[PATCH] Fix undefined behaviour in arc port
[official-gcc.git] / gcc / dominance.c
blob09645be1a6152fa091650c8df6a211bf50344b65
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "backend.h"
39 #include "rtl.h"
40 #include "cfganal.h"
41 #include "diagnostic-core.h"
42 #include "alloc-pool.h"
43 #include "et-forest.h"
44 #include "timevar.h"
45 #include "graphds.h"
47 /* We name our nodes with integers, beginning with 1. Zero is reserved for
48 'undefined' or 'end of list'. The name of each node is given by the dfs
49 number of the corresponding basic block. Please note, that we include the
50 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
51 support multiple entry points. Its dfs number is of course 1. */
53 /* Type of Basic Block aka. TBB */
54 typedef unsigned int TBB;
56 namespace {
58 /* This class holds various arrays reflecting the (sub)structure of the
59 flowgraph. Most of them are of type TBB and are also indexed by TBB. */
61 class dom_info
63 public:
64 dom_info (function *, cdi_direction);
65 ~dom_info ();
66 void calc_dfs_tree ();
67 void calc_idoms ();
69 inline basic_block get_idom (basic_block);
70 private:
71 void calc_dfs_tree_nonrec (basic_block);
72 void compress (TBB);
73 TBB eval (TBB);
74 void link_roots (TBB, TBB);
76 /* The parent of a node in the DFS tree. */
77 TBB *m_dfs_parent;
78 /* For a node x m_key[x] is roughly the node nearest to the root from which
79 exists a way to x only over nodes behind x. Such a node is also called
80 semidominator. */
81 TBB *m_key;
82 /* The value in m_path_min[x] is the node y on the path from x to the root of
83 the tree x is in with the smallest m_key[y]. */
84 TBB *m_path_min;
85 /* m_bucket[x] points to the first node of the set of nodes having x as
86 key. */
87 TBB *m_bucket;
88 /* And m_next_bucket[x] points to the next node. */
89 TBB *m_next_bucket;
90 /* After the algorithm is done, m_dom[x] contains the immediate dominator
91 of x. */
92 TBB *m_dom;
94 /* The following few fields implement the structures needed for disjoint
95 sets. */
96 /* m_set_chain[x] is the next node on the path from x to the representative
97 of the set containing x. If m_set_chain[x]==0 then x is a root. */
98 TBB *m_set_chain;
99 /* m_set_size[x] is the number of elements in the set named by x. */
100 unsigned int *m_set_size;
101 /* m_set_child[x] is used for balancing the tree representing a set. It can
102 be understood as the next sibling of x. */
103 TBB *m_set_child;
105 /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
106 number of that node in DFS order counted from 1. This is an index
107 into most of the other arrays in this structure. */
108 TBB *m_dfs_order;
109 /* Points to last element in m_dfs_order array. */
110 TBB *m_dfs_last;
111 /* If x is the DFS-index of a node which corresponds with a basic block,
112 m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
113 more nodes that basic blocks, so only
114 m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
115 but not the opposite. */
116 basic_block *m_dfs_to_bb;
118 /* This is the next free DFS number when creating the DFS tree. */
119 unsigned int m_dfsnum;
120 /* The number of nodes in the DFS tree (==m_dfsnum-1). */
121 unsigned int m_nodes;
123 /* Blocks with bits set here have a fake edge to EXIT. These are used
124 to turn a DFS forest into a proper tree. */
125 bitmap m_fake_exit_edge;
127 /* Number of basic blocks in the function being compiled. */
128 size_t m_n_basic_blocks;
130 /* True, if we are computing postdominators (rather than dominators). */
131 bool m_reverse;
133 /* Start block (the entry block for forward problem, exit block for backward
134 problem). */
135 basic_block m_start_block;
136 /* Ending block. */
137 basic_block m_end_block;
140 } // anonymous namespace
142 void debug_dominance_info (cdi_direction);
143 void debug_dominance_tree (cdi_direction, basic_block);
145 /* Allocate and zero-initialize NUM elements of type T (T must be a
146 POD-type). Note: after transition to C++11 or later,
147 `x = new_zero_array <T> (num);' can be replaced with
148 `x = new T[num] {};'. */
150 template<typename T>
151 inline T *new_zero_array (size_t num)
153 T *result = new T[num];
154 memset (result, 0, sizeof (T) * num);
155 return result;
158 /* Allocate all needed memory in a pessimistic fashion (so we round up). */
160 dom_info::dom_info (function *fn, cdi_direction dir)
162 /* We need memory for n_basic_blocks nodes. */
163 size_t num = m_n_basic_blocks = n_basic_blocks_for_fn (fn);
164 m_dfs_parent = new_zero_array <TBB> (num);
165 m_dom = new_zero_array <TBB> (num);
167 m_path_min = new TBB[num];
168 m_key = new TBB[num];
169 m_set_size = new unsigned int[num];
170 for (size_t i = 0; i < num; i++)
172 m_path_min[i] = m_key[i] = i;
173 m_set_size[i] = 1;
176 m_bucket = new_zero_array <TBB> (num);
177 m_next_bucket = new_zero_array <TBB> (num);
179 m_set_chain = new_zero_array <TBB> (num);
180 m_set_child = new_zero_array <TBB> (num);
182 unsigned last_bb_index = last_basic_block_for_fn (fn);
183 m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
184 m_dfs_last = &m_dfs_order[last_bb_index];
185 m_dfs_to_bb = new_zero_array <basic_block> (num);
187 m_dfsnum = 1;
188 m_nodes = 0;
190 switch (dir)
192 case CDI_DOMINATORS:
193 m_reverse = false;
194 m_fake_exit_edge = NULL;
195 m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
196 m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
197 break;
198 case CDI_POST_DOMINATORS:
199 m_reverse = true;
200 m_fake_exit_edge = BITMAP_ALLOC (NULL);
201 m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
202 m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 break;
204 default:
205 gcc_unreachable ();
209 inline basic_block
210 dom_info::get_idom (basic_block bb)
212 TBB d = m_dom[m_dfs_order[bb->index]];
213 return m_dfs_to_bb[d];
216 /* Map dominance calculation type to array index used for various
217 dominance information arrays. This version is simple -- it will need
218 to be modified, obviously, if additional values are added to
219 cdi_direction. */
221 static inline unsigned int
222 dom_convert_dir_to_idx (cdi_direction dir)
224 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
225 return dir - 1;
228 /* Free all allocated memory in dom_info. */
230 dom_info::~dom_info ()
232 delete[] m_dfs_parent;
233 delete[] m_path_min;
234 delete[] m_key;
235 delete[] m_dom;
236 delete[] m_bucket;
237 delete[] m_next_bucket;
238 delete[] m_set_chain;
239 delete[] m_set_size;
240 delete[] m_set_child;
241 delete[] m_dfs_order;
242 delete[] m_dfs_to_bb;
243 BITMAP_FREE (m_fake_exit_edge);
246 /* The nonrecursive variant of creating a DFS tree. BB is the starting basic
247 block for this tree and m_reverse is true, if predecessors should be visited
248 instead of successors of a node. After this is done all nodes reachable
249 from BB were visited, have assigned their dfs number and are linked together
250 to form a tree. */
252 void
253 dom_info::calc_dfs_tree_nonrec (basic_block bb)
255 edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
256 int sp = 0;
258 /* Initialize the first edge. */
259 edge_iterator ei = m_reverse ? ei_start (bb->preds)
260 : ei_start (bb->succs);
262 /* When the stack is empty we break out of this loop. */
263 while (1)
265 basic_block bn;
266 edge_iterator einext;
268 /* This loop traverses edges e in depth first manner, and fills the
269 stack. */
270 while (!ei_end_p (ei))
272 edge e = ei_edge (ei);
274 /* Deduce from E the current and the next block (BB and BN), and the
275 next edge. */
276 if (m_reverse)
278 bn = e->src;
280 /* If the next node BN is either already visited or a border
281 block the current edge is useless, and simply overwritten
282 with the next edge out of the current node. */
283 if (bn == m_end_block || m_dfs_order[bn->index])
285 ei_next (&ei);
286 continue;
288 bb = e->dest;
289 einext = ei_start (bn->preds);
291 else
293 bn = e->dest;
294 if (bn == m_end_block || m_dfs_order[bn->index])
296 ei_next (&ei);
297 continue;
299 bb = e->src;
300 einext = ei_start (bn->succs);
303 gcc_assert (bn != m_start_block);
305 /* Fill the DFS tree info calculatable _before_ recursing. */
306 TBB my_i;
307 if (bb != m_start_block)
308 my_i = m_dfs_order[bb->index];
309 else
310 my_i = *m_dfs_last;
311 TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
312 m_dfs_to_bb[child_i] = bn;
313 m_dfs_parent[child_i] = my_i;
315 /* Save the current point in the CFG on the stack, and recurse. */
316 stack[sp++] = ei;
317 ei = einext;
320 if (!sp)
321 break;
322 ei = stack[--sp];
324 /* OK. The edge-list was exhausted, meaning normally we would
325 end the recursion. After returning from the recursive call,
326 there were (may be) other statements which were run after a
327 child node was completely considered by DFS. Here is the
328 point to do it in the non-recursive variant.
329 E.g. The block just completed is in e->dest for forward DFS,
330 the block not yet completed (the parent of the one above)
331 in e->src. This could be used e.g. for computing the number of
332 descendants or the tree depth. */
333 ei_next (&ei);
335 delete[] stack;
338 /* The main entry for calculating the DFS tree or forest. m_reverse is true,
339 if we are interested in the reverse flow graph. In that case the result is
340 not necessarily a tree but a forest, because there may be nodes from which
341 the EXIT_BLOCK is unreachable. */
343 void
344 dom_info::calc_dfs_tree ()
346 *m_dfs_last = m_dfsnum;
347 m_dfs_to_bb[m_dfsnum] = m_start_block;
348 m_dfsnum++;
350 calc_dfs_tree_nonrec (m_start_block);
352 if (m_reverse)
354 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
355 They are reverse-unreachable. In the dom-case we disallow such
356 nodes, but in post-dom we have to deal with them.
358 There are two situations in which this occurs. First, noreturn
359 functions. Second, infinite loops. In the first case we need to
360 pretend that there is an edge to the exit block. In the second
361 case, we wind up with a forest. We need to process all noreturn
362 blocks before we know if we've got any infinite loops. */
364 basic_block b;
365 bool saw_unconnected = false;
367 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
369 if (EDGE_COUNT (b->succs) > 0)
371 if (m_dfs_order[b->index] == 0)
372 saw_unconnected = true;
373 continue;
375 bitmap_set_bit (m_fake_exit_edge, b->index);
376 m_dfs_order[b->index] = m_dfsnum;
377 m_dfs_to_bb[m_dfsnum] = b;
378 m_dfs_parent[m_dfsnum] = *m_dfs_last;
379 m_dfsnum++;
380 calc_dfs_tree_nonrec (b);
383 if (saw_unconnected)
385 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
387 if (m_dfs_order[b->index])
388 continue;
389 basic_block b2 = dfs_find_deadend (b);
390 gcc_checking_assert (m_dfs_order[b2->index] == 0);
391 bitmap_set_bit (m_fake_exit_edge, b2->index);
392 m_dfs_order[b2->index] = m_dfsnum;
393 m_dfs_to_bb[m_dfsnum] = b2;
394 m_dfs_parent[m_dfsnum] = *m_dfs_last;
395 m_dfsnum++;
396 calc_dfs_tree_nonrec (b2);
397 gcc_checking_assert (m_dfs_order[b->index]);
402 m_nodes = m_dfsnum - 1;
404 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
405 gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
408 /* Compress the path from V to the root of its set and update path_min at the
409 same time. After compress(di, V) set_chain[V] is the root of the set V is
410 in and path_min[V] is the node with the smallest key[] value on the path
411 from V to that root. */
413 void
414 dom_info::compress (TBB v)
416 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
417 greater than 5 even for huge graphs (I've not seen call depth > 4).
418 Also performance wise compress() ranges _far_ behind eval(). */
419 TBB parent = m_set_chain[v];
420 if (m_set_chain[parent])
422 compress (parent);
423 if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
424 m_path_min[v] = m_path_min[parent];
425 m_set_chain[v] = m_set_chain[parent];
429 /* Compress the path from V to the set root of V if needed (when the root has
430 changed since the last call). Returns the node with the smallest key[]
431 value on the path from V to the root. */
433 inline TBB
434 dom_info::eval (TBB v)
436 /* The representative of the set V is in, also called root (as the set
437 representation is a tree). */
438 TBB rep = m_set_chain[v];
440 /* V itself is the root. */
441 if (!rep)
442 return m_path_min[v];
444 /* Compress only if necessary. */
445 if (m_set_chain[rep])
447 compress (v);
448 rep = m_set_chain[v];
451 if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
452 return m_path_min[v];
453 else
454 return m_path_min[rep];
457 /* This essentially merges the two sets of V and W, giving a single set with
458 the new root V. The internal representation of these disjoint sets is a
459 balanced tree. Currently link(V,W) is only used with V being the parent
460 of W. */
462 void
463 dom_info::link_roots (TBB v, TBB w)
465 TBB s = w;
467 /* Rebalance the tree. */
468 while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
470 if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
471 >= 2 * m_set_size[m_set_child[s]])
473 m_set_chain[m_set_child[s]] = s;
474 m_set_child[s] = m_set_child[m_set_child[s]];
476 else
478 m_set_size[m_set_child[s]] = m_set_size[s];
479 s = m_set_chain[s] = m_set_child[s];
483 m_path_min[s] = m_path_min[w];
484 m_set_size[v] += m_set_size[w];
485 if (m_set_size[v] < 2 * m_set_size[w])
486 std::swap (m_set_child[v], s);
488 /* Merge all subtrees. */
489 while (s)
491 m_set_chain[s] = v;
492 s = m_set_child[s];
496 /* This calculates the immediate dominators (or post-dominators). THIS is our
497 working structure and should hold the DFS forest.
498 On return the immediate dominator to node V is in m_dom[V]. */
500 void
501 dom_info::calc_idoms ()
503 /* Go backwards in DFS order, to first look at the leafs. */
504 for (TBB v = m_nodes; v > 1; v--)
506 basic_block bb = m_dfs_to_bb[v];
507 edge e;
509 TBB par = m_dfs_parent[v];
510 TBB k = v;
512 edge_iterator ei = m_reverse ? ei_start (bb->succs)
513 : ei_start (bb->preds);
514 edge_iterator einext;
516 if (m_reverse)
518 /* If this block has a fake edge to exit, process that first. */
519 if (bitmap_bit_p (m_fake_exit_edge, bb->index))
521 einext = ei;
522 einext.index = 0;
523 goto do_fake_exit_edge;
527 /* Search all direct predecessors for the smallest node with a path
528 to them. That way we have the smallest node with also a path to
529 us only over nodes behind us. In effect we search for our
530 semidominator. */
531 while (!ei_end_p (ei))
533 basic_block b;
534 TBB k1;
536 e = ei_edge (ei);
537 b = m_reverse ? e->dest : e->src;
538 einext = ei;
539 ei_next (&einext);
541 if (b == m_start_block)
543 do_fake_exit_edge:
544 k1 = *m_dfs_last;
546 else
547 k1 = m_dfs_order[b->index];
549 /* Call eval() only if really needed. If k1 is above V in DFS tree,
550 then we know, that eval(k1) == k1 and key[k1] == k1. */
551 if (k1 > v)
552 k1 = m_key[eval (k1)];
553 if (k1 < k)
554 k = k1;
556 ei = einext;
559 m_key[v] = k;
560 link_roots (par, v);
561 m_next_bucket[v] = m_bucket[k];
562 m_bucket[k] = v;
564 /* Transform semidominators into dominators. */
565 for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
567 k = eval (w);
568 if (m_key[k] < m_key[w])
569 m_dom[w] = k;
570 else
571 m_dom[w] = par;
573 /* We don't need to cleanup next_bucket[]. */
574 m_bucket[par] = 0;
577 /* Explicitly define the dominators. */
578 m_dom[1] = 0;
579 for (TBB v = 2; v <= m_nodes; v++)
580 if (m_dom[v] != m_key[v])
581 m_dom[v] = m_dom[m_dom[v]];
584 /* Assign dfs numbers starting from NUM to NODE and its sons. */
586 static void
587 assign_dfs_numbers (struct et_node *node, int *num)
589 struct et_node *son;
591 node->dfs_num_in = (*num)++;
593 if (node->son)
595 assign_dfs_numbers (node->son, num);
596 for (son = node->son->right; son != node->son; son = son->right)
597 assign_dfs_numbers (son, num);
600 node->dfs_num_out = (*num)++;
603 /* Compute the data necessary for fast resolving of dominator queries in a
604 static dominator tree. */
606 static void
607 compute_dom_fast_query (enum cdi_direction dir)
609 int num = 0;
610 basic_block bb;
611 unsigned int dir_index = dom_convert_dir_to_idx (dir);
613 gcc_checking_assert (dom_info_available_p (dir));
615 if (dom_computed[dir_index] == DOM_OK)
616 return;
618 FOR_ALL_BB_FN (bb, cfun)
620 if (!bb->dom[dir_index]->father)
621 assign_dfs_numbers (bb->dom[dir_index], &num);
624 dom_computed[dir_index] = DOM_OK;
627 /* The main entry point into this module. DIR is set depending on whether
628 we want to compute dominators or postdominators. */
630 void
631 calculate_dominance_info (cdi_direction dir)
633 unsigned int dir_index = dom_convert_dir_to_idx (dir);
635 if (dom_computed[dir_index] == DOM_OK)
637 #if ENABLE_CHECKING
638 verify_dominators (dir);
639 #endif
640 return;
643 timevar_push (TV_DOMINANCE);
644 if (!dom_info_available_p (dir))
646 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
648 basic_block b;
649 FOR_ALL_BB_FN (b, cfun)
651 b->dom[dir_index] = et_new_tree (b);
653 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
655 dom_info di (cfun, dir);
656 di.calc_dfs_tree ();
657 di.calc_idoms ();
659 FOR_EACH_BB_FN (b, cfun)
661 if (basic_block d = di.get_idom (b))
662 et_set_father (b->dom[dir_index], d->dom[dir_index]);
665 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
667 else
669 #if ENABLE_CHECKING
670 verify_dominators (dir);
671 #endif
674 compute_dom_fast_query (dir);
676 timevar_pop (TV_DOMINANCE);
679 /* Free dominance information for direction DIR. */
680 void
681 free_dominance_info (function *fn, enum cdi_direction dir)
683 basic_block bb;
684 unsigned int dir_index = dom_convert_dir_to_idx (dir);
686 if (!dom_info_available_p (fn, dir))
687 return;
689 FOR_ALL_BB_FN (bb, fn)
691 et_free_tree_force (bb->dom[dir_index]);
692 bb->dom[dir_index] = NULL;
694 et_free_pools ();
696 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
698 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
701 void
702 free_dominance_info (enum cdi_direction dir)
704 free_dominance_info (cfun, dir);
707 /* Return the immediate dominator of basic block BB. */
708 basic_block
709 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
711 unsigned int dir_index = dom_convert_dir_to_idx (dir);
712 struct et_node *node = bb->dom[dir_index];
714 gcc_checking_assert (dom_computed[dir_index]);
716 if (!node->father)
717 return NULL;
719 return (basic_block) node->father->data;
722 /* Set the immediate dominator of the block possibly removing
723 existing edge. NULL can be used to remove any edge. */
724 void
725 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
726 basic_block dominated_by)
728 unsigned int dir_index = dom_convert_dir_to_idx (dir);
729 struct et_node *node = bb->dom[dir_index];
731 gcc_checking_assert (dom_computed[dir_index]);
733 if (node->father)
735 if (node->father->data == dominated_by)
736 return;
737 et_split (node);
740 if (dominated_by)
741 et_set_father (node, dominated_by->dom[dir_index]);
743 if (dom_computed[dir_index] == DOM_OK)
744 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
747 /* Returns the list of basic blocks immediately dominated by BB, in the
748 direction DIR. */
749 vec<basic_block>
750 get_dominated_by (enum cdi_direction dir, basic_block bb)
752 unsigned int dir_index = dom_convert_dir_to_idx (dir);
753 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
754 vec<basic_block> bbs = vNULL;
756 gcc_checking_assert (dom_computed[dir_index]);
758 if (!son)
759 return vNULL;
761 bbs.safe_push ((basic_block) son->data);
762 for (ason = son->right; ason != son; ason = ason->right)
763 bbs.safe_push ((basic_block) ason->data);
765 return bbs;
768 /* Returns the list of basic blocks that are immediately dominated (in
769 direction DIR) by some block between N_REGION ones stored in REGION,
770 except for blocks in the REGION itself. */
772 vec<basic_block>
773 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
774 unsigned n_region)
776 unsigned i;
777 basic_block dom;
778 vec<basic_block> doms = vNULL;
780 for (i = 0; i < n_region; i++)
781 region[i]->flags |= BB_DUPLICATED;
782 for (i = 0; i < n_region; i++)
783 for (dom = first_dom_son (dir, region[i]);
784 dom;
785 dom = next_dom_son (dir, dom))
786 if (!(dom->flags & BB_DUPLICATED))
787 doms.safe_push (dom);
788 for (i = 0; i < n_region; i++)
789 region[i]->flags &= ~BB_DUPLICATED;
791 return doms;
794 /* Returns the list of basic blocks including BB dominated by BB, in the
795 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
796 produce a vector containing all dominated blocks. The vector will be sorted
797 in preorder. */
799 vec<basic_block>
800 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
802 vec<basic_block> bbs = vNULL;
803 unsigned i;
804 unsigned next_level_start;
806 i = 0;
807 bbs.safe_push (bb);
808 next_level_start = 1; /* = bbs.length (); */
812 basic_block son;
814 bb = bbs[i++];
815 for (son = first_dom_son (dir, bb);
816 son;
817 son = next_dom_son (dir, son))
818 bbs.safe_push (son);
820 if (i == next_level_start && --depth)
821 next_level_start = bbs.length ();
823 while (i < next_level_start);
825 return bbs;
828 /* Returns the list of basic blocks including BB dominated by BB, in the
829 direction DIR. The vector will be sorted in preorder. */
831 vec<basic_block>
832 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
834 return get_dominated_to_depth (dir, bb, 0);
837 /* Redirect all edges pointing to BB to TO. */
838 void
839 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
840 basic_block to)
842 unsigned int dir_index = dom_convert_dir_to_idx (dir);
843 struct et_node *bb_node, *to_node, *son;
845 bb_node = bb->dom[dir_index];
846 to_node = to->dom[dir_index];
848 gcc_checking_assert (dom_computed[dir_index]);
850 if (!bb_node->son)
851 return;
853 while (bb_node->son)
855 son = bb_node->son;
857 et_split (son);
858 et_set_father (son, to_node);
861 if (dom_computed[dir_index] == DOM_OK)
862 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
865 /* Find first basic block in the tree dominating both BB1 and BB2. */
866 basic_block
867 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
869 unsigned int dir_index = dom_convert_dir_to_idx (dir);
871 gcc_checking_assert (dom_computed[dir_index]);
873 if (!bb1)
874 return bb2;
875 if (!bb2)
876 return bb1;
878 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
882 /* Find the nearest common dominator for the basic blocks in BLOCKS,
883 using dominance direction DIR. */
885 basic_block
886 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
888 unsigned i, first;
889 bitmap_iterator bi;
890 basic_block dom;
892 first = bitmap_first_set_bit (blocks);
893 dom = BASIC_BLOCK_FOR_FN (cfun, first);
894 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
895 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
896 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
898 return dom;
901 /* Given a dominator tree, we can determine whether one thing
902 dominates another in constant time by using two DFS numbers:
904 1. The number for when we visit a node on the way down the tree
905 2. The number for when we visit a node on the way back up the tree
907 You can view these as bounds for the range of dfs numbers the
908 nodes in the subtree of the dominator tree rooted at that node
909 will contain.
911 The dominator tree is always a simple acyclic tree, so there are
912 only three possible relations two nodes in the dominator tree have
913 to each other:
915 1. Node A is above Node B (and thus, Node A dominates node B)
924 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
925 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
926 because we must hit A in the dominator tree *before* B on the walk
927 down, and we will hit A *after* B on the walk back up
929 2. Node A is below node B (and thus, node B dominates node A)
938 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
939 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
941 This is because we must hit A in the dominator tree *after* B on
942 the walk down, and we will hit A *before* B on the walk back up
944 3. Node A and B are siblings (and thus, neither dominates the other)
952 In the above case, DFS_Number_In of A will *always* be <=
953 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
954 DFS_Number_Out of B. This is because we will always finish the dfs
955 walk of one of the subtrees before the other, and thus, the dfs
956 numbers for one subtree can't intersect with the range of dfs
957 numbers for the other subtree. If you swap A and B's position in
958 the dominator tree, the comparison changes direction, but the point
959 is that both comparisons will always go the same way if there is no
960 dominance relationship.
962 Thus, it is sufficient to write
964 A_Dominates_B (node A, node B)
966 return DFS_Number_In(A) <= DFS_Number_In(B)
967 && DFS_Number_Out (A) >= DFS_Number_Out(B);
970 A_Dominated_by_B (node A, node B)
972 return DFS_Number_In(A) >= DFS_Number_In(B)
973 && DFS_Number_Out (A) <= DFS_Number_Out(B);
974 } */
976 /* Return TRUE in case BB1 is dominated by BB2. */
977 bool
978 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
980 unsigned int dir_index = dom_convert_dir_to_idx (dir);
981 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
983 gcc_checking_assert (dom_computed[dir_index]);
985 if (dom_computed[dir_index] == DOM_OK)
986 return (n1->dfs_num_in >= n2->dfs_num_in
987 && n1->dfs_num_out <= n2->dfs_num_out);
989 return et_below (n1, n2);
992 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
994 unsigned
995 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
997 unsigned int dir_index = dom_convert_dir_to_idx (dir);
998 struct et_node *n = bb->dom[dir_index];
1000 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1001 return n->dfs_num_in;
1004 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
1006 unsigned
1007 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1009 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1010 struct et_node *n = bb->dom[dir_index];
1012 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1013 return n->dfs_num_out;
1016 /* Verify invariants of dominator structure. */
1017 DEBUG_FUNCTION void
1018 verify_dominators (cdi_direction dir)
1020 gcc_assert (dom_info_available_p (dir));
1022 dom_info di (cfun, dir);
1023 di.calc_dfs_tree ();
1024 di.calc_idoms ();
1026 bool err = false;
1027 basic_block bb;
1028 FOR_EACH_BB_FN (bb, cfun)
1030 basic_block imm_bb = get_immediate_dominator (dir, bb);
1031 if (!imm_bb)
1033 error ("dominator of %d status unknown", bb->index);
1034 err = true;
1037 basic_block imm_bb_correct = di.get_idom (bb);
1038 if (imm_bb != imm_bb_correct)
1040 error ("dominator of %d should be %d, not %d",
1041 bb->index, imm_bb_correct->index, imm_bb->index);
1042 err = true;
1046 gcc_assert (!err);
1049 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1050 assuming that dominators of other blocks are correct. We also use it to
1051 recompute the dominators in a restricted area, by iterating it until it
1052 reaches a fixed point. */
1054 basic_block
1055 recompute_dominator (enum cdi_direction dir, basic_block bb)
1057 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1058 basic_block dom_bb = NULL;
1059 edge e;
1060 edge_iterator ei;
1062 gcc_checking_assert (dom_computed[dir_index]);
1064 if (dir == CDI_DOMINATORS)
1066 FOR_EACH_EDGE (e, ei, bb->preds)
1068 if (!dominated_by_p (dir, e->src, bb))
1069 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1072 else
1074 FOR_EACH_EDGE (e, ei, bb->succs)
1076 if (!dominated_by_p (dir, e->dest, bb))
1077 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1081 return dom_bb;
1084 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1085 of BBS. We assume that all the immediate dominators except for those of the
1086 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1087 currently recorded immediate dominators of blocks in BBS really dominate the
1088 blocks. The basic blocks for that we determine the dominator are removed
1089 from BBS. */
1091 static void
1092 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1093 bool conservative)
1095 unsigned i;
1096 bool single;
1097 basic_block bb, dom = NULL;
1098 edge_iterator ei;
1099 edge e;
1101 for (i = 0; bbs.iterate (i, &bb);)
1103 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1104 goto succeed;
1106 if (single_pred_p (bb))
1108 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1109 goto succeed;
1112 if (!conservative)
1113 goto fail;
1115 single = true;
1116 dom = NULL;
1117 FOR_EACH_EDGE (e, ei, bb->preds)
1119 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1120 continue;
1122 if (!dom)
1123 dom = e->src;
1124 else
1126 single = false;
1127 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1131 gcc_assert (dom != NULL);
1132 if (single
1133 || find_edge (dom, bb))
1135 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1136 goto succeed;
1139 fail:
1140 i++;
1141 continue;
1143 succeed:
1144 bbs.unordered_remove (i);
1148 /* Returns root of the dominance tree in the direction DIR that contains
1149 BB. */
1151 static basic_block
1152 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1154 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1157 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1158 for the sons of Y, found using the SON and BROTHER arrays representing
1159 the dominance tree of graph G. BBS maps the vertices of G to the basic
1160 blocks. */
1162 static void
1163 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1164 int y, int *son, int *brother)
1166 bitmap gprime;
1167 int i, a, nc;
1168 vec<int> *sccs;
1169 basic_block bb, dom, ybb;
1170 unsigned si;
1171 edge e;
1172 edge_iterator ei;
1174 if (son[y] == -1)
1175 return;
1176 if (y == (int) bbs.length ())
1177 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1178 else
1179 ybb = bbs[y];
1181 if (brother[son[y]] == -1)
1183 /* Handle the common case Y has just one son specially. */
1184 bb = bbs[son[y]];
1185 set_immediate_dominator (CDI_DOMINATORS, bb,
1186 recompute_dominator (CDI_DOMINATORS, bb));
1187 identify_vertices (g, y, son[y]);
1188 return;
1191 gprime = BITMAP_ALLOC (NULL);
1192 for (a = son[y]; a != -1; a = brother[a])
1193 bitmap_set_bit (gprime, a);
1195 nc = graphds_scc (g, gprime);
1196 BITMAP_FREE (gprime);
1198 /* ??? Needed to work around the pre-processor confusion with
1199 using a multi-argument template type as macro argument. */
1200 typedef vec<int> vec_int_heap;
1201 sccs = XCNEWVEC (vec_int_heap, nc);
1202 for (a = son[y]; a != -1; a = brother[a])
1203 sccs[g->vertices[a].component].safe_push (a);
1205 for (i = nc - 1; i >= 0; i--)
1207 dom = NULL;
1208 FOR_EACH_VEC_ELT (sccs[i], si, a)
1210 bb = bbs[a];
1211 FOR_EACH_EDGE (e, ei, bb->preds)
1213 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1214 continue;
1216 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1220 gcc_assert (dom != NULL);
1221 FOR_EACH_VEC_ELT (sccs[i], si, a)
1223 bb = bbs[a];
1224 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1228 for (i = 0; i < nc; i++)
1229 sccs[i].release ();
1230 free (sccs);
1232 for (a = son[y]; a != -1; a = brother[a])
1233 identify_vertices (g, y, a);
1236 /* Recompute dominance information for basic blocks in the set BBS. The
1237 function assumes that the immediate dominators of all the other blocks
1238 in CFG are correct, and that there are no unreachable blocks.
1240 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1241 a block of BBS in the current dominance tree dominate it. */
1243 void
1244 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1245 bool conservative)
1247 unsigned i;
1248 basic_block bb, dom;
1249 struct graph *g;
1250 int n, y;
1251 size_t dom_i;
1252 edge e;
1253 edge_iterator ei;
1254 int *parent, *son, *brother;
1255 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1257 /* We only support updating dominators. There are some problems with
1258 updating postdominators (need to add fake edges from infinite loops
1259 and noreturn functions), and since we do not currently use
1260 iterate_fix_dominators for postdominators, any attempt to handle these
1261 problems would be unused, untested, and almost surely buggy. We keep
1262 the DIR argument for consistency with the rest of the dominator analysis
1263 interface. */
1264 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1266 /* The algorithm we use takes inspiration from the following papers, although
1267 the details are quite different from any of them:
1269 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1270 Dominator Tree of a Reducible Flowgraph
1271 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1272 dominator trees
1273 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1274 Algorithm
1276 First, we use the following heuristics to decrease the size of the BBS
1277 set:
1278 a) if BB has a single predecessor, then its immediate dominator is this
1279 predecessor
1280 additionally, if CONSERVATIVE is true:
1281 b) if all the predecessors of BB except for one (X) are dominated by BB,
1282 then X is the immediate dominator of BB
1283 c) if the nearest common ancestor of the predecessors of BB is X and
1284 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1286 Then, we need to establish the dominance relation among the basic blocks
1287 in BBS. We split the dominance tree by removing the immediate dominator
1288 edges from BBS, creating a forest F. We form a graph G whose vertices
1289 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1290 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1291 whose root is X. We then determine dominance tree of G. Note that
1292 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1293 In this step, we can use arbitrary algorithm to determine dominators.
1294 We decided to prefer the algorithm [3] to the algorithm of
1295 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1296 10 during gcc bootstrap), and [3] should perform better in this case.
1298 Finally, we need to determine the immediate dominators for the basic
1299 blocks of BBS. If the immediate dominator of X in G is Y, then
1300 the immediate dominator of X in CFG belongs to the tree of F rooted in
1301 Y. We process the dominator tree T of G recursively, starting from leaves.
1302 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1303 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1304 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1305 the following observations:
1306 (i) the immediate dominator of all blocks in a strongly connected
1307 component of G' is the same
1308 (ii) if X has no predecessors in G', then the immediate dominator of X
1309 is the nearest common ancestor of the predecessors of X in the
1310 subtree of F rooted in Y
1311 Therefore, it suffices to find the topological ordering of G', and
1312 process the nodes X_i in this order using the rules (i) and (ii).
1313 Then, we contract all the nodes X_i with Y in G, so that the further
1314 steps work correctly. */
1316 if (!conservative)
1318 /* Split the tree now. If the idoms of blocks in BBS are not
1319 conservatively correct, setting the dominators using the
1320 heuristics in prune_bbs_to_update_dominators could
1321 create cycles in the dominance "tree", and cause ICE. */
1322 FOR_EACH_VEC_ELT (bbs, i, bb)
1323 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1326 prune_bbs_to_update_dominators (bbs, conservative);
1327 n = bbs.length ();
1329 if (n == 0)
1330 return;
1332 if (n == 1)
1334 bb = bbs[0];
1335 set_immediate_dominator (CDI_DOMINATORS, bb,
1336 recompute_dominator (CDI_DOMINATORS, bb));
1337 return;
1340 /* Construct the graph G. */
1341 hash_map<basic_block, int> map (251);
1342 FOR_EACH_VEC_ELT (bbs, i, bb)
1344 /* If the dominance tree is conservatively correct, split it now. */
1345 if (conservative)
1346 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1347 map.put (bb, i);
1349 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1351 g = new_graph (n + 1);
1352 for (y = 0; y < g->n_vertices; y++)
1353 g->vertices[y].data = BITMAP_ALLOC (NULL);
1354 FOR_EACH_VEC_ELT (bbs, i, bb)
1356 FOR_EACH_EDGE (e, ei, bb->preds)
1358 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1359 if (dom == bb)
1360 continue;
1362 dom_i = *map.get (dom);
1364 /* Do not include parallel edges to G. */
1365 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1366 continue;
1368 add_edge (g, dom_i, i);
1371 for (y = 0; y < g->n_vertices; y++)
1372 BITMAP_FREE (g->vertices[y].data);
1374 /* Find the dominator tree of G. */
1375 son = XNEWVEC (int, n + 1);
1376 brother = XNEWVEC (int, n + 1);
1377 parent = XNEWVEC (int, n + 1);
1378 graphds_domtree (g, n, parent, son, brother);
1380 /* Finally, traverse the tree and find the immediate dominators. */
1381 for (y = n; son[y] != -1; y = son[y])
1382 continue;
1383 while (y != -1)
1385 determine_dominators_for_sons (g, bbs, y, son, brother);
1387 if (brother[y] != -1)
1389 y = brother[y];
1390 while (son[y] != -1)
1391 y = son[y];
1393 else
1394 y = parent[y];
1397 free (son);
1398 free (brother);
1399 free (parent);
1401 free_graph (g);
1404 void
1405 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1407 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1409 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1411 n_bbs_in_dom_tree[dir_index]++;
1413 bb->dom[dir_index] = et_new_tree (bb);
1415 if (dom_computed[dir_index] == DOM_OK)
1416 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1419 void
1420 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1422 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1424 gcc_checking_assert (dom_computed[dir_index]);
1426 et_free_tree (bb->dom[dir_index]);
1427 bb->dom[dir_index] = NULL;
1428 n_bbs_in_dom_tree[dir_index]--;
1430 if (dom_computed[dir_index] == DOM_OK)
1431 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1434 /* Returns the first son of BB in the dominator or postdominator tree
1435 as determined by DIR. */
1437 basic_block
1438 first_dom_son (enum cdi_direction dir, basic_block bb)
1440 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1441 struct et_node *son = bb->dom[dir_index]->son;
1443 return (basic_block) (son ? son->data : NULL);
1446 /* Returns the next dominance son after BB in the dominator or postdominator
1447 tree as determined by DIR, or NULL if it was the last one. */
1449 basic_block
1450 next_dom_son (enum cdi_direction dir, basic_block bb)
1452 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1453 struct et_node *next = bb->dom[dir_index]->right;
1455 return (basic_block) (next->father->son == next ? NULL : next->data);
1458 /* Return dominance availability for dominance info DIR. */
1460 enum dom_state
1461 dom_info_state (function *fn, enum cdi_direction dir)
1463 if (!fn->cfg)
1464 return DOM_NONE;
1466 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1467 return fn->cfg->x_dom_computed[dir_index];
1470 enum dom_state
1471 dom_info_state (enum cdi_direction dir)
1473 return dom_info_state (cfun, dir);
1476 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1478 void
1479 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1481 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1483 dom_computed[dir_index] = new_state;
1486 /* Returns true if dominance information for direction DIR is available. */
1488 bool
1489 dom_info_available_p (function *fn, enum cdi_direction dir)
1491 return dom_info_state (fn, dir) != DOM_NONE;
1494 bool
1495 dom_info_available_p (enum cdi_direction dir)
1497 return dom_info_available_p (cfun, dir);
1500 DEBUG_FUNCTION void
1501 debug_dominance_info (enum cdi_direction dir)
1503 basic_block bb, bb2;
1504 FOR_EACH_BB_FN (bb, cfun)
1505 if ((bb2 = get_immediate_dominator (dir, bb)))
1506 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1509 /* Prints to stderr representation of the dominance tree (for direction DIR)
1510 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1511 the first line of the output is not indented. */
1513 static void
1514 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1515 unsigned indent, bool indent_first)
1517 basic_block son;
1518 unsigned i;
1519 bool first = true;
1521 if (indent_first)
1522 for (i = 0; i < indent; i++)
1523 fprintf (stderr, "\t");
1524 fprintf (stderr, "%d\t", root->index);
1526 for (son = first_dom_son (dir, root);
1527 son;
1528 son = next_dom_son (dir, son))
1530 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1531 first = false;
1534 if (first)
1535 fprintf (stderr, "\n");
1538 /* Prints to stderr representation of the dominance tree (for direction DIR)
1539 rooted in ROOT. */
1541 DEBUG_FUNCTION void
1542 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1544 debug_dominance_tree_1 (dir, root, 0, false);