2007-06-05 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / dominance.c
blob57a9df6baa48899d9423326efba750e48842e047
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47 #include "vecprim.h"
48 #include "pointer-set.h"
49 #include "graphds.h"
51 /* Whether the dominators and the postdominators are available. */
52 static enum dom_state dom_computed[2];
54 /* We name our nodes with integers, beginning with 1. Zero is reserved for
55 'undefined' or 'end of list'. The name of each node is given by the dfs
56 number of the corresponding basic block. Please note, that we include the
57 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
58 support multiple entry points. Its dfs number is of course 1. */
60 /* Type of Basic Block aka. TBB */
61 typedef unsigned int TBB;
63 /* We work in a poor-mans object oriented fashion, and carry an instance of
64 this structure through all our 'methods'. It holds various arrays
65 reflecting the (sub)structure of the flowgraph. Most of them are of type
66 TBB and are also indexed by TBB. */
68 struct dom_info
70 /* The parent of a node in the DFS tree. */
71 TBB *dfs_parent;
72 /* For a node x key[x] is roughly the node nearest to the root from which
73 exists a way to x only over nodes behind x. Such a node is also called
74 semidominator. */
75 TBB *key;
76 /* The value in path_min[x] is the node y on the path from x to the root of
77 the tree x is in with the smallest key[y]. */
78 TBB *path_min;
79 /* bucket[x] points to the first node of the set of nodes having x as key. */
80 TBB *bucket;
81 /* And next_bucket[x] points to the next node. */
82 TBB *next_bucket;
83 /* After the algorithm is done, dom[x] contains the immediate dominator
84 of x. */
85 TBB *dom;
87 /* The following few fields implement the structures needed for disjoint
88 sets. */
89 /* set_chain[x] is the next node on the path from x to the representant
90 of the set containing x. If set_chain[x]==0 then x is a root. */
91 TBB *set_chain;
92 /* set_size[x] is the number of elements in the set named by x. */
93 unsigned int *set_size;
94 /* set_child[x] is used for balancing the tree representing a set. It can
95 be understood as the next sibling of x. */
96 TBB *set_child;
98 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
99 number of that node in DFS order counted from 1. This is an index
100 into most of the other arrays in this structure. */
101 TBB *dfs_order;
102 /* If x is the DFS-index of a node which corresponds with a basic block,
103 dfs_to_bb[x] is that basic block. Note, that in our structure there are
104 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
105 is true for every basic block bb, but not the opposite. */
106 basic_block *dfs_to_bb;
108 /* This is the next free DFS number when creating the DFS tree. */
109 unsigned int dfsnum;
110 /* The number of nodes in the DFS tree (==dfsnum-1). */
111 unsigned int nodes;
113 /* Blocks with bits set here have a fake edge to EXIT. These are used
114 to turn a DFS forest into a proper tree. */
115 bitmap fake_exit_edge;
118 static void init_dom_info (struct dom_info *, enum cdi_direction);
119 static void free_dom_info (struct dom_info *);
120 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
121 static void calc_dfs_tree (struct dom_info *, bool);
122 static void compress (struct dom_info *, TBB);
123 static TBB eval (struct dom_info *, TBB);
124 static void link_roots (struct dom_info *, TBB, TBB);
125 static void calc_idoms (struct dom_info *, bool);
126 void debug_dominance_info (enum cdi_direction);
128 /* Keeps track of the*/
129 static unsigned n_bbs_in_dom_tree[2];
131 /* Helper macro for allocating and initializing an array,
132 for aesthetic reasons. */
133 #define init_ar(var, type, num, content) \
134 do \
136 unsigned int i = 1; /* Catch content == i. */ \
137 if (! (content)) \
138 (var) = XCNEWVEC (type, num); \
139 else \
141 (var) = XNEWVEC (type, (num)); \
142 for (i = 0; i < num; i++) \
143 (var)[i] = (content); \
146 while (0)
148 /* Allocate all needed memory in a pessimistic fashion (so we round up).
149 This initializes the contents of DI, which already must be allocated. */
151 static void
152 init_dom_info (struct dom_info *di, enum cdi_direction dir)
154 unsigned int num = n_basic_blocks;
155 init_ar (di->dfs_parent, TBB, num, 0);
156 init_ar (di->path_min, TBB, num, i);
157 init_ar (di->key, TBB, num, i);
158 init_ar (di->dom, TBB, num, 0);
160 init_ar (di->bucket, TBB, num, 0);
161 init_ar (di->next_bucket, TBB, num, 0);
163 init_ar (di->set_chain, TBB, num, 0);
164 init_ar (di->set_size, unsigned int, num, 1);
165 init_ar (di->set_child, TBB, num, 0);
167 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
168 init_ar (di->dfs_to_bb, basic_block, num, 0);
170 di->dfsnum = 1;
171 di->nodes = 0;
173 switch (dir)
175 case CDI_DOMINATORS:
176 di->fake_exit_edge = NULL;
177 break;
178 case CDI_POST_DOMINATORS:
179 di->fake_exit_edge = BITMAP_ALLOC (NULL);
180 break;
181 default:
182 gcc_unreachable ();
183 break;
187 #undef init_ar
189 /* Map dominance calculation type to array index used for various
190 dominance information arrays. This version is simple -- it will need
191 to be modified, obviously, if additional values are added to
192 cdi_direction. */
194 static unsigned int
195 dom_convert_dir_to_idx (enum cdi_direction dir)
197 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
198 return dir - 1;
201 /* Free all allocated memory in DI, but not DI itself. */
203 static void
204 free_dom_info (struct dom_info *di)
206 free (di->dfs_parent);
207 free (di->path_min);
208 free (di->key);
209 free (di->dom);
210 free (di->bucket);
211 free (di->next_bucket);
212 free (di->set_chain);
213 free (di->set_size);
214 free (di->set_child);
215 free (di->dfs_order);
216 free (di->dfs_to_bb);
217 BITMAP_FREE (di->fake_exit_edge);
220 /* The nonrecursive variant of creating a DFS tree. DI is our working
221 structure, BB the starting basic block for this tree and REVERSE
222 is true, if predecessors should be visited instead of successors of a
223 node. After this is done all nodes reachable from BB were visited, have
224 assigned their dfs number and are linked together to form a tree. */
226 static void
227 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
229 /* We call this _only_ if bb is not already visited. */
230 edge e;
231 TBB child_i, my_i = 0;
232 edge_iterator *stack;
233 edge_iterator ei, einext;
234 int sp;
235 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
236 problem). */
237 basic_block en_block;
238 /* Ending block. */
239 basic_block ex_block;
241 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
242 sp = 0;
244 /* Initialize our border blocks, and the first edge. */
245 if (reverse)
247 ei = ei_start (bb->preds);
248 en_block = EXIT_BLOCK_PTR;
249 ex_block = ENTRY_BLOCK_PTR;
251 else
253 ei = ei_start (bb->succs);
254 en_block = ENTRY_BLOCK_PTR;
255 ex_block = EXIT_BLOCK_PTR;
258 /* When the stack is empty we break out of this loop. */
259 while (1)
261 basic_block bn;
263 /* This loop traverses edges e in depth first manner, and fills the
264 stack. */
265 while (!ei_end_p (ei))
267 e = ei_edge (ei);
269 /* Deduce from E the current and the next block (BB and BN), and the
270 next edge. */
271 if (reverse)
273 bn = e->src;
275 /* If the next node BN is either already visited or a border
276 block the current edge is useless, and simply overwritten
277 with the next edge out of the current node. */
278 if (bn == ex_block || di->dfs_order[bn->index])
280 ei_next (&ei);
281 continue;
283 bb = e->dest;
284 einext = ei_start (bn->preds);
286 else
288 bn = e->dest;
289 if (bn == ex_block || di->dfs_order[bn->index])
291 ei_next (&ei);
292 continue;
294 bb = e->src;
295 einext = ei_start (bn->succs);
298 gcc_assert (bn != en_block);
300 /* Fill the DFS tree info calculatable _before_ recursing. */
301 if (bb != en_block)
302 my_i = di->dfs_order[bb->index];
303 else
304 my_i = di->dfs_order[last_basic_block];
305 child_i = di->dfs_order[bn->index] = di->dfsnum++;
306 di->dfs_to_bb[child_i] = bn;
307 di->dfs_parent[child_i] = my_i;
309 /* Save the current point in the CFG on the stack, and recurse. */
310 stack[sp++] = ei;
311 ei = einext;
314 if (!sp)
315 break;
316 ei = stack[--sp];
318 /* OK. The edge-list was exhausted, meaning normally we would
319 end the recursion. After returning from the recursive call,
320 there were (may be) other statements which were run after a
321 child node was completely considered by DFS. Here is the
322 point to do it in the non-recursive variant.
323 E.g. The block just completed is in e->dest for forward DFS,
324 the block not yet completed (the parent of the one above)
325 in e->src. This could be used e.g. for computing the number of
326 descendants or the tree depth. */
327 ei_next (&ei);
329 free (stack);
332 /* The main entry for calculating the DFS tree or forest. DI is our working
333 structure and REVERSE is true, if we are interested in the reverse flow
334 graph. In that case the result is not necessarily a tree but a forest,
335 because there may be nodes from which the EXIT_BLOCK is unreachable. */
337 static void
338 calc_dfs_tree (struct dom_info *di, bool reverse)
340 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
341 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
342 di->dfs_order[last_basic_block] = di->dfsnum;
343 di->dfs_to_bb[di->dfsnum] = begin;
344 di->dfsnum++;
346 calc_dfs_tree_nonrec (di, begin, reverse);
348 if (reverse)
350 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
351 They are reverse-unreachable. In the dom-case we disallow such
352 nodes, but in post-dom we have to deal with them.
354 There are two situations in which this occurs. First, noreturn
355 functions. Second, infinite loops. In the first case we need to
356 pretend that there is an edge to the exit block. In the second
357 case, we wind up with a forest. We need to process all noreturn
358 blocks before we know if we've got any infinite loops. */
360 basic_block b;
361 bool saw_unconnected = false;
363 FOR_EACH_BB_REVERSE (b)
365 if (EDGE_COUNT (b->succs) > 0)
367 if (di->dfs_order[b->index] == 0)
368 saw_unconnected = true;
369 continue;
371 bitmap_set_bit (di->fake_exit_edge, b->index);
372 di->dfs_order[b->index] = di->dfsnum;
373 di->dfs_to_bb[di->dfsnum] = b;
374 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
375 di->dfsnum++;
376 calc_dfs_tree_nonrec (di, b, reverse);
379 if (saw_unconnected)
381 FOR_EACH_BB_REVERSE (b)
383 if (di->dfs_order[b->index])
384 continue;
385 bitmap_set_bit (di->fake_exit_edge, b->index);
386 di->dfs_order[b->index] = di->dfsnum;
387 di->dfs_to_bb[di->dfsnum] = b;
388 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
389 di->dfsnum++;
390 calc_dfs_tree_nonrec (di, b, reverse);
395 di->nodes = di->dfsnum - 1;
397 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
398 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
401 /* Compress the path from V to the root of its set and update path_min at the
402 same time. After compress(di, V) set_chain[V] is the root of the set V is
403 in and path_min[V] is the node with the smallest key[] value on the path
404 from V to that root. */
406 static void
407 compress (struct dom_info *di, TBB v)
409 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
410 greater than 5 even for huge graphs (I've not seen call depth > 4).
411 Also performance wise compress() ranges _far_ behind eval(). */
412 TBB parent = di->set_chain[v];
413 if (di->set_chain[parent])
415 compress (di, parent);
416 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
417 di->path_min[v] = di->path_min[parent];
418 di->set_chain[v] = di->set_chain[parent];
422 /* Compress the path from V to the set root of V if needed (when the root has
423 changed since the last call). Returns the node with the smallest key[]
424 value on the path from V to the root. */
426 static inline TBB
427 eval (struct dom_info *di, TBB v)
429 /* The representant of the set V is in, also called root (as the set
430 representation is a tree). */
431 TBB rep = di->set_chain[v];
433 /* V itself is the root. */
434 if (!rep)
435 return di->path_min[v];
437 /* Compress only if necessary. */
438 if (di->set_chain[rep])
440 compress (di, v);
441 rep = di->set_chain[v];
444 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
445 return di->path_min[v];
446 else
447 return di->path_min[rep];
450 /* This essentially merges the two sets of V and W, giving a single set with
451 the new root V. The internal representation of these disjoint sets is a
452 balanced tree. Currently link(V,W) is only used with V being the parent
453 of W. */
455 static void
456 link_roots (struct dom_info *di, TBB v, TBB w)
458 TBB s = w;
460 /* Rebalance the tree. */
461 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
463 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
464 >= 2 * di->set_size[di->set_child[s]])
466 di->set_chain[di->set_child[s]] = s;
467 di->set_child[s] = di->set_child[di->set_child[s]];
469 else
471 di->set_size[di->set_child[s]] = di->set_size[s];
472 s = di->set_chain[s] = di->set_child[s];
476 di->path_min[s] = di->path_min[w];
477 di->set_size[v] += di->set_size[w];
478 if (di->set_size[v] < 2 * di->set_size[w])
480 TBB tmp = s;
481 s = di->set_child[v];
482 di->set_child[v] = tmp;
485 /* Merge all subtrees. */
486 while (s)
488 di->set_chain[s] = v;
489 s = di->set_child[s];
493 /* This calculates the immediate dominators (or post-dominators if REVERSE is
494 true). DI is our working structure and should hold the DFS forest.
495 On return the immediate dominator to node V is in di->dom[V]. */
497 static void
498 calc_idoms (struct dom_info *di, bool reverse)
500 TBB v, w, k, par;
501 basic_block en_block;
502 edge_iterator ei, einext;
504 if (reverse)
505 en_block = EXIT_BLOCK_PTR;
506 else
507 en_block = ENTRY_BLOCK_PTR;
509 /* Go backwards in DFS order, to first look at the leafs. */
510 v = di->nodes;
511 while (v > 1)
513 basic_block bb = di->dfs_to_bb[v];
514 edge e;
516 par = di->dfs_parent[v];
517 k = v;
519 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
521 if (reverse)
523 /* If this block has a fake edge to exit, process that first. */
524 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
526 einext = ei;
527 einext.index = 0;
528 goto do_fake_exit_edge;
532 /* Search all direct predecessors for the smallest node with a path
533 to them. That way we have the smallest node with also a path to
534 us only over nodes behind us. In effect we search for our
535 semidominator. */
536 while (!ei_end_p (ei))
538 TBB k1;
539 basic_block b;
541 e = ei_edge (ei);
542 b = (reverse) ? e->dest : e->src;
543 einext = ei;
544 ei_next (&einext);
546 if (b == en_block)
548 do_fake_exit_edge:
549 k1 = di->dfs_order[last_basic_block];
551 else
552 k1 = di->dfs_order[b->index];
554 /* Call eval() only if really needed. If k1 is above V in DFS tree,
555 then we know, that eval(k1) == k1 and key[k1] == k1. */
556 if (k1 > v)
557 k1 = di->key[eval (di, k1)];
558 if (k1 < k)
559 k = k1;
561 ei = einext;
564 di->key[v] = k;
565 link_roots (di, par, v);
566 di->next_bucket[v] = di->bucket[k];
567 di->bucket[k] = v;
569 /* Transform semidominators into dominators. */
570 for (w = di->bucket[par]; w; w = di->next_bucket[w])
572 k = eval (di, w);
573 if (di->key[k] < di->key[w])
574 di->dom[w] = k;
575 else
576 di->dom[w] = par;
578 /* We don't need to cleanup next_bucket[]. */
579 di->bucket[par] = 0;
580 v--;
583 /* Explicitly define the dominators. */
584 di->dom[1] = 0;
585 for (v = 2; v <= di->nodes; v++)
586 if (di->dom[v] != di->key[v])
587 di->dom[v] = di->dom[di->dom[v]];
590 /* Assign dfs numbers starting from NUM to NODE and its sons. */
592 static void
593 assign_dfs_numbers (struct et_node *node, int *num)
595 struct et_node *son;
597 node->dfs_num_in = (*num)++;
599 if (node->son)
601 assign_dfs_numbers (node->son, num);
602 for (son = node->son->right; son != node->son; son = son->right)
603 assign_dfs_numbers (son, num);
606 node->dfs_num_out = (*num)++;
609 /* Compute the data necessary for fast resolving of dominator queries in a
610 static dominator tree. */
612 static void
613 compute_dom_fast_query (enum cdi_direction dir)
615 int num = 0;
616 basic_block bb;
617 unsigned int dir_index = dom_convert_dir_to_idx (dir);
619 gcc_assert (dom_info_available_p (dir));
621 if (dom_computed[dir_index] == DOM_OK)
622 return;
624 FOR_ALL_BB (bb)
626 if (!bb->dom[dir_index]->father)
627 assign_dfs_numbers (bb->dom[dir_index], &num);
630 dom_computed[dir_index] = DOM_OK;
633 /* The main entry point into this module. DIR is set depending on whether
634 we want to compute dominators or postdominators. */
636 void
637 calculate_dominance_info (enum cdi_direction dir)
639 struct dom_info di;
640 basic_block b;
641 unsigned int dir_index = dom_convert_dir_to_idx (dir);
642 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
644 if (dom_computed[dir_index] == DOM_OK)
645 return;
647 timevar_push (TV_DOMINANCE);
648 if (!dom_info_available_p (dir))
650 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
652 FOR_ALL_BB (b)
654 b->dom[dir_index] = et_new_tree (b);
656 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
658 init_dom_info (&di, dir);
659 calc_dfs_tree (&di, reverse);
660 calc_idoms (&di, reverse);
662 FOR_EACH_BB (b)
664 TBB d = di.dom[di.dfs_order[b->index]];
666 if (di.dfs_to_bb[d])
667 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
670 free_dom_info (&di);
671 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
674 compute_dom_fast_query (dir);
676 timevar_pop (TV_DOMINANCE);
679 /* Free dominance information for direction DIR. */
680 void
681 free_dominance_info (enum cdi_direction dir)
683 basic_block bb;
684 unsigned int dir_index = dom_convert_dir_to_idx (dir);
686 if (!dom_info_available_p (dir))
687 return;
689 FOR_ALL_BB (bb)
691 et_free_tree_force (bb->dom[dir_index]);
692 bb->dom[dir_index] = NULL;
694 et_free_pools ();
696 n_bbs_in_dom_tree[dir_index] = 0;
698 dom_computed[dir_index] = DOM_NONE;
701 /* Return the immediate dominator of basic block BB. */
702 basic_block
703 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
705 unsigned int dir_index = dom_convert_dir_to_idx (dir);
706 struct et_node *node = bb->dom[dir_index];
708 gcc_assert (dom_computed[dir_index]);
710 if (!node->father)
711 return NULL;
713 return node->father->data;
716 /* Set the immediate dominator of the block possibly removing
717 existing edge. NULL can be used to remove any edge. */
718 inline void
719 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
720 basic_block dominated_by)
722 unsigned int dir_index = dom_convert_dir_to_idx (dir);
723 struct et_node *node = bb->dom[dir_index];
725 gcc_assert (dom_computed[dir_index]);
727 if (node->father)
729 if (node->father->data == dominated_by)
730 return;
731 et_split (node);
734 if (dominated_by)
735 et_set_father (node, dominated_by->dom[dir_index]);
737 if (dom_computed[dir_index] == DOM_OK)
738 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
741 /* Returns the list of basic blocks immediately dominated by BB, in the
742 direction DIR. */
743 VEC (basic_block, heap) *
744 get_dominated_by (enum cdi_direction dir, basic_block bb)
746 int n;
747 unsigned int dir_index = dom_convert_dir_to_idx (dir);
748 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
749 VEC (basic_block, heap) *bbs = NULL;
751 gcc_assert (dom_computed[dir_index]);
753 if (!son)
754 return NULL;
756 VEC_safe_push (basic_block, heap, bbs, son->data);
757 for (ason = son->right, n = 1; ason != son; ason = ason->right)
758 VEC_safe_push (basic_block, heap, bbs, ason->data);
760 return bbs;
763 /* Returns the list of basic blocks that are immediately dominated (in
764 direction DIR) by some block between N_REGION ones stored in REGION,
765 except for blocks in the REGION itself. */
767 VEC (basic_block, heap) *
768 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
769 unsigned n_region)
771 unsigned i;
772 basic_block dom;
773 VEC (basic_block, heap) *doms = NULL;
775 for (i = 0; i < n_region; i++)
776 region[i]->flags |= BB_DUPLICATED;
777 for (i = 0; i < n_region; i++)
778 for (dom = first_dom_son (dir, region[i]);
779 dom;
780 dom = next_dom_son (dir, dom))
781 if (!(dom->flags & BB_DUPLICATED))
782 VEC_safe_push (basic_block, heap, doms, dom);
783 for (i = 0; i < n_region; i++)
784 region[i]->flags &= ~BB_DUPLICATED;
786 return doms;
789 /* Redirect all edges pointing to BB to TO. */
790 void
791 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
792 basic_block to)
794 unsigned int dir_index = dom_convert_dir_to_idx (dir);
795 struct et_node *bb_node, *to_node, *son;
797 bb_node = bb->dom[dir_index];
798 to_node = to->dom[dir_index];
800 gcc_assert (dom_computed[dir_index]);
802 if (!bb_node->son)
803 return;
805 while (bb_node->son)
807 son = bb_node->son;
809 et_split (son);
810 et_set_father (son, to_node);
813 if (dom_computed[dir_index] == DOM_OK)
814 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
817 /* Find first basic block in the tree dominating both BB1 and BB2. */
818 basic_block
819 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
821 unsigned int dir_index = dom_convert_dir_to_idx (dir);
823 gcc_assert (dom_computed[dir_index]);
825 if (!bb1)
826 return bb2;
827 if (!bb2)
828 return bb1;
830 return et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
834 /* Find the nearest common dominator for the basic blocks in BLOCKS,
835 using dominance direction DIR. */
837 basic_block
838 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
840 unsigned i, first;
841 bitmap_iterator bi;
842 basic_block dom;
844 first = bitmap_first_set_bit (blocks);
845 dom = BASIC_BLOCK (first);
846 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
847 if (dom != BASIC_BLOCK (i))
848 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
850 return dom;
853 /* Given a dominator tree, we can determine whether one thing
854 dominates another in constant time by using two DFS numbers:
856 1. The number for when we visit a node on the way down the tree
857 2. The number for when we visit a node on the way back up the tree
859 You can view these as bounds for the range of dfs numbers the
860 nodes in the subtree of the dominator tree rooted at that node
861 will contain.
863 The dominator tree is always a simple acyclic tree, so there are
864 only three possible relations two nodes in the dominator tree have
865 to each other:
867 1. Node A is above Node B (and thus, Node A dominates node B)
876 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
877 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
878 because we must hit A in the dominator tree *before* B on the walk
879 down, and we will hit A *after* B on the walk back up
881 2. Node A is below node B (and thus, node B dominates node A)
890 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
891 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
893 This is because we must hit A in the dominator tree *after* B on
894 the walk down, and we will hit A *before* B on the walk back up
896 3. Node A and B are siblings (and thus, neither dominates the other)
904 In the above case, DFS_Number_In of A will *always* be <=
905 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
906 DFS_Number_Out of B. This is because we will always finish the dfs
907 walk of one of the subtrees before the other, and thus, the dfs
908 numbers for one subtree can't intersect with the range of dfs
909 numbers for the other subtree. If you swap A and B's position in
910 the dominator tree, the comparison changes direction, but the point
911 is that both comparisons will always go the same way if there is no
912 dominance relationship.
914 Thus, it is sufficient to write
916 A_Dominates_B (node A, node B)
918 return DFS_Number_In(A) <= DFS_Number_In(B)
919 && DFS_Number_Out (A) >= DFS_Number_Out(B);
922 A_Dominated_by_B (node A, node B)
924 return DFS_Number_In(A) >= DFS_Number_In(A)
925 && DFS_Number_Out (A) <= DFS_Number_Out(B);
926 } */
928 /* Return TRUE in case BB1 is dominated by BB2. */
929 bool
930 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
932 unsigned int dir_index = dom_convert_dir_to_idx (dir);
933 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
935 gcc_assert (dom_computed[dir_index]);
937 if (dom_computed[dir_index] == DOM_OK)
938 return (n1->dfs_num_in >= n2->dfs_num_in
939 && n1->dfs_num_out <= n2->dfs_num_out);
941 return et_below (n1, n2);
944 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
946 unsigned
947 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
949 unsigned int dir_index = dom_convert_dir_to_idx (dir);
950 struct et_node *n = bb->dom[dir_index];
952 gcc_assert (dom_computed[dir_index] == DOM_OK);
953 return n->dfs_num_in;
956 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
958 unsigned
959 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
961 unsigned int dir_index = dom_convert_dir_to_idx (dir);
962 struct et_node *n = bb->dom[dir_index];
964 gcc_assert (dom_computed[dir_index] == DOM_OK);
965 return n->dfs_num_out;
968 /* Verify invariants of dominator structure. */
969 void
970 verify_dominators (enum cdi_direction dir)
972 int err = 0;
973 basic_block *old_dom = XNEWVEC (basic_block, last_basic_block);
974 basic_block bb, imm_bb;
976 gcc_assert (dom_info_available_p (dir));
978 FOR_EACH_BB (bb)
980 old_dom[bb->index] = get_immediate_dominator (dir, bb);
982 if (!old_dom[bb->index])
984 error ("dominator of %d status unknown", bb->index);
985 err = 1;
989 free_dominance_info (dir);
990 calculate_dominance_info (dir);
992 FOR_EACH_BB (bb)
994 imm_bb = get_immediate_dominator (dir, bb);
995 if (old_dom[bb->index] != imm_bb)
997 error ("dominator of %d should be %d, not %d",
998 bb->index, imm_bb->index, old_dom[bb->index]->index);
999 err = 1;
1003 free (old_dom);
1004 gcc_assert (!err);
1007 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1008 assuming that dominators of other blocks are correct. We also use it to
1009 recompute the dominators in a restricted area, by iterating it until it
1010 reaches a fixed point. */
1012 basic_block
1013 recompute_dominator (enum cdi_direction dir, basic_block bb)
1015 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1016 basic_block dom_bb = NULL;
1017 edge e;
1018 edge_iterator ei;
1020 gcc_assert (dom_computed[dir_index]);
1022 if (dir == CDI_DOMINATORS)
1024 FOR_EACH_EDGE (e, ei, bb->preds)
1026 if (!dominated_by_p (dir, e->src, bb))
1027 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1030 else
1032 FOR_EACH_EDGE (e, ei, bb->succs)
1034 if (!dominated_by_p (dir, e->dest, bb))
1035 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1039 return dom_bb;
1042 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1043 of BBS. We assume that all the immediate dominators except for those of the
1044 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1045 currently recorded immediate dominators of blocks in BBS really dominate the
1046 blocks. The basic blocks for that we determine the dominator are removed
1047 from BBS. */
1049 static void
1050 prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1051 bool conservative)
1053 unsigned i;
1054 bool single;
1055 basic_block bb, dom = NULL;
1056 edge_iterator ei;
1057 edge e;
1059 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1061 if (bb == ENTRY_BLOCK_PTR)
1062 goto succeed;
1064 if (single_pred_p (bb))
1066 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1067 goto succeed;
1070 if (!conservative)
1071 goto fail;
1073 single = true;
1074 dom = NULL;
1075 FOR_EACH_EDGE (e, ei, bb->preds)
1077 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1078 continue;
1080 if (!dom)
1081 dom = e->src;
1082 else
1084 single = false;
1085 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1089 gcc_assert (dom != NULL);
1090 if (single
1091 || find_edge (dom, bb))
1093 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1094 goto succeed;
1097 fail:
1098 i++;
1099 continue;
1101 succeed:
1102 VEC_unordered_remove (basic_block, bbs, i);
1106 /* Returns root of the dominance tree in the direction DIR that contains
1107 BB. */
1109 static basic_block
1110 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1112 return et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1115 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1116 for the sons of Y, found using the SON and BROTHER arrays representing
1117 the dominance tree of graph G. BBS maps the vertices of G to the basic
1118 blocks. */
1120 static void
1121 determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1122 int y, int *son, int *brother)
1124 bitmap gprime;
1125 int i, a, nc;
1126 VEC (int, heap) **sccs;
1127 basic_block bb, dom, ybb;
1128 unsigned si;
1129 edge e;
1130 edge_iterator ei;
1132 if (son[y] == -1)
1133 return;
1134 if (y == (int) VEC_length (basic_block, bbs))
1135 ybb = ENTRY_BLOCK_PTR;
1136 else
1137 ybb = VEC_index (basic_block, bbs, y);
1139 if (brother[son[y]] == -1)
1141 /* Handle the common case Y has just one son specially. */
1142 bb = VEC_index (basic_block, bbs, son[y]);
1143 set_immediate_dominator (CDI_DOMINATORS, bb,
1144 recompute_dominator (CDI_DOMINATORS, bb));
1145 identify_vertices (g, y, son[y]);
1146 return;
1149 gprime = BITMAP_ALLOC (NULL);
1150 for (a = son[y]; a != -1; a = brother[a])
1151 bitmap_set_bit (gprime, a);
1153 nc = graphds_scc (g, gprime);
1154 BITMAP_FREE (gprime);
1156 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1157 for (a = son[y]; a != -1; a = brother[a])
1158 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1160 for (i = nc - 1; i >= 0; i--)
1162 dom = NULL;
1163 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1165 bb = VEC_index (basic_block, bbs, a);
1166 FOR_EACH_EDGE (e, ei, bb->preds)
1168 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1169 continue;
1171 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1175 gcc_assert (dom != NULL);
1176 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1178 bb = VEC_index (basic_block, bbs, a);
1179 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1183 for (i = 0; i < nc; i++)
1184 VEC_free (int, heap, sccs[i]);
1185 free (sccs);
1187 for (a = son[y]; a != -1; a = brother[a])
1188 identify_vertices (g, y, a);
1191 /* Recompute dominance information for basic blocks in the set BBS. The
1192 function assumes that the immediate dominators of all the other blocks
1193 in CFG are correct, and that there are no unreachable blocks.
1195 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1196 a block of BBS in the current dominance tree dominate it. */
1198 void
1199 iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1200 bool conservative)
1202 unsigned i;
1203 basic_block bb, dom;
1204 struct graph *g;
1205 int n, y;
1206 size_t dom_i;
1207 edge e;
1208 edge_iterator ei;
1209 struct pointer_map_t *map;
1210 int *parent, *son, *brother;
1211 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1213 /* We only support updating dominators. There are some problems with
1214 updating postdominators (need to add fake edges from infinite loops
1215 and noreturn functions), and since we do not currently use
1216 iterate_fix_dominators for postdominators, any attempt to handle these
1217 problems would be unused, untested, and almost surely buggy. We keep
1218 the DIR argument for consistency with the rest of the dominator analysis
1219 interface. */
1220 gcc_assert (dir == CDI_DOMINATORS);
1221 gcc_assert (dom_computed[dir_index]);
1223 /* The algorithm we use takes inspiration from the following papers, although
1224 the details are quite different from any of them:
1226 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1227 Dominator Tree of a Reducible Flowgraph
1228 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1229 dominator trees
1230 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1231 Algorithm
1233 First, we use the following heuristics to decrease the size of the BBS
1234 set:
1235 a) if BB has a single predecessor, then its immediate dominator is this
1236 predecessor
1237 additionally, if CONSERVATIVE is true:
1238 b) if all the predecessors of BB except for one (X) are dominated by BB,
1239 then X is the immediate dominator of BB
1240 c) if the nearest common ancestor of the predecessors of BB is X and
1241 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1243 Then, we need to establish the dominance relation among the basic blocks
1244 in BBS. We split the dominance tree by removing the immediate dominator
1245 edges from BBS, creating a forrest F. We form a graph G whose vertices
1246 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1247 X' -> Y in CFG such that X' belongs to the tree of the dominance forrest
1248 whose root is X. We then determine dominance tree of G. Note that
1249 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1250 In this step, we can use arbitrary algorithm to determine dominators.
1251 We decided to prefer the algorithm [3] to the algorithm of
1252 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1253 10 during gcc bootstrap), and [3] should perform better in this case.
1255 Finally, we need to determine the immediate dominators for the basic
1256 blocks of BBS. If the immediate dominator of X in G is Y, then
1257 the immediate dominator of X in CFG belongs to the tree of F rooted in
1258 Y. We process the dominator tree T of G recursively, starting from leaves.
1259 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1260 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1261 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1262 the following observations:
1263 (i) the immediate dominator of all blocks in a strongly connected
1264 component of G' is the same
1265 (ii) if X has no predecessors in G', then the immediate dominator of X
1266 is the nearest common ancestor of the predecessors of X in the
1267 subtree of F rooted in Y
1268 Therefore, it suffices to find the topological ordering of G', and
1269 process the nodes X_i in this order using the rules (i) and (ii).
1270 Then, we contract all the nodes X_i with Y in G, so that the further
1271 steps work correctly. */
1273 if (!conservative)
1275 /* Split the tree now. If the idoms of blocks in BBS are not
1276 conservatively correct, setting the dominators using the
1277 heuristics in prune_bbs_to_update_dominators could
1278 create cycles in the dominance "tree", and cause ICE. */
1279 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1280 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1283 prune_bbs_to_update_dominators (bbs, conservative);
1284 n = VEC_length (basic_block, bbs);
1286 if (n == 0)
1287 return;
1289 if (n == 1)
1291 bb = VEC_index (basic_block, bbs, 0);
1292 set_immediate_dominator (CDI_DOMINATORS, bb,
1293 recompute_dominator (CDI_DOMINATORS, bb));
1294 return;
1297 /* Construct the graph G. */
1298 map = pointer_map_create ();
1299 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1301 /* If the dominance tree is conservatively correct, split it now. */
1302 if (conservative)
1303 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1304 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1306 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1308 g = new_graph (n + 1);
1309 for (y = 0; y < g->n_vertices; y++)
1310 g->vertices[y].data = BITMAP_ALLOC (NULL);
1311 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1313 FOR_EACH_EDGE (e, ei, bb->preds)
1315 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1316 if (dom == bb)
1317 continue;
1319 dom_i = (size_t) *pointer_map_contains (map, dom);
1321 /* Do not include parallel edges to G. */
1322 if (bitmap_bit_p (g->vertices[dom_i].data, i))
1323 continue;
1325 bitmap_set_bit (g->vertices[dom_i].data, i);
1326 add_edge (g, dom_i, i);
1329 for (y = 0; y < g->n_vertices; y++)
1330 BITMAP_FREE (g->vertices[y].data);
1331 pointer_map_destroy (map);
1333 /* Find the dominator tree of G. */
1334 son = XNEWVEC (int, n + 1);
1335 brother = XNEWVEC (int, n + 1);
1336 parent = XNEWVEC (int, n + 1);
1337 graphds_domtree (g, n, parent, son, brother);
1339 /* Finally, traverse the tree and find the immediate dominators. */
1340 for (y = n; son[y] != -1; y = son[y])
1341 continue;
1342 while (y != -1)
1344 determine_dominators_for_sons (g, bbs, y, son, brother);
1346 if (brother[y] != -1)
1348 y = brother[y];
1349 while (son[y] != -1)
1350 y = son[y];
1352 else
1353 y = parent[y];
1356 free (son);
1357 free (brother);
1358 free (parent);
1360 free_graph (g);
1363 void
1364 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1366 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1368 gcc_assert (dom_computed[dir_index]);
1369 gcc_assert (!bb->dom[dir_index]);
1371 n_bbs_in_dom_tree[dir_index]++;
1373 bb->dom[dir_index] = et_new_tree (bb);
1375 if (dom_computed[dir_index] == DOM_OK)
1376 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1379 void
1380 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1382 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1384 gcc_assert (dom_computed[dir_index]);
1386 et_free_tree (bb->dom[dir_index]);
1387 bb->dom[dir_index] = NULL;
1388 n_bbs_in_dom_tree[dir_index]--;
1390 if (dom_computed[dir_index] == DOM_OK)
1391 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1394 /* Returns the first son of BB in the dominator or postdominator tree
1395 as determined by DIR. */
1397 basic_block
1398 first_dom_son (enum cdi_direction dir, basic_block bb)
1400 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1401 struct et_node *son = bb->dom[dir_index]->son;
1403 return son ? son->data : NULL;
1406 /* Returns the next dominance son after BB in the dominator or postdominator
1407 tree as determined by DIR, or NULL if it was the last one. */
1409 basic_block
1410 next_dom_son (enum cdi_direction dir, basic_block bb)
1412 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1413 struct et_node *next = bb->dom[dir_index]->right;
1415 return next->father->son == next ? NULL : next->data;
1418 /* Return dominance availability for dominance info DIR. */
1420 enum dom_state
1421 dom_info_state (enum cdi_direction dir)
1423 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1425 return dom_computed[dir_index];
1428 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1430 void
1431 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1433 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1435 dom_computed[dir_index] = new_state;
1438 /* Returns true if dominance information for direction DIR is available. */
1440 bool
1441 dom_info_available_p (enum cdi_direction dir)
1443 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1445 return dom_computed[dir_index] != DOM_NONE;
1448 void
1449 debug_dominance_info (enum cdi_direction dir)
1451 basic_block bb, bb2;
1452 FOR_EACH_BB (bb)
1453 if ((bb2 = get_immediate_dominator (dir, bb)))
1454 fprintf (stderr, "%i %i\n", bb->index, bb2->index);