rtl.h (emit_clobber, [...]): Declare.
[official-gcc.git] / gcc / config / arm / arm1020e.md
blobbec8766c287963e069c247c2acd0580b8a2aa9d9
1 ;; ARM 1020E & ARM 1022E Pipeline Description
2 ;; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
3 ;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3.  If not see
19 ;; <http://www.gnu.org/licenses/>.  */
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
23 ;; Limited.
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 1020E core.
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
33 (define_automaton "arm1020e")
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39 ;; There are two pipelines:
40 ;; 
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
43 ;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
44 ;;   write stages. We only need to model the execute, memory and write
45 ;;   stages.
47 ;; - A Load-Store Unit (LSU) pipeline.
49 ;;   The LSU pipeline has decode, execute, memory, and write stages.
50 ;;   We only model the execute, memory and write stages.
52 (define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
53 (define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56 ;; ALU Instructions
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
59 ;; ALU instructions require three cycles to execute, and use the ALU
60 ;; pipeline in each of the three stages.  The results are available
61 ;; after the execute stage stage has finished.
63 ;; If the destination register is the PC, the pipelines are stalled
64 ;; for several cycles.  That case is not modeled here.
66 ;; ALU operations with no shifted operand
67 (define_insn_reservation "1020alu_op" 1 
68  (and (eq_attr "tune" "arm1020e,arm1022e")
69       (eq_attr "type" "alu"))
70  "1020a_e,1020a_m,1020a_w")
72 ;; ALU operations with a shift-by-constant operand
73 (define_insn_reservation "1020alu_shift_op" 1 
74  (and (eq_attr "tune" "arm1020e,arm1022e")
75       (eq_attr "type" "alu_shift"))
76  "1020a_e,1020a_m,1020a_w")
78 ;; ALU operations with a shift-by-register operand
79 ;; These really stall in the decoder, in order to read
80 ;; the shift value in a second cycle. Pretend we take two cycles in
81 ;; the execute stage.
82 (define_insn_reservation "1020alu_shift_reg_op" 2 
83  (and (eq_attr "tune" "arm1020e,arm1022e")
84       (eq_attr "type" "alu_shift_reg"))
85  "1020a_e*2,1020a_m,1020a_w")
87 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88 ;; Multiplication Instructions
89 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
91 ;; Multiplication instructions loop in the execute stage until the
92 ;; instruction has been passed through the multiplier array enough
93 ;; times.
95 ;; The result of the "smul" and "smulw" instructions is not available
96 ;; until after the memory stage.
97 (define_insn_reservation "1020mult1" 2
98  (and (eq_attr "tune" "arm1020e,arm1022e")
99       (eq_attr "insn" "smulxy,smulwy"))
100  "1020a_e,1020a_m,1020a_w")
102 ;; The "smlaxy" and "smlawx" instructions require two iterations through
103 ;; the execute stage; the result is available immediately following
104 ;; the execute stage.
105 (define_insn_reservation "1020mult2" 2
106  (and (eq_attr "tune" "arm1020e,arm1022e")
107       (eq_attr "insn" "smlaxy,smlalxy,smlawx"))
108  "1020a_e*2,1020a_m,1020a_w")
110 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
111 ;; through the execute stage; the result is not available until after
112 ;; the memory stage.
113 (define_insn_reservation "1020mult3" 3
114  (and (eq_attr "tune" "arm1020e,arm1022e")
115       (eq_attr "insn" "smlalxy,mul,mla"))
116  "1020a_e*2,1020a_m,1020a_w")
118 ;; The "muls" and "mlas" instructions loop in the execute stage for
119 ;; four iterations in order to set the flags.  The value result is
120 ;; available after three iterations.
121 (define_insn_reservation "1020mult4" 3
122  (and (eq_attr "tune" "arm1020e,arm1022e")
123       (eq_attr "insn" "muls,mlas"))
124  "1020a_e*4,1020a_m,1020a_w")
126 ;; Long multiply instructions that produce two registers of
127 ;; output (such as umull) make their results available in two cycles;
128 ;; the least significant word is available before the most significant
129 ;; word.  That fact is not modeled; instead, the instructions are
130 ;; described.as if the entire result was available at the end of the
131 ;; cycle in which both words are available.
133 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
134 ;; three iterations through the execute cycle, and make their results
135 ;; available after the memory cycle.
136 (define_insn_reservation "1020mult5" 4
137  (and (eq_attr "tune" "arm1020e,arm1022e")
138       (eq_attr "insn" "umull,umlal,smull,smlal"))
139  "1020a_e*3,1020a_m,1020a_w")
141 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
142 ;; the execute stage for five iterations in order to set the flags.
143 ;; The value result is available after four iterations.
144 (define_insn_reservation "1020mult6" 4
145  (and (eq_attr "tune" "arm1020e,arm1022e")
146       (eq_attr "insn" "umulls,umlals,smulls,smlals"))
147  "1020a_e*5,1020a_m,1020a_w")
149 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
150 ;; Load/Store Instructions
151 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
153 ;; The models for load/store instructions do not accurately describe
154 ;; the difference between operations with a base register writeback
155 ;; (such as "ldm!").  These models assume that all memory references
156 ;; hit in dcache.
158 ;; LSU instructions require six cycles to execute.  They use the ALU
159 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
160 ;; three through six.
161 ;; Loads and stores which use a scaled register offset or scaled
162 ;; register pre-indexed addressing mode take three cycles EXCEPT for
163 ;; those that are base + offset with LSL of 0 or 2, or base - offset
164 ;; with LSL of zero.  The remainder take 1 cycle to execute.
165 ;; For 4byte loads there is a bypass from the load stage
167 (define_insn_reservation "1020load1_op" 2
168  (and (eq_attr "tune" "arm1020e,arm1022e")
169       (eq_attr "type" "load_byte,load1"))
170  "1020a_e+1020l_e,1020l_m,1020l_w")
172 (define_insn_reservation "1020store1_op" 0
173  (and (eq_attr "tune" "arm1020e,arm1022e")
174       (eq_attr "type" "store1"))
175  "1020a_e+1020l_e,1020l_m,1020l_w")
177 ;; A load's result can be stored by an immediately following store
178 (define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
180 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
181 ;; registers have been processed.
183 ;; The time it takes to load the data depends on whether or not the
184 ;; base address is 64-bit aligned; if it is not, an additional cycle
185 ;; is required.  This model assumes that the address is always 64-bit
186 ;; aligned.  Because the processor can load two registers per cycle,
187 ;; that assumption means that we use the same instruction reservations
188 ;; for loading 2k and 2k - 1 registers.
190 ;; The ALU pipeline is decoupled after the first cycle unless there is
191 ;; a register dependency; the dependency is cleared as soon as the LDM/STM
192 ;; has dealt with the corresponding register.  So for example,
193 ;;  stmia sp, {r0-r3}
194 ;;  add r0, r0, #4
195 ;; will have one fewer stalls than
196 ;;  stmia sp, {r0-r3}
197 ;;  add r3, r3, #4
199 ;; As with ALU operations, if one of the destination registers is the
200 ;; PC, there are additional stalls; that is not modeled.
202 (define_insn_reservation "1020load2_op" 2
203  (and (eq_attr "tune" "arm1020e,arm1022e")
204       (eq_attr "type" "load2"))
205  "1020a_e+1020l_e,1020l_m,1020l_w")
207 (define_insn_reservation "1020store2_op" 0
208  (and (eq_attr "tune" "arm1020e,arm1022e")
209       (eq_attr "type" "store2"))
210  "1020a_e+1020l_e,1020l_m,1020l_w")
212 (define_insn_reservation "1020load34_op" 3
213  (and (eq_attr "tune" "arm1020e,arm1022e")
214       (eq_attr "type" "load3,load4"))
215  "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
217 (define_insn_reservation "1020store34_op" 0
218  (and (eq_attr "tune" "arm1020e,arm1022e")
219       (eq_attr "type" "store3,store4"))
220  "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
222 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
223 ;; Branch and Call Instructions
224 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
226 ;; Branch instructions are difficult to model accurately.  The ARM
227 ;; core can predict most branches.  If the branch is predicted
228 ;; correctly, and predicted early enough, the branch can be completely
229 ;; eliminated from the instruction stream.  Some branches can
230 ;; therefore appear to require zero cycles to execute.  We assume that
231 ;; all branches are predicted correctly, and that the latency is
232 ;; therefore the minimum value.
234 (define_insn_reservation "1020branch_op" 0
235  (and (eq_attr "tune" "arm1020e,arm1022e")
236       (eq_attr "type" "branch"))
237  "1020a_e")
239 ;; The latency for a call is not predictable.  Therefore, we use 32 as
240 ;; roughly equivalent to positive infinity.
242 (define_insn_reservation "1020call_op" 32
243  (and (eq_attr "tune" "arm1020e,arm1022e")
244       (eq_attr "type" "call"))
245  "1020a_e*32")
247 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248 ;; VFP
249 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
251 (define_cpu_unit "v10_fmac" "arm1020e")
253 (define_cpu_unit "v10_ds" "arm1020e")
255 (define_cpu_unit "v10_fmstat" "arm1020e")
257 (define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
259 ;; fmstat is a serializing instruction.  It will stall the core until
260 ;; the mac and ds units have completed.
261 (exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
263 (define_attr "vfp10" "yes,no" 
264   (const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
265                             (eq_attr "fpu" "vfp"))
266                        (const_string "yes") (const_string "no"))))
268 ;; The VFP "type" attributes differ from those used in the FPA model.
269 ;; ffarith      Fast floating point insns, e.g. abs, neg, cpy, cmp.
270 ;; farith       Most arithmetic insns.
271 ;; fmul         Double precision multiply.
272 ;; fdivs        Single precision sqrt or division.
273 ;; fdivd        Double precision sqrt or division.
274 ;; f_flag       fmstat operation
275 ;; f_load       Floating point load from memory.
276 ;; f_store      Floating point store to memory.
277 ;; f_2_r        Transfer vfp to arm reg.
278 ;; r_2_f        Transfer arm to vfp reg.
280 ;; Note, no instruction can issue to the VFP if the core is stalled in the
281 ;; first execute state.  We model this by using 1020a_e in the first cycle.
282 (define_insn_reservation "v10_ffarith" 5
283  (and (eq_attr "vfp10" "yes")
284       (eq_attr "type" "ffarith"))
285  "1020a_e+v10_fmac")
287 (define_insn_reservation "v10_farith" 5
288  (and (eq_attr "vfp10" "yes")
289       (eq_attr "type" "farith"))
290  "1020a_e+v10_fmac")
292 (define_insn_reservation "v10_cvt" 5
293  (and (eq_attr "vfp10" "yes")
294       (eq_attr "type" "f_cvt"))
295  "1020a_e+v10_fmac")
297 (define_insn_reservation "v10_fmul" 6
298  (and (eq_attr "vfp10" "yes")
299       (eq_attr "type" "fmul"))
300  "1020a_e+v10_fmac*2")
302 (define_insn_reservation "v10_fdivs" 18
303  (and (eq_attr "vfp10" "yes")
304       (eq_attr "type" "fdivs"))
305  "1020a_e+v10_ds*14")
307 (define_insn_reservation "v10_fdivd" 32
308  (and (eq_attr "vfp10" "yes")
309       (eq_attr "type" "fdivd"))
310  "1020a_e+v10_fmac+v10_ds*28")
312 (define_insn_reservation "v10_floads" 4
313  (and (eq_attr "vfp10" "yes")
314       (eq_attr "type" "f_loads"))
315  "1020a_e+1020l_e+v10_ls1,v10_ls2")
317 ;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
318 ;; This gives the correct mix between single-and double loads where a flds
319 ;; followed by and fldd will stall for one cycle, but two back-to-back fldd
320 ;; insns stall for two cycles.
321 (define_insn_reservation "v10_floadd" 5
322  (and (eq_attr "vfp10" "yes")
323       (eq_attr "type" "f_loadd"))
324  "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
326 ;; Moves to/from arm regs also use the load/store pipeline.
328 (define_insn_reservation "v10_c2v" 4
329  (and (eq_attr "vfp10" "yes")
330       (eq_attr "type" "r_2_f"))
331  "1020a_e+1020l_e+v10_ls1,v10_ls2")
333 (define_insn_reservation "v10_fstores" 1
334  (and (eq_attr "vfp10" "yes")
335       (eq_attr "type" "f_stores"))
336  "1020a_e+1020l_e+v10_ls1,v10_ls2")
338 (define_insn_reservation "v10_fstored" 1
339  (and (eq_attr "vfp10" "yes")
340       (eq_attr "type" "f_stored"))
341  "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
343 (define_insn_reservation "v10_v2c" 1
344  (and (eq_attr "vfp10" "yes")
345       (eq_attr "type" "f_2_r"))
346  "1020a_e+1020l_e,1020l_m,1020l_w")
348 (define_insn_reservation "v10_to_cpsr" 2
349  (and (eq_attr "vfp10" "yes")
350       (eq_attr "type" "f_flag"))
351  "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
353 ;; VFP bypasses
355 ;; There are bypasses for most operations other than store
357 (define_bypass 3
358  "v10_c2v,v10_floads"
359  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
361 (define_bypass 4
362  "v10_floadd"
363  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
365 ;; Arithmetic to other arithmetic saves a cycle due to forwarding
366 (define_bypass 4
367  "v10_ffarith,v10_farith"
368  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
370 (define_bypass 5
371  "v10_fmul"
372  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
374 (define_bypass 17
375  "v10_fdivs"
376  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
378 (define_bypass 31
379  "v10_fdivd"
380  "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
382 ;; VFP anti-dependencies.
384 ;; There is one anti-dependence in the following case (not yet modelled):
385 ;; - After a store: one extra cycle for both fsts and fstd
386 ;; Note, back-to-back fstd instructions will overload the load/store datapath 
387 ;; causing a two-cycle stall.