1 /* Subroutines needed for unwinding DWARF 2 format stack frame info
2 for exception handling. */
3 /* Compile this one with gcc. */
4 /* Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
5 Contributed by Jason Merrill <jason@cygnus.com>.
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 In addition to the permissions in the GNU General Public License, the
15 Free Software Foundation gives you unlimited permission to link the
16 compiled version of this file into combinations with other programs,
17 and to distribute those combinations without any restriction coming
18 from the use of this file. (The General Public License restrictions
19 do apply in other respects; for example, they cover modification of
20 the file, and distribution when not linked into a combine
23 GNU CC is distributed in the hope that it will be useful,
24 but WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 GNU General Public License for more details.
28 You should have received a copy of the GNU General Public License
29 along with GNU CC; see the file COPYING. If not, write to
30 the Free Software Foundation, 59 Temple Place - Suite 330,
31 Boston, MA 02111-1307, USA. */
33 /* It is incorrect to include config.h here, because this file is being
34 compiled for the target, and hence definitions concerning only the host
42 #ifdef DWARF2_UNWIND_INFO
47 #ifdef __GTHREAD_MUTEX_INIT
48 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
50 static __gthread_mutex_t object_mutex
;
53 /* Don't use `fancy_abort' here even if config.h says to use it. */
58 /* Some types used by the DWARF 2 spec. */
60 typedef int sword
__attribute__ ((mode (SI
)));
61 typedef unsigned int uword
__attribute__ ((mode (SI
)));
62 typedef unsigned int uaddr
__attribute__ ((mode (pointer
)));
63 typedef int saddr
__attribute__ ((mode (pointer
)));
64 typedef unsigned char ubyte
;
67 CIE - Common Information Element
68 FDE - Frame Descriptor Element
70 There is one per function, and it describes where the function code
71 is located, and what the register lifetimes and stack layout are
74 The data structures are defined in the DWARF specfication, although
75 not in a very readable way (see LITERATURE).
77 Every time an exception is thrown, the code needs to locate the FDE
78 for the current function, and starts to look for exception regions
79 from that FDE. This works in a two-level search:
80 a) in a linear search, find the shared image (i.e. DLL) containing
82 b) using the FDE table for that shared object, locate the FDE using
83 binary search (which requires the sorting). */
85 /* The first few fields of a CIE. The CIE_id field is 0 for a CIE,
86 to distinguish it from a valid FDE. FDEs are aligned to an addressing
87 unit boundary, but the fields within are unaligned. */
94 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
96 /* The first few fields of an FDE. */
103 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
105 typedef struct dwarf_fde fde
;
107 /* Objects to be searched for frame unwind info. */
109 static struct object
*objects
;
111 /* The information we care about from a CIE. */
121 /* The current unwind state, plus a saved copy for DW_CFA_remember_state. */
123 struct frame_state_internal
125 struct frame_state s
;
126 struct frame_state_internal
*saved_state
;
129 /* This is undefined below if we need it to be an actual function. */
130 #define init_object_mutex_once()
133 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
135 /* Helper for init_object_mutex_once. */
138 init_object_mutex (void)
140 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
143 /* Call this to arrange to initialize the object mutex. */
145 #undef init_object_mutex_once
147 init_object_mutex_once (void)
149 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
150 __gthread_once (&once
, init_object_mutex
);
153 #endif /* __GTHREAD_MUTEX_INIT_FUNCTION */
154 #endif /* __GTHREADS */
156 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
157 by R, and return the new value of BUF. */
160 decode_uleb128 (unsigned char *buf
, unsigned *r
)
167 unsigned byte
= *buf
++;
168 result
|= (byte
& 0x7f) << shift
;
169 if ((byte
& 0x80) == 0)
177 /* Decode the signed LEB128 constant at BUF into the variable pointed to
178 by R, and return the new value of BUF. */
181 decode_sleb128 (unsigned char *buf
, int *r
)
190 result
|= (byte
& 0x7f) << shift
;
192 if ((byte
& 0x80) == 0)
195 if (shift
< (sizeof (*r
) * 8) && (byte
& 0x40) != 0)
196 result
|= - (1 << shift
);
202 /* Read unaligned data from the instruction buffer. */
206 unsigned b2
__attribute__ ((mode (HI
)));
207 unsigned b4
__attribute__ ((mode (SI
)));
208 unsigned b8
__attribute__ ((mode (DI
)));
209 } __attribute__ ((packed
));
211 read_pointer (void *p
)
212 { union unaligned
*up
= p
; return up
->p
; }
213 static inline unsigned
215 { return *(unsigned char *)p
; }
216 static inline unsigned
218 { union unaligned
*up
= p
; return up
->b2
; }
219 static inline unsigned
221 { union unaligned
*up
= p
; return up
->b4
; }
222 static inline unsigned long
224 { union unaligned
*up
= p
; return up
->b8
; }
226 /* Ordering function for FDEs. Functions can't overlap, so we just compare
227 their starting addresses. */
230 fde_compare (fde
*x
, fde
*y
)
232 return (saddr
)x
->pc_begin
- (saddr
)y
->pc_begin
;
235 /* Return the address of the FDE after P. */
240 return (fde
*)(((char *)p
) + p
->length
+ sizeof (p
->length
));
246 count_fdes (fde
*this_fde
)
250 for (count
= 0; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
252 /* Skip CIEs and linked once FDE entries. */
253 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
263 add_fdes (fde
*this_fde
, fde_accumulator
*accu
, void **beg_ptr
, void **end_ptr
)
265 void *pc_begin
= *beg_ptr
;
266 void *pc_end
= *end_ptr
;
268 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
270 /* Skip CIEs and linked once FDE entries. */
271 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
274 fde_insert (accu
, this_fde
);
276 if (this_fde
->pc_begin
< pc_begin
)
277 pc_begin
= this_fde
->pc_begin
;
278 if (this_fde
->pc_begin
+ this_fde
->pc_range
> pc_end
)
279 pc_end
= this_fde
->pc_begin
+ this_fde
->pc_range
;
286 /* search this fde table for the one containing the pc */
288 search_fdes (fde
*this_fde
, void *pc
)
290 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
292 /* Skip CIEs and linked once FDE entries. */
293 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
296 if ((uaddr
)((char *)pc
- (char *)this_fde
->pc_begin
) < this_fde
->pc_range
)
302 /* Set up a sorted array of pointers to FDEs for a loaded object. We
303 count up the entries before allocating the array because it's likely to
304 be faster. We can be called multiple times, should we have failed to
305 allocate a sorted fde array on a previous occasion. */
308 frame_init (struct object
* ob
)
311 fde_accumulator accu
;
312 void *pc_begin
, *pc_end
;
317 else if (ob
->fde_array
)
319 fde
**p
= ob
->fde_array
;
320 for (count
= 0; *p
; ++p
)
321 count
+= count_fdes (*p
);
324 count
= count_fdes (ob
->fde_begin
);
327 if (!start_fde_sort (&accu
, count
) && ob
->pc_begin
)
330 pc_begin
= (void*)(uaddr
)-1;
335 fde
**p
= ob
->fde_array
;
337 add_fdes (*p
, &accu
, &pc_begin
, &pc_end
);
340 add_fdes (ob
->fde_begin
, &accu
, &pc_begin
, &pc_end
);
342 array
= end_fde_sort (&accu
, count
);
344 ob
->fde_array
= array
;
345 ob
->pc_begin
= pc_begin
;
349 /* Return a pointer to the FDE for the function containing PC. */
357 init_object_mutex_once ();
358 __gthread_mutex_lock (&object_mutex
);
360 /* Linear search through the objects, to find the one containing the pc. */
361 for (ob
= objects
; ob
; ob
= ob
->next
)
363 if (ob
->pc_begin
== 0)
365 if (pc
>= ob
->pc_begin
&& pc
< ob
->pc_end
)
371 __gthread_mutex_unlock (&object_mutex
);
375 if (!ob
->fde_array
|| (void *)ob
->fde_array
== (void *)ob
->fde_begin
)
378 if (ob
->fde_array
&& (void *)ob
->fde_array
!= (void *)ob
->fde_begin
)
380 __gthread_mutex_unlock (&object_mutex
);
382 /* Standard binary search algorithm. */
383 for (lo
= 0, hi
= ob
->count
; lo
< hi
; )
385 size_t i
= (lo
+ hi
) / 2;
386 fde
*f
= ob
->fde_array
[i
];
388 if (pc
< f
->pc_begin
)
390 else if (pc
>= f
->pc_begin
+ f
->pc_range
)
398 /* Long slow labourious linear search, cos we've no memory. */
403 fde
**p
= ob
->fde_array
;
407 f
= search_fdes (*p
, pc
);
415 f
= search_fdes (ob
->fde_begin
, pc
);
416 __gthread_mutex_unlock (&object_mutex
);
422 static inline struct dwarf_cie
*
425 return ((void *)&f
->CIE_delta
) - f
->CIE_delta
;
428 /* Extract any interesting information from the CIE for the translation
429 unit F belongs to. */
432 extract_cie_info (fde
*f
, struct cie_info
*c
)
437 c
->augmentation
= get_cie (f
)->augmentation
;
439 if (strcmp (c
->augmentation
, "") != 0
440 && strcmp (c
->augmentation
, "eh") != 0
441 && c
->augmentation
[0] != 'z')
444 p
= c
->augmentation
+ strlen (c
->augmentation
) + 1;
446 if (strcmp (c
->augmentation
, "eh") == 0)
448 c
->eh_ptr
= read_pointer (p
);
449 p
+= sizeof (void *);
454 p
= decode_uleb128 (p
, &c
->code_align
);
455 p
= decode_sleb128 (p
, &c
->data_align
);
456 c
->ra_regno
= *(unsigned char *)p
++;
458 /* If the augmentation starts with 'z', we now see the length of the
459 augmentation fields. */
460 if (c
->augmentation
[0] == 'z')
462 p
= decode_uleb128 (p
, &i
);
469 /* Decode one instruction's worth of DWARF 2 call frame information.
470 Used by __frame_state_for. Takes pointers P to the instruction to
471 decode, STATE to the current register unwind information, INFO to the
472 current CIE information, and PC to the current PC value. Returns a
473 pointer to the next instruction. */
476 execute_cfa_insn (void *p
, struct frame_state_internal
*state
,
477 struct cie_info
*info
, void **pc
)
479 unsigned insn
= *(unsigned char *)p
++;
483 if (insn
& DW_CFA_advance_loc
)
484 *pc
+= ((insn
& 0x3f) * info
->code_align
);
485 else if (insn
& DW_CFA_offset
)
488 p
= decode_uleb128 (p
, &offset
);
489 if (reg
== state
->s
.cfa_reg
)
490 /* Don't record anything about this register; it's only used to
491 reload SP in the epilogue. We don't want to copy in SP
492 values for outer frames; we handle restoring SP specially. */;
495 offset
*= info
->data_align
;
496 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
497 state
->s
.reg_or_offset
[reg
] = offset
;
500 else if (insn
& DW_CFA_restore
)
503 state
->s
.saved
[reg
] = REG_UNSAVED
;
508 *pc
= read_pointer (p
);
509 p
+= sizeof (void *);
511 case DW_CFA_advance_loc1
:
512 *pc
+= read_1byte (p
);
515 case DW_CFA_advance_loc2
:
516 *pc
+= read_2byte (p
);
519 case DW_CFA_advance_loc4
:
520 *pc
+= read_4byte (p
);
524 case DW_CFA_offset_extended
:
525 p
= decode_uleb128 (p
, ®
);
526 p
= decode_uleb128 (p
, &offset
);
527 if (reg
== state
->s
.cfa_reg
)
528 /* Don't record anything; see above. */;
531 offset
*= info
->data_align
;
532 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
533 state
->s
.reg_or_offset
[reg
] = offset
;
536 case DW_CFA_restore_extended
:
537 p
= decode_uleb128 (p
, ®
);
538 state
->s
.saved
[reg
] = REG_UNSAVED
;
541 case DW_CFA_undefined
:
542 case DW_CFA_same_value
:
546 case DW_CFA_register
:
549 p
= decode_uleb128 (p
, ®
);
550 p
= decode_uleb128 (p
, ®2
);
551 state
->s
.saved
[reg
] = REG_SAVED_REG
;
552 state
->s
.reg_or_offset
[reg
] = reg2
;
557 p
= decode_uleb128 (p
, ®
);
558 p
= decode_uleb128 (p
, &offset
);
559 state
->s
.cfa_reg
= reg
;
560 state
->s
.cfa_offset
= offset
;
562 case DW_CFA_def_cfa_register
:
563 p
= decode_uleb128 (p
, ®
);
564 state
->s
.cfa_reg
= reg
;
566 case DW_CFA_def_cfa_offset
:
567 p
= decode_uleb128 (p
, &offset
);
568 state
->s
.cfa_offset
= offset
;
571 case DW_CFA_remember_state
:
573 struct frame_state_internal
*save
=
574 (struct frame_state_internal
*)
575 malloc (sizeof (struct frame_state_internal
));
576 memcpy (save
, state
, sizeof (struct frame_state_internal
));
577 state
->saved_state
= save
;
580 case DW_CFA_restore_state
:
582 struct frame_state_internal
*save
= state
->saved_state
;
583 memcpy (state
, save
, sizeof (struct frame_state_internal
));
588 /* FIXME: Hardcoded for SPARC register window configuration. */
589 case DW_CFA_GNU_window_save
:
590 for (reg
= 16; reg
< 32; ++reg
)
592 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
593 state
->s
.reg_or_offset
[reg
] = (reg
- 16) * sizeof (void *);
597 case DW_CFA_GNU_args_size
:
598 p
= decode_uleb128 (p
, &offset
);
599 state
->s
.args_size
= offset
;
602 case DW_CFA_GNU_negative_offset_extended
:
603 p
= decode_uleb128 (p
, ®
);
604 p
= decode_uleb128 (p
, &offset
);
605 offset
*= info
->data_align
;
606 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
607 state
->s
.reg_or_offset
[reg
] = -offset
;
616 /* Called from __throw to find the registers to restore for a given
617 PC_TARGET. The caller should allocate a local variable of `struct
618 frame_state' (declared in frame.h) and pass its address to STATE_IN. */
621 __frame_state_for (void *pc_target
, struct frame_state
*state_in
)
624 void *insn
, *end
, *pc
;
625 struct cie_info info
;
626 struct frame_state_internal state
;
628 f
= find_fde (pc_target
);
632 insn
= extract_cie_info (f
, &info
);
636 memset (&state
, 0, sizeof (state
));
637 state
.s
.retaddr_column
= info
.ra_regno
;
638 state
.s
.eh_ptr
= info
.eh_ptr
;
640 /* First decode all the insns in the CIE. */
641 end
= next_fde ((fde
*) get_cie (f
));
643 insn
= execute_cfa_insn (insn
, &state
, &info
, 0);
645 insn
= ((fde
*)f
) + 1;
647 if (info
.augmentation
[0] == 'z')
650 insn
= decode_uleb128 (insn
, &i
);
654 /* Then the insns in the FDE up to our target PC. */
657 while (insn
< end
&& pc
<= pc_target
)
658 insn
= execute_cfa_insn (insn
, &state
, &info
, &pc
);
660 memcpy (state_in
, &state
.s
, sizeof (state
.s
));
663 #endif /* DWARF2_UNWIND_INFO */