1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "insn-codes.h"
30 #include "tree-pass.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
61 #include "case-cfn-macros.h"
63 #include "alloc-pool.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
68 #include "vr-values.h"
70 #include "wide-int-range.h"
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
77 value_range_base::set (enum value_range_kind kind
, tree min
, tree max
)
87 value_range::set_equiv (bitmap equiv
)
89 /* Since updating the equivalence set involves deep copying the
90 bitmaps, only do it if absolutely necessary.
92 All equivalence bitmaps are allocated from the same obstack. So
93 we can use the obstack associated with EQUIV to allocate vr->equiv. */
96 m_equiv
= BITMAP_ALLOC (equiv
->obstack
);
100 if (equiv
&& !bitmap_empty_p (equiv
))
101 bitmap_copy (m_equiv
, equiv
);
103 bitmap_clear (m_equiv
);
107 /* Initialize value_range. */
110 value_range::set (enum value_range_kind kind
, tree min
, tree max
,
113 value_range_base::set (kind
, min
, max
);
119 value_range_base::value_range_base (value_range_kind kind
, tree min
, tree max
)
121 set (kind
, min
, max
);
124 value_range::value_range (value_range_kind kind
, tree min
, tree max
,
128 set (kind
, min
, max
, equiv
);
131 value_range::value_range (const value_range_base
&other
)
134 set (other
.kind (), other
.min(), other
.max (), NULL
);
137 /* Like set, but keep the equivalences in place. */
140 value_range::update (value_range_kind kind
, tree min
, tree max
)
143 (kind
!= VR_UNDEFINED
&& kind
!= VR_VARYING
) ? m_equiv
: NULL
);
146 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
148 Note: The code that avoids the bitmap sharing looks at the existing
149 this->m_equiv, so this function cannot be used to initalize an
150 object. Use the constructors for initialization. */
153 value_range::deep_copy (const value_range
*from
)
155 set (from
->m_kind
, from
->min (), from
->max (), from
->m_equiv
);
159 value_range::move (value_range
*from
)
161 set (from
->m_kind
, from
->min (), from
->max ());
162 m_equiv
= from
->m_equiv
;
163 from
->m_equiv
= NULL
;
166 /* Check the validity of the range. */
169 value_range_base::check ()
178 gcc_assert (m_min
&& m_max
);
180 gcc_assert (!TREE_OVERFLOW_P (m_min
) && !TREE_OVERFLOW_P (m_max
));
182 /* Creating ~[-MIN, +MAX] is stupid because that would be
184 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min
)) && m_kind
== VR_ANTI_RANGE
)
185 gcc_assert (!vrp_val_is_min (m_min
) || !vrp_val_is_max (m_max
));
187 cmp
= compare_values (m_min
, m_max
);
188 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
193 gcc_assert (!min () && !max ());
201 value_range::check ()
203 value_range_base::check ();
208 gcc_assert (!m_equiv
|| bitmap_empty_p (m_equiv
));
213 /* Equality operator. We purposely do not overload ==, to avoid
214 confusion with the equality bitmap in the derived value_range
218 value_range_base::equal_p (const value_range_base
&other
) const
220 return (m_kind
== other
.m_kind
221 && vrp_operand_equal_p (m_min
, other
.m_min
)
222 && vrp_operand_equal_p (m_max
, other
.m_max
));
225 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
226 IGNORE_EQUIVS is TRUE. */
229 value_range::equal_p (const value_range
&other
, bool ignore_equivs
) const
231 return (value_range_base::equal_p (other
)
233 || vrp_bitmap_equal_p (m_equiv
, other
.m_equiv
)));
236 /* Return TRUE if this is a symbolic range. */
239 value_range_base::symbolic_p () const
241 return (!varying_p ()
243 && (!is_gimple_min_invariant (m_min
)
244 || !is_gimple_min_invariant (m_max
)));
247 /* NOTE: This is not the inverse of symbolic_p because the range
248 could also be varying or undefined. Ideally they should be inverse
249 of each other, with varying only applying to symbolics. Varying of
250 constants would be represented as [-MIN, +MAX]. */
253 value_range_base::constant_p () const
255 return (!varying_p ()
257 && TREE_CODE (m_min
) == INTEGER_CST
258 && TREE_CODE (m_max
) == INTEGER_CST
);
262 value_range_base::set_undefined ()
264 set (VR_UNDEFINED
, NULL
, NULL
);
268 value_range::set_undefined ()
270 set (VR_UNDEFINED
, NULL
, NULL
, NULL
);
274 value_range_base::set_varying ()
276 set (VR_VARYING
, NULL
, NULL
);
280 value_range::set_varying ()
282 set (VR_VARYING
, NULL
, NULL
, NULL
);
285 /* Return TRUE if it is possible that range contains VAL. */
288 value_range_base::may_contain_p (tree val
) const
290 return value_inside_range (val
) != 0;
294 value_range::equiv_clear ()
297 bitmap_clear (m_equiv
);
300 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
301 bitmap. If no equivalence table has been created, OBSTACK is the
302 obstack to use (NULL for the default obstack).
304 This is the central point where equivalence processing can be
308 value_range::equiv_add (const_tree var
,
309 const value_range
*var_vr
,
310 bitmap_obstack
*obstack
)
313 m_equiv
= BITMAP_ALLOC (obstack
);
314 unsigned ver
= SSA_NAME_VERSION (var
);
315 bitmap_set_bit (m_equiv
, ver
);
316 if (var_vr
&& var_vr
->m_equiv
)
317 bitmap_ior_into (m_equiv
, var_vr
->m_equiv
);
320 /* If range is a singleton, place it in RESULT and return TRUE.
321 Note: A singleton can be any gimple invariant, not just constants.
322 So, [&x, &x] counts as a singleton. */
325 value_range_base::singleton_p (tree
*result
) const
327 if (m_kind
== VR_RANGE
328 && vrp_operand_equal_p (min (), max ())
329 && is_gimple_min_invariant (min ()))
339 value_range_base::type () const
341 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
342 known to have non-zero min/max. */
344 return TREE_TYPE (min ());
348 value_range_base::dump (FILE *file
) const
351 fprintf (file
, "UNDEFINED");
352 else if (m_kind
== VR_RANGE
|| m_kind
== VR_ANTI_RANGE
)
354 tree ttype
= type ();
356 print_generic_expr (file
, ttype
);
359 fprintf (file
, "%s[", (m_kind
== VR_ANTI_RANGE
) ? "~" : "");
361 if (INTEGRAL_TYPE_P (ttype
)
362 && !TYPE_UNSIGNED (ttype
)
363 && vrp_val_is_min (min ())
364 && TYPE_PRECISION (ttype
) != 1)
365 fprintf (file
, "-INF");
367 print_generic_expr (file
, min ());
369 fprintf (file
, ", ");
371 if (INTEGRAL_TYPE_P (ttype
)
372 && vrp_val_is_max (max ())
373 && TYPE_PRECISION (ttype
) != 1)
374 fprintf (file
, "+INF");
376 print_generic_expr (file
, max ());
380 else if (varying_p ())
381 fprintf (file
, "VARYING");
387 value_range::dump (FILE *file
) const
389 value_range_base::dump (file
);
390 if ((m_kind
== VR_RANGE
|| m_kind
== VR_ANTI_RANGE
)
396 fprintf (file
, " EQUIVALENCES: { ");
398 EXECUTE_IF_SET_IN_BITMAP (m_equiv
, 0, i
, bi
)
400 print_generic_expr (file
, ssa_name (i
));
405 fprintf (file
, "} (%u elements)", c
);
410 dump_value_range (FILE *file
, const value_range
*vr
)
413 fprintf (file
, "[]");
419 dump_value_range (FILE *file
, const value_range_base
*vr
)
422 fprintf (file
, "[]");
428 debug (const value_range_base
*vr
)
430 dump_value_range (stderr
, vr
);
434 debug (const value_range_base
&vr
)
436 dump_value_range (stderr
, &vr
);
440 debug (const value_range
*vr
)
442 dump_value_range (stderr
, vr
);
446 debug (const value_range
&vr
)
448 dump_value_range (stderr
, &vr
);
451 /* Return true if the SSA name NAME is live on the edge E. */
454 live_on_edge (edge e
, tree name
)
456 return (live
[e
->dest
->index
]
457 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
460 /* Location information for ASSERT_EXPRs. Each instance of this
461 structure describes an ASSERT_EXPR for an SSA name. Since a single
462 SSA name may have more than one assertion associated with it, these
463 locations are kept in a linked list attached to the corresponding
467 /* Basic block where the assertion would be inserted. */
470 /* Some assertions need to be inserted on an edge (e.g., assertions
471 generated by COND_EXPRs). In those cases, BB will be NULL. */
474 /* Pointer to the statement that generated this assertion. */
475 gimple_stmt_iterator si
;
477 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
478 enum tree_code comp_code
;
480 /* Value being compared against. */
483 /* Expression to compare. */
486 /* Next node in the linked list. */
490 /* If bit I is present, it means that SSA name N_i has a list of
491 assertions that should be inserted in the IL. */
492 static bitmap need_assert_for
;
494 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
495 holds a list of ASSERT_LOCUS_T nodes that describe where
496 ASSERT_EXPRs for SSA name N_I should be inserted. */
497 static assert_locus
**asserts_for
;
499 /* Return the maximum value for TYPE. */
502 vrp_val_max (const_tree type
)
504 if (!INTEGRAL_TYPE_P (type
))
507 return TYPE_MAX_VALUE (type
);
510 /* Return the minimum value for TYPE. */
513 vrp_val_min (const_tree type
)
515 if (!INTEGRAL_TYPE_P (type
))
518 return TYPE_MIN_VALUE (type
);
521 /* Return whether VAL is equal to the maximum value of its type.
522 We can't do a simple equality comparison with TYPE_MAX_VALUE because
523 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
524 is not == to the integer constant with the same value in the type. */
527 vrp_val_is_max (const_tree val
)
529 tree type_max
= vrp_val_max (TREE_TYPE (val
));
530 return (val
== type_max
531 || (type_max
!= NULL_TREE
532 && operand_equal_p (val
, type_max
, 0)));
535 /* Return whether VAL is equal to the minimum value of its type. */
538 vrp_val_is_min (const_tree val
)
540 tree type_min
= vrp_val_min (TREE_TYPE (val
));
541 return (val
== type_min
542 || (type_min
!= NULL_TREE
543 && operand_equal_p (val
, type_min
, 0)));
546 /* VR_TYPE describes a range with mininum value *MIN and maximum
547 value *MAX. Restrict the range to the set of values that have
548 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
549 return the new range type.
551 SGN gives the sign of the values described by the range. */
553 enum value_range_kind
554 intersect_range_with_nonzero_bits (enum value_range_kind vr_type
,
555 wide_int
*min
, wide_int
*max
,
556 const wide_int
&nonzero_bits
,
559 if (vr_type
== VR_ANTI_RANGE
)
561 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
562 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
563 to create an inclusive upper bound for A and an inclusive lower
565 wide_int a_max
= wi::round_down_for_mask (*min
- 1, nonzero_bits
);
566 wide_int b_min
= wi::round_up_for_mask (*max
+ 1, nonzero_bits
);
568 /* If the calculation of A_MAX wrapped, A is effectively empty
569 and A_MAX is the highest value that satisfies NONZERO_BITS.
570 Likewise if the calculation of B_MIN wrapped, B is effectively
571 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
572 bool a_empty
= wi::ge_p (a_max
, *min
, sgn
);
573 bool b_empty
= wi::le_p (b_min
, *max
, sgn
);
575 /* If both A and B are empty, there are no valid values. */
576 if (a_empty
&& b_empty
)
579 /* If exactly one of A or B is empty, return a VR_RANGE for the
581 if (a_empty
|| b_empty
)
585 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
589 /* Update the VR_ANTI_RANGE bounds. */
592 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
594 /* Now check whether the excluded range includes any values that
595 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
596 if (wi::round_up_for_mask (*min
, nonzero_bits
) == b_min
)
598 unsigned int precision
= min
->get_precision ();
599 *min
= wi::min_value (precision
, sgn
);
600 *max
= wi::max_value (precision
, sgn
);
604 if (vr_type
== VR_RANGE
)
606 *max
= wi::round_down_for_mask (*max
, nonzero_bits
);
608 /* Check that the range contains at least one valid value. */
609 if (wi::gt_p (*min
, *max
, sgn
))
612 *min
= wi::round_up_for_mask (*min
, nonzero_bits
);
613 gcc_checking_assert (wi::le_p (*min
, *max
, sgn
));
619 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
620 This means adjusting VRTYPE, MIN and MAX representing the case of a
621 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
622 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
623 In corner cases where MAX+1 or MIN-1 wraps this will fall back
625 This routine exists to ease canonicalization in the case where we
626 extract ranges from var + CST op limit. */
629 value_range_base::set_and_canonicalize (enum value_range_kind kind
,
632 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
633 if (kind
== VR_UNDEFINED
)
638 else if (kind
== VR_VARYING
)
644 /* Nothing to canonicalize for symbolic ranges. */
645 if (TREE_CODE (min
) != INTEGER_CST
646 || TREE_CODE (max
) != INTEGER_CST
)
648 set (kind
, min
, max
);
652 /* Wrong order for min and max, to swap them and the VR type we need
654 if (tree_int_cst_lt (max
, min
))
658 /* For one bit precision if max < min, then the swapped
659 range covers all values, so for VR_RANGE it is varying and
660 for VR_ANTI_RANGE empty range, so drop to varying as well. */
661 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
667 one
= build_int_cst (TREE_TYPE (min
), 1);
668 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
669 max
= int_const_binop (MINUS_EXPR
, min
, one
);
672 /* There's one corner case, if we had [C+1, C] before we now have
673 that again. But this represents an empty value range, so drop
674 to varying in this case. */
675 if (tree_int_cst_lt (max
, min
))
681 kind
= kind
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
684 /* Anti-ranges that can be represented as ranges should be so. */
685 if (kind
== VR_ANTI_RANGE
)
687 /* For -fstrict-enums we may receive out-of-range ranges so consider
688 values < -INF and values > INF as -INF/INF as well. */
689 tree type
= TREE_TYPE (min
);
690 bool is_min
= (INTEGRAL_TYPE_P (type
)
691 && tree_int_cst_compare (min
, TYPE_MIN_VALUE (type
)) <= 0);
692 bool is_max
= (INTEGRAL_TYPE_P (type
)
693 && tree_int_cst_compare (max
, TYPE_MAX_VALUE (type
)) >= 0);
695 if (is_min
&& is_max
)
697 /* We cannot deal with empty ranges, drop to varying.
698 ??? This could be VR_UNDEFINED instead. */
702 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
703 && (is_min
|| is_max
))
705 /* Non-empty boolean ranges can always be represented
706 as a singleton range. */
708 min
= max
= vrp_val_max (TREE_TYPE (min
));
710 min
= max
= vrp_val_min (TREE_TYPE (min
));
714 /* As a special exception preserve non-null ranges. */
715 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
716 && integer_zerop (max
)))
718 tree one
= build_int_cst (TREE_TYPE (max
), 1);
719 min
= int_const_binop (PLUS_EXPR
, max
, one
);
720 max
= vrp_val_max (TREE_TYPE (max
));
725 tree one
= build_int_cst (TREE_TYPE (min
), 1);
726 max
= int_const_binop (MINUS_EXPR
, min
, one
);
727 min
= vrp_val_min (TREE_TYPE (min
));
732 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
733 to make sure VRP iteration terminates, otherwise we can get into
736 set (kind
, min
, max
);
740 value_range::set_and_canonicalize (enum value_range_kind kind
,
741 tree min
, tree max
, bitmap equiv
)
743 value_range_base::set_and_canonicalize (kind
, min
, max
);
744 if (this->kind () == VR_RANGE
|| this->kind () == VR_ANTI_RANGE
)
751 value_range_base::set (tree val
)
753 gcc_assert (TREE_CODE (val
) == SSA_NAME
|| is_gimple_min_invariant (val
));
754 if (TREE_OVERFLOW_P (val
))
755 val
= drop_tree_overflow (val
);
756 set (VR_RANGE
, val
, val
);
760 value_range::set (tree val
)
762 gcc_assert (TREE_CODE (val
) == SSA_NAME
|| is_gimple_min_invariant (val
));
763 if (TREE_OVERFLOW_P (val
))
764 val
= drop_tree_overflow (val
);
765 set (VR_RANGE
, val
, val
, NULL
);
768 /* Set value range VR to a nonzero range of type TYPE. */
771 value_range_base::set_nonzero (tree type
)
773 tree zero
= build_int_cst (type
, 0);
774 set (VR_ANTI_RANGE
, zero
, zero
);
777 /* Set value range VR to a ZERO range of type TYPE. */
780 value_range_base::set_zero (tree type
)
782 set (build_int_cst (type
, 0));
785 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
788 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
792 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
797 /* Return true, if the bitmaps B1 and B2 are equal. */
800 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
803 || ((!b1
|| bitmap_empty_p (b1
))
804 && (!b2
|| bitmap_empty_p (b2
)))
806 && bitmap_equal_p (b1
, b2
)));
809 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
813 range_int_cst_p (const value_range_base
*vr
)
815 return (vr
->kind () == VR_RANGE
816 && TREE_CODE (vr
->min ()) == INTEGER_CST
817 && TREE_CODE (vr
->max ()) == INTEGER_CST
);
820 /* Return true if VR is a INTEGER_CST singleton. */
823 range_int_cst_singleton_p (const value_range_base
*vr
)
825 return (range_int_cst_p (vr
)
826 && tree_int_cst_equal (vr
->min (), vr
->max ()));
829 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
830 otherwise. We only handle additive operations and set NEG to true if the
831 symbol is negated and INV to the invariant part, if any. */
834 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
842 if (TREE_CODE (t
) == PLUS_EXPR
843 || TREE_CODE (t
) == POINTER_PLUS_EXPR
844 || TREE_CODE (t
) == MINUS_EXPR
)
846 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
848 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
849 inv_
= TREE_OPERAND (t
, 0);
850 t
= TREE_OPERAND (t
, 1);
852 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
855 inv_
= TREE_OPERAND (t
, 1);
856 t
= TREE_OPERAND (t
, 0);
867 if (TREE_CODE (t
) == NEGATE_EXPR
)
869 t
= TREE_OPERAND (t
, 0);
873 if (TREE_CODE (t
) != SSA_NAME
)
876 if (inv_
&& TREE_OVERFLOW_P (inv_
))
877 inv_
= drop_tree_overflow (inv_
);
884 /* The reverse operation: build a symbolic expression with TYPE
885 from symbol SYM, negated according to NEG, and invariant INV. */
888 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
890 const bool pointer_p
= POINTER_TYPE_P (type
);
894 t
= build1 (NEGATE_EXPR
, type
, t
);
896 if (integer_zerop (inv
))
899 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
905 -2 if those are incomparable. */
907 operand_less_p (tree val
, tree val2
)
909 /* LT is folded faster than GE and others. Inline the common case. */
910 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
911 return tree_int_cst_lt (val
, val2
);
916 fold_defer_overflow_warnings ();
918 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
920 fold_undefer_and_ignore_overflow_warnings ();
923 || TREE_CODE (tcmp
) != INTEGER_CST
)
926 if (!integer_zerop (tcmp
))
933 /* Compare two values VAL1 and VAL2. Return
935 -2 if VAL1 and VAL2 cannot be compared at compile-time,
938 +1 if VAL1 > VAL2, and
941 This is similar to tree_int_cst_compare but supports pointer values
942 and values that cannot be compared at compile time.
944 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
945 true if the return value is only valid if we assume that signed
946 overflow is undefined. */
949 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
954 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
956 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
957 == POINTER_TYPE_P (TREE_TYPE (val2
)));
959 /* Convert the two values into the same type. This is needed because
960 sizetype causes sign extension even for unsigned types. */
961 val2
= fold_convert (TREE_TYPE (val1
), val2
);
962 STRIP_USELESS_TYPE_CONVERSION (val2
);
964 const bool overflow_undefined
965 = INTEGRAL_TYPE_P (TREE_TYPE (val1
))
966 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
));
969 tree sym1
= get_single_symbol (val1
, &neg1
, &inv1
);
970 tree sym2
= get_single_symbol (val2
, &neg2
, &inv2
);
972 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
973 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
976 /* Both values must use the same name with the same sign. */
977 if (sym1
!= sym2
|| neg1
!= neg2
)
980 /* [-]NAME + CST == [-]NAME + CST. */
984 /* If overflow is defined we cannot simplify more. */
985 if (!overflow_undefined
)
988 if (strict_overflow_p
!= NULL
989 /* Symbolic range building sets TREE_NO_WARNING to declare
990 that overflow doesn't happen. */
991 && (!inv1
|| !TREE_NO_WARNING (val1
))
992 && (!inv2
|| !TREE_NO_WARNING (val2
)))
993 *strict_overflow_p
= true;
996 inv1
= build_int_cst (TREE_TYPE (val1
), 0);
998 inv2
= build_int_cst (TREE_TYPE (val2
), 0);
1000 return wi::cmp (wi::to_wide (inv1
), wi::to_wide (inv2
),
1001 TYPE_SIGN (TREE_TYPE (val1
)));
1004 const bool cst1
= is_gimple_min_invariant (val1
);
1005 const bool cst2
= is_gimple_min_invariant (val2
);
1007 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1008 it might be possible to say something depending on the constants. */
1009 if ((sym1
&& inv1
&& cst2
) || (sym2
&& inv2
&& cst1
))
1011 if (!overflow_undefined
)
1014 if (strict_overflow_p
!= NULL
1015 /* Symbolic range building sets TREE_NO_WARNING to declare
1016 that overflow doesn't happen. */
1017 && (!sym1
|| !TREE_NO_WARNING (val1
))
1018 && (!sym2
|| !TREE_NO_WARNING (val2
)))
1019 *strict_overflow_p
= true;
1021 const signop sgn
= TYPE_SIGN (TREE_TYPE (val1
));
1022 tree cst
= cst1
? val1
: val2
;
1023 tree inv
= cst1
? inv2
: inv1
;
1025 /* Compute the difference between the constants. If it overflows or
1026 underflows, this means that we can trivially compare the NAME with
1027 it and, consequently, the two values with each other. */
1028 wide_int diff
= wi::to_wide (cst
) - wi::to_wide (inv
);
1029 if (wi::cmp (0, wi::to_wide (inv
), sgn
)
1030 != wi::cmp (diff
, wi::to_wide (cst
), sgn
))
1032 const int res
= wi::cmp (wi::to_wide (cst
), wi::to_wide (inv
), sgn
);
1033 return cst1
? res
: -res
;
1039 /* We cannot say anything more for non-constants. */
1043 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1045 /* We cannot compare overflowed values. */
1046 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1049 if (TREE_CODE (val1
) == INTEGER_CST
1050 && TREE_CODE (val2
) == INTEGER_CST
)
1051 return tree_int_cst_compare (val1
, val2
);
1053 if (poly_int_tree_p (val1
) && poly_int_tree_p (val2
))
1055 if (known_eq (wi::to_poly_widest (val1
),
1056 wi::to_poly_widest (val2
)))
1058 if (known_lt (wi::to_poly_widest (val1
),
1059 wi::to_poly_widest (val2
)))
1061 if (known_gt (wi::to_poly_widest (val1
),
1062 wi::to_poly_widest (val2
)))
1072 /* First see if VAL1 and VAL2 are not the same. */
1073 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1076 /* If VAL1 is a lower address than VAL2, return -1. */
1077 if (operand_less_p (val1
, val2
) == 1)
1080 /* If VAL1 is a higher address than VAL2, return +1. */
1081 if (operand_less_p (val2
, val1
) == 1)
1084 /* If VAL1 is different than VAL2, return +2.
1085 For integer constants we either have already returned -1 or 1
1086 or they are equivalent. We still might succeed in proving
1087 something about non-trivial operands. */
1088 if (TREE_CODE (val1
) != INTEGER_CST
1089 || TREE_CODE (val2
) != INTEGER_CST
)
1091 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1092 if (t
&& integer_onep (t
))
1100 /* Compare values like compare_values_warnv. */
1103 compare_values (tree val1
, tree val2
)
1106 return compare_values_warnv (val1
, val2
, &sop
);
1110 /* Return 1 if VAL is inside value range.
1111 0 if VAL is not inside value range.
1112 -2 if we cannot tell either way.
1114 Benchmark compile/20001226-1.c compilation time after changing this
1118 value_range_base::value_inside_range (tree val
) const
1128 cmp1
= operand_less_p (val
, m_min
);
1132 return m_kind
!= VR_RANGE
;
1134 cmp2
= operand_less_p (m_max
, val
);
1138 if (m_kind
== VR_RANGE
)
1144 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1146 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1148 Return TRUE if VR was a constant range and we were able to compute
1152 vrp_set_zero_nonzero_bits (const tree expr_type
,
1153 const value_range_base
*vr
,
1154 wide_int
*may_be_nonzero
,
1155 wide_int
*must_be_nonzero
)
1157 if (!range_int_cst_p (vr
))
1159 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
1160 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
1163 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type
),
1164 wi::to_wide (vr
->min ()),
1165 wi::to_wide (vr
->max ()),
1166 *may_be_nonzero
, *must_be_nonzero
);
1170 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1171 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1172 false otherwise. If *AR can be represented with a single range
1173 *VR1 will be VR_UNDEFINED. */
1176 ranges_from_anti_range (const value_range_base
*ar
,
1177 value_range_base
*vr0
, value_range_base
*vr1
)
1179 tree type
= ar
->type ();
1181 vr0
->set_undefined ();
1182 vr1
->set_undefined ();
1184 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1185 [A+1, +INF]. Not sure if this helps in practice, though. */
1187 if (ar
->kind () != VR_ANTI_RANGE
1188 || TREE_CODE (ar
->min ()) != INTEGER_CST
1189 || TREE_CODE (ar
->max ()) != INTEGER_CST
1190 || !vrp_val_min (type
)
1191 || !vrp_val_max (type
))
1194 if (tree_int_cst_lt (vrp_val_min (type
), ar
->min ()))
1197 wide_int_to_tree (type
, wi::to_wide (ar
->min ()) - 1));
1198 if (tree_int_cst_lt (ar
->max (), vrp_val_max (type
)))
1200 wide_int_to_tree (type
, wi::to_wide (ar
->max ()) + 1),
1201 vrp_val_max (type
));
1202 if (vr0
->undefined_p ())
1205 vr1
->set_undefined ();
1208 return !vr0
->undefined_p ();
1211 /* Extract the components of a value range into a pair of wide ints in
1214 If the value range is anything but a VR_*RANGE of constants, the
1215 resulting wide ints are set to [-MIN, +MAX] for the type. */
1218 extract_range_into_wide_ints (const value_range_base
*vr
,
1219 signop sign
, unsigned prec
,
1220 wide_int
&wmin
, wide_int
&wmax
)
1222 gcc_assert (vr
->kind () != VR_ANTI_RANGE
|| vr
->symbolic_p ());
1223 if (range_int_cst_p (vr
))
1225 wmin
= wi::to_wide (vr
->min ());
1226 wmax
= wi::to_wide (vr
->max ());
1230 wmin
= wi::min_value (prec
, sign
);
1231 wmax
= wi::max_value (prec
, sign
);
1235 /* Value range wrapper for wide_int_range_multiplicative_op:
1237 *VR = *VR0 .CODE. *VR1. */
1240 extract_range_from_multiplicative_op (value_range_base
*vr
,
1241 enum tree_code code
,
1242 const value_range_base
*vr0
,
1243 const value_range_base
*vr1
)
1245 gcc_assert (code
== MULT_EXPR
1246 || code
== TRUNC_DIV_EXPR
1247 || code
== FLOOR_DIV_EXPR
1248 || code
== CEIL_DIV_EXPR
1249 || code
== EXACT_DIV_EXPR
1250 || code
== ROUND_DIV_EXPR
1251 || code
== RSHIFT_EXPR
1252 || code
== LSHIFT_EXPR
);
1253 gcc_assert (vr0
->kind () == VR_RANGE
1254 && vr0
->kind () == vr1
->kind ());
1256 tree type
= vr0
->type ();
1257 wide_int res_lb
, res_ub
;
1258 wide_int vr0_lb
= wi::to_wide (vr0
->min ());
1259 wide_int vr0_ub
= wi::to_wide (vr0
->max ());
1260 wide_int vr1_lb
= wi::to_wide (vr1
->min ());
1261 wide_int vr1_ub
= wi::to_wide (vr1
->max ());
1262 bool overflow_undefined
= TYPE_OVERFLOW_UNDEFINED (type
);
1263 unsigned prec
= TYPE_PRECISION (type
);
1265 if (wide_int_range_multiplicative_op (res_lb
, res_ub
,
1266 code
, TYPE_SIGN (type
), prec
,
1267 vr0_lb
, vr0_ub
, vr1_lb
, vr1_ub
,
1268 overflow_undefined
))
1269 vr
->set_and_canonicalize (VR_RANGE
,
1270 wide_int_to_tree (type
, res_lb
),
1271 wide_int_to_tree (type
, res_ub
));
1276 /* If BOUND will include a symbolic bound, adjust it accordingly,
1277 otherwise leave it as is.
1279 CODE is the original operation that combined the bounds (PLUS_EXPR
1282 TYPE is the type of the original operation.
1284 SYM_OPn is the symbolic for OPn if it has a symbolic.
1286 NEG_OPn is TRUE if the OPn was negated. */
1289 adjust_symbolic_bound (tree
&bound
, enum tree_code code
, tree type
,
1290 tree sym_op0
, tree sym_op1
,
1291 bool neg_op0
, bool neg_op1
)
1293 bool minus_p
= (code
== MINUS_EXPR
);
1294 /* If the result bound is constant, we're done; otherwise, build the
1295 symbolic lower bound. */
1296 if (sym_op0
== sym_op1
)
1299 bound
= build_symbolic_expr (type
, sym_op0
,
1303 /* We may not negate if that might introduce
1304 undefined overflow. */
1307 || TYPE_OVERFLOW_WRAPS (type
))
1308 bound
= build_symbolic_expr (type
, sym_op1
,
1309 neg_op1
^ minus_p
, bound
);
1315 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1316 int bound according to CODE. CODE is the operation combining the
1317 bound (either a PLUS_EXPR or a MINUS_EXPR).
1319 TYPE is the type of the combine operation.
1321 WI is the wide int to store the result.
1323 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1324 if over/underflow occurred. */
1327 combine_bound (enum tree_code code
, wide_int
&wi
, wi::overflow_type
&ovf
,
1328 tree type
, tree op0
, tree op1
)
1330 bool minus_p
= (code
== MINUS_EXPR
);
1331 const signop sgn
= TYPE_SIGN (type
);
1332 const unsigned int prec
= TYPE_PRECISION (type
);
1334 /* Combine the bounds, if any. */
1338 wi
= wi::sub (wi::to_wide (op0
), wi::to_wide (op1
), sgn
, &ovf
);
1340 wi
= wi::add (wi::to_wide (op0
), wi::to_wide (op1
), sgn
, &ovf
);
1343 wi
= wi::to_wide (op0
);
1347 wi
= wi::neg (wi::to_wide (op1
), &ovf
);
1349 wi
= wi::to_wide (op1
);
1352 wi
= wi::shwi (0, prec
);
1355 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1356 put the result in VR.
1358 TYPE is the type of the range.
1360 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1361 occurred while originally calculating WMIN or WMAX. -1 indicates
1362 underflow. +1 indicates overflow. 0 indicates neither. */
1365 set_value_range_with_overflow (value_range_kind
&kind
, tree
&min
, tree
&max
,
1367 const wide_int
&wmin
, const wide_int
&wmax
,
1368 wi::overflow_type min_ovf
,
1369 wi::overflow_type max_ovf
)
1371 const signop sgn
= TYPE_SIGN (type
);
1372 const unsigned int prec
= TYPE_PRECISION (type
);
1374 /* For one bit precision if max < min, then the swapped
1375 range covers all values. */
1376 if (prec
== 1 && wi::lt_p (wmax
, wmin
, sgn
))
1382 if (TYPE_OVERFLOW_WRAPS (type
))
1384 /* If overflow wraps, truncate the values and adjust the
1385 range kind and bounds appropriately. */
1386 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
1387 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
1388 if ((min_ovf
!= wi::OVF_NONE
) == (max_ovf
!= wi::OVF_NONE
))
1390 /* If the limits are swapped, we wrapped around and cover
1391 the entire range. We have a similar check at the end of
1392 extract_range_from_binary_expr. */
1393 if (wi::gt_p (tmin
, tmax
, sgn
))
1398 /* No overflow or both overflow or underflow. The
1399 range kind stays VR_RANGE. */
1400 min
= wide_int_to_tree (type
, tmin
);
1401 max
= wide_int_to_tree (type
, tmax
);
1405 else if ((min_ovf
== wi::OVF_UNDERFLOW
&& max_ovf
== wi::OVF_NONE
)
1406 || (max_ovf
== wi::OVF_OVERFLOW
&& min_ovf
== wi::OVF_NONE
))
1408 /* Min underflow or max overflow. The range kind
1409 changes to VR_ANTI_RANGE. */
1410 bool covers
= false;
1411 wide_int tem
= tmin
;
1413 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
1416 if (wi::cmp (tmax
, tem
, sgn
) > 0)
1418 /* If the anti-range would cover nothing, drop to varying.
1419 Likewise if the anti-range bounds are outside of the
1421 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
1426 kind
= VR_ANTI_RANGE
;
1427 min
= wide_int_to_tree (type
, tmin
);
1428 max
= wide_int_to_tree (type
, tmax
);
1433 /* Other underflow and/or overflow, drop to VR_VARYING. */
1440 /* If overflow does not wrap, saturate to the types min/max
1442 wide_int type_min
= wi::min_value (prec
, sgn
);
1443 wide_int type_max
= wi::max_value (prec
, sgn
);
1445 if (min_ovf
== wi::OVF_UNDERFLOW
)
1446 min
= wide_int_to_tree (type
, type_min
);
1447 else if (min_ovf
== wi::OVF_OVERFLOW
)
1448 min
= wide_int_to_tree (type
, type_max
);
1450 min
= wide_int_to_tree (type
, wmin
);
1452 if (max_ovf
== wi::OVF_UNDERFLOW
)
1453 max
= wide_int_to_tree (type
, type_min
);
1454 else if (max_ovf
== wi::OVF_OVERFLOW
)
1455 max
= wide_int_to_tree (type
, type_max
);
1457 max
= wide_int_to_tree (type
, wmax
);
1461 /* Extract range information from a binary operation CODE based on
1462 the ranges of each of its operands *VR0 and *VR1 with resulting
1463 type EXPR_TYPE. The resulting range is stored in *VR. */
1466 extract_range_from_binary_expr (value_range_base
*vr
,
1467 enum tree_code code
, tree expr_type
,
1468 const value_range_base
*vr0_
,
1469 const value_range_base
*vr1_
)
1471 signop sign
= TYPE_SIGN (expr_type
);
1472 unsigned int prec
= TYPE_PRECISION (expr_type
);
1473 value_range_base vr0
= *vr0_
, vr1
= *vr1_
;
1474 value_range_base vrtem0
, vrtem1
;
1475 enum value_range_kind type
;
1476 tree min
= NULL_TREE
, max
= NULL_TREE
;
1479 if (!INTEGRAL_TYPE_P (expr_type
)
1480 && !POINTER_TYPE_P (expr_type
))
1486 /* Not all binary expressions can be applied to ranges in a
1487 meaningful way. Handle only arithmetic operations. */
1488 if (code
!= PLUS_EXPR
1489 && code
!= MINUS_EXPR
1490 && code
!= POINTER_PLUS_EXPR
1491 && code
!= MULT_EXPR
1492 && code
!= TRUNC_DIV_EXPR
1493 && code
!= FLOOR_DIV_EXPR
1494 && code
!= CEIL_DIV_EXPR
1495 && code
!= EXACT_DIV_EXPR
1496 && code
!= ROUND_DIV_EXPR
1497 && code
!= TRUNC_MOD_EXPR
1498 && code
!= RSHIFT_EXPR
1499 && code
!= LSHIFT_EXPR
1502 && code
!= BIT_AND_EXPR
1503 && code
!= BIT_IOR_EXPR
1504 && code
!= BIT_XOR_EXPR
)
1510 /* If both ranges are UNDEFINED, so is the result. */
1511 if (vr0
.undefined_p () && vr1
.undefined_p ())
1513 vr
->set_undefined ();
1516 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1517 code. At some point we may want to special-case operations that
1518 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1520 else if (vr0
.undefined_p ())
1522 else if (vr1
.undefined_p ())
1525 /* We get imprecise results from ranges_from_anti_range when
1526 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1527 range, but then we also need to hack up vrp_union. It's just
1528 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1529 if (code
== EXACT_DIV_EXPR
&& vr0
.nonzero_p ())
1531 vr
->set_nonzero (expr_type
);
1535 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1536 and express ~[] op X as ([]' op X) U ([]'' op X). */
1537 if (vr0
.kind () == VR_ANTI_RANGE
1538 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
1540 extract_range_from_binary_expr (vr
, code
, expr_type
, &vrtem0
, vr1_
);
1541 if (!vrtem1
.undefined_p ())
1543 value_range_base vrres
;
1544 extract_range_from_binary_expr (&vrres
, code
, expr_type
,
1546 vr
->union_ (&vrres
);
1550 /* Likewise for X op ~[]. */
1551 if (vr1
.kind () == VR_ANTI_RANGE
1552 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
1554 extract_range_from_binary_expr (vr
, code
, expr_type
, vr0_
, &vrtem0
);
1555 if (!vrtem1
.undefined_p ())
1557 value_range_base vrres
;
1558 extract_range_from_binary_expr (&vrres
, code
, expr_type
,
1560 vr
->union_ (&vrres
);
1565 /* The type of the resulting value range defaults to VR0.TYPE. */
1568 /* Refuse to operate on VARYING ranges, ranges of different kinds
1569 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1570 because we may be able to derive a useful range even if one of
1571 the operands is VR_VARYING or symbolic range. Similarly for
1572 divisions, MIN/MAX and PLUS/MINUS.
1574 TODO, we may be able to derive anti-ranges in some cases. */
1575 if (code
!= BIT_AND_EXPR
1576 && code
!= BIT_IOR_EXPR
1577 && code
!= TRUNC_DIV_EXPR
1578 && code
!= FLOOR_DIV_EXPR
1579 && code
!= CEIL_DIV_EXPR
1580 && code
!= EXACT_DIV_EXPR
1581 && code
!= ROUND_DIV_EXPR
1582 && code
!= TRUNC_MOD_EXPR
1585 && code
!= PLUS_EXPR
1586 && code
!= MINUS_EXPR
1587 && code
!= RSHIFT_EXPR
1588 && code
!= POINTER_PLUS_EXPR
1589 && (vr0
.varying_p ()
1591 || vr0
.kind () != vr1
.kind ()
1592 || vr0
.symbolic_p ()
1593 || vr1
.symbolic_p ()))
1599 /* Now evaluate the expression to determine the new range. */
1600 if (POINTER_TYPE_P (expr_type
))
1602 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
1604 /* For MIN/MAX expressions with pointers, we only care about
1605 nullness, if both are non null, then the result is nonnull.
1606 If both are null, then the result is null. Otherwise they
1608 if (!range_includes_zero_p (&vr0
) && !range_includes_zero_p (&vr1
))
1609 vr
->set_nonzero (expr_type
);
1610 else if (vr0
.zero_p () && vr1
.zero_p ())
1611 vr
->set_zero (expr_type
);
1615 else if (code
== POINTER_PLUS_EXPR
)
1617 /* For pointer types, we are really only interested in asserting
1618 whether the expression evaluates to non-NULL.
1619 With -fno-delete-null-pointer-checks we need to be more
1620 conservative. As some object might reside at address 0,
1621 then some offset could be added to it and the same offset
1622 subtracted again and the result would be NULL.
1624 static int a[12]; where &a[0] is NULL and
1627 ptr will be NULL here, even when there is POINTER_PLUS_EXPR
1628 where the first range doesn't include zero and the second one
1629 doesn't either. As the second operand is sizetype (unsigned),
1630 consider all ranges where the MSB could be set as possible
1631 subtractions where the result might be NULL. */
1632 if ((!range_includes_zero_p (&vr0
)
1633 || !range_includes_zero_p (&vr1
))
1634 && !TYPE_OVERFLOW_WRAPS (expr_type
)
1635 && (flag_delete_null_pointer_checks
1636 || (range_int_cst_p (&vr1
)
1637 && !tree_int_cst_sign_bit (vr1
.max ()))))
1638 vr
->set_nonzero (expr_type
);
1639 else if (vr0
.zero_p () && vr1
.zero_p ())
1640 vr
->set_zero (expr_type
);
1644 else if (code
== BIT_AND_EXPR
)
1646 /* For pointer types, we are really only interested in asserting
1647 whether the expression evaluates to non-NULL. */
1648 if (!range_includes_zero_p (&vr0
) && !range_includes_zero_p (&vr1
))
1649 vr
->set_nonzero (expr_type
);
1650 else if (vr0
.zero_p () || vr1
.zero_p ())
1651 vr
->set_zero (expr_type
);
1661 /* For integer ranges, apply the operation to each end of the
1662 range and see what we end up with. */
1663 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
1665 /* This will normalize things such that calculating
1666 [0,0] - VR_VARYING is not dropped to varying, but is
1667 calculated as [MIN+1, MAX]. */
1668 if (vr0
.varying_p ())
1669 vr0
.set (VR_RANGE
, vrp_val_min (expr_type
), vrp_val_max (expr_type
));
1670 if (vr1
.varying_p ())
1671 vr1
.set (VR_RANGE
, vrp_val_min (expr_type
), vrp_val_max (expr_type
));
1673 const bool minus_p
= (code
== MINUS_EXPR
);
1674 tree min_op0
= vr0
.min ();
1675 tree min_op1
= minus_p
? vr1
.max () : vr1
.min ();
1676 tree max_op0
= vr0
.max ();
1677 tree max_op1
= minus_p
? vr1
.min () : vr1
.max ();
1678 tree sym_min_op0
= NULL_TREE
;
1679 tree sym_min_op1
= NULL_TREE
;
1680 tree sym_max_op0
= NULL_TREE
;
1681 tree sym_max_op1
= NULL_TREE
;
1682 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
1684 neg_min_op0
= neg_min_op1
= neg_max_op0
= neg_max_op1
= false;
1686 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1687 single-symbolic ranges, try to compute the precise resulting range,
1688 but only if we know that this resulting range will also be constant
1689 or single-symbolic. */
1690 if (vr0
.kind () == VR_RANGE
&& vr1
.kind () == VR_RANGE
1691 && (TREE_CODE (min_op0
) == INTEGER_CST
1693 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
1694 && (TREE_CODE (min_op1
) == INTEGER_CST
1696 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
1697 && (!(sym_min_op0
&& sym_min_op1
)
1698 || (sym_min_op0
== sym_min_op1
1699 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
1700 && (TREE_CODE (max_op0
) == INTEGER_CST
1702 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
1703 && (TREE_CODE (max_op1
) == INTEGER_CST
1705 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
1706 && (!(sym_max_op0
&& sym_max_op1
)
1707 || (sym_max_op0
== sym_max_op1
1708 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
1710 wide_int wmin
, wmax
;
1711 wi::overflow_type min_ovf
= wi::OVF_NONE
;
1712 wi::overflow_type max_ovf
= wi::OVF_NONE
;
1714 /* Build the bounds. */
1715 combine_bound (code
, wmin
, min_ovf
, expr_type
, min_op0
, min_op1
);
1716 combine_bound (code
, wmax
, max_ovf
, expr_type
, max_op0
, max_op1
);
1718 /* If we have overflow for the constant part and the resulting
1719 range will be symbolic, drop to VR_VARYING. */
1720 if (((bool)min_ovf
&& sym_min_op0
!= sym_min_op1
)
1721 || ((bool)max_ovf
&& sym_max_op0
!= sym_max_op1
))
1727 /* Adjust the range for possible overflow. */
1730 set_value_range_with_overflow (type
, min
, max
, expr_type
,
1731 wmin
, wmax
, min_ovf
, max_ovf
);
1732 if (type
== VR_VARYING
)
1738 /* Build the symbolic bounds if needed. */
1739 adjust_symbolic_bound (min
, code
, expr_type
,
1740 sym_min_op0
, sym_min_op1
,
1741 neg_min_op0
, neg_min_op1
);
1742 adjust_symbolic_bound (max
, code
, expr_type
,
1743 sym_max_op0
, sym_max_op1
,
1744 neg_max_op0
, neg_max_op1
);
1748 /* For other cases, for example if we have a PLUS_EXPR with two
1749 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1750 to compute a precise range for such a case.
1751 ??? General even mixed range kind operations can be expressed
1752 by for example transforming ~[3, 5] + [1, 2] to range-only
1753 operations and a union primitive:
1754 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1755 [-INF+1, 4] U [6, +INF(OVF)]
1756 though usually the union is not exactly representable with
1757 a single range or anti-range as the above is
1758 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1759 but one could use a scheme similar to equivalences for this. */
1764 else if (code
== MIN_EXPR
1765 || code
== MAX_EXPR
)
1767 wide_int wmin
, wmax
;
1768 wide_int vr0_min
, vr0_max
;
1769 wide_int vr1_min
, vr1_max
;
1770 extract_range_into_wide_ints (&vr0
, sign
, prec
, vr0_min
, vr0_max
);
1771 extract_range_into_wide_ints (&vr1
, sign
, prec
, vr1_min
, vr1_max
);
1772 if (wide_int_range_min_max (wmin
, wmax
, code
, sign
, prec
,
1773 vr0_min
, vr0_max
, vr1_min
, vr1_max
))
1774 vr
->set (VR_RANGE
, wide_int_to_tree (expr_type
, wmin
),
1775 wide_int_to_tree (expr_type
, wmax
));
1780 else if (code
== MULT_EXPR
)
1782 if (!range_int_cst_p (&vr0
)
1783 || !range_int_cst_p (&vr1
))
1788 extract_range_from_multiplicative_op (vr
, code
, &vr0
, &vr1
);
1791 else if (code
== RSHIFT_EXPR
1792 || code
== LSHIFT_EXPR
)
1794 if (range_int_cst_p (&vr1
)
1795 && !wide_int_range_shift_undefined_p
1796 (TYPE_SIGN (TREE_TYPE (vr1
.min ())),
1798 wi::to_wide (vr1
.min ()),
1799 wi::to_wide (vr1
.max ())))
1801 if (code
== RSHIFT_EXPR
)
1803 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1804 useful ranges just from the shift count. E.g.
1805 x >> 63 for signed 64-bit x is always [-1, 0]. */
1806 if (vr0
.kind () != VR_RANGE
|| vr0
.symbolic_p ())
1807 vr0
.set (VR_RANGE
, vrp_val_min (expr_type
),
1808 vrp_val_max (expr_type
));
1809 extract_range_from_multiplicative_op (vr
, code
, &vr0
, &vr1
);
1812 else if (code
== LSHIFT_EXPR
1813 && range_int_cst_p (&vr0
))
1815 wide_int res_lb
, res_ub
;
1816 if (wide_int_range_lshift (res_lb
, res_ub
, sign
, prec
,
1817 wi::to_wide (vr0
.min ()),
1818 wi::to_wide (vr0
.max ()),
1819 wi::to_wide (vr1
.min ()),
1820 wi::to_wide (vr1
.max ()),
1821 TYPE_OVERFLOW_UNDEFINED (expr_type
)))
1823 min
= wide_int_to_tree (expr_type
, res_lb
);
1824 max
= wide_int_to_tree (expr_type
, res_ub
);
1825 vr
->set_and_canonicalize (VR_RANGE
, min
, max
);
1833 else if (code
== TRUNC_DIV_EXPR
1834 || code
== FLOOR_DIV_EXPR
1835 || code
== CEIL_DIV_EXPR
1836 || code
== EXACT_DIV_EXPR
1837 || code
== ROUND_DIV_EXPR
)
1839 wide_int dividend_min
, dividend_max
, divisor_min
, divisor_max
;
1840 wide_int wmin
, wmax
, extra_min
, extra_max
;
1843 /* Special case explicit division by zero as undefined. */
1846 vr
->set_undefined ();
1850 /* First, normalize ranges into constants we can handle. Note
1851 that VR_ANTI_RANGE's of constants were already normalized
1852 before arriving here.
1854 NOTE: As a future improvement, we may be able to do better
1855 with mixed symbolic (anti-)ranges like [0, A]. See note in
1856 ranges_from_anti_range. */
1857 extract_range_into_wide_ints (&vr0
, sign
, prec
,
1858 dividend_min
, dividend_max
);
1859 extract_range_into_wide_ints (&vr1
, sign
, prec
,
1860 divisor_min
, divisor_max
);
1861 if (!wide_int_range_div (wmin
, wmax
, code
, sign
, prec
,
1862 dividend_min
, dividend_max
,
1863 divisor_min
, divisor_max
,
1864 TYPE_OVERFLOW_UNDEFINED (expr_type
),
1865 extra_range_p
, extra_min
, extra_max
))
1870 vr
->set (VR_RANGE
, wide_int_to_tree (expr_type
, wmin
),
1871 wide_int_to_tree (expr_type
, wmax
));
1875 extra_range (VR_RANGE
, wide_int_to_tree (expr_type
, extra_min
),
1876 wide_int_to_tree (expr_type
, extra_max
));
1877 vr
->union_ (&extra_range
);
1881 else if (code
== TRUNC_MOD_EXPR
)
1885 vr
->set_undefined ();
1888 wide_int wmin
, wmax
, tmp
;
1889 wide_int vr0_min
, vr0_max
, vr1_min
, vr1_max
;
1890 extract_range_into_wide_ints (&vr0
, sign
, prec
, vr0_min
, vr0_max
);
1891 extract_range_into_wide_ints (&vr1
, sign
, prec
, vr1_min
, vr1_max
);
1892 wide_int_range_trunc_mod (wmin
, wmax
, sign
, prec
,
1893 vr0_min
, vr0_max
, vr1_min
, vr1_max
);
1894 min
= wide_int_to_tree (expr_type
, wmin
);
1895 max
= wide_int_to_tree (expr_type
, wmax
);
1896 vr
->set (VR_RANGE
, min
, max
);
1899 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
1901 wide_int may_be_nonzero0
, may_be_nonzero1
;
1902 wide_int must_be_nonzero0
, must_be_nonzero1
;
1903 wide_int wmin
, wmax
;
1904 wide_int vr0_min
, vr0_max
, vr1_min
, vr1_max
;
1905 vrp_set_zero_nonzero_bits (expr_type
, &vr0
,
1906 &may_be_nonzero0
, &must_be_nonzero0
);
1907 vrp_set_zero_nonzero_bits (expr_type
, &vr1
,
1908 &may_be_nonzero1
, &must_be_nonzero1
);
1909 extract_range_into_wide_ints (&vr0
, sign
, prec
, vr0_min
, vr0_max
);
1910 extract_range_into_wide_ints (&vr1
, sign
, prec
, vr1_min
, vr1_max
);
1911 if (code
== BIT_AND_EXPR
)
1913 if (wide_int_range_bit_and (wmin
, wmax
, sign
, prec
,
1921 min
= wide_int_to_tree (expr_type
, wmin
);
1922 max
= wide_int_to_tree (expr_type
, wmax
);
1923 vr
->set (VR_RANGE
, min
, max
);
1929 else if (code
== BIT_IOR_EXPR
)
1931 if (wide_int_range_bit_ior (wmin
, wmax
, sign
,
1939 min
= wide_int_to_tree (expr_type
, wmin
);
1940 max
= wide_int_to_tree (expr_type
, wmax
);
1941 vr
->set (VR_RANGE
, min
, max
);
1947 else if (code
== BIT_XOR_EXPR
)
1949 if (wide_int_range_bit_xor (wmin
, wmax
, sign
, prec
,
1955 min
= wide_int_to_tree (expr_type
, wmin
);
1956 max
= wide_int_to_tree (expr_type
, wmax
);
1957 vr
->set (VR_RANGE
, min
, max
);
1967 /* If either MIN or MAX overflowed, then set the resulting range to
1969 if (min
== NULL_TREE
1970 || TREE_OVERFLOW_P (min
)
1972 || TREE_OVERFLOW_P (max
))
1978 /* We punt for [-INF, +INF].
1979 We learn nothing when we have INF on both sides.
1980 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1981 if (vrp_val_is_min (min
) && vrp_val_is_max (max
))
1987 cmp
= compare_values (min
, max
);
1988 if (cmp
== -2 || cmp
== 1)
1990 /* If the new range has its limits swapped around (MIN > MAX),
1991 then the operation caused one of them to wrap around, mark
1992 the new range VARYING. */
1996 vr
->set (type
, min
, max
);
1999 /* Extract range information from a unary operation CODE based on
2000 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2001 The resulting range is stored in *VR. */
2004 extract_range_from_unary_expr (value_range_base
*vr
,
2005 enum tree_code code
, tree type
,
2006 const value_range_base
*vr0_
, tree op0_type
)
2008 signop sign
= TYPE_SIGN (type
);
2009 unsigned int prec
= TYPE_PRECISION (type
);
2010 value_range_base vr0
= *vr0_
;
2011 value_range_base vrtem0
, vrtem1
;
2013 /* VRP only operates on integral and pointer types. */
2014 if (!(INTEGRAL_TYPE_P (op0_type
)
2015 || POINTER_TYPE_P (op0_type
))
2016 || !(INTEGRAL_TYPE_P (type
)
2017 || POINTER_TYPE_P (type
)))
2023 /* If VR0 is UNDEFINED, so is the result. */
2024 if (vr0
.undefined_p ())
2026 vr
->set_undefined ();
2030 /* Handle operations that we express in terms of others. */
2031 if (code
== PAREN_EXPR
)
2033 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
2037 else if (code
== NEGATE_EXPR
)
2039 /* -X is simply 0 - X, so re-use existing code that also handles
2040 anti-ranges fine. */
2041 value_range_base zero
;
2042 zero
.set (build_int_cst (type
, 0));
2043 extract_range_from_binary_expr (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
2046 else if (code
== BIT_NOT_EXPR
)
2048 /* ~X is simply -1 - X, so re-use existing code that also handles
2049 anti-ranges fine. */
2050 value_range_base minusone
;
2051 minusone
.set (build_int_cst (type
, -1));
2052 extract_range_from_binary_expr (vr
, MINUS_EXPR
, type
, &minusone
, &vr0
);
2056 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2057 and express op ~[] as (op []') U (op []''). */
2058 if (vr0
.kind () == VR_ANTI_RANGE
2059 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2061 extract_range_from_unary_expr (vr
, code
, type
, &vrtem0
, op0_type
);
2062 if (!vrtem1
.undefined_p ())
2064 value_range_base vrres
;
2065 extract_range_from_unary_expr (&vrres
, code
, type
,
2067 vr
->union_ (&vrres
);
2072 if (CONVERT_EXPR_CODE_P (code
))
2074 tree inner_type
= op0_type
;
2075 tree outer_type
= type
;
2077 /* If the expression involves a pointer, we are only interested in
2078 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2080 This may lose precision when converting (char *)~[0,2] to
2081 int, because we'll forget that the pointer can also not be 1
2082 or 2. In practice we don't care, as this is some idiot
2083 storing a magic constant to a pointer. */
2084 if (POINTER_TYPE_P (type
) || POINTER_TYPE_P (op0_type
))
2086 if (!range_includes_zero_p (&vr0
))
2087 vr
->set_nonzero (type
);
2088 else if (vr0
.zero_p ())
2089 vr
->set_zero (type
);
2095 /* The POINTER_TYPE_P code above will have dealt with all
2096 pointer anti-ranges. Any remaining anti-ranges at this point
2097 will be integer conversions from SSA names that will be
2098 normalized into VARYING. For instance: ~[x_55, x_55]. */
2099 gcc_assert (vr0
.kind () != VR_ANTI_RANGE
2100 || TREE_CODE (vr0
.min ()) != INTEGER_CST
);
2102 /* NOTES: Previously we were returning VARYING for all symbolics, but
2103 we can do better by treating them as [-MIN, +MAX]. For
2104 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2105 we can return: ~[0x8000000, 0xffffffff7fffffff].
2107 We were also failing to convert ~[0,0] from char* to unsigned,
2108 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2109 wide_int vr0_min
, vr0_max
, wmin
, wmax
;
2110 signop inner_sign
= TYPE_SIGN (inner_type
);
2111 signop outer_sign
= TYPE_SIGN (outer_type
);
2112 unsigned inner_prec
= TYPE_PRECISION (inner_type
);
2113 unsigned outer_prec
= TYPE_PRECISION (outer_type
);
2114 extract_range_into_wide_ints (&vr0
, inner_sign
, inner_prec
,
2116 if (wide_int_range_convert (wmin
, wmax
,
2117 inner_sign
, inner_prec
,
2118 outer_sign
, outer_prec
,
2121 tree min
= wide_int_to_tree (outer_type
, wmin
);
2122 tree max
= wide_int_to_tree (outer_type
, wmax
);
2123 vr
->set_and_canonicalize (VR_RANGE
, min
, max
);
2129 else if (code
== ABS_EXPR
)
2131 wide_int wmin
, wmax
;
2132 wide_int vr0_min
, vr0_max
;
2133 extract_range_into_wide_ints (&vr0
, sign
, prec
, vr0_min
, vr0_max
);
2134 if (wide_int_range_abs (wmin
, wmax
, sign
, prec
, vr0_min
, vr0_max
,
2135 TYPE_OVERFLOW_UNDEFINED (type
)))
2136 vr
->set (VR_RANGE
, wide_int_to_tree (type
, wmin
),
2137 wide_int_to_tree (type
, wmax
));
2142 else if (code
== ABSU_EXPR
)
2144 wide_int wmin
, wmax
;
2145 wide_int vr0_min
, vr0_max
;
2146 extract_range_into_wide_ints (&vr0
, SIGNED
, prec
, vr0_min
, vr0_max
);
2147 wide_int_range_absu (wmin
, wmax
, prec
, vr0_min
, vr0_max
);
2148 vr
->set (VR_RANGE
, wide_int_to_tree (type
, wmin
),
2149 wide_int_to_tree (type
, wmax
));
2153 /* For unhandled operations fall back to varying. */
2158 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2159 create a new SSA name N and return the assertion assignment
2160 'N = ASSERT_EXPR <V, V OP W>'. */
2163 build_assert_expr_for (tree cond
, tree v
)
2168 gcc_assert (TREE_CODE (v
) == SSA_NAME
2169 && COMPARISON_CLASS_P (cond
));
2171 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2172 assertion
= gimple_build_assign (NULL_TREE
, a
);
2174 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2175 operand of the ASSERT_EXPR. Create it so the new name and the old one
2176 are registered in the replacement table so that we can fix the SSA web
2177 after adding all the ASSERT_EXPRs. */
2178 tree new_def
= create_new_def_for (v
, assertion
, NULL
);
2179 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2180 given we have to be able to fully propagate those out to re-create
2181 valid SSA when removing the asserts. */
2182 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v
))
2183 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def
) = 1;
2189 /* Return false if EXPR is a predicate expression involving floating
2193 fp_predicate (gimple
*stmt
)
2195 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
2197 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
2200 /* If the range of values taken by OP can be inferred after STMT executes,
2201 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2202 describes the inferred range. Return true if a range could be
2206 infer_value_range (gimple
*stmt
, tree op
, tree_code
*comp_code_p
, tree
*val_p
)
2209 *comp_code_p
= ERROR_MARK
;
2211 /* Do not attempt to infer anything in names that flow through
2213 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
2216 /* If STMT is the last statement of a basic block with no normal
2217 successors, there is no point inferring anything about any of its
2218 operands. We would not be able to find a proper insertion point
2219 for the assertion, anyway. */
2220 if (stmt_ends_bb_p (stmt
))
2225 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
2226 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
2232 if (infer_nonnull_range (stmt
, op
))
2234 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
2235 *comp_code_p
= NE_EXPR
;
2243 void dump_asserts_for (FILE *, tree
);
2244 void debug_asserts_for (tree
);
2245 void dump_all_asserts (FILE *);
2246 void debug_all_asserts (void);
2248 /* Dump all the registered assertions for NAME to FILE. */
2251 dump_asserts_for (FILE *file
, tree name
)
2255 fprintf (file
, "Assertions to be inserted for ");
2256 print_generic_expr (file
, name
);
2257 fprintf (file
, "\n");
2259 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2262 fprintf (file
, "\t");
2263 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0);
2264 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2267 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2268 loc
->e
->dest
->index
);
2269 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
2271 fprintf (file
, "\n\tPREDICATE: ");
2272 print_generic_expr (file
, loc
->expr
);
2273 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
2274 print_generic_expr (file
, loc
->val
);
2275 fprintf (file
, "\n\n");
2279 fprintf (file
, "\n");
2283 /* Dump all the registered assertions for NAME to stderr. */
2286 debug_asserts_for (tree name
)
2288 dump_asserts_for (stderr
, name
);
2292 /* Dump all the registered assertions for all the names to FILE. */
2295 dump_all_asserts (FILE *file
)
2300 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2301 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2302 dump_asserts_for (file
, ssa_name (i
));
2303 fprintf (file
, "\n");
2307 /* Dump all the registered assertions for all the names to stderr. */
2310 debug_all_asserts (void)
2312 dump_all_asserts (stderr
);
2315 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2318 add_assert_info (vec
<assert_info
> &asserts
,
2319 tree name
, tree expr
, enum tree_code comp_code
, tree val
)
2322 info
.comp_code
= comp_code
;
2324 if (TREE_OVERFLOW_P (val
))
2325 val
= drop_tree_overflow (val
);
2328 asserts
.safe_push (info
);
2329 if (dump_enabled_p ())
2330 dump_printf (MSG_NOTE
| MSG_PRIORITY_INTERNALS
,
2331 "Adding assert for %T from %T %s %T\n",
2332 name
, expr
, op_symbol_code (comp_code
), val
);
2335 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2336 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2337 E->DEST, then register this location as a possible insertion point
2338 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2340 BB, E and SI provide the exact insertion point for the new
2341 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2342 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2343 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2344 must not be NULL. */
2347 register_new_assert_for (tree name
, tree expr
,
2348 enum tree_code comp_code
,
2352 gimple_stmt_iterator si
)
2354 assert_locus
*n
, *loc
, *last_loc
;
2355 basic_block dest_bb
;
2357 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
2360 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
2361 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
2363 /* Never build an assert comparing against an integer constant with
2364 TREE_OVERFLOW set. This confuses our undefined overflow warning
2366 if (TREE_OVERFLOW_P (val
))
2367 val
= drop_tree_overflow (val
);
2369 /* The new assertion A will be inserted at BB or E. We need to
2370 determine if the new location is dominated by a previously
2371 registered location for A. If we are doing an edge insertion,
2372 assume that A will be inserted at E->DEST. Note that this is not
2375 If E is a critical edge, it will be split. But even if E is
2376 split, the new block will dominate the same set of blocks that
2379 The reverse, however, is not true, blocks dominated by E->DEST
2380 will not be dominated by the new block created to split E. So,
2381 if the insertion location is on a critical edge, we will not use
2382 the new location to move another assertion previously registered
2383 at a block dominated by E->DEST. */
2384 dest_bb
= (bb
) ? bb
: e
->dest
;
2386 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2387 VAL at a block dominating DEST_BB, then we don't need to insert a new
2388 one. Similarly, if the same assertion already exists at a block
2389 dominated by DEST_BB and the new location is not on a critical
2390 edge, then update the existing location for the assertion (i.e.,
2391 move the assertion up in the dominance tree).
2393 Note, this is implemented as a simple linked list because there
2394 should not be more than a handful of assertions registered per
2395 name. If this becomes a performance problem, a table hashed by
2396 COMP_CODE and VAL could be implemented. */
2397 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2401 if (loc
->comp_code
== comp_code
2403 || operand_equal_p (loc
->val
, val
, 0))
2404 && (loc
->expr
== expr
2405 || operand_equal_p (loc
->expr
, expr
, 0)))
2407 /* If E is not a critical edge and DEST_BB
2408 dominates the existing location for the assertion, move
2409 the assertion up in the dominance tree by updating its
2410 location information. */
2411 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2412 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2421 /* Update the last node of the list and move to the next one. */
2426 /* If we didn't find an assertion already registered for
2427 NAME COMP_CODE VAL, add a new one at the end of the list of
2428 assertions associated with NAME. */
2429 n
= XNEW (struct assert_locus
);
2433 n
->comp_code
= comp_code
;
2441 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2443 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2446 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2447 Extract a suitable test code and value and store them into *CODE_P and
2448 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2450 If no extraction was possible, return FALSE, otherwise return TRUE.
2452 If INVERT is true, then we invert the result stored into *CODE_P. */
2455 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
2456 tree cond_op0
, tree cond_op1
,
2457 bool invert
, enum tree_code
*code_p
,
2460 enum tree_code comp_code
;
2463 /* Otherwise, we have a comparison of the form NAME COMP VAL
2464 or VAL COMP NAME. */
2465 if (name
== cond_op1
)
2467 /* If the predicate is of the form VAL COMP NAME, flip
2468 COMP around because we need to register NAME as the
2469 first operand in the predicate. */
2470 comp_code
= swap_tree_comparison (cond_code
);
2473 else if (name
== cond_op0
)
2475 /* The comparison is of the form NAME COMP VAL, so the
2476 comparison code remains unchanged. */
2477 comp_code
= cond_code
;
2483 /* Invert the comparison code as necessary. */
2485 comp_code
= invert_tree_comparison (comp_code
, 0);
2487 /* VRP only handles integral and pointer types. */
2488 if (! INTEGRAL_TYPE_P (TREE_TYPE (val
))
2489 && ! POINTER_TYPE_P (TREE_TYPE (val
)))
2492 /* Do not register always-false predicates.
2493 FIXME: this works around a limitation in fold() when dealing with
2494 enumerations. Given 'enum { N1, N2 } x;', fold will not
2495 fold 'if (x > N2)' to 'if (0)'. */
2496 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
2497 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2499 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
2500 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2502 if (comp_code
== GT_EXPR
2504 || compare_values (val
, max
) == 0))
2507 if (comp_code
== LT_EXPR
2509 || compare_values (val
, min
) == 0))
2512 *code_p
= comp_code
;
2517 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2518 (otherwise return VAL). VAL and MASK must be zero-extended for
2519 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2520 (to transform signed values into unsigned) and at the end xor
2524 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
2525 const wide_int
&sgnbit
, unsigned int prec
)
2527 wide_int bit
= wi::one (prec
), res
;
2530 wide_int val
= val_in
^ sgnbit
;
2531 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
2534 if ((res
& bit
) == 0)
2537 res
= wi::bit_and_not (val
+ bit
, res
);
2539 if (wi::gtu_p (res
, val
))
2540 return res
^ sgnbit
;
2542 return val
^ sgnbit
;
2545 /* Helper for overflow_comparison_p
2547 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2548 OP1's defining statement to see if it ultimately has the form
2549 OP0 CODE (OP0 PLUS INTEGER_CST)
2551 If so, return TRUE indicating this is an overflow test and store into
2552 *NEW_CST an updated constant that can be used in a narrowed range test.
2554 REVERSED indicates if the comparison was originally:
2558 This affects how we build the updated constant. */
2561 overflow_comparison_p_1 (enum tree_code code
, tree op0
, tree op1
,
2562 bool follow_assert_exprs
, bool reversed
, tree
*new_cst
)
2564 /* See if this is a relational operation between two SSA_NAMES with
2565 unsigned, overflow wrapping values. If so, check it more deeply. */
2566 if ((code
== LT_EXPR
|| code
== LE_EXPR
2567 || code
== GE_EXPR
|| code
== GT_EXPR
)
2568 && TREE_CODE (op0
) == SSA_NAME
2569 && TREE_CODE (op1
) == SSA_NAME
2570 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
2571 && TYPE_UNSIGNED (TREE_TYPE (op0
))
2572 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
2574 gimple
*op1_def
= SSA_NAME_DEF_STMT (op1
);
2576 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2577 if (follow_assert_exprs
)
2579 while (gimple_assign_single_p (op1_def
)
2580 && TREE_CODE (gimple_assign_rhs1 (op1_def
)) == ASSERT_EXPR
)
2582 op1
= TREE_OPERAND (gimple_assign_rhs1 (op1_def
), 0);
2583 if (TREE_CODE (op1
) != SSA_NAME
)
2585 op1_def
= SSA_NAME_DEF_STMT (op1
);
2589 /* Now look at the defining statement of OP1 to see if it adds
2590 or subtracts a nonzero constant from another operand. */
2592 && is_gimple_assign (op1_def
)
2593 && gimple_assign_rhs_code (op1_def
) == PLUS_EXPR
2594 && TREE_CODE (gimple_assign_rhs2 (op1_def
)) == INTEGER_CST
2595 && !integer_zerop (gimple_assign_rhs2 (op1_def
)))
2597 tree target
= gimple_assign_rhs1 (op1_def
);
2599 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2600 for one where TARGET appears on the RHS. */
2601 if (follow_assert_exprs
)
2603 /* Now see if that "other operand" is op0, following the chain
2604 of ASSERT_EXPRs if necessary. */
2605 gimple
*op0_def
= SSA_NAME_DEF_STMT (op0
);
2606 while (op0
!= target
2607 && gimple_assign_single_p (op0_def
)
2608 && TREE_CODE (gimple_assign_rhs1 (op0_def
)) == ASSERT_EXPR
)
2610 op0
= TREE_OPERAND (gimple_assign_rhs1 (op0_def
), 0);
2611 if (TREE_CODE (op0
) != SSA_NAME
)
2613 op0_def
= SSA_NAME_DEF_STMT (op0
);
2617 /* If we did not find our target SSA_NAME, then this is not
2618 an overflow test. */
2622 tree type
= TREE_TYPE (op0
);
2623 wide_int max
= wi::max_value (TYPE_PRECISION (type
), UNSIGNED
);
2624 tree inc
= gimple_assign_rhs2 (op1_def
);
2626 *new_cst
= wide_int_to_tree (type
, max
+ wi::to_wide (inc
));
2628 *new_cst
= wide_int_to_tree (type
, max
- wi::to_wide (inc
));
2635 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2636 OP1's defining statement to see if it ultimately has the form
2637 OP0 CODE (OP0 PLUS INTEGER_CST)
2639 If so, return TRUE indicating this is an overflow test and store into
2640 *NEW_CST an updated constant that can be used in a narrowed range test.
2642 These statements are left as-is in the IL to facilitate discovery of
2643 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2644 the alternate range representation is often useful within VRP. */
2647 overflow_comparison_p (tree_code code
, tree name
, tree val
,
2648 bool use_equiv_p
, tree
*new_cst
)
2650 if (overflow_comparison_p_1 (code
, name
, val
, use_equiv_p
, false, new_cst
))
2652 return overflow_comparison_p_1 (swap_tree_comparison (code
), val
, name
,
2653 use_equiv_p
, true, new_cst
);
2657 /* Try to register an edge assertion for SSA name NAME on edge E for
2658 the condition COND contributing to the conditional jump pointed to by BSI.
2659 Invert the condition COND if INVERT is true. */
2662 register_edge_assert_for_2 (tree name
, edge e
,
2663 enum tree_code cond_code
,
2664 tree cond_op0
, tree cond_op1
, bool invert
,
2665 vec
<assert_info
> &asserts
)
2668 enum tree_code comp_code
;
2670 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
2673 invert
, &comp_code
, &val
))
2676 /* Queue the assert. */
2678 if (overflow_comparison_p (comp_code
, name
, val
, false, &x
))
2680 enum tree_code new_code
= ((comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
2681 ? GT_EXPR
: LE_EXPR
);
2682 add_assert_info (asserts
, name
, name
, new_code
, x
);
2684 add_assert_info (asserts
, name
, name
, comp_code
, val
);
2686 /* In the case of NAME <= CST and NAME being defined as
2687 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2688 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2689 This catches range and anti-range tests. */
2690 if ((comp_code
== LE_EXPR
2691 || comp_code
== GT_EXPR
)
2692 && TREE_CODE (val
) == INTEGER_CST
2693 && TYPE_UNSIGNED (TREE_TYPE (val
)))
2695 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
2696 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
2698 /* Extract CST2 from the (optional) addition. */
2699 if (is_gimple_assign (def_stmt
)
2700 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
2702 name2
= gimple_assign_rhs1 (def_stmt
);
2703 cst2
= gimple_assign_rhs2 (def_stmt
);
2704 if (TREE_CODE (name2
) == SSA_NAME
2705 && TREE_CODE (cst2
) == INTEGER_CST
)
2706 def_stmt
= SSA_NAME_DEF_STMT (name2
);
2709 /* Extract NAME2 from the (optional) sign-changing cast. */
2710 if (gimple_assign_cast_p (def_stmt
))
2712 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
2713 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
2714 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
2715 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
2716 name3
= gimple_assign_rhs1 (def_stmt
);
2719 /* If name3 is used later, create an ASSERT_EXPR for it. */
2720 if (name3
!= NULL_TREE
2721 && TREE_CODE (name3
) == SSA_NAME
2722 && (cst2
== NULL_TREE
2723 || TREE_CODE (cst2
) == INTEGER_CST
)
2724 && INTEGRAL_TYPE_P (TREE_TYPE (name3
)))
2728 /* Build an expression for the range test. */
2729 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
2730 if (cst2
!= NULL_TREE
)
2731 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
2732 add_assert_info (asserts
, name3
, tmp
, comp_code
, val
);
2735 /* If name2 is used later, create an ASSERT_EXPR for it. */
2736 if (name2
!= NULL_TREE
2737 && TREE_CODE (name2
) == SSA_NAME
2738 && TREE_CODE (cst2
) == INTEGER_CST
2739 && INTEGRAL_TYPE_P (TREE_TYPE (name2
)))
2743 /* Build an expression for the range test. */
2745 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
2746 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
2747 if (cst2
!= NULL_TREE
)
2748 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
2749 add_assert_info (asserts
, name2
, tmp
, comp_code
, val
);
2753 /* In the case of post-in/decrement tests like if (i++) ... and uses
2754 of the in/decremented value on the edge the extra name we want to
2755 assert for is not on the def chain of the name compared. Instead
2756 it is in the set of use stmts.
2757 Similar cases happen for conversions that were simplified through
2758 fold_{sign_changed,widened}_comparison. */
2759 if ((comp_code
== NE_EXPR
2760 || comp_code
== EQ_EXPR
)
2761 && TREE_CODE (val
) == INTEGER_CST
)
2763 imm_use_iterator ui
;
2765 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
2767 if (!is_gimple_assign (use_stmt
))
2770 /* Cut off to use-stmts that are dominating the predecessor. */
2771 if (!dominated_by_p (CDI_DOMINATORS
, e
->src
, gimple_bb (use_stmt
)))
2774 tree name2
= gimple_assign_lhs (use_stmt
);
2775 if (TREE_CODE (name2
) != SSA_NAME
)
2778 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
2780 if (code
== PLUS_EXPR
2781 || code
== MINUS_EXPR
)
2783 cst
= gimple_assign_rhs2 (use_stmt
);
2784 if (TREE_CODE (cst
) != INTEGER_CST
)
2786 cst
= int_const_binop (code
, val
, cst
);
2788 else if (CONVERT_EXPR_CODE_P (code
))
2790 /* For truncating conversions we cannot record
2792 if (comp_code
== NE_EXPR
2793 && (TYPE_PRECISION (TREE_TYPE (name2
))
2794 < TYPE_PRECISION (TREE_TYPE (name
))))
2796 cst
= fold_convert (TREE_TYPE (name2
), val
);
2801 if (TREE_OVERFLOW_P (cst
))
2802 cst
= drop_tree_overflow (cst
);
2803 add_assert_info (asserts
, name2
, name2
, comp_code
, cst
);
2807 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
2808 && TREE_CODE (val
) == INTEGER_CST
)
2810 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
2811 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
2812 tree val2
= NULL_TREE
;
2813 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
2814 wide_int mask
= wi::zero (prec
);
2815 unsigned int nprec
= prec
;
2816 enum tree_code rhs_code
= ERROR_MARK
;
2818 if (is_gimple_assign (def_stmt
))
2819 rhs_code
= gimple_assign_rhs_code (def_stmt
);
2821 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2822 assert that A != CST1 -+ CST2. */
2823 if ((comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
2824 && (rhs_code
== PLUS_EXPR
|| rhs_code
== MINUS_EXPR
))
2826 tree op0
= gimple_assign_rhs1 (def_stmt
);
2827 tree op1
= gimple_assign_rhs2 (def_stmt
);
2828 if (TREE_CODE (op0
) == SSA_NAME
2829 && TREE_CODE (op1
) == INTEGER_CST
)
2831 enum tree_code reverse_op
= (rhs_code
== PLUS_EXPR
2832 ? MINUS_EXPR
: PLUS_EXPR
);
2833 op1
= int_const_binop (reverse_op
, val
, op1
);
2834 if (TREE_OVERFLOW (op1
))
2835 op1
= drop_tree_overflow (op1
);
2836 add_assert_info (asserts
, op0
, op0
, comp_code
, op1
);
2840 /* Add asserts for NAME cmp CST and NAME being defined
2841 as NAME = (int) NAME2. */
2842 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
2843 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
2844 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
2845 && gimple_assign_cast_p (def_stmt
))
2847 name2
= gimple_assign_rhs1 (def_stmt
);
2848 if (CONVERT_EXPR_CODE_P (rhs_code
)
2849 && TREE_CODE (name2
) == SSA_NAME
2850 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
2851 && TYPE_UNSIGNED (TREE_TYPE (name2
))
2852 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
2853 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
2854 || !tree_int_cst_equal (val
,
2855 TYPE_MIN_VALUE (TREE_TYPE (val
)))))
2858 enum tree_code new_comp_code
= comp_code
;
2860 cst
= fold_convert (TREE_TYPE (name2
),
2861 TYPE_MIN_VALUE (TREE_TYPE (val
)));
2862 /* Build an expression for the range test. */
2863 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
2864 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
2865 fold_convert (TREE_TYPE (name2
), val
));
2866 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
2868 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
2869 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
2870 build_int_cst (TREE_TYPE (name2
), 1));
2872 add_assert_info (asserts
, name2
, tmp
, new_comp_code
, cst
);
2876 /* Add asserts for NAME cmp CST and NAME being defined as
2877 NAME = NAME2 >> CST2.
2879 Extract CST2 from the right shift. */
2880 if (rhs_code
== RSHIFT_EXPR
)
2882 name2
= gimple_assign_rhs1 (def_stmt
);
2883 cst2
= gimple_assign_rhs2 (def_stmt
);
2884 if (TREE_CODE (name2
) == SSA_NAME
2885 && tree_fits_uhwi_p (cst2
)
2886 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
2887 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
2888 && type_has_mode_precision_p (TREE_TYPE (val
)))
2890 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
2891 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
2894 if (val2
!= NULL_TREE
2895 && TREE_CODE (val2
) == INTEGER_CST
2896 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
2900 enum tree_code new_comp_code
= comp_code
;
2904 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
2906 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
2908 tree type
= build_nonstandard_integer_type (prec
, 1);
2909 tmp
= build1 (NOP_EXPR
, type
, name2
);
2910 val2
= fold_convert (type
, val2
);
2912 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
2913 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
2914 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
2916 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
2919 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
2921 if (minval
== wi::to_wide (new_val
))
2922 new_val
= NULL_TREE
;
2927 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
2928 mask
|= wi::to_wide (val2
);
2929 if (wi::eq_p (mask
, maxval
))
2930 new_val
= NULL_TREE
;
2932 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
2936 add_assert_info (asserts
, name2
, tmp
, new_comp_code
, new_val
);
2939 /* If we have a conversion that doesn't change the value of the source
2940 simply register the same assert for it. */
2941 if (CONVERT_EXPR_CODE_P (rhs_code
))
2943 wide_int rmin
, rmax
;
2944 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
2945 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
2946 && TREE_CODE (rhs1
) == SSA_NAME
2947 /* Make sure the relation preserves the upper/lower boundary of
2948 the range conservatively. */
2949 && (comp_code
== NE_EXPR
2950 || comp_code
== EQ_EXPR
2951 || (TYPE_SIGN (TREE_TYPE (name
))
2952 == TYPE_SIGN (TREE_TYPE (rhs1
)))
2953 || ((comp_code
== LE_EXPR
2954 || comp_code
== LT_EXPR
)
2955 && !TYPE_UNSIGNED (TREE_TYPE (rhs1
)))
2956 || ((comp_code
== GE_EXPR
2957 || comp_code
== GT_EXPR
)
2958 && TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
2959 /* And the conversion does not alter the value we compare
2960 against and all values in rhs1 can be represented in
2961 the converted to type. */
2962 && int_fits_type_p (val
, TREE_TYPE (rhs1
))
2963 && ((TYPE_PRECISION (TREE_TYPE (name
))
2964 > TYPE_PRECISION (TREE_TYPE (rhs1
)))
2965 || (get_range_info (rhs1
, &rmin
, &rmax
) == VR_RANGE
2966 && wi::fits_to_tree_p (rmin
, TREE_TYPE (name
))
2967 && wi::fits_to_tree_p (rmax
, TREE_TYPE (name
)))))
2968 add_assert_info (asserts
, rhs1
, rhs1
,
2969 comp_code
, fold_convert (TREE_TYPE (rhs1
), val
));
2972 /* Add asserts for NAME cmp CST and NAME being defined as
2973 NAME = NAME2 & CST2.
2975 Extract CST2 from the and.
2978 NAME = (unsigned) NAME2;
2979 casts where NAME's type is unsigned and has smaller precision
2980 than NAME2's type as if it was NAME = NAME2 & MASK. */
2981 names
[0] = NULL_TREE
;
2982 names
[1] = NULL_TREE
;
2984 if (rhs_code
== BIT_AND_EXPR
2985 || (CONVERT_EXPR_CODE_P (rhs_code
)
2986 && INTEGRAL_TYPE_P (TREE_TYPE (val
))
2987 && TYPE_UNSIGNED (TREE_TYPE (val
))
2988 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
2991 name2
= gimple_assign_rhs1 (def_stmt
);
2992 if (rhs_code
== BIT_AND_EXPR
)
2993 cst2
= gimple_assign_rhs2 (def_stmt
);
2996 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2997 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
2999 if (TREE_CODE (name2
) == SSA_NAME
3000 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
3001 && TREE_CODE (cst2
) == INTEGER_CST
3002 && !integer_zerop (cst2
)
3004 || TYPE_UNSIGNED (TREE_TYPE (val
))))
3006 gimple
*def_stmt2
= SSA_NAME_DEF_STMT (name2
);
3007 if (gimple_assign_cast_p (def_stmt2
))
3009 names
[1] = gimple_assign_rhs1 (def_stmt2
);
3010 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
3011 || TREE_CODE (names
[1]) != SSA_NAME
3012 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
3013 || (TYPE_PRECISION (TREE_TYPE (name2
))
3014 != TYPE_PRECISION (TREE_TYPE (names
[1]))))
3015 names
[1] = NULL_TREE
;
3020 if (names
[0] || names
[1])
3022 wide_int minv
, maxv
, valv
, cst2v
;
3023 wide_int tem
, sgnbit
;
3024 bool valid_p
= false, valn
, cst2n
;
3025 enum tree_code ccode
= comp_code
;
3027 valv
= wide_int::from (wi::to_wide (val
), nprec
, UNSIGNED
);
3028 cst2v
= wide_int::from (wi::to_wide (cst2
), nprec
, UNSIGNED
);
3029 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
3030 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
3031 /* If CST2 doesn't have most significant bit set,
3032 but VAL is negative, we have comparison like
3033 if ((x & 0x123) > -4) (always true). Just give up. */
3037 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
3039 sgnbit
= wi::zero (nprec
);
3040 minv
= valv
& cst2v
;
3044 /* Minimum unsigned value for equality is VAL & CST2
3045 (should be equal to VAL, otherwise we probably should
3046 have folded the comparison into false) and
3047 maximum unsigned value is VAL | ~CST2. */
3048 maxv
= valv
| ~cst2v
;
3053 tem
= valv
| ~cst2v
;
3054 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3058 sgnbit
= wi::zero (nprec
);
3061 /* If (VAL | ~CST2) is all ones, handle it as
3062 (X & CST2) < VAL. */
3067 sgnbit
= wi::zero (nprec
);
3070 if (!cst2n
&& wi::neg_p (cst2v
))
3071 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
3080 if (tem
== wi::mask (nprec
- 1, false, nprec
))
3086 sgnbit
= wi::zero (nprec
);
3091 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3092 is VAL and maximum unsigned value is ~0. For signed
3093 comparison, if CST2 doesn't have most significant bit
3094 set, handle it similarly. If CST2 has MSB set,
3095 the minimum is the same, and maximum is ~0U/2. */
3098 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3100 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
3104 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
3110 /* Find out smallest MINV where MINV > VAL
3111 && (MINV & CST2) == MINV, if any. If VAL is signed and
3112 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3113 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
3116 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
3121 /* Minimum unsigned value for <= is 0 and maximum
3122 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3123 Otherwise, find smallest VAL2 where VAL2 > VAL
3124 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3126 For signed comparison, if CST2 doesn't have most
3127 significant bit set, handle it similarly. If CST2 has
3128 MSB set, the maximum is the same and minimum is INT_MIN. */
3133 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
3145 /* Minimum unsigned value for < is 0 and maximum
3146 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3147 Otherwise, find smallest VAL2 where VAL2 > VAL
3148 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3150 For signed comparison, if CST2 doesn't have most
3151 significant bit set, handle it similarly. If CST2 has
3152 MSB set, the maximum is the same and minimum is INT_MIN. */
3161 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
3175 && (maxv
- minv
) != -1)
3177 tree tmp
, new_val
, type
;
3180 for (i
= 0; i
< 2; i
++)
3183 wide_int maxv2
= maxv
;
3185 type
= TREE_TYPE (names
[i
]);
3186 if (!TYPE_UNSIGNED (type
))
3188 type
= build_nonstandard_integer_type (nprec
, 1);
3189 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
3193 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
3194 wide_int_to_tree (type
, -minv
));
3195 maxv2
= maxv
- minv
;
3197 new_val
= wide_int_to_tree (type
, maxv2
);
3198 add_assert_info (asserts
, names
[i
], tmp
, LE_EXPR
, new_val
);
3205 /* OP is an operand of a truth value expression which is known to have
3206 a particular value. Register any asserts for OP and for any
3207 operands in OP's defining statement.
3209 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3210 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3213 register_edge_assert_for_1 (tree op
, enum tree_code code
,
3214 edge e
, vec
<assert_info
> &asserts
)
3218 enum tree_code rhs_code
;
3220 /* We only care about SSA_NAMEs. */
3221 if (TREE_CODE (op
) != SSA_NAME
)
3224 /* We know that OP will have a zero or nonzero value. */
3225 val
= build_int_cst (TREE_TYPE (op
), 0);
3226 add_assert_info (asserts
, op
, op
, code
, val
);
3228 /* Now look at how OP is set. If it's set from a comparison,
3229 a truth operation or some bit operations, then we may be able
3230 to register information about the operands of that assignment. */
3231 op_def
= SSA_NAME_DEF_STMT (op
);
3232 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
3235 rhs_code
= gimple_assign_rhs_code (op_def
);
3237 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
3239 bool invert
= (code
== EQ_EXPR
? true : false);
3240 tree op0
= gimple_assign_rhs1 (op_def
);
3241 tree op1
= gimple_assign_rhs2 (op_def
);
3243 if (TREE_CODE (op0
) == SSA_NAME
)
3244 register_edge_assert_for_2 (op0
, e
, rhs_code
, op0
, op1
, invert
, asserts
);
3245 if (TREE_CODE (op1
) == SSA_NAME
)
3246 register_edge_assert_for_2 (op1
, e
, rhs_code
, op0
, op1
, invert
, asserts
);
3248 else if ((code
== NE_EXPR
3249 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
3251 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
3253 /* Recurse on each operand. */
3254 tree op0
= gimple_assign_rhs1 (op_def
);
3255 tree op1
= gimple_assign_rhs2 (op_def
);
3256 if (TREE_CODE (op0
) == SSA_NAME
3257 && has_single_use (op0
))
3258 register_edge_assert_for_1 (op0
, code
, e
, asserts
);
3259 if (TREE_CODE (op1
) == SSA_NAME
3260 && has_single_use (op1
))
3261 register_edge_assert_for_1 (op1
, code
, e
, asserts
);
3263 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
3264 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
3266 /* Recurse, flipping CODE. */
3267 code
= invert_tree_comparison (code
, false);
3268 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, asserts
);
3270 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
3272 /* Recurse through the copy. */
3273 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, asserts
);
3275 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
3277 /* Recurse through the type conversion, unless it is a narrowing
3278 conversion or conversion from non-integral type. */
3279 tree rhs
= gimple_assign_rhs1 (op_def
);
3280 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
3281 && (TYPE_PRECISION (TREE_TYPE (rhs
))
3282 <= TYPE_PRECISION (TREE_TYPE (op
))))
3283 register_edge_assert_for_1 (rhs
, code
, e
, asserts
);
3287 /* Check if comparison
3288 NAME COND_OP INTEGER_CST
3290 (X & 11...100..0) COND_OP XX...X00...0
3291 Such comparison can yield assertions like
3294 in case of COND_OP being EQ_EXPR or
3297 in case of NE_EXPR. */
3300 is_masked_range_test (tree name
, tree valt
, enum tree_code cond_code
,
3301 tree
*new_name
, tree
*low
, enum tree_code
*low_code
,
3302 tree
*high
, enum tree_code
*high_code
)
3304 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
3306 if (!is_gimple_assign (def_stmt
)
3307 || gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
3310 tree t
= gimple_assign_rhs1 (def_stmt
);
3311 tree maskt
= gimple_assign_rhs2 (def_stmt
);
3312 if (TREE_CODE (t
) != SSA_NAME
|| TREE_CODE (maskt
) != INTEGER_CST
)
3315 wi::tree_to_wide_ref mask
= wi::to_wide (maskt
);
3316 wide_int inv_mask
= ~mask
;
3317 /* Must have been removed by now so don't bother optimizing. */
3318 if (mask
== 0 || inv_mask
== 0)
3321 /* Assume VALT is INTEGER_CST. */
3322 wi::tree_to_wide_ref val
= wi::to_wide (valt
);
3324 if ((inv_mask
& (inv_mask
+ 1)) != 0
3325 || (val
& mask
) != val
)
3328 bool is_range
= cond_code
== EQ_EXPR
;
3330 tree type
= TREE_TYPE (t
);
3331 wide_int min
= wi::min_value (type
),
3332 max
= wi::max_value (type
);
3336 *low_code
= val
== min
? ERROR_MARK
: GE_EXPR
;
3337 *high_code
= val
== max
? ERROR_MARK
: LE_EXPR
;
3341 /* We can still generate assertion if one of alternatives
3342 is known to always be false. */
3345 *low_code
= (enum tree_code
) 0;
3346 *high_code
= GT_EXPR
;
3348 else if ((val
| inv_mask
) == max
)
3350 *low_code
= LT_EXPR
;
3351 *high_code
= (enum tree_code
) 0;
3358 *low
= wide_int_to_tree (type
, val
);
3359 *high
= wide_int_to_tree (type
, val
| inv_mask
);
3364 /* Try to register an edge assertion for SSA name NAME on edge E for
3365 the condition COND contributing to the conditional jump pointed to by
3369 register_edge_assert_for (tree name
, edge e
,
3370 enum tree_code cond_code
, tree cond_op0
,
3371 tree cond_op1
, vec
<assert_info
> &asserts
)
3374 enum tree_code comp_code
;
3375 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
3377 /* Do not attempt to infer anything in names that flow through
3379 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
3382 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
3388 /* Register ASSERT_EXPRs for name. */
3389 register_edge_assert_for_2 (name
, e
, cond_code
, cond_op0
,
3390 cond_op1
, is_else_edge
, asserts
);
3393 /* If COND is effectively an equality test of an SSA_NAME against
3394 the value zero or one, then we may be able to assert values
3395 for SSA_NAMEs which flow into COND. */
3397 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3398 statement of NAME we can assert both operands of the BIT_AND_EXPR
3399 have nonzero value. */
3400 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
3401 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
3403 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
3405 if (is_gimple_assign (def_stmt
)
3406 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
3408 tree op0
= gimple_assign_rhs1 (def_stmt
);
3409 tree op1
= gimple_assign_rhs2 (def_stmt
);
3410 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, asserts
);
3411 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, asserts
);
3415 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3416 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3418 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
3419 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
3421 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
3423 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3424 necessarily zero value, or if type-precision is one. */
3425 if (is_gimple_assign (def_stmt
)
3426 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
3427 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
3428 || comp_code
== EQ_EXPR
)))
3430 tree op0
= gimple_assign_rhs1 (def_stmt
);
3431 tree op1
= gimple_assign_rhs2 (def_stmt
);
3432 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, asserts
);
3433 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, asserts
);
3437 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3438 if ((comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
3439 && TREE_CODE (val
) == INTEGER_CST
)
3441 enum tree_code low_code
, high_code
;
3443 if (is_masked_range_test (name
, val
, comp_code
, &name
, &low
,
3444 &low_code
, &high
, &high_code
))
3446 if (low_code
!= ERROR_MARK
)
3447 register_edge_assert_for_2 (name
, e
, low_code
, name
,
3448 low
, /*invert*/false, asserts
);
3449 if (high_code
!= ERROR_MARK
)
3450 register_edge_assert_for_2 (name
, e
, high_code
, name
,
3451 high
, /*invert*/false, asserts
);
3456 /* Finish found ASSERTS for E and register them at GSI. */
3459 finish_register_edge_assert_for (edge e
, gimple_stmt_iterator gsi
,
3460 vec
<assert_info
> &asserts
)
3462 for (unsigned i
= 0; i
< asserts
.length (); ++i
)
3463 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3464 reachable from E. */
3465 if (live_on_edge (e
, asserts
[i
].name
))
3466 register_new_assert_for (asserts
[i
].name
, asserts
[i
].expr
,
3467 asserts
[i
].comp_code
, asserts
[i
].val
,
3473 /* Determine whether the outgoing edges of BB should receive an
3474 ASSERT_EXPR for each of the operands of BB's LAST statement.
3475 The last statement of BB must be a COND_EXPR.
3477 If any of the sub-graphs rooted at BB have an interesting use of
3478 the predicate operands, an assert location node is added to the
3479 list of assertions for the corresponding operands. */
3482 find_conditional_asserts (basic_block bb
, gcond
*last
)
3484 gimple_stmt_iterator bsi
;
3490 bsi
= gsi_for_stmt (last
);
3492 /* Look for uses of the operands in each of the sub-graphs
3493 rooted at BB. We need to check each of the outgoing edges
3494 separately, so that we know what kind of ASSERT_EXPR to
3496 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3501 /* Register the necessary assertions for each operand in the
3502 conditional predicate. */
3503 auto_vec
<assert_info
, 8> asserts
;
3504 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
3505 register_edge_assert_for (op
, e
,
3506 gimple_cond_code (last
),
3507 gimple_cond_lhs (last
),
3508 gimple_cond_rhs (last
), asserts
);
3509 finish_register_edge_assert_for (e
, bsi
, asserts
);
3519 /* Compare two case labels sorting first by the destination bb index
3520 and then by the case value. */
3523 compare_case_labels (const void *p1
, const void *p2
)
3525 const struct case_info
*ci1
= (const struct case_info
*) p1
;
3526 const struct case_info
*ci2
= (const struct case_info
*) p2
;
3527 int idx1
= ci1
->bb
->index
;
3528 int idx2
= ci2
->bb
->index
;
3532 else if (idx1
== idx2
)
3534 /* Make sure the default label is first in a group. */
3535 if (!CASE_LOW (ci1
->expr
))
3537 else if (!CASE_LOW (ci2
->expr
))
3540 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
3541 CASE_LOW (ci2
->expr
));
3547 /* Determine whether the outgoing edges of BB should receive an
3548 ASSERT_EXPR for each of the operands of BB's LAST statement.
3549 The last statement of BB must be a SWITCH_EXPR.
3551 If any of the sub-graphs rooted at BB have an interesting use of
3552 the predicate operands, an assert location node is added to the
3553 list of assertions for the corresponding operands. */
3556 find_switch_asserts (basic_block bb
, gswitch
*last
)
3558 gimple_stmt_iterator bsi
;
3561 struct case_info
*ci
;
3562 size_t n
= gimple_switch_num_labels (last
);
3563 #if GCC_VERSION >= 4000
3566 /* Work around GCC 3.4 bug (PR 37086). */
3567 volatile unsigned int idx
;
3570 bsi
= gsi_for_stmt (last
);
3571 op
= gimple_switch_index (last
);
3572 if (TREE_CODE (op
) != SSA_NAME
)
3575 /* Build a vector of case labels sorted by destination label. */
3576 ci
= XNEWVEC (struct case_info
, n
);
3577 for (idx
= 0; idx
< n
; ++idx
)
3579 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
3580 ci
[idx
].bb
= label_to_block (cfun
, CASE_LABEL (ci
[idx
].expr
));
3582 edge default_edge
= find_edge (bb
, ci
[0].bb
);
3583 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
3585 for (idx
= 0; idx
< n
; ++idx
)
3588 tree cl
= ci
[idx
].expr
;
3589 basic_block cbb
= ci
[idx
].bb
;
3591 min
= CASE_LOW (cl
);
3592 max
= CASE_HIGH (cl
);
3594 /* If there are multiple case labels with the same destination
3595 we need to combine them to a single value range for the edge. */
3596 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
3598 /* Skip labels until the last of the group. */
3601 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
3604 /* Pick up the maximum of the case label range. */
3605 if (CASE_HIGH (ci
[idx
].expr
))
3606 max
= CASE_HIGH (ci
[idx
].expr
);
3608 max
= CASE_LOW (ci
[idx
].expr
);
3611 /* Can't extract a useful assertion out of a range that includes the
3613 if (min
== NULL_TREE
)
3616 /* Find the edge to register the assert expr on. */
3617 e
= find_edge (bb
, cbb
);
3619 /* Register the necessary assertions for the operand in the
3621 auto_vec
<assert_info
, 8> asserts
;
3622 register_edge_assert_for (op
, e
,
3623 max
? GE_EXPR
: EQ_EXPR
,
3624 op
, fold_convert (TREE_TYPE (op
), min
),
3627 register_edge_assert_for (op
, e
, LE_EXPR
, op
,
3628 fold_convert (TREE_TYPE (op
), max
),
3630 finish_register_edge_assert_for (e
, bsi
, asserts
);
3635 if (!live_on_edge (default_edge
, op
))
3638 /* Now register along the default label assertions that correspond to the
3639 anti-range of each label. */
3640 int insertion_limit
= PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS
);
3641 if (insertion_limit
== 0)
3644 /* We can't do this if the default case shares a label with another case. */
3645 tree default_cl
= gimple_switch_default_label (last
);
3646 for (idx
= 1; idx
< n
; idx
++)
3649 tree cl
= gimple_switch_label (last
, idx
);
3650 if (CASE_LABEL (cl
) == CASE_LABEL (default_cl
))
3653 min
= CASE_LOW (cl
);
3654 max
= CASE_HIGH (cl
);
3656 /* Combine contiguous case ranges to reduce the number of assertions
3658 for (idx
= idx
+ 1; idx
< n
; idx
++)
3660 tree next_min
, next_max
;
3661 tree next_cl
= gimple_switch_label (last
, idx
);
3662 if (CASE_LABEL (next_cl
) == CASE_LABEL (default_cl
))
3665 next_min
= CASE_LOW (next_cl
);
3666 next_max
= CASE_HIGH (next_cl
);
3668 wide_int difference
= (wi::to_wide (next_min
)
3669 - wi::to_wide (max
? max
: min
));
3670 if (wi::eq_p (difference
, 1))
3671 max
= next_max
? next_max
: next_min
;
3677 if (max
== NULL_TREE
)
3679 /* Register the assertion OP != MIN. */
3680 auto_vec
<assert_info
, 8> asserts
;
3681 min
= fold_convert (TREE_TYPE (op
), min
);
3682 register_edge_assert_for (op
, default_edge
, NE_EXPR
, op
, min
,
3684 finish_register_edge_assert_for (default_edge
, bsi
, asserts
);
3688 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3689 which will give OP the anti-range ~[MIN,MAX]. */
3690 tree uop
= fold_convert (unsigned_type_for (TREE_TYPE (op
)), op
);
3691 min
= fold_convert (TREE_TYPE (uop
), min
);
3692 max
= fold_convert (TREE_TYPE (uop
), max
);
3694 tree lhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (uop
), uop
, min
);
3695 tree rhs
= int_const_binop (MINUS_EXPR
, max
, min
);
3696 register_new_assert_for (op
, lhs
, GT_EXPR
, rhs
,
3697 NULL
, default_edge
, bsi
);
3700 if (--insertion_limit
== 0)
3706 /* Traverse all the statements in block BB looking for statements that
3707 may generate useful assertions for the SSA names in their operand.
3708 If a statement produces a useful assertion A for name N_i, then the
3709 list of assertions already generated for N_i is scanned to
3710 determine if A is actually needed.
3712 If N_i already had the assertion A at a location dominating the
3713 current location, then nothing needs to be done. Otherwise, the
3714 new location for A is recorded instead.
3716 1- For every statement S in BB, all the variables used by S are
3717 added to bitmap FOUND_IN_SUBGRAPH.
3719 2- If statement S uses an operand N in a way that exposes a known
3720 value range for N, then if N was not already generated by an
3721 ASSERT_EXPR, create a new assert location for N. For instance,
3722 if N is a pointer and the statement dereferences it, we can
3723 assume that N is not NULL.
3725 3- COND_EXPRs are a special case of #2. We can derive range
3726 information from the predicate but need to insert different
3727 ASSERT_EXPRs for each of the sub-graphs rooted at the
3728 conditional block. If the last statement of BB is a conditional
3729 expression of the form 'X op Y', then
3731 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3733 b) If the conditional is the only entry point to the sub-graph
3734 corresponding to the THEN_CLAUSE, recurse into it. On
3735 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3736 an ASSERT_EXPR is added for the corresponding variable.
3738 c) Repeat step (b) on the ELSE_CLAUSE.
3740 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3749 In this case, an assertion on the THEN clause is useful to
3750 determine that 'a' is always 9 on that edge. However, an assertion
3751 on the ELSE clause would be unnecessary.
3753 4- If BB does not end in a conditional expression, then we recurse
3754 into BB's dominator children.
3756 At the end of the recursive traversal, every SSA name will have a
3757 list of locations where ASSERT_EXPRs should be added. When a new
3758 location for name N is found, it is registered by calling
3759 register_new_assert_for. That function keeps track of all the
3760 registered assertions to prevent adding unnecessary assertions.
3761 For instance, if a pointer P_4 is dereferenced more than once in a
3762 dominator tree, only the location dominating all the dereference of
3763 P_4 will receive an ASSERT_EXPR. */
3766 find_assert_locations_1 (basic_block bb
, sbitmap live
)
3770 last
= last_stmt (bb
);
3772 /* If BB's last statement is a conditional statement involving integer
3773 operands, determine if we need to add ASSERT_EXPRs. */
3775 && gimple_code (last
) == GIMPLE_COND
3776 && !fp_predicate (last
)
3777 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3778 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
3780 /* If BB's last statement is a switch statement involving integer
3781 operands, determine if we need to add ASSERT_EXPRs. */
3783 && gimple_code (last
) == GIMPLE_SWITCH
3784 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3785 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
3787 /* Traverse all the statements in BB marking used names and looking
3788 for statements that may infer assertions for their used operands. */
3789 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
3796 stmt
= gsi_stmt (si
);
3798 if (is_gimple_debug (stmt
))
3801 /* See if we can derive an assertion for any of STMT's operands. */
3802 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
3805 enum tree_code comp_code
;
3807 /* If op is not live beyond this stmt, do not bother to insert
3809 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
3812 /* If OP is used in such a way that we can infer a value
3813 range for it, and we don't find a previous assertion for
3814 it, create a new assertion location node for OP. */
3815 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
3817 /* If we are able to infer a nonzero value range for OP,
3818 then walk backwards through the use-def chain to see if OP
3819 was set via a typecast.
3821 If so, then we can also infer a nonzero value range
3822 for the operand of the NOP_EXPR. */
3823 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
3826 gimple
*def_stmt
= SSA_NAME_DEF_STMT (t
);
3828 while (is_gimple_assign (def_stmt
)
3829 && CONVERT_EXPR_CODE_P
3830 (gimple_assign_rhs_code (def_stmt
))
3832 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
3834 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
3836 t
= gimple_assign_rhs1 (def_stmt
);
3837 def_stmt
= SSA_NAME_DEF_STMT (t
);
3839 /* Note we want to register the assert for the
3840 operand of the NOP_EXPR after SI, not after the
3842 if (bitmap_bit_p (live
, SSA_NAME_VERSION (t
)))
3843 register_new_assert_for (t
, t
, comp_code
, value
,
3848 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
3853 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
3854 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
3855 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
3856 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
3859 /* Traverse all PHI nodes in BB, updating live. */
3860 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
3863 use_operand_p arg_p
;
3865 gphi
*phi
= si
.phi ();
3866 tree res
= gimple_phi_result (phi
);
3868 if (virtual_operand_p (res
))
3871 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
3873 tree arg
= USE_FROM_PTR (arg_p
);
3874 if (TREE_CODE (arg
) == SSA_NAME
)
3875 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
3878 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
3882 /* Do an RPO walk over the function computing SSA name liveness
3883 on-the-fly and deciding on assert expressions to insert. */
3886 find_assert_locations (void)
3888 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
3889 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
3890 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
3893 live
= XCNEWVEC (sbitmap
, last_basic_block_for_fn (cfun
));
3894 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3895 for (i
= 0; i
< rpo_cnt
; ++i
)
3898 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3899 the order we compute liveness and insert asserts we otherwise
3900 fail to insert asserts into the loop latch. */
3902 FOR_EACH_LOOP (loop
, 0)
3904 i
= loop
->latch
->index
;
3905 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
3906 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
3907 !gsi_end_p (gsi
); gsi_next (&gsi
))
3909 gphi
*phi
= gsi
.phi ();
3910 if (virtual_operand_p (gimple_phi_result (phi
)))
3912 tree arg
= gimple_phi_arg_def (phi
, j
);
3913 if (TREE_CODE (arg
) == SSA_NAME
)
3915 if (live
[i
] == NULL
)
3917 live
[i
] = sbitmap_alloc (num_ssa_names
);
3918 bitmap_clear (live
[i
]);
3920 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
3925 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
3927 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
3933 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
3934 bitmap_clear (live
[rpo
[i
]]);
3937 /* Process BB and update the live information with uses in
3939 find_assert_locations_1 (bb
, live
[rpo
[i
]]);
3941 /* Merge liveness into the predecessor blocks and free it. */
3942 if (!bitmap_empty_p (live
[rpo
[i
]]))
3945 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3947 int pred
= e
->src
->index
;
3948 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
3953 live
[pred
] = sbitmap_alloc (num_ssa_names
);
3954 bitmap_clear (live
[pred
]);
3956 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
3958 if (bb_rpo
[pred
] < pred_rpo
)
3959 pred_rpo
= bb_rpo
[pred
];
3962 /* Record the RPO number of the last visited block that needs
3963 live information from this block. */
3964 last_rpo
[rpo
[i
]] = pred_rpo
;
3968 sbitmap_free (live
[rpo
[i
]]);
3969 live
[rpo
[i
]] = NULL
;
3972 /* We can free all successors live bitmaps if all their
3973 predecessors have been visited already. */
3974 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3975 if (last_rpo
[e
->dest
->index
] == i
3976 && live
[e
->dest
->index
])
3978 sbitmap_free (live
[e
->dest
->index
]);
3979 live
[e
->dest
->index
] = NULL
;
3984 XDELETEVEC (bb_rpo
);
3985 XDELETEVEC (last_rpo
);
3986 for (i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
3988 sbitmap_free (live
[i
]);
3992 /* Create an ASSERT_EXPR for NAME and insert it in the location
3993 indicated by LOC. Return true if we made any edge insertions. */
3996 process_assert_insertions_for (tree name
, assert_locus
*loc
)
3998 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4001 gimple
*assert_stmt
;
4005 /* If we have X <=> X do not insert an assert expr for that. */
4006 if (loc
->expr
== loc
->val
)
4009 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
4010 assert_stmt
= build_assert_expr_for (cond
, name
);
4013 /* We have been asked to insert the assertion on an edge. This
4014 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4015 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
4016 || (gimple_code (gsi_stmt (loc
->si
))
4019 gsi_insert_on_edge (loc
->e
, assert_stmt
);
4023 /* If the stmt iterator points at the end then this is an insertion
4024 at the beginning of a block. */
4025 if (gsi_end_p (loc
->si
))
4027 gimple_stmt_iterator si
= gsi_after_labels (loc
->bb
);
4028 gsi_insert_before (&si
, assert_stmt
, GSI_SAME_STMT
);
4032 /* Otherwise, we can insert right after LOC->SI iff the
4033 statement must not be the last statement in the block. */
4034 stmt
= gsi_stmt (loc
->si
);
4035 if (!stmt_ends_bb_p (stmt
))
4037 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
4041 /* If STMT must be the last statement in BB, we can only insert new
4042 assertions on the non-abnormal edge out of BB. Note that since
4043 STMT is not control flow, there may only be one non-abnormal/eh edge
4045 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
4046 if (!(e
->flags
& (EDGE_ABNORMAL
|EDGE_EH
)))
4048 gsi_insert_on_edge (e
, assert_stmt
);
4055 /* Qsort helper for sorting assert locations. If stable is true, don't
4056 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4057 on the other side some pointers might be NULL. */
4059 template <bool stable
>
4061 compare_assert_loc (const void *pa
, const void *pb
)
4063 assert_locus
* const a
= *(assert_locus
* const *)pa
;
4064 assert_locus
* const b
= *(assert_locus
* const *)pb
;
4066 /* If stable, some asserts might be optimized away already, sort
4076 if (a
->e
== NULL
&& b
->e
!= NULL
)
4078 else if (a
->e
!= NULL
&& b
->e
== NULL
)
4081 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4082 no need to test both a->e and b->e. */
4084 /* Sort after destination index. */
4087 else if (a
->e
->dest
->index
> b
->e
->dest
->index
)
4089 else if (a
->e
->dest
->index
< b
->e
->dest
->index
)
4092 /* Sort after comp_code. */
4093 if (a
->comp_code
> b
->comp_code
)
4095 else if (a
->comp_code
< b
->comp_code
)
4100 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4101 uses DECL_UID of the VAR_DECL, so sorting might differ between
4102 -g and -g0. When doing the removal of redundant assert exprs
4103 and commonization to successors, this does not matter, but for
4104 the final sort needs to be stable. */
4112 ha
= iterative_hash_expr (a
->expr
, iterative_hash_expr (a
->val
, 0));
4113 hb
= iterative_hash_expr (b
->expr
, iterative_hash_expr (b
->val
, 0));
4116 /* Break the tie using hashing and source/bb index. */
4118 return (a
->e
!= NULL
4119 ? a
->e
->src
->index
- b
->e
->src
->index
4120 : a
->bb
->index
- b
->bb
->index
);
4121 return ha
> hb
? 1 : -1;
4124 /* Process all the insertions registered for every name N_i registered
4125 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4126 found in ASSERTS_FOR[i]. */
4129 process_assert_insertions (void)
4133 bool update_edges_p
= false;
4134 int num_asserts
= 0;
4136 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4137 dump_all_asserts (dump_file
);
4139 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4141 assert_locus
*loc
= asserts_for
[i
];
4144 auto_vec
<assert_locus
*, 16> asserts
;
4145 for (; loc
; loc
= loc
->next
)
4146 asserts
.safe_push (loc
);
4147 asserts
.qsort (compare_assert_loc
<false>);
4149 /* Push down common asserts to successors and remove redundant ones. */
4151 assert_locus
*common
= NULL
;
4152 unsigned commonj
= 0;
4153 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
4159 || loc
->e
->dest
!= common
->e
->dest
4160 || loc
->comp_code
!= common
->comp_code
4161 || ! operand_equal_p (loc
->val
, common
->val
, 0)
4162 || ! operand_equal_p (loc
->expr
, common
->expr
, 0))
4168 else if (loc
->e
== asserts
[j
-1]->e
)
4170 /* Remove duplicate asserts. */
4171 if (commonj
== j
- 1)
4176 free (asserts
[j
-1]);
4177 asserts
[j
-1] = NULL
;
4182 if (EDGE_COUNT (common
->e
->dest
->preds
) == ecnt
)
4184 /* We have the same assertion on all incoming edges of a BB.
4185 Insert it at the beginning of that block. */
4186 loc
->bb
= loc
->e
->dest
;
4188 loc
->si
= gsi_none ();
4190 /* Clear asserts commoned. */
4191 for (; commonj
!= j
; ++commonj
)
4192 if (asserts
[commonj
])
4194 free (asserts
[commonj
]);
4195 asserts
[commonj
] = NULL
;
4201 /* The asserts vector sorting above might be unstable for
4202 -fcompare-debug, sort again to ensure a stable sort. */
4203 asserts
.qsort (compare_assert_loc
<true>);
4204 for (unsigned j
= 0; j
< asserts
.length (); ++j
)
4209 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
4216 gsi_commit_edge_inserts ();
4218 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
4223 /* Traverse the flowgraph looking for conditional jumps to insert range
4224 expressions. These range expressions are meant to provide information
4225 to optimizations that need to reason in terms of value ranges. They
4226 will not be expanded into RTL. For instance, given:
4235 this pass will transform the code into:
4241 x = ASSERT_EXPR <x, x < y>
4246 y = ASSERT_EXPR <y, x >= y>
4250 The idea is that once copy and constant propagation have run, other
4251 optimizations will be able to determine what ranges of values can 'x'
4252 take in different paths of the code, simply by checking the reaching
4253 definition of 'x'. */
4256 insert_range_assertions (void)
4258 need_assert_for
= BITMAP_ALLOC (NULL
);
4259 asserts_for
= XCNEWVEC (assert_locus
*, num_ssa_names
);
4261 calculate_dominance_info (CDI_DOMINATORS
);
4263 find_assert_locations ();
4264 if (!bitmap_empty_p (need_assert_for
))
4266 process_assert_insertions ();
4267 update_ssa (TODO_update_ssa_no_phi
);
4270 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4272 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
4273 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
4277 BITMAP_FREE (need_assert_for
);
4280 class vrp_prop
: public ssa_propagation_engine
4283 enum ssa_prop_result
visit_stmt (gimple
*, edge
*, tree
*) FINAL OVERRIDE
;
4284 enum ssa_prop_result
visit_phi (gphi
*) FINAL OVERRIDE
;
4286 void vrp_initialize (void);
4287 void vrp_finalize (bool);
4288 void check_all_array_refs (void);
4289 void check_array_ref (location_t
, tree
, bool);
4290 void check_mem_ref (location_t
, tree
, bool);
4291 void search_for_addr_array (tree
, location_t
);
4293 class vr_values vr_values
;
4294 /* Temporary delegator to minimize code churn. */
4295 value_range
*get_value_range (const_tree op
)
4296 { return vr_values
.get_value_range (op
); }
4297 void set_defs_to_varying (gimple
*stmt
)
4298 { return vr_values
.set_defs_to_varying (stmt
); }
4299 void extract_range_from_stmt (gimple
*stmt
, edge
*taken_edge_p
,
4300 tree
*output_p
, value_range
*vr
)
4301 { vr_values
.extract_range_from_stmt (stmt
, taken_edge_p
, output_p
, vr
); }
4302 bool update_value_range (const_tree op
, value_range
*vr
)
4303 { return vr_values
.update_value_range (op
, vr
); }
4304 void extract_range_basic (value_range
*vr
, gimple
*stmt
)
4305 { vr_values
.extract_range_basic (vr
, stmt
); }
4306 void extract_range_from_phi_node (gphi
*phi
, value_range
*vr
)
4307 { vr_values
.extract_range_from_phi_node (phi
, vr
); }
4309 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4310 and "struct" hacks. If VRP can determine that the
4311 array subscript is a constant, check if it is outside valid
4312 range. If the array subscript is a RANGE, warn if it is
4313 non-overlapping with valid range.
4314 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4317 vrp_prop::check_array_ref (location_t location
, tree ref
,
4318 bool ignore_off_by_one
)
4320 const value_range
*vr
= NULL
;
4321 tree low_sub
, up_sub
;
4322 tree low_bound
, up_bound
, up_bound_p1
;
4324 if (TREE_NO_WARNING (ref
))
4327 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
4328 up_bound
= array_ref_up_bound (ref
);
4331 || TREE_CODE (up_bound
) != INTEGER_CST
4332 || (warn_array_bounds
< 2
4333 && array_at_struct_end_p (ref
)))
4335 /* Accesses to trailing arrays via pointers may access storage
4336 beyond the types array bounds. For such arrays, or for flexible
4337 array members, as well as for other arrays of an unknown size,
4338 replace the upper bound with a more permissive one that assumes
4339 the size of the largest object is PTRDIFF_MAX. */
4340 tree eltsize
= array_ref_element_size (ref
);
4342 if (TREE_CODE (eltsize
) != INTEGER_CST
4343 || integer_zerop (eltsize
))
4345 up_bound
= NULL_TREE
;
4346 up_bound_p1
= NULL_TREE
;
4350 tree maxbound
= TYPE_MAX_VALUE (ptrdiff_type_node
);
4351 tree arg
= TREE_OPERAND (ref
, 0);
4354 if (get_addr_base_and_unit_offset (arg
, &off
) && known_gt (off
, 0))
4355 maxbound
= wide_int_to_tree (sizetype
,
4356 wi::sub (wi::to_wide (maxbound
),
4359 maxbound
= fold_convert (sizetype
, maxbound
);
4361 up_bound_p1
= int_const_binop (TRUNC_DIV_EXPR
, maxbound
, eltsize
);
4363 up_bound
= int_const_binop (MINUS_EXPR
, up_bound_p1
,
4364 build_int_cst (ptrdiff_type_node
, 1));
4368 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
,
4369 build_int_cst (TREE_TYPE (up_bound
), 1));
4371 low_bound
= array_ref_low_bound (ref
);
4373 tree artype
= TREE_TYPE (TREE_OPERAND (ref
, 0));
4375 bool warned
= false;
4378 if (up_bound
&& tree_int_cst_equal (low_bound
, up_bound_p1
))
4379 warned
= warning_at (location
, OPT_Warray_bounds
,
4380 "array subscript %E is above array bounds of %qT",
4383 if (TREE_CODE (low_sub
) == SSA_NAME
)
4385 vr
= get_value_range (low_sub
);
4386 if (!vr
->undefined_p () && !vr
->varying_p ())
4388 low_sub
= vr
->kind () == VR_RANGE
? vr
->max () : vr
->min ();
4389 up_sub
= vr
->kind () == VR_RANGE
? vr
->min () : vr
->max ();
4393 if (vr
&& vr
->kind () == VR_ANTI_RANGE
)
4396 && TREE_CODE (up_sub
) == INTEGER_CST
4397 && (ignore_off_by_one
4398 ? tree_int_cst_lt (up_bound
, up_sub
)
4399 : tree_int_cst_le (up_bound
, up_sub
))
4400 && TREE_CODE (low_sub
) == INTEGER_CST
4401 && tree_int_cst_le (low_sub
, low_bound
))
4402 warned
= warning_at (location
, OPT_Warray_bounds
,
4403 "array subscript [%E, %E] is outside "
4404 "array bounds of %qT",
4405 low_sub
, up_sub
, artype
);
4408 && TREE_CODE (up_sub
) == INTEGER_CST
4409 && (ignore_off_by_one
4410 ? !tree_int_cst_le (up_sub
, up_bound_p1
)
4411 : !tree_int_cst_le (up_sub
, up_bound
)))
4413 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4415 fprintf (dump_file
, "Array bound warning for ");
4416 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
4417 fprintf (dump_file
, "\n");
4419 warned
= warning_at (location
, OPT_Warray_bounds
,
4420 "array subscript %E is above array bounds of %qT",
4423 else if (TREE_CODE (low_sub
) == INTEGER_CST
4424 && tree_int_cst_lt (low_sub
, low_bound
))
4426 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4428 fprintf (dump_file
, "Array bound warning for ");
4429 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
4430 fprintf (dump_file
, "\n");
4432 warned
= warning_at (location
, OPT_Warray_bounds
,
4433 "array subscript %E is below array bounds of %qT",
4439 ref
= TREE_OPERAND (ref
, 0);
4442 inform (DECL_SOURCE_LOCATION (ref
), "while referencing %qD", ref
);
4444 TREE_NO_WARNING (ref
) = 1;
4448 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4449 references to string constants. If VRP can determine that the array
4450 subscript is a constant, check if it is outside valid range.
4451 If the array subscript is a RANGE, warn if it is non-overlapping
4453 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4454 (used to allow one-past-the-end indices for code that takes
4455 the address of the just-past-the-end element of an array). */
4458 vrp_prop::check_mem_ref (location_t location
, tree ref
,
4459 bool ignore_off_by_one
)
4461 if (TREE_NO_WARNING (ref
))
4464 tree arg
= TREE_OPERAND (ref
, 0);
4465 /* The constant and variable offset of the reference. */
4466 tree cstoff
= TREE_OPERAND (ref
, 1);
4467 tree varoff
= NULL_TREE
;
4469 const offset_int maxobjsize
= tree_to_shwi (max_object_size ());
4471 /* The array or string constant bounds in bytes. Initially set
4472 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4474 offset_int arrbounds
[2] = { -maxobjsize
- 1, maxobjsize
};
4476 /* The minimum and maximum intermediate offset. For a reference
4477 to be valid, not only does the final offset/subscript must be
4478 in bounds but all intermediate offsets should be as well.
4479 GCC may be able to deal gracefully with such out-of-bounds
4480 offsets so the checking is only enbaled at -Warray-bounds=2
4481 where it may help detect bugs in uses of the intermediate
4482 offsets that could otherwise not be detectable. */
4483 offset_int ioff
= wi::to_offset (fold_convert (ptrdiff_type_node
, cstoff
));
4484 offset_int extrema
[2] = { 0, wi::abs (ioff
) };
4486 /* The range of the byte offset into the reference. */
4487 offset_int offrange
[2] = { 0, 0 };
4489 const value_range
*vr
= NULL
;
4491 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4492 The loop computes the range of the final offset for expressions such
4493 as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs in
4495 while (TREE_CODE (arg
) == SSA_NAME
)
4497 gimple
*def
= SSA_NAME_DEF_STMT (arg
);
4498 if (!is_gimple_assign (def
))
4501 tree_code code
= gimple_assign_rhs_code (def
);
4502 if (code
== POINTER_PLUS_EXPR
)
4504 arg
= gimple_assign_rhs1 (def
);
4505 varoff
= gimple_assign_rhs2 (def
);
4507 else if (code
== ASSERT_EXPR
)
4509 arg
= TREE_OPERAND (gimple_assign_rhs1 (def
), 0);
4515 /* VAROFF should always be a SSA_NAME here (and not even
4516 INTEGER_CST) but there's no point in taking chances. */
4517 if (TREE_CODE (varoff
) != SSA_NAME
)
4520 vr
= get_value_range (varoff
);
4521 if (!vr
|| vr
->undefined_p () || vr
->varying_p ())
4524 if (!vr
->constant_p ())
4527 if (vr
->kind () == VR_RANGE
)
4530 = wi::to_offset (fold_convert (ptrdiff_type_node
, vr
->min ()));
4532 = wi::to_offset (fold_convert (ptrdiff_type_node
, vr
->max ()));
4540 /* When MIN >= MAX, the offset is effectively in a union
4541 of two ranges: [-MAXOBJSIZE -1, MAX] and [MIN, MAXOBJSIZE].
4542 Since there is no way to represent such a range across
4543 additions, conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4545 offrange
[0] += arrbounds
[0];
4546 offrange
[1] += arrbounds
[1];
4551 /* For an anti-range, analogously to the above, conservatively
4552 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4553 offrange
[0] += arrbounds
[0];
4554 offrange
[1] += arrbounds
[1];
4557 /* Keep track of the minimum and maximum offset. */
4558 if (offrange
[1] < 0 && offrange
[1] < extrema
[0])
4559 extrema
[0] = offrange
[1];
4560 if (offrange
[0] > 0 && offrange
[0] > extrema
[1])
4561 extrema
[1] = offrange
[0];
4563 if (offrange
[0] < arrbounds
[0])
4564 offrange
[0] = arrbounds
[0];
4566 if (offrange
[1] > arrbounds
[1])
4567 offrange
[1] = arrbounds
[1];
4570 if (TREE_CODE (arg
) == ADDR_EXPR
)
4572 arg
= TREE_OPERAND (arg
, 0);
4573 if (TREE_CODE (arg
) != STRING_CST
4574 && TREE_CODE (arg
) != VAR_DECL
)
4580 /* The type of the object being referred to. It can be an array,
4581 string literal, or a non-array type when the MEM_REF represents
4582 a reference/subscript via a pointer to an object that is not
4583 an element of an array. References to members of structs and
4584 unions are excluded because MEM_REF doesn't make it possible
4585 to identify the member where the reference originated.
4586 Incomplete types are excluded as well because their size is
4588 tree reftype
= TREE_TYPE (arg
);
4589 if (POINTER_TYPE_P (reftype
)
4590 || !COMPLETE_TYPE_P (reftype
)
4591 || TREE_CODE (TYPE_SIZE_UNIT (reftype
)) != INTEGER_CST
4592 || RECORD_OR_UNION_TYPE_P (reftype
))
4596 if (TREE_CODE (reftype
) == ARRAY_TYPE
)
4598 eltsize
= wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype
)));
4600 if (tree dom
= TYPE_DOMAIN (reftype
))
4602 tree bnds
[] = { TYPE_MIN_VALUE (dom
), TYPE_MAX_VALUE (dom
) };
4603 if (array_at_struct_end_p (arg
)
4604 || !bnds
[0] || !bnds
[1])
4607 arrbounds
[1] = wi::lrshift (maxobjsize
, wi::floor_log2 (eltsize
));
4611 arrbounds
[0] = wi::to_offset (bnds
[0]) * eltsize
;
4612 arrbounds
[1] = (wi::to_offset (bnds
[1]) + 1) * eltsize
;
4618 arrbounds
[1] = wi::lrshift (maxobjsize
, wi::floor_log2 (eltsize
));
4621 if (TREE_CODE (ref
) == MEM_REF
)
4623 /* For MEM_REF determine a tighter bound of the non-array
4625 tree eltype
= TREE_TYPE (reftype
);
4626 while (TREE_CODE (eltype
) == ARRAY_TYPE
)
4627 eltype
= TREE_TYPE (eltype
);
4628 eltsize
= wi::to_offset (TYPE_SIZE_UNIT (eltype
));
4635 arrbounds
[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype
));
4638 offrange
[0] += ioff
;
4639 offrange
[1] += ioff
;
4641 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4642 is set (when taking the address of the one-past-last element
4643 of an array) but always use the stricter bound in diagnostics. */
4644 offset_int ubound
= arrbounds
[1];
4645 if (ignore_off_by_one
)
4648 if (offrange
[0] >= ubound
|| offrange
[1] < arrbounds
[0])
4650 /* Treat a reference to a non-array object as one to an array
4651 of a single element. */
4652 if (TREE_CODE (reftype
) != ARRAY_TYPE
)
4653 reftype
= build_array_type_nelts (reftype
, 1);
4655 if (TREE_CODE (ref
) == MEM_REF
)
4657 /* Extract the element type out of MEM_REF and use its size
4658 to compute the index to print in the diagnostic; arrays
4659 in MEM_REF don't mean anything. A type with no size like
4660 void is as good as having a size of 1. */
4661 tree type
= TREE_TYPE (ref
);
4662 while (TREE_CODE (type
) == ARRAY_TYPE
)
4663 type
= TREE_TYPE (type
);
4664 if (tree size
= TYPE_SIZE_UNIT (type
))
4666 offrange
[0] = offrange
[0] / wi::to_offset (size
);
4667 offrange
[1] = offrange
[1] / wi::to_offset (size
);
4672 /* For anything other than MEM_REF, compute the index to
4673 print in the diagnostic as the offset over element size. */
4674 offrange
[0] = offrange
[0] / eltsize
;
4675 offrange
[1] = offrange
[1] / eltsize
;
4679 if (offrange
[0] == offrange
[1])
4680 warned
= warning_at (location
, OPT_Warray_bounds
,
4681 "array subscript %wi is outside array bounds "
4683 offrange
[0].to_shwi (), reftype
);
4685 warned
= warning_at (location
, OPT_Warray_bounds
,
4686 "array subscript [%wi, %wi] is outside "
4687 "array bounds of %qT",
4688 offrange
[0].to_shwi (),
4689 offrange
[1].to_shwi (), reftype
);
4690 if (warned
&& DECL_P (arg
))
4691 inform (DECL_SOURCE_LOCATION (arg
), "while referencing %qD", arg
);
4694 TREE_NO_WARNING (ref
) = 1;
4698 if (warn_array_bounds
< 2)
4701 /* At level 2 check also intermediate offsets. */
4703 if (extrema
[i
] < -arrbounds
[1] || extrema
[i
= 1] > ubound
)
4705 HOST_WIDE_INT tmpidx
= extrema
[i
].to_shwi () / eltsize
.to_shwi ();
4707 if (warning_at (location
, OPT_Warray_bounds
,
4708 "intermediate array offset %wi is outside array bounds "
4709 "of %qT", tmpidx
, reftype
))
4710 TREE_NO_WARNING (ref
) = 1;
4714 /* Searches if the expr T, located at LOCATION computes
4715 address of an ARRAY_REF, and call check_array_ref on it. */
4718 vrp_prop::search_for_addr_array (tree t
, location_t location
)
4720 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4723 if (TREE_CODE (t
) == ARRAY_REF
)
4724 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
4725 else if (TREE_CODE (t
) == MEM_REF
)
4726 check_mem_ref (location
, t
, true /*ignore_off_by_one*/);
4728 t
= TREE_OPERAND (t
, 0);
4730 while (handled_component_p (t
) || TREE_CODE (t
) == MEM_REF
);
4732 if (TREE_CODE (t
) != MEM_REF
4733 || TREE_CODE (TREE_OPERAND (t
, 0)) != ADDR_EXPR
4734 || TREE_NO_WARNING (t
))
4737 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
4738 tree low_bound
, up_bound
, el_sz
;
4739 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
4740 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
4741 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
4744 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
4745 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
4746 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
4748 || TREE_CODE (low_bound
) != INTEGER_CST
4750 || TREE_CODE (up_bound
) != INTEGER_CST
4752 || TREE_CODE (el_sz
) != INTEGER_CST
)
4756 if (!mem_ref_offset (t
).is_constant (&idx
))
4759 bool warned
= false;
4760 idx
= wi::sdiv_trunc (idx
, wi::to_offset (el_sz
));
4763 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4765 fprintf (dump_file
, "Array bound warning for ");
4766 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
4767 fprintf (dump_file
, "\n");
4769 warned
= warning_at (location
, OPT_Warray_bounds
,
4770 "array subscript %wi is below "
4771 "array bounds of %qT",
4772 idx
.to_shwi (), TREE_TYPE (tem
));
4774 else if (idx
> (wi::to_offset (up_bound
)
4775 - wi::to_offset (low_bound
) + 1))
4777 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4779 fprintf (dump_file
, "Array bound warning for ");
4780 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
4781 fprintf (dump_file
, "\n");
4783 warned
= warning_at (location
, OPT_Warray_bounds
,
4784 "array subscript %wu is above "
4785 "array bounds of %qT",
4786 idx
.to_uhwi (), TREE_TYPE (tem
));
4792 inform (DECL_SOURCE_LOCATION (t
), "while referencing %qD", t
);
4794 TREE_NO_WARNING (t
) = 1;
4798 /* walk_tree() callback that checks if *TP is
4799 an ARRAY_REF inside an ADDR_EXPR (in which an array
4800 subscript one outside the valid range is allowed). Call
4801 check_array_ref for each ARRAY_REF found. The location is
4805 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
4808 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4809 location_t location
;
4811 if (EXPR_HAS_LOCATION (t
))
4812 location
= EXPR_LOCATION (t
);
4814 location
= gimple_location (wi
->stmt
);
4816 *walk_subtree
= TRUE
;
4818 vrp_prop
*vrp_prop
= (class vrp_prop
*)wi
->info
;
4819 if (TREE_CODE (t
) == ARRAY_REF
)
4820 vrp_prop
->check_array_ref (location
, t
, false /*ignore_off_by_one*/);
4821 else if (TREE_CODE (t
) == MEM_REF
)
4822 vrp_prop
->check_mem_ref (location
, t
, false /*ignore_off_by_one*/);
4823 else if (TREE_CODE (t
) == ADDR_EXPR
)
4825 vrp_prop
->search_for_addr_array (t
, location
);
4826 *walk_subtree
= FALSE
;
4832 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4833 to walk over all statements of all reachable BBs and call
4834 check_array_bounds on them. */
4836 class check_array_bounds_dom_walker
: public dom_walker
4839 check_array_bounds_dom_walker (vrp_prop
*prop
)
4840 : dom_walker (CDI_DOMINATORS
,
4841 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4842 flags, so that we can merge in information on
4843 non-executable edges from vrp_folder . */
4844 REACHABLE_BLOCKS_PRESERVING_FLAGS
),
4846 ~check_array_bounds_dom_walker () {}
4848 edge
before_dom_children (basic_block
) FINAL OVERRIDE
;
4854 /* Implementation of dom_walker::before_dom_children.
4856 Walk over all statements of BB and call check_array_bounds on them,
4857 and determine if there's a unique successor edge. */
4860 check_array_bounds_dom_walker::before_dom_children (basic_block bb
)
4862 gimple_stmt_iterator si
;
4863 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4865 gimple
*stmt
= gsi_stmt (si
);
4866 struct walk_stmt_info wi
;
4867 if (!gimple_has_location (stmt
)
4868 || is_gimple_debug (stmt
))
4871 memset (&wi
, 0, sizeof (wi
));
4875 walk_gimple_op (stmt
, check_array_bounds
, &wi
);
4878 /* Determine if there's a unique successor edge, and if so, return
4879 that back to dom_walker, ensuring that we don't visit blocks that
4880 became unreachable during the VRP propagation
4881 (PR tree-optimization/83312). */
4882 return find_taken_edge (bb
, NULL_TREE
);
4885 /* Walk over all statements of all reachable BBs and call check_array_bounds
4889 vrp_prop::check_all_array_refs ()
4891 check_array_bounds_dom_walker
w (this);
4892 w
.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
4895 /* Return true if all imm uses of VAR are either in STMT, or
4896 feed (optionally through a chain of single imm uses) GIMPLE_COND
4897 in basic block COND_BB. */
4900 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple
*stmt
, basic_block cond_bb
)
4902 use_operand_p use_p
, use2_p
;
4903 imm_use_iterator iter
;
4905 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
4906 if (USE_STMT (use_p
) != stmt
)
4908 gimple
*use_stmt
= USE_STMT (use_p
), *use_stmt2
;
4909 if (is_gimple_debug (use_stmt
))
4911 while (is_gimple_assign (use_stmt
)
4912 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
4913 && single_imm_use (gimple_assign_lhs (use_stmt
),
4914 &use2_p
, &use_stmt2
))
4915 use_stmt
= use_stmt2
;
4916 if (gimple_code (use_stmt
) != GIMPLE_COND
4917 || gimple_bb (use_stmt
) != cond_bb
)
4930 __builtin_unreachable ();
4932 x_5 = ASSERT_EXPR <x_3, ...>;
4933 If x_3 has no other immediate uses (checked by caller),
4934 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4935 from the non-zero bitmask. */
4938 maybe_set_nonzero_bits (edge e
, tree var
)
4940 basic_block cond_bb
= e
->src
;
4941 gimple
*stmt
= last_stmt (cond_bb
);
4945 || gimple_code (stmt
) != GIMPLE_COND
4946 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
4947 ? EQ_EXPR
: NE_EXPR
)
4948 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
4949 || !integer_zerop (gimple_cond_rhs (stmt
)))
4952 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
4953 if (!is_gimple_assign (stmt
)
4954 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
4955 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
4957 if (gimple_assign_rhs1 (stmt
) != var
)
4961 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
4963 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
4964 if (!gimple_assign_cast_p (stmt2
)
4965 || gimple_assign_rhs1 (stmt2
) != var
4966 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
4967 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
4968 != TYPE_PRECISION (TREE_TYPE (var
))))
4971 cst
= gimple_assign_rhs2 (stmt
);
4972 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
),
4973 wi::to_wide (cst
)));
4976 /* Convert range assertion expressions into the implied copies and
4977 copy propagate away the copies. Doing the trivial copy propagation
4978 here avoids the need to run the full copy propagation pass after
4981 FIXME, this will eventually lead to copy propagation removing the
4982 names that had useful range information attached to them. For
4983 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4984 then N_i will have the range [3, +INF].
4986 However, by converting the assertion into the implied copy
4987 operation N_i = N_j, we will then copy-propagate N_j into the uses
4988 of N_i and lose the range information. We may want to hold on to
4989 ASSERT_EXPRs a little while longer as the ranges could be used in
4990 things like jump threading.
4992 The problem with keeping ASSERT_EXPRs around is that passes after
4993 VRP need to handle them appropriately.
4995 Another approach would be to make the range information a first
4996 class property of the SSA_NAME so that it can be queried from
4997 any pass. This is made somewhat more complex by the need for
4998 multiple ranges to be associated with one SSA_NAME. */
5001 remove_range_assertions (void)
5004 gimple_stmt_iterator si
;
5005 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
5006 a basic block preceeded by GIMPLE_COND branching to it and
5007 __builtin_trap, -1 if not yet checked, 0 otherwise. */
5010 /* Note that the BSI iterator bump happens at the bottom of the
5011 loop and no bump is necessary if we're removing the statement
5012 referenced by the current BSI. */
5013 FOR_EACH_BB_FN (bb
, cfun
)
5014 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
5016 gimple
*stmt
= gsi_stmt (si
);
5018 if (is_gimple_assign (stmt
)
5019 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5021 tree lhs
= gimple_assign_lhs (stmt
);
5022 tree rhs
= gimple_assign_rhs1 (stmt
);
5025 var
= ASSERT_EXPR_VAR (rhs
);
5027 if (TREE_CODE (var
) == SSA_NAME
5028 && !POINTER_TYPE_P (TREE_TYPE (lhs
))
5029 && SSA_NAME_RANGE_INFO (lhs
))
5031 if (is_unreachable
== -1)
5034 if (single_pred_p (bb
)
5035 && assert_unreachable_fallthru_edge_p
5036 (single_pred_edge (bb
)))
5040 if (x_7 >= 10 && x_7 < 20)
5041 __builtin_unreachable ();
5042 x_8 = ASSERT_EXPR <x_7, ...>;
5043 if the only uses of x_7 are in the ASSERT_EXPR and
5044 in the condition. In that case, we can copy the
5045 range info from x_8 computed in this pass also
5048 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
5051 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
5052 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
5053 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
5054 maybe_set_nonzero_bits (single_pred_edge (bb
), var
);
5058 /* Propagate the RHS into every use of the LHS. For SSA names
5059 also propagate abnormals as it merely restores the original
5060 IL in this case (an replace_uses_by would assert). */
5061 if (TREE_CODE (var
) == SSA_NAME
)
5063 imm_use_iterator iter
;
5064 use_operand_p use_p
;
5066 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
5067 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5068 SET_USE (use_p
, var
);
5071 replace_uses_by (lhs
, var
);
5073 /* And finally, remove the copy, it is not needed. */
5074 gsi_remove (&si
, true);
5075 release_defs (stmt
);
5079 if (!is_gimple_debug (gsi_stmt (si
)))
5086 /* Return true if STMT is interesting for VRP. */
5089 stmt_interesting_for_vrp (gimple
*stmt
)
5091 if (gimple_code (stmt
) == GIMPLE_PHI
)
5093 tree res
= gimple_phi_result (stmt
);
5094 return (!virtual_operand_p (res
)
5095 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
5096 || POINTER_TYPE_P (TREE_TYPE (res
))));
5098 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5100 tree lhs
= gimple_get_lhs (stmt
);
5102 /* In general, assignments with virtual operands are not useful
5103 for deriving ranges, with the obvious exception of calls to
5104 builtin functions. */
5105 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5106 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5107 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5108 && (is_gimple_call (stmt
)
5109 || !gimple_vuse (stmt
)))
5111 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
5112 switch (gimple_call_internal_fn (stmt
))
5114 case IFN_ADD_OVERFLOW
:
5115 case IFN_SUB_OVERFLOW
:
5116 case IFN_MUL_OVERFLOW
:
5117 case IFN_ATOMIC_COMPARE_EXCHANGE
:
5118 /* These internal calls return _Complex integer type,
5119 but are interesting to VRP nevertheless. */
5120 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
5127 else if (gimple_code (stmt
) == GIMPLE_COND
5128 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5134 /* Initialization required by ssa_propagate engine. */
5137 vrp_prop::vrp_initialize ()
5141 FOR_EACH_BB_FN (bb
, cfun
)
5143 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
5146 gphi
*phi
= si
.phi ();
5147 if (!stmt_interesting_for_vrp (phi
))
5149 tree lhs
= PHI_RESULT (phi
);
5150 get_value_range (lhs
)->set_varying ();
5151 prop_set_simulate_again (phi
, false);
5154 prop_set_simulate_again (phi
, true);
5157 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
5160 gimple
*stmt
= gsi_stmt (si
);
5162 /* If the statement is a control insn, then we do not
5163 want to avoid simulating the statement once. Failure
5164 to do so means that those edges will never get added. */
5165 if (stmt_ends_bb_p (stmt
))
5166 prop_set_simulate_again (stmt
, true);
5167 else if (!stmt_interesting_for_vrp (stmt
))
5169 set_defs_to_varying (stmt
);
5170 prop_set_simulate_again (stmt
, false);
5173 prop_set_simulate_again (stmt
, true);
5178 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5179 that includes the value VAL. The search is restricted to the range
5180 [START_IDX, n - 1] where n is the size of VEC.
5182 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5185 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5186 it is placed in IDX and false is returned.
5188 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5192 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
5194 size_t n
= gimple_switch_num_labels (stmt
);
5197 /* Find case label for minimum of the value range or the next one.
5198 At each iteration we are searching in [low, high - 1]. */
5200 for (low
= start_idx
, high
= n
; high
!= low
; )
5204 /* Note that i != high, so we never ask for n. */
5205 size_t i
= (high
+ low
) / 2;
5206 t
= gimple_switch_label (stmt
, i
);
5208 /* Cache the result of comparing CASE_LOW and val. */
5209 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
5213 /* Ranges cannot be empty. */
5222 if (CASE_HIGH (t
) != NULL
5223 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
5235 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5236 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5237 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5238 then MAX_IDX < MIN_IDX.
5239 Returns true if the default label is not needed. */
5242 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
5246 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
5247 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
5251 && max_take_default
)
5253 /* Only the default case label reached.
5254 Return an empty range. */
5261 bool take_default
= min_take_default
|| max_take_default
;
5265 if (max_take_default
)
5268 /* If the case label range is continuous, we do not need
5269 the default case label. Verify that. */
5270 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
5271 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
5272 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
5273 for (k
= i
+ 1; k
<= j
; ++k
)
5275 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
5276 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
5278 take_default
= true;
5282 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
5283 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
5288 return !take_default
;
5292 /* Evaluate statement STMT. If the statement produces a useful range,
5293 return SSA_PROP_INTERESTING and record the SSA name with the
5294 interesting range into *OUTPUT_P.
5296 If STMT is a conditional branch and we can determine its truth
5297 value, the taken edge is recorded in *TAKEN_EDGE_P.
5299 If STMT produces a varying value, return SSA_PROP_VARYING. */
5301 enum ssa_prop_result
5302 vrp_prop::visit_stmt (gimple
*stmt
, edge
*taken_edge_p
, tree
*output_p
)
5304 tree lhs
= gimple_get_lhs (stmt
);
5306 extract_range_from_stmt (stmt
, taken_edge_p
, output_p
, &vr
);
5310 if (update_value_range (*output_p
, &vr
))
5312 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5314 fprintf (dump_file
, "Found new range for ");
5315 print_generic_expr (dump_file
, *output_p
);
5316 fprintf (dump_file
, ": ");
5317 dump_value_range (dump_file
, &vr
);
5318 fprintf (dump_file
, "\n");
5321 if (vr
.varying_p ())
5322 return SSA_PROP_VARYING
;
5324 return SSA_PROP_INTERESTING
;
5326 return SSA_PROP_NOT_INTERESTING
;
5329 if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
5330 switch (gimple_call_internal_fn (stmt
))
5332 case IFN_ADD_OVERFLOW
:
5333 case IFN_SUB_OVERFLOW
:
5334 case IFN_MUL_OVERFLOW
:
5335 case IFN_ATOMIC_COMPARE_EXCHANGE
:
5336 /* These internal calls return _Complex integer type,
5337 which VRP does not track, but the immediate uses
5338 thereof might be interesting. */
5339 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
5341 imm_use_iterator iter
;
5342 use_operand_p use_p
;
5343 enum ssa_prop_result res
= SSA_PROP_VARYING
;
5345 get_value_range (lhs
)->set_varying ();
5347 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
5349 gimple
*use_stmt
= USE_STMT (use_p
);
5350 if (!is_gimple_assign (use_stmt
))
5352 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
5353 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
5355 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
5356 tree use_lhs
= gimple_assign_lhs (use_stmt
);
5357 if (TREE_CODE (rhs1
) != rhs_code
5358 || TREE_OPERAND (rhs1
, 0) != lhs
5359 || TREE_CODE (use_lhs
) != SSA_NAME
5360 || !stmt_interesting_for_vrp (use_stmt
)
5361 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
5362 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
5363 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
5366 /* If there is a change in the value range for any of the
5367 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5368 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5369 or IMAGPART_EXPR immediate uses, but none of them have
5370 a change in their value ranges, return
5371 SSA_PROP_NOT_INTERESTING. If there are no
5372 {REAL,IMAG}PART_EXPR uses at all,
5373 return SSA_PROP_VARYING. */
5375 extract_range_basic (&new_vr
, use_stmt
);
5376 const value_range
*old_vr
= get_value_range (use_lhs
);
5377 if (!old_vr
->equal_p (new_vr
, /*ignore_equivs=*/false))
5378 res
= SSA_PROP_INTERESTING
;
5380 res
= SSA_PROP_NOT_INTERESTING
;
5381 new_vr
.equiv_clear ();
5382 if (res
== SSA_PROP_INTERESTING
)
5396 /* All other statements produce nothing of interest for VRP, so mark
5397 their outputs varying and prevent further simulation. */
5398 set_defs_to_varying (stmt
);
5400 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
5403 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5404 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5405 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5406 possible such range. The resulting range is not canonicalized. */
5409 union_ranges (enum value_range_kind
*vr0type
,
5410 tree
*vr0min
, tree
*vr0max
,
5411 enum value_range_kind vr1type
,
5412 tree vr1min
, tree vr1max
)
5414 bool mineq
= vrp_operand_equal_p (*vr0min
, vr1min
);
5415 bool maxeq
= vrp_operand_equal_p (*vr0max
, vr1max
);
5417 /* [] is vr0, () is vr1 in the following classification comments. */
5421 if (*vr0type
== vr1type
)
5422 /* Nothing to do for equal ranges. */
5424 else if ((*vr0type
== VR_RANGE
5425 && vr1type
== VR_ANTI_RANGE
)
5426 || (*vr0type
== VR_ANTI_RANGE
5427 && vr1type
== VR_RANGE
))
5429 /* For anti-range with range union the result is varying. */
5435 else if (operand_less_p (*vr0max
, vr1min
) == 1
5436 || operand_less_p (vr1max
, *vr0min
) == 1)
5438 /* [ ] ( ) or ( ) [ ]
5439 If the ranges have an empty intersection, result of the union
5440 operation is the anti-range or if both are anti-ranges
5442 if (*vr0type
== VR_ANTI_RANGE
5443 && vr1type
== VR_ANTI_RANGE
)
5445 else if (*vr0type
== VR_ANTI_RANGE
5446 && vr1type
== VR_RANGE
)
5448 else if (*vr0type
== VR_RANGE
5449 && vr1type
== VR_ANTI_RANGE
)
5455 else if (*vr0type
== VR_RANGE
5456 && vr1type
== VR_RANGE
)
5458 /* The result is the convex hull of both ranges. */
5459 if (operand_less_p (*vr0max
, vr1min
) == 1)
5461 /* If the result can be an anti-range, create one. */
5462 if (TREE_CODE (*vr0max
) == INTEGER_CST
5463 && TREE_CODE (vr1min
) == INTEGER_CST
5464 && vrp_val_is_min (*vr0min
)
5465 && vrp_val_is_max (vr1max
))
5467 tree min
= int_const_binop (PLUS_EXPR
,
5469 build_int_cst (TREE_TYPE (*vr0max
), 1));
5470 tree max
= int_const_binop (MINUS_EXPR
,
5472 build_int_cst (TREE_TYPE (vr1min
), 1));
5473 if (!operand_less_p (max
, min
))
5475 *vr0type
= VR_ANTI_RANGE
;
5487 /* If the result can be an anti-range, create one. */
5488 if (TREE_CODE (vr1max
) == INTEGER_CST
5489 && TREE_CODE (*vr0min
) == INTEGER_CST
5490 && vrp_val_is_min (vr1min
)
5491 && vrp_val_is_max (*vr0max
))
5493 tree min
= int_const_binop (PLUS_EXPR
,
5495 build_int_cst (TREE_TYPE (vr1max
), 1));
5496 tree max
= int_const_binop (MINUS_EXPR
,
5498 build_int_cst (TREE_TYPE (*vr0min
), 1));
5499 if (!operand_less_p (max
, min
))
5501 *vr0type
= VR_ANTI_RANGE
;
5515 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
5516 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
5518 /* [ ( ) ] or [( ) ] or [ ( )] */
5519 if (*vr0type
== VR_RANGE
5520 && vr1type
== VR_RANGE
)
5522 else if (*vr0type
== VR_ANTI_RANGE
5523 && vr1type
== VR_ANTI_RANGE
)
5529 else if (*vr0type
== VR_ANTI_RANGE
5530 && vr1type
== VR_RANGE
)
5532 /* Arbitrarily choose the right or left gap. */
5533 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
5534 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
5535 build_int_cst (TREE_TYPE (vr1min
), 1));
5536 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
5537 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
5538 build_int_cst (TREE_TYPE (vr1max
), 1));
5542 else if (*vr0type
== VR_RANGE
5543 && vr1type
== VR_ANTI_RANGE
)
5544 /* The result covers everything. */
5549 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
5550 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
5552 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5553 if (*vr0type
== VR_RANGE
5554 && vr1type
== VR_RANGE
)
5560 else if (*vr0type
== VR_ANTI_RANGE
5561 && vr1type
== VR_ANTI_RANGE
)
5563 else if (*vr0type
== VR_RANGE
5564 && vr1type
== VR_ANTI_RANGE
)
5566 *vr0type
= VR_ANTI_RANGE
;
5567 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
5569 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
5570 build_int_cst (TREE_TYPE (*vr0min
), 1));
5573 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
5575 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
5576 build_int_cst (TREE_TYPE (*vr0max
), 1));
5582 else if (*vr0type
== VR_ANTI_RANGE
5583 && vr1type
== VR_RANGE
)
5584 /* The result covers everything. */
5589 else if ((operand_less_p (vr1min
, *vr0max
) == 1
5590 || operand_equal_p (vr1min
, *vr0max
, 0))
5591 && operand_less_p (*vr0min
, vr1min
) == 1
5592 && operand_less_p (*vr0max
, vr1max
) == 1)
5594 /* [ ( ] ) or [ ]( ) */
5595 if (*vr0type
== VR_RANGE
5596 && vr1type
== VR_RANGE
)
5598 else if (*vr0type
== VR_ANTI_RANGE
5599 && vr1type
== VR_ANTI_RANGE
)
5601 else if (*vr0type
== VR_ANTI_RANGE
5602 && vr1type
== VR_RANGE
)
5604 if (TREE_CODE (vr1min
) == INTEGER_CST
)
5605 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
5606 build_int_cst (TREE_TYPE (vr1min
), 1));
5610 else if (*vr0type
== VR_RANGE
5611 && vr1type
== VR_ANTI_RANGE
)
5613 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
5616 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
5617 build_int_cst (TREE_TYPE (*vr0max
), 1));
5626 else if ((operand_less_p (*vr0min
, vr1max
) == 1
5627 || operand_equal_p (*vr0min
, vr1max
, 0))
5628 && operand_less_p (vr1min
, *vr0min
) == 1
5629 && operand_less_p (vr1max
, *vr0max
) == 1)
5631 /* ( [ ) ] or ( )[ ] */
5632 if (*vr0type
== VR_RANGE
5633 && vr1type
== VR_RANGE
)
5635 else if (*vr0type
== VR_ANTI_RANGE
5636 && vr1type
== VR_ANTI_RANGE
)
5638 else if (*vr0type
== VR_ANTI_RANGE
5639 && vr1type
== VR_RANGE
)
5641 if (TREE_CODE (vr1max
) == INTEGER_CST
)
5642 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
5643 build_int_cst (TREE_TYPE (vr1max
), 1));
5647 else if (*vr0type
== VR_RANGE
5648 && vr1type
== VR_ANTI_RANGE
)
5650 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
5653 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
5654 build_int_cst (TREE_TYPE (*vr0min
), 1));
5669 *vr0type
= VR_VARYING
;
5670 *vr0min
= NULL_TREE
;
5671 *vr0max
= NULL_TREE
;
5674 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5675 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5676 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5677 possible such range. The resulting range is not canonicalized. */
5680 intersect_ranges (enum value_range_kind
*vr0type
,
5681 tree
*vr0min
, tree
*vr0max
,
5682 enum value_range_kind vr1type
,
5683 tree vr1min
, tree vr1max
)
5685 bool mineq
= vrp_operand_equal_p (*vr0min
, vr1min
);
5686 bool maxeq
= vrp_operand_equal_p (*vr0max
, vr1max
);
5688 /* [] is vr0, () is vr1 in the following classification comments. */
5692 if (*vr0type
== vr1type
)
5693 /* Nothing to do for equal ranges. */
5695 else if ((*vr0type
== VR_RANGE
5696 && vr1type
== VR_ANTI_RANGE
)
5697 || (*vr0type
== VR_ANTI_RANGE
5698 && vr1type
== VR_RANGE
))
5700 /* For anti-range with range intersection the result is empty. */
5701 *vr0type
= VR_UNDEFINED
;
5702 *vr0min
= NULL_TREE
;
5703 *vr0max
= NULL_TREE
;
5708 else if (operand_less_p (*vr0max
, vr1min
) == 1
5709 || operand_less_p (vr1max
, *vr0min
) == 1)
5711 /* [ ] ( ) or ( ) [ ]
5712 If the ranges have an empty intersection, the result of the
5713 intersect operation is the range for intersecting an
5714 anti-range with a range or empty when intersecting two ranges. */
5715 if (*vr0type
== VR_RANGE
5716 && vr1type
== VR_ANTI_RANGE
)
5718 else if (*vr0type
== VR_ANTI_RANGE
5719 && vr1type
== VR_RANGE
)
5725 else if (*vr0type
== VR_RANGE
5726 && vr1type
== VR_RANGE
)
5728 *vr0type
= VR_UNDEFINED
;
5729 *vr0min
= NULL_TREE
;
5730 *vr0max
= NULL_TREE
;
5732 else if (*vr0type
== VR_ANTI_RANGE
5733 && vr1type
== VR_ANTI_RANGE
)
5735 /* If the anti-ranges are adjacent to each other merge them. */
5736 if (TREE_CODE (*vr0max
) == INTEGER_CST
5737 && TREE_CODE (vr1min
) == INTEGER_CST
5738 && operand_less_p (*vr0max
, vr1min
) == 1
5739 && integer_onep (int_const_binop (MINUS_EXPR
,
5742 else if (TREE_CODE (vr1max
) == INTEGER_CST
5743 && TREE_CODE (*vr0min
) == INTEGER_CST
5744 && operand_less_p (vr1max
, *vr0min
) == 1
5745 && integer_onep (int_const_binop (MINUS_EXPR
,
5748 /* Else arbitrarily take VR0. */
5751 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
5752 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
5754 /* [ ( ) ] or [( ) ] or [ ( )] */
5755 if (*vr0type
== VR_RANGE
5756 && vr1type
== VR_RANGE
)
5758 /* If both are ranges the result is the inner one. */
5763 else if (*vr0type
== VR_RANGE
5764 && vr1type
== VR_ANTI_RANGE
)
5766 /* Choose the right gap if the left one is empty. */
5769 if (TREE_CODE (vr1max
) != INTEGER_CST
)
5771 else if (TYPE_PRECISION (TREE_TYPE (vr1max
)) == 1
5772 && !TYPE_UNSIGNED (TREE_TYPE (vr1max
)))
5774 = int_const_binop (MINUS_EXPR
, vr1max
,
5775 build_int_cst (TREE_TYPE (vr1max
), -1));
5778 = int_const_binop (PLUS_EXPR
, vr1max
,
5779 build_int_cst (TREE_TYPE (vr1max
), 1));
5781 /* Choose the left gap if the right one is empty. */
5784 if (TREE_CODE (vr1min
) != INTEGER_CST
)
5786 else if (TYPE_PRECISION (TREE_TYPE (vr1min
)) == 1
5787 && !TYPE_UNSIGNED (TREE_TYPE (vr1min
)))
5789 = int_const_binop (PLUS_EXPR
, vr1min
,
5790 build_int_cst (TREE_TYPE (vr1min
), -1));
5793 = int_const_binop (MINUS_EXPR
, vr1min
,
5794 build_int_cst (TREE_TYPE (vr1min
), 1));
5796 /* Choose the anti-range if the range is effectively varying. */
5797 else if (vrp_val_is_min (*vr0min
)
5798 && vrp_val_is_max (*vr0max
))
5804 /* Else choose the range. */
5806 else if (*vr0type
== VR_ANTI_RANGE
5807 && vr1type
== VR_ANTI_RANGE
)
5808 /* If both are anti-ranges the result is the outer one. */
5810 else if (*vr0type
== VR_ANTI_RANGE
5811 && vr1type
== VR_RANGE
)
5813 /* The intersection is empty. */
5814 *vr0type
= VR_UNDEFINED
;
5815 *vr0min
= NULL_TREE
;
5816 *vr0max
= NULL_TREE
;
5821 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
5822 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
5824 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5825 if (*vr0type
== VR_RANGE
5826 && vr1type
== VR_RANGE
)
5827 /* Choose the inner range. */
5829 else if (*vr0type
== VR_ANTI_RANGE
5830 && vr1type
== VR_RANGE
)
5832 /* Choose the right gap if the left is empty. */
5835 *vr0type
= VR_RANGE
;
5836 if (TREE_CODE (*vr0max
) != INTEGER_CST
)
5838 else if (TYPE_PRECISION (TREE_TYPE (*vr0max
)) == 1
5839 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max
)))
5841 = int_const_binop (MINUS_EXPR
, *vr0max
,
5842 build_int_cst (TREE_TYPE (*vr0max
), -1));
5845 = int_const_binop (PLUS_EXPR
, *vr0max
,
5846 build_int_cst (TREE_TYPE (*vr0max
), 1));
5849 /* Choose the left gap if the right is empty. */
5852 *vr0type
= VR_RANGE
;
5853 if (TREE_CODE (*vr0min
) != INTEGER_CST
)
5855 else if (TYPE_PRECISION (TREE_TYPE (*vr0min
)) == 1
5856 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min
)))
5858 = int_const_binop (PLUS_EXPR
, *vr0min
,
5859 build_int_cst (TREE_TYPE (*vr0min
), -1));
5862 = int_const_binop (MINUS_EXPR
, *vr0min
,
5863 build_int_cst (TREE_TYPE (*vr0min
), 1));
5866 /* Choose the anti-range if the range is effectively varying. */
5867 else if (vrp_val_is_min (vr1min
)
5868 && vrp_val_is_max (vr1max
))
5870 /* Choose the anti-range if it is ~[0,0], that range is special
5871 enough to special case when vr1's range is relatively wide.
5872 At least for types bigger than int - this covers pointers
5873 and arguments to functions like ctz. */
5874 else if (*vr0min
== *vr0max
5875 && integer_zerop (*vr0min
)
5876 && ((TYPE_PRECISION (TREE_TYPE (*vr0min
))
5877 >= TYPE_PRECISION (integer_type_node
))
5878 || POINTER_TYPE_P (TREE_TYPE (*vr0min
)))
5879 && TREE_CODE (vr1max
) == INTEGER_CST
5880 && TREE_CODE (vr1min
) == INTEGER_CST
5881 && (wi::clz (wi::to_wide (vr1max
) - wi::to_wide (vr1min
))
5882 < TYPE_PRECISION (TREE_TYPE (*vr0min
)) / 2))
5884 /* Else choose the range. */
5892 else if (*vr0type
== VR_ANTI_RANGE
5893 && vr1type
== VR_ANTI_RANGE
)
5895 /* If both are anti-ranges the result is the outer one. */
5900 else if (vr1type
== VR_ANTI_RANGE
5901 && *vr0type
== VR_RANGE
)
5903 /* The intersection is empty. */
5904 *vr0type
= VR_UNDEFINED
;
5905 *vr0min
= NULL_TREE
;
5906 *vr0max
= NULL_TREE
;
5911 else if ((operand_less_p (vr1min
, *vr0max
) == 1
5912 || operand_equal_p (vr1min
, *vr0max
, 0))
5913 && operand_less_p (*vr0min
, vr1min
) == 1)
5915 /* [ ( ] ) or [ ]( ) */
5916 if (*vr0type
== VR_ANTI_RANGE
5917 && vr1type
== VR_ANTI_RANGE
)
5919 else if (*vr0type
== VR_RANGE
5920 && vr1type
== VR_RANGE
)
5922 else if (*vr0type
== VR_RANGE
5923 && vr1type
== VR_ANTI_RANGE
)
5925 if (TREE_CODE (vr1min
) == INTEGER_CST
)
5926 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
5927 build_int_cst (TREE_TYPE (vr1min
), 1));
5931 else if (*vr0type
== VR_ANTI_RANGE
5932 && vr1type
== VR_RANGE
)
5934 *vr0type
= VR_RANGE
;
5935 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
5936 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
5937 build_int_cst (TREE_TYPE (*vr0max
), 1));
5945 else if ((operand_less_p (*vr0min
, vr1max
) == 1
5946 || operand_equal_p (*vr0min
, vr1max
, 0))
5947 && operand_less_p (vr1min
, *vr0min
) == 1)
5949 /* ( [ ) ] or ( )[ ] */
5950 if (*vr0type
== VR_ANTI_RANGE
5951 && vr1type
== VR_ANTI_RANGE
)
5953 else if (*vr0type
== VR_RANGE
5954 && vr1type
== VR_RANGE
)
5956 else if (*vr0type
== VR_RANGE
5957 && vr1type
== VR_ANTI_RANGE
)
5959 if (TREE_CODE (vr1max
) == INTEGER_CST
)
5960 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
5961 build_int_cst (TREE_TYPE (vr1max
), 1));
5965 else if (*vr0type
== VR_ANTI_RANGE
5966 && vr1type
== VR_RANGE
)
5968 *vr0type
= VR_RANGE
;
5969 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
5970 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
5971 build_int_cst (TREE_TYPE (*vr0min
), 1));
5980 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
5981 result for the intersection. That's always a conservative
5982 correct estimate unless VR1 is a constant singleton range
5983 in which case we choose that. */
5984 if (vr1type
== VR_RANGE
5985 && is_gimple_min_invariant (vr1min
)
5986 && vrp_operand_equal_p (vr1min
, vr1max
))
5995 /* Helper for the intersection operation for value ranges. Given two
5996 value ranges VR0 and VR1, return the intersection of the two
5997 ranges. This may not be the smallest possible such range. */
6000 value_range_base::intersect_helper (const value_range_base
*vr0
,
6001 const value_range_base
*vr1
)
6003 /* If either range is VR_VARYING the other one wins. */
6004 if (vr1
->varying_p ())
6006 if (vr0
->varying_p ())
6009 /* When either range is VR_UNDEFINED the resulting range is
6010 VR_UNDEFINED, too. */
6011 if (vr0
->undefined_p ())
6013 if (vr1
->undefined_p ())
6016 value_range_kind vr0type
= vr0
->kind ();
6017 tree vr0min
= vr0
->min ();
6018 tree vr0max
= vr0
->max ();
6019 intersect_ranges (&vr0type
, &vr0min
, &vr0max
,
6020 vr1
->kind (), vr1
->min (), vr1
->max ());
6021 /* Make sure to canonicalize the result though as the inversion of a
6022 VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
6023 fall back to vr0 when this turns things to varying. */
6024 value_range_base tem
;
6025 tem
.set_and_canonicalize (vr0type
, vr0min
, vr0max
);
6026 /* If that failed, use the saved original VR0. */
6027 if (tem
.varying_p ())
6034 value_range_base::intersect (const value_range_base
*other
)
6036 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6038 fprintf (dump_file
, "Intersecting\n ");
6039 dump_value_range (dump_file
, this);
6040 fprintf (dump_file
, "\nand\n ");
6041 dump_value_range (dump_file
, other
);
6042 fprintf (dump_file
, "\n");
6045 *this = intersect_helper (this, other
);
6047 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6049 fprintf (dump_file
, "to\n ");
6050 dump_value_range (dump_file
, this);
6051 fprintf (dump_file
, "\n");
6056 value_range::intersect (const value_range
*other
)
6058 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6060 fprintf (dump_file
, "Intersecting\n ");
6061 dump_value_range (dump_file
, this);
6062 fprintf (dump_file
, "\nand\n ");
6063 dump_value_range (dump_file
, other
);
6064 fprintf (dump_file
, "\n");
6067 /* If THIS is varying we want to pick up equivalences from OTHER.
6068 Just special-case this here rather than trying to fixup after the
6070 if (this->varying_p ())
6071 this->deep_copy (other
);
6074 value_range_base tem
= intersect_helper (this, other
);
6075 this->update (tem
.kind (), tem
.min (), tem
.max ());
6077 /* If the result is VR_UNDEFINED there is no need to mess with
6079 if (!undefined_p ())
6081 /* The resulting set of equivalences for range intersection
6082 is the union of the two sets. */
6083 if (m_equiv
&& other
->m_equiv
&& m_equiv
!= other
->m_equiv
)
6084 bitmap_ior_into (m_equiv
, other
->m_equiv
);
6085 else if (other
->m_equiv
&& !m_equiv
)
6087 /* All equivalence bitmaps are allocated from the same
6088 obstack. So we can use the obstack associated with
6089 VR to allocate this->m_equiv. */
6090 m_equiv
= BITMAP_ALLOC (other
->m_equiv
->obstack
);
6091 bitmap_copy (m_equiv
, other
->m_equiv
);
6096 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6098 fprintf (dump_file
, "to\n ");
6099 dump_value_range (dump_file
, this);
6100 fprintf (dump_file
, "\n");
6104 /* Helper for meet operation for value ranges. Given two value ranges VR0 and
6105 VR1, return a range that contains both VR0 and VR1. This may not be the
6106 smallest possible such range. */
6109 value_range_base::union_helper (const value_range_base
*vr0
,
6110 const value_range_base
*vr1
)
6112 /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
6113 if (vr1
->undefined_p ()
6114 || vr0
->varying_p ())
6117 /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
6118 if (vr0
->undefined_p ()
6119 || vr1
->varying_p ())
6122 value_range_kind vr0type
= vr0
->kind ();
6123 tree vr0min
= vr0
->min ();
6124 tree vr0max
= vr0
->max ();
6125 union_ranges (&vr0type
, &vr0min
, &vr0max
,
6126 vr1
->kind (), vr1
->min (), vr1
->max ());
6128 /* Work on a temporary so we can still use vr0 when union returns varying. */
6129 value_range_base tem
;
6130 tem
.set_and_canonicalize (vr0type
, vr0min
, vr0max
);
6132 /* Failed to find an efficient meet. Before giving up and setting
6133 the result to VARYING, see if we can at least derive a useful
6135 if (tem
.varying_p ()
6136 && range_includes_zero_p (vr0
) == 0
6137 && range_includes_zero_p (vr1
) == 0)
6139 tem
.set_nonzero (vr0
->type ());
6147 /* Meet operation for value ranges. Given two value ranges VR0 and
6148 VR1, store in VR0 a range that contains both VR0 and VR1. This
6149 may not be the smallest possible such range. */
6152 value_range_base::union_ (const value_range_base
*other
)
6154 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6156 fprintf (dump_file
, "Meeting\n ");
6157 dump_value_range (dump_file
, this);
6158 fprintf (dump_file
, "\nand\n ");
6159 dump_value_range (dump_file
, other
);
6160 fprintf (dump_file
, "\n");
6163 *this = union_helper (this, other
);
6165 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6167 fprintf (dump_file
, "to\n ");
6168 dump_value_range (dump_file
, this);
6169 fprintf (dump_file
, "\n");
6174 value_range::union_ (const value_range
*other
)
6176 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6178 fprintf (dump_file
, "Meeting\n ");
6179 dump_value_range (dump_file
, this);
6180 fprintf (dump_file
, "\nand\n ");
6181 dump_value_range (dump_file
, other
);
6182 fprintf (dump_file
, "\n");
6185 /* If THIS is undefined we want to pick up equivalences from OTHER.
6186 Just special-case this here rather than trying to fixup after the fact. */
6187 if (this->undefined_p ())
6188 this->deep_copy (other
);
6191 value_range_base tem
= union_helper (this, other
);
6192 this->update (tem
.kind (), tem
.min (), tem
.max ());
6194 /* The resulting set of equivalences is always the intersection of
6196 if (this->m_equiv
&& other
->m_equiv
&& this->m_equiv
!= other
->m_equiv
)
6197 bitmap_and_into (this->m_equiv
, other
->m_equiv
);
6198 else if (this->m_equiv
&& !other
->m_equiv
)
6199 bitmap_clear (this->m_equiv
);
6202 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6204 fprintf (dump_file
, "to\n ");
6205 dump_value_range (dump_file
, this);
6206 fprintf (dump_file
, "\n");
6210 /* Visit all arguments for PHI node PHI that flow through executable
6211 edges. If a valid value range can be derived from all the incoming
6212 value ranges, set a new range for the LHS of PHI. */
6214 enum ssa_prop_result
6215 vrp_prop::visit_phi (gphi
*phi
)
6217 tree lhs
= PHI_RESULT (phi
);
6218 value_range vr_result
;
6219 extract_range_from_phi_node (phi
, &vr_result
);
6220 if (update_value_range (lhs
, &vr_result
))
6222 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6224 fprintf (dump_file
, "Found new range for ");
6225 print_generic_expr (dump_file
, lhs
);
6226 fprintf (dump_file
, ": ");
6227 dump_value_range (dump_file
, &vr_result
);
6228 fprintf (dump_file
, "\n");
6231 if (vr_result
.varying_p ())
6232 return SSA_PROP_VARYING
;
6234 return SSA_PROP_INTERESTING
;
6237 /* Nothing changed, don't add outgoing edges. */
6238 return SSA_PROP_NOT_INTERESTING
;
6241 class vrp_folder
: public substitute_and_fold_engine
6244 tree
get_value (tree
) FINAL OVERRIDE
;
6245 bool fold_stmt (gimple_stmt_iterator
*) FINAL OVERRIDE
;
6246 bool fold_predicate_in (gimple_stmt_iterator
*);
6248 class vr_values
*vr_values
;
6251 tree
vrp_evaluate_conditional (tree_code code
, tree op0
,
6252 tree op1
, gimple
*stmt
)
6253 { return vr_values
->vrp_evaluate_conditional (code
, op0
, op1
, stmt
); }
6254 bool simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
6255 { return vr_values
->simplify_stmt_using_ranges (gsi
); }
6256 tree
op_with_constant_singleton_value_range (tree op
)
6257 { return vr_values
->op_with_constant_singleton_value_range (op
); }
6260 /* If the statement pointed by SI has a predicate whose value can be
6261 computed using the value range information computed by VRP, compute
6262 its value and return true. Otherwise, return false. */
6265 vrp_folder::fold_predicate_in (gimple_stmt_iterator
*si
)
6267 bool assignment_p
= false;
6269 gimple
*stmt
= gsi_stmt (*si
);
6271 if (is_gimple_assign (stmt
)
6272 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
6274 assignment_p
= true;
6275 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
6276 gimple_assign_rhs1 (stmt
),
6277 gimple_assign_rhs2 (stmt
),
6280 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
6281 val
= vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
6282 gimple_cond_lhs (cond_stmt
),
6283 gimple_cond_rhs (cond_stmt
),
6291 val
= fold_convert (gimple_expr_type (stmt
), val
);
6295 fprintf (dump_file
, "Folding predicate ");
6296 print_gimple_expr (dump_file
, stmt
, 0);
6297 fprintf (dump_file
, " to ");
6298 print_generic_expr (dump_file
, val
);
6299 fprintf (dump_file
, "\n");
6302 if (is_gimple_assign (stmt
))
6303 gimple_assign_set_rhs_from_tree (si
, val
);
6306 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
6307 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
6308 if (integer_zerop (val
))
6309 gimple_cond_make_false (cond_stmt
);
6310 else if (integer_onep (val
))
6311 gimple_cond_make_true (cond_stmt
);
6322 /* Callback for substitute_and_fold folding the stmt at *SI. */
6325 vrp_folder::fold_stmt (gimple_stmt_iterator
*si
)
6327 if (fold_predicate_in (si
))
6330 return simplify_stmt_using_ranges (si
);
6333 /* If OP has a value range with a single constant value return that,
6334 otherwise return NULL_TREE. This returns OP itself if OP is a
6337 Implemented as a pure wrapper right now, but this will change. */
6340 vrp_folder::get_value (tree op
)
6342 return op_with_constant_singleton_value_range (op
);
6345 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6346 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6347 BB. If no such ASSERT_EXPR is found, return OP. */
6350 lhs_of_dominating_assert (tree op
, basic_block bb
, gimple
*stmt
)
6352 imm_use_iterator imm_iter
;
6354 use_operand_p use_p
;
6356 if (TREE_CODE (op
) == SSA_NAME
)
6358 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, op
)
6360 use_stmt
= USE_STMT (use_p
);
6361 if (use_stmt
!= stmt
6362 && gimple_assign_single_p (use_stmt
)
6363 && TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == ASSERT_EXPR
6364 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt
), 0) == op
6365 && dominated_by_p (CDI_DOMINATORS
, bb
, gimple_bb (use_stmt
)))
6366 return gimple_assign_lhs (use_stmt
);
6373 static class vr_values
*x_vr_values
;
6375 /* A trivial wrapper so that we can present the generic jump threading
6376 code with a simple API for simplifying statements. STMT is the
6377 statement we want to simplify, WITHIN_STMT provides the location
6378 for any overflow warnings. */
6381 simplify_stmt_for_jump_threading (gimple
*stmt
, gimple
*within_stmt
,
6382 class avail_exprs_stack
*avail_exprs_stack ATTRIBUTE_UNUSED
,
6385 /* First see if the conditional is in the hash table. */
6386 tree cached_lhs
= avail_exprs_stack
->lookup_avail_expr (stmt
, false, true);
6387 if (cached_lhs
&& is_gimple_min_invariant (cached_lhs
))
6390 vr_values
*vr_values
= x_vr_values
;
6391 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
6393 tree op0
= gimple_cond_lhs (cond_stmt
);
6394 op0
= lhs_of_dominating_assert (op0
, bb
, stmt
);
6396 tree op1
= gimple_cond_rhs (cond_stmt
);
6397 op1
= lhs_of_dominating_assert (op1
, bb
, stmt
);
6399 return vr_values
->vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
6400 op0
, op1
, within_stmt
);
6403 /* We simplify a switch statement by trying to determine which case label
6404 will be taken. If we are successful then we return the corresponding
6406 if (gswitch
*switch_stmt
= dyn_cast
<gswitch
*> (stmt
))
6408 tree op
= gimple_switch_index (switch_stmt
);
6409 if (TREE_CODE (op
) != SSA_NAME
)
6412 op
= lhs_of_dominating_assert (op
, bb
, stmt
);
6414 const value_range
*vr
= vr_values
->get_value_range (op
);
6415 if (vr
->undefined_p ()
6417 || vr
->symbolic_p ())
6420 if (vr
->kind () == VR_RANGE
)
6423 /* Get the range of labels that contain a part of the operand's
6425 find_case_label_range (switch_stmt
, vr
->min (), vr
->max (), &i
, &j
);
6427 /* Is there only one such label? */
6430 tree label
= gimple_switch_label (switch_stmt
, i
);
6432 /* The i'th label will be taken only if the value range of the
6433 operand is entirely within the bounds of this label. */
6434 if (CASE_HIGH (label
) != NULL_TREE
6435 ? (tree_int_cst_compare (CASE_LOW (label
), vr
->min ()) <= 0
6436 && tree_int_cst_compare (CASE_HIGH (label
),
6438 : (tree_int_cst_equal (CASE_LOW (label
), vr
->min ())
6439 && tree_int_cst_equal (vr
->min (), vr
->max ())))
6443 /* If there are no such labels then the default label will be
6446 return gimple_switch_label (switch_stmt
, 0);
6449 if (vr
->kind () == VR_ANTI_RANGE
)
6451 unsigned n
= gimple_switch_num_labels (switch_stmt
);
6452 tree min_label
= gimple_switch_label (switch_stmt
, 1);
6453 tree max_label
= gimple_switch_label (switch_stmt
, n
- 1);
6455 /* The default label will be taken only if the anti-range of the
6456 operand is entirely outside the bounds of all the (non-default)
6458 if (tree_int_cst_compare (vr
->min (), CASE_LOW (min_label
)) <= 0
6459 && (CASE_HIGH (max_label
) != NULL_TREE
6460 ? tree_int_cst_compare (vr
->max (),
6461 CASE_HIGH (max_label
)) >= 0
6462 : tree_int_cst_compare (vr
->max (),
6463 CASE_LOW (max_label
)) >= 0))
6464 return gimple_switch_label (switch_stmt
, 0);
6470 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
6472 tree lhs
= gimple_assign_lhs (assign_stmt
);
6473 if (TREE_CODE (lhs
) == SSA_NAME
6474 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6475 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6476 && stmt_interesting_for_vrp (stmt
))
6481 vr_values
->extract_range_from_stmt (stmt
, &dummy_e
,
6482 &dummy_tree
, &new_vr
);
6484 if (new_vr
.singleton_p (&singleton
))
6492 class vrp_dom_walker
: public dom_walker
6495 vrp_dom_walker (cdi_direction direction
,
6496 class const_and_copies
*const_and_copies
,
6497 class avail_exprs_stack
*avail_exprs_stack
)
6498 : dom_walker (direction
, REACHABLE_BLOCKS
),
6499 m_const_and_copies (const_and_copies
),
6500 m_avail_exprs_stack (avail_exprs_stack
),
6501 m_dummy_cond (NULL
) {}
6503 virtual edge
before_dom_children (basic_block
);
6504 virtual void after_dom_children (basic_block
);
6506 class vr_values
*vr_values
;
6509 class const_and_copies
*m_const_and_copies
;
6510 class avail_exprs_stack
*m_avail_exprs_stack
;
6512 gcond
*m_dummy_cond
;
6516 /* Called before processing dominator children of BB. We want to look
6517 at ASSERT_EXPRs and record information from them in the appropriate
6520 We could look at other statements here. It's not seen as likely
6521 to significantly increase the jump threads we discover. */
6524 vrp_dom_walker::before_dom_children (basic_block bb
)
6526 gimple_stmt_iterator gsi
;
6528 m_avail_exprs_stack
->push_marker ();
6529 m_const_and_copies
->push_marker ();
6530 for (gsi
= gsi_start_nondebug_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6532 gimple
*stmt
= gsi_stmt (gsi
);
6533 if (gimple_assign_single_p (stmt
)
6534 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ASSERT_EXPR
)
6536 tree rhs1
= gimple_assign_rhs1 (stmt
);
6537 tree cond
= TREE_OPERAND (rhs1
, 1);
6538 tree inverted
= invert_truthvalue (cond
);
6539 vec
<cond_equivalence
> p
;
6541 record_conditions (&p
, cond
, inverted
);
6542 for (unsigned int i
= 0; i
< p
.length (); i
++)
6543 m_avail_exprs_stack
->record_cond (&p
[i
]);
6545 tree lhs
= gimple_assign_lhs (stmt
);
6546 m_const_and_copies
->record_const_or_copy (lhs
,
6547 TREE_OPERAND (rhs1
, 0));
6556 /* Called after processing dominator children of BB. This is where we
6557 actually call into the threader. */
6559 vrp_dom_walker::after_dom_children (basic_block bb
)
6562 m_dummy_cond
= gimple_build_cond (NE_EXPR
,
6563 integer_zero_node
, integer_zero_node
,
6566 x_vr_values
= vr_values
;
6567 thread_outgoing_edges (bb
, m_dummy_cond
, m_const_and_copies
,
6568 m_avail_exprs_stack
, NULL
,
6569 simplify_stmt_for_jump_threading
);
6572 m_avail_exprs_stack
->pop_to_marker ();
6573 m_const_and_copies
->pop_to_marker ();
6576 /* Blocks which have more than one predecessor and more than
6577 one successor present jump threading opportunities, i.e.,
6578 when the block is reached from a specific predecessor, we
6579 may be able to determine which of the outgoing edges will
6580 be traversed. When this optimization applies, we are able
6581 to avoid conditionals at runtime and we may expose secondary
6582 optimization opportunities.
6584 This routine is effectively a driver for the generic jump
6585 threading code. It basically just presents the generic code
6586 with edges that may be suitable for jump threading.
6588 Unlike DOM, we do not iterate VRP if jump threading was successful.
6589 While iterating may expose new opportunities for VRP, it is expected
6590 those opportunities would be very limited and the compile time cost
6591 to expose those opportunities would be significant.
6593 As jump threading opportunities are discovered, they are registered
6594 for later realization. */
6597 identify_jump_threads (class vr_values
*vr_values
)
6599 /* Ugh. When substituting values earlier in this pass we can
6600 wipe the dominance information. So rebuild the dominator
6601 information as we need it within the jump threading code. */
6602 calculate_dominance_info (CDI_DOMINATORS
);
6604 /* We do not allow VRP information to be used for jump threading
6605 across a back edge in the CFG. Otherwise it becomes too
6606 difficult to avoid eliminating loop exit tests. Of course
6607 EDGE_DFS_BACK is not accurate at this time so we have to
6609 mark_dfs_back_edges ();
6611 /* Allocate our unwinder stack to unwind any temporary equivalences
6612 that might be recorded. */
6613 const_and_copies
*equiv_stack
= new const_and_copies ();
6615 hash_table
<expr_elt_hasher
> *avail_exprs
6616 = new hash_table
<expr_elt_hasher
> (1024);
6617 avail_exprs_stack
*avail_exprs_stack
6618 = new class avail_exprs_stack (avail_exprs
);
6620 vrp_dom_walker
walker (CDI_DOMINATORS
, equiv_stack
, avail_exprs_stack
);
6621 walker
.vr_values
= vr_values
;
6622 walker
.walk (cfun
->cfg
->x_entry_block_ptr
);
6624 /* We do not actually update the CFG or SSA graphs at this point as
6625 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6626 handle ASSERT_EXPRs gracefully. */
6629 delete avail_exprs_stack
;
6632 /* Traverse all the blocks folding conditionals with known ranges. */
6635 vrp_prop::vrp_finalize (bool warn_array_bounds_p
)
6639 /* We have completed propagating through the lattice. */
6640 vr_values
.set_lattice_propagation_complete ();
6644 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
6645 vr_values
.dump_all_value_ranges (dump_file
);
6646 fprintf (dump_file
, "\n");
6649 /* Set value range to non pointer SSA_NAMEs. */
6650 for (i
= 0; i
< num_ssa_names
; i
++)
6652 tree name
= ssa_name (i
);
6656 const value_range
*vr
= get_value_range (name
);
6657 if (!name
|| !vr
->constant_p ())
6660 if (POINTER_TYPE_P (TREE_TYPE (name
))
6661 && range_includes_zero_p (vr
) == 0)
6662 set_ptr_nonnull (name
);
6663 else if (!POINTER_TYPE_P (TREE_TYPE (name
)))
6664 set_range_info (name
, *vr
);
6667 /* If we're checking array refs, we want to merge information on
6668 the executability of each edge between vrp_folder and the
6669 check_array_bounds_dom_walker: each can clear the
6670 EDGE_EXECUTABLE flag on edges, in different ways.
6672 Hence, if we're going to call check_all_array_refs, set
6673 the flag on every edge now, rather than in
6674 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6675 it from some edges. */
6676 if (warn_array_bounds
&& warn_array_bounds_p
)
6677 set_all_edges_as_executable (cfun
);
6679 class vrp_folder vrp_folder
;
6680 vrp_folder
.vr_values
= &vr_values
;
6681 vrp_folder
.substitute_and_fold ();
6683 if (warn_array_bounds
&& warn_array_bounds_p
)
6684 check_all_array_refs ();
6687 /* Main entry point to VRP (Value Range Propagation). This pass is
6688 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6689 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6690 Programming Language Design and Implementation, pp. 67-78, 1995.
6691 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6693 This is essentially an SSA-CCP pass modified to deal with ranges
6694 instead of constants.
6696 While propagating ranges, we may find that two or more SSA name
6697 have equivalent, though distinct ranges. For instance,
6700 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6702 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6706 In the code above, pointer p_5 has range [q_2, q_2], but from the
6707 code we can also determine that p_5 cannot be NULL and, if q_2 had
6708 a non-varying range, p_5's range should also be compatible with it.
6710 These equivalences are created by two expressions: ASSERT_EXPR and
6711 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6712 result of another assertion, then we can use the fact that p_5 and
6713 p_4 are equivalent when evaluating p_5's range.
6715 Together with value ranges, we also propagate these equivalences
6716 between names so that we can take advantage of information from
6717 multiple ranges when doing final replacement. Note that this
6718 equivalency relation is transitive but not symmetric.
6720 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6721 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6722 in contexts where that assertion does not hold (e.g., in line 6).
6724 TODO, the main difference between this pass and Patterson's is that
6725 we do not propagate edge probabilities. We only compute whether
6726 edges can be taken or not. That is, instead of having a spectrum
6727 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6728 DON'T KNOW. In the future, it may be worthwhile to propagate
6729 probabilities to aid branch prediction. */
6732 execute_vrp (bool warn_array_bounds_p
)
6735 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
6736 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
6739 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6740 Inserting assertions may split edges which will invalidate
6742 insert_range_assertions ();
6744 threadedge_initialize_values ();
6746 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6747 mark_dfs_back_edges ();
6749 class vrp_prop vrp_prop
;
6750 vrp_prop
.vrp_initialize ();
6751 vrp_prop
.ssa_propagate ();
6752 vrp_prop
.vrp_finalize (warn_array_bounds_p
);
6754 /* We must identify jump threading opportunities before we release
6755 the datastructures built by VRP. */
6756 identify_jump_threads (&vrp_prop
.vr_values
);
6758 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6759 was set by a type conversion can often be rewritten to use the
6760 RHS of the type conversion.
6762 However, doing so inhibits jump threading through the comparison.
6763 So that transformation is not performed until after jump threading
6766 FOR_EACH_BB_FN (bb
, cfun
)
6768 gimple
*last
= last_stmt (bb
);
6769 if (last
&& gimple_code (last
) == GIMPLE_COND
)
6770 vrp_prop
.vr_values
.simplify_cond_using_ranges_2 (as_a
<gcond
*> (last
));
6773 free_numbers_of_iterations_estimates (cfun
);
6775 /* ASSERT_EXPRs must be removed before finalizing jump threads
6776 as finalizing jump threads calls the CFG cleanup code which
6777 does not properly handle ASSERT_EXPRs. */
6778 remove_range_assertions ();
6780 /* If we exposed any new variables, go ahead and put them into
6781 SSA form now, before we handle jump threading. This simplifies
6782 interactions between rewriting of _DECL nodes into SSA form
6783 and rewriting SSA_NAME nodes into SSA form after block
6784 duplication and CFG manipulation. */
6785 update_ssa (TODO_update_ssa
);
6787 /* We identified all the jump threading opportunities earlier, but could
6788 not transform the CFG at that time. This routine transforms the
6789 CFG and arranges for the dominator tree to be rebuilt if necessary.
6791 Note the SSA graph update will occur during the normal TODO
6792 processing by the pass manager. */
6793 thread_through_all_blocks (false);
6795 vrp_prop
.vr_values
.cleanup_edges_and_switches ();
6796 threadedge_finalize_values ();
6799 loop_optimizer_finalize ();
6805 const pass_data pass_data_vrp
=
6807 GIMPLE_PASS
, /* type */
6809 OPTGROUP_NONE
, /* optinfo_flags */
6810 TV_TREE_VRP
, /* tv_id */
6811 PROP_ssa
, /* properties_required */
6812 0, /* properties_provided */
6813 0, /* properties_destroyed */
6814 0, /* todo_flags_start */
6815 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
6818 class pass_vrp
: public gimple_opt_pass
6821 pass_vrp (gcc::context
*ctxt
)
6822 : gimple_opt_pass (pass_data_vrp
, ctxt
), warn_array_bounds_p (false)
6825 /* opt_pass methods: */
6826 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
6827 void set_pass_param (unsigned int n
, bool param
)
6829 gcc_assert (n
== 0);
6830 warn_array_bounds_p
= param
;
6832 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
6833 virtual unsigned int execute (function
*)
6834 { return execute_vrp (warn_array_bounds_p
); }
6837 bool warn_array_bounds_p
;
6838 }; // class pass_vrp
6843 make_pass_vrp (gcc::context
*ctxt
)
6845 return new pass_vrp (ctxt
);
6849 /* Worker for determine_value_range. */
6852 determine_value_range_1 (value_range_base
*vr
, tree expr
)
6854 if (BINARY_CLASS_P (expr
))
6856 value_range_base vr0
, vr1
;
6857 determine_value_range_1 (&vr0
, TREE_OPERAND (expr
, 0));
6858 determine_value_range_1 (&vr1
, TREE_OPERAND (expr
, 1));
6859 extract_range_from_binary_expr (vr
, TREE_CODE (expr
), TREE_TYPE (expr
),
6862 else if (UNARY_CLASS_P (expr
))
6864 value_range_base vr0
;
6865 determine_value_range_1 (&vr0
, TREE_OPERAND (expr
, 0));
6866 extract_range_from_unary_expr (vr
, TREE_CODE (expr
), TREE_TYPE (expr
),
6867 &vr0
, TREE_TYPE (TREE_OPERAND (expr
, 0)));
6869 else if (TREE_CODE (expr
) == INTEGER_CST
)
6873 value_range_kind kind
;
6875 /* For SSA names try to extract range info computed by VRP. Otherwise
6876 fall back to varying. */
6877 if (TREE_CODE (expr
) == SSA_NAME
6878 && INTEGRAL_TYPE_P (TREE_TYPE (expr
))
6879 && (kind
= get_range_info (expr
, &min
, &max
)) != VR_VARYING
)
6880 vr
->set (kind
, wide_int_to_tree (TREE_TYPE (expr
), min
),
6881 wide_int_to_tree (TREE_TYPE (expr
), max
));
6887 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6888 the determined range type. */
6891 determine_value_range (tree expr
, wide_int
*min
, wide_int
*max
)
6893 value_range_base vr
;
6894 determine_value_range_1 (&vr
, expr
);
6895 if (vr
.constant_p ())
6897 *min
= wi::to_wide (vr
.min ());
6898 *max
= wi::to_wide (vr
.max ());