* ipa/devirt9.C: Fix previous change.
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob3cd335ffd7d018c5d3c5bdb21683d0097e936295
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
77 #include "flags.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
80 #include "params.h"
81 #include "tree-pass.h"
82 #include "coverage.h"
83 #include "ggc.h"
84 #include "gimple.h"
85 #include "gimple-iterator.h"
86 #include "gimple-ssa.h"
87 #include "tree-cfg.h"
88 #include "tree-phinodes.h"
89 #include "ssa-iterators.h"
90 #include "tree-ssanames.h"
91 #include "tree-ssa-loop-niter.h"
92 #include "tree-ssa-loop.h"
93 #include "ipa-prop.h"
94 #include "lto-streamer.h"
95 #include "data-streamer.h"
96 #include "tree-streamer.h"
97 #include "ipa-inline.h"
98 #include "alloc-pool.h"
99 #include "cfgloop.h"
100 #include "tree-scalar-evolution.h"
101 #include "ipa-utils.h"
102 #include "cilk.h"
103 #include "cfgexpand.h"
105 /* Estimate runtime of function can easilly run into huge numbers with many
106 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
107 integer. For anything larger we use gcov_type. */
108 #define MAX_TIME 500000
110 /* Number of bits in integer, but we really want to be stable across different
111 hosts. */
112 #define NUM_CONDITIONS 32
114 enum predicate_conditions
116 predicate_false_condition = 0,
117 predicate_not_inlined_condition = 1,
118 predicate_first_dynamic_condition = 2
121 /* Special condition code we use to represent test that operand is compile time
122 constant. */
123 #define IS_NOT_CONSTANT ERROR_MARK
124 /* Special condition code we use to represent test that operand is not changed
125 across invocation of the function. When operand IS_NOT_CONSTANT it is always
126 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
127 of executions even when they are not compile time constants. */
128 #define CHANGED IDENTIFIER_NODE
130 /* Holders of ipa cgraph hooks: */
131 static struct cgraph_node_hook_list *function_insertion_hook_holder;
132 static struct cgraph_node_hook_list *node_removal_hook_holder;
133 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
134 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
135 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
136 static void inline_node_removal_hook (struct cgraph_node *, void *);
137 static void inline_node_duplication_hook (struct cgraph_node *,
138 struct cgraph_node *, void *);
139 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
140 static void inline_edge_duplication_hook (struct cgraph_edge *,
141 struct cgraph_edge *, void *);
143 /* VECtor holding inline summaries.
144 In GGC memory because conditions might point to constant trees. */
145 vec<inline_summary_t, va_gc> *inline_summary_vec;
146 vec<inline_edge_summary_t> inline_edge_summary_vec;
148 /* Cached node/edge growths. */
149 vec<int> node_growth_cache;
150 vec<edge_growth_cache_entry> edge_growth_cache;
152 /* Edge predicates goes here. */
153 static alloc_pool edge_predicate_pool;
155 /* Return true predicate (tautology).
156 We represent it by empty list of clauses. */
158 static inline struct predicate
159 true_predicate (void)
161 struct predicate p;
162 p.clause[0] = 0;
163 return p;
167 /* Return predicate testing single condition number COND. */
169 static inline struct predicate
170 single_cond_predicate (int cond)
172 struct predicate p;
173 p.clause[0] = 1 << cond;
174 p.clause[1] = 0;
175 return p;
179 /* Return false predicate. First clause require false condition. */
181 static inline struct predicate
182 false_predicate (void)
184 return single_cond_predicate (predicate_false_condition);
188 /* Return true if P is (false). */
190 static inline bool
191 true_predicate_p (struct predicate *p)
193 return !p->clause[0];
197 /* Return true if P is (false). */
199 static inline bool
200 false_predicate_p (struct predicate *p)
202 if (p->clause[0] == (1 << predicate_false_condition))
204 gcc_checking_assert (!p->clause[1]
205 && p->clause[0] == 1 << predicate_false_condition);
206 return true;
208 return false;
212 /* Return predicate that is set true when function is not inlined. */
214 static inline struct predicate
215 not_inlined_predicate (void)
217 return single_cond_predicate (predicate_not_inlined_condition);
220 /* Simple description of whether a memory load or a condition refers to a load
221 from an aggregate and if so, how and where from in the aggregate.
222 Individual fields have the same meaning like fields with the same name in
223 struct condition. */
225 struct agg_position_info
227 HOST_WIDE_INT offset;
228 bool agg_contents;
229 bool by_ref;
232 /* Add condition to condition list CONDS. AGGPOS describes whether the used
233 oprand is loaded from an aggregate and where in the aggregate it is. It can
234 be NULL, which means this not a load from an aggregate. */
236 static struct predicate
237 add_condition (struct inline_summary *summary, int operand_num,
238 struct agg_position_info *aggpos,
239 enum tree_code code, tree val)
241 int i;
242 struct condition *c;
243 struct condition new_cond;
244 HOST_WIDE_INT offset;
245 bool agg_contents, by_ref;
247 if (aggpos)
249 offset = aggpos->offset;
250 agg_contents = aggpos->agg_contents;
251 by_ref = aggpos->by_ref;
253 else
255 offset = 0;
256 agg_contents = false;
257 by_ref = false;
260 gcc_checking_assert (operand_num >= 0);
261 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
263 if (c->operand_num == operand_num
264 && c->code == code
265 && c->val == val
266 && c->agg_contents == agg_contents
267 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
268 return single_cond_predicate (i + predicate_first_dynamic_condition);
270 /* Too many conditions. Give up and return constant true. */
271 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
272 return true_predicate ();
274 new_cond.operand_num = operand_num;
275 new_cond.code = code;
276 new_cond.val = val;
277 new_cond.agg_contents = agg_contents;
278 new_cond.by_ref = by_ref;
279 new_cond.offset = offset;
280 vec_safe_push (summary->conds, new_cond);
281 return single_cond_predicate (i + predicate_first_dynamic_condition);
285 /* Add clause CLAUSE into the predicate P. */
287 static inline void
288 add_clause (conditions conditions, struct predicate *p, clause_t clause)
290 int i;
291 int i2;
292 int insert_here = -1;
293 int c1, c2;
295 /* True clause. */
296 if (!clause)
297 return;
299 /* False clause makes the whole predicate false. Kill the other variants. */
300 if (clause == (1 << predicate_false_condition))
302 p->clause[0] = (1 << predicate_false_condition);
303 p->clause[1] = 0;
304 return;
306 if (false_predicate_p (p))
307 return;
309 /* No one should be sily enough to add false into nontrivial clauses. */
310 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
312 /* Look where to insert the clause. At the same time prune out
313 clauses of P that are implied by the new clause and thus
314 redundant. */
315 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
317 p->clause[i2] = p->clause[i];
319 if (!p->clause[i])
320 break;
322 /* If p->clause[i] implies clause, there is nothing to add. */
323 if ((p->clause[i] & clause) == p->clause[i])
325 /* We had nothing to add, none of clauses should've become
326 redundant. */
327 gcc_checking_assert (i == i2);
328 return;
331 if (p->clause[i] < clause && insert_here < 0)
332 insert_here = i2;
334 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
335 Otherwise the p->clause[i] has to stay. */
336 if ((p->clause[i] & clause) != clause)
337 i2++;
340 /* Look for clauses that are obviously true. I.e.
341 op0 == 5 || op0 != 5. */
342 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
344 condition *cc1;
345 if (!(clause & (1 << c1)))
346 continue;
347 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
348 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
349 and thus there is no point for looking for them. */
350 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
351 continue;
352 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
353 if (clause & (1 << c2))
355 condition *cc1 =
356 &(*conditions)[c1 - predicate_first_dynamic_condition];
357 condition *cc2 =
358 &(*conditions)[c2 - predicate_first_dynamic_condition];
359 if (cc1->operand_num == cc2->operand_num
360 && cc1->val == cc2->val
361 && cc2->code != IS_NOT_CONSTANT
362 && cc2->code != CHANGED
363 && cc1->code == invert_tree_comparison
364 (cc2->code,
365 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
366 return;
371 /* We run out of variants. Be conservative in positive direction. */
372 if (i2 == MAX_CLAUSES)
373 return;
374 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
375 p->clause[i2 + 1] = 0;
376 if (insert_here >= 0)
377 for (; i2 > insert_here; i2--)
378 p->clause[i2] = p->clause[i2 - 1];
379 else
380 insert_here = i2;
381 p->clause[insert_here] = clause;
385 /* Return P & P2. */
387 static struct predicate
388 and_predicates (conditions conditions,
389 struct predicate *p, struct predicate *p2)
391 struct predicate out = *p;
392 int i;
394 /* Avoid busy work. */
395 if (false_predicate_p (p2) || true_predicate_p (p))
396 return *p2;
397 if (false_predicate_p (p) || true_predicate_p (p2))
398 return *p;
400 /* See how far predicates match. */
401 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
403 gcc_checking_assert (i < MAX_CLAUSES);
406 /* Combine the predicates rest. */
407 for (; p2->clause[i]; i++)
409 gcc_checking_assert (i < MAX_CLAUSES);
410 add_clause (conditions, &out, p2->clause[i]);
412 return out;
416 /* Return true if predicates are obviously equal. */
418 static inline bool
419 predicates_equal_p (struct predicate *p, struct predicate *p2)
421 int i;
422 for (i = 0; p->clause[i]; i++)
424 gcc_checking_assert (i < MAX_CLAUSES);
425 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
426 gcc_checking_assert (!p2->clause[i]
427 || p2->clause[i] > p2->clause[i + 1]);
428 if (p->clause[i] != p2->clause[i])
429 return false;
431 return !p2->clause[i];
435 /* Return P | P2. */
437 static struct predicate
438 or_predicates (conditions conditions,
439 struct predicate *p, struct predicate *p2)
441 struct predicate out = true_predicate ();
442 int i, j;
444 /* Avoid busy work. */
445 if (false_predicate_p (p2) || true_predicate_p (p))
446 return *p;
447 if (false_predicate_p (p) || true_predicate_p (p2))
448 return *p2;
449 if (predicates_equal_p (p, p2))
450 return *p;
452 /* OK, combine the predicates. */
453 for (i = 0; p->clause[i]; i++)
454 for (j = 0; p2->clause[j]; j++)
456 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
457 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
459 return out;
463 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
464 if predicate P is known to be false. */
466 static bool
467 evaluate_predicate (struct predicate *p, clause_t possible_truths)
469 int i;
471 /* True remains true. */
472 if (true_predicate_p (p))
473 return true;
475 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
477 /* See if we can find clause we can disprove. */
478 for (i = 0; p->clause[i]; i++)
480 gcc_checking_assert (i < MAX_CLAUSES);
481 if (!(p->clause[i] & possible_truths))
482 return false;
484 return true;
487 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
488 instruction will be recomputed per invocation of the inlined call. */
490 static int
491 predicate_probability (conditions conds,
492 struct predicate *p, clause_t possible_truths,
493 vec<inline_param_summary_t> inline_param_summary)
495 int i;
496 int combined_prob = REG_BR_PROB_BASE;
498 /* True remains true. */
499 if (true_predicate_p (p))
500 return REG_BR_PROB_BASE;
502 if (false_predicate_p (p))
503 return 0;
505 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
507 /* See if we can find clause we can disprove. */
508 for (i = 0; p->clause[i]; i++)
510 gcc_checking_assert (i < MAX_CLAUSES);
511 if (!(p->clause[i] & possible_truths))
512 return 0;
513 else
515 int this_prob = 0;
516 int i2;
517 if (!inline_param_summary.exists ())
518 return REG_BR_PROB_BASE;
519 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
520 if ((p->clause[i] & possible_truths) & (1 << i2))
522 if (i2 >= predicate_first_dynamic_condition)
524 condition *c =
525 &(*conds)[i2 - predicate_first_dynamic_condition];
526 if (c->code == CHANGED
527 && (c->operand_num <
528 (int) inline_param_summary.length ()))
530 int iprob =
531 inline_param_summary[c->operand_num].change_prob;
532 this_prob = MAX (this_prob, iprob);
534 else
535 this_prob = REG_BR_PROB_BASE;
537 else
538 this_prob = REG_BR_PROB_BASE;
540 combined_prob = MIN (this_prob, combined_prob);
541 if (!combined_prob)
542 return 0;
545 return combined_prob;
549 /* Dump conditional COND. */
551 static void
552 dump_condition (FILE *f, conditions conditions, int cond)
554 condition *c;
555 if (cond == predicate_false_condition)
556 fprintf (f, "false");
557 else if (cond == predicate_not_inlined_condition)
558 fprintf (f, "not inlined");
559 else
561 c = &(*conditions)[cond - predicate_first_dynamic_condition];
562 fprintf (f, "op%i", c->operand_num);
563 if (c->agg_contents)
564 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
565 c->by_ref ? "ref " : "", c->offset);
566 if (c->code == IS_NOT_CONSTANT)
568 fprintf (f, " not constant");
569 return;
571 if (c->code == CHANGED)
573 fprintf (f, " changed");
574 return;
576 fprintf (f, " %s ", op_symbol_code (c->code));
577 print_generic_expr (f, c->val, 1);
582 /* Dump clause CLAUSE. */
584 static void
585 dump_clause (FILE *f, conditions conds, clause_t clause)
587 int i;
588 bool found = false;
589 fprintf (f, "(");
590 if (!clause)
591 fprintf (f, "true");
592 for (i = 0; i < NUM_CONDITIONS; i++)
593 if (clause & (1 << i))
595 if (found)
596 fprintf (f, " || ");
597 found = true;
598 dump_condition (f, conds, i);
600 fprintf (f, ")");
604 /* Dump predicate PREDICATE. */
606 static void
607 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
609 int i;
610 if (true_predicate_p (pred))
611 dump_clause (f, conds, 0);
612 else
613 for (i = 0; pred->clause[i]; i++)
615 if (i)
616 fprintf (f, " && ");
617 dump_clause (f, conds, pred->clause[i]);
619 fprintf (f, "\n");
623 /* Dump inline hints. */
624 void
625 dump_inline_hints (FILE *f, inline_hints hints)
627 if (!hints)
628 return;
629 fprintf (f, "inline hints:");
630 if (hints & INLINE_HINT_indirect_call)
632 hints &= ~INLINE_HINT_indirect_call;
633 fprintf (f, " indirect_call");
635 if (hints & INLINE_HINT_loop_iterations)
637 hints &= ~INLINE_HINT_loop_iterations;
638 fprintf (f, " loop_iterations");
640 if (hints & INLINE_HINT_loop_stride)
642 hints &= ~INLINE_HINT_loop_stride;
643 fprintf (f, " loop_stride");
645 if (hints & INLINE_HINT_same_scc)
647 hints &= ~INLINE_HINT_same_scc;
648 fprintf (f, " same_scc");
650 if (hints & INLINE_HINT_in_scc)
652 hints &= ~INLINE_HINT_in_scc;
653 fprintf (f, " in_scc");
655 if (hints & INLINE_HINT_cross_module)
657 hints &= ~INLINE_HINT_cross_module;
658 fprintf (f, " cross_module");
660 if (hints & INLINE_HINT_declared_inline)
662 hints &= ~INLINE_HINT_declared_inline;
663 fprintf (f, " declared_inline");
665 if (hints & INLINE_HINT_array_index)
667 hints &= ~INLINE_HINT_array_index;
668 fprintf (f, " array_index");
670 gcc_assert (!hints);
674 /* Record SIZE and TIME under condition PRED into the inline summary. */
676 static void
677 account_size_time (struct inline_summary *summary, int size, int time,
678 struct predicate *pred)
680 size_time_entry *e;
681 bool found = false;
682 int i;
684 if (false_predicate_p (pred))
685 return;
687 /* We need to create initial empty unconitional clause, but otherwie
688 we don't need to account empty times and sizes. */
689 if (!size && !time && summary->entry)
690 return;
692 /* Watch overflow that might result from insane profiles. */
693 if (time > MAX_TIME * INLINE_TIME_SCALE)
694 time = MAX_TIME * INLINE_TIME_SCALE;
695 gcc_assert (time >= 0);
697 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
698 if (predicates_equal_p (&e->predicate, pred))
700 found = true;
701 break;
703 if (i == 256)
705 i = 0;
706 found = true;
707 e = &(*summary->entry)[0];
708 gcc_assert (!e->predicate.clause[0]);
709 if (dump_file && (dump_flags & TDF_DETAILS))
710 fprintf (dump_file,
711 "\t\tReached limit on number of entries, "
712 "ignoring the predicate.");
714 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
716 fprintf (dump_file,
717 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
718 ((double) size) / INLINE_SIZE_SCALE,
719 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
720 dump_predicate (dump_file, summary->conds, pred);
722 if (!found)
724 struct size_time_entry new_entry;
725 new_entry.size = size;
726 new_entry.time = time;
727 new_entry.predicate = *pred;
728 vec_safe_push (summary->entry, new_entry);
730 else
732 e->size += size;
733 e->time += time;
734 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
735 e->time = MAX_TIME * INLINE_TIME_SCALE;
739 /* Set predicate for edge E. */
741 static void
742 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
744 struct inline_edge_summary *es = inline_edge_summary (e);
745 if (predicate && !true_predicate_p (predicate))
747 if (!es->predicate)
748 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
749 *es->predicate = *predicate;
751 else
753 if (es->predicate)
754 pool_free (edge_predicate_pool, es->predicate);
755 es->predicate = NULL;
759 /* Set predicate for hint *P. */
761 static void
762 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
764 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
766 if (*p)
767 pool_free (edge_predicate_pool, *p);
768 *p = NULL;
770 else
772 if (!*p)
773 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
774 **p = new_predicate;
779 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
780 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
781 Return clause of possible truths. When INLINE_P is true, assume that we are
782 inlining.
784 ERROR_MARK means compile time invariant. */
786 static clause_t
787 evaluate_conditions_for_known_args (struct cgraph_node *node,
788 bool inline_p,
789 vec<tree> known_vals,
790 vec<ipa_agg_jump_function_p>
791 known_aggs)
793 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
794 struct inline_summary *info = inline_summary (node);
795 int i;
796 struct condition *c;
798 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
800 tree val;
801 tree res;
803 /* We allow call stmt to have fewer arguments than the callee function
804 (especially for K&R style programs). So bound check here (we assume
805 known_aggs vector, if non-NULL, has the same length as
806 known_vals). */
807 gcc_checking_assert (!known_aggs.exists ()
808 || (known_vals.length () == known_aggs.length ()));
809 if (c->operand_num >= (int) known_vals.length ())
811 clause |= 1 << (i + predicate_first_dynamic_condition);
812 continue;
815 if (c->agg_contents)
817 struct ipa_agg_jump_function *agg;
819 if (c->code == CHANGED
820 && !c->by_ref
821 && (known_vals[c->operand_num] == error_mark_node))
822 continue;
824 if (known_aggs.exists ())
826 agg = known_aggs[c->operand_num];
827 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
829 else
830 val = NULL_TREE;
832 else
834 val = known_vals[c->operand_num];
835 if (val == error_mark_node && c->code != CHANGED)
836 val = NULL_TREE;
839 if (!val)
841 clause |= 1 << (i + predicate_first_dynamic_condition);
842 continue;
844 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
845 continue;
846 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
847 if (res && integer_zerop (res))
848 continue;
849 clause |= 1 << (i + predicate_first_dynamic_condition);
851 return clause;
855 /* Work out what conditions might be true at invocation of E. */
857 static void
858 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
859 clause_t *clause_ptr,
860 vec<tree> *known_vals_ptr,
861 vec<tree> *known_binfos_ptr,
862 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
864 struct cgraph_node *callee =
865 cgraph_function_or_thunk_node (e->callee, NULL);
866 struct inline_summary *info = inline_summary (callee);
867 vec<tree> known_vals = vNULL;
868 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
870 if (clause_ptr)
871 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
872 if (known_vals_ptr)
873 known_vals_ptr->create (0);
874 if (known_binfos_ptr)
875 known_binfos_ptr->create (0);
877 if (ipa_node_params_vector.exists ()
878 && !e->call_stmt_cannot_inline_p
879 && ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
881 struct ipa_node_params *parms_info;
882 struct ipa_edge_args *args = IPA_EDGE_REF (e);
883 struct inline_edge_summary *es = inline_edge_summary (e);
884 int i, count = ipa_get_cs_argument_count (args);
886 if (e->caller->global.inlined_to)
887 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
888 else
889 parms_info = IPA_NODE_REF (e->caller);
891 if (count && (info->conds || known_vals_ptr))
892 known_vals.safe_grow_cleared (count);
893 if (count && (info->conds || known_aggs_ptr))
894 known_aggs.safe_grow_cleared (count);
895 if (count && known_binfos_ptr)
896 known_binfos_ptr->safe_grow_cleared (count);
898 for (i = 0; i < count; i++)
900 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
901 tree cst = ipa_value_from_jfunc (parms_info, jf);
902 if (cst)
904 if (known_vals.exists () && TREE_CODE (cst) != TREE_BINFO)
905 known_vals[i] = cst;
906 else if (known_binfos_ptr != NULL
907 && TREE_CODE (cst) == TREE_BINFO)
908 (*known_binfos_ptr)[i] = cst;
910 else if (inline_p && !es->param[i].change_prob)
911 known_vals[i] = error_mark_node;
912 /* TODO: When IPA-CP starts propagating and merging aggregate jump
913 functions, use its knowledge of the caller too, just like the
914 scalar case above. */
915 known_aggs[i] = &jf->agg;
919 if (clause_ptr)
920 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
921 known_vals, known_aggs);
923 if (known_vals_ptr)
924 *known_vals_ptr = known_vals;
925 else
926 known_vals.release ();
928 if (known_aggs_ptr)
929 *known_aggs_ptr = known_aggs;
930 else
931 known_aggs.release ();
935 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
937 static void
938 inline_summary_alloc (void)
940 if (!node_removal_hook_holder)
941 node_removal_hook_holder =
942 cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
943 if (!edge_removal_hook_holder)
944 edge_removal_hook_holder =
945 cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
946 if (!node_duplication_hook_holder)
947 node_duplication_hook_holder =
948 cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
949 if (!edge_duplication_hook_holder)
950 edge_duplication_hook_holder =
951 cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
953 if (vec_safe_length (inline_summary_vec) <= (unsigned) cgraph_max_uid)
954 vec_safe_grow_cleared (inline_summary_vec, cgraph_max_uid + 1);
955 if (inline_edge_summary_vec.length () <= (unsigned) cgraph_edge_max_uid)
956 inline_edge_summary_vec.safe_grow_cleared (cgraph_edge_max_uid + 1);
957 if (!edge_predicate_pool)
958 edge_predicate_pool = create_alloc_pool ("edge predicates",
959 sizeof (struct predicate), 10);
962 /* We are called multiple time for given function; clear
963 data from previous run so they are not cumulated. */
965 static void
966 reset_inline_edge_summary (struct cgraph_edge *e)
968 if (e->uid < (int) inline_edge_summary_vec.length ())
970 struct inline_edge_summary *es = inline_edge_summary (e);
972 es->call_stmt_size = es->call_stmt_time = 0;
973 if (es->predicate)
974 pool_free (edge_predicate_pool, es->predicate);
975 es->predicate = NULL;
976 es->param.release ();
980 /* We are called multiple time for given function; clear
981 data from previous run so they are not cumulated. */
983 static void
984 reset_inline_summary (struct cgraph_node *node)
986 struct inline_summary *info = inline_summary (node);
987 struct cgraph_edge *e;
989 info->self_size = info->self_time = 0;
990 info->estimated_stack_size = 0;
991 info->estimated_self_stack_size = 0;
992 info->stack_frame_offset = 0;
993 info->size = 0;
994 info->time = 0;
995 info->growth = 0;
996 info->scc_no = 0;
997 if (info->loop_iterations)
999 pool_free (edge_predicate_pool, info->loop_iterations);
1000 info->loop_iterations = NULL;
1002 if (info->loop_stride)
1004 pool_free (edge_predicate_pool, info->loop_stride);
1005 info->loop_stride = NULL;
1007 if (info->array_index)
1009 pool_free (edge_predicate_pool, info->array_index);
1010 info->array_index = NULL;
1012 vec_free (info->conds);
1013 vec_free (info->entry);
1014 for (e = node->callees; e; e = e->next_callee)
1015 reset_inline_edge_summary (e);
1016 for (e = node->indirect_calls; e; e = e->next_callee)
1017 reset_inline_edge_summary (e);
1020 /* Hook that is called by cgraph.c when a node is removed. */
1022 static void
1023 inline_node_removal_hook (struct cgraph_node *node,
1024 void *data ATTRIBUTE_UNUSED)
1026 struct inline_summary *info;
1027 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1028 return;
1029 info = inline_summary (node);
1030 reset_inline_summary (node);
1031 memset (info, 0, sizeof (inline_summary_t));
1034 /* Remap predicate P of former function to be predicate of duplicated functoin.
1035 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1036 INFO is inline summary of the duplicated node. */
1038 static struct predicate
1039 remap_predicate_after_duplication (struct predicate *p,
1040 clause_t possible_truths,
1041 struct inline_summary *info)
1043 struct predicate new_predicate = true_predicate ();
1044 int j;
1045 for (j = 0; p->clause[j]; j++)
1046 if (!(possible_truths & p->clause[j]))
1048 new_predicate = false_predicate ();
1049 break;
1051 else
1052 add_clause (info->conds, &new_predicate,
1053 possible_truths & p->clause[j]);
1054 return new_predicate;
1057 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1058 Additionally care about allocating new memory slot for updated predicate
1059 and set it to NULL when it becomes true or false (and thus uninteresting).
1062 static void
1063 remap_hint_predicate_after_duplication (struct predicate **p,
1064 clause_t possible_truths,
1065 struct inline_summary *info)
1067 struct predicate new_predicate;
1069 if (!*p)
1070 return;
1072 new_predicate = remap_predicate_after_duplication (*p,
1073 possible_truths, info);
1074 /* We do not want to free previous predicate; it is used by node origin. */
1075 *p = NULL;
1076 set_hint_predicate (p, new_predicate);
1080 /* Hook that is called by cgraph.c when a node is duplicated. */
1082 static void
1083 inline_node_duplication_hook (struct cgraph_node *src,
1084 struct cgraph_node *dst,
1085 ATTRIBUTE_UNUSED void *data)
1087 struct inline_summary *info;
1088 inline_summary_alloc ();
1089 info = inline_summary (dst);
1090 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1091 /* TODO: as an optimization, we may avoid copying conditions
1092 that are known to be false or true. */
1093 info->conds = vec_safe_copy (info->conds);
1095 /* When there are any replacements in the function body, see if we can figure
1096 out that something was optimized out. */
1097 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1099 vec<size_time_entry, va_gc> *entry = info->entry;
1100 /* Use SRC parm info since it may not be copied yet. */
1101 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1102 vec<tree> known_vals = vNULL;
1103 int count = ipa_get_param_count (parms_info);
1104 int i, j;
1105 clause_t possible_truths;
1106 struct predicate true_pred = true_predicate ();
1107 size_time_entry *e;
1108 int optimized_out_size = 0;
1109 bool inlined_to_p = false;
1110 struct cgraph_edge *edge;
1112 info->entry = 0;
1113 known_vals.safe_grow_cleared (count);
1114 for (i = 0; i < count; i++)
1116 struct ipa_replace_map *r;
1118 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1120 if (((!r->old_tree && r->parm_num == i)
1121 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1122 && r->replace_p && !r->ref_p)
1124 known_vals[i] = r->new_tree;
1125 break;
1129 possible_truths = evaluate_conditions_for_known_args (dst, false,
1130 known_vals,
1131 vNULL);
1132 known_vals.release ();
1134 account_size_time (info, 0, 0, &true_pred);
1136 /* Remap size_time vectors.
1137 Simplify the predicate by prunning out alternatives that are known
1138 to be false.
1139 TODO: as on optimization, we can also eliminate conditions known
1140 to be true. */
1141 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1143 struct predicate new_predicate;
1144 new_predicate = remap_predicate_after_duplication (&e->predicate,
1145 possible_truths,
1146 info);
1147 if (false_predicate_p (&new_predicate))
1148 optimized_out_size += e->size;
1149 else
1150 account_size_time (info, e->size, e->time, &new_predicate);
1153 /* Remap edge predicates with the same simplification as above.
1154 Also copy constantness arrays. */
1155 for (edge = dst->callees; edge; edge = edge->next_callee)
1157 struct predicate new_predicate;
1158 struct inline_edge_summary *es = inline_edge_summary (edge);
1160 if (!edge->inline_failed)
1161 inlined_to_p = true;
1162 if (!es->predicate)
1163 continue;
1164 new_predicate = remap_predicate_after_duplication (es->predicate,
1165 possible_truths,
1166 info);
1167 if (false_predicate_p (&new_predicate)
1168 && !false_predicate_p (es->predicate))
1170 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1171 edge->frequency = 0;
1173 edge_set_predicate (edge, &new_predicate);
1176 /* Remap indirect edge predicates with the same simplificaiton as above.
1177 Also copy constantness arrays. */
1178 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1180 struct predicate new_predicate;
1181 struct inline_edge_summary *es = inline_edge_summary (edge);
1183 gcc_checking_assert (edge->inline_failed);
1184 if (!es->predicate)
1185 continue;
1186 new_predicate = remap_predicate_after_duplication (es->predicate,
1187 possible_truths,
1188 info);
1189 if (false_predicate_p (&new_predicate)
1190 && !false_predicate_p (es->predicate))
1192 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1193 edge->frequency = 0;
1195 edge_set_predicate (edge, &new_predicate);
1197 remap_hint_predicate_after_duplication (&info->loop_iterations,
1198 possible_truths, info);
1199 remap_hint_predicate_after_duplication (&info->loop_stride,
1200 possible_truths, info);
1201 remap_hint_predicate_after_duplication (&info->array_index,
1202 possible_truths, info);
1204 /* If inliner or someone after inliner will ever start producing
1205 non-trivial clones, we will get trouble with lack of information
1206 about updating self sizes, because size vectors already contains
1207 sizes of the calees. */
1208 gcc_assert (!inlined_to_p || !optimized_out_size);
1210 else
1212 info->entry = vec_safe_copy (info->entry);
1213 if (info->loop_iterations)
1215 predicate p = *info->loop_iterations;
1216 info->loop_iterations = NULL;
1217 set_hint_predicate (&info->loop_iterations, p);
1219 if (info->loop_stride)
1221 predicate p = *info->loop_stride;
1222 info->loop_stride = NULL;
1223 set_hint_predicate (&info->loop_stride, p);
1225 if (info->array_index)
1227 predicate p = *info->array_index;
1228 info->array_index = NULL;
1229 set_hint_predicate (&info->array_index, p);
1232 inline_update_overall_summary (dst);
1236 /* Hook that is called by cgraph.c when a node is duplicated. */
1238 static void
1239 inline_edge_duplication_hook (struct cgraph_edge *src,
1240 struct cgraph_edge *dst,
1241 ATTRIBUTE_UNUSED void *data)
1243 struct inline_edge_summary *info;
1244 struct inline_edge_summary *srcinfo;
1245 inline_summary_alloc ();
1246 info = inline_edge_summary (dst);
1247 srcinfo = inline_edge_summary (src);
1248 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1249 info->predicate = NULL;
1250 edge_set_predicate (dst, srcinfo->predicate);
1251 info->param = srcinfo->param.copy ();
1255 /* Keep edge cache consistent across edge removal. */
1257 static void
1258 inline_edge_removal_hook (struct cgraph_edge *edge,
1259 void *data ATTRIBUTE_UNUSED)
1261 if (edge_growth_cache.exists ())
1262 reset_edge_growth_cache (edge);
1263 reset_inline_edge_summary (edge);
1267 /* Initialize growth caches. */
1269 void
1270 initialize_growth_caches (void)
1272 if (cgraph_edge_max_uid)
1273 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
1274 if (cgraph_max_uid)
1275 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
1279 /* Free growth caches. */
1281 void
1282 free_growth_caches (void)
1284 edge_growth_cache.release ();
1285 node_growth_cache.release ();
1289 /* Dump edge summaries associated to NODE and recursively to all clones.
1290 Indent by INDENT. */
1292 static void
1293 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1294 struct inline_summary *info)
1296 struct cgraph_edge *edge;
1297 for (edge = node->callees; edge; edge = edge->next_callee)
1299 struct inline_edge_summary *es = inline_edge_summary (edge);
1300 struct cgraph_node *callee =
1301 cgraph_function_or_thunk_node (edge->callee, NULL);
1302 int i;
1304 fprintf (f,
1305 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1306 " time: %2i callee size:%2i stack:%2i",
1307 indent, "", callee->name (), callee->order,
1308 !edge->inline_failed
1309 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1310 indent, "", es->loop_depth, edge->frequency,
1311 es->call_stmt_size, es->call_stmt_time,
1312 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1313 (int) inline_summary (callee)->estimated_stack_size);
1315 if (es->predicate)
1317 fprintf (f, " predicate: ");
1318 dump_predicate (f, info->conds, es->predicate);
1320 else
1321 fprintf (f, "\n");
1322 if (es->param.exists ())
1323 for (i = 0; i < (int) es->param.length (); i++)
1325 int prob = es->param[i].change_prob;
1327 if (!prob)
1328 fprintf (f, "%*s op%i is compile time invariant\n",
1329 indent + 2, "", i);
1330 else if (prob != REG_BR_PROB_BASE)
1331 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1332 prob * 100.0 / REG_BR_PROB_BASE);
1334 if (!edge->inline_failed)
1336 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1337 " callee size %i\n",
1338 indent + 2, "",
1339 (int) inline_summary (callee)->stack_frame_offset,
1340 (int) inline_summary (callee)->estimated_self_stack_size,
1341 (int) inline_summary (callee)->estimated_stack_size);
1342 dump_inline_edge_summary (f, indent + 2, callee, info);
1345 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1347 struct inline_edge_summary *es = inline_edge_summary (edge);
1348 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1349 " time: %2i",
1350 indent, "",
1351 es->loop_depth,
1352 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1353 if (es->predicate)
1355 fprintf (f, "predicate: ");
1356 dump_predicate (f, info->conds, es->predicate);
1358 else
1359 fprintf (f, "\n");
1364 void
1365 dump_inline_summary (FILE *f, struct cgraph_node *node)
1367 if (node->definition)
1369 struct inline_summary *s = inline_summary (node);
1370 size_time_entry *e;
1371 int i;
1372 fprintf (f, "Inline summary for %s/%i", node->name (),
1373 node->order);
1374 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1375 fprintf (f, " always_inline");
1376 if (s->inlinable)
1377 fprintf (f, " inlinable");
1378 fprintf (f, "\n self time: %i\n", s->self_time);
1379 fprintf (f, " global time: %i\n", s->time);
1380 fprintf (f, " self size: %i\n", s->self_size);
1381 fprintf (f, " global size: %i\n", s->size);
1382 fprintf (f, " self stack: %i\n",
1383 (int) s->estimated_self_stack_size);
1384 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1385 if (s->growth)
1386 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1387 if (s->scc_no)
1388 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1389 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1391 fprintf (f, " size:%f, time:%f, predicate:",
1392 (double) e->size / INLINE_SIZE_SCALE,
1393 (double) e->time / INLINE_TIME_SCALE);
1394 dump_predicate (f, s->conds, &e->predicate);
1396 if (s->loop_iterations)
1398 fprintf (f, " loop iterations:");
1399 dump_predicate (f, s->conds, s->loop_iterations);
1401 if (s->loop_stride)
1403 fprintf (f, " loop stride:");
1404 dump_predicate (f, s->conds, s->loop_stride);
1406 if (s->array_index)
1408 fprintf (f, " array index:");
1409 dump_predicate (f, s->conds, s->array_index);
1411 fprintf (f, " calls:\n");
1412 dump_inline_edge_summary (f, 4, node, s);
1413 fprintf (f, "\n");
1417 DEBUG_FUNCTION void
1418 debug_inline_summary (struct cgraph_node *node)
1420 dump_inline_summary (stderr, node);
1423 void
1424 dump_inline_summaries (FILE *f)
1426 struct cgraph_node *node;
1428 FOR_EACH_DEFINED_FUNCTION (node)
1429 if (!node->global.inlined_to)
1430 dump_inline_summary (f, node);
1433 /* Give initial reasons why inlining would fail on EDGE. This gets either
1434 nullified or usually overwritten by more precise reasons later. */
1436 void
1437 initialize_inline_failed (struct cgraph_edge *e)
1439 struct cgraph_node *callee = e->callee;
1441 if (e->indirect_unknown_callee)
1442 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1443 else if (!callee->definition)
1444 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1445 else if (callee->local.redefined_extern_inline)
1446 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1447 else if (e->call_stmt_cannot_inline_p)
1448 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1449 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1450 /* We can't inline if the function is spawing a function. */
1451 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1452 else
1453 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1456 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1457 boolean variable pointed to by DATA. */
1459 static bool
1460 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1461 void *data)
1463 bool *b = (bool *) data;
1464 *b = true;
1465 return true;
1468 /* If OP refers to value of function parameter, return the corresponding
1469 parameter. */
1471 static tree
1472 unmodified_parm_1 (gimple stmt, tree op)
1474 /* SSA_NAME referring to parm default def? */
1475 if (TREE_CODE (op) == SSA_NAME
1476 && SSA_NAME_IS_DEFAULT_DEF (op)
1477 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1478 return SSA_NAME_VAR (op);
1479 /* Non-SSA parm reference? */
1480 if (TREE_CODE (op) == PARM_DECL)
1482 bool modified = false;
1484 ao_ref refd;
1485 ao_ref_init (&refd, op);
1486 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1487 NULL);
1488 if (!modified)
1489 return op;
1491 return NULL_TREE;
1494 /* If OP refers to value of function parameter, return the corresponding
1495 parameter. Also traverse chains of SSA register assignments. */
1497 static tree
1498 unmodified_parm (gimple stmt, tree op)
1500 tree res = unmodified_parm_1 (stmt, op);
1501 if (res)
1502 return res;
1504 if (TREE_CODE (op) == SSA_NAME
1505 && !SSA_NAME_IS_DEFAULT_DEF (op)
1506 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1507 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1508 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1509 return NULL_TREE;
1512 /* If OP refers to a value of a function parameter or value loaded from an
1513 aggregate passed to a parameter (either by value or reference), return TRUE
1514 and store the number of the parameter to *INDEX_P and information whether
1515 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1516 the function parameters, STMT is the statement in which OP is used or
1517 loaded. */
1519 static bool
1520 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1521 gimple stmt, tree op, int *index_p,
1522 struct agg_position_info *aggpos)
1524 tree res = unmodified_parm_1 (stmt, op);
1526 gcc_checking_assert (aggpos);
1527 if (res)
1529 *index_p = ipa_get_param_decl_index (info, res);
1530 if (*index_p < 0)
1531 return false;
1532 aggpos->agg_contents = false;
1533 aggpos->by_ref = false;
1534 return true;
1537 if (TREE_CODE (op) == SSA_NAME)
1539 if (SSA_NAME_IS_DEFAULT_DEF (op)
1540 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1541 return false;
1542 stmt = SSA_NAME_DEF_STMT (op);
1543 op = gimple_assign_rhs1 (stmt);
1544 if (!REFERENCE_CLASS_P (op))
1545 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1546 aggpos);
1549 aggpos->agg_contents = true;
1550 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1551 &aggpos->by_ref);
1554 /* See if statement might disappear after inlining.
1555 0 - means not eliminated
1556 1 - half of statements goes away
1557 2 - for sure it is eliminated.
1558 We are not terribly sophisticated, basically looking for simple abstraction
1559 penalty wrappers. */
1561 static int
1562 eliminated_by_inlining_prob (gimple stmt)
1564 enum gimple_code code = gimple_code (stmt);
1565 enum tree_code rhs_code;
1567 if (!optimize)
1568 return 0;
1570 switch (code)
1572 case GIMPLE_RETURN:
1573 return 2;
1574 case GIMPLE_ASSIGN:
1575 if (gimple_num_ops (stmt) != 2)
1576 return 0;
1578 rhs_code = gimple_assign_rhs_code (stmt);
1580 /* Casts of parameters, loads from parameters passed by reference
1581 and stores to return value or parameters are often free after
1582 inlining dua to SRA and further combining.
1583 Assume that half of statements goes away. */
1584 if (rhs_code == CONVERT_EXPR
1585 || rhs_code == NOP_EXPR
1586 || rhs_code == VIEW_CONVERT_EXPR
1587 || rhs_code == ADDR_EXPR
1588 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1590 tree rhs = gimple_assign_rhs1 (stmt);
1591 tree lhs = gimple_assign_lhs (stmt);
1592 tree inner_rhs = get_base_address (rhs);
1593 tree inner_lhs = get_base_address (lhs);
1594 bool rhs_free = false;
1595 bool lhs_free = false;
1597 if (!inner_rhs)
1598 inner_rhs = rhs;
1599 if (!inner_lhs)
1600 inner_lhs = lhs;
1602 /* Reads of parameter are expected to be free. */
1603 if (unmodified_parm (stmt, inner_rhs))
1604 rhs_free = true;
1605 /* Match expressions of form &this->field. Those will most likely
1606 combine with something upstream after inlining. */
1607 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1609 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1610 if (TREE_CODE (op) == PARM_DECL)
1611 rhs_free = true;
1612 else if (TREE_CODE (op) == MEM_REF
1613 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1614 rhs_free = true;
1617 /* When parameter is not SSA register because its address is taken
1618 and it is just copied into one, the statement will be completely
1619 free after inlining (we will copy propagate backward). */
1620 if (rhs_free && is_gimple_reg (lhs))
1621 return 2;
1623 /* Reads of parameters passed by reference
1624 expected to be free (i.e. optimized out after inlining). */
1625 if (TREE_CODE (inner_rhs) == MEM_REF
1626 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1627 rhs_free = true;
1629 /* Copying parameter passed by reference into gimple register is
1630 probably also going to copy propagate, but we can't be quite
1631 sure. */
1632 if (rhs_free && is_gimple_reg (lhs))
1633 lhs_free = true;
1635 /* Writes to parameters, parameters passed by value and return value
1636 (either dirrectly or passed via invisible reference) are free.
1638 TODO: We ought to handle testcase like
1639 struct a {int a,b;};
1640 struct a
1641 retrurnsturct (void)
1643 struct a a ={1,2};
1644 return a;
1647 This translate into:
1649 retrurnsturct ()
1651 int a$b;
1652 int a$a;
1653 struct a a;
1654 struct a D.2739;
1656 <bb 2>:
1657 D.2739.a = 1;
1658 D.2739.b = 2;
1659 return D.2739;
1662 For that we either need to copy ipa-split logic detecting writes
1663 to return value. */
1664 if (TREE_CODE (inner_lhs) == PARM_DECL
1665 || TREE_CODE (inner_lhs) == RESULT_DECL
1666 || (TREE_CODE (inner_lhs) == MEM_REF
1667 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1668 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1669 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1670 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1671 (inner_lhs,
1672 0))) == RESULT_DECL))))
1673 lhs_free = true;
1674 if (lhs_free
1675 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1676 rhs_free = true;
1677 if (lhs_free && rhs_free)
1678 return 1;
1680 return 0;
1681 default:
1682 return 0;
1687 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1688 predicates to the CFG edges. */
1690 static void
1691 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1692 struct inline_summary *summary,
1693 basic_block bb)
1695 gimple last;
1696 tree op;
1697 int index;
1698 struct agg_position_info aggpos;
1699 enum tree_code code, inverted_code;
1700 edge e;
1701 edge_iterator ei;
1702 gimple set_stmt;
1703 tree op2;
1705 last = last_stmt (bb);
1706 if (!last || gimple_code (last) != GIMPLE_COND)
1707 return;
1708 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1709 return;
1710 op = gimple_cond_lhs (last);
1711 /* TODO: handle conditionals like
1712 var = op0 < 4;
1713 if (var != 0). */
1714 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1716 code = gimple_cond_code (last);
1717 inverted_code
1718 = invert_tree_comparison (code,
1719 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1721 FOR_EACH_EDGE (e, ei, bb->succs)
1723 struct predicate p = add_condition (summary, index, &aggpos,
1724 e->flags & EDGE_TRUE_VALUE
1725 ? code : inverted_code,
1726 gimple_cond_rhs (last));
1727 e->aux = pool_alloc (edge_predicate_pool);
1728 *(struct predicate *) e->aux = p;
1732 if (TREE_CODE (op) != SSA_NAME)
1733 return;
1734 /* Special case
1735 if (builtin_constant_p (op))
1736 constant_code
1737 else
1738 nonconstant_code.
1739 Here we can predicate nonconstant_code. We can't
1740 really handle constant_code since we have no predicate
1741 for this and also the constant code is not known to be
1742 optimized away when inliner doen't see operand is constant.
1743 Other optimizers might think otherwise. */
1744 if (gimple_cond_code (last) != NE_EXPR
1745 || !integer_zerop (gimple_cond_rhs (last)))
1746 return;
1747 set_stmt = SSA_NAME_DEF_STMT (op);
1748 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1749 || gimple_call_num_args (set_stmt) != 1)
1750 return;
1751 op2 = gimple_call_arg (set_stmt, 0);
1752 if (!unmodified_parm_or_parm_agg_item
1753 (info, set_stmt, op2, &index, &aggpos))
1754 return;
1755 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1757 struct predicate p = add_condition (summary, index, &aggpos,
1758 IS_NOT_CONSTANT, NULL_TREE);
1759 e->aux = pool_alloc (edge_predicate_pool);
1760 *(struct predicate *) e->aux = p;
1765 /* If BB ends by a switch we can turn into predicates, attach corresponding
1766 predicates to the CFG edges. */
1768 static void
1769 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1770 struct inline_summary *summary,
1771 basic_block bb)
1773 gimple last;
1774 tree op;
1775 int index;
1776 struct agg_position_info aggpos;
1777 edge e;
1778 edge_iterator ei;
1779 size_t n;
1780 size_t case_idx;
1782 last = last_stmt (bb);
1783 if (!last || gimple_code (last) != GIMPLE_SWITCH)
1784 return;
1785 op = gimple_switch_index (last);
1786 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1787 return;
1789 FOR_EACH_EDGE (e, ei, bb->succs)
1791 e->aux = pool_alloc (edge_predicate_pool);
1792 *(struct predicate *) e->aux = false_predicate ();
1794 n = gimple_switch_num_labels (last);
1795 for (case_idx = 0; case_idx < n; ++case_idx)
1797 tree cl = gimple_switch_label (last, case_idx);
1798 tree min, max;
1799 struct predicate p;
1801 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1802 min = CASE_LOW (cl);
1803 max = CASE_HIGH (cl);
1805 /* For default we might want to construct predicate that none
1806 of cases is met, but it is bit hard to do not having negations
1807 of conditionals handy. */
1808 if (!min && !max)
1809 p = true_predicate ();
1810 else if (!max)
1811 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1812 else
1814 struct predicate p1, p2;
1815 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1816 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1817 p = and_predicates (summary->conds, &p1, &p2);
1819 *(struct predicate *) e->aux
1820 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1825 /* For each BB in NODE attach to its AUX pointer predicate under
1826 which it is executable. */
1828 static void
1829 compute_bb_predicates (struct cgraph_node *node,
1830 struct ipa_node_params *parms_info,
1831 struct inline_summary *summary)
1833 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1834 bool done = false;
1835 basic_block bb;
1837 FOR_EACH_BB_FN (bb, my_function)
1839 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1840 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1843 /* Entry block is always executable. */
1844 ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
1845 = pool_alloc (edge_predicate_pool);
1846 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
1847 = true_predicate ();
1849 /* A simple dataflow propagation of predicates forward in the CFG.
1850 TODO: work in reverse postorder. */
1851 while (!done)
1853 done = true;
1854 FOR_EACH_BB_FN (bb, my_function)
1856 struct predicate p = false_predicate ();
1857 edge e;
1858 edge_iterator ei;
1859 FOR_EACH_EDGE (e, ei, bb->preds)
1861 if (e->src->aux)
1863 struct predicate this_bb_predicate
1864 = *(struct predicate *) e->src->aux;
1865 if (e->aux)
1866 this_bb_predicate
1867 = and_predicates (summary->conds, &this_bb_predicate,
1868 (struct predicate *) e->aux);
1869 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1870 if (true_predicate_p (&p))
1871 break;
1874 if (false_predicate_p (&p))
1875 gcc_assert (!bb->aux);
1876 else
1878 if (!bb->aux)
1880 done = false;
1881 bb->aux = pool_alloc (edge_predicate_pool);
1882 *((struct predicate *) bb->aux) = p;
1884 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1886 done = false;
1887 *((struct predicate *) bb->aux) = p;
1895 /* We keep info about constantness of SSA names. */
1897 typedef struct predicate predicate_t;
1898 /* Return predicate specifying when the STMT might have result that is not
1899 a compile time constant. */
1901 static struct predicate
1902 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1903 struct inline_summary *summary,
1904 tree expr,
1905 vec<predicate_t> nonconstant_names)
1907 tree parm;
1908 int index;
1910 while (UNARY_CLASS_P (expr))
1911 expr = TREE_OPERAND (expr, 0);
1913 parm = unmodified_parm (NULL, expr);
1914 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1915 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1916 if (is_gimple_min_invariant (expr))
1917 return false_predicate ();
1918 if (TREE_CODE (expr) == SSA_NAME)
1919 return nonconstant_names[SSA_NAME_VERSION (expr)];
1920 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1922 struct predicate p1 = will_be_nonconstant_expr_predicate
1923 (info, summary, TREE_OPERAND (expr, 0),
1924 nonconstant_names);
1925 struct predicate p2;
1926 if (true_predicate_p (&p1))
1927 return p1;
1928 p2 = will_be_nonconstant_expr_predicate (info, summary,
1929 TREE_OPERAND (expr, 1),
1930 nonconstant_names);
1931 return or_predicates (summary->conds, &p1, &p2);
1933 else if (TREE_CODE (expr) == COND_EXPR)
1935 struct predicate p1 = will_be_nonconstant_expr_predicate
1936 (info, summary, TREE_OPERAND (expr, 0),
1937 nonconstant_names);
1938 struct predicate p2;
1939 if (true_predicate_p (&p1))
1940 return p1;
1941 p2 = will_be_nonconstant_expr_predicate (info, summary,
1942 TREE_OPERAND (expr, 1),
1943 nonconstant_names);
1944 if (true_predicate_p (&p2))
1945 return p2;
1946 p1 = or_predicates (summary->conds, &p1, &p2);
1947 p2 = will_be_nonconstant_expr_predicate (info, summary,
1948 TREE_OPERAND (expr, 2),
1949 nonconstant_names);
1950 return or_predicates (summary->conds, &p1, &p2);
1952 else
1954 debug_tree (expr);
1955 gcc_unreachable ();
1957 return false_predicate ();
1961 /* Return predicate specifying when the STMT might have result that is not
1962 a compile time constant. */
1964 static struct predicate
1965 will_be_nonconstant_predicate (struct ipa_node_params *info,
1966 struct inline_summary *summary,
1967 gimple stmt,
1968 vec<predicate_t> nonconstant_names)
1970 struct predicate p = true_predicate ();
1971 ssa_op_iter iter;
1972 tree use;
1973 struct predicate op_non_const;
1974 bool is_load;
1975 int base_index;
1976 struct agg_position_info aggpos;
1978 /* What statments might be optimized away
1979 when their arguments are constant
1980 TODO: also trivial builtins.
1981 builtin_constant_p is already handled later. */
1982 if (gimple_code (stmt) != GIMPLE_ASSIGN
1983 && gimple_code (stmt) != GIMPLE_COND
1984 && gimple_code (stmt) != GIMPLE_SWITCH)
1985 return p;
1987 /* Stores will stay anyway. */
1988 if (gimple_store_p (stmt))
1989 return p;
1991 is_load = gimple_assign_load_p (stmt);
1993 /* Loads can be optimized when the value is known. */
1994 if (is_load)
1996 tree op;
1997 gcc_assert (gimple_assign_single_p (stmt));
1998 op = gimple_assign_rhs1 (stmt);
1999 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2000 &aggpos))
2001 return p;
2003 else
2004 base_index = -1;
2006 /* See if we understand all operands before we start
2007 adding conditionals. */
2008 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2010 tree parm = unmodified_parm (stmt, use);
2011 /* For arguments we can build a condition. */
2012 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2013 continue;
2014 if (TREE_CODE (use) != SSA_NAME)
2015 return p;
2016 /* If we know when operand is constant,
2017 we still can say something useful. */
2018 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2019 continue;
2020 return p;
2023 if (is_load)
2024 op_non_const =
2025 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2026 else
2027 op_non_const = false_predicate ();
2028 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2030 tree parm = unmodified_parm (stmt, use);
2031 int index;
2033 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2035 if (index != base_index)
2036 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2037 else
2038 continue;
2040 else
2041 p = nonconstant_names[SSA_NAME_VERSION (use)];
2042 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2044 if (gimple_code (stmt) == GIMPLE_ASSIGN
2045 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2046 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2047 = op_non_const;
2048 return op_non_const;
2051 struct record_modified_bb_info
2053 bitmap bb_set;
2054 gimple stmt;
2057 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2058 set except for info->stmt. */
2060 static bool
2061 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2063 struct record_modified_bb_info *info =
2064 (struct record_modified_bb_info *) data;
2065 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2066 return false;
2067 bitmap_set_bit (info->bb_set,
2068 SSA_NAME_IS_DEFAULT_DEF (vdef)
2069 ? ENTRY_BLOCK_PTR->index
2070 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2071 return false;
2074 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2075 will change since last invocation of STMT.
2077 Value 0 is reserved for compile time invariants.
2078 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2079 ought to be REG_BR_PROB_BASE / estimated_iters. */
2081 static int
2082 param_change_prob (gimple stmt, int i)
2084 tree op = gimple_call_arg (stmt, i);
2085 basic_block bb = gimple_bb (stmt);
2086 tree base;
2088 /* Global invariants neve change. */
2089 if (is_gimple_min_invariant (op))
2090 return 0;
2091 /* We would have to do non-trivial analysis to really work out what
2092 is the probability of value to change (i.e. when init statement
2093 is in a sibling loop of the call).
2095 We do an conservative estimate: when call is executed N times more often
2096 than the statement defining value, we take the frequency 1/N. */
2097 if (TREE_CODE (op) == SSA_NAME)
2099 int init_freq;
2101 if (!bb->frequency)
2102 return REG_BR_PROB_BASE;
2104 if (SSA_NAME_IS_DEFAULT_DEF (op))
2105 init_freq = ENTRY_BLOCK_PTR->frequency;
2106 else
2107 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2109 if (!init_freq)
2110 init_freq = 1;
2111 if (init_freq < bb->frequency)
2112 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2113 else
2114 return REG_BR_PROB_BASE;
2117 base = get_base_address (op);
2118 if (base)
2120 ao_ref refd;
2121 int max;
2122 struct record_modified_bb_info info;
2123 bitmap_iterator bi;
2124 unsigned index;
2125 tree init = ctor_for_folding (base);
2127 if (init != error_mark_node)
2128 return 0;
2129 if (!bb->frequency)
2130 return REG_BR_PROB_BASE;
2131 ao_ref_init (&refd, op);
2132 info.stmt = stmt;
2133 info.bb_set = BITMAP_ALLOC (NULL);
2134 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2135 NULL);
2136 if (bitmap_bit_p (info.bb_set, bb->index))
2138 BITMAP_FREE (info.bb_set);
2139 return REG_BR_PROB_BASE;
2142 /* Assume that every memory is initialized at entry.
2143 TODO: Can we easilly determine if value is always defined
2144 and thus we may skip entry block? */
2145 if (ENTRY_BLOCK_PTR->frequency)
2146 max = ENTRY_BLOCK_PTR->frequency;
2147 else
2148 max = 1;
2150 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2151 max = MIN (max, BASIC_BLOCK (index)->frequency);
2153 BITMAP_FREE (info.bb_set);
2154 if (max < bb->frequency)
2155 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2156 else
2157 return REG_BR_PROB_BASE;
2159 return REG_BR_PROB_BASE;
2162 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2163 sub-graph and if the predicate the condition depends on is known. If so,
2164 return true and store the pointer the predicate in *P. */
2166 static bool
2167 phi_result_unknown_predicate (struct ipa_node_params *info,
2168 struct inline_summary *summary, basic_block bb,
2169 struct predicate *p,
2170 vec<predicate_t> nonconstant_names)
2172 edge e;
2173 edge_iterator ei;
2174 basic_block first_bb = NULL;
2175 gimple stmt;
2177 if (single_pred_p (bb))
2179 *p = false_predicate ();
2180 return true;
2183 FOR_EACH_EDGE (e, ei, bb->preds)
2185 if (single_succ_p (e->src))
2187 if (!single_pred_p (e->src))
2188 return false;
2189 if (!first_bb)
2190 first_bb = single_pred (e->src);
2191 else if (single_pred (e->src) != first_bb)
2192 return false;
2194 else
2196 if (!first_bb)
2197 first_bb = e->src;
2198 else if (e->src != first_bb)
2199 return false;
2203 if (!first_bb)
2204 return false;
2206 stmt = last_stmt (first_bb);
2207 if (!stmt
2208 || gimple_code (stmt) != GIMPLE_COND
2209 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2210 return false;
2212 *p = will_be_nonconstant_expr_predicate (info, summary,
2213 gimple_cond_lhs (stmt),
2214 nonconstant_names);
2215 if (true_predicate_p (p))
2216 return false;
2217 else
2218 return true;
2221 /* Given a PHI statement in a function described by inline properties SUMMARY
2222 and *P being the predicate describing whether the selected PHI argument is
2223 known, store a predicate for the result of the PHI statement into
2224 NONCONSTANT_NAMES, if possible. */
2226 static void
2227 predicate_for_phi_result (struct inline_summary *summary, gimple phi,
2228 struct predicate *p,
2229 vec<predicate_t> nonconstant_names)
2231 unsigned i;
2233 for (i = 0; i < gimple_phi_num_args (phi); i++)
2235 tree arg = gimple_phi_arg (phi, i)->def;
2236 if (!is_gimple_min_invariant (arg))
2238 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2239 *p = or_predicates (summary->conds, p,
2240 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2241 if (true_predicate_p (p))
2242 return;
2246 if (dump_file && (dump_flags & TDF_DETAILS))
2248 fprintf (dump_file, "\t\tphi predicate: ");
2249 dump_predicate (dump_file, summary->conds, p);
2251 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2254 /* Return predicate specifying when array index in access OP becomes non-constant. */
2256 static struct predicate
2257 array_index_predicate (struct inline_summary *info,
2258 vec< predicate_t> nonconstant_names, tree op)
2260 struct predicate p = false_predicate ();
2261 while (handled_component_p (op))
2263 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2265 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2266 p = or_predicates (info->conds, &p,
2267 &nonconstant_names[SSA_NAME_VERSION
2268 (TREE_OPERAND (op, 1))]);
2270 op = TREE_OPERAND (op, 0);
2272 return p;
2275 /* For a typical usage of __builtin_expect (a<b, 1), we
2276 may introduce an extra relation stmt:
2277 With the builtin, we have
2278 t1 = a <= b;
2279 t2 = (long int) t1;
2280 t3 = __builtin_expect (t2, 1);
2281 if (t3 != 0)
2282 goto ...
2283 Without the builtin, we have
2284 if (a<=b)
2285 goto...
2286 This affects the size/time estimation and may have
2287 an impact on the earlier inlining.
2288 Here find this pattern and fix it up later. */
2290 static gimple
2291 find_foldable_builtin_expect (basic_block bb)
2293 gimple_stmt_iterator bsi;
2295 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2297 gimple stmt = gsi_stmt (bsi);
2298 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT))
2300 tree var = gimple_call_lhs (stmt);
2301 tree arg = gimple_call_arg (stmt, 0);
2302 use_operand_p use_p;
2303 gimple use_stmt;
2304 bool match = false;
2305 bool done = false;
2307 if (!var || !arg)
2308 continue;
2309 gcc_assert (TREE_CODE (var) == SSA_NAME);
2311 while (TREE_CODE (arg) == SSA_NAME)
2313 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2314 if (!is_gimple_assign (stmt_tmp))
2315 break;
2316 switch (gimple_assign_rhs_code (stmt_tmp))
2318 case LT_EXPR:
2319 case LE_EXPR:
2320 case GT_EXPR:
2321 case GE_EXPR:
2322 case EQ_EXPR:
2323 case NE_EXPR:
2324 match = true;
2325 done = true;
2326 break;
2327 case NOP_EXPR:
2328 break;
2329 default:
2330 done = true;
2331 break;
2333 if (done)
2334 break;
2335 arg = gimple_assign_rhs1 (stmt_tmp);
2338 if (match && single_imm_use (var, &use_p, &use_stmt)
2339 && gimple_code (use_stmt) == GIMPLE_COND)
2340 return use_stmt;
2343 return NULL;
2346 /* Compute function body size parameters for NODE.
2347 When EARLY is true, we compute only simple summaries without
2348 non-trivial predicates to drive the early inliner. */
2350 static void
2351 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2353 gcov_type time = 0;
2354 /* Estimate static overhead for function prologue/epilogue and alignment. */
2355 int size = 2;
2356 /* Benefits are scaled by probability of elimination that is in range
2357 <0,2>. */
2358 basic_block bb;
2359 gimple_stmt_iterator bsi;
2360 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2361 int freq;
2362 struct inline_summary *info = inline_summary (node);
2363 struct predicate bb_predicate;
2364 struct ipa_node_params *parms_info = NULL;
2365 vec<predicate_t> nonconstant_names = vNULL;
2366 int nblocks, n;
2367 int *order;
2368 predicate array_index = true_predicate ();
2369 gimple fix_builtin_expect_stmt;
2371 info->conds = NULL;
2372 info->entry = NULL;
2374 if (optimize && !early)
2376 calculate_dominance_info (CDI_DOMINATORS);
2377 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2379 if (ipa_node_params_vector.exists ())
2381 parms_info = IPA_NODE_REF (node);
2382 nonconstant_names.safe_grow_cleared
2383 (SSANAMES (my_function)->length ());
2387 if (dump_file)
2388 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2389 node->name ());
2391 /* When we run into maximal number of entries, we assign everything to the
2392 constant truth case. Be sure to have it in list. */
2393 bb_predicate = true_predicate ();
2394 account_size_time (info, 0, 0, &bb_predicate);
2396 bb_predicate = not_inlined_predicate ();
2397 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2399 gcc_assert (my_function && my_function->cfg);
2400 if (parms_info)
2401 compute_bb_predicates (node, parms_info, info);
2402 gcc_assert (cfun == my_function);
2403 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2404 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2405 for (n = 0; n < nblocks; n++)
2407 bb = BASIC_BLOCK (order[n]);
2408 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2410 /* TODO: Obviously predicates can be propagated down across CFG. */
2411 if (parms_info)
2413 if (bb->aux)
2414 bb_predicate = *(struct predicate *) bb->aux;
2415 else
2416 bb_predicate = false_predicate ();
2418 else
2419 bb_predicate = true_predicate ();
2421 if (dump_file && (dump_flags & TDF_DETAILS))
2423 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2424 dump_predicate (dump_file, info->conds, &bb_predicate);
2427 if (parms_info && nonconstant_names.exists ())
2429 struct predicate phi_predicate;
2430 bool first_phi = true;
2432 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2434 if (first_phi
2435 && !phi_result_unknown_predicate (parms_info, info, bb,
2436 &phi_predicate,
2437 nonconstant_names))
2438 break;
2439 first_phi = false;
2440 if (dump_file && (dump_flags & TDF_DETAILS))
2442 fprintf (dump_file, " ");
2443 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2445 predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
2446 nonconstant_names);
2450 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2452 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2454 gimple stmt = gsi_stmt (bsi);
2455 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2456 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2457 int prob;
2458 struct predicate will_be_nonconstant;
2460 /* This relation stmt should be folded after we remove
2461 buildin_expect call. Adjust the cost here. */
2462 if (stmt == fix_builtin_expect_stmt)
2464 this_size--;
2465 this_time--;
2468 if (dump_file && (dump_flags & TDF_DETAILS))
2470 fprintf (dump_file, " ");
2471 print_gimple_stmt (dump_file, stmt, 0, 0);
2472 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2473 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2474 this_time);
2477 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2479 struct predicate this_array_index;
2480 this_array_index =
2481 array_index_predicate (info, nonconstant_names,
2482 gimple_assign_rhs1 (stmt));
2483 if (!false_predicate_p (&this_array_index))
2484 array_index =
2485 and_predicates (info->conds, &array_index,
2486 &this_array_index);
2488 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2490 struct predicate this_array_index;
2491 this_array_index =
2492 array_index_predicate (info, nonconstant_names,
2493 gimple_get_lhs (stmt));
2494 if (!false_predicate_p (&this_array_index))
2495 array_index =
2496 and_predicates (info->conds, &array_index,
2497 &this_array_index);
2501 if (is_gimple_call (stmt))
2503 struct cgraph_edge *edge = cgraph_edge (node, stmt);
2504 struct inline_edge_summary *es = inline_edge_summary (edge);
2506 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2507 resolved as constant. We however don't want to optimize
2508 out the cgraph edges. */
2509 if (nonconstant_names.exists ()
2510 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2511 && gimple_call_lhs (stmt)
2512 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2514 struct predicate false_p = false_predicate ();
2515 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2516 = false_p;
2518 if (ipa_node_params_vector.exists ())
2520 int count = gimple_call_num_args (stmt);
2521 int i;
2523 if (count)
2524 es->param.safe_grow_cleared (count);
2525 for (i = 0; i < count; i++)
2527 int prob = param_change_prob (stmt, i);
2528 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2529 es->param[i].change_prob = prob;
2533 es->call_stmt_size = this_size;
2534 es->call_stmt_time = this_time;
2535 es->loop_depth = bb_loop_depth (bb);
2536 edge_set_predicate (edge, &bb_predicate);
2539 /* TODO: When conditional jump or swithc is known to be constant, but
2540 we did not translate it into the predicates, we really can account
2541 just maximum of the possible paths. */
2542 if (parms_info)
2543 will_be_nonconstant
2544 = will_be_nonconstant_predicate (parms_info, info,
2545 stmt, nonconstant_names);
2546 if (this_time || this_size)
2548 struct predicate p;
2550 this_time *= freq;
2552 prob = eliminated_by_inlining_prob (stmt);
2553 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2554 fprintf (dump_file,
2555 "\t\t50%% will be eliminated by inlining\n");
2556 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2557 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2559 if (parms_info)
2560 p = and_predicates (info->conds, &bb_predicate,
2561 &will_be_nonconstant);
2562 else
2563 p = true_predicate ();
2565 if (!false_predicate_p (&p))
2567 time += this_time;
2568 size += this_size;
2569 if (time > MAX_TIME * INLINE_TIME_SCALE)
2570 time = MAX_TIME * INLINE_TIME_SCALE;
2573 /* We account everything but the calls. Calls have their own
2574 size/time info attached to cgraph edges. This is necessary
2575 in order to make the cost disappear after inlining. */
2576 if (!is_gimple_call (stmt))
2578 if (prob)
2580 struct predicate ip = not_inlined_predicate ();
2581 ip = and_predicates (info->conds, &ip, &p);
2582 account_size_time (info, this_size * prob,
2583 this_time * prob, &ip);
2585 if (prob != 2)
2586 account_size_time (info, this_size * (2 - prob),
2587 this_time * (2 - prob), &p);
2590 gcc_assert (time >= 0);
2591 gcc_assert (size >= 0);
2595 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2596 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2597 if (time > MAX_TIME)
2598 time = MAX_TIME;
2599 free (order);
2601 if (!early && nonconstant_names.exists ())
2603 struct loop *loop;
2604 predicate loop_iterations = true_predicate ();
2605 predicate loop_stride = true_predicate ();
2607 if (dump_file && (dump_flags & TDF_DETAILS))
2608 flow_loops_dump (dump_file, NULL, 0);
2609 scev_initialize ();
2610 FOR_EACH_LOOP (loop, 0)
2612 vec<edge> exits;
2613 edge ex;
2614 unsigned int j, i;
2615 struct tree_niter_desc niter_desc;
2616 basic_block *body = get_loop_body (loop);
2617 bb_predicate = *(struct predicate *) loop->header->aux;
2619 exits = get_loop_exit_edges (loop);
2620 FOR_EACH_VEC_ELT (exits, j, ex)
2621 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2622 && !is_gimple_min_invariant (niter_desc.niter))
2624 predicate will_be_nonconstant
2625 = will_be_nonconstant_expr_predicate (parms_info, info,
2626 niter_desc.niter,
2627 nonconstant_names);
2628 if (!true_predicate_p (&will_be_nonconstant))
2629 will_be_nonconstant = and_predicates (info->conds,
2630 &bb_predicate,
2631 &will_be_nonconstant);
2632 if (!true_predicate_p (&will_be_nonconstant)
2633 && !false_predicate_p (&will_be_nonconstant))
2634 /* This is slightly inprecise. We may want to represent each
2635 loop with independent predicate. */
2636 loop_iterations =
2637 and_predicates (info->conds, &loop_iterations,
2638 &will_be_nonconstant);
2640 exits.release ();
2642 for (i = 0; i < loop->num_nodes; i++)
2644 gimple_stmt_iterator gsi;
2645 bb_predicate = *(struct predicate *) body[i]->aux;
2646 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2647 gsi_next (&gsi))
2649 gimple stmt = gsi_stmt (gsi);
2650 affine_iv iv;
2651 ssa_op_iter iter;
2652 tree use;
2654 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2656 predicate will_be_nonconstant;
2658 if (!simple_iv
2659 (loop, loop_containing_stmt (stmt), use, &iv, true)
2660 || is_gimple_min_invariant (iv.step))
2661 continue;
2662 will_be_nonconstant
2663 = will_be_nonconstant_expr_predicate (parms_info, info,
2664 iv.step,
2665 nonconstant_names);
2666 if (!true_predicate_p (&will_be_nonconstant))
2667 will_be_nonconstant
2668 = and_predicates (info->conds,
2669 &bb_predicate,
2670 &will_be_nonconstant);
2671 if (!true_predicate_p (&will_be_nonconstant)
2672 && !false_predicate_p (&will_be_nonconstant))
2673 /* This is slightly inprecise. We may want to represent
2674 each loop with independent predicate. */
2675 loop_stride =
2676 and_predicates (info->conds, &loop_stride,
2677 &will_be_nonconstant);
2681 free (body);
2683 set_hint_predicate (&inline_summary (node)->loop_iterations,
2684 loop_iterations);
2685 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2686 scev_finalize ();
2688 FOR_ALL_BB_FN (bb, my_function)
2690 edge e;
2691 edge_iterator ei;
2693 if (bb->aux)
2694 pool_free (edge_predicate_pool, bb->aux);
2695 bb->aux = NULL;
2696 FOR_EACH_EDGE (e, ei, bb->succs)
2698 if (e->aux)
2699 pool_free (edge_predicate_pool, e->aux);
2700 e->aux = NULL;
2703 inline_summary (node)->self_time = time;
2704 inline_summary (node)->self_size = size;
2705 nonconstant_names.release ();
2706 if (optimize && !early)
2708 loop_optimizer_finalize ();
2709 free_dominance_info (CDI_DOMINATORS);
2711 if (dump_file)
2713 fprintf (dump_file, "\n");
2714 dump_inline_summary (dump_file, node);
2719 /* Compute parameters of functions used by inliner.
2720 EARLY is true when we compute parameters for the early inliner */
2722 void
2723 compute_inline_parameters (struct cgraph_node *node, bool early)
2725 HOST_WIDE_INT self_stack_size;
2726 struct cgraph_edge *e;
2727 struct inline_summary *info;
2729 gcc_assert (!node->global.inlined_to);
2731 inline_summary_alloc ();
2733 info = inline_summary (node);
2734 reset_inline_summary (node);
2736 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2737 Once this happen, we will need to more curefully predict call
2738 statement size. */
2739 if (node->thunk.thunk_p)
2741 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2742 struct predicate t = true_predicate ();
2744 info->inlinable = 0;
2745 node->callees->call_stmt_cannot_inline_p = true;
2746 node->local.can_change_signature = false;
2747 es->call_stmt_time = 1;
2748 es->call_stmt_size = 1;
2749 account_size_time (info, 0, 0, &t);
2750 return;
2753 /* Even is_gimple_min_invariant rely on current_function_decl. */
2754 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2756 /* Estimate the stack size for the function if we're optimizing. */
2757 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2758 info->estimated_self_stack_size = self_stack_size;
2759 info->estimated_stack_size = self_stack_size;
2760 info->stack_frame_offset = 0;
2762 /* Can this function be inlined at all? */
2763 if (!optimize && !lookup_attribute ("always_inline",
2764 DECL_ATTRIBUTES (node->decl)))
2765 info->inlinable = false;
2766 else
2767 info->inlinable = tree_inlinable_function_p (node->decl);
2769 /* Type attributes can use parameter indices to describe them. */
2770 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2771 node->local.can_change_signature = false;
2772 else
2774 /* Otherwise, inlinable functions always can change signature. */
2775 if (info->inlinable)
2776 node->local.can_change_signature = true;
2777 else
2779 /* Functions calling builtin_apply can not change signature. */
2780 for (e = node->callees; e; e = e->next_callee)
2782 tree cdecl = e->callee->decl;
2783 if (DECL_BUILT_IN (cdecl)
2784 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2785 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2786 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2787 break;
2789 node->local.can_change_signature = !e;
2792 estimate_function_body_sizes (node, early);
2794 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2795 info->time = info->self_time;
2796 info->size = info->self_size;
2797 info->stack_frame_offset = 0;
2798 info->estimated_stack_size = info->estimated_self_stack_size;
2799 #ifdef ENABLE_CHECKING
2800 inline_update_overall_summary (node);
2801 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2802 #endif
2804 pop_cfun ();
2808 /* Compute parameters of functions used by inliner using
2809 current_function_decl. */
2811 static unsigned int
2812 compute_inline_parameters_for_current (void)
2814 compute_inline_parameters (cgraph_get_node (current_function_decl), true);
2815 return 0;
2818 namespace {
2820 const pass_data pass_data_inline_parameters =
2822 GIMPLE_PASS, /* type */
2823 "inline_param", /* name */
2824 OPTGROUP_INLINE, /* optinfo_flags */
2825 false, /* has_gate */
2826 true, /* has_execute */
2827 TV_INLINE_PARAMETERS, /* tv_id */
2828 0, /* properties_required */
2829 0, /* properties_provided */
2830 0, /* properties_destroyed */
2831 0, /* todo_flags_start */
2832 0, /* todo_flags_finish */
2835 class pass_inline_parameters : public gimple_opt_pass
2837 public:
2838 pass_inline_parameters (gcc::context *ctxt)
2839 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
2842 /* opt_pass methods: */
2843 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
2844 unsigned int execute () {
2845 return compute_inline_parameters_for_current ();
2848 }; // class pass_inline_parameters
2850 } // anon namespace
2852 gimple_opt_pass *
2853 make_pass_inline_parameters (gcc::context *ctxt)
2855 return new pass_inline_parameters (ctxt);
2859 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
2860 KNOWN_BINFOS. */
2862 static bool
2863 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2864 int *size, int *time,
2865 vec<tree> known_vals,
2866 vec<tree> known_binfos,
2867 vec<ipa_agg_jump_function_p> known_aggs)
2869 tree target;
2870 struct cgraph_node *callee;
2871 struct inline_summary *isummary;
2873 if (!known_vals.exists () && !known_binfos.exists ())
2874 return false;
2875 if (!flag_indirect_inlining)
2876 return false;
2878 target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos,
2879 known_aggs);
2880 if (!target)
2881 return false;
2883 /* Account for difference in cost between indirect and direct calls. */
2884 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2885 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
2886 gcc_checking_assert (*time >= 0);
2887 gcc_checking_assert (*size >= 0);
2889 callee = cgraph_get_node (target);
2890 if (!callee || !callee->definition)
2891 return false;
2892 isummary = inline_summary (callee);
2893 return isummary->inlinable;
2896 /* Increase SIZE and TIME for size and time needed to handle edge E. */
2898 static inline void
2899 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
2900 int prob,
2901 vec<tree> known_vals,
2902 vec<tree> known_binfos,
2903 vec<ipa_agg_jump_function_p> known_aggs,
2904 inline_hints *hints)
2906 struct inline_edge_summary *es = inline_edge_summary (e);
2907 int call_size = es->call_stmt_size;
2908 int call_time = es->call_stmt_time;
2909 if (!e->callee
2910 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
2911 known_vals, known_binfos, known_aggs)
2912 && hints && cgraph_maybe_hot_edge_p (e))
2913 *hints |= INLINE_HINT_indirect_call;
2914 *size += call_size * INLINE_SIZE_SCALE;
2915 *time += apply_probability ((gcov_type) call_time, prob)
2916 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
2917 if (*time > MAX_TIME * INLINE_TIME_SCALE)
2918 *time = MAX_TIME * INLINE_TIME_SCALE;
2923 /* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
2924 POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
2925 site. */
2927 static void
2928 estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
2929 inline_hints *hints,
2930 clause_t possible_truths,
2931 vec<tree> known_vals,
2932 vec<tree> known_binfos,
2933 vec<ipa_agg_jump_function_p> known_aggs)
2935 struct cgraph_edge *e;
2936 for (e = node->callees; e; e = e->next_callee)
2938 struct inline_edge_summary *es = inline_edge_summary (e);
2939 if (!es->predicate
2940 || evaluate_predicate (es->predicate, possible_truths))
2942 if (e->inline_failed)
2944 /* Predicates of calls shall not use NOT_CHANGED codes,
2945 sowe do not need to compute probabilities. */
2946 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2947 known_vals, known_binfos,
2948 known_aggs, hints);
2950 else
2951 estimate_calls_size_and_time (e->callee, size, time, hints,
2952 possible_truths,
2953 known_vals, known_binfos,
2954 known_aggs);
2957 for (e = node->indirect_calls; e; e = e->next_callee)
2959 struct inline_edge_summary *es = inline_edge_summary (e);
2960 if (!es->predicate
2961 || evaluate_predicate (es->predicate, possible_truths))
2962 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2963 known_vals, known_binfos, known_aggs,
2964 hints);
2969 /* Estimate size and time needed to execute NODE assuming
2970 POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
2971 about NODE's arguments. */
2973 static void
2974 estimate_node_size_and_time (struct cgraph_node *node,
2975 clause_t possible_truths,
2976 vec<tree> known_vals,
2977 vec<tree> known_binfos,
2978 vec<ipa_agg_jump_function_p> known_aggs,
2979 int *ret_size, int *ret_time,
2980 inline_hints *ret_hints,
2981 vec<inline_param_summary_t>
2982 inline_param_summary)
2984 struct inline_summary *info = inline_summary (node);
2985 size_time_entry *e;
2986 int size = 0;
2987 int time = 0;
2988 inline_hints hints = 0;
2989 int i;
2991 if (dump_file && (dump_flags & TDF_DETAILS))
2993 bool found = false;
2994 fprintf (dump_file, " Estimating body: %s/%i\n"
2995 " Known to be false: ", node->name (),
2996 node->order);
2998 for (i = predicate_not_inlined_condition;
2999 i < (predicate_first_dynamic_condition
3000 + (int) vec_safe_length (info->conds)); i++)
3001 if (!(possible_truths & (1 << i)))
3003 if (found)
3004 fprintf (dump_file, ", ");
3005 found = true;
3006 dump_condition (dump_file, info->conds, i);
3010 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3011 if (evaluate_predicate (&e->predicate, possible_truths))
3013 size += e->size;
3014 gcc_checking_assert (e->time >= 0);
3015 gcc_checking_assert (time >= 0);
3016 if (!inline_param_summary.exists ())
3017 time += e->time;
3018 else
3020 int prob = predicate_probability (info->conds,
3021 &e->predicate,
3022 possible_truths,
3023 inline_param_summary);
3024 gcc_checking_assert (prob >= 0);
3025 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3026 time += apply_probability ((gcov_type) e->time, prob);
3028 if (time > MAX_TIME * INLINE_TIME_SCALE)
3029 time = MAX_TIME * INLINE_TIME_SCALE;
3030 gcc_checking_assert (time >= 0);
3033 gcc_checking_assert (size >= 0);
3034 gcc_checking_assert (time >= 0);
3036 if (info->loop_iterations
3037 && !evaluate_predicate (info->loop_iterations, possible_truths))
3038 hints |= INLINE_HINT_loop_iterations;
3039 if (info->loop_stride
3040 && !evaluate_predicate (info->loop_stride, possible_truths))
3041 hints |= INLINE_HINT_loop_stride;
3042 if (info->array_index
3043 && !evaluate_predicate (info->array_index, possible_truths))
3044 hints |= INLINE_HINT_array_index;
3045 if (info->scc_no)
3046 hints |= INLINE_HINT_in_scc;
3047 if (DECL_DECLARED_INLINE_P (node->decl))
3048 hints |= INLINE_HINT_declared_inline;
3050 estimate_calls_size_and_time (node, &size, &time, &hints, possible_truths,
3051 known_vals, known_binfos, known_aggs);
3052 gcc_checking_assert (size >= 0);
3053 gcc_checking_assert (time >= 0);
3054 time = RDIV (time, INLINE_TIME_SCALE);
3055 size = RDIV (size, INLINE_SIZE_SCALE);
3057 if (dump_file && (dump_flags & TDF_DETAILS))
3058 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3059 if (ret_time)
3060 *ret_time = time;
3061 if (ret_size)
3062 *ret_size = size;
3063 if (ret_hints)
3064 *ret_hints = hints;
3065 return;
3069 /* Estimate size and time needed to execute callee of EDGE assuming that
3070 parameters known to be constant at caller of EDGE are propagated.
3071 KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
3072 and types for parameters. */
3074 void
3075 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3076 vec<tree> known_vals,
3077 vec<tree> known_binfos,
3078 vec<ipa_agg_jump_function_p> known_aggs,
3079 int *ret_size, int *ret_time,
3080 inline_hints *hints)
3082 clause_t clause;
3084 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3085 known_aggs);
3086 estimate_node_size_and_time (node, clause, known_vals, known_binfos,
3087 known_aggs, ret_size, ret_time, hints, vNULL);
3090 /* Translate all conditions from callee representation into caller
3091 representation and symbolically evaluate predicate P into new predicate.
3093 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3094 is summary of function predicate P is from. OPERAND_MAP is array giving
3095 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3096 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3097 predicate under which callee is executed. OFFSET_MAP is an array of of
3098 offsets that need to be added to conditions, negative offset means that
3099 conditions relying on values passed by reference have to be discarded
3100 because they might not be preserved (and should be considered offset zero
3101 for other purposes). */
3103 static struct predicate
3104 remap_predicate (struct inline_summary *info,
3105 struct inline_summary *callee_info,
3106 struct predicate *p,
3107 vec<int> operand_map,
3108 vec<int> offset_map,
3109 clause_t possible_truths, struct predicate *toplev_predicate)
3111 int i;
3112 struct predicate out = true_predicate ();
3114 /* True predicate is easy. */
3115 if (true_predicate_p (p))
3116 return *toplev_predicate;
3117 for (i = 0; p->clause[i]; i++)
3119 clause_t clause = p->clause[i];
3120 int cond;
3121 struct predicate clause_predicate = false_predicate ();
3123 gcc_assert (i < MAX_CLAUSES);
3125 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3126 /* Do we have condition we can't disprove? */
3127 if (clause & possible_truths & (1 << cond))
3129 struct predicate cond_predicate;
3130 /* Work out if the condition can translate to predicate in the
3131 inlined function. */
3132 if (cond >= predicate_first_dynamic_condition)
3134 struct condition *c;
3136 c = &(*callee_info->conds)[cond
3138 predicate_first_dynamic_condition];
3139 /* See if we can remap condition operand to caller's operand.
3140 Otherwise give up. */
3141 if (!operand_map.exists ()
3142 || (int) operand_map.length () <= c->operand_num
3143 || operand_map[c->operand_num] == -1
3144 /* TODO: For non-aggregate conditions, adding an offset is
3145 basically an arithmetic jump function processing which
3146 we should support in future. */
3147 || ((!c->agg_contents || !c->by_ref)
3148 && offset_map[c->operand_num] > 0)
3149 || (c->agg_contents && c->by_ref
3150 && offset_map[c->operand_num] < 0))
3151 cond_predicate = true_predicate ();
3152 else
3154 struct agg_position_info ap;
3155 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3156 if (offset_delta < 0)
3158 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3159 offset_delta = 0;
3161 gcc_assert (!c->agg_contents
3162 || c->by_ref || offset_delta == 0);
3163 ap.offset = c->offset + offset_delta;
3164 ap.agg_contents = c->agg_contents;
3165 ap.by_ref = c->by_ref;
3166 cond_predicate = add_condition (info,
3167 operand_map[c->operand_num],
3168 &ap, c->code, c->val);
3171 /* Fixed conditions remains same, construct single
3172 condition predicate. */
3173 else
3175 cond_predicate.clause[0] = 1 << cond;
3176 cond_predicate.clause[1] = 0;
3178 clause_predicate = or_predicates (info->conds, &clause_predicate,
3179 &cond_predicate);
3181 out = and_predicates (info->conds, &out, &clause_predicate);
3183 return and_predicates (info->conds, &out, toplev_predicate);
3187 /* Update summary information of inline clones after inlining.
3188 Compute peak stack usage. */
3190 static void
3191 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3193 struct cgraph_edge *e;
3194 struct inline_summary *callee_info = inline_summary (node);
3195 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3196 HOST_WIDE_INT peak;
3198 callee_info->stack_frame_offset
3199 = caller_info->stack_frame_offset
3200 + caller_info->estimated_self_stack_size;
3201 peak = callee_info->stack_frame_offset
3202 + callee_info->estimated_self_stack_size;
3203 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3204 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3205 ipa_propagate_frequency (node);
3206 for (e = node->callees; e; e = e->next_callee)
3208 if (!e->inline_failed)
3209 inline_update_callee_summaries (e->callee, depth);
3210 inline_edge_summary (e)->loop_depth += depth;
3212 for (e = node->indirect_calls; e; e = e->next_callee)
3213 inline_edge_summary (e)->loop_depth += depth;
3216 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3217 When functoin A is inlined in B and A calls C with parameter that
3218 changes with probability PROB1 and C is known to be passthroug
3219 of argument if B that change with probability PROB2, the probability
3220 of change is now PROB1*PROB2. */
3222 static void
3223 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3224 struct cgraph_edge *edge)
3226 if (ipa_node_params_vector.exists ())
3228 int i;
3229 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3230 struct inline_edge_summary *es = inline_edge_summary (edge);
3231 struct inline_edge_summary *inlined_es
3232 = inline_edge_summary (inlined_edge);
3234 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3236 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3237 if (jfunc->type == IPA_JF_PASS_THROUGH
3238 && (ipa_get_jf_pass_through_formal_id (jfunc)
3239 < (int) inlined_es->param.length ()))
3241 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3242 int prob1 = es->param[i].change_prob;
3243 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3244 int prob = combine_probabilities (prob1, prob2);
3246 if (prob1 && prob2 && !prob)
3247 prob = 1;
3249 es->param[i].change_prob = prob;
3255 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3257 Remap predicates of callees of NODE. Rest of arguments match
3258 remap_predicate.
3260 Also update change probabilities. */
3262 static void
3263 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3264 struct cgraph_node *node,
3265 struct inline_summary *info,
3266 struct inline_summary *callee_info,
3267 vec<int> operand_map,
3268 vec<int> offset_map,
3269 clause_t possible_truths,
3270 struct predicate *toplev_predicate)
3272 struct cgraph_edge *e;
3273 for (e = node->callees; e; e = e->next_callee)
3275 struct inline_edge_summary *es = inline_edge_summary (e);
3276 struct predicate p;
3278 if (e->inline_failed)
3280 remap_edge_change_prob (inlined_edge, e);
3282 if (es->predicate)
3284 p = remap_predicate (info, callee_info,
3285 es->predicate, operand_map, offset_map,
3286 possible_truths, toplev_predicate);
3287 edge_set_predicate (e, &p);
3288 /* TODO: We should remove the edge for code that will be
3289 optimized out, but we need to keep verifiers and tree-inline
3290 happy. Make it cold for now. */
3291 if (false_predicate_p (&p))
3293 e->count = 0;
3294 e->frequency = 0;
3297 else
3298 edge_set_predicate (e, toplev_predicate);
3300 else
3301 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3302 operand_map, offset_map, possible_truths,
3303 toplev_predicate);
3305 for (e = node->indirect_calls; e; e = e->next_callee)
3307 struct inline_edge_summary *es = inline_edge_summary (e);
3308 struct predicate p;
3310 remap_edge_change_prob (inlined_edge, e);
3311 if (es->predicate)
3313 p = remap_predicate (info, callee_info,
3314 es->predicate, operand_map, offset_map,
3315 possible_truths, toplev_predicate);
3316 edge_set_predicate (e, &p);
3317 /* TODO: We should remove the edge for code that will be optimized
3318 out, but we need to keep verifiers and tree-inline happy.
3319 Make it cold for now. */
3320 if (false_predicate_p (&p))
3322 e->count = 0;
3323 e->frequency = 0;
3326 else
3327 edge_set_predicate (e, toplev_predicate);
3331 /* Same as remap_predicate, but set result into hint *HINT. */
3333 static void
3334 remap_hint_predicate (struct inline_summary *info,
3335 struct inline_summary *callee_info,
3336 struct predicate **hint,
3337 vec<int> operand_map,
3338 vec<int> offset_map,
3339 clause_t possible_truths,
3340 struct predicate *toplev_predicate)
3342 predicate p;
3344 if (!*hint)
3345 return;
3346 p = remap_predicate (info, callee_info,
3347 *hint,
3348 operand_map, offset_map,
3349 possible_truths, toplev_predicate);
3350 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3352 if (!*hint)
3353 set_hint_predicate (hint, p);
3354 else
3355 **hint = and_predicates (info->conds, *hint, &p);
3359 /* We inlined EDGE. Update summary of the function we inlined into. */
3361 void
3362 inline_merge_summary (struct cgraph_edge *edge)
3364 struct inline_summary *callee_info = inline_summary (edge->callee);
3365 struct cgraph_node *to = (edge->caller->global.inlined_to
3366 ? edge->caller->global.inlined_to : edge->caller);
3367 struct inline_summary *info = inline_summary (to);
3368 clause_t clause = 0; /* not_inline is known to be false. */
3369 size_time_entry *e;
3370 vec<int> operand_map = vNULL;
3371 vec<int> offset_map = vNULL;
3372 int i;
3373 struct predicate toplev_predicate;
3374 struct predicate true_p = true_predicate ();
3375 struct inline_edge_summary *es = inline_edge_summary (edge);
3377 if (es->predicate)
3378 toplev_predicate = *es->predicate;
3379 else
3380 toplev_predicate = true_predicate ();
3382 if (ipa_node_params_vector.exists () && callee_info->conds)
3384 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3385 int count = ipa_get_cs_argument_count (args);
3386 int i;
3388 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3389 if (count)
3391 operand_map.safe_grow_cleared (count);
3392 offset_map.safe_grow_cleared (count);
3394 for (i = 0; i < count; i++)
3396 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3397 int map = -1;
3399 /* TODO: handle non-NOPs when merging. */
3400 if (jfunc->type == IPA_JF_PASS_THROUGH)
3402 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3403 map = ipa_get_jf_pass_through_formal_id (jfunc);
3404 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3405 offset_map[i] = -1;
3407 else if (jfunc->type == IPA_JF_ANCESTOR)
3409 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3410 if (offset >= 0 && offset < INT_MAX)
3412 map = ipa_get_jf_ancestor_formal_id (jfunc);
3413 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3414 offset = -1;
3415 offset_map[i] = offset;
3418 operand_map[i] = map;
3419 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3422 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3424 struct predicate p = remap_predicate (info, callee_info,
3425 &e->predicate, operand_map,
3426 offset_map, clause,
3427 &toplev_predicate);
3428 if (!false_predicate_p (&p))
3430 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3431 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3432 int prob = predicate_probability (callee_info->conds,
3433 &e->predicate,
3434 clause, es->param);
3435 add_time = apply_probability ((gcov_type) add_time, prob);
3436 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3437 add_time = MAX_TIME * INLINE_TIME_SCALE;
3438 if (prob != REG_BR_PROB_BASE
3439 && dump_file && (dump_flags & TDF_DETAILS))
3441 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3442 (double) prob / REG_BR_PROB_BASE);
3444 account_size_time (info, e->size, add_time, &p);
3447 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3448 offset_map, clause, &toplev_predicate);
3449 remap_hint_predicate (info, callee_info,
3450 &callee_info->loop_iterations,
3451 operand_map, offset_map, clause, &toplev_predicate);
3452 remap_hint_predicate (info, callee_info,
3453 &callee_info->loop_stride,
3454 operand_map, offset_map, clause, &toplev_predicate);
3455 remap_hint_predicate (info, callee_info,
3456 &callee_info->array_index,
3457 operand_map, offset_map, clause, &toplev_predicate);
3459 inline_update_callee_summaries (edge->callee,
3460 inline_edge_summary (edge)->loop_depth);
3462 /* We do not maintain predicates of inlined edges, free it. */
3463 edge_set_predicate (edge, &true_p);
3464 /* Similarly remove param summaries. */
3465 es->param.release ();
3466 operand_map.release ();
3467 offset_map.release ();
3470 /* For performance reasons inline_merge_summary is not updating overall size
3471 and time. Recompute it. */
3473 void
3474 inline_update_overall_summary (struct cgraph_node *node)
3476 struct inline_summary *info = inline_summary (node);
3477 size_time_entry *e;
3478 int i;
3480 info->size = 0;
3481 info->time = 0;
3482 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3484 info->size += e->size, info->time += e->time;
3485 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3486 info->time = MAX_TIME * INLINE_TIME_SCALE;
3488 estimate_calls_size_and_time (node, &info->size, &info->time, NULL,
3489 ~(clause_t) (1 << predicate_false_condition),
3490 vNULL, vNULL, vNULL);
3491 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3492 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3495 /* Return hints derrived from EDGE. */
3497 simple_edge_hints (struct cgraph_edge *edge)
3499 int hints = 0;
3500 struct cgraph_node *to = (edge->caller->global.inlined_to
3501 ? edge->caller->global.inlined_to : edge->caller);
3502 if (inline_summary (to)->scc_no
3503 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3504 && !cgraph_edge_recursive_p (edge))
3505 hints |= INLINE_HINT_same_scc;
3507 if (to->lto_file_data && edge->callee->lto_file_data
3508 && to->lto_file_data != edge->callee->lto_file_data)
3509 hints |= INLINE_HINT_cross_module;
3511 return hints;
3514 /* Estimate the time cost for the caller when inlining EDGE.
3515 Only to be called via estimate_edge_time, that handles the
3516 caching mechanism.
3518 When caching, also update the cache entry. Compute both time and
3519 size, since we always need both metrics eventually. */
3522 do_estimate_edge_time (struct cgraph_edge *edge)
3524 int time;
3525 int size;
3526 inline_hints hints;
3527 struct cgraph_node *callee;
3528 clause_t clause;
3529 vec<tree> known_vals;
3530 vec<tree> known_binfos;
3531 vec<ipa_agg_jump_function_p> known_aggs;
3532 struct inline_edge_summary *es = inline_edge_summary (edge);
3534 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3536 gcc_checking_assert (edge->inline_failed);
3537 evaluate_properties_for_edge (edge, true,
3538 &clause, &known_vals, &known_binfos,
3539 &known_aggs);
3540 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3541 known_aggs, &size, &time, &hints, es->param);
3542 known_vals.release ();
3543 known_binfos.release ();
3544 known_aggs.release ();
3545 gcc_checking_assert (size >= 0);
3546 gcc_checking_assert (time >= 0);
3548 /* When caching, update the cache entry. */
3549 if (edge_growth_cache.exists ())
3551 if ((int) edge_growth_cache.length () <= edge->uid)
3552 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
3553 edge_growth_cache[edge->uid].time = time + (time >= 0);
3555 edge_growth_cache[edge->uid].size = size + (size >= 0);
3556 hints |= simple_edge_hints (edge);
3557 edge_growth_cache[edge->uid].hints = hints + 1;
3559 return time;
3563 /* Return estimated callee growth after inlining EDGE.
3564 Only to be called via estimate_edge_size. */
3567 do_estimate_edge_size (struct cgraph_edge *edge)
3569 int size;
3570 struct cgraph_node *callee;
3571 clause_t clause;
3572 vec<tree> known_vals;
3573 vec<tree> known_binfos;
3574 vec<ipa_agg_jump_function_p> known_aggs;
3576 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3578 if (edge_growth_cache.exists ())
3580 do_estimate_edge_time (edge);
3581 size = edge_growth_cache[edge->uid].size;
3582 gcc_checking_assert (size);
3583 return size - (size > 0);
3586 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3588 /* Early inliner runs without caching, go ahead and do the dirty work. */
3589 gcc_checking_assert (edge->inline_failed);
3590 evaluate_properties_for_edge (edge, true,
3591 &clause, &known_vals, &known_binfos,
3592 &known_aggs);
3593 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3594 known_aggs, &size, NULL, NULL, vNULL);
3595 known_vals.release ();
3596 known_binfos.release ();
3597 known_aggs.release ();
3598 return size;
3602 /* Estimate the growth of the caller when inlining EDGE.
3603 Only to be called via estimate_edge_size. */
3605 inline_hints
3606 do_estimate_edge_hints (struct cgraph_edge *edge)
3608 inline_hints hints;
3609 struct cgraph_node *callee;
3610 clause_t clause;
3611 vec<tree> known_vals;
3612 vec<tree> known_binfos;
3613 vec<ipa_agg_jump_function_p> known_aggs;
3615 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3617 if (edge_growth_cache.exists ())
3619 do_estimate_edge_time (edge);
3620 hints = edge_growth_cache[edge->uid].hints;
3621 gcc_checking_assert (hints);
3622 return hints - 1;
3625 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3627 /* Early inliner runs without caching, go ahead and do the dirty work. */
3628 gcc_checking_assert (edge->inline_failed);
3629 evaluate_properties_for_edge (edge, true,
3630 &clause, &known_vals, &known_binfos,
3631 &known_aggs);
3632 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3633 known_aggs, NULL, NULL, &hints, vNULL);
3634 known_vals.release ();
3635 known_binfos.release ();
3636 known_aggs.release ();
3637 hints |= simple_edge_hints (edge);
3638 return hints;
3642 /* Estimate self time of the function NODE after inlining EDGE. */
3645 estimate_time_after_inlining (struct cgraph_node *node,
3646 struct cgraph_edge *edge)
3648 struct inline_edge_summary *es = inline_edge_summary (edge);
3649 if (!es->predicate || !false_predicate_p (es->predicate))
3651 gcov_type time =
3652 inline_summary (node)->time + estimate_edge_time (edge);
3653 if (time < 0)
3654 time = 0;
3655 if (time > MAX_TIME)
3656 time = MAX_TIME;
3657 return time;
3659 return inline_summary (node)->time;
3663 /* Estimate the size of NODE after inlining EDGE which should be an
3664 edge to either NODE or a call inlined into NODE. */
3667 estimate_size_after_inlining (struct cgraph_node *node,
3668 struct cgraph_edge *edge)
3670 struct inline_edge_summary *es = inline_edge_summary (edge);
3671 if (!es->predicate || !false_predicate_p (es->predicate))
3673 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3674 gcc_assert (size >= 0);
3675 return size;
3677 return inline_summary (node)->size;
3681 struct growth_data
3683 struct cgraph_node *node;
3684 bool self_recursive;
3685 int growth;
3689 /* Worker for do_estimate_growth. Collect growth for all callers. */
3691 static bool
3692 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3694 struct cgraph_edge *e;
3695 struct growth_data *d = (struct growth_data *) data;
3697 for (e = node->callers; e; e = e->next_caller)
3699 gcc_checking_assert (e->inline_failed);
3701 if (e->caller == d->node
3702 || (e->caller->global.inlined_to
3703 && e->caller->global.inlined_to == d->node))
3704 d->self_recursive = true;
3705 d->growth += estimate_edge_growth (e);
3707 return false;
3711 /* Estimate the growth caused by inlining NODE into all callees. */
3714 do_estimate_growth (struct cgraph_node *node)
3716 struct growth_data d = { node, 0, false };
3717 struct inline_summary *info = inline_summary (node);
3719 cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
3721 /* For self recursive functions the growth estimation really should be
3722 infinity. We don't want to return very large values because the growth
3723 plays various roles in badness computation fractions. Be sure to not
3724 return zero or negative growths. */
3725 if (d.self_recursive)
3726 d.growth = d.growth < info->size ? info->size : d.growth;
3727 else if (DECL_EXTERNAL (node->decl))
3729 else
3731 if (cgraph_will_be_removed_from_program_if_no_direct_calls (node))
3732 d.growth -= info->size;
3733 /* COMDAT functions are very often not shared across multiple units
3734 since they come from various template instantiations.
3735 Take this into account. */
3736 else if (DECL_COMDAT (node->decl)
3737 && cgraph_can_remove_if_no_direct_calls_p (node))
3738 d.growth -= (info->size
3739 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3740 + 50) / 100;
3743 if (node_growth_cache.exists ())
3745 if ((int) node_growth_cache.length () <= node->uid)
3746 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
3747 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3749 return d.growth;
3753 /* This function performs intraprocedural analysis in NODE that is required to
3754 inline indirect calls. */
3756 static void
3757 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3759 ipa_analyze_node (node);
3760 if (dump_file && (dump_flags & TDF_DETAILS))
3762 ipa_print_node_params (dump_file, node);
3763 ipa_print_node_jump_functions (dump_file, node);
3768 /* Note function body size. */
3770 static void
3771 inline_analyze_function (struct cgraph_node *node)
3773 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3775 if (dump_file)
3776 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3777 node->name (), node->order);
3778 if (optimize && !node->thunk.thunk_p)
3779 inline_indirect_intraprocedural_analysis (node);
3780 compute_inline_parameters (node, false);
3781 if (!optimize)
3783 struct cgraph_edge *e;
3784 for (e = node->callees; e; e = e->next_callee)
3786 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3787 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3788 e->call_stmt_cannot_inline_p = true;
3790 for (e = node->indirect_calls; e; e = e->next_callee)
3792 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3793 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3794 e->call_stmt_cannot_inline_p = true;
3798 pop_cfun ();
3802 /* Called when new function is inserted to callgraph late. */
3804 static void
3805 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3807 inline_analyze_function (node);
3811 /* Note function body size. */
3813 void
3814 inline_generate_summary (void)
3816 struct cgraph_node *node;
3818 /* When not optimizing, do not bother to analyze. Inlining is still done
3819 because edge redirection needs to happen there. */
3820 if (!optimize && !flag_lto && !flag_wpa)
3821 return;
3823 function_insertion_hook_holder =
3824 cgraph_add_function_insertion_hook (&add_new_function, NULL);
3826 ipa_register_cgraph_hooks ();
3827 inline_free_summary ();
3829 FOR_EACH_DEFINED_FUNCTION (node)
3830 if (!node->alias)
3831 inline_analyze_function (node);
3835 /* Read predicate from IB. */
3837 static struct predicate
3838 read_predicate (struct lto_input_block *ib)
3840 struct predicate out;
3841 clause_t clause;
3842 int k = 0;
3846 gcc_assert (k <= MAX_CLAUSES);
3847 clause = out.clause[k++] = streamer_read_uhwi (ib);
3849 while (clause);
3851 /* Zero-initialize the remaining clauses in OUT. */
3852 while (k <= MAX_CLAUSES)
3853 out.clause[k++] = 0;
3855 return out;
3859 /* Write inline summary for edge E to OB. */
3861 static void
3862 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
3864 struct inline_edge_summary *es = inline_edge_summary (e);
3865 struct predicate p;
3866 int length, i;
3868 es->call_stmt_size = streamer_read_uhwi (ib);
3869 es->call_stmt_time = streamer_read_uhwi (ib);
3870 es->loop_depth = streamer_read_uhwi (ib);
3871 p = read_predicate (ib);
3872 edge_set_predicate (e, &p);
3873 length = streamer_read_uhwi (ib);
3874 if (length)
3876 es->param.safe_grow_cleared (length);
3877 for (i = 0; i < length; i++)
3878 es->param[i].change_prob = streamer_read_uhwi (ib);
3883 /* Stream in inline summaries from the section. */
3885 static void
3886 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
3887 size_t len)
3889 const struct lto_function_header *header =
3890 (const struct lto_function_header *) data;
3891 const int cfg_offset = sizeof (struct lto_function_header);
3892 const int main_offset = cfg_offset + header->cfg_size;
3893 const int string_offset = main_offset + header->main_size;
3894 struct data_in *data_in;
3895 struct lto_input_block ib;
3896 unsigned int i, count2, j;
3897 unsigned int f_count;
3899 LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
3900 header->main_size);
3902 data_in =
3903 lto_data_in_create (file_data, (const char *) data + string_offset,
3904 header->string_size, vNULL);
3905 f_count = streamer_read_uhwi (&ib);
3906 for (i = 0; i < f_count; i++)
3908 unsigned int index;
3909 struct cgraph_node *node;
3910 struct inline_summary *info;
3911 lto_symtab_encoder_t encoder;
3912 struct bitpack_d bp;
3913 struct cgraph_edge *e;
3914 predicate p;
3916 index = streamer_read_uhwi (&ib);
3917 encoder = file_data->symtab_node_encoder;
3918 node = cgraph (lto_symtab_encoder_deref (encoder, index));
3919 info = inline_summary (node);
3921 info->estimated_stack_size
3922 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
3923 info->size = info->self_size = streamer_read_uhwi (&ib);
3924 info->time = info->self_time = streamer_read_uhwi (&ib);
3926 bp = streamer_read_bitpack (&ib);
3927 info->inlinable = bp_unpack_value (&bp, 1);
3929 count2 = streamer_read_uhwi (&ib);
3930 gcc_assert (!info->conds);
3931 for (j = 0; j < count2; j++)
3933 struct condition c;
3934 c.operand_num = streamer_read_uhwi (&ib);
3935 c.code = (enum tree_code) streamer_read_uhwi (&ib);
3936 c.val = stream_read_tree (&ib, data_in);
3937 bp = streamer_read_bitpack (&ib);
3938 c.agg_contents = bp_unpack_value (&bp, 1);
3939 c.by_ref = bp_unpack_value (&bp, 1);
3940 if (c.agg_contents)
3941 c.offset = streamer_read_uhwi (&ib);
3942 vec_safe_push (info->conds, c);
3944 count2 = streamer_read_uhwi (&ib);
3945 gcc_assert (!info->entry);
3946 for (j = 0; j < count2; j++)
3948 struct size_time_entry e;
3950 e.size = streamer_read_uhwi (&ib);
3951 e.time = streamer_read_uhwi (&ib);
3952 e.predicate = read_predicate (&ib);
3954 vec_safe_push (info->entry, e);
3957 p = read_predicate (&ib);
3958 set_hint_predicate (&info->loop_iterations, p);
3959 p = read_predicate (&ib);
3960 set_hint_predicate (&info->loop_stride, p);
3961 p = read_predicate (&ib);
3962 set_hint_predicate (&info->array_index, p);
3963 for (e = node->callees; e; e = e->next_callee)
3964 read_inline_edge_summary (&ib, e);
3965 for (e = node->indirect_calls; e; e = e->next_callee)
3966 read_inline_edge_summary (&ib, e);
3969 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
3970 len);
3971 lto_data_in_delete (data_in);
3975 /* Read inline summary. Jump functions are shared among ipa-cp
3976 and inliner, so when ipa-cp is active, we don't need to write them
3977 twice. */
3979 void
3980 inline_read_summary (void)
3982 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3983 struct lto_file_decl_data *file_data;
3984 unsigned int j = 0;
3986 inline_summary_alloc ();
3988 while ((file_data = file_data_vec[j++]))
3990 size_t len;
3991 const char *data = lto_get_section_data (file_data,
3992 LTO_section_inline_summary,
3993 NULL, &len);
3994 if (data)
3995 inline_read_section (file_data, data, len);
3996 else
3997 /* Fatal error here. We do not want to support compiling ltrans units
3998 with different version of compiler or different flags than the WPA
3999 unit, so this should never happen. */
4000 fatal_error ("ipa inline summary is missing in input file");
4002 if (optimize)
4004 ipa_register_cgraph_hooks ();
4005 if (!flag_ipa_cp)
4006 ipa_prop_read_jump_functions ();
4008 function_insertion_hook_holder =
4009 cgraph_add_function_insertion_hook (&add_new_function, NULL);
4013 /* Write predicate P to OB. */
4015 static void
4016 write_predicate (struct output_block *ob, struct predicate *p)
4018 int j;
4019 if (p)
4020 for (j = 0; p->clause[j]; j++)
4022 gcc_assert (j < MAX_CLAUSES);
4023 streamer_write_uhwi (ob, p->clause[j]);
4025 streamer_write_uhwi (ob, 0);
4029 /* Write inline summary for edge E to OB. */
4031 static void
4032 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4034 struct inline_edge_summary *es = inline_edge_summary (e);
4035 int i;
4037 streamer_write_uhwi (ob, es->call_stmt_size);
4038 streamer_write_uhwi (ob, es->call_stmt_time);
4039 streamer_write_uhwi (ob, es->loop_depth);
4040 write_predicate (ob, es->predicate);
4041 streamer_write_uhwi (ob, es->param.length ());
4042 for (i = 0; i < (int) es->param.length (); i++)
4043 streamer_write_uhwi (ob, es->param[i].change_prob);
4047 /* Write inline summary for node in SET.
4048 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4049 active, we don't need to write them twice. */
4051 void
4052 inline_write_summary (void)
4054 struct cgraph_node *node;
4055 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4056 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4057 unsigned int count = 0;
4058 int i;
4060 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4062 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4063 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
4064 if (cnode && cnode->definition && !cnode->alias)
4065 count++;
4067 streamer_write_uhwi (ob, count);
4069 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4071 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4072 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
4073 if (cnode && (node = cnode)->definition && !node->alias)
4075 struct inline_summary *info = inline_summary (node);
4076 struct bitpack_d bp;
4077 struct cgraph_edge *edge;
4078 int i;
4079 size_time_entry *e;
4080 struct condition *c;
4082 streamer_write_uhwi (ob,
4083 lto_symtab_encoder_encode (encoder,
4085 node));
4086 streamer_write_hwi (ob, info->estimated_self_stack_size);
4087 streamer_write_hwi (ob, info->self_size);
4088 streamer_write_hwi (ob, info->self_time);
4089 bp = bitpack_create (ob->main_stream);
4090 bp_pack_value (&bp, info->inlinable, 1);
4091 streamer_write_bitpack (&bp);
4092 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4093 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4095 streamer_write_uhwi (ob, c->operand_num);
4096 streamer_write_uhwi (ob, c->code);
4097 stream_write_tree (ob, c->val, true);
4098 bp = bitpack_create (ob->main_stream);
4099 bp_pack_value (&bp, c->agg_contents, 1);
4100 bp_pack_value (&bp, c->by_ref, 1);
4101 streamer_write_bitpack (&bp);
4102 if (c->agg_contents)
4103 streamer_write_uhwi (ob, c->offset);
4105 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4106 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4108 streamer_write_uhwi (ob, e->size);
4109 streamer_write_uhwi (ob, e->time);
4110 write_predicate (ob, &e->predicate);
4112 write_predicate (ob, info->loop_iterations);
4113 write_predicate (ob, info->loop_stride);
4114 write_predicate (ob, info->array_index);
4115 for (edge = node->callees; edge; edge = edge->next_callee)
4116 write_inline_edge_summary (ob, edge);
4117 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4118 write_inline_edge_summary (ob, edge);
4121 streamer_write_char_stream (ob->main_stream, 0);
4122 produce_asm (ob, NULL);
4123 destroy_output_block (ob);
4125 if (optimize && !flag_ipa_cp)
4126 ipa_prop_write_jump_functions ();
4130 /* Release inline summary. */
4132 void
4133 inline_free_summary (void)
4135 struct cgraph_node *node;
4136 if (!inline_edge_summary_vec.exists ())
4137 return;
4138 FOR_EACH_DEFINED_FUNCTION (node)
4139 reset_inline_summary (node);
4140 if (function_insertion_hook_holder)
4141 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
4142 function_insertion_hook_holder = NULL;
4143 if (node_removal_hook_holder)
4144 cgraph_remove_node_removal_hook (node_removal_hook_holder);
4145 node_removal_hook_holder = NULL;
4146 if (edge_removal_hook_holder)
4147 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
4148 edge_removal_hook_holder = NULL;
4149 if (node_duplication_hook_holder)
4150 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
4151 node_duplication_hook_holder = NULL;
4152 if (edge_duplication_hook_holder)
4153 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
4154 edge_duplication_hook_holder = NULL;
4155 vec_free (inline_summary_vec);
4156 inline_edge_summary_vec.release ();
4157 if (edge_predicate_pool)
4158 free_alloc_pool (edge_predicate_pool);
4159 edge_predicate_pool = 0;