR_LIST (VOIDmode
, ref
, forced_labels
);
148 /* Add an unconditional jump to LABEL as the next sequential instruction. */
151 emit_jump (rtx label
)
153 do_pending_stack_adjust ();
154 emit_jump_insn (gen_jump (label
));
158 /* Handle goto statements and the labels that they can go to. */
160 /* Specify the location in the RTL code of a label LABEL,
161 which is a LABEL_DECL tree node.
163 This is used for the kind of label that the user can jump to with a
164 goto statement, and for alternatives of a switch or case statement.
165 RTL labels generated for loops and conditionals don't go through here;
166 they are generated directly at the RTL level, by other functions below.
168 Note that this has nothing to do with defining label *names*.
169 Languages vary in how they do that and what that even means. */
172 expand_label (tree label
)
174 rtx label_r
= label_rtx (label
);
176 do_pending_stack_adjust ();
177 emit_label (label_r
);
178 if (DECL_NAME (label
))
179 LABEL_NAME (DECL_RTL (label
)) = IDENTIFIER_POINTER (DECL_NAME (label
));
181 if (DECL_NONLOCAL (label
))
183 expand_builtin_setjmp_receiver (NULL
);
184 nonlocal_goto_handler_labels
185 = gen_rtx_EXPR_LIST (VOIDmode
, label_r
,
186 nonlocal_goto_handler_labels
);
189 if (FORCED_LABEL (label
))
190 forced_labels
= gen_rtx_EXPR_LIST (VOIDmode
, label_r
, forced_labels
);
192 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
193 maybe_set_first_label_num (label_r
);
196 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
197 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
198 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
199 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
200 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
201 constraint allows the use of a register operand. And, *IS_INOUT
202 will be true if the operand is read-write, i.e., if it is used as
203 an input as well as an output. If *CONSTRAINT_P is not in
204 canonical form, it will be made canonical. (Note that `+' will be
205 replaced with `=' as part of this process.)
207 Returns TRUE if all went well; FALSE if an error occurred. */
210 parse_output_constraint (const char **constraint_p
, int operand_num
,
211 int ninputs
, int noutputs
, bool *allows_mem
,
212 bool *allows_reg
, bool *is_inout
)
214 const char *constraint
= *constraint_p
;
217 /* Assume the constraint doesn't allow the use of either a register
222 /* Allow the `=' or `+' to not be at the beginning of the string,
223 since it wasn't explicitly documented that way, and there is a
224 large body of code that puts it last. Swap the character to
225 the front, so as not to uglify any place else. */
226 p
= strchr (constraint
, '=');
228 p
= strchr (constraint
, '+');
230 /* If the string doesn't contain an `=', issue an error
234 error ("output operand constraint lacks %<=%>");
238 /* If the constraint begins with `+', then the operand is both read
239 from and written to. */
240 *is_inout
= (*p
== '+');
242 /* Canonicalize the output constraint so that it begins with `='. */
243 if (p
!= constraint
|| *is_inout
)
246 size_t c_len
= strlen (constraint
);
249 warning (0, "output constraint %qc for operand %d "
250 "is not at the beginning",
253 /* Make a copy of the constraint. */
254 buf
= XALLOCAVEC (char, c_len
+ 1);
255 strcpy (buf
, constraint
);
256 /* Swap the first character and the `=' or `+'. */
257 buf
[p
- constraint
] = buf
[0];
258 /* Make sure the first character is an `='. (Until we do this,
259 it might be a `+'.) */
261 /* Replace the constraint with the canonicalized string. */
262 *constraint_p
= ggc_alloc_string (buf
, c_len
);
263 constraint
= *constraint_p
;
266 /* Loop through the constraint string. */
267 for (p
= constraint
+ 1; *p
; p
+= CONSTRAINT_LEN (*p
, p
))
272 error ("operand constraint contains incorrectly positioned "
277 if (operand_num
+ 1 == ninputs
+ noutputs
)
279 error ("%<%%%> constraint used with last operand");
284 case 'V': case TARGET_MEM_CONSTRAINT
: case 'o':
288 case '?': case '!': case '*': case '&': case '#':
289 case 'E': case 'F': case 'G': case 'H':
290 case 's': case 'i': case 'n':
291 case 'I': case 'J': case 'K': case 'L': case 'M':
292 case 'N': case 'O': case 'P': case ',':
295 case '0': case '1': case '2': case '3': case '4':
296 case '5': case '6': case '7': case '8': case '9':
298 error ("matching constraint not valid in output operand");
302 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
303 excepting those that expand_call created. So match memory
320 if (REG_CLASS_FROM_CONSTRAINT (*p
, p
) != NO_REGS
)
322 #ifdef EXTRA_CONSTRAINT_STR
323 else if (EXTRA_ADDRESS_CONSTRAINT (*p
, p
))
325 else if (EXTRA_MEMORY_CONSTRAINT (*p
, p
))
329 /* Otherwise we can't assume anything about the nature of
330 the constraint except that it isn't purely registers.
331 Treat it like "g" and hope for the best. */
342 /* Similar, but for input constraints. */
345 parse_input_constraint (const char **constraint_p
, int input_num
,
346 int ninputs
, int noutputs
, int ninout
,
347 const char * const * constraints
,
348 bool *allows_mem
, bool *allows_reg
)
350 const char *constraint
= *constraint_p
;
351 const char *orig_constraint
= constraint
;
352 size_t c_len
= strlen (constraint
);
354 bool saw_match
= false;
356 /* Assume the constraint doesn't allow the use of either
357 a register or memory. */
361 /* Make sure constraint has neither `=', `+', nor '&'. */
363 for (j
= 0; j
< c_len
; j
+= CONSTRAINT_LEN (constraint
[j
], constraint
+j
))
364 switch (constraint
[j
])
366 case '+': case '=': case '&':
367 if (constraint
== orig_constraint
)
369 error ("input operand constraint contains %qc", constraint
[j
]);
375 if (constraint
== orig_constraint
376 && input_num
+ 1 == ninputs
- ninout
)
378 error ("%<%%%> constraint used with last operand");
383 case 'V': case TARGET_MEM_CONSTRAINT
: case 'o':
388 case '?': case '!': case '*': case '#':
389 case 'E': case 'F': case 'G': case 'H':
390 case 's': case 'i': case 'n':
391 case 'I': case 'J': case 'K': case 'L': case 'M':
392 case 'N': case 'O': case 'P': case ',':
395 /* Whether or not a numeric constraint allows a register is
396 decided by the matching constraint, and so there is no need
397 to do anything special with them. We must handle them in
398 the default case, so that we don't unnecessarily force
399 operands to memory. */
400 case '0': case '1': case '2': case '3': case '4':
401 case '5': case '6': case '7': case '8': case '9':
408 match
= strtoul (constraint
+ j
, &end
, 10);
409 if (match
>= (unsigned long) noutputs
)
411 error ("matching constraint references invalid operand number");
415 /* Try and find the real constraint for this dup. Only do this
416 if the matching constraint is the only alternative. */
418 && (j
== 0 || (j
== 1 && constraint
[0] == '%')))
420 constraint
= constraints
[match
];
421 *constraint_p
= constraint
;
422 c_len
= strlen (constraint
);
424 /* ??? At the end of the loop, we will skip the first part of
425 the matched constraint. This assumes not only that the
426 other constraint is an output constraint, but also that
427 the '=' or '+' come first. */
431 j
= end
- constraint
;
432 /* Anticipate increment at end of loop. */
447 if (! ISALPHA (constraint
[j
]))
449 error ("invalid punctuation %qc in constraint", constraint
[j
]);
452 if (REG_CLASS_FROM_CONSTRAINT (constraint
[j
], constraint
+ j
)
455 #ifdef EXTRA_CONSTRAINT_STR
456 else if (EXTRA_ADDRESS_CONSTRAINT (constraint
[j
], constraint
+ j
))
458 else if (EXTRA_MEMORY_CONSTRAINT (constraint
[j
], constraint
+ j
))
462 /* Otherwise we can't assume anything about the nature of
463 the constraint except that it isn't purely registers.
464 Treat it like "g" and hope for the best. */
472 if (saw_match
&& !*allows_reg
)
473 warning (0, "matching constraint does not allow a register");
478 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
479 can be an asm-declared register. Called via walk_tree. */
482 decl_overlaps_hard_reg_set_p (tree
*declp
, int *walk_subtrees ATTRIBUTE_UNUSED
,
486 const HARD_REG_SET
*const regs
= (const HARD_REG_SET
*) data
;
488 if (TREE_CODE (decl
) == VAR_DECL
)
490 if (DECL_HARD_REGISTER (decl
)
491 && REG_P (DECL_RTL (decl
))
492 && REGNO (DECL_RTL (decl
)) < FIRST_PSEUDO_REGISTER
)
494 rtx reg
= DECL_RTL (decl
);
496 if (overlaps_hard_reg_set_p (*regs
, GET_MODE (reg
), REGNO (reg
)))
501 else if (TYPE_P (decl
) || TREE_CODE (decl
) == PARM_DECL
)
506 /* If there is an overlap between *REGS and DECL, return the first overlap
509 tree_overlaps_hard_reg_set (tree decl
, HARD_REG_SET
*regs
)
511 return walk_tree (&decl
, decl_overlaps_hard_reg_set_p
, regs
, NULL
);
515 /* A subroutine of expand_asm_operands. Check that all operand names
516 are unique. Return true if so. We rely on the fact that these names
517 are identifiers, and so have been canonicalized by get_identifier,
518 so all we need are pointer comparisons. */
521 check_unique_operand_names (tree outputs
, tree inputs
, tree labels
)
523 tree i
, j
, i_name
= NULL_TREE
;
525 for (i
= outputs
; i
; i
= TREE_CHAIN (i
))
527 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
531 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
532 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
536 for (i
= inputs
; i
; i
= TREE_CHAIN (i
))
538 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
542 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
543 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
545 for (j
= outputs
; j
; j
= TREE_CHAIN (j
))
546 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
550 for (i
= labels
; i
; i
= TREE_CHAIN (i
))
552 i_name
= TREE_PURPOSE (i
);
556 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
557 if (simple_cst_equal (i_name
, TREE_PURPOSE (j
)))
559 for (j
= inputs
; j
; j
= TREE_CHAIN (j
))
560 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
567 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name
));
571 /* A subroutine of expand_asm_operands. Resolve the names of the operands
572 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
573 STRING and in the constraints to those numbers. */
576 resolve_asm_operand_names (tree string
, tree outputs
, tree inputs
, tree labels
)
583 check_unique_operand_names (outputs
, inputs
, labels
);
585 /* Substitute [<name>] in input constraint strings. There should be no
586 named operands in output constraints. */
587 for (t
= inputs
; t
; t
= TREE_CHAIN (t
))
589 c
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
590 if (strchr (c
, '[') != NULL
)
592 p
= buffer
= xstrdup (c
);
593 while ((p
= strchr (p
, '[')) != NULL
)
594 p
= resolve_operand_name_1 (p
, outputs
, inputs
, NULL
);
595 TREE_VALUE (TREE_PURPOSE (t
))
596 = build_string (strlen (buffer
), buffer
);
601 /* Now check for any needed substitutions in the template. */
602 c
= TREE_STRING_POINTER (string
);
603 while ((c
= strchr (c
, '%')) != NULL
)
607 else if (ISALPHA (c
[1]) && c
[2] == '[')
611 c
+= 1 + (c
[1] == '%');
618 /* OK, we need to make a copy so we can perform the substitutions.
619 Assume that we will not need extra space--we get to remove '['
620 and ']', which means we cannot have a problem until we have more
621 than 999 operands. */
622 buffer
= xstrdup (TREE_STRING_POINTER (string
));
623 p
= buffer
+ (c
- TREE_STRING_POINTER (string
));
625 while ((p
= strchr (p
, '%')) != NULL
)
629 else if (ISALPHA (p
[1]) && p
[2] == '[')
633 p
+= 1 + (p
[1] == '%');
637 p
= resolve_operand_name_1 (p
, outputs
, inputs
, labels
);
640 string
= build_string (strlen (buffer
), buffer
);
647 /* A subroutine of resolve_operand_names. P points to the '[' for a
648 potential named operand of the form [<name>]. In place, replace
649 the name and brackets with a number. Return a pointer to the
650 balance of the string after substitution. */
653 resolve_operand_name_1 (char *p
, tree outputs
, tree inputs
, tree labels
)
659 /* Collect the operand name. */
660 q
= strchr (++p
, ']');
663 error ("missing close brace for named operand");
664 return strchr (p
, '\0');
668 /* Resolve the name to a number. */
669 for (op
= 0, t
= outputs
; t
; t
= TREE_CHAIN (t
), op
++)
671 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
672 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
675 for (t
= inputs
; t
; t
= TREE_CHAIN (t
), op
++)
677 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
678 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
681 for (t
= labels
; t
; t
= TREE_CHAIN (t
), op
++)
683 tree name
= TREE_PURPOSE (t
);
684 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
688 error ("undefined named operand %qs", identifier_to_locale (p
));
692 /* Replace the name with the number. Unfortunately, not all libraries
693 get the return value of sprintf correct, so search for the end of the
694 generated string by hand. */
695 sprintf (--p
, "%d", op
);
696 p
= strchr (p
, '\0');
698 /* Verify the no extra buffer space assumption. */
701 /* Shift the rest of the buffer down to fill the gap. */
702 memmove (p
, q
+ 1, strlen (q
+ 1) + 1);
708 /* Generate RTL to return directly from the current function.
709 (That is, we bypass any return value.) */
712 expand_naked_return (void)
716 clear_pending_stack_adjust ();
717 do_pending_stack_adjust ();
719 end_label
= naked_return_label
;
721 end_label
= naked_return_label
= gen_label_rtx ();
723 emit_jump (end_label
);
726 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
727 is the probability of jumping to LABEL. */
729 do_jump_if_equal (enum machine_mode mode
, rtx op0
, rtx op1
, rtx label
,
730 int unsignedp
, int prob
)
732 gcc_assert (prob
<= REG_BR_PROB_BASE
);
733 do_compare_rtx_and_jump (op0
, op1
, EQ
, unsignedp
, mode
,
734 NULL_RTX
, NULL_RTX
, label
, prob
);
737 /* Do the insertion of a case label into case_list. The labels are
738 fed to us in descending order from the sorted vector of case labels used
739 in the tree part of the middle end. So the list we construct is
740 sorted in ascending order.
742 LABEL is the case label to be inserted. LOW and HIGH are the bounds
743 against which the index is compared to jump to LABEL and PROB is the
744 estimated probability LABEL is reached from the switch statement. */
746 static struct case_node
*
747 add_case_node (struct case_node
*head
, tree low
, tree high
,
748 tree label
, int prob
, alloc_pool case_node_pool
)
752 gcc_checking_assert (low
);
753 gcc_checking_assert (high
&& (TREE_TYPE (low
) == TREE_TYPE (high
)));
755 /* Add this label to the chain. */
756 r
= (struct case_node
*) pool_alloc (case_node_pool
);
759 r
->code_label
= label
;
760 r
->parent
= r
->left
= NULL
;
762 r
->subtree_prob
= prob
;
767 /* Dump ROOT, a list or tree of case nodes, to file. */
770 dump_case_nodes (FILE *f
, struct case_node
*root
,
771 int indent_step
, int indent_level
)
773 HOST_WIDE_INT low
, high
;
779 dump_case_nodes (f
, root
->left
, indent_step
, indent_level
);
781 low
= tree_to_shwi (root
->low
);
782 high
= tree_to_shwi (root
->high
);
786 fprintf (f
, "%*s" HOST_WIDE_INT_PRINT_DEC
,
787 indent_step
* indent_level
, "", low
);
789 fprintf (f
, "%*s" HOST_WIDE_INT_PRINT_DEC
" ... " HOST_WIDE_INT_PRINT_DEC
,
790 indent_step
* indent_level
, "", low
, high
);
793 dump_case_nodes (f
, root
->right
, indent_step
, indent_level
);
797 #define HAVE_casesi 0
800 #ifndef HAVE_tablejump
801 #define HAVE_tablejump 0
804 /* Return the smallest number of different values for which it is best to use a
805 jump-table instead of a tree of conditional branches. */
808 case_values_threshold (void)
810 unsigned int threshold
= PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD
);
813 threshold
= targetm
.case_values_threshold ();
818 /* Return true if a switch should be expanded as a decision tree.
819 RANGE is the difference between highest and lowest case.
820 UNIQ is number of unique case node targets, not counting the default case.
821 COUNT is the number of comparisons needed, not counting the default case. */
824 expand_switch_as_decision_tree_p (tree range
,
825 unsigned int uniq ATTRIBUTE_UNUSED
,
830 /* If neither casesi or tablejump is available, or flag_jump_tables
831 over-ruled us, we really have no choice. */
832 if (!HAVE_casesi
&& !HAVE_tablejump
)
834 if (!flag_jump_tables
)
836 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
841 /* If the switch is relatively small such that the cost of one
842 indirect jump on the target are higher than the cost of a
843 decision tree, go with the decision tree.
845 If range of values is much bigger than number of values,
846 or if it is too large to represent in a HOST_WIDE_INT,
847 make a sequence of conditional branches instead of a dispatch.
849 The definition of "much bigger" depends on whether we are
850 optimizing for size or for speed. If the former, the maximum
851 ratio range/count = 3, because this was found to be the optimal
852 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
853 10 is much older, and was probably selected after an extensive
854 benchmarking investigation on numerous platforms. Or maybe it
855 just made sense to someone at some point in the history of GCC,
857 max_ratio
= optimize_insn_for_size_p () ? 3 : 10;
858 if (count
< case_values_threshold ()
859 || ! tree_fits_uhwi_p (range
)
860 || compare_tree_int (range
, max_ratio
* count
) > 0)
866 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
867 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
868 DEFAULT_PROB is the estimated probability that it jumps to
871 We generate a binary decision tree to select the appropriate target
872 code. This is done as follows:
874 If the index is a short or char that we do not have
875 an insn to handle comparisons directly, convert it to
876 a full integer now, rather than letting each comparison
877 generate the conversion.
879 Load the index into a register.
881 The list of cases is rearranged into a binary tree,
882 nearly optimal assuming equal probability for each case.
884 The tree is transformed into RTL, eliminating redundant
885 test conditions at the same time.
887 If program flow could reach the end of the decision tree
888 an unconditional jump to the default code is emitted.
890 The above process is unaware of the CFG. The caller has to fix up
891 the CFG itself. This is done in cfgexpand.c. */
894 emit_case_decision_tree (tree index_expr
, tree index_type
,
895 struct case_node
*case_list
, rtx default_label
,
898 rtx index
= expand_normal (index_expr
);
900 if (GET_MODE_CLASS (GET_MODE (index
)) == MODE_INT
901 && ! have_insn_for (COMPARE
, GET_MODE (index
)))
903 int unsignedp
= TYPE_UNSIGNED (index_type
);
904 enum machine_mode wider_mode
;
905 for (wider_mode
= GET_MODE (index
); wider_mode
!= VOIDmode
;
906 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
907 if (have_insn_for (COMPARE
, wider_mode
))
909 index
= convert_to_mode (wider_mode
, index
, unsignedp
);
914 do_pending_stack_adjust ();
918 index
= copy_to_reg (index
);
919 if (TREE_CODE (index_expr
) == SSA_NAME
)
920 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr
), index
);
923 balance_case_nodes (&case_list
, NULL
);
925 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
927 int indent_step
= ceil_log2 (TYPE_PRECISION (index_type
)) + 2;
928 fprintf (dump_file
, ";; Expanding GIMPLE switch as decision tree:\n");
929 dump_case_nodes (dump_file
, case_list
, indent_step
, 0);
932 emit_case_nodes (index
, case_list
, default_label
, default_prob
, index_type
);
934 emit_jump (default_label
);
937 /* Return the sum of probabilities of outgoing edges of basic block BB. */
940 get_outgoing_edge_probs (basic_block bb
)
947 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
948 prob_sum
+= e
->probability
;
952 /* Computes the conditional probability of jumping to a target if the branch
953 instruction is executed.
954 TARGET_PROB is the estimated probability of jumping to a target relative
955 to some basic block BB.
956 BASE_PROB is the probability of reaching the branch instruction relative
957 to the same basic block BB. */
960 conditional_probability (int target_prob
, int base_prob
)
964 gcc_assert (target_prob
>= 0);
965 gcc_assert (target_prob
<= base_prob
);
966 return GCOV_COMPUTE_SCALE (target_prob
, base_prob
);
971 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
972 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
973 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
974 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
976 First, a jump insn is emitted. First we try "casesi". If that
977 fails, try "tablejump". A target *must* have one of them (or both).
979 Then, a table with the target labels is emitted.
981 The process is unaware of the CFG. The caller has to fix up
982 the CFG itself. This is done in cfgexpand.c. */
985 emit_case_dispatch_table (tree index_expr
, tree index_type
,
986 struct case_node
*case_list
, rtx default_label
,
987 tree minval
, tree maxval
, tree range
,
993 rtx fallback_label
= label_rtx (case_list
->code_label
);
994 rtx table_label
= gen_label_rtx ();
995 bool has_gaps
= false;
996 edge default_edge
= stmt_bb
? EDGE_SUCC (stmt_bb
, 0) : NULL
;
997 int default_prob
= default_edge
? default_edge
->probability
: 0;
998 int base
= get_outgoing_edge_probs (stmt_bb
);
999 bool try_with_tablejump
= false;
1001 int new_default_prob
= conditional_probability (default_prob
,
1004 if (! try_casesi (index_type
, index_expr
, minval
, range
,
1005 table_label
, default_label
, fallback_label
,
1008 /* Index jumptables from zero for suitable values of minval to avoid
1009 a subtraction. For the rationale see:
1010 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
1011 if (optimize_insn_for_speed_p ()
1012 && compare_tree_int (minval
, 0) > 0
1013 && compare_tree_int (minval
, 3) < 0)
1015 minval
= build_int_cst (index_type
, 0);
1019 try_with_tablejump
= true;
1022 /* Get table of labels to jump to, in order of case index. */
1024 ncases
= tree_to_shwi (range
) + 1;
1025 labelvec
= XALLOCAVEC (rtx
, ncases
);
1026 memset (labelvec
, 0, ncases
* sizeof (rtx
));
1028 for (n
= case_list
; n
; n
= n
->right
)
1030 /* Compute the low and high bounds relative to the minimum
1031 value since that should fit in a HOST_WIDE_INT while the
1032 actual values may not. */
1034 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1036 HOST_WIDE_INT i_high
1037 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1041 for (i
= i_low
; i
<= i_high
; i
++)
1043 = gen_rtx_LABEL_REF (Pmode
, label_rtx (n
->code_label
));
1046 /* Fill in the gaps with the default. We may have gaps at
1047 the beginning if we tried to avoid the minval subtraction,
1048 so substitute some label even if the default label was
1049 deemed unreachable. */
1051 default_label
= fallback_label
;
1052 for (i
= 0; i
< ncases
; i
++)
1053 if (labelvec
[i
] == 0)
1056 labelvec
[i
] = gen_rtx_LABEL_REF (Pmode
, default_label
);
1061 /* There is at least one entry in the jump table that jumps
1062 to default label. The default label can either be reached
1063 through the indirect jump or the direct conditional jump
1064 before that. Split the probability of reaching the
1065 default label among these two jumps. */
1066 new_default_prob
= conditional_probability (default_prob
/2,
1069 base
-= default_prob
;
1073 base
-= default_prob
;
1078 default_edge
->probability
= default_prob
;
1080 /* We have altered the probability of the default edge. So the probabilities
1081 of all other edges need to be adjusted so that it sums up to
1082 REG_BR_PROB_BASE. */
1087 FOR_EACH_EDGE (e
, ei
, stmt_bb
->succs
)
1088 e
->probability
= GCOV_COMPUTE_SCALE (e
->probability
, base
);
1091 if (try_with_tablejump
)
1093 bool ok
= try_tablejump (index_type
, index_expr
, minval
, range
,
1094 table_label
, default_label
, new_default_prob
);
1097 /* Output the table. */
1098 emit_label (table_label
);
1100 if (CASE_VECTOR_PC_RELATIVE
|| flag_pic
)
1101 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE
,
1102 gen_rtx_LABEL_REF (Pmode
,
1104 gen_rtvec_v (ncases
, labelvec
),
1105 const0_rtx
, const0_rtx
));
1107 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE
,
1108 gen_rtvec_v (ncases
, labelvec
)));
1110 /* Record no drop-through after the table. */
1114 /* Reset the aux field of all outgoing edges of basic block BB. */
1117 reset_out_edges_aux (basic_block bb
)
1121 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1125 /* Compute the number of case labels that correspond to each outgoing edge of
1126 STMT. Record this information in the aux field of the edge. */
1129 compute_cases_per_edge (gimple stmt
)
1131 basic_block bb
= gimple_bb (stmt
);
1132 reset_out_edges_aux (bb
);
1133 int ncases
= gimple_switch_num_labels (stmt
);
1134 for (int i
= ncases
- 1; i
>= 1; --i
)
1136 tree elt
= gimple_switch_label (stmt
, i
);
1137 tree lab
= CASE_LABEL (elt
);
1138 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1139 edge case_edge
= find_edge (bb
, case_bb
);
1140 case_edge
->aux
= (void *)((intptr_t)(case_edge
->aux
) + 1);
1144 /* Terminate a case (Pascal/Ada) or switch (C) statement
1145 in which ORIG_INDEX is the expression to be tested.
1146 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1147 type as given in the source before any compiler conversions.
1148 Generate the code to test it and jump to the right place. */
1151 expand_case (gimple stmt
)
1153 tree minval
= NULL_TREE
, maxval
= NULL_TREE
, range
= NULL_TREE
;
1154 rtx default_label
= NULL_RTX
;
1155 unsigned int count
, uniq
;
1157 int ncases
= gimple_switch_num_labels (stmt
);
1158 tree index_expr
= gimple_switch_index (stmt
);
1159 tree index_type
= TREE_TYPE (index_expr
);
1161 basic_block bb
= gimple_bb (stmt
);
1163 /* A list of case labels; it is first built as a list and it may then
1164 be rearranged into a nearly balanced binary tree. */
1165 struct case_node
*case_list
= 0;
1167 /* A pool for case nodes. */
1168 alloc_pool case_node_pool
;
1170 /* An ERROR_MARK occurs for various reasons including invalid data type.
1171 ??? Can this still happen, with GIMPLE and all? */
1172 if (index_type
== error_mark_node
)
1175 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1176 expressions being INTEGER_CST. */
1177 gcc_assert (TREE_CODE (index_expr
) != INTEGER_CST
);
1179 case_node_pool
= create_alloc_pool ("struct case_node pool",
1180 sizeof (struct case_node
),
1183 do_pending_stack_adjust ();
1185 /* Find the default case target label. */
1186 default_label
= label_rtx (CASE_LABEL (gimple_switch_default_label (stmt
)));
1187 edge default_edge
= EDGE_SUCC (bb
, 0);
1188 int default_prob
= default_edge
->probability
;
1190 /* Get upper and lower bounds of case values. */
1191 elt
= gimple_switch_label (stmt
, 1);
1192 minval
= fold_convert (index_type
, CASE_LOW (elt
));
1193 elt
= gimple_switch_label (stmt
, ncases
- 1);
1194 if (CASE_HIGH (elt
))
1195 maxval
= fold_convert (index_type
, CASE_HIGH (elt
));
1197 maxval
= fold_convert (index_type
, CASE_LOW (elt
));
1199 /* Compute span of values. */
1200 range
= fold_build2 (MINUS_EXPR
, index_type
, maxval
, minval
);
1202 /* Listify the labels queue and gather some numbers to decide
1203 how to expand this switch(). */
1206 struct pointer_set_t
*seen_labels
= pointer_set_create ();
1207 compute_cases_per_edge (stmt
);
1209 for (i
= ncases
- 1; i
>= 1; --i
)
1211 elt
= gimple_switch_label (stmt
, i
);
1212 tree low
= CASE_LOW (elt
);
1214 tree high
= CASE_HIGH (elt
);
1215 gcc_assert (! high
|| tree_int_cst_lt (low
, high
));
1216 tree lab
= CASE_LABEL (elt
);
1218 /* Count the elements.
1219 A range counts double, since it requires two compares. */
1224 /* If we have not seen this label yet, then increase the
1225 number of unique case node targets seen. */
1226 if (!pointer_set_insert (seen_labels
, lab
))
1229 /* The bounds on the case range, LOW and HIGH, have to be converted
1230 to case's index type TYPE. Note that the original type of the
1231 case index in the source code is usually "lost" during
1232 gimplification due to type promotion, but the case labels retain the
1233 original type. Make sure to drop overflow flags. */
1234 low
= fold_convert (index_type
, low
);
1235 if (TREE_OVERFLOW (low
))
1236 low
= build_int_cst_wide (index_type
,
1237 TREE_INT_CST_LOW (low
),
1238 TREE_INT_CST_HIGH (low
));
1240 /* The canonical from of a case label in GIMPLE is that a simple case
1241 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1242 the back ends want simple cases to have high == low. */
1245 high
= fold_convert (index_type
, high
);
1246 if (TREE_OVERFLOW (high
))
1247 high
= build_int_cst_wide (index_type
,
1248 TREE_INT_CST_LOW (high
),
1249 TREE_INT_CST_HIGH (high
));
1251 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1252 edge case_edge
= find_edge (bb
, case_bb
);
1253 case_list
= add_case_node (
1254 case_list
, low
, high
, lab
,
1255 case_edge
->probability
/ (intptr_t)(case_edge
->aux
),
1258 pointer_set_destroy (seen_labels
);
1259 reset_out_edges_aux (bb
);
1261 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1262 destination, such as one with a default case only.
1263 It also removes cases that are out of range for the switch
1264 type, so we should never get a zero here. */
1265 gcc_assert (count
> 0);
1267 rtx before_case
= get_last_insn ();
1269 /* Decide how to expand this switch.
1270 The two options at this point are a dispatch table (casesi or
1271 tablejump) or a decision tree. */
1273 if (expand_switch_as_decision_tree_p (range
, uniq
, count
))
1274 emit_case_decision_tree (index_expr
, index_type
,
1275 case_list
, default_label
,
1278 emit_case_dispatch_table (index_expr
, index_type
,
1279 case_list
, default_label
,
1280 minval
, maxval
, range
, bb
);
1282 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1285 free_alloc_pool (case_node_pool
);
1288 /* Expand the dispatch to a short decrement chain if there are few cases
1289 to dispatch to. Likewise if neither casesi nor tablejump is available,
1290 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1291 tablejump. The index mode is always the mode of integer_type_node.
1292 Trap if no case matches the index.
1294 DISPATCH_INDEX is the index expression to switch on. It should be a
1295 memory or register operand.
1297 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1298 ascending order, be contiguous, starting with value 0, and contain only
1299 single-valued case labels. */
1302 expand_sjlj_dispatch_table (rtx dispatch_index
,
1303 vec
<tree
> dispatch_table
)
1305 tree index_type
= integer_type_node
;
1306 enum machine_mode index_mode
= TYPE_MODE (index_type
);
1308 int ncases
= dispatch_table
.length ();
1310 do_pending_stack_adjust ();
1311 rtx before_case
= get_last_insn ();
1313 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1314 labels. This covers more than 98% of the cases in libjava,
1315 and seems to be a reasonable compromise between the "old way"
1316 of expanding as a decision tree or dispatch table vs. the "new
1317 way" with decrement chain or dispatch table. */
1318 if (dispatch_table
.length () <= 5
1319 || (!HAVE_casesi
&& !HAVE_tablejump
)
1320 || !flag_jump_tables
)
1322 /* Expand the dispatch as a decrement chain:
1324 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1328 if (index == 0) do_0; else index--;
1329 if (index == 0) do_1; else index--;
1331 if (index == 0) do_N; else index--;
1333 This is more efficient than a dispatch table on most machines.
1334 The last "index--" is redundant but the code is trivially dead
1335 and will be cleaned up by later passes. */
1336 rtx index
= copy_to_mode_reg (index_mode
, dispatch_index
);
1337 rtx zero
= CONST0_RTX (index_mode
);
1338 for (int i
= 0; i
< ncases
; i
++)
1340 tree elt
= dispatch_table
[i
];
1341 rtx lab
= label_rtx (CASE_LABEL (elt
));
1342 do_jump_if_equal (index_mode
, index
, zero
, lab
, 0, -1);
1343 force_expand_binop (index_mode
, sub_optab
,
1344 index
, CONST1_RTX (index_mode
),
1345 index
, 0, OPTAB_DIRECT
);
1350 /* Similar to expand_case, but much simpler. */
1351 struct case_node
*case_list
= 0;
1352 alloc_pool case_node_pool
= create_alloc_pool ("struct sjlj_case pool",
1353 sizeof (struct case_node
),
1355 tree index_expr
= make_tree (index_type
, dispatch_index
);
1356 tree minval
= build_int_cst (index_type
, 0);
1357 tree maxval
= CASE_LOW (dispatch_table
.last ());
1358 tree range
= maxval
;
1359 rtx default_label
= gen_label_rtx ();
1361 for (int i
= ncases
- 1; i
>= 0; --i
)
1363 tree elt
= dispatch_table
[i
];
1364 tree low
= CASE_LOW (elt
);
1365 tree lab
= CASE_LABEL (elt
);
1366 case_list
= add_case_node (case_list
, low
, low
, lab
, 0, case_node_pool
);
1369 emit_case_dispatch_table (index_expr
, index_type
,
1370 case_list
, default_label
,
1371 minval
, maxval
, range
,
1372 BLOCK_FOR_INSN (before_case
));
1373 emit_label (default_label
);
1374 free_alloc_pool (case_node_pool
);
1377 /* Dispatching something not handled? Trap! */
1378 expand_builtin_trap ();
1380 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1386 /* Take an ordered list of case nodes
1387 and transform them into a near optimal binary tree,
1388 on the assumption that any target code selection value is as
1389 likely as any other.
1391 The transformation is performed by splitting the ordered
1392 list into two equal sections plus a pivot. The parts are
1393 then attached to the pivot as left and right branches. Each
1394 branch is then transformed recursively. */
1397 balance_case_nodes (case_node_ptr
*head
, case_node_ptr parent
)
1409 /* Count the number of entries on branch. Also count the ranges. */
1413 if (!tree_int_cst_equal (np
->low
, np
->high
))
1422 /* Split this list if it is long enough for that to help. */
1426 /* If there are just three nodes, split at the middle one. */
1428 npp
= &(*npp
)->right
;
1431 /* Find the place in the list that bisects the list's total cost,
1432 where ranges count as 2.
1433 Here I gets half the total cost. */
1434 i
= (i
+ ranges
+ 1) / 2;
1437 /* Skip nodes while their cost does not reach that amount. */
1438 if (!tree_int_cst_equal ((*npp
)->low
, (*npp
)->high
))
1443 npp
= &(*npp
)->right
;
1448 np
->parent
= parent
;
1451 /* Optimize each of the two split parts. */
1452 balance_case_nodes (&np
->left
, np
);
1453 balance_case_nodes (&np
->right
, np
);
1454 np
->subtree_prob
= np
->prob
;
1455 np
->subtree_prob
+= np
->left
->subtree_prob
;
1456 np
->subtree_prob
+= np
->right
->subtree_prob
;
1460 /* Else leave this branch as one level,
1461 but fill in `parent' fields. */
1463 np
->parent
= parent
;
1464 np
->subtree_prob
= np
->prob
;
1465 for (; np
->right
; np
= np
->right
)
1467 np
->right
->parent
= np
;
1468 (*head
)->subtree_prob
+= np
->right
->subtree_prob
;
1474 /* Search the parent sections of the case node tree
1475 to see if a test for the lower bound of NODE would be redundant.
1476 INDEX_TYPE is the type of the index expression.
1478 The instructions to generate the case decision tree are
1479 output in the same order as nodes are processed so it is
1480 known that if a parent node checks the range of the current
1481 node minus one that the current node is bounded at its lower
1482 span. Thus the test would be redundant. */
1485 node_has_low_bound (case_node_ptr node
, tree index_type
)
1488 case_node_ptr pnode
;
1490 /* If the lower bound of this node is the lowest value in the index type,
1491 we need not test it. */
1493 if (tree_int_cst_equal (node
->low
, TYPE_MIN_VALUE (index_type
)))
1496 /* If this node has a left branch, the value at the left must be less
1497 than that at this node, so it cannot be bounded at the bottom and
1498 we need not bother testing any further. */
1503 low_minus_one
= fold_build2 (MINUS_EXPR
, TREE_TYPE (node
->low
),
1505 build_int_cst (TREE_TYPE (node
->low
), 1));
1507 /* If the subtraction above overflowed, we can't verify anything.
1508 Otherwise, look for a parent that tests our value - 1. */
1510 if (! tree_int_cst_lt (low_minus_one
, node
->low
))
1513 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1514 if (tree_int_cst_equal (low_minus_one
, pnode
->high
))
1520 /* Search the parent sections of the case node tree
1521 to see if a test for the upper bound of NODE would be redundant.
1522 INDEX_TYPE is the type of the index expression.
1524 The instructions to generate the case decision tree are
1525 output in the same order as nodes are processed so it is
1526 known that if a parent node checks the range of the current
1527 node plus one that the current node is bounded at its upper
1528 span. Thus the test would be redundant. */
1531 node_has_high_bound (case_node_ptr node
, tree index_type
)
1534 case_node_ptr pnode
;
1536 /* If there is no upper bound, obviously no test is needed. */
1538 if (TYPE_MAX_VALUE (index_type
) == NULL
)
1541 /* If the upper bound of this node is the highest value in the type
1542 of the index expression, we need not test against it. */
1544 if (tree_int_cst_equal (node
->high
, TYPE_MAX_VALUE (index_type
)))
1547 /* If this node has a right branch, the value at the right must be greater
1548 than that at this node, so it cannot be bounded at the top and
1549 we need not bother testing any further. */
1554 high_plus_one
= fold_build2 (PLUS_EXPR
, TREE_TYPE (node
->high
),
1556 build_int_cst (TREE_TYPE (node
->high
), 1));
1558 /* If the addition above overflowed, we can't verify anything.
1559 Otherwise, look for a parent that tests our value + 1. */
1561 if (! tree_int_cst_lt (node
->high
, high_plus_one
))
1564 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1565 if (tree_int_cst_equal (high_plus_one
, pnode
->low
))
1571 /* Search the parent sections of the
1572 case node tree to see if both tests for the upper and lower
1573 bounds of NODE would be redundant. */
1576 node_is_bounded (case_node_ptr node
, tree index_type
)
1578 return (node_has_low_bound (node
, index_type
)
1579 && node_has_high_bound (node
, index_type
));
1583 /* Emit step-by-step code to select a case for the value of INDEX.
1584 The thus generated decision tree follows the form of the
1585 case-node binary tree NODE, whose nodes represent test conditions.
1586 INDEX_TYPE is the type of the index of the switch.
1588 Care is taken to prune redundant tests from the decision tree
1589 by detecting any boundary conditions already checked by
1590 emitted rtx. (See node_has_high_bound, node_has_low_bound
1591 and node_is_bounded, above.)
1593 Where the test conditions can be shown to be redundant we emit
1594 an unconditional jump to the target code. As a further
1595 optimization, the subordinates of a tree node are examined to
1596 check for bounded nodes. In this case conditional and/or
1597 unconditional jumps as a result of the boundary check for the
1598 current node are arranged to target the subordinates associated
1599 code for out of bound conditions on the current node.
1601 We can assume that when control reaches the code generated here,
1602 the index value has already been compared with the parents
1603 of this node, and determined to be on the same side of each parent
1604 as this node is. Thus, if this node tests for the value 51,
1605 and a parent tested for 52, we don't need to consider
1606 the possibility of a value greater than 51. If another parent
1607 tests for the value 50, then this node need not test anything. */
1610 emit_case_nodes (rtx index
, case_node_ptr node
, rtx default_label
,
1611 int default_prob
, tree index_type
)
1613 /* If INDEX has an unsigned type, we must make unsigned branches. */
1614 int unsignedp
= TYPE_UNSIGNED (index_type
);
1616 int prob
= node
->prob
, subtree_prob
= node
->subtree_prob
;
1617 enum machine_mode mode
= GET_MODE (index
);
1618 enum machine_mode imode
= TYPE_MODE (index_type
);
1620 /* Handle indices detected as constant during RTL expansion. */
1621 if (mode
== VOIDmode
)
1624 /* See if our parents have already tested everything for us.
1625 If they have, emit an unconditional jump for this node. */
1626 if (node_is_bounded (node
, index_type
))
1627 emit_jump (label_rtx (node
->code_label
));
1629 else if (tree_int_cst_equal (node
->low
, node
->high
))
1631 probability
= conditional_probability (prob
, subtree_prob
+ default_prob
);
1632 /* Node is single valued. First see if the index expression matches
1633 this node and then check our children, if any. */
1634 do_jump_if_equal (mode
, index
,
1635 convert_modes (mode
, imode
,
1636 expand_normal (node
->low
),
1638 label_rtx (node
->code_label
), unsignedp
, probability
);
1639 /* Since this case is taken at this point, reduce its weight from
1641 subtree_prob
-= prob
;
1642 if (node
->right
!= 0 && node
->left
!= 0)
1644 /* This node has children on both sides.
1645 Dispatch to one side or the other
1646 by comparing the index value with this node's value.
1647 If one subtree is bounded, check that one first,
1648 so we can avoid real branches in the tree. */
1650 if (node_is_bounded (node
->right
, index_type
))
1652 probability
= conditional_probability (
1654 subtree_prob
+ default_prob
);
1655 emit_cmp_and_jump_insns (index
,
1658 expand_normal (node
->high
),
1660 GT
, NULL_RTX
, mode
, unsignedp
,
1661 label_rtx (node
->right
->code_label
),
1663 emit_case_nodes (index
, node
->left
, default_label
, default_prob
,
1667 else if (node_is_bounded (node
->left
, index_type
))
1669 probability
= conditional_probability (
1671 subtree_prob
+ default_prob
);
1672 emit_cmp_and_jump_insns (index
,
1675 expand_normal (node
->high
),
1677 LT
, NULL_RTX
, mode
, unsignedp
,
1678 label_rtx (node
->left
->code_label
),
1680 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1683 /* If both children are single-valued cases with no
1684 children, finish up all the work. This way, we can save
1685 one ordered comparison. */
1686 else if (tree_int_cst_equal (node
->right
->low
, node
->right
->high
)
1687 && node
->right
->left
== 0
1688 && node
->right
->right
== 0
1689 && tree_int_cst_equal (node
->left
->low
, node
->left
->high
)
1690 && node
->left
->left
== 0
1691 && node
->left
->right
== 0)
1693 /* Neither node is bounded. First distinguish the two sides;
1694 then emit the code for one side at a time. */
1696 /* See if the value matches what the right hand side
1698 probability
= conditional_probability (
1700 subtree_prob
+ default_prob
);
1701 do_jump_if_equal (mode
, index
,
1702 convert_modes (mode
, imode
,
1703 expand_normal (node
->right
->low
),
1705 label_rtx (node
->right
->code_label
),
1706 unsignedp
, probability
);
1708 /* See if the value matches what the left hand side
1710 probability
= conditional_probability (
1712 subtree_prob
+ default_prob
);
1713 do_jump_if_equal (mode
, index
,
1714 convert_modes (mode
, imode
,
1715 expand_normal (node
->left
->low
),
1717 label_rtx (node
->left
->code_label
),
1718 unsignedp
, probability
);
1723 /* Neither node is bounded. First distinguish the two sides;
1724 then emit the code for one side at a time. */
1727 = build_decl (curr_insn_location (),
1728 LABEL_DECL
, NULL_TREE
, NULL_TREE
);
1730 /* The default label could be reached either through the right
1731 subtree or the left subtree. Divide the probability
1733 probability
= conditional_probability (
1734 node
->right
->subtree_prob
+ default_prob
/2,
1735 subtree_prob
+ default_prob
);
1736 /* See if the value is on the right. */
1737 emit_cmp_and_jump_insns (index
,
1740 expand_normal (node
->high
),
1742 GT
, NULL_RTX
, mode
, unsignedp
,
1743 label_rtx (test_label
),
1747 /* Value must be on the left.
1748 Handle the left-hand subtree. */
1749 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1750 /* If left-hand subtree does nothing,
1753 emit_jump (default_label
);
1755 /* Code branches here for the right-hand subtree. */
1756 expand_label (test_label
);
1757 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1761 else if (node
->right
!= 0 && node
->left
== 0)
1763 /* Here we have a right child but no left so we issue a conditional
1764 branch to default and process the right child.
1766 Omit the conditional branch to default if the right child
1767 does not have any children and is single valued; it would
1768 cost too much space to save so little time. */
1770 if (node
->right
->right
|| node
->right
->left
1771 || !tree_int_cst_equal (node
->right
->low
, node
->right
->high
))
1773 if (!node_has_low_bound (node
, index_type
))
1775 probability
= conditional_probability (
1777 subtree_prob
+ default_prob
);
1778 emit_cmp_and_jump_insns (index
,
1781 expand_normal (node
->high
),
1783 LT
, NULL_RTX
, mode
, unsignedp
,
1789 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1793 probability
= conditional_probability (
1794 node
->right
->subtree_prob
,
1795 subtree_prob
+ default_prob
);
1796 /* We cannot process node->right normally
1797 since we haven't ruled out the numbers less than
1798 this node's value. So handle node->right explicitly. */
1799 do_jump_if_equal (mode
, index
,
1802 expand_normal (node
->right
->low
),
1804 label_rtx (node
->right
->code_label
), unsignedp
, probability
);
1808 else if (node
->right
== 0 && node
->left
!= 0)
1810 /* Just one subtree, on the left. */
1811 if (node
->left
->left
|| node
->left
->right
1812 || !tree_int_cst_equal (node
->left
->low
, node
->left
->high
))
1814 if (!node_has_high_bound (node
, index_type
))
1816 probability
= conditional_probability (
1818 subtree_prob
+ default_prob
);
1819 emit_cmp_and_jump_insns (index
,
1822 expand_normal (node
->high
),
1824 GT
, NULL_RTX
, mode
, unsignedp
,
1830 emit_case_nodes (index
, node
->left
, default_label
,
1831 default_prob
, index_type
);
1835 probability
= conditional_probability (
1836 node
->left
->subtree_prob
,
1837 subtree_prob
+ default_prob
);
1838 /* We cannot process node->left normally
1839 since we haven't ruled out the numbers less than
1840 this node's value. So handle node->left explicitly. */
1841 do_jump_if_equal (mode
, index
,
1844 expand_normal (node
->left
->low
),
1846 label_rtx (node
->left
->code_label
), unsignedp
, probability
);
1852 /* Node is a range. These cases are very similar to those for a single
1853 value, except that we do not start by testing whether this node
1854 is the one to branch to. */
1856 if (node
->right
!= 0 && node
->left
!= 0)
1858 /* Node has subtrees on both sides.
1859 If the right-hand subtree is bounded,
1860 test for it first, since we can go straight there.
1861 Otherwise, we need to make a branch in the control structure,
1862 then handle the two subtrees. */
1863 tree test_label
= 0;
1865 if (node_is_bounded (node
->right
, index_type
))
1867 /* Right hand node is fully bounded so we can eliminate any
1868 testing and branch directly to the target code. */
1869 probability
= conditional_probability (
1870 node
->right
->subtree_prob
,
1871 subtree_prob
+ default_prob
);
1872 emit_cmp_and_jump_insns (index
,
1875 expand_normal (node
->high
),
1877 GT
, NULL_RTX
, mode
, unsignedp
,
1878 label_rtx (node
->right
->code_label
),
1883 /* Right hand node requires testing.
1884 Branch to a label where we will handle it later. */
1886 test_label
= build_decl (curr_insn_location (),
1887 LABEL_DECL
, NULL_TREE
, NULL_TREE
);
1888 probability
= conditional_probability (
1889 node
->right
->subtree_prob
+ default_prob
/2,
1890 subtree_prob
+ default_prob
);
1891 emit_cmp_and_jump_insns (index
,
1894 expand_normal (node
->high
),
1896 GT
, NULL_RTX
, mode
, unsignedp
,
1897 label_rtx (test_label
),
1902 /* Value belongs to this node or to the left-hand subtree. */
1904 probability
= conditional_probability (
1906 subtree_prob
+ default_prob
);
1907 emit_cmp_and_jump_insns (index
,
1910 expand_normal (node
->low
),
1912 GE
, NULL_RTX
, mode
, unsignedp
,
1913 label_rtx (node
->code_label
),
1916 /* Handle the left-hand subtree. */
1917 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1919 /* If right node had to be handled later, do that now. */
1923 /* If the left-hand subtree fell through,
1924 don't let it fall into the right-hand subtree. */
1926 emit_jump (default_label
);
1928 expand_label (test_label
);
1929 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1933 else if (node
->right
!= 0 && node
->left
== 0)
1935 /* Deal with values to the left of this node,
1936 if they are possible. */
1937 if (!node_has_low_bound (node
, index_type
))
1939 probability
= conditional_probability (
1941 subtree_prob
+ default_prob
);
1942 emit_cmp_and_jump_insns (index
,
1945 expand_normal (node
->low
),
1947 LT
, NULL_RTX
, mode
, unsignedp
,
1953 /* Value belongs to this node or to the right-hand subtree. */
1955 probability
= conditional_probability (
1957 subtree_prob
+ default_prob
);
1958 emit_cmp_and_jump_insns (index
,
1961 expand_normal (node
->high
),
1963 LE
, NULL_RTX
, mode
, unsignedp
,
1964 label_rtx (node
->code_label
),
1967 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1970 else if (node
->right
== 0 && node
->left
!= 0)
1972 /* Deal with values to the right of this node,
1973 if they are possible. */
1974 if (!node_has_high_bound (node
, index_type
))
1976 probability
= conditional_probability (
1978 subtree_prob
+ default_prob
);
1979 emit_cmp_and_jump_insns (index
,
1982 expand_normal (node
->high
),
1984 GT
, NULL_RTX
, mode
, unsignedp
,
1990 /* Value belongs to this node or to the left-hand subtree. */
1992 probability
= conditional_probability (
1994 subtree_prob
+ default_prob
);
1995 emit_cmp_and_jump_insns (index
,
1998 expand_normal (node
->low
),
2000 GE
, NULL_RTX
, mode
, unsignedp
,
2001 label_rtx (node
->code_label
),
2004 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
2009 /* Node has no children so we check low and high bounds to remove
2010 redundant tests. Only one of the bounds can exist,
2011 since otherwise this node is bounded--a case tested already. */
2012 int high_bound
= node_has_high_bound (node
, index_type
);
2013 int low_bound
= node_has_low_bound (node
, index_type
);
2015 if (!high_bound
&& low_bound
)
2017 probability
= conditional_probability (
2019 subtree_prob
+ default_prob
);
2020 emit_cmp_and_jump_insns (index
,
2023 expand_normal (node
->high
),
2025 GT
, NULL_RTX
, mode
, unsignedp
,
2030 else if (!low_bound
&& high_bound
)
2032 probability
= conditional_probability (
2034 subtree_prob
+ default_prob
);
2035 emit_cmp_and_jump_insns (index
,
2038 expand_normal (node
->low
),
2040 LT
, NULL_RTX
, mode
, unsignedp
,
2044 else if (!low_bound
&& !high_bound
)
2046 /* Widen LOW and HIGH to the same width as INDEX. */
2047 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
2048 tree low
= build1 (CONVERT_EXPR
, type
, node
->low
);
2049 tree high
= build1 (CONVERT_EXPR
, type
, node
->high
);
2050 rtx low_rtx
, new_index
, new_bound
;
2052 /* Instead of doing two branches, emit one unsigned branch for
2053 (index-low) > (high-low). */
2054 low_rtx
= expand_expr (low
, NULL_RTX
, mode
, EXPAND_NORMAL
);
2055 new_index
= expand_simple_binop (mode
, MINUS
, index
, low_rtx
,
2056 NULL_RTX
, unsignedp
,
2058 new_bound
= expand_expr (fold_build2 (MINUS_EXPR
, type
,
2060 NULL_RTX
, mode
, EXPAND_NORMAL
);
2062 probability
= conditional_probability (
2064 subtree_prob
+ default_prob
);
2065 emit_cmp_and_jump_insns (new_index
, new_bound
, GT
, NULL_RTX
,
2066 mode
, 1, default_label
, probability
);
2069 emit_jump (label_rtx (node
->code_label
));