* ipa/devirt9.C: Fix previous change.
[official-gcc.git] / gcc / combine.c
blobfb5c8814edb8ccb757f07901bdb72436d61132b5
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "stor-layout.h"
85 #include "tm_p.h"
86 #include "flags.h"
87 #include "regs.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
91 #include "function.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
93 #include "expr.h"
94 #include "insn-attr.h"
95 #include "recog.h"
96 #include "diagnostic-core.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "df.h"
104 #include "valtrack.h"
105 #include "cgraph.h"
106 #include "obstack.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
255 static vec<reg_stat_type> reg_stat;
257 /* Record the luid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set;
262 /* Record the luid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_luid;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn;
275 /* This is the lowest LUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this LUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_luid;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
291 that location. */
293 static rtx added_links_insn;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block;
297 static bool optimize_this_for_speed_p;
300 /* Length of the currently allocated uid_insn_cost array. */
302 static int max_uid_known;
304 /* The following array records the insn_rtx_cost for every insn
305 in the instruction stream. */
307 static int *uid_insn_cost;
309 /* The following array records the LOG_LINKS for every insn in the
310 instruction stream as struct insn_link pointers. */
312 struct insn_link {
313 rtx insn;
314 struct insn_link *next;
317 static struct insn_link **uid_log_links;
319 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
320 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
322 #define FOR_EACH_LOG_LINK(L, INSN) \
323 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
325 /* Links for LOG_LINKS are allocated from this obstack. */
327 static struct obstack insn_link_obstack;
329 /* Allocate a link. */
331 static inline struct insn_link *
332 alloc_insn_link (rtx insn, struct insn_link *next)
334 struct insn_link *l
335 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
336 sizeof (struct insn_link));
337 l->insn = insn;
338 l->next = next;
339 return l;
342 /* Incremented for each basic block. */
344 static int label_tick;
346 /* Reset to label_tick for each extended basic block in scanning order. */
348 static int label_tick_ebb_start;
350 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
351 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
353 static enum machine_mode nonzero_bits_mode;
355 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
356 be safely used. It is zero while computing them and after combine has
357 completed. This former test prevents propagating values based on
358 previously set values, which can be incorrect if a variable is modified
359 in a loop. */
361 static int nonzero_sign_valid;
364 /* Record one modification to rtl structure
365 to be undone by storing old_contents into *where. */
367 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
369 struct undo
371 struct undo *next;
372 enum undo_kind kind;
373 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
374 union { rtx *r; int *i; struct insn_link **l; } where;
377 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
378 num_undo says how many are currently recorded.
380 other_insn is nonzero if we have modified some other insn in the process
381 of working on subst_insn. It must be verified too. */
383 struct undobuf
385 struct undo *undos;
386 struct undo *frees;
387 rtx other_insn;
390 static struct undobuf undobuf;
392 /* Number of times the pseudo being substituted for
393 was found and replaced. */
395 static int n_occurrences;
397 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
398 enum machine_mode,
399 unsigned HOST_WIDE_INT,
400 unsigned HOST_WIDE_INT *);
401 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
402 enum machine_mode,
403 unsigned int, unsigned int *);
404 static void do_SUBST (rtx *, rtx);
405 static void do_SUBST_INT (int *, int);
406 static void init_reg_last (void);
407 static void setup_incoming_promotions (rtx);
408 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
409 static int cant_combine_insn_p (rtx);
410 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
411 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
412 static int contains_muldiv (rtx);
413 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
414 static void undo_all (void);
415 static void undo_commit (void);
416 static rtx *find_split_point (rtx *, rtx, bool);
417 static rtx subst (rtx, rtx, rtx, int, int, int);
418 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
419 static rtx simplify_if_then_else (rtx);
420 static rtx simplify_set (rtx);
421 static rtx simplify_logical (rtx);
422 static rtx expand_compound_operation (rtx);
423 static const_rtx expand_field_assignment (const_rtx);
424 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
425 rtx, unsigned HOST_WIDE_INT, int, int, int);
426 static rtx extract_left_shift (rtx, int);
427 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
428 unsigned HOST_WIDE_INT *);
429 static rtx canon_reg_for_combine (rtx, rtx);
430 static rtx force_to_mode (rtx, enum machine_mode,
431 unsigned HOST_WIDE_INT, int);
432 static rtx if_then_else_cond (rtx, rtx *, rtx *);
433 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
434 static int rtx_equal_for_field_assignment_p (rtx, rtx);
435 static rtx make_field_assignment (rtx);
436 static rtx apply_distributive_law (rtx);
437 static rtx distribute_and_simplify_rtx (rtx, int);
438 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
439 unsigned HOST_WIDE_INT);
440 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
441 unsigned HOST_WIDE_INT);
442 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
443 HOST_WIDE_INT, enum machine_mode, int *);
444 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
445 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
446 int);
447 static int recog_for_combine (rtx *, rtx, rtx *);
448 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
449 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
450 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
451 static void update_table_tick (rtx);
452 static void record_value_for_reg (rtx, rtx, rtx);
453 static void check_promoted_subreg (rtx, rtx);
454 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
455 static void record_dead_and_set_regs (rtx);
456 static int get_last_value_validate (rtx *, rtx, int, int);
457 static rtx get_last_value (const_rtx);
458 static int use_crosses_set_p (const_rtx, int);
459 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
460 static int reg_dead_at_p (rtx, rtx);
461 static void move_deaths (rtx, rtx, int, rtx, rtx *);
462 static int reg_bitfield_target_p (rtx, rtx);
463 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
464 static void distribute_links (struct insn_link *);
465 static void mark_used_regs_combine (rtx);
466 static void record_promoted_value (rtx, rtx);
467 static int unmentioned_reg_p_1 (rtx *, void *);
468 static bool unmentioned_reg_p (rtx, rtx);
469 static int record_truncated_value (rtx *, void *);
470 static void record_truncated_values (rtx *, void *);
471 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
472 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
475 /* It is not safe to use ordinary gen_lowpart in combine.
476 See comments in gen_lowpart_for_combine. */
477 #undef RTL_HOOKS_GEN_LOWPART
478 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
480 /* Our implementation of gen_lowpart never emits a new pseudo. */
481 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
482 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
484 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
485 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
487 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
488 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
490 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
491 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
493 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
496 /* Convenience wrapper for the canonicalize_comparison target hook.
497 Target hooks cannot use enum rtx_code. */
498 static inline void
499 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
500 bool op0_preserve_value)
502 int code_int = (int)*code;
503 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
504 *code = (enum rtx_code)code_int;
507 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
508 PATTERN can not be split. Otherwise, it returns an insn sequence.
509 This is a wrapper around split_insns which ensures that the
510 reg_stat vector is made larger if the splitter creates a new
511 register. */
513 static rtx
514 combine_split_insns (rtx pattern, rtx insn)
516 rtx ret;
517 unsigned int nregs;
519 ret = split_insns (pattern, insn);
520 nregs = max_reg_num ();
521 if (nregs > reg_stat.length ())
522 reg_stat.safe_grow_cleared (nregs);
523 return ret;
526 /* This is used by find_single_use to locate an rtx in LOC that
527 contains exactly one use of DEST, which is typically either a REG
528 or CC0. It returns a pointer to the innermost rtx expression
529 containing DEST. Appearances of DEST that are being used to
530 totally replace it are not counted. */
532 static rtx *
533 find_single_use_1 (rtx dest, rtx *loc)
535 rtx x = *loc;
536 enum rtx_code code = GET_CODE (x);
537 rtx *result = NULL;
538 rtx *this_result;
539 int i;
540 const char *fmt;
542 switch (code)
544 case CONST:
545 case LABEL_REF:
546 case SYMBOL_REF:
547 CASE_CONST_ANY:
548 case CLOBBER:
549 return 0;
551 case SET:
552 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
553 of a REG that occupies all of the REG, the insn uses DEST if
554 it is mentioned in the destination or the source. Otherwise, we
555 need just check the source. */
556 if (GET_CODE (SET_DEST (x)) != CC0
557 && GET_CODE (SET_DEST (x)) != PC
558 && !REG_P (SET_DEST (x))
559 && ! (GET_CODE (SET_DEST (x)) == SUBREG
560 && REG_P (SUBREG_REG (SET_DEST (x)))
561 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
562 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
563 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
564 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
565 break;
567 return find_single_use_1 (dest, &SET_SRC (x));
569 case MEM:
570 case SUBREG:
571 return find_single_use_1 (dest, &XEXP (x, 0));
573 default:
574 break;
577 /* If it wasn't one of the common cases above, check each expression and
578 vector of this code. Look for a unique usage of DEST. */
580 fmt = GET_RTX_FORMAT (code);
581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
583 if (fmt[i] == 'e')
585 if (dest == XEXP (x, i)
586 || (REG_P (dest) && REG_P (XEXP (x, i))
587 && REGNO (dest) == REGNO (XEXP (x, i))))
588 this_result = loc;
589 else
590 this_result = find_single_use_1 (dest, &XEXP (x, i));
592 if (result == NULL)
593 result = this_result;
594 else if (this_result)
595 /* Duplicate usage. */
596 return NULL;
598 else if (fmt[i] == 'E')
600 int j;
602 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
604 if (XVECEXP (x, i, j) == dest
605 || (REG_P (dest)
606 && REG_P (XVECEXP (x, i, j))
607 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
608 this_result = loc;
609 else
610 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
612 if (result == NULL)
613 result = this_result;
614 else if (this_result)
615 return NULL;
620 return result;
624 /* See if DEST, produced in INSN, is used only a single time in the
625 sequel. If so, return a pointer to the innermost rtx expression in which
626 it is used.
628 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
630 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
631 care about REG_DEAD notes or LOG_LINKS.
633 Otherwise, we find the single use by finding an insn that has a
634 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
635 only referenced once in that insn, we know that it must be the first
636 and last insn referencing DEST. */
638 static rtx *
639 find_single_use (rtx dest, rtx insn, rtx *ploc)
641 basic_block bb;
642 rtx next;
643 rtx *result;
644 struct insn_link *link;
646 #ifdef HAVE_cc0
647 if (dest == cc0_rtx)
649 next = NEXT_INSN (insn);
650 if (next == 0
651 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
652 return 0;
654 result = find_single_use_1 (dest, &PATTERN (next));
655 if (result && ploc)
656 *ploc = next;
657 return result;
659 #endif
661 if (!REG_P (dest))
662 return 0;
664 bb = BLOCK_FOR_INSN (insn);
665 for (next = NEXT_INSN (insn);
666 next && BLOCK_FOR_INSN (next) == bb;
667 next = NEXT_INSN (next))
668 if (INSN_P (next) && dead_or_set_p (next, dest))
670 FOR_EACH_LOG_LINK (link, next)
671 if (link->insn == insn)
672 break;
674 if (link)
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (ploc)
678 *ploc = next;
679 return result;
683 return 0;
686 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
687 insn. The substitution can be undone by undo_all. If INTO is already
688 set to NEWVAL, do not record this change. Because computing NEWVAL might
689 also call SUBST, we have to compute it before we put anything into
690 the undo table. */
692 static void
693 do_SUBST (rtx *into, rtx newval)
695 struct undo *buf;
696 rtx oldval = *into;
698 if (oldval == newval)
699 return;
701 /* We'd like to catch as many invalid transformations here as
702 possible. Unfortunately, there are way too many mode changes
703 that are perfectly valid, so we'd waste too much effort for
704 little gain doing the checks here. Focus on catching invalid
705 transformations involving integer constants. */
706 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
707 && CONST_INT_P (newval))
709 /* Sanity check that we're replacing oldval with a CONST_INT
710 that is a valid sign-extension for the original mode. */
711 gcc_assert (INTVAL (newval)
712 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
714 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
715 CONST_INT is not valid, because after the replacement, the
716 original mode would be gone. Unfortunately, we can't tell
717 when do_SUBST is called to replace the operand thereof, so we
718 perform this test on oldval instead, checking whether an
719 invalid replacement took place before we got here. */
720 gcc_assert (!(GET_CODE (oldval) == SUBREG
721 && CONST_INT_P (SUBREG_REG (oldval))));
722 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
723 && CONST_INT_P (XEXP (oldval, 0))));
726 if (undobuf.frees)
727 buf = undobuf.frees, undobuf.frees = buf->next;
728 else
729 buf = XNEW (struct undo);
731 buf->kind = UNDO_RTX;
732 buf->where.r = into;
733 buf->old_contents.r = oldval;
734 *into = newval;
736 buf->next = undobuf.undos, undobuf.undos = buf;
739 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
741 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
742 for the value of a HOST_WIDE_INT value (including CONST_INT) is
743 not safe. */
745 static void
746 do_SUBST_INT (int *into, int newval)
748 struct undo *buf;
749 int oldval = *into;
751 if (oldval == newval)
752 return;
754 if (undobuf.frees)
755 buf = undobuf.frees, undobuf.frees = buf->next;
756 else
757 buf = XNEW (struct undo);
759 buf->kind = UNDO_INT;
760 buf->where.i = into;
761 buf->old_contents.i = oldval;
762 *into = newval;
764 buf->next = undobuf.undos, undobuf.undos = buf;
767 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
769 /* Similar to SUBST, but just substitute the mode. This is used when
770 changing the mode of a pseudo-register, so that any other
771 references to the entry in the regno_reg_rtx array will change as
772 well. */
774 static void
775 do_SUBST_MODE (rtx *into, enum machine_mode newval)
777 struct undo *buf;
778 enum machine_mode oldval = GET_MODE (*into);
780 if (oldval == newval)
781 return;
783 if (undobuf.frees)
784 buf = undobuf.frees, undobuf.frees = buf->next;
785 else
786 buf = XNEW (struct undo);
788 buf->kind = UNDO_MODE;
789 buf->where.r = into;
790 buf->old_contents.m = oldval;
791 adjust_reg_mode (*into, newval);
793 buf->next = undobuf.undos, undobuf.undos = buf;
796 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
798 #ifndef HAVE_cc0
799 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
801 static void
802 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
804 struct undo *buf;
805 struct insn_link * oldval = *into;
807 if (oldval == newval)
808 return;
810 if (undobuf.frees)
811 buf = undobuf.frees, undobuf.frees = buf->next;
812 else
813 buf = XNEW (struct undo);
815 buf->kind = UNDO_LINKS;
816 buf->where.l = into;
817 buf->old_contents.l = oldval;
818 *into = newval;
820 buf->next = undobuf.undos, undobuf.undos = buf;
823 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
824 #endif
826 /* Subroutine of try_combine. Determine whether the replacement patterns
827 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
828 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
829 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
830 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
831 of all the instructions can be estimated and the replacements are more
832 expensive than the original sequence. */
834 static bool
835 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
836 rtx newi2pat, rtx newotherpat)
838 int i0_cost, i1_cost, i2_cost, i3_cost;
839 int new_i2_cost, new_i3_cost;
840 int old_cost, new_cost;
842 /* Lookup the original insn_rtx_costs. */
843 i2_cost = INSN_COST (i2);
844 i3_cost = INSN_COST (i3);
846 if (i1)
848 i1_cost = INSN_COST (i1);
849 if (i0)
851 i0_cost = INSN_COST (i0);
852 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
853 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
855 else
857 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
858 ? i1_cost + i2_cost + i3_cost : 0);
859 i0_cost = 0;
862 else
864 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
865 i1_cost = i0_cost = 0;
868 /* Calculate the replacement insn_rtx_costs. */
869 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
870 if (newi2pat)
872 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
873 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
874 ? new_i2_cost + new_i3_cost : 0;
876 else
878 new_cost = new_i3_cost;
879 new_i2_cost = 0;
882 if (undobuf.other_insn)
884 int old_other_cost, new_other_cost;
886 old_other_cost = INSN_COST (undobuf.other_insn);
887 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
888 if (old_other_cost > 0 && new_other_cost > 0)
890 old_cost += old_other_cost;
891 new_cost += new_other_cost;
893 else
894 old_cost = 0;
897 /* Disallow this combination if both new_cost and old_cost are greater than
898 zero, and new_cost is greater than old cost. */
899 if (old_cost > 0 && new_cost > old_cost)
901 if (dump_file)
903 if (i0)
905 fprintf (dump_file,
906 "rejecting combination of insns %d, %d, %d and %d\n",
907 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
908 INSN_UID (i3));
909 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
910 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
912 else if (i1)
914 fprintf (dump_file,
915 "rejecting combination of insns %d, %d and %d\n",
916 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
917 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
918 i1_cost, i2_cost, i3_cost, old_cost);
920 else
922 fprintf (dump_file,
923 "rejecting combination of insns %d and %d\n",
924 INSN_UID (i2), INSN_UID (i3));
925 fprintf (dump_file, "original costs %d + %d = %d\n",
926 i2_cost, i3_cost, old_cost);
929 if (newi2pat)
931 fprintf (dump_file, "replacement costs %d + %d = %d\n",
932 new_i2_cost, new_i3_cost, new_cost);
934 else
935 fprintf (dump_file, "replacement cost %d\n", new_cost);
938 return false;
941 /* Update the uid_insn_cost array with the replacement costs. */
942 INSN_COST (i2) = new_i2_cost;
943 INSN_COST (i3) = new_i3_cost;
944 if (i1)
946 INSN_COST (i1) = 0;
947 if (i0)
948 INSN_COST (i0) = 0;
951 return true;
955 /* Delete any insns that copy a register to itself. */
957 static void
958 delete_noop_moves (void)
960 rtx insn, next;
961 basic_block bb;
963 FOR_EACH_BB (bb)
965 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
967 next = NEXT_INSN (insn);
968 if (INSN_P (insn) && noop_move_p (insn))
970 if (dump_file)
971 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
973 delete_insn_and_edges (insn);
980 /* Fill in log links field for all insns. */
982 static void
983 create_log_links (void)
985 basic_block bb;
986 rtx *next_use, insn;
987 df_ref *def_vec, *use_vec;
989 next_use = XCNEWVEC (rtx, max_reg_num ());
991 /* Pass through each block from the end, recording the uses of each
992 register and establishing log links when def is encountered.
993 Note that we do not clear next_use array in order to save time,
994 so we have to test whether the use is in the same basic block as def.
996 There are a few cases below when we do not consider the definition or
997 usage -- these are taken from original flow.c did. Don't ask me why it is
998 done this way; I don't know and if it works, I don't want to know. */
1000 FOR_EACH_BB (bb)
1002 FOR_BB_INSNS_REVERSE (bb, insn)
1004 if (!NONDEBUG_INSN_P (insn))
1005 continue;
1007 /* Log links are created only once. */
1008 gcc_assert (!LOG_LINKS (insn));
1010 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1012 df_ref def = *def_vec;
1013 int regno = DF_REF_REGNO (def);
1014 rtx use_insn;
1016 if (!next_use[regno])
1017 continue;
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 continue;
1023 /* Do not make the log link for frame pointer. */
1024 if ((regno == FRAME_POINTER_REGNUM
1025 && (! reload_completed || frame_pointer_needed))
1026 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1027 || (regno == HARD_FRAME_POINTER_REGNUM
1028 && (! reload_completed || frame_pointer_needed))
1029 #endif
1030 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1032 #endif
1034 continue;
1036 use_insn = next_use[regno];
1037 if (BLOCK_FOR_INSN (use_insn) == bb)
1039 /* flow.c claimed:
1041 We don't build a LOG_LINK for hard registers contained
1042 in ASM_OPERANDs. If these registers get replaced,
1043 we might wind up changing the semantics of the insn,
1044 even if reload can make what appear to be valid
1045 assignments later. */
1046 if (regno >= FIRST_PSEUDO_REGISTER
1047 || asm_noperands (PATTERN (use_insn)) < 0)
1049 /* Don't add duplicate links between instructions. */
1050 struct insn_link *links;
1051 FOR_EACH_LOG_LINK (links, use_insn)
1052 if (insn == links->insn)
1053 break;
1055 if (!links)
1056 LOG_LINKS (use_insn)
1057 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1060 next_use[regno] = NULL_RTX;
1063 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1065 df_ref use = *use_vec;
1066 int regno = DF_REF_REGNO (use);
1068 /* Do not consider the usage of the stack pointer
1069 by function call. */
1070 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1071 continue;
1073 next_use[regno] = insn;
1078 free (next_use);
1081 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1082 true if we found a LOG_LINK that proves that A feeds B. This only works
1083 if there are no instructions between A and B which could have a link
1084 depending on A, since in that case we would not record a link for B.
1085 We also check the implicit dependency created by a cc0 setter/user
1086 pair. */
1088 static bool
1089 insn_a_feeds_b (rtx a, rtx b)
1091 struct insn_link *links;
1092 FOR_EACH_LOG_LINK (links, b)
1093 if (links->insn == a)
1094 return true;
1095 #ifdef HAVE_cc0
1096 if (sets_cc0_p (a))
1097 return true;
1098 #endif
1099 return false;
1102 /* Main entry point for combiner. F is the first insn of the function.
1103 NREGS is the first unused pseudo-reg number.
1105 Return nonzero if the combiner has turned an indirect jump
1106 instruction into a direct jump. */
1107 static int
1108 combine_instructions (rtx f, unsigned int nregs)
1110 rtx insn, next;
1111 #ifdef HAVE_cc0
1112 rtx prev;
1113 #endif
1114 struct insn_link *links, *nextlinks;
1115 rtx first;
1116 basic_block last_bb;
1118 int new_direct_jump_p = 0;
1120 for (first = f; first && !INSN_P (first); )
1121 first = NEXT_INSN (first);
1122 if (!first)
1123 return 0;
1125 combine_attempts = 0;
1126 combine_merges = 0;
1127 combine_extras = 0;
1128 combine_successes = 0;
1130 rtl_hooks = combine_rtl_hooks;
1132 reg_stat.safe_grow_cleared (nregs);
1134 init_recog_no_volatile ();
1136 /* Allocate array for insn info. */
1137 max_uid_known = get_max_uid ();
1138 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1139 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1140 gcc_obstack_init (&insn_link_obstack);
1142 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1144 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1145 problems when, for example, we have j <<= 1 in a loop. */
1147 nonzero_sign_valid = 0;
1148 label_tick = label_tick_ebb_start = 1;
1150 /* Scan all SETs and see if we can deduce anything about what
1151 bits are known to be zero for some registers and how many copies
1152 of the sign bit are known to exist for those registers.
1154 Also set any known values so that we can use it while searching
1155 for what bits are known to be set. */
1157 setup_incoming_promotions (first);
1158 /* Allow the entry block and the first block to fall into the same EBB.
1159 Conceptually the incoming promotions are assigned to the entry block. */
1160 last_bb = ENTRY_BLOCK_PTR;
1162 create_log_links ();
1163 FOR_EACH_BB (this_basic_block)
1165 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1166 last_call_luid = 0;
1167 mem_last_set = -1;
1169 label_tick++;
1170 if (!single_pred_p (this_basic_block)
1171 || single_pred (this_basic_block) != last_bb)
1172 label_tick_ebb_start = label_tick;
1173 last_bb = this_basic_block;
1175 FOR_BB_INSNS (this_basic_block, insn)
1176 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1178 #ifdef AUTO_INC_DEC
1179 rtx links;
1180 #endif
1182 subst_low_luid = DF_INSN_LUID (insn);
1183 subst_insn = insn;
1185 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1186 insn);
1187 record_dead_and_set_regs (insn);
1189 #ifdef AUTO_INC_DEC
1190 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1191 if (REG_NOTE_KIND (links) == REG_INC)
1192 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1193 insn);
1194 #endif
1196 /* Record the current insn_rtx_cost of this instruction. */
1197 if (NONJUMP_INSN_P (insn))
1198 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1199 optimize_this_for_speed_p);
1200 if (dump_file)
1201 fprintf (dump_file, "insn_cost %d: %d\n",
1202 INSN_UID (insn), INSN_COST (insn));
1206 nonzero_sign_valid = 1;
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR;
1214 FOR_EACH_BB (this_basic_block)
1216 rtx last_combined_insn = NULL_RTX;
1217 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1218 last_call_luid = 0;
1219 mem_last_set = -1;
1221 label_tick++;
1222 if (!single_pred_p (this_basic_block)
1223 || single_pred (this_basic_block) != last_bb)
1224 label_tick_ebb_start = label_tick;
1225 last_bb = this_basic_block;
1227 rtl_profile_for_bb (this_basic_block);
1228 for (insn = BB_HEAD (this_basic_block);
1229 insn != NEXT_INSN (BB_END (this_basic_block));
1230 insn = next ? next : NEXT_INSN (insn))
1232 next = 0;
1233 if (NONDEBUG_INSN_P (insn))
1235 while (last_combined_insn
1236 && INSN_DELETED_P (last_combined_insn))
1237 last_combined_insn = PREV_INSN (last_combined_insn);
1238 if (last_combined_insn == NULL_RTX
1239 || BARRIER_P (last_combined_insn)
1240 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1241 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1242 last_combined_insn = insn;
1244 /* See if we know about function return values before this
1245 insn based upon SUBREG flags. */
1246 check_promoted_subreg (insn, PATTERN (insn));
1248 /* See if we can find hardregs and subreg of pseudos in
1249 narrower modes. This could help turning TRUNCATEs
1250 into SUBREGs. */
1251 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1253 /* Try this insn with each insn it links back to. */
1255 FOR_EACH_LOG_LINK (links, insn)
1256 if ((next = try_combine (insn, links->insn, NULL_RTX,
1257 NULL_RTX, &new_direct_jump_p,
1258 last_combined_insn)) != 0)
1259 goto retry;
1261 /* Try each sequence of three linked insns ending with this one. */
1263 FOR_EACH_LOG_LINK (links, insn)
1265 rtx link = links->insn;
1267 /* If the linked insn has been replaced by a note, then there
1268 is no point in pursuing this chain any further. */
1269 if (NOTE_P (link))
1270 continue;
1272 FOR_EACH_LOG_LINK (nextlinks, link)
1273 if ((next = try_combine (insn, link, nextlinks->insn,
1274 NULL_RTX, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1276 goto retry;
1279 #ifdef HAVE_cc0
1280 /* Try to combine a jump insn that uses CC0
1281 with a preceding insn that sets CC0, and maybe with its
1282 logical predecessor as well.
1283 This is how we make decrement-and-branch insns.
1284 We need this special code because data flow connections
1285 via CC0 do not get entered in LOG_LINKS. */
1287 if (JUMP_P (insn)
1288 && (prev = prev_nonnote_insn (insn)) != 0
1289 && NONJUMP_INSN_P (prev)
1290 && sets_cc0_p (PATTERN (prev)))
1292 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1293 &new_direct_jump_p,
1294 last_combined_insn)) != 0)
1295 goto retry;
1297 FOR_EACH_LOG_LINK (nextlinks, prev)
1298 if ((next = try_combine (insn, prev, nextlinks->insn,
1299 NULL_RTX, &new_direct_jump_p,
1300 last_combined_insn)) != 0)
1301 goto retry;
1304 /* Do the same for an insn that explicitly references CC0. */
1305 if (NONJUMP_INSN_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev))
1309 && GET_CODE (PATTERN (insn)) == SET
1310 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1312 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1313 &new_direct_jump_p,
1314 last_combined_insn)) != 0)
1315 goto retry;
1317 FOR_EACH_LOG_LINK (nextlinks, prev)
1318 if ((next = try_combine (insn, prev, nextlinks->insn,
1319 NULL_RTX, &new_direct_jump_p,
1320 last_combined_insn)) != 0)
1321 goto retry;
1324 /* Finally, see if any of the insns that this insn links to
1325 explicitly references CC0. If so, try this insn, that insn,
1326 and its predecessor if it sets CC0. */
1327 FOR_EACH_LOG_LINK (links, insn)
1328 if (NONJUMP_INSN_P (links->insn)
1329 && GET_CODE (PATTERN (links->insn)) == SET
1330 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1331 && (prev = prev_nonnote_insn (links->insn)) != 0
1332 && NONJUMP_INSN_P (prev)
1333 && sets_cc0_p (PATTERN (prev))
1334 && (next = try_combine (insn, links->insn,
1335 prev, NULL_RTX, &new_direct_jump_p,
1336 last_combined_insn)) != 0)
1337 goto retry;
1338 #endif
1340 /* Try combining an insn with two different insns whose results it
1341 uses. */
1342 FOR_EACH_LOG_LINK (links, insn)
1343 for (nextlinks = links->next; nextlinks;
1344 nextlinks = nextlinks->next)
1345 if ((next = try_combine (insn, links->insn,
1346 nextlinks->insn, NULL_RTX,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1351 /* Try four-instruction combinations. */
1352 FOR_EACH_LOG_LINK (links, insn)
1354 struct insn_link *next1;
1355 rtx link = links->insn;
1357 /* If the linked insn has been replaced by a note, then there
1358 is no point in pursuing this chain any further. */
1359 if (NOTE_P (link))
1360 continue;
1362 FOR_EACH_LOG_LINK (next1, link)
1364 rtx link1 = next1->insn;
1365 if (NOTE_P (link1))
1366 continue;
1367 /* I0 -> I1 -> I2 -> I3. */
1368 FOR_EACH_LOG_LINK (nextlinks, link1)
1369 if ((next = try_combine (insn, link, link1,
1370 nextlinks->insn,
1371 &new_direct_jump_p,
1372 last_combined_insn)) != 0)
1373 goto retry;
1374 /* I0, I1 -> I2, I2 -> I3. */
1375 for (nextlinks = next1->next; nextlinks;
1376 nextlinks = nextlinks->next)
1377 if ((next = try_combine (insn, link, link1,
1378 nextlinks->insn,
1379 &new_direct_jump_p,
1380 last_combined_insn)) != 0)
1381 goto retry;
1384 for (next1 = links->next; next1; next1 = next1->next)
1386 rtx link1 = next1->insn;
1387 if (NOTE_P (link1))
1388 continue;
1389 /* I0 -> I2; I1, I2 -> I3. */
1390 FOR_EACH_LOG_LINK (nextlinks, link)
1391 if ((next = try_combine (insn, link, link1,
1392 nextlinks->insn,
1393 &new_direct_jump_p,
1394 last_combined_insn)) != 0)
1395 goto retry;
1396 /* I0 -> I1; I1, I2 -> I3. */
1397 FOR_EACH_LOG_LINK (nextlinks, link1)
1398 if ((next = try_combine (insn, link, link1,
1399 nextlinks->insn,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1402 goto retry;
1406 /* Try this insn with each REG_EQUAL note it links back to. */
1407 FOR_EACH_LOG_LINK (links, insn)
1409 rtx set, note;
1410 rtx temp = links->insn;
1411 if ((set = single_set (temp)) != 0
1412 && (note = find_reg_equal_equiv_note (temp)) != 0
1413 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1414 /* Avoid using a register that may already been marked
1415 dead by an earlier instruction. */
1416 && ! unmentioned_reg_p (note, SET_SRC (set))
1417 && (GET_MODE (note) == VOIDmode
1418 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1419 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1421 /* Temporarily replace the set's source with the
1422 contents of the REG_EQUAL note. The insn will
1423 be deleted or recognized by try_combine. */
1424 rtx orig = SET_SRC (set);
1425 SET_SRC (set) = note;
1426 i2mod = temp;
1427 i2mod_old_rhs = copy_rtx (orig);
1428 i2mod_new_rhs = copy_rtx (note);
1429 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1430 &new_direct_jump_p,
1431 last_combined_insn);
1432 i2mod = NULL_RTX;
1433 if (next)
1434 goto retry;
1435 SET_SRC (set) = orig;
1439 if (!NOTE_P (insn))
1440 record_dead_and_set_regs (insn);
1442 retry:
1448 default_rtl_profile ();
1449 clear_bb_flags ();
1450 new_direct_jump_p |= purge_all_dead_edges ();
1451 delete_noop_moves ();
1453 /* Clean up. */
1454 obstack_free (&insn_link_obstack, NULL);
1455 free (uid_log_links);
1456 free (uid_insn_cost);
1457 reg_stat.release ();
1460 struct undo *undo, *next;
1461 for (undo = undobuf.frees; undo; undo = next)
1463 next = undo->next;
1464 free (undo);
1466 undobuf.frees = 0;
1469 total_attempts += combine_attempts;
1470 total_merges += combine_merges;
1471 total_extras += combine_extras;
1472 total_successes += combine_successes;
1474 nonzero_sign_valid = 0;
1475 rtl_hooks = general_rtl_hooks;
1477 /* Make recognizer allow volatile MEMs again. */
1478 init_recog ();
1480 return new_direct_jump_p;
1483 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1485 static void
1486 init_reg_last (void)
1488 unsigned int i;
1489 reg_stat_type *p;
1491 FOR_EACH_VEC_ELT (reg_stat, i, p)
1492 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1495 /* Set up any promoted values for incoming argument registers. */
1497 static void
1498 setup_incoming_promotions (rtx first)
1500 tree arg;
1501 bool strictly_local = false;
1503 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1504 arg = DECL_CHAIN (arg))
1506 rtx x, reg = DECL_INCOMING_RTL (arg);
1507 int uns1, uns3;
1508 enum machine_mode mode1, mode2, mode3, mode4;
1510 /* Only continue if the incoming argument is in a register. */
1511 if (!REG_P (reg))
1512 continue;
1514 /* Determine, if possible, whether all call sites of the current
1515 function lie within the current compilation unit. (This does
1516 take into account the exporting of a function via taking its
1517 address, and so forth.) */
1518 strictly_local = cgraph_local_info (current_function_decl)->local;
1520 /* The mode and signedness of the argument before any promotions happen
1521 (equal to the mode of the pseudo holding it at that stage). */
1522 mode1 = TYPE_MODE (TREE_TYPE (arg));
1523 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1525 /* The mode and signedness of the argument after any source language and
1526 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1527 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1528 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1530 /* The mode and signedness of the argument as it is actually passed,
1531 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1532 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1533 TREE_TYPE (cfun->decl), 0);
1535 /* The mode of the register in which the argument is being passed. */
1536 mode4 = GET_MODE (reg);
1538 /* Eliminate sign extensions in the callee when:
1539 (a) A mode promotion has occurred; */
1540 if (mode1 == mode3)
1541 continue;
1542 /* (b) The mode of the register is the same as the mode of
1543 the argument as it is passed; */
1544 if (mode3 != mode4)
1545 continue;
1546 /* (c) There's no language level extension; */
1547 if (mode1 == mode2)
1549 /* (c.1) All callers are from the current compilation unit. If that's
1550 the case we don't have to rely on an ABI, we only have to know
1551 what we're generating right now, and we know that we will do the
1552 mode1 to mode2 promotion with the given sign. */
1553 else if (!strictly_local)
1554 continue;
1555 /* (c.2) The combination of the two promotions is useful. This is
1556 true when the signs match, or if the first promotion is unsigned.
1557 In the later case, (sign_extend (zero_extend x)) is the same as
1558 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1559 else if (uns1)
1560 uns3 = true;
1561 else if (uns3)
1562 continue;
1564 /* Record that the value was promoted from mode1 to mode3,
1565 so that any sign extension at the head of the current
1566 function may be eliminated. */
1567 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1568 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1569 record_value_for_reg (reg, first, x);
1573 /* Called via note_stores. If X is a pseudo that is narrower than
1574 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1576 If we are setting only a portion of X and we can't figure out what
1577 portion, assume all bits will be used since we don't know what will
1578 be happening.
1580 Similarly, set how many bits of X are known to be copies of the sign bit
1581 at all locations in the function. This is the smallest number implied
1582 by any set of X. */
1584 static void
1585 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1587 rtx insn = (rtx) data;
1588 unsigned int num;
1590 if (REG_P (x)
1591 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1592 /* If this register is undefined at the start of the file, we can't
1593 say what its contents were. */
1594 && ! REGNO_REG_SET_P
1595 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1596 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1598 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1600 if (set == 0 || GET_CODE (set) == CLOBBER)
1602 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1603 rsp->sign_bit_copies = 1;
1604 return;
1607 /* If this register is being initialized using itself, and the
1608 register is uninitialized in this basic block, and there are
1609 no LOG_LINKS which set the register, then part of the
1610 register is uninitialized. In that case we can't assume
1611 anything about the number of nonzero bits.
1613 ??? We could do better if we checked this in
1614 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1615 could avoid making assumptions about the insn which initially
1616 sets the register, while still using the information in other
1617 insns. We would have to be careful to check every insn
1618 involved in the combination. */
1620 if (insn
1621 && reg_referenced_p (x, PATTERN (insn))
1622 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1623 REGNO (x)))
1625 struct insn_link *link;
1627 FOR_EACH_LOG_LINK (link, insn)
1628 if (dead_or_set_p (link->insn, x))
1629 break;
1630 if (!link)
1632 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1633 rsp->sign_bit_copies = 1;
1634 return;
1638 /* If this is a complex assignment, see if we can convert it into a
1639 simple assignment. */
1640 set = expand_field_assignment (set);
1642 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1643 set what we know about X. */
1645 if (SET_DEST (set) == x
1646 || (paradoxical_subreg_p (SET_DEST (set))
1647 && SUBREG_REG (SET_DEST (set)) == x))
1649 rtx src = SET_SRC (set);
1651 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1652 /* If X is narrower than a word and SRC is a non-negative
1653 constant that would appear negative in the mode of X,
1654 sign-extend it for use in reg_stat[].nonzero_bits because some
1655 machines (maybe most) will actually do the sign-extension
1656 and this is the conservative approach.
1658 ??? For 2.5, try to tighten up the MD files in this regard
1659 instead of this kludge. */
1661 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1662 && CONST_INT_P (src)
1663 && INTVAL (src) > 0
1664 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1665 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1666 #endif
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1670 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1671 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1672 if (rsp->sign_bit_copies == 0
1673 || rsp->sign_bit_copies > num)
1674 rsp->sign_bit_copies = num;
1676 else
1678 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1679 rsp->sign_bit_copies = 1;
1684 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1685 optionally insns that were previously combined into I3 or that will be
1686 combined into the merger of INSN and I3. The order is PRED, PRED2,
1687 INSN, SUCC, SUCC2, I3.
1689 Return 0 if the combination is not allowed for any reason.
1691 If the combination is allowed, *PDEST will be set to the single
1692 destination of INSN and *PSRC to the single source, and this function
1693 will return 1. */
1695 static int
1696 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1697 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1698 rtx *pdest, rtx *psrc)
1700 int i;
1701 const_rtx set = 0;
1702 rtx src, dest;
1703 rtx p;
1704 #ifdef AUTO_INC_DEC
1705 rtx link;
1706 #endif
1707 bool all_adjacent = true;
1708 int (*is_volatile_p) (const_rtx);
1710 if (succ)
1712 if (succ2)
1714 if (next_active_insn (succ2) != i3)
1715 all_adjacent = false;
1716 if (next_active_insn (succ) != succ2)
1717 all_adjacent = false;
1719 else if (next_active_insn (succ) != i3)
1720 all_adjacent = false;
1721 if (next_active_insn (insn) != succ)
1722 all_adjacent = false;
1724 else if (next_active_insn (insn) != i3)
1725 all_adjacent = false;
1727 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1728 or a PARALLEL consisting of such a SET and CLOBBERs.
1730 If INSN has CLOBBER parallel parts, ignore them for our processing.
1731 By definition, these happen during the execution of the insn. When it
1732 is merged with another insn, all bets are off. If they are, in fact,
1733 needed and aren't also supplied in I3, they may be added by
1734 recog_for_combine. Otherwise, it won't match.
1736 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1737 note.
1739 Get the source and destination of INSN. If more than one, can't
1740 combine. */
1742 if (GET_CODE (PATTERN (insn)) == SET)
1743 set = PATTERN (insn);
1744 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1745 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1747 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1749 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1751 switch (GET_CODE (elt))
1753 /* This is important to combine floating point insns
1754 for the SH4 port. */
1755 case USE:
1756 /* Combining an isolated USE doesn't make sense.
1757 We depend here on combinable_i3pat to reject them. */
1758 /* The code below this loop only verifies that the inputs of
1759 the SET in INSN do not change. We call reg_set_between_p
1760 to verify that the REG in the USE does not change between
1761 I3 and INSN.
1762 If the USE in INSN was for a pseudo register, the matching
1763 insn pattern will likely match any register; combining this
1764 with any other USE would only be safe if we knew that the
1765 used registers have identical values, or if there was
1766 something to tell them apart, e.g. different modes. For
1767 now, we forgo such complicated tests and simply disallow
1768 combining of USES of pseudo registers with any other USE. */
1769 if (REG_P (XEXP (elt, 0))
1770 && GET_CODE (PATTERN (i3)) == PARALLEL)
1772 rtx i3pat = PATTERN (i3);
1773 int i = XVECLEN (i3pat, 0) - 1;
1774 unsigned int regno = REGNO (XEXP (elt, 0));
1778 rtx i3elt = XVECEXP (i3pat, 0, i);
1780 if (GET_CODE (i3elt) == USE
1781 && REG_P (XEXP (i3elt, 0))
1782 && (REGNO (XEXP (i3elt, 0)) == regno
1783 ? reg_set_between_p (XEXP (elt, 0),
1784 PREV_INSN (insn), i3)
1785 : regno >= FIRST_PSEUDO_REGISTER))
1786 return 0;
1788 while (--i >= 0);
1790 break;
1792 /* We can ignore CLOBBERs. */
1793 case CLOBBER:
1794 break;
1796 case SET:
1797 /* Ignore SETs whose result isn't used but not those that
1798 have side-effects. */
1799 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1800 && insn_nothrow_p (insn)
1801 && !side_effects_p (elt))
1802 break;
1804 /* If we have already found a SET, this is a second one and
1805 so we cannot combine with this insn. */
1806 if (set)
1807 return 0;
1809 set = elt;
1810 break;
1812 default:
1813 /* Anything else means we can't combine. */
1814 return 0;
1818 if (set == 0
1819 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1820 so don't do anything with it. */
1821 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1822 return 0;
1824 else
1825 return 0;
1827 if (set == 0)
1828 return 0;
1830 /* The simplification in expand_field_assignment may call back to
1831 get_last_value, so set safe guard here. */
1832 subst_low_luid = DF_INSN_LUID (insn);
1834 set = expand_field_assignment (set);
1835 src = SET_SRC (set), dest = SET_DEST (set);
1837 /* Don't eliminate a store in the stack pointer. */
1838 if (dest == stack_pointer_rtx
1839 /* Don't combine with an insn that sets a register to itself if it has
1840 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1841 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1842 /* Can't merge an ASM_OPERANDS. */
1843 || GET_CODE (src) == ASM_OPERANDS
1844 /* Can't merge a function call. */
1845 || GET_CODE (src) == CALL
1846 /* Don't eliminate a function call argument. */
1847 || (CALL_P (i3)
1848 && (find_reg_fusage (i3, USE, dest)
1849 || (REG_P (dest)
1850 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1851 && global_regs[REGNO (dest)])))
1852 /* Don't substitute into an incremented register. */
1853 || FIND_REG_INC_NOTE (i3, dest)
1854 || (succ && FIND_REG_INC_NOTE (succ, dest))
1855 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1856 /* Don't substitute into a non-local goto, this confuses CFG. */
1857 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1858 /* Make sure that DEST is not used after SUCC but before I3. */
1859 || (!all_adjacent
1860 && ((succ2
1861 && (reg_used_between_p (dest, succ2, i3)
1862 || reg_used_between_p (dest, succ, succ2)))
1863 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1864 /* Make sure that the value that is to be substituted for the register
1865 does not use any registers whose values alter in between. However,
1866 If the insns are adjacent, a use can't cross a set even though we
1867 think it might (this can happen for a sequence of insns each setting
1868 the same destination; last_set of that register might point to
1869 a NOTE). If INSN has a REG_EQUIV note, the register is always
1870 equivalent to the memory so the substitution is valid even if there
1871 are intervening stores. Also, don't move a volatile asm or
1872 UNSPEC_VOLATILE across any other insns. */
1873 || (! all_adjacent
1874 && (((!MEM_P (src)
1875 || ! find_reg_note (insn, REG_EQUIV, src))
1876 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1877 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1878 || GET_CODE (src) == UNSPEC_VOLATILE))
1879 /* Don't combine across a CALL_INSN, because that would possibly
1880 change whether the life span of some REGs crosses calls or not,
1881 and it is a pain to update that information.
1882 Exception: if source is a constant, moving it later can't hurt.
1883 Accept that as a special case. */
1884 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1885 return 0;
1887 /* DEST must either be a REG or CC0. */
1888 if (REG_P (dest))
1890 /* If register alignment is being enforced for multi-word items in all
1891 cases except for parameters, it is possible to have a register copy
1892 insn referencing a hard register that is not allowed to contain the
1893 mode being copied and which would not be valid as an operand of most
1894 insns. Eliminate this problem by not combining with such an insn.
1896 Also, on some machines we don't want to extend the life of a hard
1897 register. */
1899 if (REG_P (src)
1900 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1901 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1902 /* Don't extend the life of a hard register unless it is
1903 user variable (if we have few registers) or it can't
1904 fit into the desired register (meaning something special
1905 is going on).
1906 Also avoid substituting a return register into I3, because
1907 reload can't handle a conflict with constraints of other
1908 inputs. */
1909 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1910 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1911 return 0;
1913 else if (GET_CODE (dest) != CC0)
1914 return 0;
1917 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1918 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1919 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1921 /* Don't substitute for a register intended as a clobberable
1922 operand. */
1923 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1924 if (rtx_equal_p (reg, dest))
1925 return 0;
1927 /* If the clobber represents an earlyclobber operand, we must not
1928 substitute an expression containing the clobbered register.
1929 As we do not analyze the constraint strings here, we have to
1930 make the conservative assumption. However, if the register is
1931 a fixed hard reg, the clobber cannot represent any operand;
1932 we leave it up to the machine description to either accept or
1933 reject use-and-clobber patterns. */
1934 if (!REG_P (reg)
1935 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1936 || !fixed_regs[REGNO (reg)])
1937 if (reg_overlap_mentioned_p (reg, src))
1938 return 0;
1941 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1942 or not), reject, unless nothing volatile comes between it and I3 */
1944 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1946 /* Make sure neither succ nor succ2 contains a volatile reference. */
1947 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1948 return 0;
1949 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1950 return 0;
1951 /* We'll check insns between INSN and I3 below. */
1954 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1955 to be an explicit register variable, and was chosen for a reason. */
1957 if (GET_CODE (src) == ASM_OPERANDS
1958 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1959 return 0;
1961 /* If INSN contains volatile references (specifically volatile MEMs),
1962 we cannot combine across any other volatile references.
1963 Even if INSN doesn't contain volatile references, any intervening
1964 volatile insn might affect machine state. */
1966 is_volatile_p = volatile_refs_p (PATTERN (insn))
1967 ? volatile_refs_p
1968 : volatile_insn_p;
1970 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1971 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1972 return 0;
1974 /* If INSN contains an autoincrement or autodecrement, make sure that
1975 register is not used between there and I3, and not already used in
1976 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1977 Also insist that I3 not be a jump; if it were one
1978 and the incremented register were spilled, we would lose. */
1980 #ifdef AUTO_INC_DEC
1981 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1982 if (REG_NOTE_KIND (link) == REG_INC
1983 && (JUMP_P (i3)
1984 || reg_used_between_p (XEXP (link, 0), insn, i3)
1985 || (pred != NULL_RTX
1986 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1987 || (pred2 != NULL_RTX
1988 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1989 || (succ != NULL_RTX
1990 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1991 || (succ2 != NULL_RTX
1992 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1993 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1994 return 0;
1995 #endif
1997 #ifdef HAVE_cc0
1998 /* Don't combine an insn that follows a CC0-setting insn.
1999 An insn that uses CC0 must not be separated from the one that sets it.
2000 We do, however, allow I2 to follow a CC0-setting insn if that insn
2001 is passed as I1; in that case it will be deleted also.
2002 We also allow combining in this case if all the insns are adjacent
2003 because that would leave the two CC0 insns adjacent as well.
2004 It would be more logical to test whether CC0 occurs inside I1 or I2,
2005 but that would be much slower, and this ought to be equivalent. */
2007 p = prev_nonnote_insn (insn);
2008 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2009 && ! all_adjacent)
2010 return 0;
2011 #endif
2013 /* If we get here, we have passed all the tests and the combination is
2014 to be allowed. */
2016 *pdest = dest;
2017 *psrc = src;
2019 return 1;
2022 /* LOC is the location within I3 that contains its pattern or the component
2023 of a PARALLEL of the pattern. We validate that it is valid for combining.
2025 One problem is if I3 modifies its output, as opposed to replacing it
2026 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2027 doing so would produce an insn that is not equivalent to the original insns.
2029 Consider:
2031 (set (reg:DI 101) (reg:DI 100))
2032 (set (subreg:SI (reg:DI 101) 0) <foo>)
2034 This is NOT equivalent to:
2036 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2037 (set (reg:DI 101) (reg:DI 100))])
2039 Not only does this modify 100 (in which case it might still be valid
2040 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2042 We can also run into a problem if I2 sets a register that I1
2043 uses and I1 gets directly substituted into I3 (not via I2). In that
2044 case, we would be getting the wrong value of I2DEST into I3, so we
2045 must reject the combination. This case occurs when I2 and I1 both
2046 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2047 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2048 of a SET must prevent combination from occurring. The same situation
2049 can occur for I0, in which case I0_NOT_IN_SRC is set.
2051 Before doing the above check, we first try to expand a field assignment
2052 into a set of logical operations.
2054 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2055 we place a register that is both set and used within I3. If more than one
2056 such register is detected, we fail.
2058 Return 1 if the combination is valid, zero otherwise. */
2060 static int
2061 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2062 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2064 rtx x = *loc;
2066 if (GET_CODE (x) == SET)
2068 rtx set = x ;
2069 rtx dest = SET_DEST (set);
2070 rtx src = SET_SRC (set);
2071 rtx inner_dest = dest;
2072 rtx subdest;
2074 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2075 || GET_CODE (inner_dest) == SUBREG
2076 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2077 inner_dest = XEXP (inner_dest, 0);
2079 /* Check for the case where I3 modifies its output, as discussed
2080 above. We don't want to prevent pseudos from being combined
2081 into the address of a MEM, so only prevent the combination if
2082 i1 or i2 set the same MEM. */
2083 if ((inner_dest != dest &&
2084 (!MEM_P (inner_dest)
2085 || rtx_equal_p (i2dest, inner_dest)
2086 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2087 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2088 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2089 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2090 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2092 /* This is the same test done in can_combine_p except we can't test
2093 all_adjacent; we don't have to, since this instruction will stay
2094 in place, thus we are not considering increasing the lifetime of
2095 INNER_DEST.
2097 Also, if this insn sets a function argument, combining it with
2098 something that might need a spill could clobber a previous
2099 function argument; the all_adjacent test in can_combine_p also
2100 checks this; here, we do a more specific test for this case. */
2102 || (REG_P (inner_dest)
2103 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2104 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2105 GET_MODE (inner_dest))))
2106 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2107 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2108 return 0;
2110 /* If DEST is used in I3, it is being killed in this insn, so
2111 record that for later. We have to consider paradoxical
2112 subregs here, since they kill the whole register, but we
2113 ignore partial subregs, STRICT_LOW_PART, etc.
2114 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2115 STACK_POINTER_REGNUM, since these are always considered to be
2116 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2117 subdest = dest;
2118 if (GET_CODE (subdest) == SUBREG
2119 && (GET_MODE_SIZE (GET_MODE (subdest))
2120 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2121 subdest = SUBREG_REG (subdest);
2122 if (pi3dest_killed
2123 && REG_P (subdest)
2124 && reg_referenced_p (subdest, PATTERN (i3))
2125 && REGNO (subdest) != FRAME_POINTER_REGNUM
2126 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2127 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2128 #endif
2129 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2130 && (REGNO (subdest) != ARG_POINTER_REGNUM
2131 || ! fixed_regs [REGNO (subdest)])
2132 #endif
2133 && REGNO (subdest) != STACK_POINTER_REGNUM)
2135 if (*pi3dest_killed)
2136 return 0;
2138 *pi3dest_killed = subdest;
2142 else if (GET_CODE (x) == PARALLEL)
2144 int i;
2146 for (i = 0; i < XVECLEN (x, 0); i++)
2147 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2148 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2149 return 0;
2152 return 1;
2155 /* Return 1 if X is an arithmetic expression that contains a multiplication
2156 and division. We don't count multiplications by powers of two here. */
2158 static int
2159 contains_muldiv (rtx x)
2161 switch (GET_CODE (x))
2163 case MOD: case DIV: case UMOD: case UDIV:
2164 return 1;
2166 case MULT:
2167 return ! (CONST_INT_P (XEXP (x, 1))
2168 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2169 default:
2170 if (BINARY_P (x))
2171 return contains_muldiv (XEXP (x, 0))
2172 || contains_muldiv (XEXP (x, 1));
2174 if (UNARY_P (x))
2175 return contains_muldiv (XEXP (x, 0));
2177 return 0;
2181 /* Determine whether INSN can be used in a combination. Return nonzero if
2182 not. This is used in try_combine to detect early some cases where we
2183 can't perform combinations. */
2185 static int
2186 cant_combine_insn_p (rtx insn)
2188 rtx set;
2189 rtx src, dest;
2191 /* If this isn't really an insn, we can't do anything.
2192 This can occur when flow deletes an insn that it has merged into an
2193 auto-increment address. */
2194 if (! INSN_P (insn))
2195 return 1;
2197 /* Never combine loads and stores involving hard regs that are likely
2198 to be spilled. The register allocator can usually handle such
2199 reg-reg moves by tying. If we allow the combiner to make
2200 substitutions of likely-spilled regs, reload might die.
2201 As an exception, we allow combinations involving fixed regs; these are
2202 not available to the register allocator so there's no risk involved. */
2204 set = single_set (insn);
2205 if (! set)
2206 return 0;
2207 src = SET_SRC (set);
2208 dest = SET_DEST (set);
2209 if (GET_CODE (src) == SUBREG)
2210 src = SUBREG_REG (src);
2211 if (GET_CODE (dest) == SUBREG)
2212 dest = SUBREG_REG (dest);
2213 if (REG_P (src) && REG_P (dest)
2214 && ((HARD_REGISTER_P (src)
2215 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2216 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2217 || (HARD_REGISTER_P (dest)
2218 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2219 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2220 return 1;
2222 return 0;
2225 struct likely_spilled_retval_info
2227 unsigned regno, nregs;
2228 unsigned mask;
2231 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2232 hard registers that are known to be written to / clobbered in full. */
2233 static void
2234 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2236 struct likely_spilled_retval_info *const info =
2237 (struct likely_spilled_retval_info *) data;
2238 unsigned regno, nregs;
2239 unsigned new_mask;
2241 if (!REG_P (XEXP (set, 0)))
2242 return;
2243 regno = REGNO (x);
2244 if (regno >= info->regno + info->nregs)
2245 return;
2246 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2247 if (regno + nregs <= info->regno)
2248 return;
2249 new_mask = (2U << (nregs - 1)) - 1;
2250 if (regno < info->regno)
2251 new_mask >>= info->regno - regno;
2252 else
2253 new_mask <<= regno - info->regno;
2254 info->mask &= ~new_mask;
2257 /* Return nonzero iff part of the return value is live during INSN, and
2258 it is likely spilled. This can happen when more than one insn is needed
2259 to copy the return value, e.g. when we consider to combine into the
2260 second copy insn for a complex value. */
2262 static int
2263 likely_spilled_retval_p (rtx insn)
2265 rtx use = BB_END (this_basic_block);
2266 rtx reg, p;
2267 unsigned regno, nregs;
2268 /* We assume here that no machine mode needs more than
2269 32 hard registers when the value overlaps with a register
2270 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2271 unsigned mask;
2272 struct likely_spilled_retval_info info;
2274 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2275 return 0;
2276 reg = XEXP (PATTERN (use), 0);
2277 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2278 return 0;
2279 regno = REGNO (reg);
2280 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2281 if (nregs == 1)
2282 return 0;
2283 mask = (2U << (nregs - 1)) - 1;
2285 /* Disregard parts of the return value that are set later. */
2286 info.regno = regno;
2287 info.nregs = nregs;
2288 info.mask = mask;
2289 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2290 if (INSN_P (p))
2291 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2292 mask = info.mask;
2294 /* Check if any of the (probably) live return value registers is
2295 likely spilled. */
2296 nregs --;
2299 if ((mask & 1 << nregs)
2300 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2301 return 1;
2302 } while (nregs--);
2303 return 0;
2306 /* Adjust INSN after we made a change to its destination.
2308 Changing the destination can invalidate notes that say something about
2309 the results of the insn and a LOG_LINK pointing to the insn. */
2311 static void
2312 adjust_for_new_dest (rtx insn)
2314 /* For notes, be conservative and simply remove them. */
2315 remove_reg_equal_equiv_notes (insn);
2317 /* The new insn will have a destination that was previously the destination
2318 of an insn just above it. Call distribute_links to make a LOG_LINK from
2319 the next use of that destination. */
2320 distribute_links (alloc_insn_link (insn, NULL));
2322 df_insn_rescan (insn);
2325 /* Return TRUE if combine can reuse reg X in mode MODE.
2326 ADDED_SETS is nonzero if the original set is still required. */
2327 static bool
2328 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2330 unsigned int regno;
2332 if (!REG_P (x))
2333 return false;
2335 regno = REGNO (x);
2336 /* Allow hard registers if the new mode is legal, and occupies no more
2337 registers than the old mode. */
2338 if (regno < FIRST_PSEUDO_REGISTER)
2339 return (HARD_REGNO_MODE_OK (regno, mode)
2340 && (hard_regno_nregs[regno][GET_MODE (x)]
2341 >= hard_regno_nregs[regno][mode]));
2343 /* Or a pseudo that is only used once. */
2344 return (REG_N_SETS (regno) == 1 && !added_sets
2345 && !REG_USERVAR_P (x));
2349 /* Check whether X, the destination of a set, refers to part of
2350 the register specified by REG. */
2352 static bool
2353 reg_subword_p (rtx x, rtx reg)
2355 /* Check that reg is an integer mode register. */
2356 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2357 return false;
2359 if (GET_CODE (x) == STRICT_LOW_PART
2360 || GET_CODE (x) == ZERO_EXTRACT)
2361 x = XEXP (x, 0);
2363 return GET_CODE (x) == SUBREG
2364 && SUBREG_REG (x) == reg
2365 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2368 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2369 Note that the INSN should be deleted *after* removing dead edges, so
2370 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2371 but not for a (set (pc) (label_ref FOO)). */
2373 static void
2374 update_cfg_for_uncondjump (rtx insn)
2376 basic_block bb = BLOCK_FOR_INSN (insn);
2377 gcc_assert (BB_END (bb) == insn);
2379 purge_dead_edges (bb);
2381 delete_insn (insn);
2382 if (EDGE_COUNT (bb->succs) == 1)
2384 rtx insn;
2386 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2388 /* Remove barriers from the footer if there are any. */
2389 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2390 if (BARRIER_P (insn))
2392 if (PREV_INSN (insn))
2393 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2394 else
2395 BB_FOOTER (bb) = NEXT_INSN (insn);
2396 if (NEXT_INSN (insn))
2397 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2399 else if (LABEL_P (insn))
2400 break;
2404 /* Try to combine the insns I0, I1 and I2 into I3.
2405 Here I0, I1 and I2 appear earlier than I3.
2406 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2409 If we are combining more than two insns and the resulting insn is not
2410 recognized, try splitting it into two insns. If that happens, I2 and I3
2411 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2412 Otherwise, I0, I1 and I2 are pseudo-deleted.
2414 Return 0 if the combination does not work. Then nothing is changed.
2415 If we did the combination, return the insn at which combine should
2416 resume scanning.
2418 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2419 new direct jump instruction.
2421 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2422 been I3 passed to an earlier try_combine within the same basic
2423 block. */
2425 static rtx
2426 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2427 rtx last_combined_insn)
2429 /* New patterns for I3 and I2, respectively. */
2430 rtx newpat, newi2pat = 0;
2431 rtvec newpat_vec_with_clobbers = 0;
2432 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2433 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2434 dead. */
2435 int added_sets_0, added_sets_1, added_sets_2;
2436 /* Total number of SETs to put into I3. */
2437 int total_sets;
2438 /* Nonzero if I2's or I1's body now appears in I3. */
2439 int i2_is_used = 0, i1_is_used = 0;
2440 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2441 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2442 /* Contains I3 if the destination of I3 is used in its source, which means
2443 that the old life of I3 is being killed. If that usage is placed into
2444 I2 and not in I3, a REG_DEAD note must be made. */
2445 rtx i3dest_killed = 0;
2446 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2447 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2448 /* Copy of SET_SRC of I1 and I0, if needed. */
2449 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2450 /* Set if I2DEST was reused as a scratch register. */
2451 bool i2scratch = false;
2452 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2453 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2454 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2455 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2456 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2457 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2458 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2459 /* Notes that must be added to REG_NOTES in I3 and I2. */
2460 rtx new_i3_notes, new_i2_notes;
2461 /* Notes that we substituted I3 into I2 instead of the normal case. */
2462 int i3_subst_into_i2 = 0;
2463 /* Notes that I1, I2 or I3 is a MULT operation. */
2464 int have_mult = 0;
2465 int swap_i2i3 = 0;
2466 int changed_i3_dest = 0;
2468 int maxreg;
2469 rtx temp;
2470 struct insn_link *link;
2471 rtx other_pat = 0;
2472 rtx new_other_notes;
2473 int i;
2475 /* Only try four-insn combinations when there's high likelihood of
2476 success. Look for simple insns, such as loads of constants or
2477 binary operations involving a constant. */
2478 if (i0)
2480 int i;
2481 int ngood = 0;
2482 int nshift = 0;
2484 if (!flag_expensive_optimizations)
2485 return 0;
2487 for (i = 0; i < 4; i++)
2489 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2490 rtx set = single_set (insn);
2491 rtx src;
2492 if (!set)
2493 continue;
2494 src = SET_SRC (set);
2495 if (CONSTANT_P (src))
2497 ngood += 2;
2498 break;
2500 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2501 ngood++;
2502 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2503 || GET_CODE (src) == LSHIFTRT)
2504 nshift++;
2506 if (ngood < 2 && nshift < 2)
2507 return 0;
2510 /* Exit early if one of the insns involved can't be used for
2511 combinations. */
2512 if (cant_combine_insn_p (i3)
2513 || cant_combine_insn_p (i2)
2514 || (i1 && cant_combine_insn_p (i1))
2515 || (i0 && cant_combine_insn_p (i0))
2516 || likely_spilled_retval_p (i3))
2517 return 0;
2519 combine_attempts++;
2520 undobuf.other_insn = 0;
2522 /* Reset the hard register usage information. */
2523 CLEAR_HARD_REG_SET (newpat_used_regs);
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2527 if (i0)
2528 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2529 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2530 else if (i1)
2531 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2532 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2533 else
2534 fprintf (dump_file, "\nTrying %d -> %d:\n",
2535 INSN_UID (i2), INSN_UID (i3));
2538 /* If multiple insns feed into one of I2 or I3, they can be in any
2539 order. To simplify the code below, reorder them in sequence. */
2540 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2541 temp = i2, i2 = i0, i0 = temp;
2542 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2543 temp = i1, i1 = i0, i0 = temp;
2544 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2545 temp = i1, i1 = i2, i2 = temp;
2547 added_links_insn = 0;
2549 /* First check for one important special case that the code below will
2550 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2551 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2552 we may be able to replace that destination with the destination of I3.
2553 This occurs in the common code where we compute both a quotient and
2554 remainder into a structure, in which case we want to do the computation
2555 directly into the structure to avoid register-register copies.
2557 Note that this case handles both multiple sets in I2 and also cases
2558 where I2 has a number of CLOBBERs inside the PARALLEL.
2560 We make very conservative checks below and only try to handle the
2561 most common cases of this. For example, we only handle the case
2562 where I2 and I3 are adjacent to avoid making difficult register
2563 usage tests. */
2565 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2566 && REG_P (SET_SRC (PATTERN (i3)))
2567 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2568 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2569 && GET_CODE (PATTERN (i2)) == PARALLEL
2570 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2571 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2572 below would need to check what is inside (and reg_overlap_mentioned_p
2573 doesn't support those codes anyway). Don't allow those destinations;
2574 the resulting insn isn't likely to be recognized anyway. */
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2576 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2577 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2578 SET_DEST (PATTERN (i3)))
2579 && next_active_insn (i2) == i3)
2581 rtx p2 = PATTERN (i2);
2583 /* Make sure that the destination of I3,
2584 which we are going to substitute into one output of I2,
2585 is not used within another output of I2. We must avoid making this:
2586 (parallel [(set (mem (reg 69)) ...)
2587 (set (reg 69) ...)])
2588 which is not well-defined as to order of actions.
2589 (Besides, reload can't handle output reloads for this.)
2591 The problem can also happen if the dest of I3 is a memory ref,
2592 if another dest in I2 is an indirect memory ref. */
2593 for (i = 0; i < XVECLEN (p2, 0); i++)
2594 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2595 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2596 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2597 SET_DEST (XVECEXP (p2, 0, i))))
2598 break;
2600 if (i == XVECLEN (p2, 0))
2601 for (i = 0; i < XVECLEN (p2, 0); i++)
2602 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2603 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2605 combine_merges++;
2607 subst_insn = i3;
2608 subst_low_luid = DF_INSN_LUID (i2);
2610 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2611 i2src = SET_SRC (XVECEXP (p2, 0, i));
2612 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2613 i2dest_killed = dead_or_set_p (i2, i2dest);
2615 /* Replace the dest in I2 with our dest and make the resulting
2616 insn the new pattern for I3. Then skip to where we validate
2617 the pattern. Everything was set up above. */
2618 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2619 newpat = p2;
2620 i3_subst_into_i2 = 1;
2621 goto validate_replacement;
2625 /* If I2 is setting a pseudo to a constant and I3 is setting some
2626 sub-part of it to another constant, merge them by making a new
2627 constant. */
2628 if (i1 == 0
2629 && (temp = single_set (i2)) != 0
2630 && CONST_SCALAR_INT_P (SET_SRC (temp))
2631 && GET_CODE (PATTERN (i3)) == SET
2632 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2633 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2635 rtx dest = SET_DEST (PATTERN (i3));
2636 int offset = -1;
2637 int width = 0;
2639 if (GET_CODE (dest) == ZERO_EXTRACT)
2641 if (CONST_INT_P (XEXP (dest, 1))
2642 && CONST_INT_P (XEXP (dest, 2)))
2644 width = INTVAL (XEXP (dest, 1));
2645 offset = INTVAL (XEXP (dest, 2));
2646 dest = XEXP (dest, 0);
2647 if (BITS_BIG_ENDIAN)
2648 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2651 else
2653 if (GET_CODE (dest) == STRICT_LOW_PART)
2654 dest = XEXP (dest, 0);
2655 width = GET_MODE_PRECISION (GET_MODE (dest));
2656 offset = 0;
2659 if (offset >= 0)
2661 /* If this is the low part, we're done. */
2662 if (subreg_lowpart_p (dest))
2664 /* Handle the case where inner is twice the size of outer. */
2665 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2666 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2667 offset += GET_MODE_PRECISION (GET_MODE (dest));
2668 /* Otherwise give up for now. */
2669 else
2670 offset = -1;
2673 if (offset >= 0
2674 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2675 <= HOST_BITS_PER_DOUBLE_INT))
2677 double_int m, o, i;
2678 rtx inner = SET_SRC (PATTERN (i3));
2679 rtx outer = SET_SRC (temp);
2681 o = rtx_to_double_int (outer);
2682 i = rtx_to_double_int (inner);
2684 m = double_int::mask (width);
2685 i &= m;
2686 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2688 o = o.and_not (m) | i;
2690 combine_merges++;
2691 subst_insn = i3;
2692 subst_low_luid = DF_INSN_LUID (i2);
2693 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2694 i2dest = SET_DEST (temp);
2695 i2dest_killed = dead_or_set_p (i2, i2dest);
2697 /* Replace the source in I2 with the new constant and make the
2698 resulting insn the new pattern for I3. Then skip to where we
2699 validate the pattern. Everything was set up above. */
2700 SUBST (SET_SRC (temp),
2701 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2703 newpat = PATTERN (i2);
2705 /* The dest of I3 has been replaced with the dest of I2. */
2706 changed_i3_dest = 1;
2707 goto validate_replacement;
2711 #ifndef HAVE_cc0
2712 /* If we have no I1 and I2 looks like:
2713 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2714 (set Y OP)])
2715 make up a dummy I1 that is
2716 (set Y OP)
2717 and change I2 to be
2718 (set (reg:CC X) (compare:CC Y (const_int 0)))
2720 (We can ignore any trailing CLOBBERs.)
2722 This undoes a previous combination and allows us to match a branch-and-
2723 decrement insn. */
2725 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2726 && XVECLEN (PATTERN (i2), 0) >= 2
2727 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2728 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2729 == MODE_CC)
2730 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2731 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2732 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2733 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2734 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2735 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2737 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2738 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2739 break;
2741 if (i == 1)
2743 /* We make I1 with the same INSN_UID as I2. This gives it
2744 the same DF_INSN_LUID for value tracking. Our fake I1 will
2745 never appear in the insn stream so giving it the same INSN_UID
2746 as I2 will not cause a problem. */
2748 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2749 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2750 INSN_LOCATION (i2), -1, NULL_RTX);
2752 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2753 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2754 SET_DEST (PATTERN (i1)));
2755 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2758 #endif
2760 /* Verify that I2 and I1 are valid for combining. */
2761 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2762 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2763 &i1dest, &i1src))
2764 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2765 &i0dest, &i0src)))
2767 undo_all ();
2768 return 0;
2771 /* Record whether I2DEST is used in I2SRC and similarly for the other
2772 cases. Knowing this will help in register status updating below. */
2773 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2774 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2775 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2776 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2777 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2778 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2779 i2dest_killed = dead_or_set_p (i2, i2dest);
2780 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2781 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2783 /* For the earlier insns, determine which of the subsequent ones they
2784 feed. */
2785 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2786 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2787 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2788 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2789 && reg_overlap_mentioned_p (i0dest, i2src))));
2791 /* Ensure that I3's pattern can be the destination of combines. */
2792 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2793 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2794 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2795 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2796 &i3dest_killed))
2798 undo_all ();
2799 return 0;
2802 /* See if any of the insns is a MULT operation. Unless one is, we will
2803 reject a combination that is, since it must be slower. Be conservative
2804 here. */
2805 if (GET_CODE (i2src) == MULT
2806 || (i1 != 0 && GET_CODE (i1src) == MULT)
2807 || (i0 != 0 && GET_CODE (i0src) == MULT)
2808 || (GET_CODE (PATTERN (i3)) == SET
2809 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2810 have_mult = 1;
2812 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2813 We used to do this EXCEPT in one case: I3 has a post-inc in an
2814 output operand. However, that exception can give rise to insns like
2815 mov r3,(r3)+
2816 which is a famous insn on the PDP-11 where the value of r3 used as the
2817 source was model-dependent. Avoid this sort of thing. */
2819 #if 0
2820 if (!(GET_CODE (PATTERN (i3)) == SET
2821 && REG_P (SET_SRC (PATTERN (i3)))
2822 && MEM_P (SET_DEST (PATTERN (i3)))
2823 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2824 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2825 /* It's not the exception. */
2826 #endif
2827 #ifdef AUTO_INC_DEC
2829 rtx link;
2830 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2831 if (REG_NOTE_KIND (link) == REG_INC
2832 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2833 || (i1 != 0
2834 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2836 undo_all ();
2837 return 0;
2840 #endif
2842 /* See if the SETs in I1 or I2 need to be kept around in the merged
2843 instruction: whenever the value set there is still needed past I3.
2844 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2846 For the SET in I1, we have two cases: if I1 and I2 independently feed
2847 into I3, the set in I1 needs to be kept around unless I1DEST dies
2848 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2849 in I1 needs to be kept around unless I1DEST dies or is set in either
2850 I2 or I3. The same considerations apply to I0. */
2852 added_sets_2 = !dead_or_set_p (i3, i2dest);
2854 if (i1)
2855 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2856 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2857 else
2858 added_sets_1 = 0;
2860 if (i0)
2861 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2862 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2863 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2864 && dead_or_set_p (i2, i0dest)));
2865 else
2866 added_sets_0 = 0;
2868 /* We are about to copy insns for the case where they need to be kept
2869 around. Check that they can be copied in the merged instruction. */
2871 if (targetm.cannot_copy_insn_p
2872 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2873 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2874 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2876 undo_all ();
2877 return 0;
2880 /* If the set in I2 needs to be kept around, we must make a copy of
2881 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2882 PATTERN (I2), we are only substituting for the original I1DEST, not into
2883 an already-substituted copy. This also prevents making self-referential
2884 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2885 I2DEST. */
2887 if (added_sets_2)
2889 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2890 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2891 else
2892 i2pat = copy_rtx (PATTERN (i2));
2895 if (added_sets_1)
2897 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2898 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2899 else
2900 i1pat = copy_rtx (PATTERN (i1));
2903 if (added_sets_0)
2905 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2906 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2907 else
2908 i0pat = copy_rtx (PATTERN (i0));
2911 combine_merges++;
2913 /* Substitute in the latest insn for the regs set by the earlier ones. */
2915 maxreg = max_reg_num ();
2917 subst_insn = i3;
2919 #ifndef HAVE_cc0
2920 /* Many machines that don't use CC0 have insns that can both perform an
2921 arithmetic operation and set the condition code. These operations will
2922 be represented as a PARALLEL with the first element of the vector
2923 being a COMPARE of an arithmetic operation with the constant zero.
2924 The second element of the vector will set some pseudo to the result
2925 of the same arithmetic operation. If we simplify the COMPARE, we won't
2926 match such a pattern and so will generate an extra insn. Here we test
2927 for this case, where both the comparison and the operation result are
2928 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2929 I2SRC. Later we will make the PARALLEL that contains I2. */
2931 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2932 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2933 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2934 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2936 rtx newpat_dest;
2937 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2938 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2939 enum machine_mode compare_mode, orig_compare_mode;
2940 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2942 newpat = PATTERN (i3);
2943 newpat_dest = SET_DEST (newpat);
2944 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2946 if (undobuf.other_insn == 0
2947 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2948 &cc_use_insn)))
2950 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2951 compare_code = simplify_compare_const (compare_code,
2952 op0, &op1);
2953 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2956 /* Do the rest only if op1 is const0_rtx, which may be the
2957 result of simplification. */
2958 if (op1 == const0_rtx)
2960 /* If a single use of the CC is found, prepare to modify it
2961 when SELECT_CC_MODE returns a new CC-class mode, or when
2962 the above simplify_compare_const() returned a new comparison
2963 operator. undobuf.other_insn is assigned the CC use insn
2964 when modifying it. */
2965 if (cc_use_loc)
2967 #ifdef SELECT_CC_MODE
2968 enum machine_mode new_mode
2969 = SELECT_CC_MODE (compare_code, op0, op1);
2970 if (new_mode != orig_compare_mode
2971 && can_change_dest_mode (SET_DEST (newpat),
2972 added_sets_2, new_mode))
2974 unsigned int regno = REGNO (newpat_dest);
2975 compare_mode = new_mode;
2976 if (regno < FIRST_PSEUDO_REGISTER)
2977 newpat_dest = gen_rtx_REG (compare_mode, regno);
2978 else
2980 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2981 newpat_dest = regno_reg_rtx[regno];
2984 #endif
2985 /* Cases for modifying the CC-using comparison. */
2986 if (compare_code != orig_compare_code
2987 /* ??? Do we need to verify the zero rtx? */
2988 && XEXP (*cc_use_loc, 1) == const0_rtx)
2990 /* Replace cc_use_loc with entire new RTX. */
2991 SUBST (*cc_use_loc,
2992 gen_rtx_fmt_ee (compare_code, compare_mode,
2993 newpat_dest, const0_rtx));
2994 undobuf.other_insn = cc_use_insn;
2996 else if (compare_mode != orig_compare_mode)
2998 /* Just replace the CC reg with a new mode. */
2999 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3000 undobuf.other_insn = cc_use_insn;
3004 /* Now we modify the current newpat:
3005 First, SET_DEST(newpat) is updated if the CC mode has been
3006 altered. For targets without SELECT_CC_MODE, this should be
3007 optimized away. */
3008 if (compare_mode != orig_compare_mode)
3009 SUBST (SET_DEST (newpat), newpat_dest);
3010 /* This is always done to propagate i2src into newpat. */
3011 SUBST (SET_SRC (newpat),
3012 gen_rtx_COMPARE (compare_mode, op0, op1));
3013 /* Create new version of i2pat if needed; the below PARALLEL
3014 creation needs this to work correctly. */
3015 if (! rtx_equal_p (i2src, op0))
3016 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3017 i2_is_used = 1;
3020 #endif
3022 if (i2_is_used == 0)
3024 /* It is possible that the source of I2 or I1 may be performing
3025 an unneeded operation, such as a ZERO_EXTEND of something
3026 that is known to have the high part zero. Handle that case
3027 by letting subst look at the inner insns.
3029 Another way to do this would be to have a function that tries
3030 to simplify a single insn instead of merging two or more
3031 insns. We don't do this because of the potential of infinite
3032 loops and because of the potential extra memory required.
3033 However, doing it the way we are is a bit of a kludge and
3034 doesn't catch all cases.
3036 But only do this if -fexpensive-optimizations since it slows
3037 things down and doesn't usually win.
3039 This is not done in the COMPARE case above because the
3040 unmodified I2PAT is used in the PARALLEL and so a pattern
3041 with a modified I2SRC would not match. */
3043 if (flag_expensive_optimizations)
3045 /* Pass pc_rtx so no substitutions are done, just
3046 simplifications. */
3047 if (i1)
3049 subst_low_luid = DF_INSN_LUID (i1);
3050 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3053 subst_low_luid = DF_INSN_LUID (i2);
3054 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3057 n_occurrences = 0; /* `subst' counts here */
3058 subst_low_luid = DF_INSN_LUID (i2);
3060 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3061 copy of I2SRC each time we substitute it, in order to avoid creating
3062 self-referential RTL when we will be substituting I1SRC for I1DEST
3063 later. Likewise if I0 feeds into I2, either directly or indirectly
3064 through I1, and I0DEST is in I0SRC. */
3065 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3066 (i1_feeds_i2_n && i1dest_in_i1src)
3067 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3068 && i0dest_in_i0src));
3069 substed_i2 = 1;
3071 /* Record whether I2's body now appears within I3's body. */
3072 i2_is_used = n_occurrences;
3075 /* If we already got a failure, don't try to do more. Otherwise, try to
3076 substitute I1 if we have it. */
3078 if (i1 && GET_CODE (newpat) != CLOBBER)
3080 /* Check that an autoincrement side-effect on I1 has not been lost.
3081 This happens if I1DEST is mentioned in I2 and dies there, and
3082 has disappeared from the new pattern. */
3083 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3084 && i1_feeds_i2_n
3085 && dead_or_set_p (i2, i1dest)
3086 && !reg_overlap_mentioned_p (i1dest, newpat))
3087 /* Before we can do this substitution, we must redo the test done
3088 above (see detailed comments there) that ensures I1DEST isn't
3089 mentioned in any SETs in NEWPAT that are field assignments. */
3090 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3091 0, 0, 0))
3093 undo_all ();
3094 return 0;
3097 n_occurrences = 0;
3098 subst_low_luid = DF_INSN_LUID (i1);
3100 /* If the following substitution will modify I1SRC, make a copy of it
3101 for the case where it is substituted for I1DEST in I2PAT later. */
3102 if (added_sets_2 && i1_feeds_i2_n)
3103 i1src_copy = copy_rtx (i1src);
3105 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3106 copy of I1SRC each time we substitute it, in order to avoid creating
3107 self-referential RTL when we will be substituting I0SRC for I0DEST
3108 later. */
3109 newpat = subst (newpat, i1dest, i1src, 0, 0,
3110 i0_feeds_i1_n && i0dest_in_i0src);
3111 substed_i1 = 1;
3113 /* Record whether I1's body now appears within I3's body. */
3114 i1_is_used = n_occurrences;
3117 /* Likewise for I0 if we have it. */
3119 if (i0 && GET_CODE (newpat) != CLOBBER)
3121 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3122 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3123 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3124 && !reg_overlap_mentioned_p (i0dest, newpat))
3125 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3126 0, 0, 0))
3128 undo_all ();
3129 return 0;
3132 /* If the following substitution will modify I0SRC, make a copy of it
3133 for the case where it is substituted for I0DEST in I1PAT later. */
3134 if (added_sets_1 && i0_feeds_i1_n)
3135 i0src_copy = copy_rtx (i0src);
3136 /* And a copy for I0DEST in I2PAT substitution. */
3137 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3138 || (i0_feeds_i2_n)))
3139 i0src_copy2 = copy_rtx (i0src);
3141 n_occurrences = 0;
3142 subst_low_luid = DF_INSN_LUID (i0);
3143 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3144 substed_i0 = 1;
3147 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3148 to count all the ways that I2SRC and I1SRC can be used. */
3149 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3150 && i2_is_used + added_sets_2 > 1)
3151 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3152 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3153 > 1))
3154 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3155 && (n_occurrences + added_sets_0
3156 + (added_sets_1 && i0_feeds_i1_n)
3157 + (added_sets_2 && i0_feeds_i2_n)
3158 > 1))
3159 /* Fail if we tried to make a new register. */
3160 || max_reg_num () != maxreg
3161 /* Fail if we couldn't do something and have a CLOBBER. */
3162 || GET_CODE (newpat) == CLOBBER
3163 /* Fail if this new pattern is a MULT and we didn't have one before
3164 at the outer level. */
3165 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3166 && ! have_mult))
3168 undo_all ();
3169 return 0;
3172 /* If the actions of the earlier insns must be kept
3173 in addition to substituting them into the latest one,
3174 we must make a new PARALLEL for the latest insn
3175 to hold additional the SETs. */
3177 if (added_sets_0 || added_sets_1 || added_sets_2)
3179 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3180 combine_extras++;
3182 if (GET_CODE (newpat) == PARALLEL)
3184 rtvec old = XVEC (newpat, 0);
3185 total_sets = XVECLEN (newpat, 0) + extra_sets;
3186 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3187 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3188 sizeof (old->elem[0]) * old->num_elem);
3190 else
3192 rtx old = newpat;
3193 total_sets = 1 + extra_sets;
3194 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3195 XVECEXP (newpat, 0, 0) = old;
3198 if (added_sets_0)
3199 XVECEXP (newpat, 0, --total_sets) = i0pat;
3201 if (added_sets_1)
3203 rtx t = i1pat;
3204 if (i0_feeds_i1_n)
3205 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3207 XVECEXP (newpat, 0, --total_sets) = t;
3209 if (added_sets_2)
3211 rtx t = i2pat;
3212 if (i1_feeds_i2_n)
3213 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3214 i0_feeds_i1_n && i0dest_in_i0src);
3215 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3216 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3218 XVECEXP (newpat, 0, --total_sets) = t;
3222 validate_replacement:
3224 /* Note which hard regs this insn has as inputs. */
3225 mark_used_regs_combine (newpat);
3227 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3228 consider splitting this pattern, we might need these clobbers. */
3229 if (i1 && GET_CODE (newpat) == PARALLEL
3230 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3232 int len = XVECLEN (newpat, 0);
3234 newpat_vec_with_clobbers = rtvec_alloc (len);
3235 for (i = 0; i < len; i++)
3236 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3239 /* Is the result of combination a valid instruction? */
3240 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3242 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3243 the second SET's destination is a register that is unused and isn't
3244 marked as an instruction that might trap in an EH region. In that case,
3245 we just need the first SET. This can occur when simplifying a divmod
3246 insn. We *must* test for this case here because the code below that
3247 splits two independent SETs doesn't handle this case correctly when it
3248 updates the register status.
3250 It's pointless doing this if we originally had two sets, one from
3251 i3, and one from i2. Combining then splitting the parallel results
3252 in the original i2 again plus an invalid insn (which we delete).
3253 The net effect is only to move instructions around, which makes
3254 debug info less accurate.
3256 Also check the case where the first SET's destination is unused.
3257 That would not cause incorrect code, but does cause an unneeded
3258 insn to remain. */
3260 if (insn_code_number < 0
3261 && !(added_sets_2 && i1 == 0)
3262 && GET_CODE (newpat) == PARALLEL
3263 && XVECLEN (newpat, 0) == 2
3264 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3265 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3266 && asm_noperands (newpat) < 0)
3268 rtx set0 = XVECEXP (newpat, 0, 0);
3269 rtx set1 = XVECEXP (newpat, 0, 1);
3271 if (((REG_P (SET_DEST (set1))
3272 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3273 || (GET_CODE (SET_DEST (set1)) == SUBREG
3274 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3275 && insn_nothrow_p (i3)
3276 && !side_effects_p (SET_SRC (set1)))
3278 newpat = set0;
3279 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3282 else if (((REG_P (SET_DEST (set0))
3283 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3284 || (GET_CODE (SET_DEST (set0)) == SUBREG
3285 && find_reg_note (i3, REG_UNUSED,
3286 SUBREG_REG (SET_DEST (set0)))))
3287 && insn_nothrow_p (i3)
3288 && !side_effects_p (SET_SRC (set0)))
3290 newpat = set1;
3291 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3293 if (insn_code_number >= 0)
3294 changed_i3_dest = 1;
3298 /* If we were combining three insns and the result is a simple SET
3299 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3300 insns. There are two ways to do this. It can be split using a
3301 machine-specific method (like when you have an addition of a large
3302 constant) or by combine in the function find_split_point. */
3304 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3305 && asm_noperands (newpat) < 0)
3307 rtx parallel, m_split, *split;
3309 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3310 use I2DEST as a scratch register will help. In the latter case,
3311 convert I2DEST to the mode of the source of NEWPAT if we can. */
3313 m_split = combine_split_insns (newpat, i3);
3315 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3316 inputs of NEWPAT. */
3318 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3319 possible to try that as a scratch reg. This would require adding
3320 more code to make it work though. */
3322 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3324 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3326 /* First try to split using the original register as a
3327 scratch register. */
3328 parallel = gen_rtx_PARALLEL (VOIDmode,
3329 gen_rtvec (2, newpat,
3330 gen_rtx_CLOBBER (VOIDmode,
3331 i2dest)));
3332 m_split = combine_split_insns (parallel, i3);
3334 /* If that didn't work, try changing the mode of I2DEST if
3335 we can. */
3336 if (m_split == 0
3337 && new_mode != GET_MODE (i2dest)
3338 && new_mode != VOIDmode
3339 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3341 enum machine_mode old_mode = GET_MODE (i2dest);
3342 rtx ni2dest;
3344 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3345 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3346 else
3348 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3349 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3352 parallel = (gen_rtx_PARALLEL
3353 (VOIDmode,
3354 gen_rtvec (2, newpat,
3355 gen_rtx_CLOBBER (VOIDmode,
3356 ni2dest))));
3357 m_split = combine_split_insns (parallel, i3);
3359 if (m_split == 0
3360 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3362 struct undo *buf;
3364 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3365 buf = undobuf.undos;
3366 undobuf.undos = buf->next;
3367 buf->next = undobuf.frees;
3368 undobuf.frees = buf;
3372 i2scratch = m_split != 0;
3375 /* If recog_for_combine has discarded clobbers, try to use them
3376 again for the split. */
3377 if (m_split == 0 && newpat_vec_with_clobbers)
3379 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3380 m_split = combine_split_insns (parallel, i3);
3383 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3385 m_split = PATTERN (m_split);
3386 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3387 if (insn_code_number >= 0)
3388 newpat = m_split;
3390 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3391 && (next_nonnote_nondebug_insn (i2) == i3
3392 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3394 rtx i2set, i3set;
3395 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3396 newi2pat = PATTERN (m_split);
3398 i3set = single_set (NEXT_INSN (m_split));
3399 i2set = single_set (m_split);
3401 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3403 /* If I2 or I3 has multiple SETs, we won't know how to track
3404 register status, so don't use these insns. If I2's destination
3405 is used between I2 and I3, we also can't use these insns. */
3407 if (i2_code_number >= 0 && i2set && i3set
3408 && (next_nonnote_nondebug_insn (i2) == i3
3409 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3410 insn_code_number = recog_for_combine (&newi3pat, i3,
3411 &new_i3_notes);
3412 if (insn_code_number >= 0)
3413 newpat = newi3pat;
3415 /* It is possible that both insns now set the destination of I3.
3416 If so, we must show an extra use of it. */
3418 if (insn_code_number >= 0)
3420 rtx new_i3_dest = SET_DEST (i3set);
3421 rtx new_i2_dest = SET_DEST (i2set);
3423 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3424 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3425 || GET_CODE (new_i3_dest) == SUBREG)
3426 new_i3_dest = XEXP (new_i3_dest, 0);
3428 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3429 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3430 || GET_CODE (new_i2_dest) == SUBREG)
3431 new_i2_dest = XEXP (new_i2_dest, 0);
3433 if (REG_P (new_i3_dest)
3434 && REG_P (new_i2_dest)
3435 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3436 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3440 /* If we can split it and use I2DEST, go ahead and see if that
3441 helps things be recognized. Verify that none of the registers
3442 are set between I2 and I3. */
3443 if (insn_code_number < 0
3444 && (split = find_split_point (&newpat, i3, false)) != 0
3445 #ifdef HAVE_cc0
3446 && REG_P (i2dest)
3447 #endif
3448 /* We need I2DEST in the proper mode. If it is a hard register
3449 or the only use of a pseudo, we can change its mode.
3450 Make sure we don't change a hard register to have a mode that
3451 isn't valid for it, or change the number of registers. */
3452 && (GET_MODE (*split) == GET_MODE (i2dest)
3453 || GET_MODE (*split) == VOIDmode
3454 || can_change_dest_mode (i2dest, added_sets_2,
3455 GET_MODE (*split)))
3456 && (next_nonnote_nondebug_insn (i2) == i3
3457 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3458 /* We can't overwrite I2DEST if its value is still used by
3459 NEWPAT. */
3460 && ! reg_referenced_p (i2dest, newpat))
3462 rtx newdest = i2dest;
3463 enum rtx_code split_code = GET_CODE (*split);
3464 enum machine_mode split_mode = GET_MODE (*split);
3465 bool subst_done = false;
3466 newi2pat = NULL_RTX;
3468 i2scratch = true;
3470 /* *SPLIT may be part of I2SRC, so make sure we have the
3471 original expression around for later debug processing.
3472 We should not need I2SRC any more in other cases. */
3473 if (MAY_HAVE_DEBUG_INSNS)
3474 i2src = copy_rtx (i2src);
3475 else
3476 i2src = NULL;
3478 /* Get NEWDEST as a register in the proper mode. We have already
3479 validated that we can do this. */
3480 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3482 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3483 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3484 else
3486 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3487 newdest = regno_reg_rtx[REGNO (i2dest)];
3491 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3492 an ASHIFT. This can occur if it was inside a PLUS and hence
3493 appeared to be a memory address. This is a kludge. */
3494 if (split_code == MULT
3495 && CONST_INT_P (XEXP (*split, 1))
3496 && INTVAL (XEXP (*split, 1)) > 0
3497 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3499 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3500 XEXP (*split, 0), GEN_INT (i)));
3501 /* Update split_code because we may not have a multiply
3502 anymore. */
3503 split_code = GET_CODE (*split);
3506 #ifdef INSN_SCHEDULING
3507 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3508 be written as a ZERO_EXTEND. */
3509 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3511 #ifdef LOAD_EXTEND_OP
3512 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3513 what it really is. */
3514 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3515 == SIGN_EXTEND)
3516 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3517 SUBREG_REG (*split)));
3518 else
3519 #endif
3520 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3521 SUBREG_REG (*split)));
3523 #endif
3525 /* Attempt to split binary operators using arithmetic identities. */
3526 if (BINARY_P (SET_SRC (newpat))
3527 && split_mode == GET_MODE (SET_SRC (newpat))
3528 && ! side_effects_p (SET_SRC (newpat)))
3530 rtx setsrc = SET_SRC (newpat);
3531 enum machine_mode mode = GET_MODE (setsrc);
3532 enum rtx_code code = GET_CODE (setsrc);
3533 rtx src_op0 = XEXP (setsrc, 0);
3534 rtx src_op1 = XEXP (setsrc, 1);
3536 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3537 if (rtx_equal_p (src_op0, src_op1))
3539 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3540 SUBST (XEXP (setsrc, 0), newdest);
3541 SUBST (XEXP (setsrc, 1), newdest);
3542 subst_done = true;
3544 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3545 else if ((code == PLUS || code == MULT)
3546 && GET_CODE (src_op0) == code
3547 && GET_CODE (XEXP (src_op0, 0)) == code
3548 && (INTEGRAL_MODE_P (mode)
3549 || (FLOAT_MODE_P (mode)
3550 && flag_unsafe_math_optimizations)))
3552 rtx p = XEXP (XEXP (src_op0, 0), 0);
3553 rtx q = XEXP (XEXP (src_op0, 0), 1);
3554 rtx r = XEXP (src_op0, 1);
3555 rtx s = src_op1;
3557 /* Split both "((X op Y) op X) op Y" and
3558 "((X op Y) op Y) op X" as "T op T" where T is
3559 "X op Y". */
3560 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3561 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3563 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3564 XEXP (src_op0, 0));
3565 SUBST (XEXP (setsrc, 0), newdest);
3566 SUBST (XEXP (setsrc, 1), newdest);
3567 subst_done = true;
3569 /* Split "((X op X) op Y) op Y)" as "T op T" where
3570 T is "X op Y". */
3571 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3573 rtx tmp = simplify_gen_binary (code, mode, p, r);
3574 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3575 SUBST (XEXP (setsrc, 0), newdest);
3576 SUBST (XEXP (setsrc, 1), newdest);
3577 subst_done = true;
3582 if (!subst_done)
3584 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3585 SUBST (*split, newdest);
3588 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3590 /* recog_for_combine might have added CLOBBERs to newi2pat.
3591 Make sure NEWPAT does not depend on the clobbered regs. */
3592 if (GET_CODE (newi2pat) == PARALLEL)
3593 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3594 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3596 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3597 if (reg_overlap_mentioned_p (reg, newpat))
3599 undo_all ();
3600 return 0;
3604 /* If the split point was a MULT and we didn't have one before,
3605 don't use one now. */
3606 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3607 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3611 /* Check for a case where we loaded from memory in a narrow mode and
3612 then sign extended it, but we need both registers. In that case,
3613 we have a PARALLEL with both loads from the same memory location.
3614 We can split this into a load from memory followed by a register-register
3615 copy. This saves at least one insn, more if register allocation can
3616 eliminate the copy.
3618 We cannot do this if the destination of the first assignment is a
3619 condition code register or cc0. We eliminate this case by making sure
3620 the SET_DEST and SET_SRC have the same mode.
3622 We cannot do this if the destination of the second assignment is
3623 a register that we have already assumed is zero-extended. Similarly
3624 for a SUBREG of such a register. */
3626 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3627 && GET_CODE (newpat) == PARALLEL
3628 && XVECLEN (newpat, 0) == 2
3629 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3630 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3631 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3632 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3633 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3634 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3635 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3636 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3637 DF_INSN_LUID (i2))
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3639 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3640 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3641 (REG_P (temp)
3642 && reg_stat[REGNO (temp)].nonzero_bits != 0
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3644 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3645 && (reg_stat[REGNO (temp)].nonzero_bits
3646 != GET_MODE_MASK (word_mode))))
3647 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3648 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3649 (REG_P (temp)
3650 && reg_stat[REGNO (temp)].nonzero_bits != 0
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3652 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3653 && (reg_stat[REGNO (temp)].nonzero_bits
3654 != GET_MODE_MASK (word_mode)))))
3655 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3656 SET_SRC (XVECEXP (newpat, 0, 1)))
3657 && ! find_reg_note (i3, REG_UNUSED,
3658 SET_DEST (XVECEXP (newpat, 0, 0))))
3660 rtx ni2dest;
3662 newi2pat = XVECEXP (newpat, 0, 0);
3663 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3664 newpat = XVECEXP (newpat, 0, 1);
3665 SUBST (SET_SRC (newpat),
3666 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3667 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3669 if (i2_code_number >= 0)
3670 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3672 if (insn_code_number >= 0)
3673 swap_i2i3 = 1;
3676 /* Similarly, check for a case where we have a PARALLEL of two independent
3677 SETs but we started with three insns. In this case, we can do the sets
3678 as two separate insns. This case occurs when some SET allows two
3679 other insns to combine, but the destination of that SET is still live. */
3681 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3682 && GET_CODE (newpat) == PARALLEL
3683 && XVECLEN (newpat, 0) == 2
3684 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3686 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3687 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3690 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3691 XVECEXP (newpat, 0, 0))
3692 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3693 XVECEXP (newpat, 0, 1))
3694 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3695 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3697 rtx set0 = XVECEXP (newpat, 0, 0);
3698 rtx set1 = XVECEXP (newpat, 0, 1);
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. The PARALLEL might also have been pre-existing in i3,
3704 so we need to make sure that we won't wrongly hoist a SET to i2
3705 that would conflict with a death note present in there. */
3706 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3707 && !(REG_P (SET_DEST (set1))
3708 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3709 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3710 && find_reg_note (i2, REG_DEAD,
3711 SUBREG_REG (SET_DEST (set1))))
3712 #ifdef HAVE_cc0
3713 && !reg_referenced_p (cc0_rtx, set0)
3714 #endif
3717 newi2pat = set1;
3718 newpat = set0;
3720 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3721 && !(REG_P (SET_DEST (set0))
3722 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3723 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3724 && find_reg_note (i2, REG_DEAD,
3725 SUBREG_REG (SET_DEST (set0))))
3726 #ifdef HAVE_cc0
3727 && !reg_referenced_p (cc0_rtx, set1)
3728 #endif
3731 newi2pat = set0;
3732 newpat = set1;
3734 else
3736 undo_all ();
3737 return 0;
3740 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3742 if (i2_code_number >= 0)
3744 /* recog_for_combine might have added CLOBBERs to newi2pat.
3745 Make sure NEWPAT does not depend on the clobbered regs. */
3746 if (GET_CODE (newi2pat) == PARALLEL)
3748 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3749 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3751 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3752 if (reg_overlap_mentioned_p (reg, newpat))
3754 undo_all ();
3755 return 0;
3760 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3764 /* If it still isn't recognized, fail and change things back the way they
3765 were. */
3766 if ((insn_code_number < 0
3767 /* Is the result a reasonable ASM_OPERANDS? */
3768 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3770 undo_all ();
3771 return 0;
3774 /* If we had to change another insn, make sure it is valid also. */
3775 if (undobuf.other_insn)
3777 CLEAR_HARD_REG_SET (newpat_used_regs);
3779 other_pat = PATTERN (undobuf.other_insn);
3780 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3781 &new_other_notes);
3783 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3785 undo_all ();
3786 return 0;
3790 #ifdef HAVE_cc0
3791 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3792 they are adjacent to each other or not. */
3794 rtx p = prev_nonnote_insn (i3);
3795 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3796 && sets_cc0_p (newi2pat))
3798 undo_all ();
3799 return 0;
3802 #endif
3804 /* Only allow this combination if insn_rtx_costs reports that the
3805 replacement instructions are cheaper than the originals. */
3806 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3808 undo_all ();
3809 return 0;
3812 if (MAY_HAVE_DEBUG_INSNS)
3814 struct undo *undo;
3816 for (undo = undobuf.undos; undo; undo = undo->next)
3817 if (undo->kind == UNDO_MODE)
3819 rtx reg = *undo->where.r;
3820 enum machine_mode new_mode = GET_MODE (reg);
3821 enum machine_mode old_mode = undo->old_contents.m;
3823 /* Temporarily revert mode back. */
3824 adjust_reg_mode (reg, old_mode);
3826 if (reg == i2dest && i2scratch)
3828 /* If we used i2dest as a scratch register with a
3829 different mode, substitute it for the original
3830 i2src while its original mode is temporarily
3831 restored, and then clear i2scratch so that we don't
3832 do it again later. */
3833 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3834 this_basic_block);
3835 i2scratch = false;
3836 /* Put back the new mode. */
3837 adjust_reg_mode (reg, new_mode);
3839 else
3841 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3842 rtx first, last;
3844 if (reg == i2dest)
3846 first = i2;
3847 last = last_combined_insn;
3849 else
3851 first = i3;
3852 last = undobuf.other_insn;
3853 gcc_assert (last);
3854 if (DF_INSN_LUID (last)
3855 < DF_INSN_LUID (last_combined_insn))
3856 last = last_combined_insn;
3859 /* We're dealing with a reg that changed mode but not
3860 meaning, so we want to turn it into a subreg for
3861 the new mode. However, because of REG sharing and
3862 because its mode had already changed, we have to do
3863 it in two steps. First, replace any debug uses of
3864 reg, with its original mode temporarily restored,
3865 with this copy we have created; then, replace the
3866 copy with the SUBREG of the original shared reg,
3867 once again changed to the new mode. */
3868 propagate_for_debug (first, last, reg, tempreg,
3869 this_basic_block);
3870 adjust_reg_mode (reg, new_mode);
3871 propagate_for_debug (first, last, tempreg,
3872 lowpart_subreg (old_mode, reg, new_mode),
3873 this_basic_block);
3878 /* If we will be able to accept this, we have made a
3879 change to the destination of I3. This requires us to
3880 do a few adjustments. */
3882 if (changed_i3_dest)
3884 PATTERN (i3) = newpat;
3885 adjust_for_new_dest (i3);
3888 /* We now know that we can do this combination. Merge the insns and
3889 update the status of registers and LOG_LINKS. */
3891 if (undobuf.other_insn)
3893 rtx note, next;
3895 PATTERN (undobuf.other_insn) = other_pat;
3897 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3898 are still valid. Then add any non-duplicate notes added by
3899 recog_for_combine. */
3900 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3902 next = XEXP (note, 1);
3904 if (REG_NOTE_KIND (note) == REG_UNUSED
3905 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3906 remove_note (undobuf.other_insn, note);
3909 distribute_notes (new_other_notes, undobuf.other_insn,
3910 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3911 NULL_RTX);
3914 if (swap_i2i3)
3916 rtx insn;
3917 struct insn_link *link;
3918 rtx ni2dest;
3920 /* I3 now uses what used to be its destination and which is now
3921 I2's destination. This requires us to do a few adjustments. */
3922 PATTERN (i3) = newpat;
3923 adjust_for_new_dest (i3);
3925 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3926 so we still will.
3928 However, some later insn might be using I2's dest and have
3929 a LOG_LINK pointing at I3. We must remove this link.
3930 The simplest way to remove the link is to point it at I1,
3931 which we know will be a NOTE. */
3933 /* newi2pat is usually a SET here; however, recog_for_combine might
3934 have added some clobbers. */
3935 if (GET_CODE (newi2pat) == PARALLEL)
3936 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3937 else
3938 ni2dest = SET_DEST (newi2pat);
3940 for (insn = NEXT_INSN (i3);
3941 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3942 || insn != BB_HEAD (this_basic_block->next_bb));
3943 insn = NEXT_INSN (insn))
3945 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3947 FOR_EACH_LOG_LINK (link, insn)
3948 if (link->insn == i3)
3949 link->insn = i1;
3951 break;
3957 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3958 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3959 rtx midnotes = 0;
3960 int from_luid;
3961 /* Compute which registers we expect to eliminate. newi2pat may be setting
3962 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3963 same as i3dest, in which case newi2pat may be setting i1dest. */
3964 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3965 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3966 || !i2dest_killed
3967 ? 0 : i2dest);
3968 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3969 || (newi2pat && reg_set_p (i1dest, newi2pat))
3970 || !i1dest_killed
3971 ? 0 : i1dest);
3972 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3973 || (newi2pat && reg_set_p (i0dest, newi2pat))
3974 || !i0dest_killed
3975 ? 0 : i0dest);
3977 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3978 clear them. */
3979 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3980 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3981 if (i1)
3982 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3983 if (i0)
3984 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3986 /* Ensure that we do not have something that should not be shared but
3987 occurs multiple times in the new insns. Check this by first
3988 resetting all the `used' flags and then copying anything is shared. */
3990 reset_used_flags (i3notes);
3991 reset_used_flags (i2notes);
3992 reset_used_flags (i1notes);
3993 reset_used_flags (i0notes);
3994 reset_used_flags (newpat);
3995 reset_used_flags (newi2pat);
3996 if (undobuf.other_insn)
3997 reset_used_flags (PATTERN (undobuf.other_insn));
3999 i3notes = copy_rtx_if_shared (i3notes);
4000 i2notes = copy_rtx_if_shared (i2notes);
4001 i1notes = copy_rtx_if_shared (i1notes);
4002 i0notes = copy_rtx_if_shared (i0notes);
4003 newpat = copy_rtx_if_shared (newpat);
4004 newi2pat = copy_rtx_if_shared (newi2pat);
4005 if (undobuf.other_insn)
4006 reset_used_flags (PATTERN (undobuf.other_insn));
4008 INSN_CODE (i3) = insn_code_number;
4009 PATTERN (i3) = newpat;
4011 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4013 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4015 reset_used_flags (call_usage);
4016 call_usage = copy_rtx (call_usage);
4018 if (substed_i2)
4020 /* I2SRC must still be meaningful at this point. Some splitting
4021 operations can invalidate I2SRC, but those operations do not
4022 apply to calls. */
4023 gcc_assert (i2src);
4024 replace_rtx (call_usage, i2dest, i2src);
4027 if (substed_i1)
4028 replace_rtx (call_usage, i1dest, i1src);
4029 if (substed_i0)
4030 replace_rtx (call_usage, i0dest, i0src);
4032 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4035 if (undobuf.other_insn)
4036 INSN_CODE (undobuf.other_insn) = other_code_number;
4038 /* We had one special case above where I2 had more than one set and
4039 we replaced a destination of one of those sets with the destination
4040 of I3. In that case, we have to update LOG_LINKS of insns later
4041 in this basic block. Note that this (expensive) case is rare.
4043 Also, in this case, we must pretend that all REG_NOTEs for I2
4044 actually came from I3, so that REG_UNUSED notes from I2 will be
4045 properly handled. */
4047 if (i3_subst_into_i2)
4049 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4050 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4051 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4052 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4053 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4054 && ! find_reg_note (i2, REG_UNUSED,
4055 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4056 for (temp = NEXT_INSN (i2);
4057 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4058 || BB_HEAD (this_basic_block) != temp);
4059 temp = NEXT_INSN (temp))
4060 if (temp != i3 && INSN_P (temp))
4061 FOR_EACH_LOG_LINK (link, temp)
4062 if (link->insn == i2)
4063 link->insn = i3;
4065 if (i3notes)
4067 rtx link = i3notes;
4068 while (XEXP (link, 1))
4069 link = XEXP (link, 1);
4070 XEXP (link, 1) = i2notes;
4072 else
4073 i3notes = i2notes;
4074 i2notes = 0;
4077 LOG_LINKS (i3) = NULL;
4078 REG_NOTES (i3) = 0;
4079 LOG_LINKS (i2) = NULL;
4080 REG_NOTES (i2) = 0;
4082 if (newi2pat)
4084 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4085 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4086 this_basic_block);
4087 INSN_CODE (i2) = i2_code_number;
4088 PATTERN (i2) = newi2pat;
4090 else
4092 if (MAY_HAVE_DEBUG_INSNS && i2src)
4093 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4094 this_basic_block);
4095 SET_INSN_DELETED (i2);
4098 if (i1)
4100 LOG_LINKS (i1) = NULL;
4101 REG_NOTES (i1) = 0;
4102 if (MAY_HAVE_DEBUG_INSNS)
4103 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4104 this_basic_block);
4105 SET_INSN_DELETED (i1);
4108 if (i0)
4110 LOG_LINKS (i0) = NULL;
4111 REG_NOTES (i0) = 0;
4112 if (MAY_HAVE_DEBUG_INSNS)
4113 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4114 this_basic_block);
4115 SET_INSN_DELETED (i0);
4118 /* Get death notes for everything that is now used in either I3 or
4119 I2 and used to die in a previous insn. If we built two new
4120 patterns, move from I1 to I2 then I2 to I3 so that we get the
4121 proper movement on registers that I2 modifies. */
4123 if (i0)
4124 from_luid = DF_INSN_LUID (i0);
4125 else if (i1)
4126 from_luid = DF_INSN_LUID (i1);
4127 else
4128 from_luid = DF_INSN_LUID (i2);
4129 if (newi2pat)
4130 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4131 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4133 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4134 if (i3notes)
4135 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4136 elim_i2, elim_i1, elim_i0);
4137 if (i2notes)
4138 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4139 elim_i2, elim_i1, elim_i0);
4140 if (i1notes)
4141 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4142 elim_i2, elim_i1, elim_i0);
4143 if (i0notes)
4144 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4145 elim_i2, elim_i1, elim_i0);
4146 if (midnotes)
4147 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4148 elim_i2, elim_i1, elim_i0);
4150 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4151 know these are REG_UNUSED and want them to go to the desired insn,
4152 so we always pass it as i3. */
4154 if (newi2pat && new_i2_notes)
4155 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4156 NULL_RTX);
4158 if (new_i3_notes)
4159 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4160 NULL_RTX);
4162 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4163 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4164 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4165 in that case, it might delete I2. Similarly for I2 and I1.
4166 Show an additional death due to the REG_DEAD note we make here. If
4167 we discard it in distribute_notes, we will decrement it again. */
4169 if (i3dest_killed)
4171 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4172 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4173 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4174 elim_i1, elim_i0);
4175 else
4176 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4177 elim_i2, elim_i1, elim_i0);
4180 if (i2dest_in_i2src)
4182 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4183 if (newi2pat && reg_set_p (i2dest, newi2pat))
4184 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4185 NULL_RTX, NULL_RTX);
4186 else
4187 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4188 NULL_RTX, NULL_RTX, NULL_RTX);
4191 if (i1dest_in_i1src)
4193 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4194 if (newi2pat && reg_set_p (i1dest, newi2pat))
4195 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4196 NULL_RTX, NULL_RTX);
4197 else
4198 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4199 NULL_RTX, NULL_RTX, NULL_RTX);
4202 if (i0dest_in_i0src)
4204 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4205 if (newi2pat && reg_set_p (i0dest, newi2pat))
4206 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4207 NULL_RTX, NULL_RTX);
4208 else
4209 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4210 NULL_RTX, NULL_RTX, NULL_RTX);
4213 distribute_links (i3links);
4214 distribute_links (i2links);
4215 distribute_links (i1links);
4216 distribute_links (i0links);
4218 if (REG_P (i2dest))
4220 struct insn_link *link;
4221 rtx i2_insn = 0, i2_val = 0, set;
4223 /* The insn that used to set this register doesn't exist, and
4224 this life of the register may not exist either. See if one of
4225 I3's links points to an insn that sets I2DEST. If it does,
4226 that is now the last known value for I2DEST. If we don't update
4227 this and I2 set the register to a value that depended on its old
4228 contents, we will get confused. If this insn is used, thing
4229 will be set correctly in combine_instructions. */
4230 FOR_EACH_LOG_LINK (link, i3)
4231 if ((set = single_set (link->insn)) != 0
4232 && rtx_equal_p (i2dest, SET_DEST (set)))
4233 i2_insn = link->insn, i2_val = SET_SRC (set);
4235 record_value_for_reg (i2dest, i2_insn, i2_val);
4237 /* If the reg formerly set in I2 died only once and that was in I3,
4238 zero its use count so it won't make `reload' do any work. */
4239 if (! added_sets_2
4240 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4241 && ! i2dest_in_i2src)
4242 INC_REG_N_SETS (REGNO (i2dest), -1);
4245 if (i1 && REG_P (i1dest))
4247 struct insn_link *link;
4248 rtx i1_insn = 0, i1_val = 0, set;
4250 FOR_EACH_LOG_LINK (link, i3)
4251 if ((set = single_set (link->insn)) != 0
4252 && rtx_equal_p (i1dest, SET_DEST (set)))
4253 i1_insn = link->insn, i1_val = SET_SRC (set);
4255 record_value_for_reg (i1dest, i1_insn, i1_val);
4257 if (! added_sets_1 && ! i1dest_in_i1src)
4258 INC_REG_N_SETS (REGNO (i1dest), -1);
4261 if (i0 && REG_P (i0dest))
4263 struct insn_link *link;
4264 rtx i0_insn = 0, i0_val = 0, set;
4266 FOR_EACH_LOG_LINK (link, i3)
4267 if ((set = single_set (link->insn)) != 0
4268 && rtx_equal_p (i0dest, SET_DEST (set)))
4269 i0_insn = link->insn, i0_val = SET_SRC (set);
4271 record_value_for_reg (i0dest, i0_insn, i0_val);
4273 if (! added_sets_0 && ! i0dest_in_i0src)
4274 INC_REG_N_SETS (REGNO (i0dest), -1);
4277 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4278 been made to this insn. The order is important, because newi2pat
4279 can affect nonzero_bits of newpat. */
4280 if (newi2pat)
4281 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4282 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4285 if (undobuf.other_insn != NULL_RTX)
4287 if (dump_file)
4289 fprintf (dump_file, "modifying other_insn ");
4290 dump_insn_slim (dump_file, undobuf.other_insn);
4292 df_insn_rescan (undobuf.other_insn);
4295 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4297 if (dump_file)
4299 fprintf (dump_file, "modifying insn i0 ");
4300 dump_insn_slim (dump_file, i0);
4302 df_insn_rescan (i0);
4305 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4307 if (dump_file)
4309 fprintf (dump_file, "modifying insn i1 ");
4310 dump_insn_slim (dump_file, i1);
4312 df_insn_rescan (i1);
4315 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4317 if (dump_file)
4319 fprintf (dump_file, "modifying insn i2 ");
4320 dump_insn_slim (dump_file, i2);
4322 df_insn_rescan (i2);
4325 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4327 if (dump_file)
4329 fprintf (dump_file, "modifying insn i3 ");
4330 dump_insn_slim (dump_file, i3);
4332 df_insn_rescan (i3);
4335 /* Set new_direct_jump_p if a new return or simple jump instruction
4336 has been created. Adjust the CFG accordingly. */
4337 if (returnjump_p (i3) || any_uncondjump_p (i3))
4339 *new_direct_jump_p = 1;
4340 mark_jump_label (PATTERN (i3), i3, 0);
4341 update_cfg_for_uncondjump (i3);
4344 if (undobuf.other_insn != NULL_RTX
4345 && (returnjump_p (undobuf.other_insn)
4346 || any_uncondjump_p (undobuf.other_insn)))
4348 *new_direct_jump_p = 1;
4349 update_cfg_for_uncondjump (undobuf.other_insn);
4352 /* A noop might also need cleaning up of CFG, if it comes from the
4353 simplification of a jump. */
4354 if (JUMP_P (i3)
4355 && GET_CODE (newpat) == SET
4356 && SET_SRC (newpat) == pc_rtx
4357 && SET_DEST (newpat) == pc_rtx)
4359 *new_direct_jump_p = 1;
4360 update_cfg_for_uncondjump (i3);
4363 if (undobuf.other_insn != NULL_RTX
4364 && JUMP_P (undobuf.other_insn)
4365 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4366 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4367 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4369 *new_direct_jump_p = 1;
4370 update_cfg_for_uncondjump (undobuf.other_insn);
4373 combine_successes++;
4374 undo_commit ();
4376 if (added_links_insn
4377 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4378 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4379 return added_links_insn;
4380 else
4381 return newi2pat ? i2 : i3;
4384 /* Undo all the modifications recorded in undobuf. */
4386 static void
4387 undo_all (void)
4389 struct undo *undo, *next;
4391 for (undo = undobuf.undos; undo; undo = next)
4393 next = undo->next;
4394 switch (undo->kind)
4396 case UNDO_RTX:
4397 *undo->where.r = undo->old_contents.r;
4398 break;
4399 case UNDO_INT:
4400 *undo->where.i = undo->old_contents.i;
4401 break;
4402 case UNDO_MODE:
4403 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4404 break;
4405 case UNDO_LINKS:
4406 *undo->where.l = undo->old_contents.l;
4407 break;
4408 default:
4409 gcc_unreachable ();
4412 undo->next = undobuf.frees;
4413 undobuf.frees = undo;
4416 undobuf.undos = 0;
4419 /* We've committed to accepting the changes we made. Move all
4420 of the undos to the free list. */
4422 static void
4423 undo_commit (void)
4425 struct undo *undo, *next;
4427 for (undo = undobuf.undos; undo; undo = next)
4429 next = undo->next;
4430 undo->next = undobuf.frees;
4431 undobuf.frees = undo;
4433 undobuf.undos = 0;
4436 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4437 where we have an arithmetic expression and return that point. LOC will
4438 be inside INSN.
4440 try_combine will call this function to see if an insn can be split into
4441 two insns. */
4443 static rtx *
4444 find_split_point (rtx *loc, rtx insn, bool set_src)
4446 rtx x = *loc;
4447 enum rtx_code code = GET_CODE (x);
4448 rtx *split;
4449 unsigned HOST_WIDE_INT len = 0;
4450 HOST_WIDE_INT pos = 0;
4451 int unsignedp = 0;
4452 rtx inner = NULL_RTX;
4454 /* First special-case some codes. */
4455 switch (code)
4457 case SUBREG:
4458 #ifdef INSN_SCHEDULING
4459 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4460 point. */
4461 if (MEM_P (SUBREG_REG (x)))
4462 return loc;
4463 #endif
4464 return find_split_point (&SUBREG_REG (x), insn, false);
4466 case MEM:
4467 #ifdef HAVE_lo_sum
4468 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4469 using LO_SUM and HIGH. */
4470 if (GET_CODE (XEXP (x, 0)) == CONST
4471 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4473 enum machine_mode address_mode = get_address_mode (x);
4475 SUBST (XEXP (x, 0),
4476 gen_rtx_LO_SUM (address_mode,
4477 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4478 XEXP (x, 0)));
4479 return &XEXP (XEXP (x, 0), 0);
4481 #endif
4483 /* If we have a PLUS whose second operand is a constant and the
4484 address is not valid, perhaps will can split it up using
4485 the machine-specific way to split large constants. We use
4486 the first pseudo-reg (one of the virtual regs) as a placeholder;
4487 it will not remain in the result. */
4488 if (GET_CODE (XEXP (x, 0)) == PLUS
4489 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4490 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4491 MEM_ADDR_SPACE (x)))
4493 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4494 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4495 XEXP (x, 0)),
4496 subst_insn);
4498 /* This should have produced two insns, each of which sets our
4499 placeholder. If the source of the second is a valid address,
4500 we can make put both sources together and make a split point
4501 in the middle. */
4503 if (seq
4504 && NEXT_INSN (seq) != NULL_RTX
4505 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4506 && NONJUMP_INSN_P (seq)
4507 && GET_CODE (PATTERN (seq)) == SET
4508 && SET_DEST (PATTERN (seq)) == reg
4509 && ! reg_mentioned_p (reg,
4510 SET_SRC (PATTERN (seq)))
4511 && NONJUMP_INSN_P (NEXT_INSN (seq))
4512 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4513 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4514 && memory_address_addr_space_p
4515 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4516 MEM_ADDR_SPACE (x)))
4518 rtx src1 = SET_SRC (PATTERN (seq));
4519 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4521 /* Replace the placeholder in SRC2 with SRC1. If we can
4522 find where in SRC2 it was placed, that can become our
4523 split point and we can replace this address with SRC2.
4524 Just try two obvious places. */
4526 src2 = replace_rtx (src2, reg, src1);
4527 split = 0;
4528 if (XEXP (src2, 0) == src1)
4529 split = &XEXP (src2, 0);
4530 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4531 && XEXP (XEXP (src2, 0), 0) == src1)
4532 split = &XEXP (XEXP (src2, 0), 0);
4534 if (split)
4536 SUBST (XEXP (x, 0), src2);
4537 return split;
4541 /* If that didn't work, perhaps the first operand is complex and
4542 needs to be computed separately, so make a split point there.
4543 This will occur on machines that just support REG + CONST
4544 and have a constant moved through some previous computation. */
4546 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4547 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4548 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4549 return &XEXP (XEXP (x, 0), 0);
4552 /* If we have a PLUS whose first operand is complex, try computing it
4553 separately by making a split there. */
4554 if (GET_CODE (XEXP (x, 0)) == PLUS
4555 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4556 MEM_ADDR_SPACE (x))
4557 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4558 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4559 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4560 return &XEXP (XEXP (x, 0), 0);
4561 break;
4563 case SET:
4564 #ifdef HAVE_cc0
4565 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4566 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4567 we need to put the operand into a register. So split at that
4568 point. */
4570 if (SET_DEST (x) == cc0_rtx
4571 && GET_CODE (SET_SRC (x)) != COMPARE
4572 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4573 && !OBJECT_P (SET_SRC (x))
4574 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4575 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4576 return &SET_SRC (x);
4577 #endif
4579 /* See if we can split SET_SRC as it stands. */
4580 split = find_split_point (&SET_SRC (x), insn, true);
4581 if (split && split != &SET_SRC (x))
4582 return split;
4584 /* See if we can split SET_DEST as it stands. */
4585 split = find_split_point (&SET_DEST (x), insn, false);
4586 if (split && split != &SET_DEST (x))
4587 return split;
4589 /* See if this is a bitfield assignment with everything constant. If
4590 so, this is an IOR of an AND, so split it into that. */
4591 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4592 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4593 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4594 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4595 && CONST_INT_P (SET_SRC (x))
4596 && ((INTVAL (XEXP (SET_DEST (x), 1))
4597 + INTVAL (XEXP (SET_DEST (x), 2)))
4598 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4599 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4601 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4602 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4603 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4604 rtx dest = XEXP (SET_DEST (x), 0);
4605 enum machine_mode mode = GET_MODE (dest);
4606 unsigned HOST_WIDE_INT mask
4607 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4608 rtx or_mask;
4610 if (BITS_BIG_ENDIAN)
4611 pos = GET_MODE_PRECISION (mode) - len - pos;
4613 or_mask = gen_int_mode (src << pos, mode);
4614 if (src == mask)
4615 SUBST (SET_SRC (x),
4616 simplify_gen_binary (IOR, mode, dest, or_mask));
4617 else
4619 rtx negmask = gen_int_mode (~(mask << pos), mode);
4620 SUBST (SET_SRC (x),
4621 simplify_gen_binary (IOR, mode,
4622 simplify_gen_binary (AND, mode,
4623 dest, negmask),
4624 or_mask));
4627 SUBST (SET_DEST (x), dest);
4629 split = find_split_point (&SET_SRC (x), insn, true);
4630 if (split && split != &SET_SRC (x))
4631 return split;
4634 /* Otherwise, see if this is an operation that we can split into two.
4635 If so, try to split that. */
4636 code = GET_CODE (SET_SRC (x));
4638 switch (code)
4640 case AND:
4641 /* If we are AND'ing with a large constant that is only a single
4642 bit and the result is only being used in a context where we
4643 need to know if it is zero or nonzero, replace it with a bit
4644 extraction. This will avoid the large constant, which might
4645 have taken more than one insn to make. If the constant were
4646 not a valid argument to the AND but took only one insn to make,
4647 this is no worse, but if it took more than one insn, it will
4648 be better. */
4650 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4651 && REG_P (XEXP (SET_SRC (x), 0))
4652 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4653 && REG_P (SET_DEST (x))
4654 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4655 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4656 && XEXP (*split, 0) == SET_DEST (x)
4657 && XEXP (*split, 1) == const0_rtx)
4659 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4660 XEXP (SET_SRC (x), 0),
4661 pos, NULL_RTX, 1, 1, 0, 0);
4662 if (extraction != 0)
4664 SUBST (SET_SRC (x), extraction);
4665 return find_split_point (loc, insn, false);
4668 break;
4670 case NE:
4671 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4672 is known to be on, this can be converted into a NEG of a shift. */
4673 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4674 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4675 && 1 <= (pos = exact_log2
4676 (nonzero_bits (XEXP (SET_SRC (x), 0),
4677 GET_MODE (XEXP (SET_SRC (x), 0))))))
4679 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4681 SUBST (SET_SRC (x),
4682 gen_rtx_NEG (mode,
4683 gen_rtx_LSHIFTRT (mode,
4684 XEXP (SET_SRC (x), 0),
4685 GEN_INT (pos))));
4687 split = find_split_point (&SET_SRC (x), insn, true);
4688 if (split && split != &SET_SRC (x))
4689 return split;
4691 break;
4693 case SIGN_EXTEND:
4694 inner = XEXP (SET_SRC (x), 0);
4696 /* We can't optimize if either mode is a partial integer
4697 mode as we don't know how many bits are significant
4698 in those modes. */
4699 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4700 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4701 break;
4703 pos = 0;
4704 len = GET_MODE_PRECISION (GET_MODE (inner));
4705 unsignedp = 0;
4706 break;
4708 case SIGN_EXTRACT:
4709 case ZERO_EXTRACT:
4710 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4711 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4713 inner = XEXP (SET_SRC (x), 0);
4714 len = INTVAL (XEXP (SET_SRC (x), 1));
4715 pos = INTVAL (XEXP (SET_SRC (x), 2));
4717 if (BITS_BIG_ENDIAN)
4718 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4719 unsignedp = (code == ZERO_EXTRACT);
4721 break;
4723 default:
4724 break;
4727 if (len && pos >= 0
4728 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4730 enum machine_mode mode = GET_MODE (SET_SRC (x));
4732 /* For unsigned, we have a choice of a shift followed by an
4733 AND or two shifts. Use two shifts for field sizes where the
4734 constant might be too large. We assume here that we can
4735 always at least get 8-bit constants in an AND insn, which is
4736 true for every current RISC. */
4738 if (unsignedp && len <= 8)
4740 unsigned HOST_WIDE_INT mask
4741 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4742 SUBST (SET_SRC (x),
4743 gen_rtx_AND (mode,
4744 gen_rtx_LSHIFTRT
4745 (mode, gen_lowpart (mode, inner),
4746 GEN_INT (pos)),
4747 gen_int_mode (mask, mode)));
4749 split = find_split_point (&SET_SRC (x), insn, true);
4750 if (split && split != &SET_SRC (x))
4751 return split;
4753 else
4755 SUBST (SET_SRC (x),
4756 gen_rtx_fmt_ee
4757 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4758 gen_rtx_ASHIFT (mode,
4759 gen_lowpart (mode, inner),
4760 GEN_INT (GET_MODE_PRECISION (mode)
4761 - len - pos)),
4762 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4764 split = find_split_point (&SET_SRC (x), insn, true);
4765 if (split && split != &SET_SRC (x))
4766 return split;
4770 /* See if this is a simple operation with a constant as the second
4771 operand. It might be that this constant is out of range and hence
4772 could be used as a split point. */
4773 if (BINARY_P (SET_SRC (x))
4774 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4775 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4776 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4777 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4778 return &XEXP (SET_SRC (x), 1);
4780 /* Finally, see if this is a simple operation with its first operand
4781 not in a register. The operation might require this operand in a
4782 register, so return it as a split point. We can always do this
4783 because if the first operand were another operation, we would have
4784 already found it as a split point. */
4785 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4786 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4787 return &XEXP (SET_SRC (x), 0);
4789 return 0;
4791 case AND:
4792 case IOR:
4793 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4794 it is better to write this as (not (ior A B)) so we can split it.
4795 Similarly for IOR. */
4796 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4798 SUBST (*loc,
4799 gen_rtx_NOT (GET_MODE (x),
4800 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4801 GET_MODE (x),
4802 XEXP (XEXP (x, 0), 0),
4803 XEXP (XEXP (x, 1), 0))));
4804 return find_split_point (loc, insn, set_src);
4807 /* Many RISC machines have a large set of logical insns. If the
4808 second operand is a NOT, put it first so we will try to split the
4809 other operand first. */
4810 if (GET_CODE (XEXP (x, 1)) == NOT)
4812 rtx tem = XEXP (x, 0);
4813 SUBST (XEXP (x, 0), XEXP (x, 1));
4814 SUBST (XEXP (x, 1), tem);
4816 break;
4818 case PLUS:
4819 case MINUS:
4820 /* Canonicalization can produce (minus A (mult B C)), where C is a
4821 constant. It may be better to try splitting (plus (mult B -C) A)
4822 instead if this isn't a multiply by a power of two. */
4823 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4824 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4825 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4827 enum machine_mode mode = GET_MODE (x);
4828 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4829 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4830 SUBST (*loc, gen_rtx_PLUS (mode,
4831 gen_rtx_MULT (mode,
4832 XEXP (XEXP (x, 1), 0),
4833 gen_int_mode (other_int,
4834 mode)),
4835 XEXP (x, 0)));
4836 return find_split_point (loc, insn, set_src);
4839 /* Split at a multiply-accumulate instruction. However if this is
4840 the SET_SRC, we likely do not have such an instruction and it's
4841 worthless to try this split. */
4842 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4843 return loc;
4845 default:
4846 break;
4849 /* Otherwise, select our actions depending on our rtx class. */
4850 switch (GET_RTX_CLASS (code))
4852 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4853 case RTX_TERNARY:
4854 split = find_split_point (&XEXP (x, 2), insn, false);
4855 if (split)
4856 return split;
4857 /* ... fall through ... */
4858 case RTX_BIN_ARITH:
4859 case RTX_COMM_ARITH:
4860 case RTX_COMPARE:
4861 case RTX_COMM_COMPARE:
4862 split = find_split_point (&XEXP (x, 1), insn, false);
4863 if (split)
4864 return split;
4865 /* ... fall through ... */
4866 case RTX_UNARY:
4867 /* Some machines have (and (shift ...) ...) insns. If X is not
4868 an AND, but XEXP (X, 0) is, use it as our split point. */
4869 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4870 return &XEXP (x, 0);
4872 split = find_split_point (&XEXP (x, 0), insn, false);
4873 if (split)
4874 return split;
4875 return loc;
4877 default:
4878 /* Otherwise, we don't have a split point. */
4879 return 0;
4883 /* Throughout X, replace FROM with TO, and return the result.
4884 The result is TO if X is FROM;
4885 otherwise the result is X, but its contents may have been modified.
4886 If they were modified, a record was made in undobuf so that
4887 undo_all will (among other things) return X to its original state.
4889 If the number of changes necessary is too much to record to undo,
4890 the excess changes are not made, so the result is invalid.
4891 The changes already made can still be undone.
4892 undobuf.num_undo is incremented for such changes, so by testing that
4893 the caller can tell whether the result is valid.
4895 `n_occurrences' is incremented each time FROM is replaced.
4897 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4899 IN_COND is nonzero if we are at the top level of a condition.
4901 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4902 by copying if `n_occurrences' is nonzero. */
4904 static rtx
4905 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4907 enum rtx_code code = GET_CODE (x);
4908 enum machine_mode op0_mode = VOIDmode;
4909 const char *fmt;
4910 int len, i;
4911 rtx new_rtx;
4913 /* Two expressions are equal if they are identical copies of a shared
4914 RTX or if they are both registers with the same register number
4915 and mode. */
4917 #define COMBINE_RTX_EQUAL_P(X,Y) \
4918 ((X) == (Y) \
4919 || (REG_P (X) && REG_P (Y) \
4920 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4922 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4924 n_occurrences++;
4925 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4928 /* If X and FROM are the same register but different modes, they
4929 will not have been seen as equal above. However, the log links code
4930 will make a LOG_LINKS entry for that case. If we do nothing, we
4931 will try to rerecognize our original insn and, when it succeeds,
4932 we will delete the feeding insn, which is incorrect.
4934 So force this insn not to match in this (rare) case. */
4935 if (! in_dest && code == REG && REG_P (from)
4936 && reg_overlap_mentioned_p (x, from))
4937 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4939 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4940 of which may contain things that can be combined. */
4941 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4942 return x;
4944 /* It is possible to have a subexpression appear twice in the insn.
4945 Suppose that FROM is a register that appears within TO.
4946 Then, after that subexpression has been scanned once by `subst',
4947 the second time it is scanned, TO may be found. If we were
4948 to scan TO here, we would find FROM within it and create a
4949 self-referent rtl structure which is completely wrong. */
4950 if (COMBINE_RTX_EQUAL_P (x, to))
4951 return to;
4953 /* Parallel asm_operands need special attention because all of the
4954 inputs are shared across the arms. Furthermore, unsharing the
4955 rtl results in recognition failures. Failure to handle this case
4956 specially can result in circular rtl.
4958 Solve this by doing a normal pass across the first entry of the
4959 parallel, and only processing the SET_DESTs of the subsequent
4960 entries. Ug. */
4962 if (code == PARALLEL
4963 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4964 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4966 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4968 /* If this substitution failed, this whole thing fails. */
4969 if (GET_CODE (new_rtx) == CLOBBER
4970 && XEXP (new_rtx, 0) == const0_rtx)
4971 return new_rtx;
4973 SUBST (XVECEXP (x, 0, 0), new_rtx);
4975 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4977 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4979 if (!REG_P (dest)
4980 && GET_CODE (dest) != CC0
4981 && GET_CODE (dest) != PC)
4983 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4985 /* If this substitution failed, this whole thing fails. */
4986 if (GET_CODE (new_rtx) == CLOBBER
4987 && XEXP (new_rtx, 0) == const0_rtx)
4988 return new_rtx;
4990 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4994 else
4996 len = GET_RTX_LENGTH (code);
4997 fmt = GET_RTX_FORMAT (code);
4999 /* We don't need to process a SET_DEST that is a register, CC0,
5000 or PC, so set up to skip this common case. All other cases
5001 where we want to suppress replacing something inside a
5002 SET_SRC are handled via the IN_DEST operand. */
5003 if (code == SET
5004 && (REG_P (SET_DEST (x))
5005 || GET_CODE (SET_DEST (x)) == CC0
5006 || GET_CODE (SET_DEST (x)) == PC))
5007 fmt = "ie";
5009 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5010 constant. */
5011 if (fmt[0] == 'e')
5012 op0_mode = GET_MODE (XEXP (x, 0));
5014 for (i = 0; i < len; i++)
5016 if (fmt[i] == 'E')
5018 int j;
5019 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5021 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5023 new_rtx = (unique_copy && n_occurrences
5024 ? copy_rtx (to) : to);
5025 n_occurrences++;
5027 else
5029 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5030 unique_copy);
5032 /* If this substitution failed, this whole thing
5033 fails. */
5034 if (GET_CODE (new_rtx) == CLOBBER
5035 && XEXP (new_rtx, 0) == const0_rtx)
5036 return new_rtx;
5039 SUBST (XVECEXP (x, i, j), new_rtx);
5042 else if (fmt[i] == 'e')
5044 /* If this is a register being set, ignore it. */
5045 new_rtx = XEXP (x, i);
5046 if (in_dest
5047 && i == 0
5048 && (((code == SUBREG || code == ZERO_EXTRACT)
5049 && REG_P (new_rtx))
5050 || code == STRICT_LOW_PART))
5053 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5055 /* In general, don't install a subreg involving two
5056 modes not tieable. It can worsen register
5057 allocation, and can even make invalid reload
5058 insns, since the reg inside may need to be copied
5059 from in the outside mode, and that may be invalid
5060 if it is an fp reg copied in integer mode.
5062 We allow two exceptions to this: It is valid if
5063 it is inside another SUBREG and the mode of that
5064 SUBREG and the mode of the inside of TO is
5065 tieable and it is valid if X is a SET that copies
5066 FROM to CC0. */
5068 if (GET_CODE (to) == SUBREG
5069 && ! MODES_TIEABLE_P (GET_MODE (to),
5070 GET_MODE (SUBREG_REG (to)))
5071 && ! (code == SUBREG
5072 && MODES_TIEABLE_P (GET_MODE (x),
5073 GET_MODE (SUBREG_REG (to))))
5074 #ifdef HAVE_cc0
5075 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5076 #endif
5078 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5080 #ifdef CANNOT_CHANGE_MODE_CLASS
5081 if (code == SUBREG
5082 && REG_P (to)
5083 && REGNO (to) < FIRST_PSEUDO_REGISTER
5084 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5085 GET_MODE (to),
5086 GET_MODE (x)))
5087 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5088 #endif
5090 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5091 n_occurrences++;
5093 else
5094 /* If we are in a SET_DEST, suppress most cases unless we
5095 have gone inside a MEM, in which case we want to
5096 simplify the address. We assume here that things that
5097 are actually part of the destination have their inner
5098 parts in the first expression. This is true for SUBREG,
5099 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5100 things aside from REG and MEM that should appear in a
5101 SET_DEST. */
5102 new_rtx = subst (XEXP (x, i), from, to,
5103 (((in_dest
5104 && (code == SUBREG || code == STRICT_LOW_PART
5105 || code == ZERO_EXTRACT))
5106 || code == SET)
5107 && i == 0),
5108 code == IF_THEN_ELSE && i == 0,
5109 unique_copy);
5111 /* If we found that we will have to reject this combination,
5112 indicate that by returning the CLOBBER ourselves, rather than
5113 an expression containing it. This will speed things up as
5114 well as prevent accidents where two CLOBBERs are considered
5115 to be equal, thus producing an incorrect simplification. */
5117 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5118 return new_rtx;
5120 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5122 enum machine_mode mode = GET_MODE (x);
5124 x = simplify_subreg (GET_MODE (x), new_rtx,
5125 GET_MODE (SUBREG_REG (x)),
5126 SUBREG_BYTE (x));
5127 if (! x)
5128 x = gen_rtx_CLOBBER (mode, const0_rtx);
5130 else if (CONST_INT_P (new_rtx)
5131 && GET_CODE (x) == ZERO_EXTEND)
5133 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5134 new_rtx, GET_MODE (XEXP (x, 0)));
5135 gcc_assert (x);
5137 else
5138 SUBST (XEXP (x, i), new_rtx);
5143 /* Check if we are loading something from the constant pool via float
5144 extension; in this case we would undo compress_float_constant
5145 optimization and degenerate constant load to an immediate value. */
5146 if (GET_CODE (x) == FLOAT_EXTEND
5147 && MEM_P (XEXP (x, 0))
5148 && MEM_READONLY_P (XEXP (x, 0)))
5150 rtx tmp = avoid_constant_pool_reference (x);
5151 if (x != tmp)
5152 return x;
5155 /* Try to simplify X. If the simplification changed the code, it is likely
5156 that further simplification will help, so loop, but limit the number
5157 of repetitions that will be performed. */
5159 for (i = 0; i < 4; i++)
5161 /* If X is sufficiently simple, don't bother trying to do anything
5162 with it. */
5163 if (code != CONST_INT && code != REG && code != CLOBBER)
5164 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5166 if (GET_CODE (x) == code)
5167 break;
5169 code = GET_CODE (x);
5171 /* We no longer know the original mode of operand 0 since we
5172 have changed the form of X) */
5173 op0_mode = VOIDmode;
5176 return x;
5179 /* Simplify X, a piece of RTL. We just operate on the expression at the
5180 outer level; call `subst' to simplify recursively. Return the new
5181 expression.
5183 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5184 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5185 of a condition. */
5187 static rtx
5188 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5189 int in_cond)
5191 enum rtx_code code = GET_CODE (x);
5192 enum machine_mode mode = GET_MODE (x);
5193 rtx temp;
5194 int i;
5196 /* If this is a commutative operation, put a constant last and a complex
5197 expression first. We don't need to do this for comparisons here. */
5198 if (COMMUTATIVE_ARITH_P (x)
5199 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5201 temp = XEXP (x, 0);
5202 SUBST (XEXP (x, 0), XEXP (x, 1));
5203 SUBST (XEXP (x, 1), temp);
5206 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5207 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5208 things. Check for cases where both arms are testing the same
5209 condition.
5211 Don't do anything if all operands are very simple. */
5213 if ((BINARY_P (x)
5214 && ((!OBJECT_P (XEXP (x, 0))
5215 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5216 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5217 || (!OBJECT_P (XEXP (x, 1))
5218 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5219 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5220 || (UNARY_P (x)
5221 && (!OBJECT_P (XEXP (x, 0))
5222 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5223 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5225 rtx cond, true_rtx, false_rtx;
5227 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5228 if (cond != 0
5229 /* If everything is a comparison, what we have is highly unlikely
5230 to be simpler, so don't use it. */
5231 && ! (COMPARISON_P (x)
5232 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5234 rtx cop1 = const0_rtx;
5235 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5237 if (cond_code == NE && COMPARISON_P (cond))
5238 return x;
5240 /* Simplify the alternative arms; this may collapse the true and
5241 false arms to store-flag values. Be careful to use copy_rtx
5242 here since true_rtx or false_rtx might share RTL with x as a
5243 result of the if_then_else_cond call above. */
5244 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5245 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5247 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5248 is unlikely to be simpler. */
5249 if (general_operand (true_rtx, VOIDmode)
5250 && general_operand (false_rtx, VOIDmode))
5252 enum rtx_code reversed;
5254 /* Restarting if we generate a store-flag expression will cause
5255 us to loop. Just drop through in this case. */
5257 /* If the result values are STORE_FLAG_VALUE and zero, we can
5258 just make the comparison operation. */
5259 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5260 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5261 cond, cop1);
5262 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5263 && ((reversed = reversed_comparison_code_parts
5264 (cond_code, cond, cop1, NULL))
5265 != UNKNOWN))
5266 x = simplify_gen_relational (reversed, mode, VOIDmode,
5267 cond, cop1);
5269 /* Likewise, we can make the negate of a comparison operation
5270 if the result values are - STORE_FLAG_VALUE and zero. */
5271 else if (CONST_INT_P (true_rtx)
5272 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5273 && false_rtx == const0_rtx)
5274 x = simplify_gen_unary (NEG, mode,
5275 simplify_gen_relational (cond_code,
5276 mode, VOIDmode,
5277 cond, cop1),
5278 mode);
5279 else if (CONST_INT_P (false_rtx)
5280 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5281 && true_rtx == const0_rtx
5282 && ((reversed = reversed_comparison_code_parts
5283 (cond_code, cond, cop1, NULL))
5284 != UNKNOWN))
5285 x = simplify_gen_unary (NEG, mode,
5286 simplify_gen_relational (reversed,
5287 mode, VOIDmode,
5288 cond, cop1),
5289 mode);
5290 else
5291 return gen_rtx_IF_THEN_ELSE (mode,
5292 simplify_gen_relational (cond_code,
5293 mode,
5294 VOIDmode,
5295 cond,
5296 cop1),
5297 true_rtx, false_rtx);
5299 code = GET_CODE (x);
5300 op0_mode = VOIDmode;
5305 /* Try to fold this expression in case we have constants that weren't
5306 present before. */
5307 temp = 0;
5308 switch (GET_RTX_CLASS (code))
5310 case RTX_UNARY:
5311 if (op0_mode == VOIDmode)
5312 op0_mode = GET_MODE (XEXP (x, 0));
5313 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5314 break;
5315 case RTX_COMPARE:
5316 case RTX_COMM_COMPARE:
5318 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5319 if (cmp_mode == VOIDmode)
5321 cmp_mode = GET_MODE (XEXP (x, 1));
5322 if (cmp_mode == VOIDmode)
5323 cmp_mode = op0_mode;
5325 temp = simplify_relational_operation (code, mode, cmp_mode,
5326 XEXP (x, 0), XEXP (x, 1));
5328 break;
5329 case RTX_COMM_ARITH:
5330 case RTX_BIN_ARITH:
5331 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5332 break;
5333 case RTX_BITFIELD_OPS:
5334 case RTX_TERNARY:
5335 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5336 XEXP (x, 1), XEXP (x, 2));
5337 break;
5338 default:
5339 break;
5342 if (temp)
5344 x = temp;
5345 code = GET_CODE (temp);
5346 op0_mode = VOIDmode;
5347 mode = GET_MODE (temp);
5350 /* First see if we can apply the inverse distributive law. */
5351 if (code == PLUS || code == MINUS
5352 || code == AND || code == IOR || code == XOR)
5354 x = apply_distributive_law (x);
5355 code = GET_CODE (x);
5356 op0_mode = VOIDmode;
5359 /* If CODE is an associative operation not otherwise handled, see if we
5360 can associate some operands. This can win if they are constants or
5361 if they are logically related (i.e. (a & b) & a). */
5362 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5363 || code == AND || code == IOR || code == XOR
5364 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5365 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5366 || (flag_associative_math && FLOAT_MODE_P (mode))))
5368 if (GET_CODE (XEXP (x, 0)) == code)
5370 rtx other = XEXP (XEXP (x, 0), 0);
5371 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5372 rtx inner_op1 = XEXP (x, 1);
5373 rtx inner;
5375 /* Make sure we pass the constant operand if any as the second
5376 one if this is a commutative operation. */
5377 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5379 rtx tem = inner_op0;
5380 inner_op0 = inner_op1;
5381 inner_op1 = tem;
5383 inner = simplify_binary_operation (code == MINUS ? PLUS
5384 : code == DIV ? MULT
5385 : code,
5386 mode, inner_op0, inner_op1);
5388 /* For commutative operations, try the other pair if that one
5389 didn't simplify. */
5390 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5392 other = XEXP (XEXP (x, 0), 1);
5393 inner = simplify_binary_operation (code, mode,
5394 XEXP (XEXP (x, 0), 0),
5395 XEXP (x, 1));
5398 if (inner)
5399 return simplify_gen_binary (code, mode, other, inner);
5403 /* A little bit of algebraic simplification here. */
5404 switch (code)
5406 case MEM:
5407 /* Ensure that our address has any ASHIFTs converted to MULT in case
5408 address-recognizing predicates are called later. */
5409 temp = make_compound_operation (XEXP (x, 0), MEM);
5410 SUBST (XEXP (x, 0), temp);
5411 break;
5413 case SUBREG:
5414 if (op0_mode == VOIDmode)
5415 op0_mode = GET_MODE (SUBREG_REG (x));
5417 /* See if this can be moved to simplify_subreg. */
5418 if (CONSTANT_P (SUBREG_REG (x))
5419 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5420 /* Don't call gen_lowpart if the inner mode
5421 is VOIDmode and we cannot simplify it, as SUBREG without
5422 inner mode is invalid. */
5423 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5424 || gen_lowpart_common (mode, SUBREG_REG (x))))
5425 return gen_lowpart (mode, SUBREG_REG (x));
5427 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5428 break;
5430 rtx temp;
5431 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5432 SUBREG_BYTE (x));
5433 if (temp)
5434 return temp;
5436 /* If op is known to have all lower bits zero, the result is zero. */
5437 if (!in_dest
5438 && SCALAR_INT_MODE_P (mode)
5439 && SCALAR_INT_MODE_P (op0_mode)
5440 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5441 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5442 && HWI_COMPUTABLE_MODE_P (op0_mode)
5443 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5444 & GET_MODE_MASK (mode)) == 0)
5445 return CONST0_RTX (mode);
5448 /* Don't change the mode of the MEM if that would change the meaning
5449 of the address. */
5450 if (MEM_P (SUBREG_REG (x))
5451 && (MEM_VOLATILE_P (SUBREG_REG (x))
5452 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5453 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5454 return gen_rtx_CLOBBER (mode, const0_rtx);
5456 /* Note that we cannot do any narrowing for non-constants since
5457 we might have been counting on using the fact that some bits were
5458 zero. We now do this in the SET. */
5460 break;
5462 case NEG:
5463 temp = expand_compound_operation (XEXP (x, 0));
5465 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5466 replaced by (lshiftrt X C). This will convert
5467 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5469 if (GET_CODE (temp) == ASHIFTRT
5470 && CONST_INT_P (XEXP (temp, 1))
5471 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5472 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5473 INTVAL (XEXP (temp, 1)));
5475 /* If X has only a single bit that might be nonzero, say, bit I, convert
5476 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5477 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5478 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5479 or a SUBREG of one since we'd be making the expression more
5480 complex if it was just a register. */
5482 if (!REG_P (temp)
5483 && ! (GET_CODE (temp) == SUBREG
5484 && REG_P (SUBREG_REG (temp)))
5485 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5487 rtx temp1 = simplify_shift_const
5488 (NULL_RTX, ASHIFTRT, mode,
5489 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5490 GET_MODE_PRECISION (mode) - 1 - i),
5491 GET_MODE_PRECISION (mode) - 1 - i);
5493 /* If all we did was surround TEMP with the two shifts, we
5494 haven't improved anything, so don't use it. Otherwise,
5495 we are better off with TEMP1. */
5496 if (GET_CODE (temp1) != ASHIFTRT
5497 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5498 || XEXP (XEXP (temp1, 0), 0) != temp)
5499 return temp1;
5501 break;
5503 case TRUNCATE:
5504 /* We can't handle truncation to a partial integer mode here
5505 because we don't know the real bitsize of the partial
5506 integer mode. */
5507 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5508 break;
5510 if (HWI_COMPUTABLE_MODE_P (mode))
5511 SUBST (XEXP (x, 0),
5512 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5513 GET_MODE_MASK (mode), 0));
5515 /* We can truncate a constant value and return it. */
5516 if (CONST_INT_P (XEXP (x, 0)))
5517 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5519 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5520 whose value is a comparison can be replaced with a subreg if
5521 STORE_FLAG_VALUE permits. */
5522 if (HWI_COMPUTABLE_MODE_P (mode)
5523 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5524 && (temp = get_last_value (XEXP (x, 0)))
5525 && COMPARISON_P (temp))
5526 return gen_lowpart (mode, XEXP (x, 0));
5527 break;
5529 case CONST:
5530 /* (const (const X)) can become (const X). Do it this way rather than
5531 returning the inner CONST since CONST can be shared with a
5532 REG_EQUAL note. */
5533 if (GET_CODE (XEXP (x, 0)) == CONST)
5534 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5535 break;
5537 #ifdef HAVE_lo_sum
5538 case LO_SUM:
5539 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5540 can add in an offset. find_split_point will split this address up
5541 again if it doesn't match. */
5542 if (GET_CODE (XEXP (x, 0)) == HIGH
5543 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5544 return XEXP (x, 1);
5545 break;
5546 #endif
5548 case PLUS:
5549 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5550 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5551 bit-field and can be replaced by either a sign_extend or a
5552 sign_extract. The `and' may be a zero_extend and the two
5553 <c>, -<c> constants may be reversed. */
5554 if (GET_CODE (XEXP (x, 0)) == XOR
5555 && CONST_INT_P (XEXP (x, 1))
5556 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5557 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5558 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5559 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5560 && HWI_COMPUTABLE_MODE_P (mode)
5561 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5562 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5563 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5564 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5565 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5566 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5567 == (unsigned int) i + 1))))
5568 return simplify_shift_const
5569 (NULL_RTX, ASHIFTRT, mode,
5570 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5571 XEXP (XEXP (XEXP (x, 0), 0), 0),
5572 GET_MODE_PRECISION (mode) - (i + 1)),
5573 GET_MODE_PRECISION (mode) - (i + 1));
5575 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5576 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5577 the bitsize of the mode - 1. This allows simplification of
5578 "a = (b & 8) == 0;" */
5579 if (XEXP (x, 1) == constm1_rtx
5580 && !REG_P (XEXP (x, 0))
5581 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5582 && REG_P (SUBREG_REG (XEXP (x, 0))))
5583 && nonzero_bits (XEXP (x, 0), mode) == 1)
5584 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5585 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5586 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5587 GET_MODE_PRECISION (mode) - 1),
5588 GET_MODE_PRECISION (mode) - 1);
5590 /* If we are adding two things that have no bits in common, convert
5591 the addition into an IOR. This will often be further simplified,
5592 for example in cases like ((a & 1) + (a & 2)), which can
5593 become a & 3. */
5595 if (HWI_COMPUTABLE_MODE_P (mode)
5596 && (nonzero_bits (XEXP (x, 0), mode)
5597 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5599 /* Try to simplify the expression further. */
5600 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5601 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5603 /* If we could, great. If not, do not go ahead with the IOR
5604 replacement, since PLUS appears in many special purpose
5605 address arithmetic instructions. */
5606 if (GET_CODE (temp) != CLOBBER
5607 && (GET_CODE (temp) != IOR
5608 || ((XEXP (temp, 0) != XEXP (x, 0)
5609 || XEXP (temp, 1) != XEXP (x, 1))
5610 && (XEXP (temp, 0) != XEXP (x, 1)
5611 || XEXP (temp, 1) != XEXP (x, 0)))))
5612 return temp;
5614 break;
5616 case MINUS:
5617 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5618 (and <foo> (const_int pow2-1)) */
5619 if (GET_CODE (XEXP (x, 1)) == AND
5620 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5621 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5622 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5623 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5624 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5625 break;
5627 case MULT:
5628 /* If we have (mult (plus A B) C), apply the distributive law and then
5629 the inverse distributive law to see if things simplify. This
5630 occurs mostly in addresses, often when unrolling loops. */
5632 if (GET_CODE (XEXP (x, 0)) == PLUS)
5634 rtx result = distribute_and_simplify_rtx (x, 0);
5635 if (result)
5636 return result;
5639 /* Try simplify a*(b/c) as (a*b)/c. */
5640 if (FLOAT_MODE_P (mode) && flag_associative_math
5641 && GET_CODE (XEXP (x, 0)) == DIV)
5643 rtx tem = simplify_binary_operation (MULT, mode,
5644 XEXP (XEXP (x, 0), 0),
5645 XEXP (x, 1));
5646 if (tem)
5647 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5649 break;
5651 case UDIV:
5652 /* If this is a divide by a power of two, treat it as a shift if
5653 its first operand is a shift. */
5654 if (CONST_INT_P (XEXP (x, 1))
5655 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5656 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5657 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5658 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5659 || GET_CODE (XEXP (x, 0)) == ROTATE
5660 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5661 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5662 break;
5664 case EQ: case NE:
5665 case GT: case GTU: case GE: case GEU:
5666 case LT: case LTU: case LE: case LEU:
5667 case UNEQ: case LTGT:
5668 case UNGT: case UNGE:
5669 case UNLT: case UNLE:
5670 case UNORDERED: case ORDERED:
5671 /* If the first operand is a condition code, we can't do anything
5672 with it. */
5673 if (GET_CODE (XEXP (x, 0)) == COMPARE
5674 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5675 && ! CC0_P (XEXP (x, 0))))
5677 rtx op0 = XEXP (x, 0);
5678 rtx op1 = XEXP (x, 1);
5679 enum rtx_code new_code;
5681 if (GET_CODE (op0) == COMPARE)
5682 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5684 /* Simplify our comparison, if possible. */
5685 new_code = simplify_comparison (code, &op0, &op1);
5687 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5688 if only the low-order bit is possibly nonzero in X (such as when
5689 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5690 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5691 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5692 (plus X 1).
5694 Remove any ZERO_EXTRACT we made when thinking this was a
5695 comparison. It may now be simpler to use, e.g., an AND. If a
5696 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5697 the call to make_compound_operation in the SET case.
5699 Don't apply these optimizations if the caller would
5700 prefer a comparison rather than a value.
5701 E.g., for the condition in an IF_THEN_ELSE most targets need
5702 an explicit comparison. */
5704 if (in_cond)
5707 else if (STORE_FLAG_VALUE == 1
5708 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5709 && op1 == const0_rtx
5710 && mode == GET_MODE (op0)
5711 && nonzero_bits (op0, mode) == 1)
5712 return gen_lowpart (mode,
5713 expand_compound_operation (op0));
5715 else if (STORE_FLAG_VALUE == 1
5716 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5717 && op1 == const0_rtx
5718 && mode == GET_MODE (op0)
5719 && (num_sign_bit_copies (op0, mode)
5720 == GET_MODE_PRECISION (mode)))
5722 op0 = expand_compound_operation (op0);
5723 return simplify_gen_unary (NEG, mode,
5724 gen_lowpart (mode, op0),
5725 mode);
5728 else if (STORE_FLAG_VALUE == 1
5729 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5730 && op1 == const0_rtx
5731 && mode == GET_MODE (op0)
5732 && nonzero_bits (op0, mode) == 1)
5734 op0 = expand_compound_operation (op0);
5735 return simplify_gen_binary (XOR, mode,
5736 gen_lowpart (mode, op0),
5737 const1_rtx);
5740 else if (STORE_FLAG_VALUE == 1
5741 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5742 && op1 == const0_rtx
5743 && mode == GET_MODE (op0)
5744 && (num_sign_bit_copies (op0, mode)
5745 == GET_MODE_PRECISION (mode)))
5747 op0 = expand_compound_operation (op0);
5748 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5751 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5752 those above. */
5753 if (in_cond)
5756 else if (STORE_FLAG_VALUE == -1
5757 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5758 && op1 == const0_rtx
5759 && (num_sign_bit_copies (op0, mode)
5760 == GET_MODE_PRECISION (mode)))
5761 return gen_lowpart (mode,
5762 expand_compound_operation (op0));
5764 else if (STORE_FLAG_VALUE == -1
5765 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5766 && op1 == const0_rtx
5767 && mode == GET_MODE (op0)
5768 && nonzero_bits (op0, mode) == 1)
5770 op0 = expand_compound_operation (op0);
5771 return simplify_gen_unary (NEG, mode,
5772 gen_lowpart (mode, op0),
5773 mode);
5776 else if (STORE_FLAG_VALUE == -1
5777 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5778 && op1 == const0_rtx
5779 && mode == GET_MODE (op0)
5780 && (num_sign_bit_copies (op0, mode)
5781 == GET_MODE_PRECISION (mode)))
5783 op0 = expand_compound_operation (op0);
5784 return simplify_gen_unary (NOT, mode,
5785 gen_lowpart (mode, op0),
5786 mode);
5789 /* If X is 0/1, (eq X 0) is X-1. */
5790 else if (STORE_FLAG_VALUE == -1
5791 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5792 && op1 == const0_rtx
5793 && mode == GET_MODE (op0)
5794 && nonzero_bits (op0, mode) == 1)
5796 op0 = expand_compound_operation (op0);
5797 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5800 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5801 one bit that might be nonzero, we can convert (ne x 0) to
5802 (ashift x c) where C puts the bit in the sign bit. Remove any
5803 AND with STORE_FLAG_VALUE when we are done, since we are only
5804 going to test the sign bit. */
5805 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5806 && HWI_COMPUTABLE_MODE_P (mode)
5807 && val_signbit_p (mode, STORE_FLAG_VALUE)
5808 && op1 == const0_rtx
5809 && mode == GET_MODE (op0)
5810 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5812 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5813 expand_compound_operation (op0),
5814 GET_MODE_PRECISION (mode) - 1 - i);
5815 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5816 return XEXP (x, 0);
5817 else
5818 return x;
5821 /* If the code changed, return a whole new comparison.
5822 We also need to avoid using SUBST in cases where
5823 simplify_comparison has widened a comparison with a CONST_INT,
5824 since in that case the wider CONST_INT may fail the sanity
5825 checks in do_SUBST. */
5826 if (new_code != code
5827 || (CONST_INT_P (op1)
5828 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5829 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5830 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5832 /* Otherwise, keep this operation, but maybe change its operands.
5833 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5834 SUBST (XEXP (x, 0), op0);
5835 SUBST (XEXP (x, 1), op1);
5837 break;
5839 case IF_THEN_ELSE:
5840 return simplify_if_then_else (x);
5842 case ZERO_EXTRACT:
5843 case SIGN_EXTRACT:
5844 case ZERO_EXTEND:
5845 case SIGN_EXTEND:
5846 /* If we are processing SET_DEST, we are done. */
5847 if (in_dest)
5848 return x;
5850 return expand_compound_operation (x);
5852 case SET:
5853 return simplify_set (x);
5855 case AND:
5856 case IOR:
5857 return simplify_logical (x);
5859 case ASHIFT:
5860 case LSHIFTRT:
5861 case ASHIFTRT:
5862 case ROTATE:
5863 case ROTATERT:
5864 /* If this is a shift by a constant amount, simplify it. */
5865 if (CONST_INT_P (XEXP (x, 1)))
5866 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5867 INTVAL (XEXP (x, 1)));
5869 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5870 SUBST (XEXP (x, 1),
5871 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5872 ((unsigned HOST_WIDE_INT) 1
5873 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5874 - 1,
5875 0));
5876 break;
5878 default:
5879 break;
5882 return x;
5885 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5887 static rtx
5888 simplify_if_then_else (rtx x)
5890 enum machine_mode mode = GET_MODE (x);
5891 rtx cond = XEXP (x, 0);
5892 rtx true_rtx = XEXP (x, 1);
5893 rtx false_rtx = XEXP (x, 2);
5894 enum rtx_code true_code = GET_CODE (cond);
5895 int comparison_p = COMPARISON_P (cond);
5896 rtx temp;
5897 int i;
5898 enum rtx_code false_code;
5899 rtx reversed;
5901 /* Simplify storing of the truth value. */
5902 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5903 return simplify_gen_relational (true_code, mode, VOIDmode,
5904 XEXP (cond, 0), XEXP (cond, 1));
5906 /* Also when the truth value has to be reversed. */
5907 if (comparison_p
5908 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5909 && (reversed = reversed_comparison (cond, mode)))
5910 return reversed;
5912 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5913 in it is being compared against certain values. Get the true and false
5914 comparisons and see if that says anything about the value of each arm. */
5916 if (comparison_p
5917 && ((false_code = reversed_comparison_code (cond, NULL))
5918 != UNKNOWN)
5919 && REG_P (XEXP (cond, 0)))
5921 HOST_WIDE_INT nzb;
5922 rtx from = XEXP (cond, 0);
5923 rtx true_val = XEXP (cond, 1);
5924 rtx false_val = true_val;
5925 int swapped = 0;
5927 /* If FALSE_CODE is EQ, swap the codes and arms. */
5929 if (false_code == EQ)
5931 swapped = 1, true_code = EQ, false_code = NE;
5932 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5935 /* If we are comparing against zero and the expression being tested has
5936 only a single bit that might be nonzero, that is its value when it is
5937 not equal to zero. Similarly if it is known to be -1 or 0. */
5939 if (true_code == EQ && true_val == const0_rtx
5940 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5942 false_code = EQ;
5943 false_val = gen_int_mode (nzb, GET_MODE (from));
5945 else if (true_code == EQ && true_val == const0_rtx
5946 && (num_sign_bit_copies (from, GET_MODE (from))
5947 == GET_MODE_PRECISION (GET_MODE (from))))
5949 false_code = EQ;
5950 false_val = constm1_rtx;
5953 /* Now simplify an arm if we know the value of the register in the
5954 branch and it is used in the arm. Be careful due to the potential
5955 of locally-shared RTL. */
5957 if (reg_mentioned_p (from, true_rtx))
5958 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5959 from, true_val),
5960 pc_rtx, pc_rtx, 0, 0, 0);
5961 if (reg_mentioned_p (from, false_rtx))
5962 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5963 from, false_val),
5964 pc_rtx, pc_rtx, 0, 0, 0);
5966 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5967 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5969 true_rtx = XEXP (x, 1);
5970 false_rtx = XEXP (x, 2);
5971 true_code = GET_CODE (cond);
5974 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5975 reversed, do so to avoid needing two sets of patterns for
5976 subtract-and-branch insns. Similarly if we have a constant in the true
5977 arm, the false arm is the same as the first operand of the comparison, or
5978 the false arm is more complicated than the true arm. */
5980 if (comparison_p
5981 && reversed_comparison_code (cond, NULL) != UNKNOWN
5982 && (true_rtx == pc_rtx
5983 || (CONSTANT_P (true_rtx)
5984 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5985 || true_rtx == const0_rtx
5986 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5987 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5988 && !OBJECT_P (false_rtx))
5989 || reg_mentioned_p (true_rtx, false_rtx)
5990 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5992 true_code = reversed_comparison_code (cond, NULL);
5993 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5994 SUBST (XEXP (x, 1), false_rtx);
5995 SUBST (XEXP (x, 2), true_rtx);
5997 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5998 cond = XEXP (x, 0);
6000 /* It is possible that the conditional has been simplified out. */
6001 true_code = GET_CODE (cond);
6002 comparison_p = COMPARISON_P (cond);
6005 /* If the two arms are identical, we don't need the comparison. */
6007 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6008 return true_rtx;
6010 /* Convert a == b ? b : a to "a". */
6011 if (true_code == EQ && ! side_effects_p (cond)
6012 && !HONOR_NANS (mode)
6013 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6014 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6015 return false_rtx;
6016 else if (true_code == NE && ! side_effects_p (cond)
6017 && !HONOR_NANS (mode)
6018 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6019 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6020 return true_rtx;
6022 /* Look for cases where we have (abs x) or (neg (abs X)). */
6024 if (GET_MODE_CLASS (mode) == MODE_INT
6025 && comparison_p
6026 && XEXP (cond, 1) == const0_rtx
6027 && GET_CODE (false_rtx) == NEG
6028 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6029 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6030 && ! side_effects_p (true_rtx))
6031 switch (true_code)
6033 case GT:
6034 case GE:
6035 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6036 case LT:
6037 case LE:
6038 return
6039 simplify_gen_unary (NEG, mode,
6040 simplify_gen_unary (ABS, mode, true_rtx, mode),
6041 mode);
6042 default:
6043 break;
6046 /* Look for MIN or MAX. */
6048 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6049 && comparison_p
6050 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6051 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6052 && ! side_effects_p (cond))
6053 switch (true_code)
6055 case GE:
6056 case GT:
6057 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6058 case LE:
6059 case LT:
6060 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6061 case GEU:
6062 case GTU:
6063 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6064 case LEU:
6065 case LTU:
6066 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6067 default:
6068 break;
6071 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6072 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6073 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6074 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6075 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6076 neither 1 or -1, but it isn't worth checking for. */
6078 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6079 && comparison_p
6080 && GET_MODE_CLASS (mode) == MODE_INT
6081 && ! side_effects_p (x))
6083 rtx t = make_compound_operation (true_rtx, SET);
6084 rtx f = make_compound_operation (false_rtx, SET);
6085 rtx cond_op0 = XEXP (cond, 0);
6086 rtx cond_op1 = XEXP (cond, 1);
6087 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6088 enum machine_mode m = mode;
6089 rtx z = 0, c1 = NULL_RTX;
6091 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6092 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6093 || GET_CODE (t) == ASHIFT
6094 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6095 && rtx_equal_p (XEXP (t, 0), f))
6096 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6098 /* If an identity-zero op is commutative, check whether there
6099 would be a match if we swapped the operands. */
6100 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6101 || GET_CODE (t) == XOR)
6102 && rtx_equal_p (XEXP (t, 1), f))
6103 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6104 else if (GET_CODE (t) == SIGN_EXTEND
6105 && (GET_CODE (XEXP (t, 0)) == PLUS
6106 || GET_CODE (XEXP (t, 0)) == MINUS
6107 || GET_CODE (XEXP (t, 0)) == IOR
6108 || GET_CODE (XEXP (t, 0)) == XOR
6109 || GET_CODE (XEXP (t, 0)) == ASHIFT
6110 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6111 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6112 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6113 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6114 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6115 && (num_sign_bit_copies (f, GET_MODE (f))
6116 > (unsigned int)
6117 (GET_MODE_PRECISION (mode)
6118 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6120 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6121 extend_op = SIGN_EXTEND;
6122 m = GET_MODE (XEXP (t, 0));
6124 else if (GET_CODE (t) == SIGN_EXTEND
6125 && (GET_CODE (XEXP (t, 0)) == PLUS
6126 || GET_CODE (XEXP (t, 0)) == IOR
6127 || GET_CODE (XEXP (t, 0)) == XOR)
6128 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6129 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6130 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6131 && (num_sign_bit_copies (f, GET_MODE (f))
6132 > (unsigned int)
6133 (GET_MODE_PRECISION (mode)
6134 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6136 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6137 extend_op = SIGN_EXTEND;
6138 m = GET_MODE (XEXP (t, 0));
6140 else if (GET_CODE (t) == ZERO_EXTEND
6141 && (GET_CODE (XEXP (t, 0)) == PLUS
6142 || GET_CODE (XEXP (t, 0)) == MINUS
6143 || GET_CODE (XEXP (t, 0)) == IOR
6144 || GET_CODE (XEXP (t, 0)) == XOR
6145 || GET_CODE (XEXP (t, 0)) == ASHIFT
6146 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6147 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6148 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6149 && HWI_COMPUTABLE_MODE_P (mode)
6150 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6151 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6152 && ((nonzero_bits (f, GET_MODE (f))
6153 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6154 == 0))
6156 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6157 extend_op = ZERO_EXTEND;
6158 m = GET_MODE (XEXP (t, 0));
6160 else if (GET_CODE (t) == ZERO_EXTEND
6161 && (GET_CODE (XEXP (t, 0)) == PLUS
6162 || GET_CODE (XEXP (t, 0)) == IOR
6163 || GET_CODE (XEXP (t, 0)) == XOR)
6164 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6165 && HWI_COMPUTABLE_MODE_P (mode)
6166 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6167 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6168 && ((nonzero_bits (f, GET_MODE (f))
6169 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6170 == 0))
6172 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6173 extend_op = ZERO_EXTEND;
6174 m = GET_MODE (XEXP (t, 0));
6177 if (z)
6179 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6180 cond_op0, cond_op1),
6181 pc_rtx, pc_rtx, 0, 0, 0);
6182 temp = simplify_gen_binary (MULT, m, temp,
6183 simplify_gen_binary (MULT, m, c1,
6184 const_true_rtx));
6185 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6186 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6188 if (extend_op != UNKNOWN)
6189 temp = simplify_gen_unary (extend_op, mode, temp, m);
6191 return temp;
6195 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6196 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6197 negation of a single bit, we can convert this operation to a shift. We
6198 can actually do this more generally, but it doesn't seem worth it. */
6200 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6201 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6202 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6203 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6204 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6205 == GET_MODE_PRECISION (mode))
6206 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6207 return
6208 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6209 gen_lowpart (mode, XEXP (cond, 0)), i);
6211 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6212 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6213 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6214 && GET_MODE (XEXP (cond, 0)) == mode
6215 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6216 == nonzero_bits (XEXP (cond, 0), mode)
6217 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6218 return XEXP (cond, 0);
6220 return x;
6223 /* Simplify X, a SET expression. Return the new expression. */
6225 static rtx
6226 simplify_set (rtx x)
6228 rtx src = SET_SRC (x);
6229 rtx dest = SET_DEST (x);
6230 enum machine_mode mode
6231 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6232 rtx other_insn;
6233 rtx *cc_use;
6235 /* (set (pc) (return)) gets written as (return). */
6236 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6237 return src;
6239 /* Now that we know for sure which bits of SRC we are using, see if we can
6240 simplify the expression for the object knowing that we only need the
6241 low-order bits. */
6243 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6245 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6246 SUBST (SET_SRC (x), src);
6249 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6250 the comparison result and try to simplify it unless we already have used
6251 undobuf.other_insn. */
6252 if ((GET_MODE_CLASS (mode) == MODE_CC
6253 || GET_CODE (src) == COMPARE
6254 || CC0_P (dest))
6255 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6256 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6257 && COMPARISON_P (*cc_use)
6258 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6260 enum rtx_code old_code = GET_CODE (*cc_use);
6261 enum rtx_code new_code;
6262 rtx op0, op1, tmp;
6263 int other_changed = 0;
6264 rtx inner_compare = NULL_RTX;
6265 enum machine_mode compare_mode = GET_MODE (dest);
6267 if (GET_CODE (src) == COMPARE)
6269 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6270 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6272 inner_compare = op0;
6273 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6276 else
6277 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6279 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6280 op0, op1);
6281 if (!tmp)
6282 new_code = old_code;
6283 else if (!CONSTANT_P (tmp))
6285 new_code = GET_CODE (tmp);
6286 op0 = XEXP (tmp, 0);
6287 op1 = XEXP (tmp, 1);
6289 else
6291 rtx pat = PATTERN (other_insn);
6292 undobuf.other_insn = other_insn;
6293 SUBST (*cc_use, tmp);
6295 /* Attempt to simplify CC user. */
6296 if (GET_CODE (pat) == SET)
6298 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6299 if (new_rtx != NULL_RTX)
6300 SUBST (SET_SRC (pat), new_rtx);
6303 /* Convert X into a no-op move. */
6304 SUBST (SET_DEST (x), pc_rtx);
6305 SUBST (SET_SRC (x), pc_rtx);
6306 return x;
6309 /* Simplify our comparison, if possible. */
6310 new_code = simplify_comparison (new_code, &op0, &op1);
6312 #ifdef SELECT_CC_MODE
6313 /* If this machine has CC modes other than CCmode, check to see if we
6314 need to use a different CC mode here. */
6315 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6316 compare_mode = GET_MODE (op0);
6317 else if (inner_compare
6318 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6319 && new_code == old_code
6320 && op0 == XEXP (inner_compare, 0)
6321 && op1 == XEXP (inner_compare, 1))
6322 compare_mode = GET_MODE (inner_compare);
6323 else
6324 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6326 #ifndef HAVE_cc0
6327 /* If the mode changed, we have to change SET_DEST, the mode in the
6328 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6329 a hard register, just build new versions with the proper mode. If it
6330 is a pseudo, we lose unless it is only time we set the pseudo, in
6331 which case we can safely change its mode. */
6332 if (compare_mode != GET_MODE (dest))
6334 if (can_change_dest_mode (dest, 0, compare_mode))
6336 unsigned int regno = REGNO (dest);
6337 rtx new_dest;
6339 if (regno < FIRST_PSEUDO_REGISTER)
6340 new_dest = gen_rtx_REG (compare_mode, regno);
6341 else
6343 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6344 new_dest = regno_reg_rtx[regno];
6347 SUBST (SET_DEST (x), new_dest);
6348 SUBST (XEXP (*cc_use, 0), new_dest);
6349 other_changed = 1;
6351 dest = new_dest;
6354 #endif /* cc0 */
6355 #endif /* SELECT_CC_MODE */
6357 /* If the code changed, we have to build a new comparison in
6358 undobuf.other_insn. */
6359 if (new_code != old_code)
6361 int other_changed_previously = other_changed;
6362 unsigned HOST_WIDE_INT mask;
6363 rtx old_cc_use = *cc_use;
6365 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6366 dest, const0_rtx));
6367 other_changed = 1;
6369 /* If the only change we made was to change an EQ into an NE or
6370 vice versa, OP0 has only one bit that might be nonzero, and OP1
6371 is zero, check if changing the user of the condition code will
6372 produce a valid insn. If it won't, we can keep the original code
6373 in that insn by surrounding our operation with an XOR. */
6375 if (((old_code == NE && new_code == EQ)
6376 || (old_code == EQ && new_code == NE))
6377 && ! other_changed_previously && op1 == const0_rtx
6378 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6379 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6381 rtx pat = PATTERN (other_insn), note = 0;
6383 if ((recog_for_combine (&pat, other_insn, &note) < 0
6384 && ! check_asm_operands (pat)))
6386 *cc_use = old_cc_use;
6387 other_changed = 0;
6389 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6390 gen_int_mode (mask,
6391 GET_MODE (op0)));
6396 if (other_changed)
6397 undobuf.other_insn = other_insn;
6399 /* Otherwise, if we didn't previously have a COMPARE in the
6400 correct mode, we need one. */
6401 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6403 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6404 src = SET_SRC (x);
6406 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6408 SUBST (SET_SRC (x), op0);
6409 src = SET_SRC (x);
6411 /* Otherwise, update the COMPARE if needed. */
6412 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6414 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6415 src = SET_SRC (x);
6418 else
6420 /* Get SET_SRC in a form where we have placed back any
6421 compound expressions. Then do the checks below. */
6422 src = make_compound_operation (src, SET);
6423 SUBST (SET_SRC (x), src);
6426 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6427 and X being a REG or (subreg (reg)), we may be able to convert this to
6428 (set (subreg:m2 x) (op)).
6430 We can always do this if M1 is narrower than M2 because that means that
6431 we only care about the low bits of the result.
6433 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6434 perform a narrower operation than requested since the high-order bits will
6435 be undefined. On machine where it is defined, this transformation is safe
6436 as long as M1 and M2 have the same number of words. */
6438 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6439 && !OBJECT_P (SUBREG_REG (src))
6440 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6441 / UNITS_PER_WORD)
6442 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6443 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6444 #ifndef WORD_REGISTER_OPERATIONS
6445 && (GET_MODE_SIZE (GET_MODE (src))
6446 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6447 #endif
6448 #ifdef CANNOT_CHANGE_MODE_CLASS
6449 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6450 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6451 GET_MODE (SUBREG_REG (src)),
6452 GET_MODE (src)))
6453 #endif
6454 && (REG_P (dest)
6455 || (GET_CODE (dest) == SUBREG
6456 && REG_P (SUBREG_REG (dest)))))
6458 SUBST (SET_DEST (x),
6459 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6460 dest));
6461 SUBST (SET_SRC (x), SUBREG_REG (src));
6463 src = SET_SRC (x), dest = SET_DEST (x);
6466 #ifdef HAVE_cc0
6467 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6468 in SRC. */
6469 if (dest == cc0_rtx
6470 && GET_CODE (src) == SUBREG
6471 && subreg_lowpart_p (src)
6472 && (GET_MODE_PRECISION (GET_MODE (src))
6473 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6475 rtx inner = SUBREG_REG (src);
6476 enum machine_mode inner_mode = GET_MODE (inner);
6478 /* Here we make sure that we don't have a sign bit on. */
6479 if (val_signbit_known_clear_p (GET_MODE (src),
6480 nonzero_bits (inner, inner_mode)))
6482 SUBST (SET_SRC (x), inner);
6483 src = SET_SRC (x);
6486 #endif
6488 #ifdef LOAD_EXTEND_OP
6489 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6490 would require a paradoxical subreg. Replace the subreg with a
6491 zero_extend to avoid the reload that would otherwise be required. */
6493 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6494 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6495 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6496 && SUBREG_BYTE (src) == 0
6497 && paradoxical_subreg_p (src)
6498 && MEM_P (SUBREG_REG (src)))
6500 SUBST (SET_SRC (x),
6501 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6502 GET_MODE (src), SUBREG_REG (src)));
6504 src = SET_SRC (x);
6506 #endif
6508 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6509 are comparing an item known to be 0 or -1 against 0, use a logical
6510 operation instead. Check for one of the arms being an IOR of the other
6511 arm with some value. We compute three terms to be IOR'ed together. In
6512 practice, at most two will be nonzero. Then we do the IOR's. */
6514 if (GET_CODE (dest) != PC
6515 && GET_CODE (src) == IF_THEN_ELSE
6516 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6517 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6518 && XEXP (XEXP (src, 0), 1) == const0_rtx
6519 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6520 #ifdef HAVE_conditional_move
6521 && ! can_conditionally_move_p (GET_MODE (src))
6522 #endif
6523 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6524 GET_MODE (XEXP (XEXP (src, 0), 0)))
6525 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6526 && ! side_effects_p (src))
6528 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6529 ? XEXP (src, 1) : XEXP (src, 2));
6530 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6531 ? XEXP (src, 2) : XEXP (src, 1));
6532 rtx term1 = const0_rtx, term2, term3;
6534 if (GET_CODE (true_rtx) == IOR
6535 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6536 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6537 else if (GET_CODE (true_rtx) == IOR
6538 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6539 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6540 else if (GET_CODE (false_rtx) == IOR
6541 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6542 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6543 else if (GET_CODE (false_rtx) == IOR
6544 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6545 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6547 term2 = simplify_gen_binary (AND, GET_MODE (src),
6548 XEXP (XEXP (src, 0), 0), true_rtx);
6549 term3 = simplify_gen_binary (AND, GET_MODE (src),
6550 simplify_gen_unary (NOT, GET_MODE (src),
6551 XEXP (XEXP (src, 0), 0),
6552 GET_MODE (src)),
6553 false_rtx);
6555 SUBST (SET_SRC (x),
6556 simplify_gen_binary (IOR, GET_MODE (src),
6557 simplify_gen_binary (IOR, GET_MODE (src),
6558 term1, term2),
6559 term3));
6561 src = SET_SRC (x);
6564 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6565 whole thing fail. */
6566 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6567 return src;
6568 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6569 return dest;
6570 else
6571 /* Convert this into a field assignment operation, if possible. */
6572 return make_field_assignment (x);
6575 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6576 result. */
6578 static rtx
6579 simplify_logical (rtx x)
6581 enum machine_mode mode = GET_MODE (x);
6582 rtx op0 = XEXP (x, 0);
6583 rtx op1 = XEXP (x, 1);
6585 switch (GET_CODE (x))
6587 case AND:
6588 /* We can call simplify_and_const_int only if we don't lose
6589 any (sign) bits when converting INTVAL (op1) to
6590 "unsigned HOST_WIDE_INT". */
6591 if (CONST_INT_P (op1)
6592 && (HWI_COMPUTABLE_MODE_P (mode)
6593 || INTVAL (op1) > 0))
6595 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6596 if (GET_CODE (x) != AND)
6597 return x;
6599 op0 = XEXP (x, 0);
6600 op1 = XEXP (x, 1);
6603 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6604 apply the distributive law and then the inverse distributive
6605 law to see if things simplify. */
6606 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6608 rtx result = distribute_and_simplify_rtx (x, 0);
6609 if (result)
6610 return result;
6612 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6614 rtx result = distribute_and_simplify_rtx (x, 1);
6615 if (result)
6616 return result;
6618 break;
6620 case IOR:
6621 /* If we have (ior (and A B) C), apply the distributive law and then
6622 the inverse distributive law to see if things simplify. */
6624 if (GET_CODE (op0) == AND)
6626 rtx result = distribute_and_simplify_rtx (x, 0);
6627 if (result)
6628 return result;
6631 if (GET_CODE (op1) == AND)
6633 rtx result = distribute_and_simplify_rtx (x, 1);
6634 if (result)
6635 return result;
6637 break;
6639 default:
6640 gcc_unreachable ();
6643 return x;
6646 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6647 operations" because they can be replaced with two more basic operations.
6648 ZERO_EXTEND is also considered "compound" because it can be replaced with
6649 an AND operation, which is simpler, though only one operation.
6651 The function expand_compound_operation is called with an rtx expression
6652 and will convert it to the appropriate shifts and AND operations,
6653 simplifying at each stage.
6655 The function make_compound_operation is called to convert an expression
6656 consisting of shifts and ANDs into the equivalent compound expression.
6657 It is the inverse of this function, loosely speaking. */
6659 static rtx
6660 expand_compound_operation (rtx x)
6662 unsigned HOST_WIDE_INT pos = 0, len;
6663 int unsignedp = 0;
6664 unsigned int modewidth;
6665 rtx tem;
6667 switch (GET_CODE (x))
6669 case ZERO_EXTEND:
6670 unsignedp = 1;
6671 case SIGN_EXTEND:
6672 /* We can't necessarily use a const_int for a multiword mode;
6673 it depends on implicitly extending the value.
6674 Since we don't know the right way to extend it,
6675 we can't tell whether the implicit way is right.
6677 Even for a mode that is no wider than a const_int,
6678 we can't win, because we need to sign extend one of its bits through
6679 the rest of it, and we don't know which bit. */
6680 if (CONST_INT_P (XEXP (x, 0)))
6681 return x;
6683 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6684 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6685 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6686 reloaded. If not for that, MEM's would very rarely be safe.
6688 Reject MODEs bigger than a word, because we might not be able
6689 to reference a two-register group starting with an arbitrary register
6690 (and currently gen_lowpart might crash for a SUBREG). */
6692 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6693 return x;
6695 /* Reject MODEs that aren't scalar integers because turning vector
6696 or complex modes into shifts causes problems. */
6698 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6699 return x;
6701 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6702 /* If the inner object has VOIDmode (the only way this can happen
6703 is if it is an ASM_OPERANDS), we can't do anything since we don't
6704 know how much masking to do. */
6705 if (len == 0)
6706 return x;
6708 break;
6710 case ZERO_EXTRACT:
6711 unsignedp = 1;
6713 /* ... fall through ... */
6715 case SIGN_EXTRACT:
6716 /* If the operand is a CLOBBER, just return it. */
6717 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6718 return XEXP (x, 0);
6720 if (!CONST_INT_P (XEXP (x, 1))
6721 || !CONST_INT_P (XEXP (x, 2))
6722 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6723 return x;
6725 /* Reject MODEs that aren't scalar integers because turning vector
6726 or complex modes into shifts causes problems. */
6728 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6729 return x;
6731 len = INTVAL (XEXP (x, 1));
6732 pos = INTVAL (XEXP (x, 2));
6734 /* This should stay within the object being extracted, fail otherwise. */
6735 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6736 return x;
6738 if (BITS_BIG_ENDIAN)
6739 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6741 break;
6743 default:
6744 return x;
6746 /* Convert sign extension to zero extension, if we know that the high
6747 bit is not set, as this is easier to optimize. It will be converted
6748 back to cheaper alternative in make_extraction. */
6749 if (GET_CODE (x) == SIGN_EXTEND
6750 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6751 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6752 & ~(((unsigned HOST_WIDE_INT)
6753 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6754 >> 1))
6755 == 0)))
6757 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6758 rtx temp2 = expand_compound_operation (temp);
6760 /* Make sure this is a profitable operation. */
6761 if (set_src_cost (x, optimize_this_for_speed_p)
6762 > set_src_cost (temp2, optimize_this_for_speed_p))
6763 return temp2;
6764 else if (set_src_cost (x, optimize_this_for_speed_p)
6765 > set_src_cost (temp, optimize_this_for_speed_p))
6766 return temp;
6767 else
6768 return x;
6771 /* We can optimize some special cases of ZERO_EXTEND. */
6772 if (GET_CODE (x) == ZERO_EXTEND)
6774 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6775 know that the last value didn't have any inappropriate bits
6776 set. */
6777 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6778 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6779 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6780 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6781 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6782 return XEXP (XEXP (x, 0), 0);
6784 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6785 if (GET_CODE (XEXP (x, 0)) == SUBREG
6786 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6787 && subreg_lowpart_p (XEXP (x, 0))
6788 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6789 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6790 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6791 return SUBREG_REG (XEXP (x, 0));
6793 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6794 is a comparison and STORE_FLAG_VALUE permits. This is like
6795 the first case, but it works even when GET_MODE (x) is larger
6796 than HOST_WIDE_INT. */
6797 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6798 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6799 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6800 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6801 <= HOST_BITS_PER_WIDE_INT)
6802 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6803 return XEXP (XEXP (x, 0), 0);
6805 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6806 if (GET_CODE (XEXP (x, 0)) == SUBREG
6807 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6808 && subreg_lowpart_p (XEXP (x, 0))
6809 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6810 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6811 <= HOST_BITS_PER_WIDE_INT)
6812 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6813 return SUBREG_REG (XEXP (x, 0));
6817 /* If we reach here, we want to return a pair of shifts. The inner
6818 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6819 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6820 logical depending on the value of UNSIGNEDP.
6822 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6823 converted into an AND of a shift.
6825 We must check for the case where the left shift would have a negative
6826 count. This can happen in a case like (x >> 31) & 255 on machines
6827 that can't shift by a constant. On those machines, we would first
6828 combine the shift with the AND to produce a variable-position
6829 extraction. Then the constant of 31 would be substituted in
6830 to produce such a position. */
6832 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6833 if (modewidth >= pos + len)
6835 enum machine_mode mode = GET_MODE (x);
6836 tem = gen_lowpart (mode, XEXP (x, 0));
6837 if (!tem || GET_CODE (tem) == CLOBBER)
6838 return x;
6839 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6840 tem, modewidth - pos - len);
6841 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6842 mode, tem, modewidth - len);
6844 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6845 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6846 simplify_shift_const (NULL_RTX, LSHIFTRT,
6847 GET_MODE (x),
6848 XEXP (x, 0), pos),
6849 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6850 else
6851 /* Any other cases we can't handle. */
6852 return x;
6854 /* If we couldn't do this for some reason, return the original
6855 expression. */
6856 if (GET_CODE (tem) == CLOBBER)
6857 return x;
6859 return tem;
6862 /* X is a SET which contains an assignment of one object into
6863 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6864 or certain SUBREGS). If possible, convert it into a series of
6865 logical operations.
6867 We half-heartedly support variable positions, but do not at all
6868 support variable lengths. */
6870 static const_rtx
6871 expand_field_assignment (const_rtx x)
6873 rtx inner;
6874 rtx pos; /* Always counts from low bit. */
6875 int len;
6876 rtx mask, cleared, masked;
6877 enum machine_mode compute_mode;
6879 /* Loop until we find something we can't simplify. */
6880 while (1)
6882 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6883 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6885 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6886 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6887 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6889 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6890 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6892 inner = XEXP (SET_DEST (x), 0);
6893 len = INTVAL (XEXP (SET_DEST (x), 1));
6894 pos = XEXP (SET_DEST (x), 2);
6896 /* A constant position should stay within the width of INNER. */
6897 if (CONST_INT_P (pos)
6898 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6899 break;
6901 if (BITS_BIG_ENDIAN)
6903 if (CONST_INT_P (pos))
6904 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6905 - INTVAL (pos));
6906 else if (GET_CODE (pos) == MINUS
6907 && CONST_INT_P (XEXP (pos, 1))
6908 && (INTVAL (XEXP (pos, 1))
6909 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6910 /* If position is ADJUST - X, new position is X. */
6911 pos = XEXP (pos, 0);
6912 else
6914 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
6915 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6916 gen_int_mode (prec - len,
6917 GET_MODE (pos)),
6918 pos);
6923 /* A SUBREG between two modes that occupy the same numbers of words
6924 can be done by moving the SUBREG to the source. */
6925 else if (GET_CODE (SET_DEST (x)) == SUBREG
6926 /* We need SUBREGs to compute nonzero_bits properly. */
6927 && nonzero_sign_valid
6928 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6929 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6930 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6931 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6933 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6934 gen_lowpart
6935 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6936 SET_SRC (x)));
6937 continue;
6939 else
6940 break;
6942 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6943 inner = SUBREG_REG (inner);
6945 compute_mode = GET_MODE (inner);
6947 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6948 if (! SCALAR_INT_MODE_P (compute_mode))
6950 enum machine_mode imode;
6952 /* Don't do anything for vector or complex integral types. */
6953 if (! FLOAT_MODE_P (compute_mode))
6954 break;
6956 /* Try to find an integral mode to pun with. */
6957 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6958 if (imode == BLKmode)
6959 break;
6961 compute_mode = imode;
6962 inner = gen_lowpart (imode, inner);
6965 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6966 if (len >= HOST_BITS_PER_WIDE_INT)
6967 break;
6969 /* Now compute the equivalent expression. Make a copy of INNER
6970 for the SET_DEST in case it is a MEM into which we will substitute;
6971 we don't want shared RTL in that case. */
6972 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
6973 compute_mode);
6974 cleared = simplify_gen_binary (AND, compute_mode,
6975 simplify_gen_unary (NOT, compute_mode,
6976 simplify_gen_binary (ASHIFT,
6977 compute_mode,
6978 mask, pos),
6979 compute_mode),
6980 inner);
6981 masked = simplify_gen_binary (ASHIFT, compute_mode,
6982 simplify_gen_binary (
6983 AND, compute_mode,
6984 gen_lowpart (compute_mode, SET_SRC (x)),
6985 mask),
6986 pos);
6988 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6989 simplify_gen_binary (IOR, compute_mode,
6990 cleared, masked));
6993 return x;
6996 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6997 it is an RTX that represents the (variable) starting position; otherwise,
6998 POS is the (constant) starting bit position. Both are counted from the LSB.
7000 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7002 IN_DEST is nonzero if this is a reference in the destination of a SET.
7003 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7004 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7005 be used.
7007 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7008 ZERO_EXTRACT should be built even for bits starting at bit 0.
7010 MODE is the desired mode of the result (if IN_DEST == 0).
7012 The result is an RTX for the extraction or NULL_RTX if the target
7013 can't handle it. */
7015 static rtx
7016 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7017 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7018 int in_dest, int in_compare)
7020 /* This mode describes the size of the storage area
7021 to fetch the overall value from. Within that, we
7022 ignore the POS lowest bits, etc. */
7023 enum machine_mode is_mode = GET_MODE (inner);
7024 enum machine_mode inner_mode;
7025 enum machine_mode wanted_inner_mode;
7026 enum machine_mode wanted_inner_reg_mode = word_mode;
7027 enum machine_mode pos_mode = word_mode;
7028 enum machine_mode extraction_mode = word_mode;
7029 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7030 rtx new_rtx = 0;
7031 rtx orig_pos_rtx = pos_rtx;
7032 HOST_WIDE_INT orig_pos;
7034 if (pos_rtx && CONST_INT_P (pos_rtx))
7035 pos = INTVAL (pos_rtx), pos_rtx = 0;
7037 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7039 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7040 consider just the QI as the memory to extract from.
7041 The subreg adds or removes high bits; its mode is
7042 irrelevant to the meaning of this extraction,
7043 since POS and LEN count from the lsb. */
7044 if (MEM_P (SUBREG_REG (inner)))
7045 is_mode = GET_MODE (SUBREG_REG (inner));
7046 inner = SUBREG_REG (inner);
7048 else if (GET_CODE (inner) == ASHIFT
7049 && CONST_INT_P (XEXP (inner, 1))
7050 && pos_rtx == 0 && pos == 0
7051 && len > UINTVAL (XEXP (inner, 1)))
7053 /* We're extracting the least significant bits of an rtx
7054 (ashift X (const_int C)), where LEN > C. Extract the
7055 least significant (LEN - C) bits of X, giving an rtx
7056 whose mode is MODE, then shift it left C times. */
7057 new_rtx = make_extraction (mode, XEXP (inner, 0),
7058 0, 0, len - INTVAL (XEXP (inner, 1)),
7059 unsignedp, in_dest, in_compare);
7060 if (new_rtx != 0)
7061 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7063 else if (GET_CODE (inner) == TRUNCATE)
7064 inner = XEXP (inner, 0);
7066 inner_mode = GET_MODE (inner);
7068 /* See if this can be done without an extraction. We never can if the
7069 width of the field is not the same as that of some integer mode. For
7070 registers, we can only avoid the extraction if the position is at the
7071 low-order bit and this is either not in the destination or we have the
7072 appropriate STRICT_LOW_PART operation available.
7074 For MEM, we can avoid an extract if the field starts on an appropriate
7075 boundary and we can change the mode of the memory reference. */
7077 if (tmode != BLKmode
7078 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7079 && !MEM_P (inner)
7080 && (inner_mode == tmode
7081 || !REG_P (inner)
7082 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7083 || reg_truncated_to_mode (tmode, inner))
7084 && (! in_dest
7085 || (REG_P (inner)
7086 && have_insn_for (STRICT_LOW_PART, tmode))))
7087 || (MEM_P (inner) && pos_rtx == 0
7088 && (pos
7089 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7090 : BITS_PER_UNIT)) == 0
7091 /* We can't do this if we are widening INNER_MODE (it
7092 may not be aligned, for one thing). */
7093 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7094 && (inner_mode == tmode
7095 || (! mode_dependent_address_p (XEXP (inner, 0),
7096 MEM_ADDR_SPACE (inner))
7097 && ! MEM_VOLATILE_P (inner))))))
7099 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7100 field. If the original and current mode are the same, we need not
7101 adjust the offset. Otherwise, we do if bytes big endian.
7103 If INNER is not a MEM, get a piece consisting of just the field
7104 of interest (in this case POS % BITS_PER_WORD must be 0). */
7106 if (MEM_P (inner))
7108 HOST_WIDE_INT offset;
7110 /* POS counts from lsb, but make OFFSET count in memory order. */
7111 if (BYTES_BIG_ENDIAN)
7112 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7113 else
7114 offset = pos / BITS_PER_UNIT;
7116 new_rtx = adjust_address_nv (inner, tmode, offset);
7118 else if (REG_P (inner))
7120 if (tmode != inner_mode)
7122 /* We can't call gen_lowpart in a DEST since we
7123 always want a SUBREG (see below) and it would sometimes
7124 return a new hard register. */
7125 if (pos || in_dest)
7127 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7129 if (WORDS_BIG_ENDIAN
7130 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7131 final_word = ((GET_MODE_SIZE (inner_mode)
7132 - GET_MODE_SIZE (tmode))
7133 / UNITS_PER_WORD) - final_word;
7135 final_word *= UNITS_PER_WORD;
7136 if (BYTES_BIG_ENDIAN &&
7137 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7138 final_word += (GET_MODE_SIZE (inner_mode)
7139 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7141 /* Avoid creating invalid subregs, for example when
7142 simplifying (x>>32)&255. */
7143 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7144 return NULL_RTX;
7146 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7148 else
7149 new_rtx = gen_lowpart (tmode, inner);
7151 else
7152 new_rtx = inner;
7154 else
7155 new_rtx = force_to_mode (inner, tmode,
7156 len >= HOST_BITS_PER_WIDE_INT
7157 ? ~(unsigned HOST_WIDE_INT) 0
7158 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7161 /* If this extraction is going into the destination of a SET,
7162 make a STRICT_LOW_PART unless we made a MEM. */
7164 if (in_dest)
7165 return (MEM_P (new_rtx) ? new_rtx
7166 : (GET_CODE (new_rtx) != SUBREG
7167 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7168 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7170 if (mode == tmode)
7171 return new_rtx;
7173 if (CONST_SCALAR_INT_P (new_rtx))
7174 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7175 mode, new_rtx, tmode);
7177 /* If we know that no extraneous bits are set, and that the high
7178 bit is not set, convert the extraction to the cheaper of
7179 sign and zero extension, that are equivalent in these cases. */
7180 if (flag_expensive_optimizations
7181 && (HWI_COMPUTABLE_MODE_P (tmode)
7182 && ((nonzero_bits (new_rtx, tmode)
7183 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7184 == 0)))
7186 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7187 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7189 /* Prefer ZERO_EXTENSION, since it gives more information to
7190 backends. */
7191 if (set_src_cost (temp, optimize_this_for_speed_p)
7192 <= set_src_cost (temp1, optimize_this_for_speed_p))
7193 return temp;
7194 return temp1;
7197 /* Otherwise, sign- or zero-extend unless we already are in the
7198 proper mode. */
7200 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7201 mode, new_rtx));
7204 /* Unless this is a COMPARE or we have a funny memory reference,
7205 don't do anything with zero-extending field extracts starting at
7206 the low-order bit since they are simple AND operations. */
7207 if (pos_rtx == 0 && pos == 0 && ! in_dest
7208 && ! in_compare && unsignedp)
7209 return 0;
7211 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7212 if the position is not a constant and the length is not 1. In all
7213 other cases, we would only be going outside our object in cases when
7214 an original shift would have been undefined. */
7215 if (MEM_P (inner)
7216 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7217 || (pos_rtx != 0 && len != 1)))
7218 return 0;
7220 enum extraction_pattern pattern = (in_dest ? EP_insv
7221 : unsignedp ? EP_extzv : EP_extv);
7223 /* If INNER is not from memory, we want it to have the mode of a register
7224 extraction pattern's structure operand, or word_mode if there is no
7225 such pattern. The same applies to extraction_mode and pos_mode
7226 and their respective operands.
7228 For memory, assume that the desired extraction_mode and pos_mode
7229 are the same as for a register operation, since at present we don't
7230 have named patterns for aligned memory structures. */
7231 struct extraction_insn insn;
7232 if (get_best_reg_extraction_insn (&insn, pattern,
7233 GET_MODE_BITSIZE (inner_mode), mode))
7235 wanted_inner_reg_mode = insn.struct_mode;
7236 pos_mode = insn.pos_mode;
7237 extraction_mode = insn.field_mode;
7240 /* Never narrow an object, since that might not be safe. */
7242 if (mode != VOIDmode
7243 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7244 extraction_mode = mode;
7246 if (!MEM_P (inner))
7247 wanted_inner_mode = wanted_inner_reg_mode;
7248 else
7250 /* Be careful not to go beyond the extracted object and maintain the
7251 natural alignment of the memory. */
7252 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7253 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7254 > GET_MODE_BITSIZE (wanted_inner_mode))
7256 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7257 gcc_assert (wanted_inner_mode != VOIDmode);
7261 orig_pos = pos;
7263 if (BITS_BIG_ENDIAN)
7265 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7266 BITS_BIG_ENDIAN style. If position is constant, compute new
7267 position. Otherwise, build subtraction.
7268 Note that POS is relative to the mode of the original argument.
7269 If it's a MEM we need to recompute POS relative to that.
7270 However, if we're extracting from (or inserting into) a register,
7271 we want to recompute POS relative to wanted_inner_mode. */
7272 int width = (MEM_P (inner)
7273 ? GET_MODE_BITSIZE (is_mode)
7274 : GET_MODE_BITSIZE (wanted_inner_mode));
7276 if (pos_rtx == 0)
7277 pos = width - len - pos;
7278 else
7279 pos_rtx
7280 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7281 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7282 pos_rtx);
7283 /* POS may be less than 0 now, but we check for that below.
7284 Note that it can only be less than 0 if !MEM_P (inner). */
7287 /* If INNER has a wider mode, and this is a constant extraction, try to
7288 make it smaller and adjust the byte to point to the byte containing
7289 the value. */
7290 if (wanted_inner_mode != VOIDmode
7291 && inner_mode != wanted_inner_mode
7292 && ! pos_rtx
7293 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7294 && MEM_P (inner)
7295 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7296 && ! MEM_VOLATILE_P (inner))
7298 int offset = 0;
7300 /* The computations below will be correct if the machine is big
7301 endian in both bits and bytes or little endian in bits and bytes.
7302 If it is mixed, we must adjust. */
7304 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7305 adjust OFFSET to compensate. */
7306 if (BYTES_BIG_ENDIAN
7307 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7308 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7310 /* We can now move to the desired byte. */
7311 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7312 * GET_MODE_SIZE (wanted_inner_mode);
7313 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7315 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7316 && is_mode != wanted_inner_mode)
7317 offset = (GET_MODE_SIZE (is_mode)
7318 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7320 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7323 /* If INNER is not memory, get it into the proper mode. If we are changing
7324 its mode, POS must be a constant and smaller than the size of the new
7325 mode. */
7326 else if (!MEM_P (inner))
7328 /* On the LHS, don't create paradoxical subregs implicitely truncating
7329 the register unless TRULY_NOOP_TRUNCATION. */
7330 if (in_dest
7331 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7332 wanted_inner_mode))
7333 return NULL_RTX;
7335 if (GET_MODE (inner) != wanted_inner_mode
7336 && (pos_rtx != 0
7337 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7338 return NULL_RTX;
7340 if (orig_pos < 0)
7341 return NULL_RTX;
7343 inner = force_to_mode (inner, wanted_inner_mode,
7344 pos_rtx
7345 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7346 ? ~(unsigned HOST_WIDE_INT) 0
7347 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7348 << orig_pos),
7352 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7353 have to zero extend. Otherwise, we can just use a SUBREG. */
7354 if (pos_rtx != 0
7355 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7357 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7358 GET_MODE (pos_rtx));
7360 /* If we know that no extraneous bits are set, and that the high
7361 bit is not set, convert extraction to cheaper one - either
7362 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7363 cases. */
7364 if (flag_expensive_optimizations
7365 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7366 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7367 & ~(((unsigned HOST_WIDE_INT)
7368 GET_MODE_MASK (GET_MODE (pos_rtx)))
7369 >> 1))
7370 == 0)))
7372 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7373 GET_MODE (pos_rtx));
7375 /* Prefer ZERO_EXTENSION, since it gives more information to
7376 backends. */
7377 if (set_src_cost (temp1, optimize_this_for_speed_p)
7378 < set_src_cost (temp, optimize_this_for_speed_p))
7379 temp = temp1;
7381 pos_rtx = temp;
7384 /* Make POS_RTX unless we already have it and it is correct. If we don't
7385 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7386 be a CONST_INT. */
7387 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7388 pos_rtx = orig_pos_rtx;
7390 else if (pos_rtx == 0)
7391 pos_rtx = GEN_INT (pos);
7393 /* Make the required operation. See if we can use existing rtx. */
7394 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7395 extraction_mode, inner, GEN_INT (len), pos_rtx);
7396 if (! in_dest)
7397 new_rtx = gen_lowpart (mode, new_rtx);
7399 return new_rtx;
7402 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7403 with any other operations in X. Return X without that shift if so. */
7405 static rtx
7406 extract_left_shift (rtx x, int count)
7408 enum rtx_code code = GET_CODE (x);
7409 enum machine_mode mode = GET_MODE (x);
7410 rtx tem;
7412 switch (code)
7414 case ASHIFT:
7415 /* This is the shift itself. If it is wide enough, we will return
7416 either the value being shifted if the shift count is equal to
7417 COUNT or a shift for the difference. */
7418 if (CONST_INT_P (XEXP (x, 1))
7419 && INTVAL (XEXP (x, 1)) >= count)
7420 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7421 INTVAL (XEXP (x, 1)) - count);
7422 break;
7424 case NEG: case NOT:
7425 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7426 return simplify_gen_unary (code, mode, tem, mode);
7428 break;
7430 case PLUS: case IOR: case XOR: case AND:
7431 /* If we can safely shift this constant and we find the inner shift,
7432 make a new operation. */
7433 if (CONST_INT_P (XEXP (x, 1))
7434 && (UINTVAL (XEXP (x, 1))
7435 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7436 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7438 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7439 return simplify_gen_binary (code, mode, tem,
7440 gen_int_mode (val, mode));
7442 break;
7444 default:
7445 break;
7448 return 0;
7451 /* Look at the expression rooted at X. Look for expressions
7452 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7453 Form these expressions.
7455 Return the new rtx, usually just X.
7457 Also, for machines like the VAX that don't have logical shift insns,
7458 try to convert logical to arithmetic shift operations in cases where
7459 they are equivalent. This undoes the canonicalizations to logical
7460 shifts done elsewhere.
7462 We try, as much as possible, to re-use rtl expressions to save memory.
7464 IN_CODE says what kind of expression we are processing. Normally, it is
7465 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7466 being kludges), it is MEM. When processing the arguments of a comparison
7467 or a COMPARE against zero, it is COMPARE. */
7470 make_compound_operation (rtx x, enum rtx_code in_code)
7472 enum rtx_code code = GET_CODE (x);
7473 enum machine_mode mode = GET_MODE (x);
7474 int mode_width = GET_MODE_PRECISION (mode);
7475 rtx rhs, lhs;
7476 enum rtx_code next_code;
7477 int i, j;
7478 rtx new_rtx = 0;
7479 rtx tem;
7480 const char *fmt;
7482 /* Select the code to be used in recursive calls. Once we are inside an
7483 address, we stay there. If we have a comparison, set to COMPARE,
7484 but once inside, go back to our default of SET. */
7486 next_code = (code == MEM ? MEM
7487 : ((code == PLUS || code == MINUS)
7488 && SCALAR_INT_MODE_P (mode)) ? MEM
7489 : ((code == COMPARE || COMPARISON_P (x))
7490 && XEXP (x, 1) == const0_rtx) ? COMPARE
7491 : in_code == COMPARE ? SET : in_code);
7493 /* Process depending on the code of this operation. If NEW is set
7494 nonzero, it will be returned. */
7496 switch (code)
7498 case ASHIFT:
7499 /* Convert shifts by constants into multiplications if inside
7500 an address. */
7501 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7502 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7503 && INTVAL (XEXP (x, 1)) >= 0
7504 && SCALAR_INT_MODE_P (mode))
7506 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7507 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7509 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7510 if (GET_CODE (new_rtx) == NEG)
7512 new_rtx = XEXP (new_rtx, 0);
7513 multval = -multval;
7515 multval = trunc_int_for_mode (multval, mode);
7516 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7518 break;
7520 case PLUS:
7521 lhs = XEXP (x, 0);
7522 rhs = XEXP (x, 1);
7523 lhs = make_compound_operation (lhs, next_code);
7524 rhs = make_compound_operation (rhs, next_code);
7525 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7526 && SCALAR_INT_MODE_P (mode))
7528 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7529 XEXP (lhs, 1));
7530 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7532 else if (GET_CODE (lhs) == MULT
7533 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7535 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7536 simplify_gen_unary (NEG, mode,
7537 XEXP (lhs, 1),
7538 mode));
7539 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7541 else
7543 SUBST (XEXP (x, 0), lhs);
7544 SUBST (XEXP (x, 1), rhs);
7545 goto maybe_swap;
7547 x = gen_lowpart (mode, new_rtx);
7548 goto maybe_swap;
7550 case MINUS:
7551 lhs = XEXP (x, 0);
7552 rhs = XEXP (x, 1);
7553 lhs = make_compound_operation (lhs, next_code);
7554 rhs = make_compound_operation (rhs, next_code);
7555 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7556 && SCALAR_INT_MODE_P (mode))
7558 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7559 XEXP (rhs, 1));
7560 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7562 else if (GET_CODE (rhs) == MULT
7563 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7565 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7566 simplify_gen_unary (NEG, mode,
7567 XEXP (rhs, 1),
7568 mode));
7569 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7571 else
7573 SUBST (XEXP (x, 0), lhs);
7574 SUBST (XEXP (x, 1), rhs);
7575 return x;
7577 return gen_lowpart (mode, new_rtx);
7579 case AND:
7580 /* If the second operand is not a constant, we can't do anything
7581 with it. */
7582 if (!CONST_INT_P (XEXP (x, 1)))
7583 break;
7585 /* If the constant is a power of two minus one and the first operand
7586 is a logical right shift, make an extraction. */
7587 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7588 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7590 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7591 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7592 0, in_code == COMPARE);
7595 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7596 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7597 && subreg_lowpart_p (XEXP (x, 0))
7598 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7599 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7601 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7602 next_code);
7603 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7604 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7605 0, in_code == COMPARE);
7607 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7608 else if ((GET_CODE (XEXP (x, 0)) == XOR
7609 || GET_CODE (XEXP (x, 0)) == IOR)
7610 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7611 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7612 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7614 /* Apply the distributive law, and then try to make extractions. */
7615 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7616 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7617 XEXP (x, 1)),
7618 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7619 XEXP (x, 1)));
7620 new_rtx = make_compound_operation (new_rtx, in_code);
7623 /* If we are have (and (rotate X C) M) and C is larger than the number
7624 of bits in M, this is an extraction. */
7626 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7627 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7628 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7629 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7631 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7632 new_rtx = make_extraction (mode, new_rtx,
7633 (GET_MODE_PRECISION (mode)
7634 - INTVAL (XEXP (XEXP (x, 0), 1))),
7635 NULL_RTX, i, 1, 0, in_code == COMPARE);
7638 /* On machines without logical shifts, if the operand of the AND is
7639 a logical shift and our mask turns off all the propagated sign
7640 bits, we can replace the logical shift with an arithmetic shift. */
7641 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7642 && !have_insn_for (LSHIFTRT, mode)
7643 && have_insn_for (ASHIFTRT, mode)
7644 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7645 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7646 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7647 && mode_width <= HOST_BITS_PER_WIDE_INT)
7649 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7651 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7652 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7653 SUBST (XEXP (x, 0),
7654 gen_rtx_ASHIFTRT (mode,
7655 make_compound_operation
7656 (XEXP (XEXP (x, 0), 0), next_code),
7657 XEXP (XEXP (x, 0), 1)));
7660 /* If the constant is one less than a power of two, this might be
7661 representable by an extraction even if no shift is present.
7662 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7663 we are in a COMPARE. */
7664 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7665 new_rtx = make_extraction (mode,
7666 make_compound_operation (XEXP (x, 0),
7667 next_code),
7668 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7670 /* If we are in a comparison and this is an AND with a power of two,
7671 convert this into the appropriate bit extract. */
7672 else if (in_code == COMPARE
7673 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7674 new_rtx = make_extraction (mode,
7675 make_compound_operation (XEXP (x, 0),
7676 next_code),
7677 i, NULL_RTX, 1, 1, 0, 1);
7679 break;
7681 case LSHIFTRT:
7682 /* If the sign bit is known to be zero, replace this with an
7683 arithmetic shift. */
7684 if (have_insn_for (ASHIFTRT, mode)
7685 && ! have_insn_for (LSHIFTRT, mode)
7686 && mode_width <= HOST_BITS_PER_WIDE_INT
7687 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7689 new_rtx = gen_rtx_ASHIFTRT (mode,
7690 make_compound_operation (XEXP (x, 0),
7691 next_code),
7692 XEXP (x, 1));
7693 break;
7696 /* ... fall through ... */
7698 case ASHIFTRT:
7699 lhs = XEXP (x, 0);
7700 rhs = XEXP (x, 1);
7702 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7703 this is a SIGN_EXTRACT. */
7704 if (CONST_INT_P (rhs)
7705 && GET_CODE (lhs) == ASHIFT
7706 && CONST_INT_P (XEXP (lhs, 1))
7707 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7708 && INTVAL (XEXP (lhs, 1)) >= 0
7709 && INTVAL (rhs) < mode_width)
7711 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7712 new_rtx = make_extraction (mode, new_rtx,
7713 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7714 NULL_RTX, mode_width - INTVAL (rhs),
7715 code == LSHIFTRT, 0, in_code == COMPARE);
7716 break;
7719 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7720 If so, try to merge the shifts into a SIGN_EXTEND. We could
7721 also do this for some cases of SIGN_EXTRACT, but it doesn't
7722 seem worth the effort; the case checked for occurs on Alpha. */
7724 if (!OBJECT_P (lhs)
7725 && ! (GET_CODE (lhs) == SUBREG
7726 && (OBJECT_P (SUBREG_REG (lhs))))
7727 && CONST_INT_P (rhs)
7728 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7729 && INTVAL (rhs) < mode_width
7730 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7731 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7732 0, NULL_RTX, mode_width - INTVAL (rhs),
7733 code == LSHIFTRT, 0, in_code == COMPARE);
7735 break;
7737 case SUBREG:
7738 /* Call ourselves recursively on the inner expression. If we are
7739 narrowing the object and it has a different RTL code from
7740 what it originally did, do this SUBREG as a force_to_mode. */
7742 rtx inner = SUBREG_REG (x), simplified;
7743 enum rtx_code subreg_code = in_code;
7745 /* If in_code is COMPARE, it isn't always safe to pass it through
7746 to the recursive make_compound_operation call. */
7747 if (subreg_code == COMPARE
7748 && (!subreg_lowpart_p (x)
7749 || GET_CODE (inner) == SUBREG
7750 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7751 is (const_int 0), rather than
7752 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7753 || (GET_CODE (inner) == AND
7754 && CONST_INT_P (XEXP (inner, 1))
7755 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7756 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7757 >= GET_MODE_BITSIZE (mode))))
7758 subreg_code = SET;
7760 tem = make_compound_operation (inner, subreg_code);
7762 simplified
7763 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7764 if (simplified)
7765 tem = simplified;
7767 if (GET_CODE (tem) != GET_CODE (inner)
7768 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7769 && subreg_lowpart_p (x))
7771 rtx newer
7772 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7774 /* If we have something other than a SUBREG, we might have
7775 done an expansion, so rerun ourselves. */
7776 if (GET_CODE (newer) != SUBREG)
7777 newer = make_compound_operation (newer, in_code);
7779 /* force_to_mode can expand compounds. If it just re-expanded the
7780 compound, use gen_lowpart to convert to the desired mode. */
7781 if (rtx_equal_p (newer, x)
7782 /* Likewise if it re-expanded the compound only partially.
7783 This happens for SUBREG of ZERO_EXTRACT if they extract
7784 the same number of bits. */
7785 || (GET_CODE (newer) == SUBREG
7786 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7787 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7788 && GET_CODE (inner) == AND
7789 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7790 return gen_lowpart (GET_MODE (x), tem);
7792 return newer;
7795 if (simplified)
7796 return tem;
7798 break;
7800 default:
7801 break;
7804 if (new_rtx)
7806 x = gen_lowpart (mode, new_rtx);
7807 code = GET_CODE (x);
7810 /* Now recursively process each operand of this operation. We need to
7811 handle ZERO_EXTEND specially so that we don't lose track of the
7812 inner mode. */
7813 if (GET_CODE (x) == ZERO_EXTEND)
7815 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7816 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7817 new_rtx, GET_MODE (XEXP (x, 0)));
7818 if (tem)
7819 return tem;
7820 SUBST (XEXP (x, 0), new_rtx);
7821 return x;
7824 fmt = GET_RTX_FORMAT (code);
7825 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7826 if (fmt[i] == 'e')
7828 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7829 SUBST (XEXP (x, i), new_rtx);
7831 else if (fmt[i] == 'E')
7832 for (j = 0; j < XVECLEN (x, i); j++)
7834 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7835 SUBST (XVECEXP (x, i, j), new_rtx);
7838 maybe_swap:
7839 /* If this is a commutative operation, the changes to the operands
7840 may have made it noncanonical. */
7841 if (COMMUTATIVE_ARITH_P (x)
7842 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7844 tem = XEXP (x, 0);
7845 SUBST (XEXP (x, 0), XEXP (x, 1));
7846 SUBST (XEXP (x, 1), tem);
7849 return x;
7852 /* Given M see if it is a value that would select a field of bits
7853 within an item, but not the entire word. Return -1 if not.
7854 Otherwise, return the starting position of the field, where 0 is the
7855 low-order bit.
7857 *PLEN is set to the length of the field. */
7859 static int
7860 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7862 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7863 int pos = m ? ctz_hwi (m) : -1;
7864 int len = 0;
7866 if (pos >= 0)
7867 /* Now shift off the low-order zero bits and see if we have a
7868 power of two minus 1. */
7869 len = exact_log2 ((m >> pos) + 1);
7871 if (len <= 0)
7872 pos = -1;
7874 *plen = len;
7875 return pos;
7878 /* If X refers to a register that equals REG in value, replace these
7879 references with REG. */
7880 static rtx
7881 canon_reg_for_combine (rtx x, rtx reg)
7883 rtx op0, op1, op2;
7884 const char *fmt;
7885 int i;
7886 bool copied;
7888 enum rtx_code code = GET_CODE (x);
7889 switch (GET_RTX_CLASS (code))
7891 case RTX_UNARY:
7892 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7893 if (op0 != XEXP (x, 0))
7894 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7895 GET_MODE (reg));
7896 break;
7898 case RTX_BIN_ARITH:
7899 case RTX_COMM_ARITH:
7900 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7901 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7902 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7903 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7904 break;
7906 case RTX_COMPARE:
7907 case RTX_COMM_COMPARE:
7908 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7909 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7910 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7911 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7912 GET_MODE (op0), op0, op1);
7913 break;
7915 case RTX_TERNARY:
7916 case RTX_BITFIELD_OPS:
7917 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7918 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7919 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7920 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7921 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7922 GET_MODE (op0), op0, op1, op2);
7924 case RTX_OBJ:
7925 if (REG_P (x))
7927 if (rtx_equal_p (get_last_value (reg), x)
7928 || rtx_equal_p (reg, get_last_value (x)))
7929 return reg;
7930 else
7931 break;
7934 /* fall through */
7936 default:
7937 fmt = GET_RTX_FORMAT (code);
7938 copied = false;
7939 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7940 if (fmt[i] == 'e')
7942 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7943 if (op != XEXP (x, i))
7945 if (!copied)
7947 copied = true;
7948 x = copy_rtx (x);
7950 XEXP (x, i) = op;
7953 else if (fmt[i] == 'E')
7955 int j;
7956 for (j = 0; j < XVECLEN (x, i); j++)
7958 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7959 if (op != XVECEXP (x, i, j))
7961 if (!copied)
7963 copied = true;
7964 x = copy_rtx (x);
7966 XVECEXP (x, i, j) = op;
7971 break;
7974 return x;
7977 /* Return X converted to MODE. If the value is already truncated to
7978 MODE we can just return a subreg even though in the general case we
7979 would need an explicit truncation. */
7981 static rtx
7982 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7984 if (!CONST_INT_P (x)
7985 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7986 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7987 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7989 /* Bit-cast X into an integer mode. */
7990 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7991 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7992 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7993 x, GET_MODE (x));
7996 return gen_lowpart (mode, x);
7999 /* See if X can be simplified knowing that we will only refer to it in
8000 MODE and will only refer to those bits that are nonzero in MASK.
8001 If other bits are being computed or if masking operations are done
8002 that select a superset of the bits in MASK, they can sometimes be
8003 ignored.
8005 Return a possibly simplified expression, but always convert X to
8006 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8008 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8009 are all off in X. This is used when X will be complemented, by either
8010 NOT, NEG, or XOR. */
8012 static rtx
8013 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
8014 int just_select)
8016 enum rtx_code code = GET_CODE (x);
8017 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8018 enum machine_mode op_mode;
8019 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8020 rtx op0, op1, temp;
8022 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8023 code below will do the wrong thing since the mode of such an
8024 expression is VOIDmode.
8026 Also do nothing if X is a CLOBBER; this can happen if X was
8027 the return value from a call to gen_lowpart. */
8028 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8029 return x;
8031 /* We want to perform the operation is its present mode unless we know
8032 that the operation is valid in MODE, in which case we do the operation
8033 in MODE. */
8034 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8035 && have_insn_for (code, mode))
8036 ? mode : GET_MODE (x));
8038 /* It is not valid to do a right-shift in a narrower mode
8039 than the one it came in with. */
8040 if ((code == LSHIFTRT || code == ASHIFTRT)
8041 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8042 op_mode = GET_MODE (x);
8044 /* Truncate MASK to fit OP_MODE. */
8045 if (op_mode)
8046 mask &= GET_MODE_MASK (op_mode);
8048 /* When we have an arithmetic operation, or a shift whose count we
8049 do not know, we need to assume that all bits up to the highest-order
8050 bit in MASK will be needed. This is how we form such a mask. */
8051 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8052 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8053 else
8054 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8055 - 1);
8057 /* Determine what bits of X are guaranteed to be (non)zero. */
8058 nonzero = nonzero_bits (x, mode);
8060 /* If none of the bits in X are needed, return a zero. */
8061 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8062 x = const0_rtx;
8064 /* If X is a CONST_INT, return a new one. Do this here since the
8065 test below will fail. */
8066 if (CONST_INT_P (x))
8068 if (SCALAR_INT_MODE_P (mode))
8069 return gen_int_mode (INTVAL (x) & mask, mode);
8070 else
8072 x = GEN_INT (INTVAL (x) & mask);
8073 return gen_lowpart_common (mode, x);
8077 /* If X is narrower than MODE and we want all the bits in X's mode, just
8078 get X in the proper mode. */
8079 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8080 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8081 return gen_lowpart (mode, x);
8083 /* We can ignore the effect of a SUBREG if it narrows the mode or
8084 if the constant masks to zero all the bits the mode doesn't have. */
8085 if (GET_CODE (x) == SUBREG
8086 && subreg_lowpart_p (x)
8087 && ((GET_MODE_SIZE (GET_MODE (x))
8088 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8089 || (0 == (mask
8090 & GET_MODE_MASK (GET_MODE (x))
8091 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8092 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8094 /* The arithmetic simplifications here only work for scalar integer modes. */
8095 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8096 return gen_lowpart_or_truncate (mode, x);
8098 switch (code)
8100 case CLOBBER:
8101 /* If X is a (clobber (const_int)), return it since we know we are
8102 generating something that won't match. */
8103 return x;
8105 case SIGN_EXTEND:
8106 case ZERO_EXTEND:
8107 case ZERO_EXTRACT:
8108 case SIGN_EXTRACT:
8109 x = expand_compound_operation (x);
8110 if (GET_CODE (x) != code)
8111 return force_to_mode (x, mode, mask, next_select);
8112 break;
8114 case TRUNCATE:
8115 /* Similarly for a truncate. */
8116 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8118 case AND:
8119 /* If this is an AND with a constant, convert it into an AND
8120 whose constant is the AND of that constant with MASK. If it
8121 remains an AND of MASK, delete it since it is redundant. */
8123 if (CONST_INT_P (XEXP (x, 1)))
8125 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8126 mask & INTVAL (XEXP (x, 1)));
8128 /* If X is still an AND, see if it is an AND with a mask that
8129 is just some low-order bits. If so, and it is MASK, we don't
8130 need it. */
8132 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8133 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8134 == mask))
8135 x = XEXP (x, 0);
8137 /* If it remains an AND, try making another AND with the bits
8138 in the mode mask that aren't in MASK turned on. If the
8139 constant in the AND is wide enough, this might make a
8140 cheaper constant. */
8142 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8143 && GET_MODE_MASK (GET_MODE (x)) != mask
8144 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8146 unsigned HOST_WIDE_INT cval
8147 = UINTVAL (XEXP (x, 1))
8148 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8149 rtx y;
8151 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8152 gen_int_mode (cval, GET_MODE (x)));
8153 if (set_src_cost (y, optimize_this_for_speed_p)
8154 < set_src_cost (x, optimize_this_for_speed_p))
8155 x = y;
8158 break;
8161 goto binop;
8163 case PLUS:
8164 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8165 low-order bits (as in an alignment operation) and FOO is already
8166 aligned to that boundary, mask C1 to that boundary as well.
8167 This may eliminate that PLUS and, later, the AND. */
8170 unsigned int width = GET_MODE_PRECISION (mode);
8171 unsigned HOST_WIDE_INT smask = mask;
8173 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8174 number, sign extend it. */
8176 if (width < HOST_BITS_PER_WIDE_INT
8177 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8178 smask |= HOST_WIDE_INT_M1U << width;
8180 if (CONST_INT_P (XEXP (x, 1))
8181 && exact_log2 (- smask) >= 0
8182 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8183 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8184 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8185 (INTVAL (XEXP (x, 1)) & smask)),
8186 mode, smask, next_select);
8189 /* ... fall through ... */
8191 case MULT:
8192 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8193 most significant bit in MASK since carries from those bits will
8194 affect the bits we are interested in. */
8195 mask = fuller_mask;
8196 goto binop;
8198 case MINUS:
8199 /* If X is (minus C Y) where C's least set bit is larger than any bit
8200 in the mask, then we may replace with (neg Y). */
8201 if (CONST_INT_P (XEXP (x, 0))
8202 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8203 & -INTVAL (XEXP (x, 0))))
8204 > mask))
8206 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8207 GET_MODE (x));
8208 return force_to_mode (x, mode, mask, next_select);
8211 /* Similarly, if C contains every bit in the fuller_mask, then we may
8212 replace with (not Y). */
8213 if (CONST_INT_P (XEXP (x, 0))
8214 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8216 x = simplify_gen_unary (NOT, GET_MODE (x),
8217 XEXP (x, 1), GET_MODE (x));
8218 return force_to_mode (x, mode, mask, next_select);
8221 mask = fuller_mask;
8222 goto binop;
8224 case IOR:
8225 case XOR:
8226 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8227 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8228 operation which may be a bitfield extraction. Ensure that the
8229 constant we form is not wider than the mode of X. */
8231 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8232 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8233 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8234 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8235 && CONST_INT_P (XEXP (x, 1))
8236 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8237 + floor_log2 (INTVAL (XEXP (x, 1))))
8238 < GET_MODE_PRECISION (GET_MODE (x)))
8239 && (UINTVAL (XEXP (x, 1))
8240 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8242 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8243 << INTVAL (XEXP (XEXP (x, 0), 1)),
8244 GET_MODE (x));
8245 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8246 XEXP (XEXP (x, 0), 0), temp);
8247 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8248 XEXP (XEXP (x, 0), 1));
8249 return force_to_mode (x, mode, mask, next_select);
8252 binop:
8253 /* For most binary operations, just propagate into the operation and
8254 change the mode if we have an operation of that mode. */
8256 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8257 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8259 /* If we ended up truncating both operands, truncate the result of the
8260 operation instead. */
8261 if (GET_CODE (op0) == TRUNCATE
8262 && GET_CODE (op1) == TRUNCATE)
8264 op0 = XEXP (op0, 0);
8265 op1 = XEXP (op1, 0);
8268 op0 = gen_lowpart_or_truncate (op_mode, op0);
8269 op1 = gen_lowpart_or_truncate (op_mode, op1);
8271 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8272 x = simplify_gen_binary (code, op_mode, op0, op1);
8273 break;
8275 case ASHIFT:
8276 /* For left shifts, do the same, but just for the first operand.
8277 However, we cannot do anything with shifts where we cannot
8278 guarantee that the counts are smaller than the size of the mode
8279 because such a count will have a different meaning in a
8280 wider mode. */
8282 if (! (CONST_INT_P (XEXP (x, 1))
8283 && INTVAL (XEXP (x, 1)) >= 0
8284 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8285 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8286 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8287 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8288 break;
8290 /* If the shift count is a constant and we can do arithmetic in
8291 the mode of the shift, refine which bits we need. Otherwise, use the
8292 conservative form of the mask. */
8293 if (CONST_INT_P (XEXP (x, 1))
8294 && INTVAL (XEXP (x, 1)) >= 0
8295 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8296 && HWI_COMPUTABLE_MODE_P (op_mode))
8297 mask >>= INTVAL (XEXP (x, 1));
8298 else
8299 mask = fuller_mask;
8301 op0 = gen_lowpart_or_truncate (op_mode,
8302 force_to_mode (XEXP (x, 0), op_mode,
8303 mask, next_select));
8305 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8306 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8307 break;
8309 case LSHIFTRT:
8310 /* Here we can only do something if the shift count is a constant,
8311 this shift constant is valid for the host, and we can do arithmetic
8312 in OP_MODE. */
8314 if (CONST_INT_P (XEXP (x, 1))
8315 && INTVAL (XEXP (x, 1)) >= 0
8316 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8317 && HWI_COMPUTABLE_MODE_P (op_mode))
8319 rtx inner = XEXP (x, 0);
8320 unsigned HOST_WIDE_INT inner_mask;
8322 /* Select the mask of the bits we need for the shift operand. */
8323 inner_mask = mask << INTVAL (XEXP (x, 1));
8325 /* We can only change the mode of the shift if we can do arithmetic
8326 in the mode of the shift and INNER_MASK is no wider than the
8327 width of X's mode. */
8328 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8329 op_mode = GET_MODE (x);
8331 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8333 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8334 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8337 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8338 shift and AND produces only copies of the sign bit (C2 is one less
8339 than a power of two), we can do this with just a shift. */
8341 if (GET_CODE (x) == LSHIFTRT
8342 && CONST_INT_P (XEXP (x, 1))
8343 /* The shift puts one of the sign bit copies in the least significant
8344 bit. */
8345 && ((INTVAL (XEXP (x, 1))
8346 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8347 >= GET_MODE_PRECISION (GET_MODE (x)))
8348 && exact_log2 (mask + 1) >= 0
8349 /* Number of bits left after the shift must be more than the mask
8350 needs. */
8351 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8352 <= GET_MODE_PRECISION (GET_MODE (x)))
8353 /* Must be more sign bit copies than the mask needs. */
8354 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8355 >= exact_log2 (mask + 1)))
8356 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8357 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8358 - exact_log2 (mask + 1)));
8360 goto shiftrt;
8362 case ASHIFTRT:
8363 /* If we are just looking for the sign bit, we don't need this shift at
8364 all, even if it has a variable count. */
8365 if (val_signbit_p (GET_MODE (x), mask))
8366 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8368 /* If this is a shift by a constant, get a mask that contains those bits
8369 that are not copies of the sign bit. We then have two cases: If
8370 MASK only includes those bits, this can be a logical shift, which may
8371 allow simplifications. If MASK is a single-bit field not within
8372 those bits, we are requesting a copy of the sign bit and hence can
8373 shift the sign bit to the appropriate location. */
8375 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8376 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8378 int i;
8380 /* If the considered data is wider than HOST_WIDE_INT, we can't
8381 represent a mask for all its bits in a single scalar.
8382 But we only care about the lower bits, so calculate these. */
8384 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8386 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8388 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8389 is the number of bits a full-width mask would have set.
8390 We need only shift if these are fewer than nonzero can
8391 hold. If not, we must keep all bits set in nonzero. */
8393 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8394 < HOST_BITS_PER_WIDE_INT)
8395 nonzero >>= INTVAL (XEXP (x, 1))
8396 + HOST_BITS_PER_WIDE_INT
8397 - GET_MODE_PRECISION (GET_MODE (x)) ;
8399 else
8401 nonzero = GET_MODE_MASK (GET_MODE (x));
8402 nonzero >>= INTVAL (XEXP (x, 1));
8405 if ((mask & ~nonzero) == 0)
8407 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8408 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8409 if (GET_CODE (x) != ASHIFTRT)
8410 return force_to_mode (x, mode, mask, next_select);
8413 else if ((i = exact_log2 (mask)) >= 0)
8415 x = simplify_shift_const
8416 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8417 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8419 if (GET_CODE (x) != ASHIFTRT)
8420 return force_to_mode (x, mode, mask, next_select);
8424 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8425 even if the shift count isn't a constant. */
8426 if (mask == 1)
8427 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8428 XEXP (x, 0), XEXP (x, 1));
8430 shiftrt:
8432 /* If this is a zero- or sign-extension operation that just affects bits
8433 we don't care about, remove it. Be sure the call above returned
8434 something that is still a shift. */
8436 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8437 && CONST_INT_P (XEXP (x, 1))
8438 && INTVAL (XEXP (x, 1)) >= 0
8439 && (INTVAL (XEXP (x, 1))
8440 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8441 && GET_CODE (XEXP (x, 0)) == ASHIFT
8442 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8443 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8444 next_select);
8446 break;
8448 case ROTATE:
8449 case ROTATERT:
8450 /* If the shift count is constant and we can do computations
8451 in the mode of X, compute where the bits we care about are.
8452 Otherwise, we can't do anything. Don't change the mode of
8453 the shift or propagate MODE into the shift, though. */
8454 if (CONST_INT_P (XEXP (x, 1))
8455 && INTVAL (XEXP (x, 1)) >= 0)
8457 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8458 GET_MODE (x),
8459 gen_int_mode (mask, GET_MODE (x)),
8460 XEXP (x, 1));
8461 if (temp && CONST_INT_P (temp))
8462 SUBST (XEXP (x, 0),
8463 force_to_mode (XEXP (x, 0), GET_MODE (x),
8464 INTVAL (temp), next_select));
8466 break;
8468 case NEG:
8469 /* If we just want the low-order bit, the NEG isn't needed since it
8470 won't change the low-order bit. */
8471 if (mask == 1)
8472 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8474 /* We need any bits less significant than the most significant bit in
8475 MASK since carries from those bits will affect the bits we are
8476 interested in. */
8477 mask = fuller_mask;
8478 goto unop;
8480 case NOT:
8481 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8482 same as the XOR case above. Ensure that the constant we form is not
8483 wider than the mode of X. */
8485 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8486 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8487 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8488 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8489 < GET_MODE_PRECISION (GET_MODE (x)))
8490 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8492 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8493 GET_MODE (x));
8494 temp = simplify_gen_binary (XOR, GET_MODE (x),
8495 XEXP (XEXP (x, 0), 0), temp);
8496 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8497 temp, XEXP (XEXP (x, 0), 1));
8499 return force_to_mode (x, mode, mask, next_select);
8502 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8503 use the full mask inside the NOT. */
8504 mask = fuller_mask;
8506 unop:
8507 op0 = gen_lowpart_or_truncate (op_mode,
8508 force_to_mode (XEXP (x, 0), mode, mask,
8509 next_select));
8510 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8511 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8512 break;
8514 case NE:
8515 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8516 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8517 which is equal to STORE_FLAG_VALUE. */
8518 if ((mask & ~STORE_FLAG_VALUE) == 0
8519 && XEXP (x, 1) == const0_rtx
8520 && GET_MODE (XEXP (x, 0)) == mode
8521 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8522 && (nonzero_bits (XEXP (x, 0), mode)
8523 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8524 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8526 break;
8528 case IF_THEN_ELSE:
8529 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8530 written in a narrower mode. We play it safe and do not do so. */
8532 SUBST (XEXP (x, 1),
8533 gen_lowpart_or_truncate (GET_MODE (x),
8534 force_to_mode (XEXP (x, 1), mode,
8535 mask, next_select)));
8536 SUBST (XEXP (x, 2),
8537 gen_lowpart_or_truncate (GET_MODE (x),
8538 force_to_mode (XEXP (x, 2), mode,
8539 mask, next_select)));
8540 break;
8542 default:
8543 break;
8546 /* Ensure we return a value of the proper mode. */
8547 return gen_lowpart_or_truncate (mode, x);
8550 /* Return nonzero if X is an expression that has one of two values depending on
8551 whether some other value is zero or nonzero. In that case, we return the
8552 value that is being tested, *PTRUE is set to the value if the rtx being
8553 returned has a nonzero value, and *PFALSE is set to the other alternative.
8555 If we return zero, we set *PTRUE and *PFALSE to X. */
8557 static rtx
8558 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8560 enum machine_mode mode = GET_MODE (x);
8561 enum rtx_code code = GET_CODE (x);
8562 rtx cond0, cond1, true0, true1, false0, false1;
8563 unsigned HOST_WIDE_INT nz;
8565 /* If we are comparing a value against zero, we are done. */
8566 if ((code == NE || code == EQ)
8567 && XEXP (x, 1) == const0_rtx)
8569 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8570 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8571 return XEXP (x, 0);
8574 /* If this is a unary operation whose operand has one of two values, apply
8575 our opcode to compute those values. */
8576 else if (UNARY_P (x)
8577 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8579 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8580 *pfalse = simplify_gen_unary (code, mode, false0,
8581 GET_MODE (XEXP (x, 0)));
8582 return cond0;
8585 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8586 make can't possibly match and would suppress other optimizations. */
8587 else if (code == COMPARE)
8590 /* If this is a binary operation, see if either side has only one of two
8591 values. If either one does or if both do and they are conditional on
8592 the same value, compute the new true and false values. */
8593 else if (BINARY_P (x))
8595 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8596 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8598 if ((cond0 != 0 || cond1 != 0)
8599 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8601 /* If if_then_else_cond returned zero, then true/false are the
8602 same rtl. We must copy one of them to prevent invalid rtl
8603 sharing. */
8604 if (cond0 == 0)
8605 true0 = copy_rtx (true0);
8606 else if (cond1 == 0)
8607 true1 = copy_rtx (true1);
8609 if (COMPARISON_P (x))
8611 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8612 true0, true1);
8613 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8614 false0, false1);
8616 else
8618 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8619 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8622 return cond0 ? cond0 : cond1;
8625 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8626 operands is zero when the other is nonzero, and vice-versa,
8627 and STORE_FLAG_VALUE is 1 or -1. */
8629 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8630 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8631 || code == UMAX)
8632 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8634 rtx op0 = XEXP (XEXP (x, 0), 1);
8635 rtx op1 = XEXP (XEXP (x, 1), 1);
8637 cond0 = XEXP (XEXP (x, 0), 0);
8638 cond1 = XEXP (XEXP (x, 1), 0);
8640 if (COMPARISON_P (cond0)
8641 && COMPARISON_P (cond1)
8642 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8643 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8644 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8645 || ((swap_condition (GET_CODE (cond0))
8646 == reversed_comparison_code (cond1, NULL))
8647 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8648 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8649 && ! side_effects_p (x))
8651 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8652 *pfalse = simplify_gen_binary (MULT, mode,
8653 (code == MINUS
8654 ? simplify_gen_unary (NEG, mode,
8655 op1, mode)
8656 : op1),
8657 const_true_rtx);
8658 return cond0;
8662 /* Similarly for MULT, AND and UMIN, except that for these the result
8663 is always zero. */
8664 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8665 && (code == MULT || code == AND || code == UMIN)
8666 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8668 cond0 = XEXP (XEXP (x, 0), 0);
8669 cond1 = XEXP (XEXP (x, 1), 0);
8671 if (COMPARISON_P (cond0)
8672 && COMPARISON_P (cond1)
8673 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8674 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8675 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8676 || ((swap_condition (GET_CODE (cond0))
8677 == reversed_comparison_code (cond1, NULL))
8678 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8679 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8680 && ! side_effects_p (x))
8682 *ptrue = *pfalse = const0_rtx;
8683 return cond0;
8688 else if (code == IF_THEN_ELSE)
8690 /* If we have IF_THEN_ELSE already, extract the condition and
8691 canonicalize it if it is NE or EQ. */
8692 cond0 = XEXP (x, 0);
8693 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8694 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8695 return XEXP (cond0, 0);
8696 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8698 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8699 return XEXP (cond0, 0);
8701 else
8702 return cond0;
8705 /* If X is a SUBREG, we can narrow both the true and false values
8706 if the inner expression, if there is a condition. */
8707 else if (code == SUBREG
8708 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8709 &true0, &false0)))
8711 true0 = simplify_gen_subreg (mode, true0,
8712 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8713 false0 = simplify_gen_subreg (mode, false0,
8714 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8715 if (true0 && false0)
8717 *ptrue = true0;
8718 *pfalse = false0;
8719 return cond0;
8723 /* If X is a constant, this isn't special and will cause confusions
8724 if we treat it as such. Likewise if it is equivalent to a constant. */
8725 else if (CONSTANT_P (x)
8726 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8729 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8730 will be least confusing to the rest of the compiler. */
8731 else if (mode == BImode)
8733 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8734 return x;
8737 /* If X is known to be either 0 or -1, those are the true and
8738 false values when testing X. */
8739 else if (x == constm1_rtx || x == const0_rtx
8740 || (mode != VOIDmode
8741 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8743 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8744 return x;
8747 /* Likewise for 0 or a single bit. */
8748 else if (HWI_COMPUTABLE_MODE_P (mode)
8749 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8751 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8752 return x;
8755 /* Otherwise fail; show no condition with true and false values the same. */
8756 *ptrue = *pfalse = x;
8757 return 0;
8760 /* Return the value of expression X given the fact that condition COND
8761 is known to be true when applied to REG as its first operand and VAL
8762 as its second. X is known to not be shared and so can be modified in
8763 place.
8765 We only handle the simplest cases, and specifically those cases that
8766 arise with IF_THEN_ELSE expressions. */
8768 static rtx
8769 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8771 enum rtx_code code = GET_CODE (x);
8772 rtx temp;
8773 const char *fmt;
8774 int i, j;
8776 if (side_effects_p (x))
8777 return x;
8779 /* If either operand of the condition is a floating point value,
8780 then we have to avoid collapsing an EQ comparison. */
8781 if (cond == EQ
8782 && rtx_equal_p (x, reg)
8783 && ! FLOAT_MODE_P (GET_MODE (x))
8784 && ! FLOAT_MODE_P (GET_MODE (val)))
8785 return val;
8787 if (cond == UNEQ && rtx_equal_p (x, reg))
8788 return val;
8790 /* If X is (abs REG) and we know something about REG's relationship
8791 with zero, we may be able to simplify this. */
8793 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8794 switch (cond)
8796 case GE: case GT: case EQ:
8797 return XEXP (x, 0);
8798 case LT: case LE:
8799 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8800 XEXP (x, 0),
8801 GET_MODE (XEXP (x, 0)));
8802 default:
8803 break;
8806 /* The only other cases we handle are MIN, MAX, and comparisons if the
8807 operands are the same as REG and VAL. */
8809 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8811 if (rtx_equal_p (XEXP (x, 0), val))
8812 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8814 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8816 if (COMPARISON_P (x))
8818 if (comparison_dominates_p (cond, code))
8819 return const_true_rtx;
8821 code = reversed_comparison_code (x, NULL);
8822 if (code != UNKNOWN
8823 && comparison_dominates_p (cond, code))
8824 return const0_rtx;
8825 else
8826 return x;
8828 else if (code == SMAX || code == SMIN
8829 || code == UMIN || code == UMAX)
8831 int unsignedp = (code == UMIN || code == UMAX);
8833 /* Do not reverse the condition when it is NE or EQ.
8834 This is because we cannot conclude anything about
8835 the value of 'SMAX (x, y)' when x is not equal to y,
8836 but we can when x equals y. */
8837 if ((code == SMAX || code == UMAX)
8838 && ! (cond == EQ || cond == NE))
8839 cond = reverse_condition (cond);
8841 switch (cond)
8843 case GE: case GT:
8844 return unsignedp ? x : XEXP (x, 1);
8845 case LE: case LT:
8846 return unsignedp ? x : XEXP (x, 0);
8847 case GEU: case GTU:
8848 return unsignedp ? XEXP (x, 1) : x;
8849 case LEU: case LTU:
8850 return unsignedp ? XEXP (x, 0) : x;
8851 default:
8852 break;
8857 else if (code == SUBREG)
8859 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8860 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8862 if (SUBREG_REG (x) != r)
8864 /* We must simplify subreg here, before we lose track of the
8865 original inner_mode. */
8866 new_rtx = simplify_subreg (GET_MODE (x), r,
8867 inner_mode, SUBREG_BYTE (x));
8868 if (new_rtx)
8869 return new_rtx;
8870 else
8871 SUBST (SUBREG_REG (x), r);
8874 return x;
8876 /* We don't have to handle SIGN_EXTEND here, because even in the
8877 case of replacing something with a modeless CONST_INT, a
8878 CONST_INT is already (supposed to be) a valid sign extension for
8879 its narrower mode, which implies it's already properly
8880 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8881 story is different. */
8882 else if (code == ZERO_EXTEND)
8884 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8885 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8887 if (XEXP (x, 0) != r)
8889 /* We must simplify the zero_extend here, before we lose
8890 track of the original inner_mode. */
8891 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8892 r, inner_mode);
8893 if (new_rtx)
8894 return new_rtx;
8895 else
8896 SUBST (XEXP (x, 0), r);
8899 return x;
8902 fmt = GET_RTX_FORMAT (code);
8903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8905 if (fmt[i] == 'e')
8906 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8907 else if (fmt[i] == 'E')
8908 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8909 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8910 cond, reg, val));
8913 return x;
8916 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8917 assignment as a field assignment. */
8919 static int
8920 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8922 if (x == y || rtx_equal_p (x, y))
8923 return 1;
8925 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8926 return 0;
8928 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8929 Note that all SUBREGs of MEM are paradoxical; otherwise they
8930 would have been rewritten. */
8931 if (MEM_P (x) && GET_CODE (y) == SUBREG
8932 && MEM_P (SUBREG_REG (y))
8933 && rtx_equal_p (SUBREG_REG (y),
8934 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8935 return 1;
8937 if (MEM_P (y) && GET_CODE (x) == SUBREG
8938 && MEM_P (SUBREG_REG (x))
8939 && rtx_equal_p (SUBREG_REG (x),
8940 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8941 return 1;
8943 /* We used to see if get_last_value of X and Y were the same but that's
8944 not correct. In one direction, we'll cause the assignment to have
8945 the wrong destination and in the case, we'll import a register into this
8946 insn that might have already have been dead. So fail if none of the
8947 above cases are true. */
8948 return 0;
8951 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8952 Return that assignment if so.
8954 We only handle the most common cases. */
8956 static rtx
8957 make_field_assignment (rtx x)
8959 rtx dest = SET_DEST (x);
8960 rtx src = SET_SRC (x);
8961 rtx assign;
8962 rtx rhs, lhs;
8963 HOST_WIDE_INT c1;
8964 HOST_WIDE_INT pos;
8965 unsigned HOST_WIDE_INT len;
8966 rtx other;
8967 enum machine_mode mode;
8969 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8970 a clear of a one-bit field. We will have changed it to
8971 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8972 for a SUBREG. */
8974 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8975 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8976 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8977 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8979 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8980 1, 1, 1, 0);
8981 if (assign != 0)
8982 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8983 return x;
8986 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8987 && subreg_lowpart_p (XEXP (src, 0))
8988 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8989 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8990 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8991 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8992 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8993 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8995 assign = make_extraction (VOIDmode, dest, 0,
8996 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8997 1, 1, 1, 0);
8998 if (assign != 0)
8999 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9000 return x;
9003 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9004 one-bit field. */
9005 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9006 && XEXP (XEXP (src, 0), 0) == const1_rtx
9007 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9009 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9010 1, 1, 1, 0);
9011 if (assign != 0)
9012 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9013 return x;
9016 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9017 SRC is an AND with all bits of that field set, then we can discard
9018 the AND. */
9019 if (GET_CODE (dest) == ZERO_EXTRACT
9020 && CONST_INT_P (XEXP (dest, 1))
9021 && GET_CODE (src) == AND
9022 && CONST_INT_P (XEXP (src, 1)))
9024 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9025 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9026 unsigned HOST_WIDE_INT ze_mask;
9028 if (width >= HOST_BITS_PER_WIDE_INT)
9029 ze_mask = -1;
9030 else
9031 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9033 /* Complete overlap. We can remove the source AND. */
9034 if ((and_mask & ze_mask) == ze_mask)
9035 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9037 /* Partial overlap. We can reduce the source AND. */
9038 if ((and_mask & ze_mask) != and_mask)
9040 mode = GET_MODE (src);
9041 src = gen_rtx_AND (mode, XEXP (src, 0),
9042 gen_int_mode (and_mask & ze_mask, mode));
9043 return gen_rtx_SET (VOIDmode, dest, src);
9047 /* The other case we handle is assignments into a constant-position
9048 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9049 a mask that has all one bits except for a group of zero bits and
9050 OTHER is known to have zeros where C1 has ones, this is such an
9051 assignment. Compute the position and length from C1. Shift OTHER
9052 to the appropriate position, force it to the required mode, and
9053 make the extraction. Check for the AND in both operands. */
9055 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9056 return x;
9058 rhs = expand_compound_operation (XEXP (src, 0));
9059 lhs = expand_compound_operation (XEXP (src, 1));
9061 if (GET_CODE (rhs) == AND
9062 && CONST_INT_P (XEXP (rhs, 1))
9063 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9064 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9065 else if (GET_CODE (lhs) == AND
9066 && CONST_INT_P (XEXP (lhs, 1))
9067 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9068 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9069 else
9070 return x;
9072 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9073 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9074 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9075 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9076 return x;
9078 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9079 if (assign == 0)
9080 return x;
9082 /* The mode to use for the source is the mode of the assignment, or of
9083 what is inside a possible STRICT_LOW_PART. */
9084 mode = (GET_CODE (assign) == STRICT_LOW_PART
9085 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9087 /* Shift OTHER right POS places and make it the source, restricting it
9088 to the proper length and mode. */
9090 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9091 GET_MODE (src),
9092 other, pos),
9093 dest);
9094 src = force_to_mode (src, mode,
9095 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9096 ? ~(unsigned HOST_WIDE_INT) 0
9097 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9100 /* If SRC is masked by an AND that does not make a difference in
9101 the value being stored, strip it. */
9102 if (GET_CODE (assign) == ZERO_EXTRACT
9103 && CONST_INT_P (XEXP (assign, 1))
9104 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9105 && GET_CODE (src) == AND
9106 && CONST_INT_P (XEXP (src, 1))
9107 && UINTVAL (XEXP (src, 1))
9108 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9109 src = XEXP (src, 0);
9111 return gen_rtx_SET (VOIDmode, assign, src);
9114 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9115 if so. */
9117 static rtx
9118 apply_distributive_law (rtx x)
9120 enum rtx_code code = GET_CODE (x);
9121 enum rtx_code inner_code;
9122 rtx lhs, rhs, other;
9123 rtx tem;
9125 /* Distributivity is not true for floating point as it can change the
9126 value. So we don't do it unless -funsafe-math-optimizations. */
9127 if (FLOAT_MODE_P (GET_MODE (x))
9128 && ! flag_unsafe_math_optimizations)
9129 return x;
9131 /* The outer operation can only be one of the following: */
9132 if (code != IOR && code != AND && code != XOR
9133 && code != PLUS && code != MINUS)
9134 return x;
9136 lhs = XEXP (x, 0);
9137 rhs = XEXP (x, 1);
9139 /* If either operand is a primitive we can't do anything, so get out
9140 fast. */
9141 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9142 return x;
9144 lhs = expand_compound_operation (lhs);
9145 rhs = expand_compound_operation (rhs);
9146 inner_code = GET_CODE (lhs);
9147 if (inner_code != GET_CODE (rhs))
9148 return x;
9150 /* See if the inner and outer operations distribute. */
9151 switch (inner_code)
9153 case LSHIFTRT:
9154 case ASHIFTRT:
9155 case AND:
9156 case IOR:
9157 /* These all distribute except over PLUS. */
9158 if (code == PLUS || code == MINUS)
9159 return x;
9160 break;
9162 case MULT:
9163 if (code != PLUS && code != MINUS)
9164 return x;
9165 break;
9167 case ASHIFT:
9168 /* This is also a multiply, so it distributes over everything. */
9169 break;
9171 /* This used to handle SUBREG, but this turned out to be counter-
9172 productive, since (subreg (op ...)) usually is not handled by
9173 insn patterns, and this "optimization" therefore transformed
9174 recognizable patterns into unrecognizable ones. Therefore the
9175 SUBREG case was removed from here.
9177 It is possible that distributing SUBREG over arithmetic operations
9178 leads to an intermediate result than can then be optimized further,
9179 e.g. by moving the outer SUBREG to the other side of a SET as done
9180 in simplify_set. This seems to have been the original intent of
9181 handling SUBREGs here.
9183 However, with current GCC this does not appear to actually happen,
9184 at least on major platforms. If some case is found where removing
9185 the SUBREG case here prevents follow-on optimizations, distributing
9186 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9188 default:
9189 return x;
9192 /* Set LHS and RHS to the inner operands (A and B in the example
9193 above) and set OTHER to the common operand (C in the example).
9194 There is only one way to do this unless the inner operation is
9195 commutative. */
9196 if (COMMUTATIVE_ARITH_P (lhs)
9197 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9198 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9199 else if (COMMUTATIVE_ARITH_P (lhs)
9200 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9201 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9202 else if (COMMUTATIVE_ARITH_P (lhs)
9203 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9204 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9205 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9206 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9207 else
9208 return x;
9210 /* Form the new inner operation, seeing if it simplifies first. */
9211 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9213 /* There is one exception to the general way of distributing:
9214 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9215 if (code == XOR && inner_code == IOR)
9217 inner_code = AND;
9218 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9221 /* We may be able to continuing distributing the result, so call
9222 ourselves recursively on the inner operation before forming the
9223 outer operation, which we return. */
9224 return simplify_gen_binary (inner_code, GET_MODE (x),
9225 apply_distributive_law (tem), other);
9228 /* See if X is of the form (* (+ A B) C), and if so convert to
9229 (+ (* A C) (* B C)) and try to simplify.
9231 Most of the time, this results in no change. However, if some of
9232 the operands are the same or inverses of each other, simplifications
9233 will result.
9235 For example, (and (ior A B) (not B)) can occur as the result of
9236 expanding a bit field assignment. When we apply the distributive
9237 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9238 which then simplifies to (and (A (not B))).
9240 Note that no checks happen on the validity of applying the inverse
9241 distributive law. This is pointless since we can do it in the
9242 few places where this routine is called.
9244 N is the index of the term that is decomposed (the arithmetic operation,
9245 i.e. (+ A B) in the first example above). !N is the index of the term that
9246 is distributed, i.e. of C in the first example above. */
9247 static rtx
9248 distribute_and_simplify_rtx (rtx x, int n)
9250 enum machine_mode mode;
9251 enum rtx_code outer_code, inner_code;
9252 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9254 /* Distributivity is not true for floating point as it can change the
9255 value. So we don't do it unless -funsafe-math-optimizations. */
9256 if (FLOAT_MODE_P (GET_MODE (x))
9257 && ! flag_unsafe_math_optimizations)
9258 return NULL_RTX;
9260 decomposed = XEXP (x, n);
9261 if (!ARITHMETIC_P (decomposed))
9262 return NULL_RTX;
9264 mode = GET_MODE (x);
9265 outer_code = GET_CODE (x);
9266 distributed = XEXP (x, !n);
9268 inner_code = GET_CODE (decomposed);
9269 inner_op0 = XEXP (decomposed, 0);
9270 inner_op1 = XEXP (decomposed, 1);
9272 /* Special case (and (xor B C) (not A)), which is equivalent to
9273 (xor (ior A B) (ior A C)) */
9274 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9276 distributed = XEXP (distributed, 0);
9277 outer_code = IOR;
9280 if (n == 0)
9282 /* Distribute the second term. */
9283 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9284 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9286 else
9288 /* Distribute the first term. */
9289 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9290 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9293 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9294 new_op0, new_op1));
9295 if (GET_CODE (tmp) != outer_code
9296 && (set_src_cost (tmp, optimize_this_for_speed_p)
9297 < set_src_cost (x, optimize_this_for_speed_p)))
9298 return tmp;
9300 return NULL_RTX;
9303 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9304 in MODE. Return an equivalent form, if different from (and VAROP
9305 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9307 static rtx
9308 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9309 unsigned HOST_WIDE_INT constop)
9311 unsigned HOST_WIDE_INT nonzero;
9312 unsigned HOST_WIDE_INT orig_constop;
9313 rtx orig_varop;
9314 int i;
9316 orig_varop = varop;
9317 orig_constop = constop;
9318 if (GET_CODE (varop) == CLOBBER)
9319 return NULL_RTX;
9321 /* Simplify VAROP knowing that we will be only looking at some of the
9322 bits in it.
9324 Note by passing in CONSTOP, we guarantee that the bits not set in
9325 CONSTOP are not significant and will never be examined. We must
9326 ensure that is the case by explicitly masking out those bits
9327 before returning. */
9328 varop = force_to_mode (varop, mode, constop, 0);
9330 /* If VAROP is a CLOBBER, we will fail so return it. */
9331 if (GET_CODE (varop) == CLOBBER)
9332 return varop;
9334 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9335 to VAROP and return the new constant. */
9336 if (CONST_INT_P (varop))
9337 return gen_int_mode (INTVAL (varop) & constop, mode);
9339 /* See what bits may be nonzero in VAROP. Unlike the general case of
9340 a call to nonzero_bits, here we don't care about bits outside
9341 MODE. */
9343 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9345 /* Turn off all bits in the constant that are known to already be zero.
9346 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9347 which is tested below. */
9349 constop &= nonzero;
9351 /* If we don't have any bits left, return zero. */
9352 if (constop == 0)
9353 return const0_rtx;
9355 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9356 a power of two, we can replace this with an ASHIFT. */
9357 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9358 && (i = exact_log2 (constop)) >= 0)
9359 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9361 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9362 or XOR, then try to apply the distributive law. This may eliminate
9363 operations if either branch can be simplified because of the AND.
9364 It may also make some cases more complex, but those cases probably
9365 won't match a pattern either with or without this. */
9367 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9368 return
9369 gen_lowpart
9370 (mode,
9371 apply_distributive_law
9372 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9373 simplify_and_const_int (NULL_RTX,
9374 GET_MODE (varop),
9375 XEXP (varop, 0),
9376 constop),
9377 simplify_and_const_int (NULL_RTX,
9378 GET_MODE (varop),
9379 XEXP (varop, 1),
9380 constop))));
9382 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9383 the AND and see if one of the operands simplifies to zero. If so, we
9384 may eliminate it. */
9386 if (GET_CODE (varop) == PLUS
9387 && exact_log2 (constop + 1) >= 0)
9389 rtx o0, o1;
9391 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9392 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9393 if (o0 == const0_rtx)
9394 return o1;
9395 if (o1 == const0_rtx)
9396 return o0;
9399 /* Make a SUBREG if necessary. If we can't make it, fail. */
9400 varop = gen_lowpart (mode, varop);
9401 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9402 return NULL_RTX;
9404 /* If we are only masking insignificant bits, return VAROP. */
9405 if (constop == nonzero)
9406 return varop;
9408 if (varop == orig_varop && constop == orig_constop)
9409 return NULL_RTX;
9411 /* Otherwise, return an AND. */
9412 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9416 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9417 in MODE.
9419 Return an equivalent form, if different from X. Otherwise, return X. If
9420 X is zero, we are to always construct the equivalent form. */
9422 static rtx
9423 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9424 unsigned HOST_WIDE_INT constop)
9426 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9427 if (tem)
9428 return tem;
9430 if (!x)
9431 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9432 gen_int_mode (constop, mode));
9433 if (GET_MODE (x) != mode)
9434 x = gen_lowpart (mode, x);
9435 return x;
9438 /* Given a REG, X, compute which bits in X can be nonzero.
9439 We don't care about bits outside of those defined in MODE.
9441 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9442 a shift, AND, or zero_extract, we can do better. */
9444 static rtx
9445 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9446 const_rtx known_x ATTRIBUTE_UNUSED,
9447 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9448 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9449 unsigned HOST_WIDE_INT *nonzero)
9451 rtx tem;
9452 reg_stat_type *rsp;
9454 /* If X is a register whose nonzero bits value is current, use it.
9455 Otherwise, if X is a register whose value we can find, use that
9456 value. Otherwise, use the previously-computed global nonzero bits
9457 for this register. */
9459 rsp = &reg_stat[REGNO (x)];
9460 if (rsp->last_set_value != 0
9461 && (rsp->last_set_mode == mode
9462 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9463 && GET_MODE_CLASS (mode) == MODE_INT))
9464 && ((rsp->last_set_label >= label_tick_ebb_start
9465 && rsp->last_set_label < label_tick)
9466 || (rsp->last_set_label == label_tick
9467 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9468 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9469 && REG_N_SETS (REGNO (x)) == 1
9470 && !REGNO_REG_SET_P
9471 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9473 *nonzero &= rsp->last_set_nonzero_bits;
9474 return NULL;
9477 tem = get_last_value (x);
9479 if (tem)
9481 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9482 /* If X is narrower than MODE and TEM is a non-negative
9483 constant that would appear negative in the mode of X,
9484 sign-extend it for use in reg_nonzero_bits because some
9485 machines (maybe most) will actually do the sign-extension
9486 and this is the conservative approach.
9488 ??? For 2.5, try to tighten up the MD files in this regard
9489 instead of this kludge. */
9491 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9492 && CONST_INT_P (tem)
9493 && INTVAL (tem) > 0
9494 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9495 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9496 #endif
9497 return tem;
9499 else if (nonzero_sign_valid && rsp->nonzero_bits)
9501 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9503 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9504 /* We don't know anything about the upper bits. */
9505 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9506 *nonzero &= mask;
9509 return NULL;
9512 /* Return the number of bits at the high-order end of X that are known to
9513 be equal to the sign bit. X will be used in mode MODE; if MODE is
9514 VOIDmode, X will be used in its own mode. The returned value will always
9515 be between 1 and the number of bits in MODE. */
9517 static rtx
9518 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9519 const_rtx known_x ATTRIBUTE_UNUSED,
9520 enum machine_mode known_mode
9521 ATTRIBUTE_UNUSED,
9522 unsigned int known_ret ATTRIBUTE_UNUSED,
9523 unsigned int *result)
9525 rtx tem;
9526 reg_stat_type *rsp;
9528 rsp = &reg_stat[REGNO (x)];
9529 if (rsp->last_set_value != 0
9530 && rsp->last_set_mode == mode
9531 && ((rsp->last_set_label >= label_tick_ebb_start
9532 && rsp->last_set_label < label_tick)
9533 || (rsp->last_set_label == label_tick
9534 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9535 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9536 && REG_N_SETS (REGNO (x)) == 1
9537 && !REGNO_REG_SET_P
9538 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9540 *result = rsp->last_set_sign_bit_copies;
9541 return NULL;
9544 tem = get_last_value (x);
9545 if (tem != 0)
9546 return tem;
9548 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9549 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9550 *result = rsp->sign_bit_copies;
9552 return NULL;
9555 /* Return the number of "extended" bits there are in X, when interpreted
9556 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9557 unsigned quantities, this is the number of high-order zero bits.
9558 For signed quantities, this is the number of copies of the sign bit
9559 minus 1. In both case, this function returns the number of "spare"
9560 bits. For example, if two quantities for which this function returns
9561 at least 1 are added, the addition is known not to overflow.
9563 This function will always return 0 unless called during combine, which
9564 implies that it must be called from a define_split. */
9566 unsigned int
9567 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9569 if (nonzero_sign_valid == 0)
9570 return 0;
9572 return (unsignedp
9573 ? (HWI_COMPUTABLE_MODE_P (mode)
9574 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9575 - floor_log2 (nonzero_bits (x, mode)))
9576 : 0)
9577 : num_sign_bit_copies (x, mode) - 1);
9580 /* This function is called from `simplify_shift_const' to merge two
9581 outer operations. Specifically, we have already found that we need
9582 to perform operation *POP0 with constant *PCONST0 at the outermost
9583 position. We would now like to also perform OP1 with constant CONST1
9584 (with *POP0 being done last).
9586 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9587 the resulting operation. *PCOMP_P is set to 1 if we would need to
9588 complement the innermost operand, otherwise it is unchanged.
9590 MODE is the mode in which the operation will be done. No bits outside
9591 the width of this mode matter. It is assumed that the width of this mode
9592 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9594 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9595 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9596 result is simply *PCONST0.
9598 If the resulting operation cannot be expressed as one operation, we
9599 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9601 static int
9602 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9604 enum rtx_code op0 = *pop0;
9605 HOST_WIDE_INT const0 = *pconst0;
9607 const0 &= GET_MODE_MASK (mode);
9608 const1 &= GET_MODE_MASK (mode);
9610 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9611 if (op0 == AND)
9612 const1 &= const0;
9614 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9615 if OP0 is SET. */
9617 if (op1 == UNKNOWN || op0 == SET)
9618 return 1;
9620 else if (op0 == UNKNOWN)
9621 op0 = op1, const0 = const1;
9623 else if (op0 == op1)
9625 switch (op0)
9627 case AND:
9628 const0 &= const1;
9629 break;
9630 case IOR:
9631 const0 |= const1;
9632 break;
9633 case XOR:
9634 const0 ^= const1;
9635 break;
9636 case PLUS:
9637 const0 += const1;
9638 break;
9639 case NEG:
9640 op0 = UNKNOWN;
9641 break;
9642 default:
9643 break;
9647 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9648 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9649 return 0;
9651 /* If the two constants aren't the same, we can't do anything. The
9652 remaining six cases can all be done. */
9653 else if (const0 != const1)
9654 return 0;
9656 else
9657 switch (op0)
9659 case IOR:
9660 if (op1 == AND)
9661 /* (a & b) | b == b */
9662 op0 = SET;
9663 else /* op1 == XOR */
9664 /* (a ^ b) | b == a | b */
9666 break;
9668 case XOR:
9669 if (op1 == AND)
9670 /* (a & b) ^ b == (~a) & b */
9671 op0 = AND, *pcomp_p = 1;
9672 else /* op1 == IOR */
9673 /* (a | b) ^ b == a & ~b */
9674 op0 = AND, const0 = ~const0;
9675 break;
9677 case AND:
9678 if (op1 == IOR)
9679 /* (a | b) & b == b */
9680 op0 = SET;
9681 else /* op1 == XOR */
9682 /* (a ^ b) & b) == (~a) & b */
9683 *pcomp_p = 1;
9684 break;
9685 default:
9686 break;
9689 /* Check for NO-OP cases. */
9690 const0 &= GET_MODE_MASK (mode);
9691 if (const0 == 0
9692 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9693 op0 = UNKNOWN;
9694 else if (const0 == 0 && op0 == AND)
9695 op0 = SET;
9696 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9697 && op0 == AND)
9698 op0 = UNKNOWN;
9700 *pop0 = op0;
9702 /* ??? Slightly redundant with the above mask, but not entirely.
9703 Moving this above means we'd have to sign-extend the mode mask
9704 for the final test. */
9705 if (op0 != UNKNOWN && op0 != NEG)
9706 *pconst0 = trunc_int_for_mode (const0, mode);
9708 return 1;
9711 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9712 the shift in. The original shift operation CODE is performed on OP in
9713 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9714 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9715 result of the shift is subject to operation OUTER_CODE with operand
9716 OUTER_CONST. */
9718 static enum machine_mode
9719 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9720 enum machine_mode orig_mode, enum machine_mode mode,
9721 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9723 if (orig_mode == mode)
9724 return mode;
9725 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9727 /* In general we can't perform in wider mode for right shift and rotate. */
9728 switch (code)
9730 case ASHIFTRT:
9731 /* We can still widen if the bits brought in from the left are identical
9732 to the sign bit of ORIG_MODE. */
9733 if (num_sign_bit_copies (op, mode)
9734 > (unsigned) (GET_MODE_PRECISION (mode)
9735 - GET_MODE_PRECISION (orig_mode)))
9736 return mode;
9737 return orig_mode;
9739 case LSHIFTRT:
9740 /* Similarly here but with zero bits. */
9741 if (HWI_COMPUTABLE_MODE_P (mode)
9742 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9743 return mode;
9745 /* We can also widen if the bits brought in will be masked off. This
9746 operation is performed in ORIG_MODE. */
9747 if (outer_code == AND)
9749 int care_bits = low_bitmask_len (orig_mode, outer_const);
9751 if (care_bits >= 0
9752 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9753 return mode;
9755 /* fall through */
9757 case ROTATE:
9758 return orig_mode;
9760 case ROTATERT:
9761 gcc_unreachable ();
9763 default:
9764 return mode;
9768 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9769 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9770 if we cannot simplify it. Otherwise, return a simplified value.
9772 The shift is normally computed in the widest mode we find in VAROP, as
9773 long as it isn't a different number of words than RESULT_MODE. Exceptions
9774 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9776 static rtx
9777 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9778 rtx varop, int orig_count)
9780 enum rtx_code orig_code = code;
9781 rtx orig_varop = varop;
9782 int count;
9783 enum machine_mode mode = result_mode;
9784 enum machine_mode shift_mode, tmode;
9785 unsigned int mode_words
9786 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9787 /* We form (outer_op (code varop count) (outer_const)). */
9788 enum rtx_code outer_op = UNKNOWN;
9789 HOST_WIDE_INT outer_const = 0;
9790 int complement_p = 0;
9791 rtx new_rtx, x;
9793 /* Make sure and truncate the "natural" shift on the way in. We don't
9794 want to do this inside the loop as it makes it more difficult to
9795 combine shifts. */
9796 if (SHIFT_COUNT_TRUNCATED)
9797 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9799 /* If we were given an invalid count, don't do anything except exactly
9800 what was requested. */
9802 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9803 return NULL_RTX;
9805 count = orig_count;
9807 /* Unless one of the branches of the `if' in this loop does a `continue',
9808 we will `break' the loop after the `if'. */
9810 while (count != 0)
9812 /* If we have an operand of (clobber (const_int 0)), fail. */
9813 if (GET_CODE (varop) == CLOBBER)
9814 return NULL_RTX;
9816 /* Convert ROTATERT to ROTATE. */
9817 if (code == ROTATERT)
9819 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9820 code = ROTATE;
9821 if (VECTOR_MODE_P (result_mode))
9822 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9823 else
9824 count = bitsize - count;
9827 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9828 mode, outer_op, outer_const);
9830 /* Handle cases where the count is greater than the size of the mode
9831 minus 1. For ASHIFT, use the size minus one as the count (this can
9832 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9833 take the count modulo the size. For other shifts, the result is
9834 zero.
9836 Since these shifts are being produced by the compiler by combining
9837 multiple operations, each of which are defined, we know what the
9838 result is supposed to be. */
9840 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9842 if (code == ASHIFTRT)
9843 count = GET_MODE_PRECISION (shift_mode) - 1;
9844 else if (code == ROTATE || code == ROTATERT)
9845 count %= GET_MODE_PRECISION (shift_mode);
9846 else
9848 /* We can't simply return zero because there may be an
9849 outer op. */
9850 varop = const0_rtx;
9851 count = 0;
9852 break;
9856 /* If we discovered we had to complement VAROP, leave. Making a NOT
9857 here would cause an infinite loop. */
9858 if (complement_p)
9859 break;
9861 /* An arithmetic right shift of a quantity known to be -1 or 0
9862 is a no-op. */
9863 if (code == ASHIFTRT
9864 && (num_sign_bit_copies (varop, shift_mode)
9865 == GET_MODE_PRECISION (shift_mode)))
9867 count = 0;
9868 break;
9871 /* If we are doing an arithmetic right shift and discarding all but
9872 the sign bit copies, this is equivalent to doing a shift by the
9873 bitsize minus one. Convert it into that shift because it will often
9874 allow other simplifications. */
9876 if (code == ASHIFTRT
9877 && (count + num_sign_bit_copies (varop, shift_mode)
9878 >= GET_MODE_PRECISION (shift_mode)))
9879 count = GET_MODE_PRECISION (shift_mode) - 1;
9881 /* We simplify the tests below and elsewhere by converting
9882 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9883 `make_compound_operation' will convert it to an ASHIFTRT for
9884 those machines (such as VAX) that don't have an LSHIFTRT. */
9885 if (code == ASHIFTRT
9886 && val_signbit_known_clear_p (shift_mode,
9887 nonzero_bits (varop, shift_mode)))
9888 code = LSHIFTRT;
9890 if (((code == LSHIFTRT
9891 && HWI_COMPUTABLE_MODE_P (shift_mode)
9892 && !(nonzero_bits (varop, shift_mode) >> count))
9893 || (code == ASHIFT
9894 && HWI_COMPUTABLE_MODE_P (shift_mode)
9895 && !((nonzero_bits (varop, shift_mode) << count)
9896 & GET_MODE_MASK (shift_mode))))
9897 && !side_effects_p (varop))
9898 varop = const0_rtx;
9900 switch (GET_CODE (varop))
9902 case SIGN_EXTEND:
9903 case ZERO_EXTEND:
9904 case SIGN_EXTRACT:
9905 case ZERO_EXTRACT:
9906 new_rtx = expand_compound_operation (varop);
9907 if (new_rtx != varop)
9909 varop = new_rtx;
9910 continue;
9912 break;
9914 case MEM:
9915 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9916 minus the width of a smaller mode, we can do this with a
9917 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9918 if ((code == ASHIFTRT || code == LSHIFTRT)
9919 && ! mode_dependent_address_p (XEXP (varop, 0),
9920 MEM_ADDR_SPACE (varop))
9921 && ! MEM_VOLATILE_P (varop)
9922 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9923 MODE_INT, 1)) != BLKmode)
9925 new_rtx = adjust_address_nv (varop, tmode,
9926 BYTES_BIG_ENDIAN ? 0
9927 : count / BITS_PER_UNIT);
9929 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9930 : ZERO_EXTEND, mode, new_rtx);
9931 count = 0;
9932 continue;
9934 break;
9936 case SUBREG:
9937 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9938 the same number of words as what we've seen so far. Then store
9939 the widest mode in MODE. */
9940 if (subreg_lowpart_p (varop)
9941 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9942 > GET_MODE_SIZE (GET_MODE (varop)))
9943 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9944 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9945 == mode_words
9946 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9947 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9949 varop = SUBREG_REG (varop);
9950 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9951 mode = GET_MODE (varop);
9952 continue;
9954 break;
9956 case MULT:
9957 /* Some machines use MULT instead of ASHIFT because MULT
9958 is cheaper. But it is still better on those machines to
9959 merge two shifts into one. */
9960 if (CONST_INT_P (XEXP (varop, 1))
9961 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9963 varop
9964 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9965 XEXP (varop, 0),
9966 GEN_INT (exact_log2 (
9967 UINTVAL (XEXP (varop, 1)))));
9968 continue;
9970 break;
9972 case UDIV:
9973 /* Similar, for when divides are cheaper. */
9974 if (CONST_INT_P (XEXP (varop, 1))
9975 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9977 varop
9978 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9979 XEXP (varop, 0),
9980 GEN_INT (exact_log2 (
9981 UINTVAL (XEXP (varop, 1)))));
9982 continue;
9984 break;
9986 case ASHIFTRT:
9987 /* If we are extracting just the sign bit of an arithmetic
9988 right shift, that shift is not needed. However, the sign
9989 bit of a wider mode may be different from what would be
9990 interpreted as the sign bit in a narrower mode, so, if
9991 the result is narrower, don't discard the shift. */
9992 if (code == LSHIFTRT
9993 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9994 && (GET_MODE_BITSIZE (result_mode)
9995 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9997 varop = XEXP (varop, 0);
9998 continue;
10001 /* ... fall through ... */
10003 case LSHIFTRT:
10004 case ASHIFT:
10005 case ROTATE:
10006 /* Here we have two nested shifts. The result is usually the
10007 AND of a new shift with a mask. We compute the result below. */
10008 if (CONST_INT_P (XEXP (varop, 1))
10009 && INTVAL (XEXP (varop, 1)) >= 0
10010 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10011 && HWI_COMPUTABLE_MODE_P (result_mode)
10012 && HWI_COMPUTABLE_MODE_P (mode)
10013 && !VECTOR_MODE_P (result_mode))
10015 enum rtx_code first_code = GET_CODE (varop);
10016 unsigned int first_count = INTVAL (XEXP (varop, 1));
10017 unsigned HOST_WIDE_INT mask;
10018 rtx mask_rtx;
10020 /* We have one common special case. We can't do any merging if
10021 the inner code is an ASHIFTRT of a smaller mode. However, if
10022 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10023 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10024 we can convert it to
10025 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10026 This simplifies certain SIGN_EXTEND operations. */
10027 if (code == ASHIFT && first_code == ASHIFTRT
10028 && count == (GET_MODE_PRECISION (result_mode)
10029 - GET_MODE_PRECISION (GET_MODE (varop))))
10031 /* C3 has the low-order C1 bits zero. */
10033 mask = GET_MODE_MASK (mode)
10034 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10036 varop = simplify_and_const_int (NULL_RTX, result_mode,
10037 XEXP (varop, 0), mask);
10038 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10039 varop, count);
10040 count = first_count;
10041 code = ASHIFTRT;
10042 continue;
10045 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10046 than C1 high-order bits equal to the sign bit, we can convert
10047 this to either an ASHIFT or an ASHIFTRT depending on the
10048 two counts.
10050 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10052 if (code == ASHIFTRT && first_code == ASHIFT
10053 && GET_MODE (varop) == shift_mode
10054 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10055 > first_count))
10057 varop = XEXP (varop, 0);
10058 count -= first_count;
10059 if (count < 0)
10061 count = -count;
10062 code = ASHIFT;
10065 continue;
10068 /* There are some cases we can't do. If CODE is ASHIFTRT,
10069 we can only do this if FIRST_CODE is also ASHIFTRT.
10071 We can't do the case when CODE is ROTATE and FIRST_CODE is
10072 ASHIFTRT.
10074 If the mode of this shift is not the mode of the outer shift,
10075 we can't do this if either shift is a right shift or ROTATE.
10077 Finally, we can't do any of these if the mode is too wide
10078 unless the codes are the same.
10080 Handle the case where the shift codes are the same
10081 first. */
10083 if (code == first_code)
10085 if (GET_MODE (varop) != result_mode
10086 && (code == ASHIFTRT || code == LSHIFTRT
10087 || code == ROTATE))
10088 break;
10090 count += first_count;
10091 varop = XEXP (varop, 0);
10092 continue;
10095 if (code == ASHIFTRT
10096 || (code == ROTATE && first_code == ASHIFTRT)
10097 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10098 || (GET_MODE (varop) != result_mode
10099 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10100 || first_code == ROTATE
10101 || code == ROTATE)))
10102 break;
10104 /* To compute the mask to apply after the shift, shift the
10105 nonzero bits of the inner shift the same way the
10106 outer shift will. */
10108 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10109 result_mode);
10111 mask_rtx
10112 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10113 GEN_INT (count));
10115 /* Give up if we can't compute an outer operation to use. */
10116 if (mask_rtx == 0
10117 || !CONST_INT_P (mask_rtx)
10118 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10119 INTVAL (mask_rtx),
10120 result_mode, &complement_p))
10121 break;
10123 /* If the shifts are in the same direction, we add the
10124 counts. Otherwise, we subtract them. */
10125 if ((code == ASHIFTRT || code == LSHIFTRT)
10126 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10127 count += first_count;
10128 else
10129 count -= first_count;
10131 /* If COUNT is positive, the new shift is usually CODE,
10132 except for the two exceptions below, in which case it is
10133 FIRST_CODE. If the count is negative, FIRST_CODE should
10134 always be used */
10135 if (count > 0
10136 && ((first_code == ROTATE && code == ASHIFT)
10137 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10138 code = first_code;
10139 else if (count < 0)
10140 code = first_code, count = -count;
10142 varop = XEXP (varop, 0);
10143 continue;
10146 /* If we have (A << B << C) for any shift, we can convert this to
10147 (A << C << B). This wins if A is a constant. Only try this if
10148 B is not a constant. */
10150 else if (GET_CODE (varop) == code
10151 && CONST_INT_P (XEXP (varop, 0))
10152 && !CONST_INT_P (XEXP (varop, 1)))
10154 rtx new_rtx = simplify_const_binary_operation (code, mode,
10155 XEXP (varop, 0),
10156 GEN_INT (count));
10157 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10158 count = 0;
10159 continue;
10161 break;
10163 case NOT:
10164 if (VECTOR_MODE_P (mode))
10165 break;
10167 /* Make this fit the case below. */
10168 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10169 continue;
10171 case IOR:
10172 case AND:
10173 case XOR:
10174 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10175 with C the size of VAROP - 1 and the shift is logical if
10176 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10177 we have an (le X 0) operation. If we have an arithmetic shift
10178 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10179 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10181 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10182 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10183 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10184 && (code == LSHIFTRT || code == ASHIFTRT)
10185 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10186 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10188 count = 0;
10189 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10190 const0_rtx);
10192 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10193 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10195 continue;
10198 /* If we have (shift (logical)), move the logical to the outside
10199 to allow it to possibly combine with another logical and the
10200 shift to combine with another shift. This also canonicalizes to
10201 what a ZERO_EXTRACT looks like. Also, some machines have
10202 (and (shift)) insns. */
10204 if (CONST_INT_P (XEXP (varop, 1))
10205 /* We can't do this if we have (ashiftrt (xor)) and the
10206 constant has its sign bit set in shift_mode. */
10207 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10208 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10209 shift_mode))
10210 && (new_rtx = simplify_const_binary_operation
10211 (code, result_mode,
10212 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10213 GEN_INT (count))) != 0
10214 && CONST_INT_P (new_rtx)
10215 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10216 INTVAL (new_rtx), result_mode, &complement_p))
10218 varop = XEXP (varop, 0);
10219 continue;
10222 /* If we can't do that, try to simplify the shift in each arm of the
10223 logical expression, make a new logical expression, and apply
10224 the inverse distributive law. This also can't be done
10225 for some (ashiftrt (xor)). */
10226 if (CONST_INT_P (XEXP (varop, 1))
10227 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10228 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10229 shift_mode)))
10231 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10232 XEXP (varop, 0), count);
10233 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10234 XEXP (varop, 1), count);
10236 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10237 lhs, rhs);
10238 varop = apply_distributive_law (varop);
10240 count = 0;
10241 continue;
10243 break;
10245 case EQ:
10246 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10247 says that the sign bit can be tested, FOO has mode MODE, C is
10248 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10249 that may be nonzero. */
10250 if (code == LSHIFTRT
10251 && XEXP (varop, 1) == const0_rtx
10252 && GET_MODE (XEXP (varop, 0)) == result_mode
10253 && count == (GET_MODE_PRECISION (result_mode) - 1)
10254 && HWI_COMPUTABLE_MODE_P (result_mode)
10255 && STORE_FLAG_VALUE == -1
10256 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10257 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10258 &complement_p))
10260 varop = XEXP (varop, 0);
10261 count = 0;
10262 continue;
10264 break;
10266 case NEG:
10267 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10268 than the number of bits in the mode is equivalent to A. */
10269 if (code == LSHIFTRT
10270 && count == (GET_MODE_PRECISION (result_mode) - 1)
10271 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10273 varop = XEXP (varop, 0);
10274 count = 0;
10275 continue;
10278 /* NEG commutes with ASHIFT since it is multiplication. Move the
10279 NEG outside to allow shifts to combine. */
10280 if (code == ASHIFT
10281 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10282 &complement_p))
10284 varop = XEXP (varop, 0);
10285 continue;
10287 break;
10289 case PLUS:
10290 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10291 is one less than the number of bits in the mode is
10292 equivalent to (xor A 1). */
10293 if (code == LSHIFTRT
10294 && count == (GET_MODE_PRECISION (result_mode) - 1)
10295 && XEXP (varop, 1) == constm1_rtx
10296 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10297 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10298 &complement_p))
10300 count = 0;
10301 varop = XEXP (varop, 0);
10302 continue;
10305 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10306 that might be nonzero in BAR are those being shifted out and those
10307 bits are known zero in FOO, we can replace the PLUS with FOO.
10308 Similarly in the other operand order. This code occurs when
10309 we are computing the size of a variable-size array. */
10311 if ((code == ASHIFTRT || code == LSHIFTRT)
10312 && count < HOST_BITS_PER_WIDE_INT
10313 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10314 && (nonzero_bits (XEXP (varop, 1), result_mode)
10315 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10317 varop = XEXP (varop, 0);
10318 continue;
10320 else if ((code == ASHIFTRT || code == LSHIFTRT)
10321 && count < HOST_BITS_PER_WIDE_INT
10322 && HWI_COMPUTABLE_MODE_P (result_mode)
10323 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10324 >> count)
10325 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10326 & nonzero_bits (XEXP (varop, 1),
10327 result_mode)))
10329 varop = XEXP (varop, 1);
10330 continue;
10333 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10334 if (code == ASHIFT
10335 && CONST_INT_P (XEXP (varop, 1))
10336 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10337 XEXP (varop, 1),
10338 GEN_INT (count))) != 0
10339 && CONST_INT_P (new_rtx)
10340 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10341 INTVAL (new_rtx), result_mode, &complement_p))
10343 varop = XEXP (varop, 0);
10344 continue;
10347 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10348 signbit', and attempt to change the PLUS to an XOR and move it to
10349 the outer operation as is done above in the AND/IOR/XOR case
10350 leg for shift(logical). See details in logical handling above
10351 for reasoning in doing so. */
10352 if (code == LSHIFTRT
10353 && CONST_INT_P (XEXP (varop, 1))
10354 && mode_signbit_p (result_mode, XEXP (varop, 1))
10355 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10356 XEXP (varop, 1),
10357 GEN_INT (count))) != 0
10358 && CONST_INT_P (new_rtx)
10359 && merge_outer_ops (&outer_op, &outer_const, XOR,
10360 INTVAL (new_rtx), result_mode, &complement_p))
10362 varop = XEXP (varop, 0);
10363 continue;
10366 break;
10368 case MINUS:
10369 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10370 with C the size of VAROP - 1 and the shift is logical if
10371 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10372 we have a (gt X 0) operation. If the shift is arithmetic with
10373 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10374 we have a (neg (gt X 0)) operation. */
10376 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10377 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10378 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10379 && (code == LSHIFTRT || code == ASHIFTRT)
10380 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10381 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10382 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10384 count = 0;
10385 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10386 const0_rtx);
10388 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10389 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10391 continue;
10393 break;
10395 case TRUNCATE:
10396 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10397 if the truncate does not affect the value. */
10398 if (code == LSHIFTRT
10399 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10400 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10401 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10402 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10403 - GET_MODE_PRECISION (GET_MODE (varop)))))
10405 rtx varop_inner = XEXP (varop, 0);
10407 varop_inner
10408 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10409 XEXP (varop_inner, 0),
10410 GEN_INT
10411 (count + INTVAL (XEXP (varop_inner, 1))));
10412 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10413 count = 0;
10414 continue;
10416 break;
10418 default:
10419 break;
10422 break;
10425 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10426 outer_op, outer_const);
10428 /* We have now finished analyzing the shift. The result should be
10429 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10430 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10431 to the result of the shift. OUTER_CONST is the relevant constant,
10432 but we must turn off all bits turned off in the shift. */
10434 if (outer_op == UNKNOWN
10435 && orig_code == code && orig_count == count
10436 && varop == orig_varop
10437 && shift_mode == GET_MODE (varop))
10438 return NULL_RTX;
10440 /* Make a SUBREG if necessary. If we can't make it, fail. */
10441 varop = gen_lowpart (shift_mode, varop);
10442 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10443 return NULL_RTX;
10445 /* If we have an outer operation and we just made a shift, it is
10446 possible that we could have simplified the shift were it not
10447 for the outer operation. So try to do the simplification
10448 recursively. */
10450 if (outer_op != UNKNOWN)
10451 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10452 else
10453 x = NULL_RTX;
10455 if (x == NULL_RTX)
10456 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10458 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10459 turn off all the bits that the shift would have turned off. */
10460 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10461 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10462 GET_MODE_MASK (result_mode) >> orig_count);
10464 /* Do the remainder of the processing in RESULT_MODE. */
10465 x = gen_lowpart_or_truncate (result_mode, x);
10467 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10468 operation. */
10469 if (complement_p)
10470 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10472 if (outer_op != UNKNOWN)
10474 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10475 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10476 outer_const = trunc_int_for_mode (outer_const, result_mode);
10478 if (outer_op == AND)
10479 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10480 else if (outer_op == SET)
10482 /* This means that we have determined that the result is
10483 equivalent to a constant. This should be rare. */
10484 if (!side_effects_p (x))
10485 x = GEN_INT (outer_const);
10487 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10488 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10489 else
10490 x = simplify_gen_binary (outer_op, result_mode, x,
10491 GEN_INT (outer_const));
10494 return x;
10497 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10498 The result of the shift is RESULT_MODE. If we cannot simplify it,
10499 return X or, if it is NULL, synthesize the expression with
10500 simplify_gen_binary. Otherwise, return a simplified value.
10502 The shift is normally computed in the widest mode we find in VAROP, as
10503 long as it isn't a different number of words than RESULT_MODE. Exceptions
10504 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10506 static rtx
10507 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10508 rtx varop, int count)
10510 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10511 if (tem)
10512 return tem;
10514 if (!x)
10515 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10516 if (GET_MODE (x) != result_mode)
10517 x = gen_lowpart (result_mode, x);
10518 return x;
10522 /* Like recog, but we receive the address of a pointer to a new pattern.
10523 We try to match the rtx that the pointer points to.
10524 If that fails, we may try to modify or replace the pattern,
10525 storing the replacement into the same pointer object.
10527 Modifications include deletion or addition of CLOBBERs.
10529 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10530 the CLOBBERs are placed.
10532 The value is the final insn code from the pattern ultimately matched,
10533 or -1. */
10535 static int
10536 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10538 rtx pat = *pnewpat;
10539 rtx pat_without_clobbers;
10540 int insn_code_number;
10541 int num_clobbers_to_add = 0;
10542 int i;
10543 rtx notes = NULL_RTX;
10544 rtx old_notes, old_pat;
10545 int old_icode;
10547 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10548 we use to indicate that something didn't match. If we find such a
10549 thing, force rejection. */
10550 if (GET_CODE (pat) == PARALLEL)
10551 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10552 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10553 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10554 return -1;
10556 old_pat = PATTERN (insn);
10557 old_notes = REG_NOTES (insn);
10558 PATTERN (insn) = pat;
10559 REG_NOTES (insn) = NULL_RTX;
10561 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10562 if (dump_file && (dump_flags & TDF_DETAILS))
10564 if (insn_code_number < 0)
10565 fputs ("Failed to match this instruction:\n", dump_file);
10566 else
10567 fputs ("Successfully matched this instruction:\n", dump_file);
10568 print_rtl_single (dump_file, pat);
10571 /* If it isn't, there is the possibility that we previously had an insn
10572 that clobbered some register as a side effect, but the combined
10573 insn doesn't need to do that. So try once more without the clobbers
10574 unless this represents an ASM insn. */
10576 if (insn_code_number < 0 && ! check_asm_operands (pat)
10577 && GET_CODE (pat) == PARALLEL)
10579 int pos;
10581 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10582 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10584 if (i != pos)
10585 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10586 pos++;
10589 SUBST_INT (XVECLEN (pat, 0), pos);
10591 if (pos == 1)
10592 pat = XVECEXP (pat, 0, 0);
10594 PATTERN (insn) = pat;
10595 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10596 if (dump_file && (dump_flags & TDF_DETAILS))
10598 if (insn_code_number < 0)
10599 fputs ("Failed to match this instruction:\n", dump_file);
10600 else
10601 fputs ("Successfully matched this instruction:\n", dump_file);
10602 print_rtl_single (dump_file, pat);
10606 pat_without_clobbers = pat;
10608 PATTERN (insn) = old_pat;
10609 REG_NOTES (insn) = old_notes;
10611 /* Recognize all noop sets, these will be killed by followup pass. */
10612 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10613 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10615 /* If we had any clobbers to add, make a new pattern than contains
10616 them. Then check to make sure that all of them are dead. */
10617 if (num_clobbers_to_add)
10619 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10620 rtvec_alloc (GET_CODE (pat) == PARALLEL
10621 ? (XVECLEN (pat, 0)
10622 + num_clobbers_to_add)
10623 : num_clobbers_to_add + 1));
10625 if (GET_CODE (pat) == PARALLEL)
10626 for (i = 0; i < XVECLEN (pat, 0); i++)
10627 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10628 else
10629 XVECEXP (newpat, 0, 0) = pat;
10631 add_clobbers (newpat, insn_code_number);
10633 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10634 i < XVECLEN (newpat, 0); i++)
10636 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10637 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10638 return -1;
10639 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10641 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10642 notes = alloc_reg_note (REG_UNUSED,
10643 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10646 pat = newpat;
10649 if (insn_code_number >= 0
10650 && insn_code_number != NOOP_MOVE_INSN_CODE)
10652 old_pat = PATTERN (insn);
10653 old_notes = REG_NOTES (insn);
10654 old_icode = INSN_CODE (insn);
10655 PATTERN (insn) = pat;
10656 REG_NOTES (insn) = notes;
10658 /* Allow targets to reject combined insn. */
10659 if (!targetm.legitimate_combined_insn (insn))
10661 if (dump_file && (dump_flags & TDF_DETAILS))
10662 fputs ("Instruction not appropriate for target.",
10663 dump_file);
10665 /* Callers expect recog_for_combine to strip
10666 clobbers from the pattern on failure. */
10667 pat = pat_without_clobbers;
10668 notes = NULL_RTX;
10670 insn_code_number = -1;
10673 PATTERN (insn) = old_pat;
10674 REG_NOTES (insn) = old_notes;
10675 INSN_CODE (insn) = old_icode;
10678 *pnewpat = pat;
10679 *pnotes = notes;
10681 return insn_code_number;
10684 /* Like gen_lowpart_general but for use by combine. In combine it
10685 is not possible to create any new pseudoregs. However, it is
10686 safe to create invalid memory addresses, because combine will
10687 try to recognize them and all they will do is make the combine
10688 attempt fail.
10690 If for some reason this cannot do its job, an rtx
10691 (clobber (const_int 0)) is returned.
10692 An insn containing that will not be recognized. */
10694 static rtx
10695 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10697 enum machine_mode imode = GET_MODE (x);
10698 unsigned int osize = GET_MODE_SIZE (omode);
10699 unsigned int isize = GET_MODE_SIZE (imode);
10700 rtx result;
10702 if (omode == imode)
10703 return x;
10705 /* We can only support MODE being wider than a word if X is a
10706 constant integer or has a mode the same size. */
10707 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10708 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10709 goto fail;
10711 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10712 won't know what to do. So we will strip off the SUBREG here and
10713 process normally. */
10714 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10716 x = SUBREG_REG (x);
10718 /* For use in case we fall down into the address adjustments
10719 further below, we need to adjust the known mode and size of
10720 x; imode and isize, since we just adjusted x. */
10721 imode = GET_MODE (x);
10723 if (imode == omode)
10724 return x;
10726 isize = GET_MODE_SIZE (imode);
10729 result = gen_lowpart_common (omode, x);
10731 if (result)
10732 return result;
10734 if (MEM_P (x))
10736 int offset = 0;
10738 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10739 address. */
10740 if (MEM_VOLATILE_P (x)
10741 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10742 goto fail;
10744 /* If we want to refer to something bigger than the original memref,
10745 generate a paradoxical subreg instead. That will force a reload
10746 of the original memref X. */
10747 if (isize < osize)
10748 return gen_rtx_SUBREG (omode, x, 0);
10750 if (WORDS_BIG_ENDIAN)
10751 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10753 /* Adjust the address so that the address-after-the-data is
10754 unchanged. */
10755 if (BYTES_BIG_ENDIAN)
10756 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10758 return adjust_address_nv (x, omode, offset);
10761 /* If X is a comparison operator, rewrite it in a new mode. This
10762 probably won't match, but may allow further simplifications. */
10763 else if (COMPARISON_P (x))
10764 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10766 /* If we couldn't simplify X any other way, just enclose it in a
10767 SUBREG. Normally, this SUBREG won't match, but some patterns may
10768 include an explicit SUBREG or we may simplify it further in combine. */
10769 else
10771 int offset = 0;
10772 rtx res;
10774 offset = subreg_lowpart_offset (omode, imode);
10775 if (imode == VOIDmode)
10777 imode = int_mode_for_mode (omode);
10778 x = gen_lowpart_common (imode, x);
10779 if (x == NULL)
10780 goto fail;
10782 res = simplify_gen_subreg (omode, x, imode, offset);
10783 if (res)
10784 return res;
10787 fail:
10788 return gen_rtx_CLOBBER (omode, const0_rtx);
10791 /* Try to simplify a comparison between OP0 and a constant OP1,
10792 where CODE is the comparison code that will be tested, into a
10793 (CODE OP0 const0_rtx) form.
10795 The result is a possibly different comparison code to use.
10796 *POP1 may be updated. */
10798 static enum rtx_code
10799 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10801 enum machine_mode mode = GET_MODE (op0);
10802 unsigned int mode_width = GET_MODE_PRECISION (mode);
10803 HOST_WIDE_INT const_op = INTVAL (*pop1);
10805 /* Get the constant we are comparing against and turn off all bits
10806 not on in our mode. */
10807 if (mode != VOIDmode)
10808 const_op = trunc_int_for_mode (const_op, mode);
10810 /* If we are comparing against a constant power of two and the value
10811 being compared can only have that single bit nonzero (e.g., it was
10812 `and'ed with that bit), we can replace this with a comparison
10813 with zero. */
10814 if (const_op
10815 && (code == EQ || code == NE || code == GE || code == GEU
10816 || code == LT || code == LTU)
10817 && mode_width <= HOST_BITS_PER_WIDE_INT
10818 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10819 && (nonzero_bits (op0, mode)
10820 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10822 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10823 const_op = 0;
10826 /* Similarly, if we are comparing a value known to be either -1 or
10827 0 with -1, change it to the opposite comparison against zero. */
10828 if (const_op == -1
10829 && (code == EQ || code == NE || code == GT || code == LE
10830 || code == GEU || code == LTU)
10831 && num_sign_bit_copies (op0, mode) == mode_width)
10833 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10834 const_op = 0;
10837 /* Do some canonicalizations based on the comparison code. We prefer
10838 comparisons against zero and then prefer equality comparisons.
10839 If we can reduce the size of a constant, we will do that too. */
10840 switch (code)
10842 case LT:
10843 /* < C is equivalent to <= (C - 1) */
10844 if (const_op > 0)
10846 const_op -= 1;
10847 code = LE;
10848 /* ... fall through to LE case below. */
10850 else
10851 break;
10853 case LE:
10854 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10855 if (const_op < 0)
10857 const_op += 1;
10858 code = LT;
10861 /* If we are doing a <= 0 comparison on a value known to have
10862 a zero sign bit, we can replace this with == 0. */
10863 else if (const_op == 0
10864 && mode_width <= HOST_BITS_PER_WIDE_INT
10865 && (nonzero_bits (op0, mode)
10866 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10867 == 0)
10868 code = EQ;
10869 break;
10871 case GE:
10872 /* >= C is equivalent to > (C - 1). */
10873 if (const_op > 0)
10875 const_op -= 1;
10876 code = GT;
10877 /* ... fall through to GT below. */
10879 else
10880 break;
10882 case GT:
10883 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10884 if (const_op < 0)
10886 const_op += 1;
10887 code = GE;
10890 /* If we are doing a > 0 comparison on a value known to have
10891 a zero sign bit, we can replace this with != 0. */
10892 else if (const_op == 0
10893 && mode_width <= HOST_BITS_PER_WIDE_INT
10894 && (nonzero_bits (op0, mode)
10895 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10896 == 0)
10897 code = NE;
10898 break;
10900 case LTU:
10901 /* < C is equivalent to <= (C - 1). */
10902 if (const_op > 0)
10904 const_op -= 1;
10905 code = LEU;
10906 /* ... fall through ... */
10908 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10909 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10910 && (unsigned HOST_WIDE_INT) const_op
10911 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10913 const_op = 0;
10914 code = GE;
10915 break;
10917 else
10918 break;
10920 case LEU:
10921 /* unsigned <= 0 is equivalent to == 0 */
10922 if (const_op == 0)
10923 code = EQ;
10924 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10925 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10926 && (unsigned HOST_WIDE_INT) const_op
10927 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10929 const_op = 0;
10930 code = GE;
10932 break;
10934 case GEU:
10935 /* >= C is equivalent to > (C - 1). */
10936 if (const_op > 1)
10938 const_op -= 1;
10939 code = GTU;
10940 /* ... fall through ... */
10943 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10944 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10945 && (unsigned HOST_WIDE_INT) const_op
10946 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10948 const_op = 0;
10949 code = LT;
10950 break;
10952 else
10953 break;
10955 case GTU:
10956 /* unsigned > 0 is equivalent to != 0 */
10957 if (const_op == 0)
10958 code = NE;
10959 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10960 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10961 && (unsigned HOST_WIDE_INT) const_op
10962 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10964 const_op = 0;
10965 code = LT;
10967 break;
10969 default:
10970 break;
10973 *pop1 = GEN_INT (const_op);
10974 return code;
10977 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10978 comparison code that will be tested.
10980 The result is a possibly different comparison code to use. *POP0 and
10981 *POP1 may be updated.
10983 It is possible that we might detect that a comparison is either always
10984 true or always false. However, we do not perform general constant
10985 folding in combine, so this knowledge isn't useful. Such tautologies
10986 should have been detected earlier. Hence we ignore all such cases. */
10988 static enum rtx_code
10989 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10991 rtx op0 = *pop0;
10992 rtx op1 = *pop1;
10993 rtx tem, tem1;
10994 int i;
10995 enum machine_mode mode, tmode;
10997 /* Try a few ways of applying the same transformation to both operands. */
10998 while (1)
11000 #ifndef WORD_REGISTER_OPERATIONS
11001 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11002 so check specially. */
11003 if (code != GTU && code != GEU && code != LTU && code != LEU
11004 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11005 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11006 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11007 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11008 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11009 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11010 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11011 && CONST_INT_P (XEXP (op0, 1))
11012 && XEXP (op0, 1) == XEXP (op1, 1)
11013 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11014 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11015 && (INTVAL (XEXP (op0, 1))
11016 == (GET_MODE_PRECISION (GET_MODE (op0))
11017 - (GET_MODE_PRECISION
11018 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11020 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11021 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11023 #endif
11025 /* If both operands are the same constant shift, see if we can ignore the
11026 shift. We can if the shift is a rotate or if the bits shifted out of
11027 this shift are known to be zero for both inputs and if the type of
11028 comparison is compatible with the shift. */
11029 if (GET_CODE (op0) == GET_CODE (op1)
11030 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11031 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11032 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11033 && (code != GT && code != LT && code != GE && code != LE))
11034 || (GET_CODE (op0) == ASHIFTRT
11035 && (code != GTU && code != LTU
11036 && code != GEU && code != LEU)))
11037 && CONST_INT_P (XEXP (op0, 1))
11038 && INTVAL (XEXP (op0, 1)) >= 0
11039 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11040 && XEXP (op0, 1) == XEXP (op1, 1))
11042 enum machine_mode mode = GET_MODE (op0);
11043 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11044 int shift_count = INTVAL (XEXP (op0, 1));
11046 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11047 mask &= (mask >> shift_count) << shift_count;
11048 else if (GET_CODE (op0) == ASHIFT)
11049 mask = (mask & (mask << shift_count)) >> shift_count;
11051 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11052 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11053 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11054 else
11055 break;
11058 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11059 SUBREGs are of the same mode, and, in both cases, the AND would
11060 be redundant if the comparison was done in the narrower mode,
11061 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11062 and the operand's possibly nonzero bits are 0xffffff01; in that case
11063 if we only care about QImode, we don't need the AND). This case
11064 occurs if the output mode of an scc insn is not SImode and
11065 STORE_FLAG_VALUE == 1 (e.g., the 386).
11067 Similarly, check for a case where the AND's are ZERO_EXTEND
11068 operations from some narrower mode even though a SUBREG is not
11069 present. */
11071 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11072 && CONST_INT_P (XEXP (op0, 1))
11073 && CONST_INT_P (XEXP (op1, 1)))
11075 rtx inner_op0 = XEXP (op0, 0);
11076 rtx inner_op1 = XEXP (op1, 0);
11077 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11078 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11079 int changed = 0;
11081 if (paradoxical_subreg_p (inner_op0)
11082 && GET_CODE (inner_op1) == SUBREG
11083 && (GET_MODE (SUBREG_REG (inner_op0))
11084 == GET_MODE (SUBREG_REG (inner_op1)))
11085 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11086 <= HOST_BITS_PER_WIDE_INT)
11087 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11088 GET_MODE (SUBREG_REG (inner_op0)))))
11089 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11090 GET_MODE (SUBREG_REG (inner_op1))))))
11092 op0 = SUBREG_REG (inner_op0);
11093 op1 = SUBREG_REG (inner_op1);
11095 /* The resulting comparison is always unsigned since we masked
11096 off the original sign bit. */
11097 code = unsigned_condition (code);
11099 changed = 1;
11102 else if (c0 == c1)
11103 for (tmode = GET_CLASS_NARROWEST_MODE
11104 (GET_MODE_CLASS (GET_MODE (op0)));
11105 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11106 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11108 op0 = gen_lowpart (tmode, inner_op0);
11109 op1 = gen_lowpart (tmode, inner_op1);
11110 code = unsigned_condition (code);
11111 changed = 1;
11112 break;
11115 if (! changed)
11116 break;
11119 /* If both operands are NOT, we can strip off the outer operation
11120 and adjust the comparison code for swapped operands; similarly for
11121 NEG, except that this must be an equality comparison. */
11122 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11123 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11124 && (code == EQ || code == NE)))
11125 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11127 else
11128 break;
11131 /* If the first operand is a constant, swap the operands and adjust the
11132 comparison code appropriately, but don't do this if the second operand
11133 is already a constant integer. */
11134 if (swap_commutative_operands_p (op0, op1))
11136 tem = op0, op0 = op1, op1 = tem;
11137 code = swap_condition (code);
11140 /* We now enter a loop during which we will try to simplify the comparison.
11141 For the most part, we only are concerned with comparisons with zero,
11142 but some things may really be comparisons with zero but not start
11143 out looking that way. */
11145 while (CONST_INT_P (op1))
11147 enum machine_mode mode = GET_MODE (op0);
11148 unsigned int mode_width = GET_MODE_PRECISION (mode);
11149 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11150 int equality_comparison_p;
11151 int sign_bit_comparison_p;
11152 int unsigned_comparison_p;
11153 HOST_WIDE_INT const_op;
11155 /* We only want to handle integral modes. This catches VOIDmode,
11156 CCmode, and the floating-point modes. An exception is that we
11157 can handle VOIDmode if OP0 is a COMPARE or a comparison
11158 operation. */
11160 if (GET_MODE_CLASS (mode) != MODE_INT
11161 && ! (mode == VOIDmode
11162 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11163 break;
11165 /* Try to simplify the compare to constant, possibly changing the
11166 comparison op, and/or changing op1 to zero. */
11167 code = simplify_compare_const (code, op0, &op1);
11168 const_op = INTVAL (op1);
11170 /* Compute some predicates to simplify code below. */
11172 equality_comparison_p = (code == EQ || code == NE);
11173 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11174 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11175 || code == GEU);
11177 /* If this is a sign bit comparison and we can do arithmetic in
11178 MODE, say that we will only be needing the sign bit of OP0. */
11179 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11180 op0 = force_to_mode (op0, mode,
11181 (unsigned HOST_WIDE_INT) 1
11182 << (GET_MODE_PRECISION (mode) - 1),
11185 /* Now try cases based on the opcode of OP0. If none of the cases
11186 does a "continue", we exit this loop immediately after the
11187 switch. */
11189 switch (GET_CODE (op0))
11191 case ZERO_EXTRACT:
11192 /* If we are extracting a single bit from a variable position in
11193 a constant that has only a single bit set and are comparing it
11194 with zero, we can convert this into an equality comparison
11195 between the position and the location of the single bit. */
11196 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11197 have already reduced the shift count modulo the word size. */
11198 if (!SHIFT_COUNT_TRUNCATED
11199 && CONST_INT_P (XEXP (op0, 0))
11200 && XEXP (op0, 1) == const1_rtx
11201 && equality_comparison_p && const_op == 0
11202 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11204 if (BITS_BIG_ENDIAN)
11205 i = BITS_PER_WORD - 1 - i;
11207 op0 = XEXP (op0, 2);
11208 op1 = GEN_INT (i);
11209 const_op = i;
11211 /* Result is nonzero iff shift count is equal to I. */
11212 code = reverse_condition (code);
11213 continue;
11216 /* ... fall through ... */
11218 case SIGN_EXTRACT:
11219 tem = expand_compound_operation (op0);
11220 if (tem != op0)
11222 op0 = tem;
11223 continue;
11225 break;
11227 case NOT:
11228 /* If testing for equality, we can take the NOT of the constant. */
11229 if (equality_comparison_p
11230 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11232 op0 = XEXP (op0, 0);
11233 op1 = tem;
11234 continue;
11237 /* If just looking at the sign bit, reverse the sense of the
11238 comparison. */
11239 if (sign_bit_comparison_p)
11241 op0 = XEXP (op0, 0);
11242 code = (code == GE ? LT : GE);
11243 continue;
11245 break;
11247 case NEG:
11248 /* If testing for equality, we can take the NEG of the constant. */
11249 if (equality_comparison_p
11250 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11252 op0 = XEXP (op0, 0);
11253 op1 = tem;
11254 continue;
11257 /* The remaining cases only apply to comparisons with zero. */
11258 if (const_op != 0)
11259 break;
11261 /* When X is ABS or is known positive,
11262 (neg X) is < 0 if and only if X != 0. */
11264 if (sign_bit_comparison_p
11265 && (GET_CODE (XEXP (op0, 0)) == ABS
11266 || (mode_width <= HOST_BITS_PER_WIDE_INT
11267 && (nonzero_bits (XEXP (op0, 0), mode)
11268 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11269 == 0)))
11271 op0 = XEXP (op0, 0);
11272 code = (code == LT ? NE : EQ);
11273 continue;
11276 /* If we have NEG of something whose two high-order bits are the
11277 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11278 if (num_sign_bit_copies (op0, mode) >= 2)
11280 op0 = XEXP (op0, 0);
11281 code = swap_condition (code);
11282 continue;
11284 break;
11286 case ROTATE:
11287 /* If we are testing equality and our count is a constant, we
11288 can perform the inverse operation on our RHS. */
11289 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11290 && (tem = simplify_binary_operation (ROTATERT, mode,
11291 op1, XEXP (op0, 1))) != 0)
11293 op0 = XEXP (op0, 0);
11294 op1 = tem;
11295 continue;
11298 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11299 a particular bit. Convert it to an AND of a constant of that
11300 bit. This will be converted into a ZERO_EXTRACT. */
11301 if (const_op == 0 && sign_bit_comparison_p
11302 && CONST_INT_P (XEXP (op0, 1))
11303 && mode_width <= HOST_BITS_PER_WIDE_INT)
11305 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11306 ((unsigned HOST_WIDE_INT) 1
11307 << (mode_width - 1
11308 - INTVAL (XEXP (op0, 1)))));
11309 code = (code == LT ? NE : EQ);
11310 continue;
11313 /* Fall through. */
11315 case ABS:
11316 /* ABS is ignorable inside an equality comparison with zero. */
11317 if (const_op == 0 && equality_comparison_p)
11319 op0 = XEXP (op0, 0);
11320 continue;
11322 break;
11324 case SIGN_EXTEND:
11325 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11326 (compare FOO CONST) if CONST fits in FOO's mode and we
11327 are either testing inequality or have an unsigned
11328 comparison with ZERO_EXTEND or a signed comparison with
11329 SIGN_EXTEND. But don't do it if we don't have a compare
11330 insn of the given mode, since we'd have to revert it
11331 later on, and then we wouldn't know whether to sign- or
11332 zero-extend. */
11333 mode = GET_MODE (XEXP (op0, 0));
11334 if (GET_MODE_CLASS (mode) == MODE_INT
11335 && ! unsigned_comparison_p
11336 && HWI_COMPUTABLE_MODE_P (mode)
11337 && trunc_int_for_mode (const_op, mode) == const_op
11338 && have_insn_for (COMPARE, mode))
11340 op0 = XEXP (op0, 0);
11341 continue;
11343 break;
11345 case SUBREG:
11346 /* Check for the case where we are comparing A - C1 with C2, that is
11348 (subreg:MODE (plus (A) (-C1))) op (C2)
11350 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11351 comparison in the wider mode. One of the following two conditions
11352 must be true in order for this to be valid:
11354 1. The mode extension results in the same bit pattern being added
11355 on both sides and the comparison is equality or unsigned. As
11356 C2 has been truncated to fit in MODE, the pattern can only be
11357 all 0s or all 1s.
11359 2. The mode extension results in the sign bit being copied on
11360 each side.
11362 The difficulty here is that we have predicates for A but not for
11363 (A - C1) so we need to check that C1 is within proper bounds so
11364 as to perturbate A as little as possible. */
11366 if (mode_width <= HOST_BITS_PER_WIDE_INT
11367 && subreg_lowpart_p (op0)
11368 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11369 && GET_CODE (SUBREG_REG (op0)) == PLUS
11370 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11372 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11373 rtx a = XEXP (SUBREG_REG (op0), 0);
11374 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11376 if ((c1 > 0
11377 && (unsigned HOST_WIDE_INT) c1
11378 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11379 && (equality_comparison_p || unsigned_comparison_p)
11380 /* (A - C1) zero-extends if it is positive and sign-extends
11381 if it is negative, C2 both zero- and sign-extends. */
11382 && ((0 == (nonzero_bits (a, inner_mode)
11383 & ~GET_MODE_MASK (mode))
11384 && const_op >= 0)
11385 /* (A - C1) sign-extends if it is positive and 1-extends
11386 if it is negative, C2 both sign- and 1-extends. */
11387 || (num_sign_bit_copies (a, inner_mode)
11388 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11389 - mode_width)
11390 && const_op < 0)))
11391 || ((unsigned HOST_WIDE_INT) c1
11392 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11393 /* (A - C1) always sign-extends, like C2. */
11394 && num_sign_bit_copies (a, inner_mode)
11395 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11396 - (mode_width - 1))))
11398 op0 = SUBREG_REG (op0);
11399 continue;
11403 /* If the inner mode is narrower and we are extracting the low part,
11404 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11405 if (subreg_lowpart_p (op0)
11406 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11407 /* Fall through */ ;
11408 else
11409 break;
11411 /* ... fall through ... */
11413 case ZERO_EXTEND:
11414 mode = GET_MODE (XEXP (op0, 0));
11415 if (GET_MODE_CLASS (mode) == MODE_INT
11416 && (unsigned_comparison_p || equality_comparison_p)
11417 && HWI_COMPUTABLE_MODE_P (mode)
11418 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11419 && const_op >= 0
11420 && have_insn_for (COMPARE, mode))
11422 op0 = XEXP (op0, 0);
11423 continue;
11425 break;
11427 case PLUS:
11428 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11429 this for equality comparisons due to pathological cases involving
11430 overflows. */
11431 if (equality_comparison_p
11432 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11433 op1, XEXP (op0, 1))))
11435 op0 = XEXP (op0, 0);
11436 op1 = tem;
11437 continue;
11440 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11441 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11442 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11444 op0 = XEXP (XEXP (op0, 0), 0);
11445 code = (code == LT ? EQ : NE);
11446 continue;
11448 break;
11450 case MINUS:
11451 /* We used to optimize signed comparisons against zero, but that
11452 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11453 arrive here as equality comparisons, or (GEU, LTU) are
11454 optimized away. No need to special-case them. */
11456 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11457 (eq B (minus A C)), whichever simplifies. We can only do
11458 this for equality comparisons due to pathological cases involving
11459 overflows. */
11460 if (equality_comparison_p
11461 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11462 XEXP (op0, 1), op1)))
11464 op0 = XEXP (op0, 0);
11465 op1 = tem;
11466 continue;
11469 if (equality_comparison_p
11470 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11471 XEXP (op0, 0), op1)))
11473 op0 = XEXP (op0, 1);
11474 op1 = tem;
11475 continue;
11478 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11479 of bits in X minus 1, is one iff X > 0. */
11480 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11481 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11482 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11483 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11485 op0 = XEXP (op0, 1);
11486 code = (code == GE ? LE : GT);
11487 continue;
11489 break;
11491 case XOR:
11492 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11493 if C is zero or B is a constant. */
11494 if (equality_comparison_p
11495 && 0 != (tem = simplify_binary_operation (XOR, mode,
11496 XEXP (op0, 1), op1)))
11498 op0 = XEXP (op0, 0);
11499 op1 = tem;
11500 continue;
11502 break;
11504 case EQ: case NE:
11505 case UNEQ: case LTGT:
11506 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11507 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11508 case UNORDERED: case ORDERED:
11509 /* We can't do anything if OP0 is a condition code value, rather
11510 than an actual data value. */
11511 if (const_op != 0
11512 || CC0_P (XEXP (op0, 0))
11513 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11514 break;
11516 /* Get the two operands being compared. */
11517 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11518 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11519 else
11520 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11522 /* Check for the cases where we simply want the result of the
11523 earlier test or the opposite of that result. */
11524 if (code == NE || code == EQ
11525 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11526 && (code == LT || code == GE)))
11528 enum rtx_code new_code;
11529 if (code == LT || code == NE)
11530 new_code = GET_CODE (op0);
11531 else
11532 new_code = reversed_comparison_code (op0, NULL);
11534 if (new_code != UNKNOWN)
11536 code = new_code;
11537 op0 = tem;
11538 op1 = tem1;
11539 continue;
11542 break;
11544 case IOR:
11545 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11546 iff X <= 0. */
11547 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11548 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11549 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11551 op0 = XEXP (op0, 1);
11552 code = (code == GE ? GT : LE);
11553 continue;
11555 break;
11557 case AND:
11558 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11559 will be converted to a ZERO_EXTRACT later. */
11560 if (const_op == 0 && equality_comparison_p
11561 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11562 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11564 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11565 XEXP (XEXP (op0, 0), 1));
11566 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11567 continue;
11570 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11571 zero and X is a comparison and C1 and C2 describe only bits set
11572 in STORE_FLAG_VALUE, we can compare with X. */
11573 if (const_op == 0 && equality_comparison_p
11574 && mode_width <= HOST_BITS_PER_WIDE_INT
11575 && CONST_INT_P (XEXP (op0, 1))
11576 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11577 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11578 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11579 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11581 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11582 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11583 if ((~STORE_FLAG_VALUE & mask) == 0
11584 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11585 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11586 && COMPARISON_P (tem))))
11588 op0 = XEXP (XEXP (op0, 0), 0);
11589 continue;
11593 /* If we are doing an equality comparison of an AND of a bit equal
11594 to the sign bit, replace this with a LT or GE comparison of
11595 the underlying value. */
11596 if (equality_comparison_p
11597 && const_op == 0
11598 && CONST_INT_P (XEXP (op0, 1))
11599 && mode_width <= HOST_BITS_PER_WIDE_INT
11600 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11601 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11603 op0 = XEXP (op0, 0);
11604 code = (code == EQ ? GE : LT);
11605 continue;
11608 /* If this AND operation is really a ZERO_EXTEND from a narrower
11609 mode, the constant fits within that mode, and this is either an
11610 equality or unsigned comparison, try to do this comparison in
11611 the narrower mode.
11613 Note that in:
11615 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11616 -> (ne:DI (reg:SI 4) (const_int 0))
11618 unless TRULY_NOOP_TRUNCATION allows it or the register is
11619 known to hold a value of the required mode the
11620 transformation is invalid. */
11621 if ((equality_comparison_p || unsigned_comparison_p)
11622 && CONST_INT_P (XEXP (op0, 1))
11623 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11624 & GET_MODE_MASK (mode))
11625 + 1)) >= 0
11626 && const_op >> i == 0
11627 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11628 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11629 || (REG_P (XEXP (op0, 0))
11630 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11632 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11633 continue;
11636 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11637 fits in both M1 and M2 and the SUBREG is either paradoxical
11638 or represents the low part, permute the SUBREG and the AND
11639 and try again. */
11640 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11642 unsigned HOST_WIDE_INT c1;
11643 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11644 /* Require an integral mode, to avoid creating something like
11645 (AND:SF ...). */
11646 if (SCALAR_INT_MODE_P (tmode)
11647 /* It is unsafe to commute the AND into the SUBREG if the
11648 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11649 not defined. As originally written the upper bits
11650 have a defined value due to the AND operation.
11651 However, if we commute the AND inside the SUBREG then
11652 they no longer have defined values and the meaning of
11653 the code has been changed. */
11654 && (0
11655 #ifdef WORD_REGISTER_OPERATIONS
11656 || (mode_width > GET_MODE_PRECISION (tmode)
11657 && mode_width <= BITS_PER_WORD)
11658 #endif
11659 || (mode_width <= GET_MODE_PRECISION (tmode)
11660 && subreg_lowpart_p (XEXP (op0, 0))))
11661 && CONST_INT_P (XEXP (op0, 1))
11662 && mode_width <= HOST_BITS_PER_WIDE_INT
11663 && HWI_COMPUTABLE_MODE_P (tmode)
11664 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11665 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11666 && c1 != mask
11667 && c1 != GET_MODE_MASK (tmode))
11669 op0 = simplify_gen_binary (AND, tmode,
11670 SUBREG_REG (XEXP (op0, 0)),
11671 gen_int_mode (c1, tmode));
11672 op0 = gen_lowpart (mode, op0);
11673 continue;
11677 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11678 if (const_op == 0 && equality_comparison_p
11679 && XEXP (op0, 1) == const1_rtx
11680 && GET_CODE (XEXP (op0, 0)) == NOT)
11682 op0 = simplify_and_const_int (NULL_RTX, mode,
11683 XEXP (XEXP (op0, 0), 0), 1);
11684 code = (code == NE ? EQ : NE);
11685 continue;
11688 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11689 (eq (and (lshiftrt X) 1) 0).
11690 Also handle the case where (not X) is expressed using xor. */
11691 if (const_op == 0 && equality_comparison_p
11692 && XEXP (op0, 1) == const1_rtx
11693 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11695 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11696 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11698 if (GET_CODE (shift_op) == NOT
11699 || (GET_CODE (shift_op) == XOR
11700 && CONST_INT_P (XEXP (shift_op, 1))
11701 && CONST_INT_P (shift_count)
11702 && HWI_COMPUTABLE_MODE_P (mode)
11703 && (UINTVAL (XEXP (shift_op, 1))
11704 == (unsigned HOST_WIDE_INT) 1
11705 << INTVAL (shift_count))))
11708 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11709 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11710 code = (code == NE ? EQ : NE);
11711 continue;
11714 break;
11716 case ASHIFT:
11717 /* If we have (compare (ashift FOO N) (const_int C)) and
11718 the high order N bits of FOO (N+1 if an inequality comparison)
11719 are known to be zero, we can do this by comparing FOO with C
11720 shifted right N bits so long as the low-order N bits of C are
11721 zero. */
11722 if (CONST_INT_P (XEXP (op0, 1))
11723 && INTVAL (XEXP (op0, 1)) >= 0
11724 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11725 < HOST_BITS_PER_WIDE_INT)
11726 && (((unsigned HOST_WIDE_INT) const_op
11727 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11728 - 1)) == 0)
11729 && mode_width <= HOST_BITS_PER_WIDE_INT
11730 && (nonzero_bits (XEXP (op0, 0), mode)
11731 & ~(mask >> (INTVAL (XEXP (op0, 1))
11732 + ! equality_comparison_p))) == 0)
11734 /* We must perform a logical shift, not an arithmetic one,
11735 as we want the top N bits of C to be zero. */
11736 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11738 temp >>= INTVAL (XEXP (op0, 1));
11739 op1 = gen_int_mode (temp, mode);
11740 op0 = XEXP (op0, 0);
11741 continue;
11744 /* If we are doing a sign bit comparison, it means we are testing
11745 a particular bit. Convert it to the appropriate AND. */
11746 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11747 && mode_width <= HOST_BITS_PER_WIDE_INT)
11749 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11750 ((unsigned HOST_WIDE_INT) 1
11751 << (mode_width - 1
11752 - INTVAL (XEXP (op0, 1)))));
11753 code = (code == LT ? NE : EQ);
11754 continue;
11757 /* If this an equality comparison with zero and we are shifting
11758 the low bit to the sign bit, we can convert this to an AND of the
11759 low-order bit. */
11760 if (const_op == 0 && equality_comparison_p
11761 && CONST_INT_P (XEXP (op0, 1))
11762 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11764 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11765 continue;
11767 break;
11769 case ASHIFTRT:
11770 /* If this is an equality comparison with zero, we can do this
11771 as a logical shift, which might be much simpler. */
11772 if (equality_comparison_p && const_op == 0
11773 && CONST_INT_P (XEXP (op0, 1)))
11775 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11776 XEXP (op0, 0),
11777 INTVAL (XEXP (op0, 1)));
11778 continue;
11781 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11782 do the comparison in a narrower mode. */
11783 if (! unsigned_comparison_p
11784 && CONST_INT_P (XEXP (op0, 1))
11785 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11786 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11787 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11788 MODE_INT, 1)) != BLKmode
11789 && (((unsigned HOST_WIDE_INT) const_op
11790 + (GET_MODE_MASK (tmode) >> 1) + 1)
11791 <= GET_MODE_MASK (tmode)))
11793 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11794 continue;
11797 /* Likewise if OP0 is a PLUS of a sign extension with a
11798 constant, which is usually represented with the PLUS
11799 between the shifts. */
11800 if (! unsigned_comparison_p
11801 && CONST_INT_P (XEXP (op0, 1))
11802 && GET_CODE (XEXP (op0, 0)) == PLUS
11803 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11804 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11805 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11806 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11807 MODE_INT, 1)) != BLKmode
11808 && (((unsigned HOST_WIDE_INT) const_op
11809 + (GET_MODE_MASK (tmode) >> 1) + 1)
11810 <= GET_MODE_MASK (tmode)))
11812 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11813 rtx add_const = XEXP (XEXP (op0, 0), 1);
11814 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11815 add_const, XEXP (op0, 1));
11817 op0 = simplify_gen_binary (PLUS, tmode,
11818 gen_lowpart (tmode, inner),
11819 new_const);
11820 continue;
11823 /* ... fall through ... */
11824 case LSHIFTRT:
11825 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11826 the low order N bits of FOO are known to be zero, we can do this
11827 by comparing FOO with C shifted left N bits so long as no
11828 overflow occurs. Even if the low order N bits of FOO aren't known
11829 to be zero, if the comparison is >= or < we can use the same
11830 optimization and for > or <= by setting all the low
11831 order N bits in the comparison constant. */
11832 if (CONST_INT_P (XEXP (op0, 1))
11833 && INTVAL (XEXP (op0, 1)) > 0
11834 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11835 && mode_width <= HOST_BITS_PER_WIDE_INT
11836 && (((unsigned HOST_WIDE_INT) const_op
11837 + (GET_CODE (op0) != LSHIFTRT
11838 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11839 + 1)
11840 : 0))
11841 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11843 unsigned HOST_WIDE_INT low_bits
11844 = (nonzero_bits (XEXP (op0, 0), mode)
11845 & (((unsigned HOST_WIDE_INT) 1
11846 << INTVAL (XEXP (op0, 1))) - 1));
11847 if (low_bits == 0 || !equality_comparison_p)
11849 /* If the shift was logical, then we must make the condition
11850 unsigned. */
11851 if (GET_CODE (op0) == LSHIFTRT)
11852 code = unsigned_condition (code);
11854 const_op <<= INTVAL (XEXP (op0, 1));
11855 if (low_bits != 0
11856 && (code == GT || code == GTU
11857 || code == LE || code == LEU))
11858 const_op
11859 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11860 op1 = GEN_INT (const_op);
11861 op0 = XEXP (op0, 0);
11862 continue;
11866 /* If we are using this shift to extract just the sign bit, we
11867 can replace this with an LT or GE comparison. */
11868 if (const_op == 0
11869 && (equality_comparison_p || sign_bit_comparison_p)
11870 && CONST_INT_P (XEXP (op0, 1))
11871 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11873 op0 = XEXP (op0, 0);
11874 code = (code == NE || code == GT ? LT : GE);
11875 continue;
11877 break;
11879 default:
11880 break;
11883 break;
11886 /* Now make any compound operations involved in this comparison. Then,
11887 check for an outmost SUBREG on OP0 that is not doing anything or is
11888 paradoxical. The latter transformation must only be performed when
11889 it is known that the "extra" bits will be the same in op0 and op1 or
11890 that they don't matter. There are three cases to consider:
11892 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11893 care bits and we can assume they have any convenient value. So
11894 making the transformation is safe.
11896 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11897 In this case the upper bits of op0 are undefined. We should not make
11898 the simplification in that case as we do not know the contents of
11899 those bits.
11901 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11902 UNKNOWN. In that case we know those bits are zeros or ones. We must
11903 also be sure that they are the same as the upper bits of op1.
11905 We can never remove a SUBREG for a non-equality comparison because
11906 the sign bit is in a different place in the underlying object. */
11908 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11909 op1 = make_compound_operation (op1, SET);
11911 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11912 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11914 && (code == NE || code == EQ))
11916 if (paradoxical_subreg_p (op0))
11918 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11919 implemented. */
11920 if (REG_P (SUBREG_REG (op0)))
11922 op0 = SUBREG_REG (op0);
11923 op1 = gen_lowpart (GET_MODE (op0), op1);
11926 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11927 <= HOST_BITS_PER_WIDE_INT)
11928 && (nonzero_bits (SUBREG_REG (op0),
11929 GET_MODE (SUBREG_REG (op0)))
11930 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11932 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11934 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11935 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11936 op0 = SUBREG_REG (op0), op1 = tem;
11940 /* We now do the opposite procedure: Some machines don't have compare
11941 insns in all modes. If OP0's mode is an integer mode smaller than a
11942 word and we can't do a compare in that mode, see if there is a larger
11943 mode for which we can do the compare. There are a number of cases in
11944 which we can use the wider mode. */
11946 mode = GET_MODE (op0);
11947 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11948 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11949 && ! have_insn_for (COMPARE, mode))
11950 for (tmode = GET_MODE_WIDER_MODE (mode);
11951 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11952 tmode = GET_MODE_WIDER_MODE (tmode))
11953 if (have_insn_for (COMPARE, tmode))
11955 int zero_extended;
11957 /* If this is a test for negative, we can make an explicit
11958 test of the sign bit. Test this first so we can use
11959 a paradoxical subreg to extend OP0. */
11961 if (op1 == const0_rtx && (code == LT || code == GE)
11962 && HWI_COMPUTABLE_MODE_P (mode))
11964 unsigned HOST_WIDE_INT sign
11965 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
11966 op0 = simplify_gen_binary (AND, tmode,
11967 gen_lowpart (tmode, op0),
11968 gen_int_mode (sign, mode));
11969 code = (code == LT) ? NE : EQ;
11970 break;
11973 /* If the only nonzero bits in OP0 and OP1 are those in the
11974 narrower mode and this is an equality or unsigned comparison,
11975 we can use the wider mode. Similarly for sign-extended
11976 values, in which case it is true for all comparisons. */
11977 zero_extended = ((code == EQ || code == NE
11978 || code == GEU || code == GTU
11979 || code == LEU || code == LTU)
11980 && (nonzero_bits (op0, tmode)
11981 & ~GET_MODE_MASK (mode)) == 0
11982 && ((CONST_INT_P (op1)
11983 || (nonzero_bits (op1, tmode)
11984 & ~GET_MODE_MASK (mode)) == 0)));
11986 if (zero_extended
11987 || ((num_sign_bit_copies (op0, tmode)
11988 > (unsigned int) (GET_MODE_PRECISION (tmode)
11989 - GET_MODE_PRECISION (mode)))
11990 && (num_sign_bit_copies (op1, tmode)
11991 > (unsigned int) (GET_MODE_PRECISION (tmode)
11992 - GET_MODE_PRECISION (mode)))))
11994 /* If OP0 is an AND and we don't have an AND in MODE either,
11995 make a new AND in the proper mode. */
11996 if (GET_CODE (op0) == AND
11997 && !have_insn_for (AND, mode))
11998 op0 = simplify_gen_binary (AND, tmode,
11999 gen_lowpart (tmode,
12000 XEXP (op0, 0)),
12001 gen_lowpart (tmode,
12002 XEXP (op0, 1)));
12003 else
12005 if (zero_extended)
12007 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12008 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12010 else
12012 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12013 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12015 break;
12020 /* We may have changed the comparison operands. Re-canonicalize. */
12021 if (swap_commutative_operands_p (op0, op1))
12023 tem = op0, op0 = op1, op1 = tem;
12024 code = swap_condition (code);
12027 /* If this machine only supports a subset of valid comparisons, see if we
12028 can convert an unsupported one into a supported one. */
12029 target_canonicalize_comparison (&code, &op0, &op1, 0);
12031 *pop0 = op0;
12032 *pop1 = op1;
12034 return code;
12037 /* Utility function for record_value_for_reg. Count number of
12038 rtxs in X. */
12039 static int
12040 count_rtxs (rtx x)
12042 enum rtx_code code = GET_CODE (x);
12043 const char *fmt;
12044 int i, j, ret = 1;
12046 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12047 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12049 rtx x0 = XEXP (x, 0);
12050 rtx x1 = XEXP (x, 1);
12052 if (x0 == x1)
12053 return 1 + 2 * count_rtxs (x0);
12055 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12056 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12057 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12058 return 2 + 2 * count_rtxs (x0)
12059 + count_rtxs (x == XEXP (x1, 0)
12060 ? XEXP (x1, 1) : XEXP (x1, 0));
12062 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12063 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12064 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12065 return 2 + 2 * count_rtxs (x1)
12066 + count_rtxs (x == XEXP (x0, 0)
12067 ? XEXP (x0, 1) : XEXP (x0, 0));
12070 fmt = GET_RTX_FORMAT (code);
12071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12072 if (fmt[i] == 'e')
12073 ret += count_rtxs (XEXP (x, i));
12074 else if (fmt[i] == 'E')
12075 for (j = 0; j < XVECLEN (x, i); j++)
12076 ret += count_rtxs (XVECEXP (x, i, j));
12078 return ret;
12081 /* Utility function for following routine. Called when X is part of a value
12082 being stored into last_set_value. Sets last_set_table_tick
12083 for each register mentioned. Similar to mention_regs in cse.c */
12085 static void
12086 update_table_tick (rtx x)
12088 enum rtx_code code = GET_CODE (x);
12089 const char *fmt = GET_RTX_FORMAT (code);
12090 int i, j;
12092 if (code == REG)
12094 unsigned int regno = REGNO (x);
12095 unsigned int endregno = END_REGNO (x);
12096 unsigned int r;
12098 for (r = regno; r < endregno; r++)
12100 reg_stat_type *rsp = &reg_stat[r];
12101 rsp->last_set_table_tick = label_tick;
12104 return;
12107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12108 if (fmt[i] == 'e')
12110 /* Check for identical subexpressions. If x contains
12111 identical subexpression we only have to traverse one of
12112 them. */
12113 if (i == 0 && ARITHMETIC_P (x))
12115 /* Note that at this point x1 has already been
12116 processed. */
12117 rtx x0 = XEXP (x, 0);
12118 rtx x1 = XEXP (x, 1);
12120 /* If x0 and x1 are identical then there is no need to
12121 process x0. */
12122 if (x0 == x1)
12123 break;
12125 /* If x0 is identical to a subexpression of x1 then while
12126 processing x1, x0 has already been processed. Thus we
12127 are done with x. */
12128 if (ARITHMETIC_P (x1)
12129 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12130 break;
12132 /* If x1 is identical to a subexpression of x0 then we
12133 still have to process the rest of x0. */
12134 if (ARITHMETIC_P (x0)
12135 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12137 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12138 break;
12142 update_table_tick (XEXP (x, i));
12144 else if (fmt[i] == 'E')
12145 for (j = 0; j < XVECLEN (x, i); j++)
12146 update_table_tick (XVECEXP (x, i, j));
12149 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12150 are saying that the register is clobbered and we no longer know its
12151 value. If INSN is zero, don't update reg_stat[].last_set; this is
12152 only permitted with VALUE also zero and is used to invalidate the
12153 register. */
12155 static void
12156 record_value_for_reg (rtx reg, rtx insn, rtx value)
12158 unsigned int regno = REGNO (reg);
12159 unsigned int endregno = END_REGNO (reg);
12160 unsigned int i;
12161 reg_stat_type *rsp;
12163 /* If VALUE contains REG and we have a previous value for REG, substitute
12164 the previous value. */
12165 if (value && insn && reg_overlap_mentioned_p (reg, value))
12167 rtx tem;
12169 /* Set things up so get_last_value is allowed to see anything set up to
12170 our insn. */
12171 subst_low_luid = DF_INSN_LUID (insn);
12172 tem = get_last_value (reg);
12174 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12175 it isn't going to be useful and will take a lot of time to process,
12176 so just use the CLOBBER. */
12178 if (tem)
12180 if (ARITHMETIC_P (tem)
12181 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12182 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12183 tem = XEXP (tem, 0);
12184 else if (count_occurrences (value, reg, 1) >= 2)
12186 /* If there are two or more occurrences of REG in VALUE,
12187 prevent the value from growing too much. */
12188 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12189 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12192 value = replace_rtx (copy_rtx (value), reg, tem);
12196 /* For each register modified, show we don't know its value, that
12197 we don't know about its bitwise content, that its value has been
12198 updated, and that we don't know the location of the death of the
12199 register. */
12200 for (i = regno; i < endregno; i++)
12202 rsp = &reg_stat[i];
12204 if (insn)
12205 rsp->last_set = insn;
12207 rsp->last_set_value = 0;
12208 rsp->last_set_mode = VOIDmode;
12209 rsp->last_set_nonzero_bits = 0;
12210 rsp->last_set_sign_bit_copies = 0;
12211 rsp->last_death = 0;
12212 rsp->truncated_to_mode = VOIDmode;
12215 /* Mark registers that are being referenced in this value. */
12216 if (value)
12217 update_table_tick (value);
12219 /* Now update the status of each register being set.
12220 If someone is using this register in this block, set this register
12221 to invalid since we will get confused between the two lives in this
12222 basic block. This makes using this register always invalid. In cse, we
12223 scan the table to invalidate all entries using this register, but this
12224 is too much work for us. */
12226 for (i = regno; i < endregno; i++)
12228 rsp = &reg_stat[i];
12229 rsp->last_set_label = label_tick;
12230 if (!insn
12231 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12232 rsp->last_set_invalid = 1;
12233 else
12234 rsp->last_set_invalid = 0;
12237 /* The value being assigned might refer to X (like in "x++;"). In that
12238 case, we must replace it with (clobber (const_int 0)) to prevent
12239 infinite loops. */
12240 rsp = &reg_stat[regno];
12241 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12243 value = copy_rtx (value);
12244 if (!get_last_value_validate (&value, insn, label_tick, 1))
12245 value = 0;
12248 /* For the main register being modified, update the value, the mode, the
12249 nonzero bits, and the number of sign bit copies. */
12251 rsp->last_set_value = value;
12253 if (value)
12255 enum machine_mode mode = GET_MODE (reg);
12256 subst_low_luid = DF_INSN_LUID (insn);
12257 rsp->last_set_mode = mode;
12258 if (GET_MODE_CLASS (mode) == MODE_INT
12259 && HWI_COMPUTABLE_MODE_P (mode))
12260 mode = nonzero_bits_mode;
12261 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12262 rsp->last_set_sign_bit_copies
12263 = num_sign_bit_copies (value, GET_MODE (reg));
12267 /* Called via note_stores from record_dead_and_set_regs to handle one
12268 SET or CLOBBER in an insn. DATA is the instruction in which the
12269 set is occurring. */
12271 static void
12272 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12274 rtx record_dead_insn = (rtx) data;
12276 if (GET_CODE (dest) == SUBREG)
12277 dest = SUBREG_REG (dest);
12279 if (!record_dead_insn)
12281 if (REG_P (dest))
12282 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12283 return;
12286 if (REG_P (dest))
12288 /* If we are setting the whole register, we know its value. Otherwise
12289 show that we don't know the value. We can handle SUBREG in
12290 some cases. */
12291 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12292 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12293 else if (GET_CODE (setter) == SET
12294 && GET_CODE (SET_DEST (setter)) == SUBREG
12295 && SUBREG_REG (SET_DEST (setter)) == dest
12296 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12297 && subreg_lowpart_p (SET_DEST (setter)))
12298 record_value_for_reg (dest, record_dead_insn,
12299 gen_lowpart (GET_MODE (dest),
12300 SET_SRC (setter)));
12301 else
12302 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12304 else if (MEM_P (dest)
12305 /* Ignore pushes, they clobber nothing. */
12306 && ! push_operand (dest, GET_MODE (dest)))
12307 mem_last_set = DF_INSN_LUID (record_dead_insn);
12310 /* Update the records of when each REG was most recently set or killed
12311 for the things done by INSN. This is the last thing done in processing
12312 INSN in the combiner loop.
12314 We update reg_stat[], in particular fields last_set, last_set_value,
12315 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12316 last_death, and also the similar information mem_last_set (which insn
12317 most recently modified memory) and last_call_luid (which insn was the
12318 most recent subroutine call). */
12320 static void
12321 record_dead_and_set_regs (rtx insn)
12323 rtx link;
12324 unsigned int i;
12326 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12328 if (REG_NOTE_KIND (link) == REG_DEAD
12329 && REG_P (XEXP (link, 0)))
12331 unsigned int regno = REGNO (XEXP (link, 0));
12332 unsigned int endregno = END_REGNO (XEXP (link, 0));
12334 for (i = regno; i < endregno; i++)
12336 reg_stat_type *rsp;
12338 rsp = &reg_stat[i];
12339 rsp->last_death = insn;
12342 else if (REG_NOTE_KIND (link) == REG_INC)
12343 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12346 if (CALL_P (insn))
12348 hard_reg_set_iterator hrsi;
12349 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12351 reg_stat_type *rsp;
12353 rsp = &reg_stat[i];
12354 rsp->last_set_invalid = 1;
12355 rsp->last_set = insn;
12356 rsp->last_set_value = 0;
12357 rsp->last_set_mode = VOIDmode;
12358 rsp->last_set_nonzero_bits = 0;
12359 rsp->last_set_sign_bit_copies = 0;
12360 rsp->last_death = 0;
12361 rsp->truncated_to_mode = VOIDmode;
12364 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12366 /* We can't combine into a call pattern. Remember, though, that
12367 the return value register is set at this LUID. We could
12368 still replace a register with the return value from the
12369 wrong subroutine call! */
12370 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12372 else
12373 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12376 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12377 register present in the SUBREG, so for each such SUBREG go back and
12378 adjust nonzero and sign bit information of the registers that are
12379 known to have some zero/sign bits set.
12381 This is needed because when combine blows the SUBREGs away, the
12382 information on zero/sign bits is lost and further combines can be
12383 missed because of that. */
12385 static void
12386 record_promoted_value (rtx insn, rtx subreg)
12388 struct insn_link *links;
12389 rtx set;
12390 unsigned int regno = REGNO (SUBREG_REG (subreg));
12391 enum machine_mode mode = GET_MODE (subreg);
12393 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12394 return;
12396 for (links = LOG_LINKS (insn); links;)
12398 reg_stat_type *rsp;
12400 insn = links->insn;
12401 set = single_set (insn);
12403 if (! set || !REG_P (SET_DEST (set))
12404 || REGNO (SET_DEST (set)) != regno
12405 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12407 links = links->next;
12408 continue;
12411 rsp = &reg_stat[regno];
12412 if (rsp->last_set == insn)
12414 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12415 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12418 if (REG_P (SET_SRC (set)))
12420 regno = REGNO (SET_SRC (set));
12421 links = LOG_LINKS (insn);
12423 else
12424 break;
12428 /* Check if X, a register, is known to contain a value already
12429 truncated to MODE. In this case we can use a subreg to refer to
12430 the truncated value even though in the generic case we would need
12431 an explicit truncation. */
12433 static bool
12434 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12436 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12437 enum machine_mode truncated = rsp->truncated_to_mode;
12439 if (truncated == 0
12440 || rsp->truncation_label < label_tick_ebb_start)
12441 return false;
12442 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12443 return true;
12444 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12445 return true;
12446 return false;
12449 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12450 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12451 might be able to turn a truncate into a subreg using this information.
12452 Return -1 if traversing *P is complete or 0 otherwise. */
12454 static int
12455 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12457 rtx x = *p;
12458 enum machine_mode truncated_mode;
12459 reg_stat_type *rsp;
12461 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12463 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12464 truncated_mode = GET_MODE (x);
12466 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12467 return -1;
12469 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12470 return -1;
12472 x = SUBREG_REG (x);
12474 /* ??? For hard-regs we now record everything. We might be able to
12475 optimize this using last_set_mode. */
12476 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12477 truncated_mode = GET_MODE (x);
12478 else
12479 return 0;
12481 rsp = &reg_stat[REGNO (x)];
12482 if (rsp->truncated_to_mode == 0
12483 || rsp->truncation_label < label_tick_ebb_start
12484 || (GET_MODE_SIZE (truncated_mode)
12485 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12487 rsp->truncated_to_mode = truncated_mode;
12488 rsp->truncation_label = label_tick;
12491 return -1;
12494 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12495 the modes they are used in. This can help truning TRUNCATEs into
12496 SUBREGs. */
12498 static void
12499 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12501 for_each_rtx (x, record_truncated_value, NULL);
12504 /* Scan X for promoted SUBREGs. For each one found,
12505 note what it implies to the registers used in it. */
12507 static void
12508 check_promoted_subreg (rtx insn, rtx x)
12510 if (GET_CODE (x) == SUBREG
12511 && SUBREG_PROMOTED_VAR_P (x)
12512 && REG_P (SUBREG_REG (x)))
12513 record_promoted_value (insn, x);
12514 else
12516 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12517 int i, j;
12519 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12520 switch (format[i])
12522 case 'e':
12523 check_promoted_subreg (insn, XEXP (x, i));
12524 break;
12525 case 'V':
12526 case 'E':
12527 if (XVEC (x, i) != 0)
12528 for (j = 0; j < XVECLEN (x, i); j++)
12529 check_promoted_subreg (insn, XVECEXP (x, i, j));
12530 break;
12535 /* Verify that all the registers and memory references mentioned in *LOC are
12536 still valid. *LOC was part of a value set in INSN when label_tick was
12537 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12538 the invalid references with (clobber (const_int 0)) and return 1. This
12539 replacement is useful because we often can get useful information about
12540 the form of a value (e.g., if it was produced by a shift that always
12541 produces -1 or 0) even though we don't know exactly what registers it
12542 was produced from. */
12544 static int
12545 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12547 rtx x = *loc;
12548 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12549 int len = GET_RTX_LENGTH (GET_CODE (x));
12550 int i, j;
12552 if (REG_P (x))
12554 unsigned int regno = REGNO (x);
12555 unsigned int endregno = END_REGNO (x);
12556 unsigned int j;
12558 for (j = regno; j < endregno; j++)
12560 reg_stat_type *rsp = &reg_stat[j];
12561 if (rsp->last_set_invalid
12562 /* If this is a pseudo-register that was only set once and not
12563 live at the beginning of the function, it is always valid. */
12564 || (! (regno >= FIRST_PSEUDO_REGISTER
12565 && REG_N_SETS (regno) == 1
12566 && (!REGNO_REG_SET_P
12567 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12568 && rsp->last_set_label > tick))
12570 if (replace)
12571 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12572 return replace;
12576 return 1;
12578 /* If this is a memory reference, make sure that there were no stores after
12579 it that might have clobbered the value. We don't have alias info, so we
12580 assume any store invalidates it. Moreover, we only have local UIDs, so
12581 we also assume that there were stores in the intervening basic blocks. */
12582 else if (MEM_P (x) && !MEM_READONLY_P (x)
12583 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12585 if (replace)
12586 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12587 return replace;
12590 for (i = 0; i < len; i++)
12592 if (fmt[i] == 'e')
12594 /* Check for identical subexpressions. If x contains
12595 identical subexpression we only have to traverse one of
12596 them. */
12597 if (i == 1 && ARITHMETIC_P (x))
12599 /* Note that at this point x0 has already been checked
12600 and found valid. */
12601 rtx x0 = XEXP (x, 0);
12602 rtx x1 = XEXP (x, 1);
12604 /* If x0 and x1 are identical then x is also valid. */
12605 if (x0 == x1)
12606 return 1;
12608 /* If x1 is identical to a subexpression of x0 then
12609 while checking x0, x1 has already been checked. Thus
12610 it is valid and so as x. */
12611 if (ARITHMETIC_P (x0)
12612 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12613 return 1;
12615 /* If x0 is identical to a subexpression of x1 then x is
12616 valid iff the rest of x1 is valid. */
12617 if (ARITHMETIC_P (x1)
12618 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12619 return
12620 get_last_value_validate (&XEXP (x1,
12621 x0 == XEXP (x1, 0) ? 1 : 0),
12622 insn, tick, replace);
12625 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12626 replace) == 0)
12627 return 0;
12629 else if (fmt[i] == 'E')
12630 for (j = 0; j < XVECLEN (x, i); j++)
12631 if (get_last_value_validate (&XVECEXP (x, i, j),
12632 insn, tick, replace) == 0)
12633 return 0;
12636 /* If we haven't found a reason for it to be invalid, it is valid. */
12637 return 1;
12640 /* Get the last value assigned to X, if known. Some registers
12641 in the value may be replaced with (clobber (const_int 0)) if their value
12642 is known longer known reliably. */
12644 static rtx
12645 get_last_value (const_rtx x)
12647 unsigned int regno;
12648 rtx value;
12649 reg_stat_type *rsp;
12651 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12652 then convert it to the desired mode. If this is a paradoxical SUBREG,
12653 we cannot predict what values the "extra" bits might have. */
12654 if (GET_CODE (x) == SUBREG
12655 && subreg_lowpart_p (x)
12656 && !paradoxical_subreg_p (x)
12657 && (value = get_last_value (SUBREG_REG (x))) != 0)
12658 return gen_lowpart (GET_MODE (x), value);
12660 if (!REG_P (x))
12661 return 0;
12663 regno = REGNO (x);
12664 rsp = &reg_stat[regno];
12665 value = rsp->last_set_value;
12667 /* If we don't have a value, or if it isn't for this basic block and
12668 it's either a hard register, set more than once, or it's a live
12669 at the beginning of the function, return 0.
12671 Because if it's not live at the beginning of the function then the reg
12672 is always set before being used (is never used without being set).
12673 And, if it's set only once, and it's always set before use, then all
12674 uses must have the same last value, even if it's not from this basic
12675 block. */
12677 if (value == 0
12678 || (rsp->last_set_label < label_tick_ebb_start
12679 && (regno < FIRST_PSEUDO_REGISTER
12680 || REG_N_SETS (regno) != 1
12681 || REGNO_REG_SET_P
12682 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12683 return 0;
12685 /* If the value was set in a later insn than the ones we are processing,
12686 we can't use it even if the register was only set once. */
12687 if (rsp->last_set_label == label_tick
12688 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12689 return 0;
12691 /* If the value has all its registers valid, return it. */
12692 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12693 return value;
12695 /* Otherwise, make a copy and replace any invalid register with
12696 (clobber (const_int 0)). If that fails for some reason, return 0. */
12698 value = copy_rtx (value);
12699 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12700 return value;
12702 return 0;
12705 /* Return nonzero if expression X refers to a REG or to memory
12706 that is set in an instruction more recent than FROM_LUID. */
12708 static int
12709 use_crosses_set_p (const_rtx x, int from_luid)
12711 const char *fmt;
12712 int i;
12713 enum rtx_code code = GET_CODE (x);
12715 if (code == REG)
12717 unsigned int regno = REGNO (x);
12718 unsigned endreg = END_REGNO (x);
12720 #ifdef PUSH_ROUNDING
12721 /* Don't allow uses of the stack pointer to be moved,
12722 because we don't know whether the move crosses a push insn. */
12723 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12724 return 1;
12725 #endif
12726 for (; regno < endreg; regno++)
12728 reg_stat_type *rsp = &reg_stat[regno];
12729 if (rsp->last_set
12730 && rsp->last_set_label == label_tick
12731 && DF_INSN_LUID (rsp->last_set) > from_luid)
12732 return 1;
12734 return 0;
12737 if (code == MEM && mem_last_set > from_luid)
12738 return 1;
12740 fmt = GET_RTX_FORMAT (code);
12742 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12744 if (fmt[i] == 'E')
12746 int j;
12747 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12748 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12749 return 1;
12751 else if (fmt[i] == 'e'
12752 && use_crosses_set_p (XEXP (x, i), from_luid))
12753 return 1;
12755 return 0;
12758 /* Define three variables used for communication between the following
12759 routines. */
12761 static unsigned int reg_dead_regno, reg_dead_endregno;
12762 static int reg_dead_flag;
12764 /* Function called via note_stores from reg_dead_at_p.
12766 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12767 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12769 static void
12770 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12772 unsigned int regno, endregno;
12774 if (!REG_P (dest))
12775 return;
12777 regno = REGNO (dest);
12778 endregno = END_REGNO (dest);
12779 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12780 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12783 /* Return nonzero if REG is known to be dead at INSN.
12785 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12786 referencing REG, it is dead. If we hit a SET referencing REG, it is
12787 live. Otherwise, see if it is live or dead at the start of the basic
12788 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12789 must be assumed to be always live. */
12791 static int
12792 reg_dead_at_p (rtx reg, rtx insn)
12794 basic_block block;
12795 unsigned int i;
12797 /* Set variables for reg_dead_at_p_1. */
12798 reg_dead_regno = REGNO (reg);
12799 reg_dead_endregno = END_REGNO (reg);
12801 reg_dead_flag = 0;
12803 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12804 we allow the machine description to decide whether use-and-clobber
12805 patterns are OK. */
12806 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12808 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12809 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12810 return 0;
12813 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12814 beginning of basic block. */
12815 block = BLOCK_FOR_INSN (insn);
12816 for (;;)
12818 if (INSN_P (insn))
12820 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12821 if (reg_dead_flag)
12822 return reg_dead_flag == 1 ? 1 : 0;
12824 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12825 return 1;
12828 if (insn == BB_HEAD (block))
12829 break;
12831 insn = PREV_INSN (insn);
12834 /* Look at live-in sets for the basic block that we were in. */
12835 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12836 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12837 return 0;
12839 return 1;
12842 /* Note hard registers in X that are used. */
12844 static void
12845 mark_used_regs_combine (rtx x)
12847 RTX_CODE code = GET_CODE (x);
12848 unsigned int regno;
12849 int i;
12851 switch (code)
12853 case LABEL_REF:
12854 case SYMBOL_REF:
12855 case CONST:
12856 CASE_CONST_ANY:
12857 case PC:
12858 case ADDR_VEC:
12859 case ADDR_DIFF_VEC:
12860 case ASM_INPUT:
12861 #ifdef HAVE_cc0
12862 /* CC0 must die in the insn after it is set, so we don't need to take
12863 special note of it here. */
12864 case CC0:
12865 #endif
12866 return;
12868 case CLOBBER:
12869 /* If we are clobbering a MEM, mark any hard registers inside the
12870 address as used. */
12871 if (MEM_P (XEXP (x, 0)))
12872 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12873 return;
12875 case REG:
12876 regno = REGNO (x);
12877 /* A hard reg in a wide mode may really be multiple registers.
12878 If so, mark all of them just like the first. */
12879 if (regno < FIRST_PSEUDO_REGISTER)
12881 /* None of this applies to the stack, frame or arg pointers. */
12882 if (regno == STACK_POINTER_REGNUM
12883 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12884 || regno == HARD_FRAME_POINTER_REGNUM
12885 #endif
12886 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12887 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12888 #endif
12889 || regno == FRAME_POINTER_REGNUM)
12890 return;
12892 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12894 return;
12896 case SET:
12898 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12899 the address. */
12900 rtx testreg = SET_DEST (x);
12902 while (GET_CODE (testreg) == SUBREG
12903 || GET_CODE (testreg) == ZERO_EXTRACT
12904 || GET_CODE (testreg) == STRICT_LOW_PART)
12905 testreg = XEXP (testreg, 0);
12907 if (MEM_P (testreg))
12908 mark_used_regs_combine (XEXP (testreg, 0));
12910 mark_used_regs_combine (SET_SRC (x));
12912 return;
12914 default:
12915 break;
12918 /* Recursively scan the operands of this expression. */
12921 const char *fmt = GET_RTX_FORMAT (code);
12923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12925 if (fmt[i] == 'e')
12926 mark_used_regs_combine (XEXP (x, i));
12927 else if (fmt[i] == 'E')
12929 int j;
12931 for (j = 0; j < XVECLEN (x, i); j++)
12932 mark_used_regs_combine (XVECEXP (x, i, j));
12938 /* Remove register number REGNO from the dead registers list of INSN.
12940 Return the note used to record the death, if there was one. */
12943 remove_death (unsigned int regno, rtx insn)
12945 rtx note = find_regno_note (insn, REG_DEAD, regno);
12947 if (note)
12948 remove_note (insn, note);
12950 return note;
12953 /* For each register (hardware or pseudo) used within expression X, if its
12954 death is in an instruction with luid between FROM_LUID (inclusive) and
12955 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12956 list headed by PNOTES.
12958 That said, don't move registers killed by maybe_kill_insn.
12960 This is done when X is being merged by combination into TO_INSN. These
12961 notes will then be distributed as needed. */
12963 static void
12964 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12965 rtx *pnotes)
12967 const char *fmt;
12968 int len, i;
12969 enum rtx_code code = GET_CODE (x);
12971 if (code == REG)
12973 unsigned int regno = REGNO (x);
12974 rtx where_dead = reg_stat[regno].last_death;
12976 /* Don't move the register if it gets killed in between from and to. */
12977 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12978 && ! reg_referenced_p (x, maybe_kill_insn))
12979 return;
12981 if (where_dead
12982 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12983 && DF_INSN_LUID (where_dead) >= from_luid
12984 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12986 rtx note = remove_death (regno, where_dead);
12988 /* It is possible for the call above to return 0. This can occur
12989 when last_death points to I2 or I1 that we combined with.
12990 In that case make a new note.
12992 We must also check for the case where X is a hard register
12993 and NOTE is a death note for a range of hard registers
12994 including X. In that case, we must put REG_DEAD notes for
12995 the remaining registers in place of NOTE. */
12997 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12998 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12999 > GET_MODE_SIZE (GET_MODE (x))))
13001 unsigned int deadregno = REGNO (XEXP (note, 0));
13002 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13003 unsigned int ourend = END_HARD_REGNO (x);
13004 unsigned int i;
13006 for (i = deadregno; i < deadend; i++)
13007 if (i < regno || i >= ourend)
13008 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13011 /* If we didn't find any note, or if we found a REG_DEAD note that
13012 covers only part of the given reg, and we have a multi-reg hard
13013 register, then to be safe we must check for REG_DEAD notes
13014 for each register other than the first. They could have
13015 their own REG_DEAD notes lying around. */
13016 else if ((note == 0
13017 || (note != 0
13018 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13019 < GET_MODE_SIZE (GET_MODE (x)))))
13020 && regno < FIRST_PSEUDO_REGISTER
13021 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13023 unsigned int ourend = END_HARD_REGNO (x);
13024 unsigned int i, offset;
13025 rtx oldnotes = 0;
13027 if (note)
13028 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13029 else
13030 offset = 1;
13032 for (i = regno + offset; i < ourend; i++)
13033 move_deaths (regno_reg_rtx[i],
13034 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13037 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13039 XEXP (note, 1) = *pnotes;
13040 *pnotes = note;
13042 else
13043 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13046 return;
13049 else if (GET_CODE (x) == SET)
13051 rtx dest = SET_DEST (x);
13053 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13055 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13056 that accesses one word of a multi-word item, some
13057 piece of everything register in the expression is used by
13058 this insn, so remove any old death. */
13059 /* ??? So why do we test for equality of the sizes? */
13061 if (GET_CODE (dest) == ZERO_EXTRACT
13062 || GET_CODE (dest) == STRICT_LOW_PART
13063 || (GET_CODE (dest) == SUBREG
13064 && (((GET_MODE_SIZE (GET_MODE (dest))
13065 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13066 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13067 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13069 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13070 return;
13073 /* If this is some other SUBREG, we know it replaces the entire
13074 value, so use that as the destination. */
13075 if (GET_CODE (dest) == SUBREG)
13076 dest = SUBREG_REG (dest);
13078 /* If this is a MEM, adjust deaths of anything used in the address.
13079 For a REG (the only other possibility), the entire value is
13080 being replaced so the old value is not used in this insn. */
13082 if (MEM_P (dest))
13083 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13084 to_insn, pnotes);
13085 return;
13088 else if (GET_CODE (x) == CLOBBER)
13089 return;
13091 len = GET_RTX_LENGTH (code);
13092 fmt = GET_RTX_FORMAT (code);
13094 for (i = 0; i < len; i++)
13096 if (fmt[i] == 'E')
13098 int j;
13099 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13100 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13101 to_insn, pnotes);
13103 else if (fmt[i] == 'e')
13104 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13108 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13109 pattern of an insn. X must be a REG. */
13111 static int
13112 reg_bitfield_target_p (rtx x, rtx body)
13114 int i;
13116 if (GET_CODE (body) == SET)
13118 rtx dest = SET_DEST (body);
13119 rtx target;
13120 unsigned int regno, tregno, endregno, endtregno;
13122 if (GET_CODE (dest) == ZERO_EXTRACT)
13123 target = XEXP (dest, 0);
13124 else if (GET_CODE (dest) == STRICT_LOW_PART)
13125 target = SUBREG_REG (XEXP (dest, 0));
13126 else
13127 return 0;
13129 if (GET_CODE (target) == SUBREG)
13130 target = SUBREG_REG (target);
13132 if (!REG_P (target))
13133 return 0;
13135 tregno = REGNO (target), regno = REGNO (x);
13136 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13137 return target == x;
13139 endtregno = end_hard_regno (GET_MODE (target), tregno);
13140 endregno = end_hard_regno (GET_MODE (x), regno);
13142 return endregno > tregno && regno < endtregno;
13145 else if (GET_CODE (body) == PARALLEL)
13146 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13147 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13148 return 1;
13150 return 0;
13153 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13154 as appropriate. I3 and I2 are the insns resulting from the combination
13155 insns including FROM (I2 may be zero).
13157 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13158 not need REG_DEAD notes because they are being substituted for. This
13159 saves searching in the most common cases.
13161 Each note in the list is either ignored or placed on some insns, depending
13162 on the type of note. */
13164 static void
13165 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13166 rtx elim_i1, rtx elim_i0)
13168 rtx note, next_note;
13169 rtx tem;
13171 for (note = notes; note; note = next_note)
13173 rtx place = 0, place2 = 0;
13175 next_note = XEXP (note, 1);
13176 switch (REG_NOTE_KIND (note))
13178 case REG_BR_PROB:
13179 case REG_BR_PRED:
13180 /* Doesn't matter much where we put this, as long as it's somewhere.
13181 It is preferable to keep these notes on branches, which is most
13182 likely to be i3. */
13183 place = i3;
13184 break;
13186 case REG_NON_LOCAL_GOTO:
13187 if (JUMP_P (i3))
13188 place = i3;
13189 else
13191 gcc_assert (i2 && JUMP_P (i2));
13192 place = i2;
13194 break;
13196 case REG_EH_REGION:
13197 /* These notes must remain with the call or trapping instruction. */
13198 if (CALL_P (i3))
13199 place = i3;
13200 else if (i2 && CALL_P (i2))
13201 place = i2;
13202 else
13204 gcc_assert (cfun->can_throw_non_call_exceptions);
13205 if (may_trap_p (i3))
13206 place = i3;
13207 else if (i2 && may_trap_p (i2))
13208 place = i2;
13209 /* ??? Otherwise assume we've combined things such that we
13210 can now prove that the instructions can't trap. Drop the
13211 note in this case. */
13213 break;
13215 case REG_ARGS_SIZE:
13216 /* ??? How to distribute between i3-i1. Assume i3 contains the
13217 entire adjustment. Assert i3 contains at least some adjust. */
13218 if (!noop_move_p (i3))
13220 int old_size, args_size = INTVAL (XEXP (note, 0));
13221 /* fixup_args_size_notes looks at REG_NORETURN note,
13222 so ensure the note is placed there first. */
13223 if (CALL_P (i3))
13225 rtx *np;
13226 for (np = &next_note; *np; np = &XEXP (*np, 1))
13227 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13229 rtx n = *np;
13230 *np = XEXP (n, 1);
13231 XEXP (n, 1) = REG_NOTES (i3);
13232 REG_NOTES (i3) = n;
13233 break;
13236 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13237 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13238 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13239 gcc_assert (old_size != args_size
13240 || (CALL_P (i3)
13241 && !ACCUMULATE_OUTGOING_ARGS
13242 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13244 break;
13246 case REG_NORETURN:
13247 case REG_SETJMP:
13248 case REG_TM:
13249 /* These notes must remain with the call. It should not be
13250 possible for both I2 and I3 to be a call. */
13251 if (CALL_P (i3))
13252 place = i3;
13253 else
13255 gcc_assert (i2 && CALL_P (i2));
13256 place = i2;
13258 break;
13260 case REG_UNUSED:
13261 /* Any clobbers for i3 may still exist, and so we must process
13262 REG_UNUSED notes from that insn.
13264 Any clobbers from i2 or i1 can only exist if they were added by
13265 recog_for_combine. In that case, recog_for_combine created the
13266 necessary REG_UNUSED notes. Trying to keep any original
13267 REG_UNUSED notes from these insns can cause incorrect output
13268 if it is for the same register as the original i3 dest.
13269 In that case, we will notice that the register is set in i3,
13270 and then add a REG_UNUSED note for the destination of i3, which
13271 is wrong. However, it is possible to have REG_UNUSED notes from
13272 i2 or i1 for register which were both used and clobbered, so
13273 we keep notes from i2 or i1 if they will turn into REG_DEAD
13274 notes. */
13276 /* If this register is set or clobbered in I3, put the note there
13277 unless there is one already. */
13278 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13280 if (from_insn != i3)
13281 break;
13283 if (! (REG_P (XEXP (note, 0))
13284 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13285 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13286 place = i3;
13288 /* Otherwise, if this register is used by I3, then this register
13289 now dies here, so we must put a REG_DEAD note here unless there
13290 is one already. */
13291 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13292 && ! (REG_P (XEXP (note, 0))
13293 ? find_regno_note (i3, REG_DEAD,
13294 REGNO (XEXP (note, 0)))
13295 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13297 PUT_REG_NOTE_KIND (note, REG_DEAD);
13298 place = i3;
13300 break;
13302 case REG_EQUAL:
13303 case REG_EQUIV:
13304 case REG_NOALIAS:
13305 /* These notes say something about results of an insn. We can
13306 only support them if they used to be on I3 in which case they
13307 remain on I3. Otherwise they are ignored.
13309 If the note refers to an expression that is not a constant, we
13310 must also ignore the note since we cannot tell whether the
13311 equivalence is still true. It might be possible to do
13312 slightly better than this (we only have a problem if I2DEST
13313 or I1DEST is present in the expression), but it doesn't
13314 seem worth the trouble. */
13316 if (from_insn == i3
13317 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13318 place = i3;
13319 break;
13321 case REG_INC:
13322 /* These notes say something about how a register is used. They must
13323 be present on any use of the register in I2 or I3. */
13324 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13325 place = i3;
13327 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13329 if (place)
13330 place2 = i2;
13331 else
13332 place = i2;
13334 break;
13336 case REG_LABEL_TARGET:
13337 case REG_LABEL_OPERAND:
13338 /* This can show up in several ways -- either directly in the
13339 pattern, or hidden off in the constant pool with (or without?)
13340 a REG_EQUAL note. */
13341 /* ??? Ignore the without-reg_equal-note problem for now. */
13342 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13343 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13344 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13345 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13346 place = i3;
13348 if (i2
13349 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13350 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13351 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13352 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13354 if (place)
13355 place2 = i2;
13356 else
13357 place = i2;
13360 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13361 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13362 there. */
13363 if (place && JUMP_P (place)
13364 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13365 && (JUMP_LABEL (place) == NULL
13366 || JUMP_LABEL (place) == XEXP (note, 0)))
13368 rtx label = JUMP_LABEL (place);
13370 if (!label)
13371 JUMP_LABEL (place) = XEXP (note, 0);
13372 else if (LABEL_P (label))
13373 LABEL_NUSES (label)--;
13376 if (place2 && JUMP_P (place2)
13377 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13378 && (JUMP_LABEL (place2) == NULL
13379 || JUMP_LABEL (place2) == XEXP (note, 0)))
13381 rtx label = JUMP_LABEL (place2);
13383 if (!label)
13384 JUMP_LABEL (place2) = XEXP (note, 0);
13385 else if (LABEL_P (label))
13386 LABEL_NUSES (label)--;
13387 place2 = 0;
13389 break;
13391 case REG_NONNEG:
13392 /* This note says something about the value of a register prior
13393 to the execution of an insn. It is too much trouble to see
13394 if the note is still correct in all situations. It is better
13395 to simply delete it. */
13396 break;
13398 case REG_DEAD:
13399 /* If we replaced the right hand side of FROM_INSN with a
13400 REG_EQUAL note, the original use of the dying register
13401 will not have been combined into I3 and I2. In such cases,
13402 FROM_INSN is guaranteed to be the first of the combined
13403 instructions, so we simply need to search back before
13404 FROM_INSN for the previous use or set of this register,
13405 then alter the notes there appropriately.
13407 If the register is used as an input in I3, it dies there.
13408 Similarly for I2, if it is nonzero and adjacent to I3.
13410 If the register is not used as an input in either I3 or I2
13411 and it is not one of the registers we were supposed to eliminate,
13412 there are two possibilities. We might have a non-adjacent I2
13413 or we might have somehow eliminated an additional register
13414 from a computation. For example, we might have had A & B where
13415 we discover that B will always be zero. In this case we will
13416 eliminate the reference to A.
13418 In both cases, we must search to see if we can find a previous
13419 use of A and put the death note there. */
13421 if (from_insn
13422 && from_insn == i2mod
13423 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13424 tem = from_insn;
13425 else
13427 if (from_insn
13428 && CALL_P (from_insn)
13429 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13430 place = from_insn;
13431 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13432 place = i3;
13433 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13434 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13435 place = i2;
13436 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13437 && !(i2mod
13438 && reg_overlap_mentioned_p (XEXP (note, 0),
13439 i2mod_old_rhs)))
13440 || rtx_equal_p (XEXP (note, 0), elim_i1)
13441 || rtx_equal_p (XEXP (note, 0), elim_i0))
13442 break;
13443 tem = i3;
13446 if (place == 0)
13448 basic_block bb = this_basic_block;
13450 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13452 if (!NONDEBUG_INSN_P (tem))
13454 if (tem == BB_HEAD (bb))
13455 break;
13456 continue;
13459 /* If the register is being set at TEM, see if that is all
13460 TEM is doing. If so, delete TEM. Otherwise, make this
13461 into a REG_UNUSED note instead. Don't delete sets to
13462 global register vars. */
13463 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13464 || !global_regs[REGNO (XEXP (note, 0))])
13465 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13467 rtx set = single_set (tem);
13468 rtx inner_dest = 0;
13469 #ifdef HAVE_cc0
13470 rtx cc0_setter = NULL_RTX;
13471 #endif
13473 if (set != 0)
13474 for (inner_dest = SET_DEST (set);
13475 (GET_CODE (inner_dest) == STRICT_LOW_PART
13476 || GET_CODE (inner_dest) == SUBREG
13477 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13478 inner_dest = XEXP (inner_dest, 0))
13481 /* Verify that it was the set, and not a clobber that
13482 modified the register.
13484 CC0 targets must be careful to maintain setter/user
13485 pairs. If we cannot delete the setter due to side
13486 effects, mark the user with an UNUSED note instead
13487 of deleting it. */
13489 if (set != 0 && ! side_effects_p (SET_SRC (set))
13490 && rtx_equal_p (XEXP (note, 0), inner_dest)
13491 #ifdef HAVE_cc0
13492 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13493 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13494 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13495 #endif
13498 /* Move the notes and links of TEM elsewhere.
13499 This might delete other dead insns recursively.
13500 First set the pattern to something that won't use
13501 any register. */
13502 rtx old_notes = REG_NOTES (tem);
13504 PATTERN (tem) = pc_rtx;
13505 REG_NOTES (tem) = NULL;
13507 distribute_notes (old_notes, tem, tem, NULL_RTX,
13508 NULL_RTX, NULL_RTX, NULL_RTX);
13509 distribute_links (LOG_LINKS (tem));
13511 SET_INSN_DELETED (tem);
13512 if (tem == i2)
13513 i2 = NULL_RTX;
13515 #ifdef HAVE_cc0
13516 /* Delete the setter too. */
13517 if (cc0_setter)
13519 PATTERN (cc0_setter) = pc_rtx;
13520 old_notes = REG_NOTES (cc0_setter);
13521 REG_NOTES (cc0_setter) = NULL;
13523 distribute_notes (old_notes, cc0_setter,
13524 cc0_setter, NULL_RTX,
13525 NULL_RTX, NULL_RTX, NULL_RTX);
13526 distribute_links (LOG_LINKS (cc0_setter));
13528 SET_INSN_DELETED (cc0_setter);
13529 if (cc0_setter == i2)
13530 i2 = NULL_RTX;
13532 #endif
13534 else
13536 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13538 /* If there isn't already a REG_UNUSED note, put one
13539 here. Do not place a REG_DEAD note, even if
13540 the register is also used here; that would not
13541 match the algorithm used in lifetime analysis
13542 and can cause the consistency check in the
13543 scheduler to fail. */
13544 if (! find_regno_note (tem, REG_UNUSED,
13545 REGNO (XEXP (note, 0))))
13546 place = tem;
13547 break;
13550 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13551 || (CALL_P (tem)
13552 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13554 place = tem;
13556 /* If we are doing a 3->2 combination, and we have a
13557 register which formerly died in i3 and was not used
13558 by i2, which now no longer dies in i3 and is used in
13559 i2 but does not die in i2, and place is between i2
13560 and i3, then we may need to move a link from place to
13561 i2. */
13562 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13563 && from_insn
13564 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13565 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13567 struct insn_link *links = LOG_LINKS (place);
13568 LOG_LINKS (place) = NULL;
13569 distribute_links (links);
13571 break;
13574 if (tem == BB_HEAD (bb))
13575 break;
13580 /* If the register is set or already dead at PLACE, we needn't do
13581 anything with this note if it is still a REG_DEAD note.
13582 We check here if it is set at all, not if is it totally replaced,
13583 which is what `dead_or_set_p' checks, so also check for it being
13584 set partially. */
13586 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13588 unsigned int regno = REGNO (XEXP (note, 0));
13589 reg_stat_type *rsp = &reg_stat[regno];
13591 if (dead_or_set_p (place, XEXP (note, 0))
13592 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13594 /* Unless the register previously died in PLACE, clear
13595 last_death. [I no longer understand why this is
13596 being done.] */
13597 if (rsp->last_death != place)
13598 rsp->last_death = 0;
13599 place = 0;
13601 else
13602 rsp->last_death = place;
13604 /* If this is a death note for a hard reg that is occupying
13605 multiple registers, ensure that we are still using all
13606 parts of the object. If we find a piece of the object
13607 that is unused, we must arrange for an appropriate REG_DEAD
13608 note to be added for it. However, we can't just emit a USE
13609 and tag the note to it, since the register might actually
13610 be dead; so we recourse, and the recursive call then finds
13611 the previous insn that used this register. */
13613 if (place && regno < FIRST_PSEUDO_REGISTER
13614 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13616 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13617 bool all_used = true;
13618 unsigned int i;
13620 for (i = regno; i < endregno; i++)
13621 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13622 && ! find_regno_fusage (place, USE, i))
13623 || dead_or_set_regno_p (place, i))
13625 all_used = false;
13626 break;
13629 if (! all_used)
13631 /* Put only REG_DEAD notes for pieces that are
13632 not already dead or set. */
13634 for (i = regno; i < endregno;
13635 i += hard_regno_nregs[i][reg_raw_mode[i]])
13637 rtx piece = regno_reg_rtx[i];
13638 basic_block bb = this_basic_block;
13640 if (! dead_or_set_p (place, piece)
13641 && ! reg_bitfield_target_p (piece,
13642 PATTERN (place)))
13644 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13645 NULL_RTX);
13647 distribute_notes (new_note, place, place,
13648 NULL_RTX, NULL_RTX, NULL_RTX,
13649 NULL_RTX);
13651 else if (! refers_to_regno_p (i, i + 1,
13652 PATTERN (place), 0)
13653 && ! find_regno_fusage (place, USE, i))
13654 for (tem = PREV_INSN (place); ;
13655 tem = PREV_INSN (tem))
13657 if (!NONDEBUG_INSN_P (tem))
13659 if (tem == BB_HEAD (bb))
13660 break;
13661 continue;
13663 if (dead_or_set_p (tem, piece)
13664 || reg_bitfield_target_p (piece,
13665 PATTERN (tem)))
13667 add_reg_note (tem, REG_UNUSED, piece);
13668 break;
13673 place = 0;
13677 break;
13679 default:
13680 /* Any other notes should not be present at this point in the
13681 compilation. */
13682 gcc_unreachable ();
13685 if (place)
13687 XEXP (note, 1) = REG_NOTES (place);
13688 REG_NOTES (place) = note;
13691 if (place2)
13692 add_shallow_copy_of_reg_note (place2, note);
13696 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13697 I3, I2, and I1 to new locations. This is also called to add a link
13698 pointing at I3 when I3's destination is changed. */
13700 static void
13701 distribute_links (struct insn_link *links)
13703 struct insn_link *link, *next_link;
13705 for (link = links; link; link = next_link)
13707 rtx place = 0;
13708 rtx insn;
13709 rtx set, reg;
13711 next_link = link->next;
13713 /* If the insn that this link points to is a NOTE or isn't a single
13714 set, ignore it. In the latter case, it isn't clear what we
13715 can do other than ignore the link, since we can't tell which
13716 register it was for. Such links wouldn't be used by combine
13717 anyway.
13719 It is not possible for the destination of the target of the link to
13720 have been changed by combine. The only potential of this is if we
13721 replace I3, I2, and I1 by I3 and I2. But in that case the
13722 destination of I2 also remains unchanged. */
13724 if (NOTE_P (link->insn)
13725 || (set = single_set (link->insn)) == 0)
13726 continue;
13728 reg = SET_DEST (set);
13729 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13730 || GET_CODE (reg) == STRICT_LOW_PART)
13731 reg = XEXP (reg, 0);
13733 /* A LOG_LINK is defined as being placed on the first insn that uses
13734 a register and points to the insn that sets the register. Start
13735 searching at the next insn after the target of the link and stop
13736 when we reach a set of the register or the end of the basic block.
13738 Note that this correctly handles the link that used to point from
13739 I3 to I2. Also note that not much searching is typically done here
13740 since most links don't point very far away. */
13742 for (insn = NEXT_INSN (link->insn);
13743 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13744 || BB_HEAD (this_basic_block->next_bb) != insn));
13745 insn = NEXT_INSN (insn))
13746 if (DEBUG_INSN_P (insn))
13747 continue;
13748 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13750 if (reg_referenced_p (reg, PATTERN (insn)))
13751 place = insn;
13752 break;
13754 else if (CALL_P (insn)
13755 && find_reg_fusage (insn, USE, reg))
13757 place = insn;
13758 break;
13760 else if (INSN_P (insn) && reg_set_p (reg, insn))
13761 break;
13763 /* If we found a place to put the link, place it there unless there
13764 is already a link to the same insn as LINK at that point. */
13766 if (place)
13768 struct insn_link *link2;
13770 FOR_EACH_LOG_LINK (link2, place)
13771 if (link2->insn == link->insn)
13772 break;
13774 if (link2 == NULL)
13776 link->next = LOG_LINKS (place);
13777 LOG_LINKS (place) = link;
13779 /* Set added_links_insn to the earliest insn we added a
13780 link to. */
13781 if (added_links_insn == 0
13782 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13783 added_links_insn = place;
13789 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13790 Check whether the expression pointer to by LOC is a register or
13791 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13792 Otherwise return zero. */
13794 static int
13795 unmentioned_reg_p_1 (rtx *loc, void *expr)
13797 rtx x = *loc;
13799 if (x != NULL_RTX
13800 && (REG_P (x) || MEM_P (x))
13801 && ! reg_mentioned_p (x, (rtx) expr))
13802 return 1;
13803 return 0;
13806 /* Check for any register or memory mentioned in EQUIV that is not
13807 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13808 of EXPR where some registers may have been replaced by constants. */
13810 static bool
13811 unmentioned_reg_p (rtx equiv, rtx expr)
13813 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13816 DEBUG_FUNCTION void
13817 dump_combine_stats (FILE *file)
13819 fprintf
13820 (file,
13821 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13822 combine_attempts, combine_merges, combine_extras, combine_successes);
13825 void
13826 dump_combine_total_stats (FILE *file)
13828 fprintf
13829 (file,
13830 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13831 total_attempts, total_merges, total_extras, total_successes);
13834 static bool
13835 gate_handle_combine (void)
13837 return (optimize > 0);
13840 /* Try combining insns through substitution. */
13841 static unsigned int
13842 rest_of_handle_combine (void)
13844 int rebuild_jump_labels_after_combine;
13846 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13847 df_note_add_problem ();
13848 df_analyze ();
13850 regstat_init_n_sets_and_refs ();
13852 rebuild_jump_labels_after_combine
13853 = combine_instructions (get_insns (), max_reg_num ());
13855 /* Combining insns may have turned an indirect jump into a
13856 direct jump. Rebuild the JUMP_LABEL fields of jumping
13857 instructions. */
13858 if (rebuild_jump_labels_after_combine)
13860 timevar_push (TV_JUMP);
13861 rebuild_jump_labels (get_insns ());
13862 cleanup_cfg (0);
13863 timevar_pop (TV_JUMP);
13866 regstat_free_n_sets_and_refs ();
13867 return 0;
13870 namespace {
13872 const pass_data pass_data_combine =
13874 RTL_PASS, /* type */
13875 "combine", /* name */
13876 OPTGROUP_NONE, /* optinfo_flags */
13877 true, /* has_gate */
13878 true, /* has_execute */
13879 TV_COMBINE, /* tv_id */
13880 PROP_cfglayout, /* properties_required */
13881 0, /* properties_provided */
13882 0, /* properties_destroyed */
13883 0, /* todo_flags_start */
13884 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
13887 class pass_combine : public rtl_opt_pass
13889 public:
13890 pass_combine (gcc::context *ctxt)
13891 : rtl_opt_pass (pass_data_combine, ctxt)
13894 /* opt_pass methods: */
13895 bool gate () { return gate_handle_combine (); }
13896 unsigned int execute () { return rest_of_handle_combine (); }
13898 }; // class pass_combine
13900 } // anon namespace
13902 rtl_opt_pass *
13903 make_pass_combine (gcc::context *ctxt)
13905 return new pass_combine (ctxt);