* ipa/devirt9.C: Fix previous change.
[official-gcc.git] / gcc / double-int.c
blob3803a63e3a9af51084e54e6a972f9269ddcb069e
1 /* Operations with long integers.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
24 #include "tree.h"
26 static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
27 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
28 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
29 bool);
31 #define add_double(l1,h1,l2,h2,lv,hv) \
32 add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
34 static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
35 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
37 static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
39 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
40 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
41 bool);
43 #define mul_double(l1,h1,l2,h2,lv,hv) \
44 mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
46 static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
47 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
48 HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
49 HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
50 HOST_WIDE_INT *);
52 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
53 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
54 and SUM1. Then this yields nonzero if overflow occurred during the
55 addition.
57 Overflow occurs if A and B have the same sign, but A and SUM differ in
58 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
59 sign. */
60 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
62 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
63 We do that by representing the two-word integer in 4 words, with only
64 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
65 number. The value of the word is LOWPART + HIGHPART * BASE. */
67 #define LOWPART(x) \
68 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
69 #define HIGHPART(x) \
70 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
71 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
73 /* Unpack a two-word integer into 4 words.
74 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
75 WORDS points to the array of HOST_WIDE_INTs. */
77 static void
78 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
80 words[0] = LOWPART (low);
81 words[1] = HIGHPART (low);
82 words[2] = LOWPART (hi);
83 words[3] = HIGHPART (hi);
86 /* Pack an array of 4 words into a two-word integer.
87 WORDS points to the array of words.
88 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
90 static void
91 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
92 HOST_WIDE_INT *hi)
94 *low = words[0] + words[1] * BASE;
95 *hi = words[2] + words[3] * BASE;
98 /* Add two doubleword integers with doubleword result.
99 Return nonzero if the operation overflows according to UNSIGNED_P.
100 Each argument is given as two `HOST_WIDE_INT' pieces.
101 One argument is L1 and H1; the other, L2 and H2.
102 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
104 static int
105 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
106 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
107 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
108 bool unsigned_p)
110 unsigned HOST_WIDE_INT l;
111 HOST_WIDE_INT h;
113 l = l1 + l2;
114 h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
115 + (unsigned HOST_WIDE_INT) h2
116 + (l < l1));
118 *lv = l;
119 *hv = h;
121 if (unsigned_p)
122 return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
123 || (h == h1
124 && l < l1));
125 else
126 return OVERFLOW_SUM_SIGN (h1, h2, h);
129 /* Negate a doubleword integer with doubleword result.
130 Return nonzero if the operation overflows, assuming it's signed.
131 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
132 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
134 static int
135 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
136 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
138 if (l1 == 0)
140 *lv = 0;
141 *hv = - h1;
142 return (*hv & h1) < 0;
144 else
146 *lv = -l1;
147 *hv = ~h1;
148 return 0;
152 /* Multiply two doubleword integers with quadword result.
153 Return nonzero if the operation overflows according to UNSIGNED_P.
154 Each argument is given as two `HOST_WIDE_INT' pieces.
155 One argument is L1 and H1; the other, L2 and H2.
156 The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
157 *LW and *HW.
158 If lw is NULL then only the low part and no overflow is computed. */
160 static int
161 mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
162 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
163 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
164 unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
165 bool unsigned_p)
167 HOST_WIDE_INT arg1[4];
168 HOST_WIDE_INT arg2[4];
169 HOST_WIDE_INT prod[4 * 2];
170 unsigned HOST_WIDE_INT carry;
171 int i, j, k;
172 unsigned HOST_WIDE_INT neglow;
173 HOST_WIDE_INT neghigh;
175 encode (arg1, l1, h1);
176 encode (arg2, l2, h2);
178 memset (prod, 0, sizeof prod);
180 for (i = 0; i < 4; i++)
182 carry = 0;
183 for (j = 0; j < 4; j++)
185 k = i + j;
186 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
187 carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
188 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
189 carry += prod[k];
190 prod[k] = LOWPART (carry);
191 carry = HIGHPART (carry);
193 prod[i + 4] = carry;
196 decode (prod, lv, hv);
198 /* We are not interested in the wide part nor in overflow. */
199 if (lw == NULL)
200 return 0;
202 decode (prod + 4, lw, hw);
204 /* Unsigned overflow is immediate. */
205 if (unsigned_p)
206 return (*lw | *hw) != 0;
208 /* Check for signed overflow by calculating the signed representation of the
209 top half of the result; it should agree with the low half's sign bit. */
210 if (h1 < 0)
212 neg_double (l2, h2, &neglow, &neghigh);
213 add_double (neglow, neghigh, *lw, *hw, lw, hw);
215 if (h2 < 0)
217 neg_double (l1, h1, &neglow, &neghigh);
218 add_double (neglow, neghigh, *lw, *hw, lw, hw);
220 return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
223 /* Shift the doubleword integer in L1, H1 right by COUNT places
224 keeping only PREC bits of result. ARITH nonzero specifies
225 arithmetic shifting; otherwise use logical shift.
226 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
228 static void
229 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
230 unsigned HOST_WIDE_INT count, unsigned int prec,
231 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
232 bool arith)
234 unsigned HOST_WIDE_INT signmask;
236 signmask = (arith
237 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
238 : 0);
240 if (count >= HOST_BITS_PER_DOUBLE_INT)
242 /* Shifting by the host word size is undefined according to the
243 ANSI standard, so we must handle this as a special case. */
244 *hv = 0;
245 *lv = 0;
247 else if (count >= HOST_BITS_PER_WIDE_INT)
249 *hv = 0;
250 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
252 else
254 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
255 *lv = ((l1 >> count)
256 | ((unsigned HOST_WIDE_INT) h1
257 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
260 /* Zero / sign extend all bits that are beyond the precision. */
262 if (count >= prec)
264 *hv = signmask;
265 *lv = signmask;
267 else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
269 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
271 *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
272 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
274 else
276 *hv = signmask;
277 *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
278 *lv |= signmask << (prec - count);
282 /* Shift the doubleword integer in L1, H1 left by COUNT places
283 keeping only PREC bits of result.
284 Shift right if COUNT is negative.
285 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
286 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
288 static void
289 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
290 unsigned HOST_WIDE_INT count, unsigned int prec,
291 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
293 unsigned HOST_WIDE_INT signmask;
295 if (count >= HOST_BITS_PER_DOUBLE_INT)
297 /* Shifting by the host word size is undefined according to the
298 ANSI standard, so we must handle this as a special case. */
299 *hv = 0;
300 *lv = 0;
302 else if (count >= HOST_BITS_PER_WIDE_INT)
304 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
305 *lv = 0;
307 else
309 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
310 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
311 *lv = l1 << count;
314 /* Sign extend all bits that are beyond the precision. */
316 signmask = -((prec > HOST_BITS_PER_WIDE_INT
317 ? ((unsigned HOST_WIDE_INT) *hv
318 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
319 : (*lv >> (prec - 1))) & 1);
321 if (prec >= HOST_BITS_PER_DOUBLE_INT)
323 else if (prec >= HOST_BITS_PER_WIDE_INT)
325 *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
326 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
328 else
330 *hv = signmask;
331 *lv &= ~(HOST_WIDE_INT_M1U << prec);
332 *lv |= signmask << prec;
336 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
337 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
338 CODE is a tree code for a kind of division, one of
339 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
340 or EXACT_DIV_EXPR
341 It controls how the quotient is rounded to an integer.
342 Return nonzero if the operation overflows.
343 UNS nonzero says do unsigned division. */
345 static int
346 div_and_round_double (unsigned code, int uns,
347 /* num == numerator == dividend */
348 unsigned HOST_WIDE_INT lnum_orig,
349 HOST_WIDE_INT hnum_orig,
350 /* den == denominator == divisor */
351 unsigned HOST_WIDE_INT lden_orig,
352 HOST_WIDE_INT hden_orig,
353 unsigned HOST_WIDE_INT *lquo,
354 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
355 HOST_WIDE_INT *hrem)
357 int quo_neg = 0;
358 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
359 HOST_WIDE_INT den[4], quo[4];
360 int i, j;
361 unsigned HOST_WIDE_INT work;
362 unsigned HOST_WIDE_INT carry = 0;
363 unsigned HOST_WIDE_INT lnum = lnum_orig;
364 HOST_WIDE_INT hnum = hnum_orig;
365 unsigned HOST_WIDE_INT lden = lden_orig;
366 HOST_WIDE_INT hden = hden_orig;
367 int overflow = 0;
369 if (hden == 0 && lden == 0)
370 overflow = 1, lden = 1;
372 /* Calculate quotient sign and convert operands to unsigned. */
373 if (!uns)
375 if (hnum < 0)
377 quo_neg = ~ quo_neg;
378 /* (minimum integer) / (-1) is the only overflow case. */
379 if (neg_double (lnum, hnum, &lnum, &hnum)
380 && ((HOST_WIDE_INT) lden & hden) == -1)
381 overflow = 1;
383 if (hden < 0)
385 quo_neg = ~ quo_neg;
386 neg_double (lden, hden, &lden, &hden);
390 if (hnum == 0 && hden == 0)
391 { /* single precision */
392 *hquo = *hrem = 0;
393 /* This unsigned division rounds toward zero. */
394 *lquo = lnum / lden;
395 goto finish_up;
398 if (hnum == 0)
399 { /* trivial case: dividend < divisor */
400 /* hden != 0 already checked. */
401 *hquo = *lquo = 0;
402 *hrem = hnum;
403 *lrem = lnum;
404 goto finish_up;
407 memset (quo, 0, sizeof quo);
409 memset (num, 0, sizeof num); /* to zero 9th element */
410 memset (den, 0, sizeof den);
412 encode (num, lnum, hnum);
413 encode (den, lden, hden);
415 /* Special code for when the divisor < BASE. */
416 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
418 /* hnum != 0 already checked. */
419 for (i = 4 - 1; i >= 0; i--)
421 work = num[i] + carry * BASE;
422 quo[i] = work / lden;
423 carry = work % lden;
426 else
428 /* Full double precision division,
429 with thanks to Don Knuth's "Seminumerical Algorithms". */
430 int num_hi_sig, den_hi_sig;
431 unsigned HOST_WIDE_INT quo_est, scale;
433 /* Find the highest nonzero divisor digit. */
434 for (i = 4 - 1;; i--)
435 if (den[i] != 0)
437 den_hi_sig = i;
438 break;
441 /* Insure that the first digit of the divisor is at least BASE/2.
442 This is required by the quotient digit estimation algorithm. */
444 scale = BASE / (den[den_hi_sig] + 1);
445 if (scale > 1)
446 { /* scale divisor and dividend */
447 carry = 0;
448 for (i = 0; i <= 4 - 1; i++)
450 work = (num[i] * scale) + carry;
451 num[i] = LOWPART (work);
452 carry = HIGHPART (work);
455 num[4] = carry;
456 carry = 0;
457 for (i = 0; i <= 4 - 1; i++)
459 work = (den[i] * scale) + carry;
460 den[i] = LOWPART (work);
461 carry = HIGHPART (work);
462 if (den[i] != 0) den_hi_sig = i;
466 num_hi_sig = 4;
468 /* Main loop */
469 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
471 /* Guess the next quotient digit, quo_est, by dividing the first
472 two remaining dividend digits by the high order quotient digit.
473 quo_est is never low and is at most 2 high. */
474 unsigned HOST_WIDE_INT tmp;
476 num_hi_sig = i + den_hi_sig + 1;
477 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
478 if (num[num_hi_sig] != den[den_hi_sig])
479 quo_est = work / den[den_hi_sig];
480 else
481 quo_est = BASE - 1;
483 /* Refine quo_est so it's usually correct, and at most one high. */
484 tmp = work - quo_est * den[den_hi_sig];
485 if (tmp < BASE
486 && (den[den_hi_sig - 1] * quo_est
487 > (tmp * BASE + num[num_hi_sig - 2])))
488 quo_est--;
490 /* Try QUO_EST as the quotient digit, by multiplying the
491 divisor by QUO_EST and subtracting from the remaining dividend.
492 Keep in mind that QUO_EST is the I - 1st digit. */
494 carry = 0;
495 for (j = 0; j <= den_hi_sig; j++)
497 work = quo_est * den[j] + carry;
498 carry = HIGHPART (work);
499 work = num[i + j] - LOWPART (work);
500 num[i + j] = LOWPART (work);
501 carry += HIGHPART (work) != 0;
504 /* If quo_est was high by one, then num[i] went negative and
505 we need to correct things. */
506 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
508 quo_est--;
509 carry = 0; /* add divisor back in */
510 for (j = 0; j <= den_hi_sig; j++)
512 work = num[i + j] + den[j] + carry;
513 carry = HIGHPART (work);
514 num[i + j] = LOWPART (work);
517 num [num_hi_sig] += carry;
520 /* Store the quotient digit. */
521 quo[i] = quo_est;
525 decode (quo, lquo, hquo);
527 finish_up:
528 /* If result is negative, make it so. */
529 if (quo_neg)
530 neg_double (*lquo, *hquo, lquo, hquo);
532 /* Compute trial remainder: rem = num - (quo * den) */
533 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
534 neg_double (*lrem, *hrem, lrem, hrem);
535 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
537 switch (code)
539 case TRUNC_DIV_EXPR:
540 case TRUNC_MOD_EXPR: /* round toward zero */
541 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
542 return overflow;
544 case FLOOR_DIV_EXPR:
545 case FLOOR_MOD_EXPR: /* round toward negative infinity */
546 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
548 /* quo = quo - 1; */
549 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
550 lquo, hquo);
552 else
553 return overflow;
554 break;
556 case CEIL_DIV_EXPR:
557 case CEIL_MOD_EXPR: /* round toward positive infinity */
558 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
560 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
561 lquo, hquo);
563 else
564 return overflow;
565 break;
567 case ROUND_DIV_EXPR:
568 case ROUND_MOD_EXPR: /* round to closest integer */
570 unsigned HOST_WIDE_INT labs_rem = *lrem;
571 HOST_WIDE_INT habs_rem = *hrem;
572 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
573 HOST_WIDE_INT habs_den = hden, htwice;
575 /* Get absolute values. */
576 if (*hrem < 0)
577 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
578 if (hden < 0)
579 neg_double (lden, hden, &labs_den, &habs_den);
581 /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
582 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
583 labs_rem, habs_rem, &ltwice, &htwice);
585 if (((unsigned HOST_WIDE_INT) habs_den
586 < (unsigned HOST_WIDE_INT) htwice)
587 || (((unsigned HOST_WIDE_INT) habs_den
588 == (unsigned HOST_WIDE_INT) htwice)
589 && (labs_den <= ltwice)))
591 if (*hquo < 0)
592 /* quo = quo - 1; */
593 add_double (*lquo, *hquo,
594 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
595 else
596 /* quo = quo + 1; */
597 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
598 lquo, hquo);
600 else
601 return overflow;
603 break;
605 default:
606 gcc_unreachable ();
609 /* Compute true remainder: rem = num - (quo * den) */
610 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
611 neg_double (*lrem, *hrem, lrem, hrem);
612 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
613 return overflow;
617 /* Construct from a buffer of length LEN. BUFFER will be read according
618 to byte endianess and word endianess. Only the lower LEN bytes
619 of the result are set; the remaining high bytes are cleared. */
621 double_int
622 double_int::from_buffer (const unsigned char *buffer, int len)
624 double_int result = double_int_zero;
625 int words = len / UNITS_PER_WORD;
627 gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
629 for (int byte = 0; byte < len; byte++)
631 int offset;
632 int bitpos = byte * BITS_PER_UNIT;
633 unsigned HOST_WIDE_INT value;
635 if (len > UNITS_PER_WORD)
637 int word = byte / UNITS_PER_WORD;
639 if (WORDS_BIG_ENDIAN)
640 word = (words - 1) - word;
642 offset = word * UNITS_PER_WORD;
644 if (BYTES_BIG_ENDIAN)
645 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
646 else
647 offset += byte % UNITS_PER_WORD;
649 else
650 offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
652 value = (unsigned HOST_WIDE_INT) buffer[offset];
654 if (bitpos < HOST_BITS_PER_WIDE_INT)
655 result.low |= value << bitpos;
656 else
657 result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
660 return result;
664 /* Returns mask for PREC bits. */
666 double_int
667 double_int::mask (unsigned prec)
669 unsigned HOST_WIDE_INT m;
670 double_int mask;
672 if (prec > HOST_BITS_PER_WIDE_INT)
674 prec -= HOST_BITS_PER_WIDE_INT;
675 m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
676 mask.high = (HOST_WIDE_INT) m;
677 mask.low = ALL_ONES;
679 else
681 mask.high = 0;
682 mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
685 return mask;
688 /* Returns a maximum value for signed or unsigned integer
689 of precision PREC. */
691 double_int
692 double_int::max_value (unsigned int prec, bool uns)
694 return double_int::mask (prec - (uns ? 0 : 1));
697 /* Returns a minimum value for signed or unsigned integer
698 of precision PREC. */
700 double_int
701 double_int::min_value (unsigned int prec, bool uns)
703 if (uns)
704 return double_int_zero;
705 return double_int_one.lshift (prec - 1, prec, false);
708 /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
709 outside of the precision are set to the sign bit (i.e., the PREC-th one),
710 otherwise they are set to zero.
712 This corresponds to returning the value represented by PREC lowermost bits
713 of CST, with the given signedness. */
715 double_int
716 double_int::ext (unsigned prec, bool uns) const
718 if (uns)
719 return this->zext (prec);
720 else
721 return this->sext (prec);
724 /* The same as double_int::ext with UNS = true. */
726 double_int
727 double_int::zext (unsigned prec) const
729 const double_int &cst = *this;
730 double_int mask = double_int::mask (prec);
731 double_int r;
733 r.low = cst.low & mask.low;
734 r.high = cst.high & mask.high;
736 return r;
739 /* The same as double_int::ext with UNS = false. */
741 double_int
742 double_int::sext (unsigned prec) const
744 const double_int &cst = *this;
745 double_int mask = double_int::mask (prec);
746 double_int r;
747 unsigned HOST_WIDE_INT snum;
749 if (prec <= HOST_BITS_PER_WIDE_INT)
750 snum = cst.low;
751 else
753 prec -= HOST_BITS_PER_WIDE_INT;
754 snum = (unsigned HOST_WIDE_INT) cst.high;
756 if (((snum >> (prec - 1)) & 1) == 1)
758 r.low = cst.low | ~mask.low;
759 r.high = cst.high | ~mask.high;
761 else
763 r.low = cst.low & mask.low;
764 r.high = cst.high & mask.high;
767 return r;
770 /* Returns true if CST fits in signed HOST_WIDE_INT. */
772 bool
773 double_int::fits_shwi () const
775 const double_int &cst = *this;
776 if (cst.high == 0)
777 return (HOST_WIDE_INT) cst.low >= 0;
778 else if (cst.high == -1)
779 return (HOST_WIDE_INT) cst.low < 0;
780 else
781 return false;
784 /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
785 unsigned HOST_WIDE_INT if UNS is true. */
787 bool
788 double_int::fits_hwi (bool uns) const
790 if (uns)
791 return this->fits_uhwi ();
792 else
793 return this->fits_shwi ();
796 /* Returns A * B. */
798 double_int
799 double_int::operator * (double_int b) const
801 const double_int &a = *this;
802 double_int ret;
803 mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
804 return ret;
807 /* Multiplies *this with B and returns a reference to *this. */
809 double_int &
810 double_int::operator *= (double_int b)
812 mul_double (low, high, b.low, b.high, &low, &high);
813 return *this;
816 /* Returns A * B. If the operation overflows according to UNSIGNED_P,
817 *OVERFLOW is set to nonzero. */
819 double_int
820 double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
822 const double_int &a = *this;
823 double_int ret, tem;
824 *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
825 &ret.low, &ret.high,
826 &tem.low, &tem.high, unsigned_p);
827 return ret;
830 double_int
831 double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
832 double_int *higher, bool *overflow) const
835 double_int lower;
836 *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
837 &lower.low, &lower.high,
838 &higher->low, &higher->high,
839 unsigned_p);
840 return lower;
843 /* Returns A + B. */
845 double_int
846 double_int::operator + (double_int b) const
848 const double_int &a = *this;
849 double_int ret;
850 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
851 return ret;
854 /* Adds B to *this and returns a reference to *this. */
856 double_int &
857 double_int::operator += (double_int b)
859 add_double (low, high, b.low, b.high, &low, &high);
860 return *this;
864 /* Returns A + B. If the operation overflows according to UNSIGNED_P,
865 *OVERFLOW is set to nonzero. */
867 double_int
868 double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
870 const double_int &a = *this;
871 double_int ret;
872 *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
873 &ret.low, &ret.high, unsigned_p);
874 return ret;
877 /* Returns A - B. */
879 double_int
880 double_int::operator - (double_int b) const
882 const double_int &a = *this;
883 double_int ret;
884 neg_double (b.low, b.high, &b.low, &b.high);
885 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
886 return ret;
889 /* Subtracts B from *this and returns a reference to *this. */
891 double_int &
892 double_int::operator -= (double_int b)
894 neg_double (b.low, b.high, &b.low, &b.high);
895 add_double (low, high, b.low, b.high, &low, &high);
896 return *this;
900 /* Returns A - B. If the operation overflows via inconsistent sign bits,
901 *OVERFLOW is set to nonzero. */
903 double_int
904 double_int::sub_with_overflow (double_int b, bool *overflow) const
906 double_int ret;
907 neg_double (b.low, b.high, &ret.low, &ret.high);
908 add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
909 *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
910 return ret;
913 /* Returns -A. */
915 double_int
916 double_int::operator - () const
918 const double_int &a = *this;
919 double_int ret;
920 neg_double (a.low, a.high, &ret.low, &ret.high);
921 return ret;
924 double_int
925 double_int::neg_with_overflow (bool *overflow) const
927 double_int ret;
928 *overflow = neg_double (low, high, &ret.low, &ret.high);
929 return ret;
932 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
933 specified by CODE). CODE is enum tree_code in fact, but double_int.h
934 must be included before tree.h. The remainder after the division is
935 stored to MOD. */
937 double_int
938 double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
939 double_int *mod, bool *overflow) const
941 const double_int &a = *this;
942 double_int ret;
944 *overflow = div_and_round_double (code, uns, a.low, a.high,
945 b.low, b.high, &ret.low, &ret.high,
946 &mod->low, &mod->high);
947 return ret;
950 double_int
951 double_int::divmod (double_int b, bool uns, unsigned code,
952 double_int *mod) const
954 const double_int &a = *this;
955 double_int ret;
957 div_and_round_double (code, uns, a.low, a.high,
958 b.low, b.high, &ret.low, &ret.high,
959 &mod->low, &mod->high);
960 return ret;
963 /* The same as double_int::divmod with UNS = false. */
965 double_int
966 double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
968 return this->divmod (b, false, code, mod);
971 /* The same as double_int::divmod with UNS = true. */
973 double_int
974 double_int::udivmod (double_int b, unsigned code, double_int *mod) const
976 return this->divmod (b, true, code, mod);
979 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
980 specified by CODE). CODE is enum tree_code in fact, but double_int.h
981 must be included before tree.h. */
983 double_int
984 double_int::div (double_int b, bool uns, unsigned code) const
986 double_int mod;
988 return this->divmod (b, uns, code, &mod);
991 /* The same as double_int::div with UNS = false. */
993 double_int
994 double_int::sdiv (double_int b, unsigned code) const
996 return this->div (b, false, code);
999 /* The same as double_int::div with UNS = true. */
1001 double_int
1002 double_int::udiv (double_int b, unsigned code) const
1004 return this->div (b, true, code);
1007 /* Returns A % B (computed as unsigned depending on UNS, and rounded as
1008 specified by CODE). CODE is enum tree_code in fact, but double_int.h
1009 must be included before tree.h. */
1011 double_int
1012 double_int::mod (double_int b, bool uns, unsigned code) const
1014 double_int mod;
1016 this->divmod (b, uns, code, &mod);
1017 return mod;
1020 /* The same as double_int::mod with UNS = false. */
1022 double_int
1023 double_int::smod (double_int b, unsigned code) const
1025 return this->mod (b, false, code);
1028 /* The same as double_int::mod with UNS = true. */
1030 double_int
1031 double_int::umod (double_int b, unsigned code) const
1033 return this->mod (b, true, code);
1036 /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1037 the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1038 unchanged. */
1040 bool
1041 double_int::multiple_of (double_int factor,
1042 bool unsigned_p, double_int *multiple) const
1044 double_int remainder;
1045 double_int quotient = this->divmod (factor, unsigned_p,
1046 TRUNC_DIV_EXPR, &remainder);
1047 if (remainder.is_zero ())
1049 *multiple = quotient;
1050 return true;
1053 return false;
1056 /* Set BITPOS bit in A. */
1057 double_int
1058 double_int::set_bit (unsigned bitpos) const
1060 double_int a = *this;
1061 if (bitpos < HOST_BITS_PER_WIDE_INT)
1062 a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
1063 else
1064 a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1066 return a;
1069 /* Count trailing zeros in A. */
1071 double_int::trailing_zeros () const
1073 const double_int &a = *this;
1074 unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1075 unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1076 if (!w)
1077 return HOST_BITS_PER_DOUBLE_INT;
1078 bits += ctz_hwi (w);
1079 return bits;
1082 /* Shift A left by COUNT places. */
1084 double_int
1085 double_int::lshift (HOST_WIDE_INT count) const
1087 double_int ret;
1089 gcc_checking_assert (count >= 0);
1091 if (count >= HOST_BITS_PER_DOUBLE_INT)
1093 /* Shifting by the host word size is undefined according to the
1094 ANSI standard, so we must handle this as a special case. */
1095 ret.high = 0;
1096 ret.low = 0;
1098 else if (count >= HOST_BITS_PER_WIDE_INT)
1100 ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1101 ret.low = 0;
1103 else
1105 ret.high = (((unsigned HOST_WIDE_INT) high << count)
1106 | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1107 ret.low = low << count;
1110 return ret;
1113 /* Shift A right by COUNT places. */
1115 double_int
1116 double_int::rshift (HOST_WIDE_INT count) const
1118 double_int ret;
1120 gcc_checking_assert (count >= 0);
1122 if (count >= HOST_BITS_PER_DOUBLE_INT)
1124 /* Shifting by the host word size is undefined according to the
1125 ANSI standard, so we must handle this as a special case. */
1126 ret.high = 0;
1127 ret.low = 0;
1129 else if (count >= HOST_BITS_PER_WIDE_INT)
1131 ret.high = 0;
1132 ret.low
1133 = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1135 else
1137 ret.high = high >> count;
1138 ret.low = ((low >> count)
1139 | ((unsigned HOST_WIDE_INT) high
1140 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1143 return ret;
1146 /* Shift A left by COUNT places keeping only PREC bits of result. Shift
1147 right if COUNT is negative. ARITH true specifies arithmetic shifting;
1148 otherwise use logical shift. */
1150 double_int
1151 double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1153 double_int ret;
1154 if (count > 0)
1155 lshift_double (low, high, count, prec, &ret.low, &ret.high);
1156 else
1157 rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
1158 return ret;
1161 /* Shift A right by COUNT places keeping only PREC bits of result. Shift
1162 left if COUNT is negative. ARITH true specifies arithmetic shifting;
1163 otherwise use logical shift. */
1165 double_int
1166 double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1168 double_int ret;
1169 if (count > 0)
1170 rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
1171 else
1172 lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
1173 return ret;
1176 /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1177 Shift right if COUNT is negative. */
1179 double_int
1180 double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1182 double_int r;
1183 if (count > 0)
1184 lshift_double (low, high, count, prec, &r.low, &r.high);
1185 else
1186 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
1187 return r;
1190 /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1191 Shift left if COUNT is negative. */
1193 double_int
1194 double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1196 double_int r;
1197 if (count > 0)
1198 rshift_double (low, high, count, prec, &r.low, &r.high, true);
1199 else
1200 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1201 return r;
1204 /* Logical shift A left by COUNT places keeping only PREC bits of result.
1205 Shift right if COUNT is negative. */
1207 double_int
1208 double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1210 double_int r;
1211 if (count > 0)
1212 lshift_double (low, high, count, prec, &r.low, &r.high);
1213 else
1214 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
1215 return r;
1218 /* Logical shift A right by COUNT places keeping only PREC bits of result.
1219 Shift left if COUNT is negative. */
1221 double_int
1222 double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1224 double_int r;
1225 if (count > 0)
1226 rshift_double (low, high, count, prec, &r.low, &r.high, false);
1227 else
1228 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1229 return r;
1232 /* Rotate A left by COUNT places keeping only PREC bits of result.
1233 Rotate right if COUNT is negative. */
1235 double_int
1236 double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1238 double_int t1, t2;
1240 count %= prec;
1241 if (count < 0)
1242 count += prec;
1244 t1 = this->llshift (count, prec);
1245 t2 = this->lrshift (prec - count, prec);
1247 return t1 | t2;
1250 /* Rotate A rigth by COUNT places keeping only PREC bits of result.
1251 Rotate right if COUNT is negative. */
1253 double_int
1254 double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1256 double_int t1, t2;
1258 count %= prec;
1259 if (count < 0)
1260 count += prec;
1262 t1 = this->lrshift (count, prec);
1263 t2 = this->llshift (prec - count, prec);
1265 return t1 | t2;
1268 /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1269 comparison is given by UNS. */
1272 double_int::cmp (double_int b, bool uns) const
1274 if (uns)
1275 return this->ucmp (b);
1276 else
1277 return this->scmp (b);
1280 /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1281 and 1 if A > B. */
1284 double_int::ucmp (double_int b) const
1286 const double_int &a = *this;
1287 if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1288 return -1;
1289 if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1290 return 1;
1291 if (a.low < b.low)
1292 return -1;
1293 if (a.low > b.low)
1294 return 1;
1296 return 0;
1299 /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1300 and 1 if A > B. */
1303 double_int::scmp (double_int b) const
1305 const double_int &a = *this;
1306 if (a.high < b.high)
1307 return -1;
1308 if (a.high > b.high)
1309 return 1;
1310 if (a.low < b.low)
1311 return -1;
1312 if (a.low > b.low)
1313 return 1;
1315 return 0;
1318 /* Compares two unsigned values A and B for less-than. */
1320 bool
1321 double_int::ult (double_int b) const
1323 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1324 return true;
1325 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1326 return false;
1327 if (low < b.low)
1328 return true;
1329 return false;
1332 /* Compares two unsigned values A and B for less-than or equal-to. */
1334 bool
1335 double_int::ule (double_int b) const
1337 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1338 return true;
1339 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1340 return false;
1341 if (low <= b.low)
1342 return true;
1343 return false;
1346 /* Compares two unsigned values A and B for greater-than. */
1348 bool
1349 double_int::ugt (double_int b) const
1351 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1352 return true;
1353 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1354 return false;
1355 if (low > b.low)
1356 return true;
1357 return false;
1360 /* Compares two signed values A and B for less-than. */
1362 bool
1363 double_int::slt (double_int b) const
1365 if (high < b.high)
1366 return true;
1367 if (high > b.high)
1368 return false;
1369 if (low < b.low)
1370 return true;
1371 return false;
1374 /* Compares two signed values A and B for less-than or equal-to. */
1376 bool
1377 double_int::sle (double_int b) const
1379 if (high < b.high)
1380 return true;
1381 if (high > b.high)
1382 return false;
1383 if (low <= b.low)
1384 return true;
1385 return false;
1388 /* Compares two signed values A and B for greater-than. */
1390 bool
1391 double_int::sgt (double_int b) const
1393 if (high > b.high)
1394 return true;
1395 if (high < b.high)
1396 return false;
1397 if (low > b.low)
1398 return true;
1399 return false;
1403 /* Compares two values A and B. Returns max value. Signedness of the
1404 comparison is given by UNS. */
1406 double_int
1407 double_int::max (double_int b, bool uns)
1409 return (this->cmp (b, uns) == 1) ? *this : b;
1412 /* Compares two signed values A and B. Returns max value. */
1414 double_int
1415 double_int::smax (double_int b)
1417 return (this->scmp (b) == 1) ? *this : b;
1420 /* Compares two unsigned values A and B. Returns max value. */
1422 double_int
1423 double_int::umax (double_int b)
1425 return (this->ucmp (b) == 1) ? *this : b;
1428 /* Compares two values A and B. Returns mix value. Signedness of the
1429 comparison is given by UNS. */
1431 double_int
1432 double_int::min (double_int b, bool uns)
1434 return (this->cmp (b, uns) == -1) ? *this : b;
1437 /* Compares two signed values A and B. Returns min value. */
1439 double_int
1440 double_int::smin (double_int b)
1442 return (this->scmp (b) == -1) ? *this : b;
1445 /* Compares two unsigned values A and B. Returns min value. */
1447 double_int
1448 double_int::umin (double_int b)
1450 return (this->ucmp (b) == -1) ? *this : b;
1453 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1455 static unsigned
1456 double_int_split_digit (double_int *cst, unsigned base)
1458 unsigned HOST_WIDE_INT resl, reml;
1459 HOST_WIDE_INT resh, remh;
1461 div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
1462 &resl, &resh, &reml, &remh);
1463 cst->high = resh;
1464 cst->low = resl;
1466 return reml;
1469 /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1470 otherwise it is signed. */
1472 void
1473 dump_double_int (FILE *file, double_int cst, bool uns)
1475 unsigned digits[100], n;
1476 int i;
1478 if (cst.is_zero ())
1480 fprintf (file, "0");
1481 return;
1484 if (!uns && cst.is_negative ())
1486 fprintf (file, "-");
1487 cst = -cst;
1490 for (n = 0; !cst.is_zero (); n++)
1491 digits[n] = double_int_split_digit (&cst, 10);
1492 for (i = n - 1; i >= 0; i--)
1493 fprintf (file, "%u", digits[i]);
1497 /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1498 otherwise. */
1500 void
1501 mpz_set_double_int (mpz_t result, double_int val, bool uns)
1503 bool negate = false;
1504 unsigned HOST_WIDE_INT vp[2];
1506 if (!uns && val.is_negative ())
1508 negate = true;
1509 val = -val;
1512 vp[0] = val.low;
1513 vp[1] = (unsigned HOST_WIDE_INT) val.high;
1514 mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1516 if (negate)
1517 mpz_neg (result, result);
1520 /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1521 values of VAL will be wrapped; otherwise, they will be set to the
1522 appropriate minimum or maximum TYPE bound. */
1524 double_int
1525 mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1527 unsigned HOST_WIDE_INT *vp;
1528 size_t count, numb;
1529 double_int res;
1531 if (!wrap)
1533 mpz_t min, max;
1535 mpz_init (min);
1536 mpz_init (max);
1537 get_type_static_bounds (type, min, max);
1539 if (mpz_cmp (val, min) < 0)
1540 mpz_set (val, min);
1541 else if (mpz_cmp (val, max) > 0)
1542 mpz_set (val, max);
1544 mpz_clear (min);
1545 mpz_clear (max);
1548 /* Determine the number of unsigned HOST_WIDE_INT that are required
1549 for representing the value. The code to calculate count is
1550 extracted from the GMP manual, section "Integer Import and Export":
1551 http://gmplib.org/manual/Integer-Import-and-Export.html */
1552 numb = 8 * sizeof (HOST_WIDE_INT);
1553 count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1554 if (count < 2)
1555 count = 2;
1556 vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
1558 vp[0] = 0;
1559 vp[1] = 0;
1560 mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1562 gcc_assert (wrap || count <= 2);
1564 res.low = vp[0];
1565 res.high = (HOST_WIDE_INT) vp[1];
1567 res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1568 if (mpz_sgn (val) < 0)
1569 res = -res;
1571 return res;