1 /* Tail merging for gimple.
2 Copyright (C) 2011-2015 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
192 #include "cfghooks.h"
195 #include "hard-reg-set.h"
198 #include "fold-const.h"
199 #include "stor-layout.h"
200 #include "trans-mem.h"
203 #include "cfgcleanup.h"
205 #include "internal-fn.h"
207 #include "gimple-iterator.h"
208 #include "tree-cfg.h"
209 #include "tree-into-ssa.h"
211 #include "gimple-pretty-print.h"
212 #include "tree-ssa-sccvn.h"
213 #include "tree-dump.h"
215 #include "tree-pass.h"
216 #include "trans-mem.h"
218 /* Describes a group of bbs with the same successors. The successor bbs are
219 cached in succs, and the successor edge flags are cached in succ_flags.
220 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
221 it's marked in inverse.
222 Additionally, the hash value for the struct is cached in hashval, and
223 in_worklist indicates whether it's currently part of worklist. */
225 struct same_succ_def
: pointer_hash
<same_succ_def
>
227 /* The bbs that have the same successor bbs. */
229 /* The successor bbs. */
231 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
234 /* The edge flags for each of the successor bbs. */
236 /* Indicates whether the struct is currently in the worklist. */
238 /* The hash value of the struct. */
241 /* hash_table support. */
242 static inline hashval_t
hash (const same_succ_def
*);
243 static int equal (const same_succ_def
*, const same_succ_def
*);
244 static void remove (same_succ_def
*);
246 typedef struct same_succ_def
*same_succ
;
247 typedef const struct same_succ_def
*const_same_succ
;
249 /* hash routine for hash_table support, returns hashval of E. */
252 same_succ_def::hash (const same_succ_def
*e
)
257 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
259 struct bb_cluster_def
261 /* The bbs in the cluster. */
263 /* The preds of the bbs in the cluster. */
265 /* Index in all_clusters vector. */
267 /* The bb to replace the cluster with. */
270 typedef struct bb_cluster_def
*bb_cluster
;
271 typedef const struct bb_cluster_def
*const_bb_cluster
;
277 /* The number of non-debug statements in the bb. */
279 /* The same_succ that this bb is a member of. */
280 same_succ bb_same_succ
;
281 /* The cluster that this bb is a member of. */
283 /* The vop state at the exit of a bb. This is shortlived data, used to
284 communicate data between update_block_by and update_vuses. */
286 /* The bb that either contains or is dominated by the dependencies of the
291 /* Macros to access the fields of struct aux_bb_info. */
293 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
294 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
295 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
296 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
297 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
299 /* Returns true if the only effect a statement STMT has, is to define locally
303 stmt_local_def (gimple
*stmt
)
305 basic_block bb
, def_bb
;
306 imm_use_iterator iter
;
311 if (gimple_vdef (stmt
) != NULL_TREE
312 || gimple_has_side_effects (stmt
)
313 || gimple_could_trap_p_1 (stmt
, false, false)
314 || gimple_vuse (stmt
) != NULL_TREE
)
317 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
321 val
= DEF_FROM_PTR (def_p
);
322 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
325 def_bb
= gimple_bb (stmt
);
327 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
329 if (is_gimple_debug (USE_STMT (use_p
)))
331 bb
= gimple_bb (USE_STMT (use_p
));
335 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
336 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
345 /* Let GSI skip forwards over local defs. */
348 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
354 if (gsi_end_p (*gsi
))
356 stmt
= gsi_stmt (*gsi
);
357 if (!stmt_local_def (stmt
))
359 gsi_next_nondebug (gsi
);
363 /* VAL1 and VAL2 are either:
364 - uses in BB1 and BB2, or
365 - phi alternatives for BB1 and BB2.
366 Return true if the uses have the same gvn value. */
369 gvn_uses_equal (tree val1
, tree val2
)
371 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
376 if (vn_valueize (val1
) != vn_valueize (val2
))
379 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
380 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
383 /* Prints E to FILE. */
386 same_succ_print (FILE *file
, const same_succ e
)
389 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
390 bitmap_print (file
, e
->succs
, "succs:", "\n");
391 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
392 fprintf (file
, "flags:");
393 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
394 fprintf (file
, " %x", e
->succ_flags
[i
]);
395 fprintf (file
, "\n");
398 /* Prints same_succ VE to VFILE. */
401 ssa_same_succ_print_traverse (same_succ
*pe
, FILE *file
)
403 const same_succ e
= *pe
;
404 same_succ_print (file
, e
);
408 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
411 update_dep_bb (basic_block use_bb
, tree val
)
416 if (TREE_CODE (val
) != SSA_NAME
)
419 /* Skip use of global def. */
420 if (SSA_NAME_IS_DEFAULT_DEF (val
))
423 /* Skip use of local def. */
424 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
425 if (dep_bb
== use_bb
)
428 if (BB_DEP_BB (use_bb
) == NULL
429 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
430 BB_DEP_BB (use_bb
) = dep_bb
;
433 /* Update BB_DEP_BB, given the dependencies in STMT. */
436 stmt_update_dep_bb (gimple
*stmt
)
441 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
442 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
445 /* Calculates hash value for same_succ VE. */
448 same_succ_hash (const_same_succ e
)
450 inchash::hash
hstate (bitmap_hash (e
->succs
));
453 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
454 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
461 for (gimple_stmt_iterator gsi
= gsi_start_nondebug_bb (bb
);
462 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
464 stmt
= gsi_stmt (gsi
);
465 stmt_update_dep_bb (stmt
);
466 if (stmt_local_def (stmt
))
470 hstate
.add_int (gimple_code (stmt
));
471 if (is_gimple_assign (stmt
))
472 hstate
.add_int (gimple_assign_rhs_code (stmt
));
473 if (!is_gimple_call (stmt
))
475 if (gimple_call_internal_p (stmt
))
476 hstate
.add_int (gimple_call_internal_fn (stmt
));
479 inchash::add_expr (gimple_call_fn (stmt
), hstate
);
480 if (gimple_call_chain (stmt
))
481 inchash::add_expr (gimple_call_chain (stmt
), hstate
);
483 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
485 arg
= gimple_call_arg (stmt
, i
);
486 arg
= vn_valueize (arg
);
487 inchash::add_expr (arg
, hstate
);
491 hstate
.add_int (size
);
494 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
496 flags
= e
->succ_flags
[i
];
497 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
498 hstate
.add_int (flags
);
501 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
503 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
504 for (gphi_iterator gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
));
508 gphi
*phi
= gsi
.phi ();
509 tree lhs
= gimple_phi_result (phi
);
510 tree val
= gimple_phi_arg_def (phi
, n
);
512 if (virtual_operand_p (lhs
))
514 update_dep_bb (bb
, val
);
518 return hstate
.end ();
521 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
522 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
523 the other edge flags. */
526 inverse_flags (const_same_succ e1
, const_same_succ e2
)
528 int f1a
, f1b
, f2a
, f2b
;
529 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
531 if (e1
->succ_flags
.length () != 2)
534 f1a
= e1
->succ_flags
[0];
535 f1b
= e1
->succ_flags
[1];
536 f2a
= e2
->succ_flags
[0];
537 f2b
= e2
->succ_flags
[1];
539 if (f1a
== f2a
&& f1b
== f2b
)
542 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
545 /* Compares SAME_SUCCs E1 and E2. */
548 same_succ_def::equal (const same_succ_def
*e1
, const same_succ_def
*e2
)
550 unsigned int i
, first1
, first2
;
551 gimple_stmt_iterator gsi1
, gsi2
;
553 basic_block bb1
, bb2
;
555 if (e1
->hashval
!= e2
->hashval
)
558 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
561 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
564 if (!inverse_flags (e1
, e2
))
566 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
567 if (e1
->succ_flags
[i
] != e2
->succ_flags
[i
])
571 first1
= bitmap_first_set_bit (e1
->bbs
);
572 first2
= bitmap_first_set_bit (e2
->bbs
);
574 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
575 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
577 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
580 gsi1
= gsi_start_nondebug_bb (bb1
);
581 gsi2
= gsi_start_nondebug_bb (bb2
);
582 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
583 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
584 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
586 s1
= gsi_stmt (gsi1
);
587 s2
= gsi_stmt (gsi2
);
588 if (gimple_code (s1
) != gimple_code (s2
))
590 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
592 gsi_next_nondebug (&gsi1
);
593 gsi_next_nondebug (&gsi2
);
594 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
595 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
601 /* Alloc and init a new SAME_SUCC. */
604 same_succ_alloc (void)
606 same_succ same
= XNEW (struct same_succ_def
);
608 same
->bbs
= BITMAP_ALLOC (NULL
);
609 same
->succs
= BITMAP_ALLOC (NULL
);
610 same
->inverse
= BITMAP_ALLOC (NULL
);
611 same
->succ_flags
.create (10);
612 same
->in_worklist
= false;
617 /* Delete same_succ E. */
620 same_succ_def::remove (same_succ e
)
622 BITMAP_FREE (e
->bbs
);
623 BITMAP_FREE (e
->succs
);
624 BITMAP_FREE (e
->inverse
);
625 e
->succ_flags
.release ();
630 /* Reset same_succ SAME. */
633 same_succ_reset (same_succ same
)
635 bitmap_clear (same
->bbs
);
636 bitmap_clear (same
->succs
);
637 bitmap_clear (same
->inverse
);
638 same
->succ_flags
.truncate (0);
641 static hash_table
<same_succ_def
> *same_succ_htab
;
643 /* Array that is used to store the edge flags for a successor. */
645 static int *same_succ_edge_flags
;
647 /* Bitmap that is used to mark bbs that are recently deleted. */
649 static bitmap deleted_bbs
;
651 /* Bitmap that is used to mark predecessors of bbs that are
654 static bitmap deleted_bb_preds
;
656 /* Prints same_succ_htab to stderr. */
658 extern void debug_same_succ (void);
660 debug_same_succ ( void)
662 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
666 /* Vector of bbs to process. */
668 static vec
<same_succ
> worklist
;
670 /* Prints worklist to FILE. */
673 print_worklist (FILE *file
)
676 for (i
= 0; i
< worklist
.length (); ++i
)
677 same_succ_print (file
, worklist
[i
]);
680 /* Adds SAME to worklist. */
683 add_to_worklist (same_succ same
)
685 if (same
->in_worklist
)
688 if (bitmap_count_bits (same
->bbs
) < 2)
691 same
->in_worklist
= true;
692 worklist
.safe_push (same
);
695 /* Add BB to same_succ_htab. */
698 find_same_succ_bb (basic_block bb
, same_succ
*same_p
)
702 same_succ same
= *same_p
;
708 /* Be conservative with loop structure. It's not evident that this test
709 is sufficient. Before tail-merge, we've just called
710 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
711 set, so there's no guarantee that the loop->latch value is still valid.
712 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
713 start of pre, we've kept that property intact throughout pre, and are
714 keeping it throughout tail-merge using this test. */
715 || bb
->loop_father
->latch
== bb
)
717 bitmap_set_bit (same
->bbs
, bb
->index
);
718 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
720 int index
= e
->dest
->index
;
721 bitmap_set_bit (same
->succs
, index
);
722 same_succ_edge_flags
[index
] = e
->flags
;
724 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
725 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
727 same
->hashval
= same_succ_hash (same
);
729 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
733 BB_SAME_SUCC (bb
) = same
;
734 add_to_worklist (same
);
739 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
740 BB_SAME_SUCC (bb
) = *slot
;
741 add_to_worklist (*slot
);
742 if (inverse_flags (same
, *slot
))
743 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
744 same_succ_reset (same
);
748 /* Find bbs with same successors. */
751 find_same_succ (void)
753 same_succ same
= same_succ_alloc ();
756 FOR_EACH_BB_FN (bb
, cfun
)
758 find_same_succ_bb (bb
, &same
);
760 same
= same_succ_alloc ();
763 same_succ_def::remove (same
);
766 /* Initializes worklist administration. */
771 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
772 same_succ_htab
= new hash_table
<same_succ_def
> (n_basic_blocks_for_fn (cfun
));
773 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
774 deleted_bbs
= BITMAP_ALLOC (NULL
);
775 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
776 worklist
.create (n_basic_blocks_for_fn (cfun
));
779 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
781 fprintf (dump_file
, "initial worklist:\n");
782 print_worklist (dump_file
);
786 /* Deletes worklist administration. */
789 delete_worklist (void)
791 free_aux_for_blocks ();
792 delete same_succ_htab
;
793 same_succ_htab
= NULL
;
794 XDELETEVEC (same_succ_edge_flags
);
795 same_succ_edge_flags
= NULL
;
796 BITMAP_FREE (deleted_bbs
);
797 BITMAP_FREE (deleted_bb_preds
);
801 /* Mark BB as deleted, and mark its predecessors. */
804 mark_basic_block_deleted (basic_block bb
)
809 bitmap_set_bit (deleted_bbs
, bb
->index
);
811 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
812 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
815 /* Removes BB from its corresponding same_succ. */
818 same_succ_flush_bb (basic_block bb
)
820 same_succ same
= BB_SAME_SUCC (bb
);
821 BB_SAME_SUCC (bb
) = NULL
;
822 if (bitmap_single_bit_set_p (same
->bbs
))
823 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
825 bitmap_clear_bit (same
->bbs
, bb
->index
);
828 /* Removes all bbs in BBS from their corresponding same_succ. */
831 same_succ_flush_bbs (bitmap bbs
)
836 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
837 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
840 /* Release the last vdef in BB, either normal or phi result. */
843 release_last_vdef (basic_block bb
)
845 for (gimple_stmt_iterator i
= gsi_last_bb (bb
); !gsi_end_p (i
);
846 gsi_prev_nondebug (&i
))
848 gimple
*stmt
= gsi_stmt (i
);
849 if (gimple_vdef (stmt
) == NULL_TREE
)
852 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
856 for (gphi_iterator i
= gsi_start_phis (bb
); !gsi_end_p (i
);
859 gphi
*phi
= i
.phi ();
860 tree res
= gimple_phi_result (phi
);
862 if (!virtual_operand_p (res
))
865 mark_virtual_phi_result_for_renaming (phi
);
870 /* For deleted_bb_preds, find bbs with same successors. */
873 update_worklist (void)
880 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
881 bitmap_clear (deleted_bbs
);
883 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
884 same_succ_flush_bbs (deleted_bb_preds
);
886 same
= same_succ_alloc ();
887 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
889 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
890 gcc_assert (bb
!= NULL
);
891 find_same_succ_bb (bb
, &same
);
893 same
= same_succ_alloc ();
895 same_succ_def::remove (same
);
896 bitmap_clear (deleted_bb_preds
);
899 /* Prints cluster C to FILE. */
902 print_cluster (FILE *file
, bb_cluster c
)
906 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
907 bitmap_print (file
, c
->preds
, "preds:", "\n");
910 /* Prints cluster C to stderr. */
912 extern void debug_cluster (bb_cluster
);
914 debug_cluster (bb_cluster c
)
916 print_cluster (stderr
, c
);
919 /* Update C->rep_bb, given that BB is added to the cluster. */
922 update_rep_bb (bb_cluster c
, basic_block bb
)
925 if (c
->rep_bb
== NULL
)
931 /* Current needs no deps, keep it. */
932 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
935 /* Bb needs no deps, change rep_bb. */
936 if (BB_DEP_BB (bb
) == NULL
)
942 /* Bb needs last deps earlier than current, change rep_bb. A potential
943 problem with this, is that the first deps might also be earlier, which
944 would mean we prefer longer lifetimes for the deps. To be able to check
945 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
946 BB_DEP_BB, which is really BB_LAST_DEP_BB.
947 The benefit of choosing the bb with last deps earlier, is that it can
948 potentially be used as replacement for more bbs. */
949 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
953 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
956 add_bb_to_cluster (bb_cluster c
, basic_block bb
)
961 bitmap_set_bit (c
->bbs
, bb
->index
);
963 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
964 bitmap_set_bit (c
->preds
, e
->src
->index
);
966 update_rep_bb (c
, bb
);
969 /* Allocate and init new cluster. */
975 c
= XCNEW (struct bb_cluster_def
);
976 c
->bbs
= BITMAP_ALLOC (NULL
);
977 c
->preds
= BITMAP_ALLOC (NULL
);
982 /* Delete clusters. */
985 delete_cluster (bb_cluster c
)
989 BITMAP_FREE (c
->bbs
);
990 BITMAP_FREE (c
->preds
);
995 /* Array that contains all clusters. */
997 static vec
<bb_cluster
> all_clusters
;
999 /* Allocate all cluster vectors. */
1002 alloc_cluster_vectors (void)
1004 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1007 /* Reset all cluster vectors. */
1010 reset_cluster_vectors (void)
1014 for (i
= 0; i
< all_clusters
.length (); ++i
)
1015 delete_cluster (all_clusters
[i
]);
1016 all_clusters
.truncate (0);
1017 FOR_EACH_BB_FN (bb
, cfun
)
1018 BB_CLUSTER (bb
) = NULL
;
1021 /* Delete all cluster vectors. */
1024 delete_cluster_vectors (void)
1027 for (i
= 0; i
< all_clusters
.length (); ++i
)
1028 delete_cluster (all_clusters
[i
]);
1029 all_clusters
.release ();
1032 /* Merge cluster C2 into C1. */
1035 merge_clusters (bb_cluster c1
, bb_cluster c2
)
1037 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1038 bitmap_ior_into (c1
->preds
, c2
->preds
);
1041 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1042 all_clusters, or merge c with existing cluster. */
1045 set_cluster (basic_block bb1
, basic_block bb2
)
1047 basic_block merge_bb
, other_bb
;
1048 bb_cluster merge
, old
, c
;
1050 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1053 add_bb_to_cluster (c
, bb1
);
1054 add_bb_to_cluster (c
, bb2
);
1055 BB_CLUSTER (bb1
) = c
;
1056 BB_CLUSTER (bb2
) = c
;
1057 c
->index
= all_clusters
.length ();
1058 all_clusters
.safe_push (c
);
1060 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1062 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1063 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1064 merge
= BB_CLUSTER (merge_bb
);
1065 add_bb_to_cluster (merge
, other_bb
);
1066 BB_CLUSTER (other_bb
) = merge
;
1068 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1073 old
= BB_CLUSTER (bb2
);
1074 merge
= BB_CLUSTER (bb1
);
1075 merge_clusters (merge
, old
);
1076 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1077 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1078 all_clusters
[old
->index
] = NULL
;
1079 update_rep_bb (merge
, old
->rep_bb
);
1080 delete_cluster (old
);
1086 /* Return true if gimple operands T1 and T2 have the same value. */
1089 gimple_operand_equal_value_p (tree t1
, tree t2
)
1098 if (operand_equal_p (t1
, t2
, 0))
1101 return gvn_uses_equal (t1
, t2
);
1104 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1105 gimple_bb (s2) are members of SAME_SUCC. */
1108 gimple_equal_p (same_succ same_succ
, gimple
*s1
, gimple
*s2
)
1112 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1115 enum tree_code code1
, code2
;
1117 if (gimple_code (s1
) != gimple_code (s2
))
1120 switch (gimple_code (s1
))
1123 if (!gimple_call_same_target_p (s1
, s2
))
1126 t1
= gimple_call_chain (s1
);
1127 t2
= gimple_call_chain (s2
);
1128 if (!gimple_operand_equal_value_p (t1
, t2
))
1131 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1134 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1136 t1
= gimple_call_arg (s1
, i
);
1137 t2
= gimple_call_arg (s2
, i
);
1138 if (!gimple_operand_equal_value_p (t1
, t2
))
1142 lhs1
= gimple_get_lhs (s1
);
1143 lhs2
= gimple_get_lhs (s2
);
1144 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1146 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1148 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1149 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1150 return operand_equal_p (lhs1
, lhs2
, 0);
1153 lhs1
= gimple_get_lhs (s1
);
1154 lhs2
= gimple_get_lhs (s2
);
1155 if (TREE_CODE (lhs1
) != SSA_NAME
1156 && TREE_CODE (lhs2
) != SSA_NAME
)
1157 return (operand_equal_p (lhs1
, lhs2
, 0)
1158 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1159 gimple_assign_rhs1 (s2
)));
1160 else if (TREE_CODE (lhs1
) == SSA_NAME
1161 && TREE_CODE (lhs2
) == SSA_NAME
)
1162 return operand_equal_p (gimple_assign_rhs1 (s1
),
1163 gimple_assign_rhs1 (s2
), 0);
1167 t1
= gimple_cond_lhs (s1
);
1168 t2
= gimple_cond_lhs (s2
);
1169 if (!gimple_operand_equal_value_p (t1
, t2
))
1172 t1
= gimple_cond_rhs (s1
);
1173 t2
= gimple_cond_rhs (s2
);
1174 if (!gimple_operand_equal_value_p (t1
, t2
))
1177 code1
= gimple_expr_code (s1
);
1178 code2
= gimple_expr_code (s2
);
1179 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1180 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1183 bool honor_nans
= HONOR_NANS (t1
);
1184 code2
= invert_tree_comparison (code2
, honor_nans
);
1186 return code1
== code2
;
1193 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1194 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1195 processed statements. */
1198 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1206 if (gsi_end_p (*gsi
))
1208 stmt
= gsi_stmt (*gsi
);
1210 lvuse
= gimple_vuse (stmt
);
1211 if (lvuse
!= NULL_TREE
)
1214 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1215 *vuse_escaped
= true;
1218 if (!stmt_local_def (stmt
))
1220 gsi_prev_nondebug (gsi
);
1224 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1228 find_duplicate (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1230 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1231 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1232 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1233 bool vuse_escaped
= false;
1235 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1236 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1238 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1240 gimple
*stmt1
= gsi_stmt (gsi1
);
1241 gimple
*stmt2
= gsi_stmt (gsi2
);
1243 /* What could be better than this here is to blacklist the bb
1244 containing the stmt, when encountering the stmt f.i. in
1246 if (is_tm_ending (stmt1
)
1247 || is_tm_ending (stmt2
))
1250 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1253 gsi_prev_nondebug (&gsi1
);
1254 gsi_prev_nondebug (&gsi2
);
1255 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1256 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1259 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1262 /* If the incoming vuses are not the same, and the vuse escaped into an
1263 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1264 which potentially means the semantics of one of the blocks will be changed.
1265 TODO: make this check more precise. */
1266 if (vuse_escaped
&& vuse1
!= vuse2
)
1270 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1271 bb1
->index
, bb2
->index
);
1273 set_cluster (bb1
, bb2
);
1276 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1280 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1282 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1285 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1287 gphi
*phi
= gsi
.phi ();
1288 tree lhs
= gimple_phi_result (phi
);
1289 tree val1
= gimple_phi_arg_def (phi
, n1
);
1290 tree val2
= gimple_phi_arg_def (phi
, n2
);
1292 if (virtual_operand_p (lhs
))
1295 if (operand_equal_for_phi_arg_p (val1
, val2
))
1297 if (gvn_uses_equal (val1
, val2
))
1306 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1307 phi alternatives for BB1 and BB2 are equal. */
1310 same_phi_alternatives (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1317 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1319 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1320 e1
= find_edge (bb1
, succ
);
1321 e2
= find_edge (bb2
, succ
);
1322 if (e1
->flags
& EDGE_COMPLEX
1323 || e2
->flags
& EDGE_COMPLEX
)
1326 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1328 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1335 /* Return true if BB has non-vop phis. */
1338 bb_has_non_vop_phi (basic_block bb
)
1340 gimple_seq phis
= phi_nodes (bb
);
1346 if (!gimple_seq_singleton_p (phis
))
1349 phi
= gimple_seq_first_stmt (phis
);
1350 return !virtual_operand_p (gimple_phi_result (phi
));
1353 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1354 invariant that uses in FROM are dominates by their defs. */
1357 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1359 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1362 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1367 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1368 bitmap_set_bit (from_preds
, e
->src
->index
);
1369 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1370 BITMAP_FREE (from_preds
);
1372 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1375 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1376 replacement bb) and vice versa maintains the invariant that uses in the
1377 replacement are dominates by their defs. */
1380 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1382 if (BB_CLUSTER (bb1
) != NULL
)
1383 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1385 if (BB_CLUSTER (bb2
) != NULL
)
1386 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1388 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1389 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1392 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1395 find_clusters_1 (same_succ same_succ
)
1397 basic_block bb1
, bb2
;
1399 bitmap_iterator bi
, bj
;
1401 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1403 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1405 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1407 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1408 phi-nodes in bb1 and bb2, with the same alternatives for the same
1410 if (bb_has_non_vop_phi (bb1
))
1414 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1416 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1418 if (bb_has_non_vop_phi (bb2
))
1421 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1424 /* Limit quadratic behaviour. */
1426 if (nr_comparisons
> max_comparisons
)
1429 /* This is a conservative dependency check. We could test more
1430 precise for allowed replacement direction. */
1431 if (!deps_ok_for_redirect (bb1
, bb2
))
1434 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1437 find_duplicate (same_succ
, bb1
, bb2
);
1442 /* Find clusters of bbs which can be merged. */
1445 find_clusters (void)
1449 while (!worklist
.is_empty ())
1451 same
= worklist
.pop ();
1452 same
->in_worklist
= false;
1453 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1455 fprintf (dump_file
, "processing worklist entry\n");
1456 same_succ_print (dump_file
, same
);
1458 find_clusters_1 (same
);
1462 /* Returns the vop phi of BB, if any. */
1465 vop_phi (basic_block bb
)
1469 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1472 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1479 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1482 replace_block_by (basic_block bb1
, basic_block bb2
)
1490 bb2_phi
= vop_phi (bb2
);
1492 /* Mark the basic block as deleted. */
1493 mark_basic_block_deleted (bb1
);
1495 /* Redirect the incoming edges of bb1 to bb2. */
1496 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1498 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1499 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1500 gcc_assert (pred_edge
!= NULL
);
1502 if (bb2_phi
== NULL
)
1505 /* The phi might have run out of capacity when the redirect added an
1506 argument, which means it could have been replaced. Refresh it. */
1507 bb2_phi
= vop_phi (bb2
);
1509 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1510 pred_edge
, UNKNOWN_LOCATION
);
1513 bb2
->frequency
+= bb1
->frequency
;
1514 if (bb2
->frequency
> BB_FREQ_MAX
)
1515 bb2
->frequency
= BB_FREQ_MAX
;
1517 bb2
->count
+= bb1
->count
;
1519 /* Merge the outgoing edge counts from bb1 onto bb2. */
1520 gcov_type out_sum
= 0;
1521 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1523 e2
= find_edge (bb2
, e1
->dest
);
1525 e2
->count
+= e1
->count
;
1526 out_sum
+= e2
->count
;
1528 /* Recompute the edge probabilities from the new merged edge count.
1529 Use the sum of the new merged edge counts computed above instead
1530 of bb2's merged count, in case there are profile count insanities
1531 making the bb count inconsistent with the edge weights. */
1532 FOR_EACH_EDGE (e2
, ei
, bb2
->succs
)
1534 e2
->probability
= GCOV_COMPUTE_SCALE (e2
->count
, out_sum
);
1537 /* Do updates that use bb1, before deleting bb1. */
1538 release_last_vdef (bb1
);
1539 same_succ_flush_bb (bb1
);
1541 delete_basic_block (bb1
);
1544 /* Bbs for which update_debug_stmt need to be called. */
1546 static bitmap update_bbs
;
1548 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1549 number of bbs removed. */
1552 apply_clusters (void)
1554 basic_block bb1
, bb2
;
1558 int nr_bbs_removed
= 0;
1560 for (i
= 0; i
< all_clusters
.length (); ++i
)
1562 c
= all_clusters
[i
];
1567 bitmap_set_bit (update_bbs
, bb2
->index
);
1569 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1570 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1572 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1573 bitmap_clear_bit (update_bbs
, bb1
->index
);
1575 replace_block_by (bb1
, bb2
);
1580 return nr_bbs_removed
;
1583 /* Resets debug statement STMT if it has uses that are not dominated by their
1587 update_debug_stmt (gimple
*stmt
)
1589 use_operand_p use_p
;
1593 if (!gimple_debug_bind_p (stmt
))
1596 bbuse
= gimple_bb (stmt
);
1597 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1599 tree name
= USE_FROM_PTR (use_p
);
1600 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
1601 basic_block bbdef
= gimple_bb (def_stmt
);
1602 if (bbdef
== NULL
|| bbuse
== bbdef
1603 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1606 gimple_debug_bind_reset_value (stmt
);
1612 /* Resets all debug statements that have uses that are not
1613 dominated by their defs. */
1616 update_debug_stmts (void)
1622 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1625 gimple_stmt_iterator gsi
;
1627 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1628 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1630 stmt
= gsi_stmt (gsi
);
1631 if (!is_gimple_debug (stmt
))
1633 update_debug_stmt (stmt
);
1638 /* Runs tail merge optimization. */
1641 tail_merge_optimize (unsigned int todo
)
1643 int nr_bbs_removed_total
= 0;
1645 bool loop_entered
= false;
1646 int iteration_nr
= 0;
1647 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1649 if (!flag_tree_tail_merge
1650 || max_iterations
== 0)
1653 timevar_push (TV_TREE_TAIL_MERGE
);
1655 if (!dom_info_available_p (CDI_DOMINATORS
))
1657 /* PRE can leave us with unreachable blocks, remove them now. */
1658 delete_unreachable_blocks ();
1659 calculate_dominance_info (CDI_DOMINATORS
);
1663 while (!worklist
.is_empty ())
1667 loop_entered
= true;
1668 alloc_cluster_vectors ();
1669 update_bbs
= BITMAP_ALLOC (NULL
);
1672 reset_cluster_vectors ();
1675 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1676 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1679 gcc_assert (worklist
.is_empty ());
1680 if (all_clusters
.is_empty ())
1683 nr_bbs_removed
= apply_clusters ();
1684 nr_bbs_removed_total
+= nr_bbs_removed
;
1685 if (nr_bbs_removed
== 0)
1688 free_dominance_info (CDI_DOMINATORS
);
1690 if (iteration_nr
== max_iterations
)
1693 calculate_dominance_info (CDI_DOMINATORS
);
1697 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1698 fprintf (dump_file
, "htab collision / search: %f\n",
1699 same_succ_htab
->collisions ());
1701 if (nr_bbs_removed_total
> 0)
1703 if (MAY_HAVE_DEBUG_STMTS
)
1705 calculate_dominance_info (CDI_DOMINATORS
);
1706 update_debug_stmts ();
1709 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1711 fprintf (dump_file
, "Before TODOs.\n");
1712 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1715 mark_virtual_operands_for_renaming (cfun
);
1721 delete_cluster_vectors ();
1722 BITMAP_FREE (update_bbs
);
1725 timevar_pop (TV_TREE_TAIL_MERGE
);