* ipa/devirt9.C: Fix previous change.
[official-gcc.git] / gcc / explow.c
blobbc4f805323c3b5d8c0bb84db4e5f4f455f79a903
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "libfuncs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "common/common-target.h"
43 #include "output.h"
45 static rtx break_out_memory_refs (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_PRECISION (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C, given that X has
77 mode MODE. */
79 rtx
80 plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89 if (c == 0)
90 return x;
92 restart:
94 code = GET_CODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
102 double_int di_x = double_int::from_shwi (INTVAL (x));
103 double_int di_c = double_int::from_shwi (c);
105 bool overflow;
106 double_int v = di_x.add_with_sign (di_c, false, &overflow);
107 if (overflow)
108 gcc_unreachable ();
110 return immed_double_int_const (v, mode);
113 return gen_int_mode (INTVAL (x) + c, mode);
115 case CONST_DOUBLE:
117 double_int di_x = double_int::from_pair (CONST_DOUBLE_HIGH (x),
118 CONST_DOUBLE_LOW (x));
119 double_int di_c = double_int::from_shwi (c);
121 bool overflow;
122 double_int v = di_x.add_with_sign (di_c, false, &overflow);
123 if (overflow)
124 /* Sorry, we have no way to represent overflows this wide.
125 To fix, add constant support wider than CONST_DOUBLE. */
126 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
128 return immed_double_int_const (v, mode);
131 case MEM:
132 /* If this is a reference to the constant pool, try replacing it with
133 a reference to a new constant. If the resulting address isn't
134 valid, don't return it because we have no way to validize it. */
135 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
136 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
138 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
139 tem = force_const_mem (GET_MODE (x), tem);
140 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
141 return tem;
143 break;
145 case CONST:
146 /* If adding to something entirely constant, set a flag
147 so that we can add a CONST around the result. */
148 x = XEXP (x, 0);
149 all_constant = 1;
150 goto restart;
152 case SYMBOL_REF:
153 case LABEL_REF:
154 all_constant = 1;
155 break;
157 case PLUS:
158 /* The interesting case is adding the integer to a sum. Look
159 for constant term in the sum and combine with C. For an
160 integer constant term or a constant term that is not an
161 explicit integer, we combine or group them together anyway.
163 We may not immediately return from the recursive call here, lest
164 all_constant gets lost. */
166 if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0),
169 plus_constant (mode, XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (mode, *const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Returns a tree for the size of EXP in bytes. */
241 static tree
242 tree_expr_size (const_tree exp)
244 if (DECL_P (exp)
245 && DECL_SIZE_UNIT (exp) != 0)
246 return DECL_SIZE_UNIT (exp);
247 else
248 return size_in_bytes (TREE_TYPE (exp));
251 /* Return an rtx for the size in bytes of the value of EXP. */
254 expr_size (tree exp)
256 tree size;
258 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
259 size = TREE_OPERAND (exp, 1);
260 else
262 size = tree_expr_size (exp);
263 gcc_assert (size);
264 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
267 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
270 /* Return a wide integer for the size in bytes of the value of EXP, or -1
271 if the size can vary or is larger than an integer. */
273 HOST_WIDE_INT
274 int_expr_size (tree exp)
276 tree size;
278 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
279 size = TREE_OPERAND (exp, 1);
280 else
282 size = tree_expr_size (exp);
283 gcc_assert (size);
286 if (size == 0 || !tree_fits_shwi_p (size))
287 return -1;
289 return tree_to_shwi (size);
292 /* Return a copy of X in which all memory references
293 and all constants that involve symbol refs
294 have been replaced with new temporary registers.
295 Also emit code to load the memory locations and constants
296 into those registers.
298 If X contains no such constants or memory references,
299 X itself (not a copy) is returned.
301 If a constant is found in the address that is not a legitimate constant
302 in an insn, it is left alone in the hope that it might be valid in the
303 address.
305 X may contain no arithmetic except addition, subtraction and multiplication.
306 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
308 static rtx
309 break_out_memory_refs (rtx x)
311 if (MEM_P (x)
312 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
313 && GET_MODE (x) != VOIDmode))
314 x = force_reg (GET_MODE (x), x);
315 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
316 || GET_CODE (x) == MULT)
318 rtx op0 = break_out_memory_refs (XEXP (x, 0));
319 rtx op1 = break_out_memory_refs (XEXP (x, 1));
321 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
322 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
325 return x;
328 /* Given X, a memory address in address space AS' pointer mode, convert it to
329 an address in the address space's address mode, or vice versa (TO_MODE says
330 which way). We take advantage of the fact that pointers are not allowed to
331 overflow by commuting arithmetic operations over conversions so that address
332 arithmetic insns can be used. */
335 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
336 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
338 #ifndef POINTERS_EXTEND_UNSIGNED
339 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
340 return x;
341 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
342 enum machine_mode pointer_mode, address_mode, from_mode;
343 rtx temp;
344 enum rtx_code code;
346 /* If X already has the right mode, just return it. */
347 if (GET_MODE (x) == to_mode)
348 return x;
350 pointer_mode = targetm.addr_space.pointer_mode (as);
351 address_mode = targetm.addr_space.address_mode (as);
352 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
354 /* Here we handle some special cases. If none of them apply, fall through
355 to the default case. */
356 switch (GET_CODE (x))
358 CASE_CONST_SCALAR_INT:
359 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
360 code = TRUNCATE;
361 else if (POINTERS_EXTEND_UNSIGNED < 0)
362 break;
363 else if (POINTERS_EXTEND_UNSIGNED > 0)
364 code = ZERO_EXTEND;
365 else
366 code = SIGN_EXTEND;
367 temp = simplify_unary_operation (code, to_mode, x, from_mode);
368 if (temp)
369 return temp;
370 break;
372 case SUBREG:
373 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
374 && GET_MODE (SUBREG_REG (x)) == to_mode)
375 return SUBREG_REG (x);
376 break;
378 case LABEL_REF:
379 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
380 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
381 return temp;
382 break;
384 case SYMBOL_REF:
385 temp = shallow_copy_rtx (x);
386 PUT_MODE (temp, to_mode);
387 return temp;
388 break;
390 case CONST:
391 return gen_rtx_CONST (to_mode,
392 convert_memory_address_addr_space
393 (to_mode, XEXP (x, 0), as));
394 break;
396 case PLUS:
397 case MULT:
398 /* FIXME: For addition, we used to permute the conversion and
399 addition operation only if one operand is a constant and
400 converting the constant does not change it or if one operand
401 is a constant and we are using a ptr_extend instruction
402 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
403 may overflow/underflow. We relax the condition to include
404 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
405 parts of the compiler depend on it. See PR 49721.
407 We can always safely permute them if we are making the address
408 narrower. */
409 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
410 || (GET_CODE (x) == PLUS
411 && CONST_INT_P (XEXP (x, 1))
412 && (POINTERS_EXTEND_UNSIGNED != 0
413 || XEXP (x, 1) == convert_memory_address_addr_space
414 (to_mode, XEXP (x, 1), as))))
415 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
416 convert_memory_address_addr_space
417 (to_mode, XEXP (x, 0), as),
418 XEXP (x, 1));
419 break;
421 default:
422 break;
425 return convert_modes (to_mode, from_mode,
426 x, POINTERS_EXTEND_UNSIGNED);
427 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
430 /* Return something equivalent to X but valid as a memory address for something
431 of mode MODE in the named address space AS. When X is not itself valid,
432 this works by copying X or subexpressions of it into registers. */
435 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
437 rtx oldx = x;
438 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
440 x = convert_memory_address_addr_space (address_mode, x, as);
442 /* By passing constant addresses through registers
443 we get a chance to cse them. */
444 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
445 x = force_reg (address_mode, x);
447 /* We get better cse by rejecting indirect addressing at this stage.
448 Let the combiner create indirect addresses where appropriate.
449 For now, generate the code so that the subexpressions useful to share
450 are visible. But not if cse won't be done! */
451 else
453 if (! cse_not_expected && !REG_P (x))
454 x = break_out_memory_refs (x);
456 /* At this point, any valid address is accepted. */
457 if (memory_address_addr_space_p (mode, x, as))
458 goto done;
460 /* If it was valid before but breaking out memory refs invalidated it,
461 use it the old way. */
462 if (memory_address_addr_space_p (mode, oldx, as))
464 x = oldx;
465 goto done;
468 /* Perform machine-dependent transformations on X
469 in certain cases. This is not necessary since the code
470 below can handle all possible cases, but machine-dependent
471 transformations can make better code. */
473 rtx orig_x = x;
474 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
475 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
476 goto done;
479 /* PLUS and MULT can appear in special ways
480 as the result of attempts to make an address usable for indexing.
481 Usually they are dealt with by calling force_operand, below.
482 But a sum containing constant terms is special
483 if removing them makes the sum a valid address:
484 then we generate that address in a register
485 and index off of it. We do this because it often makes
486 shorter code, and because the addresses thus generated
487 in registers often become common subexpressions. */
488 if (GET_CODE (x) == PLUS)
490 rtx constant_term = const0_rtx;
491 rtx y = eliminate_constant_term (x, &constant_term);
492 if (constant_term == const0_rtx
493 || ! memory_address_addr_space_p (mode, y, as))
494 x = force_operand (x, NULL_RTX);
495 else
497 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
498 if (! memory_address_addr_space_p (mode, y, as))
499 x = force_operand (x, NULL_RTX);
500 else
501 x = y;
505 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
506 x = force_operand (x, NULL_RTX);
508 /* If we have a register that's an invalid address,
509 it must be a hard reg of the wrong class. Copy it to a pseudo. */
510 else if (REG_P (x))
511 x = copy_to_reg (x);
513 /* Last resort: copy the value to a register, since
514 the register is a valid address. */
515 else
516 x = force_reg (address_mode, x);
519 done:
521 gcc_assert (memory_address_addr_space_p (mode, x, as));
522 /* If we didn't change the address, we are done. Otherwise, mark
523 a reg as a pointer if we have REG or REG + CONST_INT. */
524 if (oldx == x)
525 return x;
526 else if (REG_P (x))
527 mark_reg_pointer (x, BITS_PER_UNIT);
528 else if (GET_CODE (x) == PLUS
529 && REG_P (XEXP (x, 0))
530 && CONST_INT_P (XEXP (x, 1)))
531 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
533 /* OLDX may have been the address on a temporary. Update the address
534 to indicate that X is now used. */
535 update_temp_slot_address (oldx, x);
537 return x;
540 /* Convert a mem ref into one with a valid memory address.
541 Pass through anything else unchanged. */
544 validize_mem (rtx ref)
546 if (!MEM_P (ref))
547 return ref;
548 ref = use_anchored_address (ref);
549 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
550 MEM_ADDR_SPACE (ref)))
551 return ref;
553 /* Don't alter REF itself, since that is probably a stack slot. */
554 return replace_equiv_address (ref, XEXP (ref, 0));
557 /* If X is a memory reference to a member of an object block, try rewriting
558 it to use an anchor instead. Return the new memory reference on success
559 and the old one on failure. */
562 use_anchored_address (rtx x)
564 rtx base;
565 HOST_WIDE_INT offset;
566 enum machine_mode mode;
568 if (!flag_section_anchors)
569 return x;
571 if (!MEM_P (x))
572 return x;
574 /* Split the address into a base and offset. */
575 base = XEXP (x, 0);
576 offset = 0;
577 if (GET_CODE (base) == CONST
578 && GET_CODE (XEXP (base, 0)) == PLUS
579 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
581 offset += INTVAL (XEXP (XEXP (base, 0), 1));
582 base = XEXP (XEXP (base, 0), 0);
585 /* Check whether BASE is suitable for anchors. */
586 if (GET_CODE (base) != SYMBOL_REF
587 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
588 || SYMBOL_REF_ANCHOR_P (base)
589 || SYMBOL_REF_BLOCK (base) == NULL
590 || !targetm.use_anchors_for_symbol_p (base))
591 return x;
593 /* Decide where BASE is going to be. */
594 place_block_symbol (base);
596 /* Get the anchor we need to use. */
597 offset += SYMBOL_REF_BLOCK_OFFSET (base);
598 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
599 SYMBOL_REF_TLS_MODEL (base));
601 /* Work out the offset from the anchor. */
602 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
604 /* If we're going to run a CSE pass, force the anchor into a register.
605 We will then be able to reuse registers for several accesses, if the
606 target costs say that that's worthwhile. */
607 mode = GET_MODE (base);
608 if (!cse_not_expected)
609 base = force_reg (mode, base);
611 return replace_equiv_address (x, plus_constant (mode, base, offset));
614 /* Copy the value or contents of X to a new temp reg and return that reg. */
617 copy_to_reg (rtx x)
619 rtx temp = gen_reg_rtx (GET_MODE (x));
621 /* If not an operand, must be an address with PLUS and MULT so
622 do the computation. */
623 if (! general_operand (x, VOIDmode))
624 x = force_operand (x, temp);
626 if (x != temp)
627 emit_move_insn (temp, x);
629 return temp;
632 /* Like copy_to_reg but always give the new register mode Pmode
633 in case X is a constant. */
636 copy_addr_to_reg (rtx x)
638 return copy_to_mode_reg (Pmode, x);
641 /* Like copy_to_reg but always give the new register mode MODE
642 in case X is a constant. */
645 copy_to_mode_reg (enum machine_mode mode, rtx x)
647 rtx temp = gen_reg_rtx (mode);
649 /* If not an operand, must be an address with PLUS and MULT so
650 do the computation. */
651 if (! general_operand (x, VOIDmode))
652 x = force_operand (x, temp);
654 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
655 if (x != temp)
656 emit_move_insn (temp, x);
657 return temp;
660 /* Load X into a register if it is not already one.
661 Use mode MODE for the register.
662 X should be valid for mode MODE, but it may be a constant which
663 is valid for all integer modes; that's why caller must specify MODE.
665 The caller must not alter the value in the register we return,
666 since we mark it as a "constant" register. */
669 force_reg (enum machine_mode mode, rtx x)
671 rtx temp, insn, set;
673 if (REG_P (x))
674 return x;
676 if (general_operand (x, mode))
678 temp = gen_reg_rtx (mode);
679 insn = emit_move_insn (temp, x);
681 else
683 temp = force_operand (x, NULL_RTX);
684 if (REG_P (temp))
685 insn = get_last_insn ();
686 else
688 rtx temp2 = gen_reg_rtx (mode);
689 insn = emit_move_insn (temp2, temp);
690 temp = temp2;
694 /* Let optimizers know that TEMP's value never changes
695 and that X can be substituted for it. Don't get confused
696 if INSN set something else (such as a SUBREG of TEMP). */
697 if (CONSTANT_P (x)
698 && (set = single_set (insn)) != 0
699 && SET_DEST (set) == temp
700 && ! rtx_equal_p (x, SET_SRC (set)))
701 set_unique_reg_note (insn, REG_EQUAL, x);
703 /* Let optimizers know that TEMP is a pointer, and if so, the
704 known alignment of that pointer. */
706 unsigned align = 0;
707 if (GET_CODE (x) == SYMBOL_REF)
709 align = BITS_PER_UNIT;
710 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
711 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
713 else if (GET_CODE (x) == LABEL_REF)
714 align = BITS_PER_UNIT;
715 else if (GET_CODE (x) == CONST
716 && GET_CODE (XEXP (x, 0)) == PLUS
717 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
718 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
720 rtx s = XEXP (XEXP (x, 0), 0);
721 rtx c = XEXP (XEXP (x, 0), 1);
722 unsigned sa, ca;
724 sa = BITS_PER_UNIT;
725 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
726 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
728 if (INTVAL (c) == 0)
729 align = sa;
730 else
732 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
733 align = MIN (sa, ca);
737 if (align || (MEM_P (x) && MEM_POINTER (x)))
738 mark_reg_pointer (temp, align);
741 return temp;
744 /* If X is a memory ref, copy its contents to a new temp reg and return
745 that reg. Otherwise, return X. */
748 force_not_mem (rtx x)
750 rtx temp;
752 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
753 return x;
755 temp = gen_reg_rtx (GET_MODE (x));
757 if (MEM_POINTER (x))
758 REG_POINTER (temp) = 1;
760 emit_move_insn (temp, x);
761 return temp;
764 /* Copy X to TARGET (if it's nonzero and a reg)
765 or to a new temp reg and return that reg.
766 MODE is the mode to use for X in case it is a constant. */
769 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
771 rtx temp;
773 if (target && REG_P (target))
774 temp = target;
775 else
776 temp = gen_reg_rtx (mode);
778 emit_move_insn (temp, x);
779 return temp;
782 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
783 PUNSIGNEDP points to the signedness of the type and may be adjusted
784 to show what signedness to use on extension operations.
786 FOR_RETURN is nonzero if the caller is promoting the return value
787 of FNDECL, else it is for promoting args. */
789 enum machine_mode
790 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
791 const_tree funtype, int for_return)
793 /* Called without a type node for a libcall. */
794 if (type == NULL_TREE)
796 if (INTEGRAL_MODE_P (mode))
797 return targetm.calls.promote_function_mode (NULL_TREE, mode,
798 punsignedp, funtype,
799 for_return);
800 else
801 return mode;
804 switch (TREE_CODE (type))
806 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
807 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
808 case POINTER_TYPE: case REFERENCE_TYPE:
809 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
810 for_return);
812 default:
813 return mode;
816 /* Return the mode to use to store a scalar of TYPE and MODE.
817 PUNSIGNEDP points to the signedness of the type and may be adjusted
818 to show what signedness to use on extension operations. */
820 enum machine_mode
821 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
822 int *punsignedp ATTRIBUTE_UNUSED)
824 #ifdef PROMOTE_MODE
825 enum tree_code code;
826 int unsignedp;
827 #endif
829 /* For libcalls this is invoked without TYPE from the backends
830 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
831 case. */
832 if (type == NULL_TREE)
833 return mode;
835 /* FIXME: this is the same logic that was there until GCC 4.4, but we
836 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
837 is not defined. The affected targets are M32C, S390, SPARC. */
838 #ifdef PROMOTE_MODE
839 code = TREE_CODE (type);
840 unsignedp = *punsignedp;
842 switch (code)
844 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
845 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
846 PROMOTE_MODE (mode, unsignedp, type);
847 *punsignedp = unsignedp;
848 return mode;
849 break;
851 #ifdef POINTERS_EXTEND_UNSIGNED
852 case REFERENCE_TYPE:
853 case POINTER_TYPE:
854 *punsignedp = POINTERS_EXTEND_UNSIGNED;
855 return targetm.addr_space.address_mode
856 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
857 break;
858 #endif
860 default:
861 return mode;
863 #else
864 return mode;
865 #endif
869 /* Use one of promote_mode or promote_function_mode to find the promoted
870 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
871 of DECL after promotion. */
873 enum machine_mode
874 promote_decl_mode (const_tree decl, int *punsignedp)
876 tree type = TREE_TYPE (decl);
877 int unsignedp = TYPE_UNSIGNED (type);
878 enum machine_mode mode = DECL_MODE (decl);
879 enum machine_mode pmode;
881 if (TREE_CODE (decl) == RESULT_DECL
882 || TREE_CODE (decl) == PARM_DECL)
883 pmode = promote_function_mode (type, mode, &unsignedp,
884 TREE_TYPE (current_function_decl), 2);
885 else
886 pmode = promote_mode (type, mode, &unsignedp);
888 if (punsignedp)
889 *punsignedp = unsignedp;
890 return pmode;
894 /* Controls the behaviour of {anti_,}adjust_stack. */
895 static bool suppress_reg_args_size;
897 /* A helper for adjust_stack and anti_adjust_stack. */
899 static void
900 adjust_stack_1 (rtx adjust, bool anti_p)
902 rtx temp, insn;
904 #ifndef STACK_GROWS_DOWNWARD
905 /* Hereafter anti_p means subtract_p. */
906 anti_p = !anti_p;
907 #endif
909 temp = expand_binop (Pmode,
910 anti_p ? sub_optab : add_optab,
911 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
912 OPTAB_LIB_WIDEN);
914 if (temp != stack_pointer_rtx)
915 insn = emit_move_insn (stack_pointer_rtx, temp);
916 else
918 insn = get_last_insn ();
919 temp = single_set (insn);
920 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
923 if (!suppress_reg_args_size)
924 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
927 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
928 This pops when ADJUST is positive. ADJUST need not be constant. */
930 void
931 adjust_stack (rtx adjust)
933 if (adjust == const0_rtx)
934 return;
936 /* We expect all variable sized adjustments to be multiple of
937 PREFERRED_STACK_BOUNDARY. */
938 if (CONST_INT_P (adjust))
939 stack_pointer_delta -= INTVAL (adjust);
941 adjust_stack_1 (adjust, false);
944 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
945 This pushes when ADJUST is positive. ADJUST need not be constant. */
947 void
948 anti_adjust_stack (rtx adjust)
950 if (adjust == const0_rtx)
951 return;
953 /* We expect all variable sized adjustments to be multiple of
954 PREFERRED_STACK_BOUNDARY. */
955 if (CONST_INT_P (adjust))
956 stack_pointer_delta += INTVAL (adjust);
958 adjust_stack_1 (adjust, true);
961 /* Round the size of a block to be pushed up to the boundary required
962 by this machine. SIZE is the desired size, which need not be constant. */
964 static rtx
965 round_push (rtx size)
967 rtx align_rtx, alignm1_rtx;
969 if (!SUPPORTS_STACK_ALIGNMENT
970 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
972 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
974 if (align == 1)
975 return size;
977 if (CONST_INT_P (size))
979 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
981 if (INTVAL (size) != new_size)
982 size = GEN_INT (new_size);
983 return size;
986 align_rtx = GEN_INT (align);
987 alignm1_rtx = GEN_INT (align - 1);
989 else
991 /* If crtl->preferred_stack_boundary might still grow, use
992 virtual_preferred_stack_boundary_rtx instead. This will be
993 substituted by the right value in vregs pass and optimized
994 during combine. */
995 align_rtx = virtual_preferred_stack_boundary_rtx;
996 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
997 NULL_RTX);
1000 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1001 but we know it can't. So add ourselves and then do
1002 TRUNC_DIV_EXPR. */
1003 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1004 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1005 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1006 NULL_RTX, 1);
1007 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1009 return size;
1012 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1013 to a previously-created save area. If no save area has been allocated,
1014 this function will allocate one. If a save area is specified, it
1015 must be of the proper mode. */
1017 void
1018 emit_stack_save (enum save_level save_level, rtx *psave)
1020 rtx sa = *psave;
1021 /* The default is that we use a move insn and save in a Pmode object. */
1022 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1023 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1025 /* See if this machine has anything special to do for this kind of save. */
1026 switch (save_level)
1028 #ifdef HAVE_save_stack_block
1029 case SAVE_BLOCK:
1030 if (HAVE_save_stack_block)
1031 fcn = gen_save_stack_block;
1032 break;
1033 #endif
1034 #ifdef HAVE_save_stack_function
1035 case SAVE_FUNCTION:
1036 if (HAVE_save_stack_function)
1037 fcn = gen_save_stack_function;
1038 break;
1039 #endif
1040 #ifdef HAVE_save_stack_nonlocal
1041 case SAVE_NONLOCAL:
1042 if (HAVE_save_stack_nonlocal)
1043 fcn = gen_save_stack_nonlocal;
1044 break;
1045 #endif
1046 default:
1047 break;
1050 /* If there is no save area and we have to allocate one, do so. Otherwise
1051 verify the save area is the proper mode. */
1053 if (sa == 0)
1055 if (mode != VOIDmode)
1057 if (save_level == SAVE_NONLOCAL)
1058 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1059 else
1060 *psave = sa = gen_reg_rtx (mode);
1064 do_pending_stack_adjust ();
1065 if (sa != 0)
1066 sa = validize_mem (sa);
1067 emit_insn (fcn (sa, stack_pointer_rtx));
1070 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1071 area made by emit_stack_save. If it is zero, we have nothing to do. */
1073 void
1074 emit_stack_restore (enum save_level save_level, rtx sa)
1076 /* The default is that we use a move insn. */
1077 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1079 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1080 STACK_POINTER and HARD_FRAME_POINTER.
1081 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1082 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1083 aligned variables, which is reflected in ix86_can_eliminate.
1084 We normally still have the realigned STACK_POINTER that we can use.
1085 But if there is a stack restore still present at reload, it can trigger
1086 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1087 FRAME_POINTER into a hard reg.
1088 To prevent this situation, we force need_drap if we emit a stack
1089 restore. */
1090 if (SUPPORTS_STACK_ALIGNMENT)
1091 crtl->need_drap = true;
1093 /* See if this machine has anything special to do for this kind of save. */
1094 switch (save_level)
1096 #ifdef HAVE_restore_stack_block
1097 case SAVE_BLOCK:
1098 if (HAVE_restore_stack_block)
1099 fcn = gen_restore_stack_block;
1100 break;
1101 #endif
1102 #ifdef HAVE_restore_stack_function
1103 case SAVE_FUNCTION:
1104 if (HAVE_restore_stack_function)
1105 fcn = gen_restore_stack_function;
1106 break;
1107 #endif
1108 #ifdef HAVE_restore_stack_nonlocal
1109 case SAVE_NONLOCAL:
1110 if (HAVE_restore_stack_nonlocal)
1111 fcn = gen_restore_stack_nonlocal;
1112 break;
1113 #endif
1114 default:
1115 break;
1118 if (sa != 0)
1120 sa = validize_mem (sa);
1121 /* These clobbers prevent the scheduler from moving
1122 references to variable arrays below the code
1123 that deletes (pops) the arrays. */
1124 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1125 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1128 discard_pending_stack_adjust ();
1130 emit_insn (fcn (stack_pointer_rtx, sa));
1133 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1134 function. This function should be called whenever we allocate or
1135 deallocate dynamic stack space. */
1137 void
1138 update_nonlocal_goto_save_area (void)
1140 tree t_save;
1141 rtx r_save;
1143 /* The nonlocal_goto_save_area object is an array of N pointers. The
1144 first one is used for the frame pointer save; the rest are sized by
1145 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1146 of the stack save area slots. */
1147 t_save = build4 (ARRAY_REF,
1148 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1149 cfun->nonlocal_goto_save_area,
1150 integer_one_node, NULL_TREE, NULL_TREE);
1151 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1153 emit_stack_save (SAVE_NONLOCAL, &r_save);
1156 /* Return an rtx representing the address of an area of memory dynamically
1157 pushed on the stack.
1159 Any required stack pointer alignment is preserved.
1161 SIZE is an rtx representing the size of the area.
1163 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1164 parameter may be zero. If so, a proper value will be extracted
1165 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1167 REQUIRED_ALIGN is the alignment (in bits) required for the region
1168 of memory.
1170 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1171 stack space allocated by the generated code cannot be added with itself
1172 in the course of the execution of the function. It is always safe to
1173 pass FALSE here and the following criterion is sufficient in order to
1174 pass TRUE: every path in the CFG that starts at the allocation point and
1175 loops to it executes the associated deallocation code. */
1178 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1179 unsigned required_align, bool cannot_accumulate)
1181 HOST_WIDE_INT stack_usage_size = -1;
1182 rtx final_label, final_target, target;
1183 unsigned extra_align = 0;
1184 bool must_align;
1186 /* If we're asking for zero bytes, it doesn't matter what we point
1187 to since we can't dereference it. But return a reasonable
1188 address anyway. */
1189 if (size == const0_rtx)
1190 return virtual_stack_dynamic_rtx;
1192 /* Otherwise, show we're calling alloca or equivalent. */
1193 cfun->calls_alloca = 1;
1195 /* If stack usage info is requested, look into the size we are passed.
1196 We need to do so this early to avoid the obfuscation that may be
1197 introduced later by the various alignment operations. */
1198 if (flag_stack_usage_info)
1200 if (CONST_INT_P (size))
1201 stack_usage_size = INTVAL (size);
1202 else if (REG_P (size))
1204 /* Look into the last emitted insn and see if we can deduce
1205 something for the register. */
1206 rtx insn, set, note;
1207 insn = get_last_insn ();
1208 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1210 if (CONST_INT_P (SET_SRC (set)))
1211 stack_usage_size = INTVAL (SET_SRC (set));
1212 else if ((note = find_reg_equal_equiv_note (insn))
1213 && CONST_INT_P (XEXP (note, 0)))
1214 stack_usage_size = INTVAL (XEXP (note, 0));
1218 /* If the size is not constant, we can't say anything. */
1219 if (stack_usage_size == -1)
1221 current_function_has_unbounded_dynamic_stack_size = 1;
1222 stack_usage_size = 0;
1226 /* Ensure the size is in the proper mode. */
1227 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1228 size = convert_to_mode (Pmode, size, 1);
1230 /* Adjust SIZE_ALIGN, if needed. */
1231 if (CONST_INT_P (size))
1233 unsigned HOST_WIDE_INT lsb;
1235 lsb = INTVAL (size);
1236 lsb &= -lsb;
1238 /* Watch out for overflow truncating to "unsigned". */
1239 if (lsb > UINT_MAX / BITS_PER_UNIT)
1240 size_align = 1u << (HOST_BITS_PER_INT - 1);
1241 else
1242 size_align = (unsigned)lsb * BITS_PER_UNIT;
1244 else if (size_align < BITS_PER_UNIT)
1245 size_align = BITS_PER_UNIT;
1247 /* We can't attempt to minimize alignment necessary, because we don't
1248 know the final value of preferred_stack_boundary yet while executing
1249 this code. */
1250 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1251 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1253 /* We will need to ensure that the address we return is aligned to
1254 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1255 always know its final value at this point in the compilation (it
1256 might depend on the size of the outgoing parameter lists, for
1257 example), so we must align the value to be returned in that case.
1258 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1259 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1260 We must also do an alignment operation on the returned value if
1261 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1263 If we have to align, we must leave space in SIZE for the hole
1264 that might result from the alignment operation. */
1266 must_align = (crtl->preferred_stack_boundary < required_align);
1267 if (must_align)
1269 if (required_align > PREFERRED_STACK_BOUNDARY)
1270 extra_align = PREFERRED_STACK_BOUNDARY;
1271 else if (required_align > STACK_BOUNDARY)
1272 extra_align = STACK_BOUNDARY;
1273 else
1274 extra_align = BITS_PER_UNIT;
1277 /* ??? STACK_POINTER_OFFSET is always defined now. */
1278 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1279 must_align = true;
1280 extra_align = BITS_PER_UNIT;
1281 #endif
1283 if (must_align)
1285 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1287 size = plus_constant (Pmode, size, extra);
1288 size = force_operand (size, NULL_RTX);
1290 if (flag_stack_usage_info)
1291 stack_usage_size += extra;
1293 if (extra && size_align > extra_align)
1294 size_align = extra_align;
1297 /* Round the size to a multiple of the required stack alignment.
1298 Since the stack if presumed to be rounded before this allocation,
1299 this will maintain the required alignment.
1301 If the stack grows downward, we could save an insn by subtracting
1302 SIZE from the stack pointer and then aligning the stack pointer.
1303 The problem with this is that the stack pointer may be unaligned
1304 between the execution of the subtraction and alignment insns and
1305 some machines do not allow this. Even on those that do, some
1306 signal handlers malfunction if a signal should occur between those
1307 insns. Since this is an extremely rare event, we have no reliable
1308 way of knowing which systems have this problem. So we avoid even
1309 momentarily mis-aligning the stack. */
1310 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1312 size = round_push (size);
1314 if (flag_stack_usage_info)
1316 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1317 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1321 target = gen_reg_rtx (Pmode);
1323 /* The size is supposed to be fully adjusted at this point so record it
1324 if stack usage info is requested. */
1325 if (flag_stack_usage_info)
1327 current_function_dynamic_stack_size += stack_usage_size;
1329 /* ??? This is gross but the only safe stance in the absence
1330 of stack usage oriented flow analysis. */
1331 if (!cannot_accumulate)
1332 current_function_has_unbounded_dynamic_stack_size = 1;
1335 final_label = NULL_RTX;
1336 final_target = NULL_RTX;
1338 /* If we are splitting the stack, we need to ask the backend whether
1339 there is enough room on the current stack. If there isn't, or if
1340 the backend doesn't know how to tell is, then we need to call a
1341 function to allocate memory in some other way. This memory will
1342 be released when we release the current stack segment. The
1343 effect is that stack allocation becomes less efficient, but at
1344 least it doesn't cause a stack overflow. */
1345 if (flag_split_stack)
1347 rtx available_label, ask, space, func;
1349 available_label = NULL_RTX;
1351 #ifdef HAVE_split_stack_space_check
1352 if (HAVE_split_stack_space_check)
1354 available_label = gen_label_rtx ();
1356 /* This instruction will branch to AVAILABLE_LABEL if there
1357 are SIZE bytes available on the stack. */
1358 emit_insn (gen_split_stack_space_check (size, available_label));
1360 #endif
1362 /* The __morestack_allocate_stack_space function will allocate
1363 memory using malloc. If the alignment of the memory returned
1364 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1365 make sure we allocate enough space. */
1366 if (MALLOC_ABI_ALIGNMENT >= required_align)
1367 ask = size;
1368 else
1370 ask = expand_binop (Pmode, add_optab, size,
1371 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1372 Pmode),
1373 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1374 must_align = true;
1377 func = init_one_libfunc ("__morestack_allocate_stack_space");
1379 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1380 1, ask, Pmode);
1382 if (available_label == NULL_RTX)
1383 return space;
1385 final_target = gen_reg_rtx (Pmode);
1387 emit_move_insn (final_target, space);
1389 final_label = gen_label_rtx ();
1390 emit_jump (final_label);
1392 emit_label (available_label);
1395 do_pending_stack_adjust ();
1397 /* We ought to be called always on the toplevel and stack ought to be aligned
1398 properly. */
1399 gcc_assert (!(stack_pointer_delta
1400 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1402 /* If needed, check that we have the required amount of stack. Take into
1403 account what has already been checked. */
1404 if (STACK_CHECK_MOVING_SP)
1406 else if (flag_stack_check == GENERIC_STACK_CHECK)
1407 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1408 size);
1409 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1410 probe_stack_range (STACK_CHECK_PROTECT, size);
1412 /* Don't let anti_adjust_stack emit notes. */
1413 suppress_reg_args_size = true;
1415 /* Perform the required allocation from the stack. Some systems do
1416 this differently than simply incrementing/decrementing from the
1417 stack pointer, such as acquiring the space by calling malloc(). */
1418 #ifdef HAVE_allocate_stack
1419 if (HAVE_allocate_stack)
1421 struct expand_operand ops[2];
1422 /* We don't have to check against the predicate for operand 0 since
1423 TARGET is known to be a pseudo of the proper mode, which must
1424 be valid for the operand. */
1425 create_fixed_operand (&ops[0], target);
1426 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1427 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1429 else
1430 #endif
1432 int saved_stack_pointer_delta;
1434 #ifndef STACK_GROWS_DOWNWARD
1435 emit_move_insn (target, virtual_stack_dynamic_rtx);
1436 #endif
1438 /* Check stack bounds if necessary. */
1439 if (crtl->limit_stack)
1441 rtx available;
1442 rtx space_available = gen_label_rtx ();
1443 #ifdef STACK_GROWS_DOWNWARD
1444 available = expand_binop (Pmode, sub_optab,
1445 stack_pointer_rtx, stack_limit_rtx,
1446 NULL_RTX, 1, OPTAB_WIDEN);
1447 #else
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_limit_rtx, stack_pointer_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451 #endif
1452 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1453 space_available);
1454 #ifdef HAVE_trap
1455 if (HAVE_trap)
1456 emit_insn (gen_trap ());
1457 else
1458 #endif
1459 error ("stack limits not supported on this target");
1460 emit_barrier ();
1461 emit_label (space_available);
1464 saved_stack_pointer_delta = stack_pointer_delta;
1466 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1467 anti_adjust_stack_and_probe (size, false);
1468 else
1469 anti_adjust_stack (size);
1471 /* Even if size is constant, don't modify stack_pointer_delta.
1472 The constant size alloca should preserve
1473 crtl->preferred_stack_boundary alignment. */
1474 stack_pointer_delta = saved_stack_pointer_delta;
1476 #ifdef STACK_GROWS_DOWNWARD
1477 emit_move_insn (target, virtual_stack_dynamic_rtx);
1478 #endif
1481 suppress_reg_args_size = false;
1483 /* Finish up the split stack handling. */
1484 if (final_label != NULL_RTX)
1486 gcc_assert (flag_split_stack);
1487 emit_move_insn (final_target, target);
1488 emit_label (final_label);
1489 target = final_target;
1492 if (must_align)
1494 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1495 but we know it can't. So add ourselves and then do
1496 TRUNC_DIV_EXPR. */
1497 target = expand_binop (Pmode, add_optab, target,
1498 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1499 Pmode),
1500 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1501 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1502 gen_int_mode (required_align / BITS_PER_UNIT,
1503 Pmode),
1504 NULL_RTX, 1);
1505 target = expand_mult (Pmode, target,
1506 gen_int_mode (required_align / BITS_PER_UNIT,
1507 Pmode),
1508 NULL_RTX, 1);
1511 /* Now that we've committed to a return value, mark its alignment. */
1512 mark_reg_pointer (target, required_align);
1514 /* Record the new stack level for nonlocal gotos. */
1515 if (cfun->nonlocal_goto_save_area != 0)
1516 update_nonlocal_goto_save_area ();
1518 return target;
1521 /* A front end may want to override GCC's stack checking by providing a
1522 run-time routine to call to check the stack, so provide a mechanism for
1523 calling that routine. */
1525 static GTY(()) rtx stack_check_libfunc;
1527 void
1528 set_stack_check_libfunc (const char *libfunc_name)
1530 gcc_assert (stack_check_libfunc == NULL_RTX);
1531 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1534 /* Emit one stack probe at ADDRESS, an address within the stack. */
1536 void
1537 emit_stack_probe (rtx address)
1539 #ifdef HAVE_probe_stack_address
1540 if (HAVE_probe_stack_address)
1541 emit_insn (gen_probe_stack_address (address));
1542 else
1543 #endif
1545 rtx memref = gen_rtx_MEM (word_mode, address);
1547 MEM_VOLATILE_P (memref) = 1;
1549 /* See if we have an insn to probe the stack. */
1550 #ifdef HAVE_probe_stack
1551 if (HAVE_probe_stack)
1552 emit_insn (gen_probe_stack (memref));
1553 else
1554 #endif
1555 emit_move_insn (memref, const0_rtx);
1559 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1560 FIRST is a constant and size is a Pmode RTX. These are offsets from
1561 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1562 or subtract them from the stack pointer. */
1564 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1566 #ifdef STACK_GROWS_DOWNWARD
1567 #define STACK_GROW_OP MINUS
1568 #define STACK_GROW_OPTAB sub_optab
1569 #define STACK_GROW_OFF(off) -(off)
1570 #else
1571 #define STACK_GROW_OP PLUS
1572 #define STACK_GROW_OPTAB add_optab
1573 #define STACK_GROW_OFF(off) (off)
1574 #endif
1576 void
1577 probe_stack_range (HOST_WIDE_INT first, rtx size)
1579 /* First ensure SIZE is Pmode. */
1580 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1581 size = convert_to_mode (Pmode, size, 1);
1583 /* Next see if we have a function to check the stack. */
1584 if (stack_check_libfunc)
1586 rtx addr = memory_address (Pmode,
1587 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1588 stack_pointer_rtx,
1589 plus_constant (Pmode,
1590 size, first)));
1591 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1592 Pmode);
1595 /* Next see if we have an insn to check the stack. */
1596 #ifdef HAVE_check_stack
1597 else if (HAVE_check_stack)
1599 struct expand_operand ops[1];
1600 rtx addr = memory_address (Pmode,
1601 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1602 stack_pointer_rtx,
1603 plus_constant (Pmode,
1604 size, first)));
1605 bool success;
1606 create_input_operand (&ops[0], addr, Pmode);
1607 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1608 gcc_assert (success);
1610 #endif
1612 /* Otherwise we have to generate explicit probes. If we have a constant
1613 small number of them to generate, that's the easy case. */
1614 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1616 HOST_WIDE_INT isize = INTVAL (size), i;
1617 rtx addr;
1619 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1620 it exceeds SIZE. If only one probe is needed, this will not
1621 generate any code. Then probe at FIRST + SIZE. */
1622 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1624 addr = memory_address (Pmode,
1625 plus_constant (Pmode, stack_pointer_rtx,
1626 STACK_GROW_OFF (first + i)));
1627 emit_stack_probe (addr);
1630 addr = memory_address (Pmode,
1631 plus_constant (Pmode, stack_pointer_rtx,
1632 STACK_GROW_OFF (first + isize)));
1633 emit_stack_probe (addr);
1636 /* In the variable case, do the same as above, but in a loop. Note that we
1637 must be extra careful with variables wrapping around because we might be
1638 at the very top (or the very bottom) of the address space and we have to
1639 be able to handle this case properly; in particular, we use an equality
1640 test for the loop condition. */
1641 else
1643 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1644 rtx loop_lab = gen_label_rtx ();
1645 rtx end_lab = gen_label_rtx ();
1648 /* Step 1: round SIZE to the previous multiple of the interval. */
1650 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1651 rounded_size
1652 = simplify_gen_binary (AND, Pmode, size,
1653 gen_int_mode (-PROBE_INTERVAL, Pmode));
1654 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1657 /* Step 2: compute initial and final value of the loop counter. */
1659 /* TEST_ADDR = SP + FIRST. */
1660 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1661 stack_pointer_rtx,
1662 gen_int_mode (first, Pmode)),
1663 NULL_RTX);
1665 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1666 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1667 test_addr,
1668 rounded_size_op), NULL_RTX);
1671 /* Step 3: the loop
1673 while (TEST_ADDR != LAST_ADDR)
1675 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1676 probe at TEST_ADDR
1679 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1680 until it is equal to ROUNDED_SIZE. */
1682 emit_label (loop_lab);
1684 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1685 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1686 end_lab);
1688 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1689 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1690 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1691 1, OPTAB_WIDEN);
1693 gcc_assert (temp == test_addr);
1695 /* Probe at TEST_ADDR. */
1696 emit_stack_probe (test_addr);
1698 emit_jump (loop_lab);
1700 emit_label (end_lab);
1703 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1704 that SIZE is equal to ROUNDED_SIZE. */
1706 /* TEMP = SIZE - ROUNDED_SIZE. */
1707 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1708 if (temp != const0_rtx)
1710 rtx addr;
1712 if (CONST_INT_P (temp))
1714 /* Use [base + disp} addressing mode if supported. */
1715 HOST_WIDE_INT offset = INTVAL (temp);
1716 addr = memory_address (Pmode,
1717 plus_constant (Pmode, last_addr,
1718 STACK_GROW_OFF (offset)));
1720 else
1722 /* Manual CSE if the difference is not known at compile-time. */
1723 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1724 addr = memory_address (Pmode,
1725 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1726 last_addr, temp));
1729 emit_stack_probe (addr);
1734 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1735 while probing it. This pushes when SIZE is positive. SIZE need not
1736 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1737 by plus SIZE at the end. */
1739 void
1740 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1742 /* We skip the probe for the first interval + a small dope of 4 words and
1743 probe that many bytes past the specified size to maintain a protection
1744 area at the botton of the stack. */
1745 const int dope = 4 * UNITS_PER_WORD;
1747 /* First ensure SIZE is Pmode. */
1748 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1749 size = convert_to_mode (Pmode, size, 1);
1751 /* If we have a constant small number of probes to generate, that's the
1752 easy case. */
1753 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1755 HOST_WIDE_INT isize = INTVAL (size), i;
1756 bool first_probe = true;
1758 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1759 values of N from 1 until it exceeds SIZE. If only one probe is
1760 needed, this will not generate any code. Then adjust and probe
1761 to PROBE_INTERVAL + SIZE. */
1762 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1764 if (first_probe)
1766 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1767 first_probe = false;
1769 else
1770 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1771 emit_stack_probe (stack_pointer_rtx);
1774 if (first_probe)
1775 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1776 else
1777 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1778 emit_stack_probe (stack_pointer_rtx);
1781 /* In the variable case, do the same as above, but in a loop. Note that we
1782 must be extra careful with variables wrapping around because we might be
1783 at the very top (or the very bottom) of the address space and we have to
1784 be able to handle this case properly; in particular, we use an equality
1785 test for the loop condition. */
1786 else
1788 rtx rounded_size, rounded_size_op, last_addr, temp;
1789 rtx loop_lab = gen_label_rtx ();
1790 rtx end_lab = gen_label_rtx ();
1793 /* Step 1: round SIZE to the previous multiple of the interval. */
1795 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1796 rounded_size
1797 = simplify_gen_binary (AND, Pmode, size,
1798 gen_int_mode (-PROBE_INTERVAL, Pmode));
1799 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1802 /* Step 2: compute initial and final value of the loop counter. */
1804 /* SP = SP_0 + PROBE_INTERVAL. */
1805 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1807 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1808 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1809 stack_pointer_rtx,
1810 rounded_size_op), NULL_RTX);
1813 /* Step 3: the loop
1815 while (SP != LAST_ADDR)
1817 SP = SP + PROBE_INTERVAL
1818 probe at SP
1821 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1822 values of N from 1 until it is equal to ROUNDED_SIZE. */
1824 emit_label (loop_lab);
1826 /* Jump to END_LAB if SP == LAST_ADDR. */
1827 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1828 Pmode, 1, end_lab);
1830 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1831 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1832 emit_stack_probe (stack_pointer_rtx);
1834 emit_jump (loop_lab);
1836 emit_label (end_lab);
1839 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1840 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1842 /* TEMP = SIZE - ROUNDED_SIZE. */
1843 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1844 if (temp != const0_rtx)
1846 /* Manual CSE if the difference is not known at compile-time. */
1847 if (GET_CODE (temp) != CONST_INT)
1848 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1849 anti_adjust_stack (temp);
1850 emit_stack_probe (stack_pointer_rtx);
1854 /* Adjust back and account for the additional first interval. */
1855 if (adjust_back)
1856 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1857 else
1858 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1861 /* Return an rtx representing the register or memory location
1862 in which a scalar value of data type VALTYPE
1863 was returned by a function call to function FUNC.
1864 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1865 function is known, otherwise 0.
1866 OUTGOING is 1 if on a machine with register windows this function
1867 should return the register in which the function will put its result
1868 and 0 otherwise. */
1871 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1872 int outgoing ATTRIBUTE_UNUSED)
1874 rtx val;
1876 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1878 if (REG_P (val)
1879 && GET_MODE (val) == BLKmode)
1881 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1882 enum machine_mode tmpmode;
1884 /* int_size_in_bytes can return -1. We don't need a check here
1885 since the value of bytes will then be large enough that no
1886 mode will match anyway. */
1888 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1889 tmpmode != VOIDmode;
1890 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1892 /* Have we found a large enough mode? */
1893 if (GET_MODE_SIZE (tmpmode) >= bytes)
1894 break;
1897 /* No suitable mode found. */
1898 gcc_assert (tmpmode != VOIDmode);
1900 PUT_MODE (val, tmpmode);
1902 return val;
1905 /* Return an rtx representing the register or memory location
1906 in which a scalar value of mode MODE was returned by a library call. */
1909 hard_libcall_value (enum machine_mode mode, rtx fun)
1911 return targetm.calls.libcall_value (mode, fun);
1914 /* Look up the tree code for a given rtx code
1915 to provide the arithmetic operation for REAL_ARITHMETIC.
1916 The function returns an int because the caller may not know
1917 what `enum tree_code' means. */
1920 rtx_to_tree_code (enum rtx_code code)
1922 enum tree_code tcode;
1924 switch (code)
1926 case PLUS:
1927 tcode = PLUS_EXPR;
1928 break;
1929 case MINUS:
1930 tcode = MINUS_EXPR;
1931 break;
1932 case MULT:
1933 tcode = MULT_EXPR;
1934 break;
1935 case DIV:
1936 tcode = RDIV_EXPR;
1937 break;
1938 case SMIN:
1939 tcode = MIN_EXPR;
1940 break;
1941 case SMAX:
1942 tcode = MAX_EXPR;
1943 break;
1944 default:
1945 tcode = LAST_AND_UNUSED_TREE_CODE;
1946 break;
1948 return ((int) tcode);
1951 #include "gt-explow.h"