[Ada] Unnesting: handle conditional expressions
[official-gcc.git] / gcc / graphds.c
blob9eb1343158a50a2b157a6d35bfdacbc4efc11730
1 /* Graph representation and manipulation functions.
2 Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "bitmap.h"
24 #include "graphds.h"
26 /* Dumps graph G into F. */
28 void
29 dump_graph (FILE *f, struct graph *g)
31 int i;
32 struct graph_edge *e;
34 for (i = 0; i < g->n_vertices; i++)
36 if (!g->vertices[i].pred
37 && !g->vertices[i].succ)
38 continue;
40 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
41 for (e = g->vertices[i].pred; e; e = e->pred_next)
42 fprintf (f, " %d", e->src);
43 fprintf (f, "\n");
45 fprintf (f, "\t->");
46 for (e = g->vertices[i].succ; e; e = e->succ_next)
47 fprintf (f, " %d", e->dest);
48 fprintf (f, "\n");
52 /* Creates a new graph with N_VERTICES vertices. */
54 struct graph *
55 new_graph (int n_vertices)
57 struct graph *g = XNEW (struct graph);
59 gcc_obstack_init (&g->ob);
60 g->n_vertices = n_vertices;
61 g->vertices = XOBNEWVEC (&g->ob, struct vertex, n_vertices);
62 memset (g->vertices, 0, sizeof (struct vertex) * n_vertices);
64 return g;
67 /* Adds an edge from F to T to graph G. The new edge is returned. */
69 struct graph_edge *
70 add_edge (struct graph *g, int f, int t)
72 struct graph_edge *e = XOBNEW (&g->ob, struct graph_edge);
73 struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];
75 e->src = f;
76 e->dest = t;
78 e->pred_next = vt->pred;
79 vt->pred = e;
81 e->succ_next = vf->succ;
82 vf->succ = e;
84 e->data = NULL;
85 return e;
88 /* Moves all the edges incident with U to V. */
90 void
91 identify_vertices (struct graph *g, int v, int u)
93 struct vertex *vv = &g->vertices[v];
94 struct vertex *uu = &g->vertices[u];
95 struct graph_edge *e, *next;
97 for (e = uu->succ; e; e = next)
99 next = e->succ_next;
101 e->src = v;
102 e->succ_next = vv->succ;
103 vv->succ = e;
105 uu->succ = NULL;
107 for (e = uu->pred; e; e = next)
109 next = e->pred_next;
111 e->dest = v;
112 e->pred_next = vv->pred;
113 vv->pred = e;
115 uu->pred = NULL;
118 /* Helper function for graphds_dfs. Returns the source vertex of E, in the
119 direction given by FORWARD. */
121 static inline int
122 dfs_edge_src (struct graph_edge *e, bool forward)
124 return forward ? e->src : e->dest;
127 /* Helper function for graphds_dfs. Returns the destination vertex of E, in
128 the direction given by FORWARD. */
130 static inline int
131 dfs_edge_dest (struct graph_edge *e, bool forward)
133 return forward ? e->dest : e->src;
136 /* Helper function for graphds_dfs. Returns the first edge after E (including
137 E), in the graph direction given by FORWARD, that belongs to SUBGRAPH. If
138 SKIP_EDGE_P is not NULL, it points to a callback function. Edge E will be
139 skipped if callback function returns true. */
141 static inline struct graph_edge *
142 foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph,
143 skip_edge_callback skip_edge_p)
145 int d;
147 if (!e)
148 return e;
150 if (!subgraph && (!skip_edge_p || !skip_edge_p (e)))
151 return e;
153 while (e)
155 d = dfs_edge_dest (e, forward);
156 /* Return edge if it belongs to subgraph and shouldn't be skipped. */
157 if ((!subgraph || bitmap_bit_p (subgraph, d))
158 && (!skip_edge_p || !skip_edge_p (e)))
159 return e;
161 e = forward ? e->succ_next : e->pred_next;
164 return e;
167 /* Helper function for graphds_dfs. Select the first edge from V in G, in the
168 direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P is not
169 NULL, it points to a callback function. Edge E will be skipped if callback
170 function returns true. */
172 static inline struct graph_edge *
173 dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph,
174 skip_edge_callback skip_edge_p)
176 struct graph_edge *e;
178 e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
179 return foll_in_subgraph (e, forward, subgraph, skip_edge_p);
182 /* Helper function for graphds_dfs. Returns the next edge after E, in the
183 graph direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P
184 is not NULL, it points to a callback function. Edge E will be skipped if
185 callback function returns true. */
187 static inline struct graph_edge *
188 dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph,
189 skip_edge_callback skip_edge_p)
191 return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
192 forward, subgraph, skip_edge_p);
195 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
196 The vertices in postorder are stored into QT. If FORWARD is false,
197 backward dfs is run. If SUBGRAPH is not NULL, it specifies the
198 subgraph of G to run DFS on. Returns the number of the components
199 of the graph (number of the restarts of DFS). If SKIP_EDGE_P is not
200 NULL, it points to a callback function. Edge E will be skipped if
201 callback function returns true. */
204 graphds_dfs (struct graph *g, int *qs, int nq, vec<int> *qt,
205 bool forward, bitmap subgraph,
206 skip_edge_callback skip_edge_p)
208 int i, tick = 0, v, comp = 0, top;
209 struct graph_edge *e;
210 struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
211 bitmap_iterator bi;
212 unsigned av;
214 if (subgraph)
216 EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
218 g->vertices[av].component = -1;
219 g->vertices[av].post = -1;
222 else
224 for (i = 0; i < g->n_vertices; i++)
226 g->vertices[i].component = -1;
227 g->vertices[i].post = -1;
231 for (i = 0; i < nq; i++)
233 v = qs[i];
234 if (g->vertices[v].post != -1)
235 continue;
237 g->vertices[v].component = comp++;
238 e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
239 top = 0;
241 while (1)
243 while (e)
245 if (g->vertices[dfs_edge_dest (e, forward)].component
246 == -1)
247 break;
248 e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
251 if (!e)
253 if (qt)
254 qt->safe_push (v);
255 g->vertices[v].post = tick++;
257 if (!top)
258 break;
260 e = stack[--top];
261 v = dfs_edge_src (e, forward);
262 e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
263 continue;
266 stack[top++] = e;
267 v = dfs_edge_dest (e, forward);
268 e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
269 g->vertices[v].component = comp - 1;
273 free (stack);
275 return comp;
278 /* Determines the strongly connected components of G, using the algorithm of
279 Tarjan -- first determine the postorder dfs numbering in reversed graph,
280 then run the dfs on the original graph in the order given by decreasing
281 numbers assigned by the previous pass. If SUBGRAPH is not NULL, it
282 specifies the subgraph of G whose strongly connected components we want
283 to determine. If SKIP_EDGE_P is not NULL, it points to a callback function.
284 Edge E will be skipped if callback function returns true.
286 After running this function, v->component is the number of the strongly
287 connected component for each vertex of G. Returns the number of the
288 sccs of G. */
291 graphds_scc (struct graph *g, bitmap subgraph,
292 skip_edge_callback skip_edge_p)
294 int *queue = XNEWVEC (int, g->n_vertices);
295 vec<int> postorder = vNULL;
296 int nq, i, comp;
297 unsigned v;
298 bitmap_iterator bi;
300 if (subgraph)
302 nq = 0;
303 EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
305 queue[nq++] = v;
308 else
310 for (i = 0; i < g->n_vertices; i++)
311 queue[i] = i;
312 nq = g->n_vertices;
315 graphds_dfs (g, queue, nq, &postorder, false, subgraph, skip_edge_p);
316 gcc_assert (postorder.length () == (unsigned) nq);
318 for (i = 0; i < nq; i++)
319 queue[i] = postorder[nq - i - 1];
320 comp = graphds_dfs (g, queue, nq, NULL, true, subgraph, skip_edge_p);
322 free (queue);
323 postorder.release ();
325 return comp;
328 /* Runs CALLBACK for all edges in G. DATA is private data for CALLBACK. */
330 void
331 for_each_edge (struct graph *g, graphds_edge_callback callback, void *data)
333 struct graph_edge *e;
334 int i;
336 for (i = 0; i < g->n_vertices; i++)
337 for (e = g->vertices[i].succ; e; e = e->succ_next)
338 callback (g, e, data);
341 /* Releases the memory occupied by G. */
343 void
344 free_graph (struct graph *g)
346 obstack_free (&g->ob, NULL);
347 free (g);
350 /* Returns the nearest common ancestor of X and Y in tree whose parent
351 links are given by PARENT. MARKS is the array used to mark the
352 vertices of the tree, and MARK is the number currently used as a mark. */
354 static int
355 tree_nca (int x, int y, int *parent, int *marks, int mark)
357 if (x == -1 || x == y)
358 return y;
360 /* We climb with X and Y up the tree, marking the visited nodes. When
361 we first arrive to a marked node, it is the common ancestor. */
362 marks[x] = mark;
363 marks[y] = mark;
365 while (1)
367 x = parent[x];
368 if (x == -1)
369 break;
370 if (marks[x] == mark)
371 return x;
372 marks[x] = mark;
374 y = parent[y];
375 if (y == -1)
376 break;
377 if (marks[y] == mark)
378 return y;
379 marks[y] = mark;
382 /* If we reached the root with one of the vertices, continue
383 with the other one till we reach the marked part of the
384 tree. */
385 if (x == -1)
387 for (y = parent[y]; marks[y] != mark; y = parent[y])
388 continue;
390 return y;
392 else
394 for (x = parent[x]; marks[x] != mark; x = parent[x])
395 continue;
397 return x;
401 /* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
402 arrays), where the entry node is ENTRY. */
404 void
405 graphds_domtree (struct graph *g, int entry,
406 int *parent, int *son, int *brother)
408 vec<int> postorder = vNULL;
409 int *marks = XCNEWVEC (int, g->n_vertices);
410 int mark = 1, i, v, idom;
411 bool changed = true;
412 struct graph_edge *e;
414 /* We use a slight modification of the standard iterative algorithm, as
415 described in
417 K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
418 Algorithm
420 sort vertices in reverse postorder
421 foreach v
422 dom(v) = everything
423 dom(entry) = entry;
425 while (anything changes)
426 foreach v
427 dom(v) = {v} union (intersection of dom(p) over all predecessors of v)
429 The sets dom(v) are represented by the parent links in the current version
430 of the dominance tree. */
432 for (i = 0; i < g->n_vertices; i++)
434 parent[i] = -1;
435 son[i] = -1;
436 brother[i] = -1;
438 graphds_dfs (g, &entry, 1, &postorder, true, NULL);
439 gcc_assert (postorder.length () == (unsigned) g->n_vertices);
440 gcc_assert (postorder[g->n_vertices - 1] == entry);
442 while (changed)
444 changed = false;
446 for (i = g->n_vertices - 2; i >= 0; i--)
448 v = postorder[i];
449 idom = -1;
450 for (e = g->vertices[v].pred; e; e = e->pred_next)
452 if (e->src != entry
453 && parent[e->src] == -1)
454 continue;
456 idom = tree_nca (idom, e->src, parent, marks, mark++);
459 if (idom != parent[v])
461 parent[v] = idom;
462 changed = true;
467 free (marks);
468 postorder.release ();
470 for (i = 0; i < g->n_vertices; i++)
471 if (parent[i] != -1)
473 brother[i] = son[parent[i]];
474 son[parent[i]] = i;