2016-11-10 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / optabs.c
blob7a1f02533bcc8a083742008aaaaa9cd3f623ea86
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
37 /* Include insn-config.h before expr.h so that HAVE_conditional_move
38 is properly defined. */
39 #include "stor-layout.h"
40 #include "except.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "expr.h"
44 #include "optabs-tree.h"
45 #include "libfuncs.h"
47 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
48 machine_mode *);
49 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
50 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
52 /* Debug facility for use in GDB. */
53 void debug_optab_libfuncs (void);
55 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
56 the result of operation CODE applied to OP0 (and OP1 if it is a binary
57 operation).
59 If the last insn does not set TARGET, don't do anything, but return 1.
61 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
62 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
63 try again, ensuring that TARGET is not one of the operands. */
65 static int
66 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
68 rtx_insn *last_insn;
69 rtx set;
70 rtx note;
72 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
74 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
75 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
76 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
77 && GET_RTX_CLASS (code) != RTX_COMPARE
78 && GET_RTX_CLASS (code) != RTX_UNARY)
79 return 1;
81 if (GET_CODE (target) == ZERO_EXTRACT)
82 return 1;
84 for (last_insn = insns;
85 NEXT_INSN (last_insn) != NULL_RTX;
86 last_insn = NEXT_INSN (last_insn))
89 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
90 a value changing in the insn, so the note would be invalid for CSE. */
91 if (reg_overlap_mentioned_p (target, op0)
92 || (op1 && reg_overlap_mentioned_p (target, op1)))
94 if (MEM_P (target)
95 && (rtx_equal_p (target, op0)
96 || (op1 && rtx_equal_p (target, op1))))
98 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
99 over expanding it as temp = MEM op X, MEM = temp. If the target
100 supports MEM = MEM op X instructions, it is sometimes too hard
101 to reconstruct that form later, especially if X is also a memory,
102 and due to multiple occurrences of addresses the address might
103 be forced into register unnecessarily.
104 Note that not emitting the REG_EQUIV note might inhibit
105 CSE in some cases. */
106 set = single_set (last_insn);
107 if (set
108 && GET_CODE (SET_SRC (set)) == code
109 && MEM_P (SET_DEST (set))
110 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
111 || (op1 && rtx_equal_p (SET_DEST (set),
112 XEXP (SET_SRC (set), 1)))))
113 return 1;
115 return 0;
118 set = set_for_reg_notes (last_insn);
119 if (set == NULL_RTX)
120 return 1;
122 if (! rtx_equal_p (SET_DEST (set), target)
123 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
124 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
125 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
126 return 1;
128 if (GET_RTX_CLASS (code) == RTX_UNARY)
129 switch (code)
131 case FFS:
132 case CLZ:
133 case CTZ:
134 case CLRSB:
135 case POPCOUNT:
136 case PARITY:
137 case BSWAP:
138 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
140 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
141 if (GET_MODE_SIZE (GET_MODE (op0))
142 > GET_MODE_SIZE (GET_MODE (target)))
143 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
144 note, GET_MODE (op0));
145 else
146 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
147 note, GET_MODE (op0));
148 break;
150 /* FALLTHRU */
151 default:
152 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
153 break;
155 else
156 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
158 set_unique_reg_note (last_insn, REG_EQUAL, note);
160 return 1;
163 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
164 for a widening operation would be. In most cases this would be OP0, but if
165 that's a constant it'll be VOIDmode, which isn't useful. */
167 static machine_mode
168 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
170 machine_mode m0 = GET_MODE (op0);
171 machine_mode m1 = GET_MODE (op1);
172 machine_mode result;
174 if (m0 == VOIDmode && m1 == VOIDmode)
175 return to_mode;
176 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
177 result = m1;
178 else
179 result = m0;
181 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
182 return to_mode;
184 return result;
187 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
188 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
189 not actually do a sign-extend or zero-extend, but can leave the
190 higher-order bits of the result rtx undefined, for example, in the case
191 of logical operations, but not right shifts. */
193 static rtx
194 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
195 int unsignedp, int no_extend)
197 rtx result;
199 /* If we don't have to extend and this is a constant, return it. */
200 if (no_extend && GET_MODE (op) == VOIDmode)
201 return op;
203 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
204 extend since it will be more efficient to do so unless the signedness of
205 a promoted object differs from our extension. */
206 if (! no_extend
207 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
208 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
209 return convert_modes (mode, oldmode, op, unsignedp);
211 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
212 SUBREG. */
213 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
214 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
216 /* Otherwise, get an object of MODE, clobber it, and set the low-order
217 part to OP. */
219 result = gen_reg_rtx (mode);
220 emit_clobber (result);
221 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
222 return result;
225 /* Expand vector widening operations.
227 There are two different classes of operations handled here:
228 1) Operations whose result is wider than all the arguments to the operation.
229 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
230 In this case OP0 and optionally OP1 would be initialized,
231 but WIDE_OP wouldn't (not relevant for this case).
232 2) Operations whose result is of the same size as the last argument to the
233 operation, but wider than all the other arguments to the operation.
234 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
235 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
237 E.g, when called to expand the following operations, this is how
238 the arguments will be initialized:
239 nops OP0 OP1 WIDE_OP
240 widening-sum 2 oprnd0 - oprnd1
241 widening-dot-product 3 oprnd0 oprnd1 oprnd2
242 widening-mult 2 oprnd0 oprnd1 -
243 type-promotion (vec-unpack) 1 oprnd0 - - */
246 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
247 rtx target, int unsignedp)
249 struct expand_operand eops[4];
250 tree oprnd0, oprnd1, oprnd2;
251 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
252 optab widen_pattern_optab;
253 enum insn_code icode;
254 int nops = TREE_CODE_LENGTH (ops->code);
255 int op;
257 oprnd0 = ops->op0;
258 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
259 widen_pattern_optab =
260 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
261 if (ops->code == WIDEN_MULT_PLUS_EXPR
262 || ops->code == WIDEN_MULT_MINUS_EXPR)
263 icode = find_widening_optab_handler (widen_pattern_optab,
264 TYPE_MODE (TREE_TYPE (ops->op2)),
265 tmode0, 0);
266 else
267 icode = optab_handler (widen_pattern_optab, tmode0);
268 gcc_assert (icode != CODE_FOR_nothing);
270 if (nops >= 2)
272 oprnd1 = ops->op1;
273 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
276 /* The last operand is of a wider mode than the rest of the operands. */
277 if (nops == 2)
278 wmode = tmode1;
279 else if (nops == 3)
281 gcc_assert (tmode1 == tmode0);
282 gcc_assert (op1);
283 oprnd2 = ops->op2;
284 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
287 op = 0;
288 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
289 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
290 if (op1)
291 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
292 if (wide_op)
293 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
294 expand_insn (icode, op, eops);
295 return eops[0].value;
298 /* Generate code to perform an operation specified by TERNARY_OPTAB
299 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
301 UNSIGNEDP is for the case where we have to widen the operands
302 to perform the operation. It says to use zero-extension.
304 If TARGET is nonzero, the value
305 is generated there, if it is convenient to do so.
306 In all cases an rtx is returned for the locus of the value;
307 this may or may not be TARGET. */
310 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
311 rtx op1, rtx op2, rtx target, int unsignedp)
313 struct expand_operand ops[4];
314 enum insn_code icode = optab_handler (ternary_optab, mode);
316 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
318 create_output_operand (&ops[0], target, mode);
319 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
320 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
321 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
322 expand_insn (icode, 4, ops);
323 return ops[0].value;
327 /* Like expand_binop, but return a constant rtx if the result can be
328 calculated at compile time. The arguments and return value are
329 otherwise the same as for expand_binop. */
332 simplify_expand_binop (machine_mode mode, optab binoptab,
333 rtx op0, rtx op1, rtx target, int unsignedp,
334 enum optab_methods methods)
336 if (CONSTANT_P (op0) && CONSTANT_P (op1))
338 rtx x = simplify_binary_operation (optab_to_code (binoptab),
339 mode, op0, op1);
340 if (x)
341 return x;
344 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
347 /* Like simplify_expand_binop, but always put the result in TARGET.
348 Return true if the expansion succeeded. */
350 bool
351 force_expand_binop (machine_mode mode, optab binoptab,
352 rtx op0, rtx op1, rtx target, int unsignedp,
353 enum optab_methods methods)
355 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
356 target, unsignedp, methods);
357 if (x == 0)
358 return false;
359 if (x != target)
360 emit_move_insn (target, x);
361 return true;
364 /* Create a new vector value in VMODE with all elements set to OP. The
365 mode of OP must be the element mode of VMODE. If OP is a constant,
366 then the return value will be a constant. */
368 static rtx
369 expand_vector_broadcast (machine_mode vmode, rtx op)
371 enum insn_code icode;
372 rtvec vec;
373 rtx ret;
374 int i, n;
376 gcc_checking_assert (VECTOR_MODE_P (vmode));
378 n = GET_MODE_NUNITS (vmode);
379 vec = rtvec_alloc (n);
380 for (i = 0; i < n; ++i)
381 RTVEC_ELT (vec, i) = op;
383 if (CONSTANT_P (op))
384 return gen_rtx_CONST_VECTOR (vmode, vec);
386 /* ??? If the target doesn't have a vec_init, then we have no easy way
387 of performing this operation. Most of this sort of generic support
388 is hidden away in the vector lowering support in gimple. */
389 icode = optab_handler (vec_init_optab, vmode);
390 if (icode == CODE_FOR_nothing)
391 return NULL;
393 ret = gen_reg_rtx (vmode);
394 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
396 return ret;
399 /* This subroutine of expand_doubleword_shift handles the cases in which
400 the effective shift value is >= BITS_PER_WORD. The arguments and return
401 value are the same as for the parent routine, except that SUPERWORD_OP1
402 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
403 INTO_TARGET may be null if the caller has decided to calculate it. */
405 static bool
406 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
407 rtx outof_target, rtx into_target,
408 int unsignedp, enum optab_methods methods)
410 if (into_target != 0)
411 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
412 into_target, unsignedp, methods))
413 return false;
415 if (outof_target != 0)
417 /* For a signed right shift, we must fill OUTOF_TARGET with copies
418 of the sign bit, otherwise we must fill it with zeros. */
419 if (binoptab != ashr_optab)
420 emit_move_insn (outof_target, CONST0_RTX (word_mode));
421 else
422 if (!force_expand_binop (word_mode, binoptab,
423 outof_input, GEN_INT (BITS_PER_WORD - 1),
424 outof_target, unsignedp, methods))
425 return false;
427 return true;
430 /* This subroutine of expand_doubleword_shift handles the cases in which
431 the effective shift value is < BITS_PER_WORD. The arguments and return
432 value are the same as for the parent routine. */
434 static bool
435 expand_subword_shift (machine_mode op1_mode, optab binoptab,
436 rtx outof_input, rtx into_input, rtx op1,
437 rtx outof_target, rtx into_target,
438 int unsignedp, enum optab_methods methods,
439 unsigned HOST_WIDE_INT shift_mask)
441 optab reverse_unsigned_shift, unsigned_shift;
442 rtx tmp, carries;
444 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
445 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
447 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
448 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
449 the opposite direction to BINOPTAB. */
450 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
452 carries = outof_input;
453 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
454 op1_mode), op1_mode);
455 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
456 0, true, methods);
458 else
460 /* We must avoid shifting by BITS_PER_WORD bits since that is either
461 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
462 has unknown behavior. Do a single shift first, then shift by the
463 remainder. It's OK to use ~OP1 as the remainder if shift counts
464 are truncated to the mode size. */
465 carries = expand_binop (word_mode, reverse_unsigned_shift,
466 outof_input, const1_rtx, 0, unsignedp, methods);
467 if (shift_mask == BITS_PER_WORD - 1)
469 tmp = immed_wide_int_const
470 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
471 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
472 0, true, methods);
474 else
476 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
477 op1_mode), op1_mode);
478 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
479 0, true, methods);
482 if (tmp == 0 || carries == 0)
483 return false;
484 carries = expand_binop (word_mode, reverse_unsigned_shift,
485 carries, tmp, 0, unsignedp, methods);
486 if (carries == 0)
487 return false;
489 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
490 so the result can go directly into INTO_TARGET if convenient. */
491 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
492 into_target, unsignedp, methods);
493 if (tmp == 0)
494 return false;
496 /* Now OR in the bits carried over from OUTOF_INPUT. */
497 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
498 into_target, unsignedp, methods))
499 return false;
501 /* Use a standard word_mode shift for the out-of half. */
502 if (outof_target != 0)
503 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
504 outof_target, unsignedp, methods))
505 return false;
507 return true;
511 /* Try implementing expand_doubleword_shift using conditional moves.
512 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
513 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
514 are the shift counts to use in the former and latter case. All other
515 arguments are the same as the parent routine. */
517 static bool
518 expand_doubleword_shift_condmove (machine_mode op1_mode, optab binoptab,
519 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
520 rtx outof_input, rtx into_input,
521 rtx subword_op1, rtx superword_op1,
522 rtx outof_target, rtx into_target,
523 int unsignedp, enum optab_methods methods,
524 unsigned HOST_WIDE_INT shift_mask)
526 rtx outof_superword, into_superword;
528 /* Put the superword version of the output into OUTOF_SUPERWORD and
529 INTO_SUPERWORD. */
530 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
531 if (outof_target != 0 && subword_op1 == superword_op1)
533 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
534 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
535 into_superword = outof_target;
536 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
537 outof_superword, 0, unsignedp, methods))
538 return false;
540 else
542 into_superword = gen_reg_rtx (word_mode);
543 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
544 outof_superword, into_superword,
545 unsignedp, methods))
546 return false;
549 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
550 if (!expand_subword_shift (op1_mode, binoptab,
551 outof_input, into_input, subword_op1,
552 outof_target, into_target,
553 unsignedp, methods, shift_mask))
554 return false;
556 /* Select between them. Do the INTO half first because INTO_SUPERWORD
557 might be the current value of OUTOF_TARGET. */
558 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
559 into_target, into_superword, word_mode, false))
560 return false;
562 if (outof_target != 0)
563 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
564 outof_target, outof_superword,
565 word_mode, false))
566 return false;
568 return true;
571 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
572 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
573 input operand; the shift moves bits in the direction OUTOF_INPUT->
574 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
575 of the target. OP1 is the shift count and OP1_MODE is its mode.
576 If OP1 is constant, it will have been truncated as appropriate
577 and is known to be nonzero.
579 If SHIFT_MASK is zero, the result of word shifts is undefined when the
580 shift count is outside the range [0, BITS_PER_WORD). This routine must
581 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
583 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
584 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
585 fill with zeros or sign bits as appropriate.
587 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
588 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
589 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
590 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
591 are undefined.
593 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
594 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
595 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
596 function wants to calculate it itself.
598 Return true if the shift could be successfully synthesized. */
600 static bool
601 expand_doubleword_shift (machine_mode op1_mode, optab binoptab,
602 rtx outof_input, rtx into_input, rtx op1,
603 rtx outof_target, rtx into_target,
604 int unsignedp, enum optab_methods methods,
605 unsigned HOST_WIDE_INT shift_mask)
607 rtx superword_op1, tmp, cmp1, cmp2;
608 enum rtx_code cmp_code;
610 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
611 fill the result with sign or zero bits as appropriate. If so, the value
612 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
613 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
614 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
616 This isn't worthwhile for constant shifts since the optimizers will
617 cope better with in-range shift counts. */
618 if (shift_mask >= BITS_PER_WORD
619 && outof_target != 0
620 && !CONSTANT_P (op1))
622 if (!expand_doubleword_shift (op1_mode, binoptab,
623 outof_input, into_input, op1,
624 0, into_target,
625 unsignedp, methods, shift_mask))
626 return false;
627 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
628 outof_target, unsignedp, methods))
629 return false;
630 return true;
633 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
634 is true when the effective shift value is less than BITS_PER_WORD.
635 Set SUPERWORD_OP1 to the shift count that should be used to shift
636 OUTOF_INPUT into INTO_TARGET when the condition is false. */
637 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
638 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
640 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
641 is a subword shift count. */
642 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
643 0, true, methods);
644 cmp2 = CONST0_RTX (op1_mode);
645 cmp_code = EQ;
646 superword_op1 = op1;
648 else
650 /* Set CMP1 to OP1 - BITS_PER_WORD. */
651 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
652 0, true, methods);
653 cmp2 = CONST0_RTX (op1_mode);
654 cmp_code = LT;
655 superword_op1 = cmp1;
657 if (cmp1 == 0)
658 return false;
660 /* If we can compute the condition at compile time, pick the
661 appropriate subroutine. */
662 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
663 if (tmp != 0 && CONST_INT_P (tmp))
665 if (tmp == const0_rtx)
666 return expand_superword_shift (binoptab, outof_input, superword_op1,
667 outof_target, into_target,
668 unsignedp, methods);
669 else
670 return expand_subword_shift (op1_mode, binoptab,
671 outof_input, into_input, op1,
672 outof_target, into_target,
673 unsignedp, methods, shift_mask);
676 /* Try using conditional moves to generate straight-line code. */
677 if (HAVE_conditional_move)
679 rtx_insn *start = get_last_insn ();
680 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
681 cmp_code, cmp1, cmp2,
682 outof_input, into_input,
683 op1, superword_op1,
684 outof_target, into_target,
685 unsignedp, methods, shift_mask))
686 return true;
687 delete_insns_since (start);
690 /* As a last resort, use branches to select the correct alternative. */
691 rtx_code_label *subword_label = gen_label_rtx ();
692 rtx_code_label *done_label = gen_label_rtx ();
694 NO_DEFER_POP;
695 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
696 0, 0, subword_label, -1);
697 OK_DEFER_POP;
699 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
700 outof_target, into_target,
701 unsignedp, methods))
702 return false;
704 emit_jump_insn (targetm.gen_jump (done_label));
705 emit_barrier ();
706 emit_label (subword_label);
708 if (!expand_subword_shift (op1_mode, binoptab,
709 outof_input, into_input, op1,
710 outof_target, into_target,
711 unsignedp, methods, shift_mask))
712 return false;
714 emit_label (done_label);
715 return true;
718 /* Subroutine of expand_binop. Perform a double word multiplication of
719 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
720 as the target's word_mode. This function return NULL_RTX if anything
721 goes wrong, in which case it may have already emitted instructions
722 which need to be deleted.
724 If we want to multiply two two-word values and have normal and widening
725 multiplies of single-word values, we can do this with three smaller
726 multiplications.
728 The multiplication proceeds as follows:
729 _______________________
730 [__op0_high_|__op0_low__]
731 _______________________
732 * [__op1_high_|__op1_low__]
733 _______________________________________________
734 _______________________
735 (1) [__op0_low__*__op1_low__]
736 _______________________
737 (2a) [__op0_low__*__op1_high_]
738 _______________________
739 (2b) [__op0_high_*__op1_low__]
740 _______________________
741 (3) [__op0_high_*__op1_high_]
744 This gives a 4-word result. Since we are only interested in the
745 lower 2 words, partial result (3) and the upper words of (2a) and
746 (2b) don't need to be calculated. Hence (2a) and (2b) can be
747 calculated using non-widening multiplication.
749 (1), however, needs to be calculated with an unsigned widening
750 multiplication. If this operation is not directly supported we
751 try using a signed widening multiplication and adjust the result.
752 This adjustment works as follows:
754 If both operands are positive then no adjustment is needed.
756 If the operands have different signs, for example op0_low < 0 and
757 op1_low >= 0, the instruction treats the most significant bit of
758 op0_low as a sign bit instead of a bit with significance
759 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
760 with 2**BITS_PER_WORD - op0_low, and two's complements the
761 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
762 the result.
764 Similarly, if both operands are negative, we need to add
765 (op0_low + op1_low) * 2**BITS_PER_WORD.
767 We use a trick to adjust quickly. We logically shift op0_low right
768 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
769 op0_high (op1_high) before it is used to calculate 2b (2a). If no
770 logical shift exists, we do an arithmetic right shift and subtract
771 the 0 or -1. */
773 static rtx
774 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
775 bool umulp, enum optab_methods methods)
777 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
778 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
779 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
780 rtx product, adjust, product_high, temp;
782 rtx op0_high = operand_subword_force (op0, high, mode);
783 rtx op0_low = operand_subword_force (op0, low, mode);
784 rtx op1_high = operand_subword_force (op1, high, mode);
785 rtx op1_low = operand_subword_force (op1, low, mode);
787 /* If we're using an unsigned multiply to directly compute the product
788 of the low-order words of the operands and perform any required
789 adjustments of the operands, we begin by trying two more multiplications
790 and then computing the appropriate sum.
792 We have checked above that the required addition is provided.
793 Full-word addition will normally always succeed, especially if
794 it is provided at all, so we don't worry about its failure. The
795 multiplication may well fail, however, so we do handle that. */
797 if (!umulp)
799 /* ??? This could be done with emit_store_flag where available. */
800 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
801 NULL_RTX, 1, methods);
802 if (temp)
803 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
804 NULL_RTX, 0, OPTAB_DIRECT);
805 else
807 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
808 NULL_RTX, 0, methods);
809 if (!temp)
810 return NULL_RTX;
811 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
812 NULL_RTX, 0, OPTAB_DIRECT);
815 if (!op0_high)
816 return NULL_RTX;
819 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
820 NULL_RTX, 0, OPTAB_DIRECT);
821 if (!adjust)
822 return NULL_RTX;
824 /* OP0_HIGH should now be dead. */
826 if (!umulp)
828 /* ??? This could be done with emit_store_flag where available. */
829 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
830 NULL_RTX, 1, methods);
831 if (temp)
832 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
833 NULL_RTX, 0, OPTAB_DIRECT);
834 else
836 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
837 NULL_RTX, 0, methods);
838 if (!temp)
839 return NULL_RTX;
840 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
841 NULL_RTX, 0, OPTAB_DIRECT);
844 if (!op1_high)
845 return NULL_RTX;
848 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
849 NULL_RTX, 0, OPTAB_DIRECT);
850 if (!temp)
851 return NULL_RTX;
853 /* OP1_HIGH should now be dead. */
855 adjust = expand_binop (word_mode, add_optab, adjust, temp,
856 NULL_RTX, 0, OPTAB_DIRECT);
858 if (target && !REG_P (target))
859 target = NULL_RTX;
861 if (umulp)
862 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
863 target, 1, OPTAB_DIRECT);
864 else
865 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
866 target, 1, OPTAB_DIRECT);
868 if (!product)
869 return NULL_RTX;
871 product_high = operand_subword (product, high, 1, mode);
872 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
873 NULL_RTX, 0, OPTAB_DIRECT);
874 emit_move_insn (product_high, adjust);
875 return product;
878 /* Wrapper around expand_binop which takes an rtx code to specify
879 the operation to perform, not an optab pointer. All other
880 arguments are the same. */
882 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
883 rtx op1, rtx target, int unsignedp,
884 enum optab_methods methods)
886 optab binop = code_to_optab (code);
887 gcc_assert (binop);
889 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
892 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
893 binop. Order them according to commutative_operand_precedence and, if
894 possible, try to put TARGET or a pseudo first. */
895 static bool
896 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
898 int op0_prec = commutative_operand_precedence (op0);
899 int op1_prec = commutative_operand_precedence (op1);
901 if (op0_prec < op1_prec)
902 return true;
904 if (op0_prec > op1_prec)
905 return false;
907 /* With equal precedence, both orders are ok, but it is better if the
908 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
909 if (target == 0 || REG_P (target))
910 return (REG_P (op1) && !REG_P (op0)) || target == op1;
911 else
912 return rtx_equal_p (op1, target);
915 /* Return true if BINOPTAB implements a shift operation. */
917 static bool
918 shift_optab_p (optab binoptab)
920 switch (optab_to_code (binoptab))
922 case ASHIFT:
923 case SS_ASHIFT:
924 case US_ASHIFT:
925 case ASHIFTRT:
926 case LSHIFTRT:
927 case ROTATE:
928 case ROTATERT:
929 return true;
931 default:
932 return false;
936 /* Return true if BINOPTAB implements a commutative binary operation. */
938 static bool
939 commutative_optab_p (optab binoptab)
941 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
942 || binoptab == smul_widen_optab
943 || binoptab == umul_widen_optab
944 || binoptab == smul_highpart_optab
945 || binoptab == umul_highpart_optab);
948 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
949 optimizing, and if the operand is a constant that costs more than
950 1 instruction, force the constant into a register and return that
951 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
953 static rtx
954 avoid_expensive_constant (machine_mode mode, optab binoptab,
955 int opn, rtx x, bool unsignedp)
957 bool speed = optimize_insn_for_speed_p ();
959 if (mode != VOIDmode
960 && optimize
961 && CONSTANT_P (x)
962 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
963 > set_src_cost (x, mode, speed)))
965 if (CONST_INT_P (x))
967 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
968 if (intval != INTVAL (x))
969 x = GEN_INT (intval);
971 else
972 x = convert_modes (mode, VOIDmode, x, unsignedp);
973 x = force_reg (mode, x);
975 return x;
978 /* Helper function for expand_binop: handle the case where there
979 is an insn that directly implements the indicated operation.
980 Returns null if this is not possible. */
981 static rtx
982 expand_binop_directly (machine_mode mode, optab binoptab,
983 rtx op0, rtx op1,
984 rtx target, int unsignedp, enum optab_methods methods,
985 rtx_insn *last)
987 machine_mode from_mode = widened_mode (mode, op0, op1);
988 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
989 from_mode, 1);
990 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
991 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
992 machine_mode mode0, mode1, tmp_mode;
993 struct expand_operand ops[3];
994 bool commutative_p;
995 rtx_insn *pat;
996 rtx xop0 = op0, xop1 = op1;
997 bool canonicalize_op1 = false;
999 /* If it is a commutative operator and the modes would match
1000 if we would swap the operands, we can save the conversions. */
1001 commutative_p = commutative_optab_p (binoptab);
1002 if (commutative_p
1003 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1004 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1005 std::swap (xop0, xop1);
1007 /* If we are optimizing, force expensive constants into a register. */
1008 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1009 if (!shift_optab_p (binoptab))
1010 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1011 else
1012 /* Shifts and rotates often use a different mode for op1 from op0;
1013 for VOIDmode constants we don't know the mode, so force it
1014 to be canonicalized using convert_modes. */
1015 canonicalize_op1 = true;
1017 /* In case the insn wants input operands in modes different from
1018 those of the actual operands, convert the operands. It would
1019 seem that we don't need to convert CONST_INTs, but we do, so
1020 that they're properly zero-extended, sign-extended or truncated
1021 for their mode. */
1023 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1024 if (xmode0 != VOIDmode && xmode0 != mode0)
1026 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1027 mode0 = xmode0;
1030 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1031 ? GET_MODE (xop1) : mode);
1032 if (xmode1 != VOIDmode && xmode1 != mode1)
1034 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1035 mode1 = xmode1;
1038 /* If operation is commutative,
1039 try to make the first operand a register.
1040 Even better, try to make it the same as the target.
1041 Also try to make the last operand a constant. */
1042 if (commutative_p
1043 && swap_commutative_operands_with_target (target, xop0, xop1))
1044 std::swap (xop0, xop1);
1046 /* Now, if insn's predicates don't allow our operands, put them into
1047 pseudo regs. */
1049 if (binoptab == vec_pack_trunc_optab
1050 || binoptab == vec_pack_usat_optab
1051 || binoptab == vec_pack_ssat_optab
1052 || binoptab == vec_pack_ufix_trunc_optab
1053 || binoptab == vec_pack_sfix_trunc_optab)
1055 /* The mode of the result is different then the mode of the
1056 arguments. */
1057 tmp_mode = insn_data[(int) icode].operand[0].mode;
1058 if (VECTOR_MODE_P (mode)
1059 && GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1061 delete_insns_since (last);
1062 return NULL_RTX;
1065 else
1066 tmp_mode = mode;
1068 create_output_operand (&ops[0], target, tmp_mode);
1069 create_input_operand (&ops[1], xop0, mode0);
1070 create_input_operand (&ops[2], xop1, mode1);
1071 pat = maybe_gen_insn (icode, 3, ops);
1072 if (pat)
1074 /* If PAT is composed of more than one insn, try to add an appropriate
1075 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1076 operand, call expand_binop again, this time without a target. */
1077 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1078 && ! add_equal_note (pat, ops[0].value,
1079 optab_to_code (binoptab),
1080 ops[1].value, ops[2].value))
1082 delete_insns_since (last);
1083 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1084 unsignedp, methods);
1087 emit_insn (pat);
1088 return ops[0].value;
1090 delete_insns_since (last);
1091 return NULL_RTX;
1094 /* Generate code to perform an operation specified by BINOPTAB
1095 on operands OP0 and OP1, with result having machine-mode MODE.
1097 UNSIGNEDP is for the case where we have to widen the operands
1098 to perform the operation. It says to use zero-extension.
1100 If TARGET is nonzero, the value
1101 is generated there, if it is convenient to do so.
1102 In all cases an rtx is returned for the locus of the value;
1103 this may or may not be TARGET. */
1106 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1107 rtx target, int unsignedp, enum optab_methods methods)
1109 enum optab_methods next_methods
1110 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1111 ? OPTAB_WIDEN : methods);
1112 enum mode_class mclass;
1113 machine_mode wider_mode;
1114 rtx libfunc;
1115 rtx temp;
1116 rtx_insn *entry_last = get_last_insn ();
1117 rtx_insn *last;
1119 mclass = GET_MODE_CLASS (mode);
1121 /* If subtracting an integer constant, convert this into an addition of
1122 the negated constant. */
1124 if (binoptab == sub_optab && CONST_INT_P (op1))
1126 op1 = negate_rtx (mode, op1);
1127 binoptab = add_optab;
1129 /* For shifts, constant invalid op1 might be expanded from different
1130 mode than MODE. As those are invalid, force them to a register
1131 to avoid further problems during expansion. */
1132 else if (CONST_INT_P (op1)
1133 && shift_optab_p (binoptab)
1134 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1136 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1137 op1 = force_reg (GET_MODE_INNER (mode), op1);
1140 /* Record where to delete back to if we backtrack. */
1141 last = get_last_insn ();
1143 /* If we can do it with a three-operand insn, do so. */
1145 if (methods != OPTAB_MUST_WIDEN
1146 && find_widening_optab_handler (binoptab, mode,
1147 widened_mode (mode, op0, op1), 1)
1148 != CODE_FOR_nothing)
1150 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1151 unsignedp, methods, last);
1152 if (temp)
1153 return temp;
1156 /* If we were trying to rotate, and that didn't work, try rotating
1157 the other direction before falling back to shifts and bitwise-or. */
1158 if (((binoptab == rotl_optab
1159 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1160 || (binoptab == rotr_optab
1161 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1162 && mclass == MODE_INT)
1164 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1165 rtx newop1;
1166 unsigned int bits = GET_MODE_PRECISION (mode);
1168 if (CONST_INT_P (op1))
1169 newop1 = GEN_INT (bits - INTVAL (op1));
1170 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1171 newop1 = negate_rtx (GET_MODE (op1), op1);
1172 else
1173 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1174 gen_int_mode (bits, GET_MODE (op1)), op1,
1175 NULL_RTX, unsignedp, OPTAB_DIRECT);
1177 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1178 target, unsignedp, methods, last);
1179 if (temp)
1180 return temp;
1183 /* If this is a multiply, see if we can do a widening operation that
1184 takes operands of this mode and makes a wider mode. */
1186 if (binoptab == smul_optab
1187 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1188 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1189 : smul_widen_optab),
1190 GET_MODE_2XWIDER_MODE (mode), mode)
1191 != CODE_FOR_nothing))
1193 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1194 unsignedp ? umul_widen_optab : smul_widen_optab,
1195 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1197 if (temp != 0)
1199 if (GET_MODE_CLASS (mode) == MODE_INT
1200 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1201 return gen_lowpart (mode, temp);
1202 else
1203 return convert_to_mode (mode, temp, unsignedp);
1207 /* If this is a vector shift by a scalar, see if we can do a vector
1208 shift by a vector. If so, broadcast the scalar into a vector. */
1209 if (mclass == MODE_VECTOR_INT)
1211 optab otheroptab = unknown_optab;
1213 if (binoptab == ashl_optab)
1214 otheroptab = vashl_optab;
1215 else if (binoptab == ashr_optab)
1216 otheroptab = vashr_optab;
1217 else if (binoptab == lshr_optab)
1218 otheroptab = vlshr_optab;
1219 else if (binoptab == rotl_optab)
1220 otheroptab = vrotl_optab;
1221 else if (binoptab == rotr_optab)
1222 otheroptab = vrotr_optab;
1224 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1226 /* The scalar may have been extended to be too wide. Truncate
1227 it back to the proper size to fit in the broadcast vector. */
1228 machine_mode inner_mode = GET_MODE_INNER (mode);
1229 if (!CONST_INT_P (op1)
1230 && (GET_MODE_BITSIZE (inner_mode)
1231 < GET_MODE_BITSIZE (GET_MODE (op1))))
1232 op1 = force_reg (inner_mode,
1233 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1234 GET_MODE (op1)));
1235 rtx vop1 = expand_vector_broadcast (mode, op1);
1236 if (vop1)
1238 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1239 target, unsignedp, methods, last);
1240 if (temp)
1241 return temp;
1246 /* Look for a wider mode of the same class for which we think we
1247 can open-code the operation. Check for a widening multiply at the
1248 wider mode as well. */
1250 if (CLASS_HAS_WIDER_MODES_P (mclass)
1251 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1252 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1253 wider_mode != VOIDmode;
1254 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1256 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1257 || (binoptab == smul_optab
1258 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1259 && (find_widening_optab_handler ((unsignedp
1260 ? umul_widen_optab
1261 : smul_widen_optab),
1262 GET_MODE_WIDER_MODE (wider_mode),
1263 mode, 0)
1264 != CODE_FOR_nothing)))
1266 rtx xop0 = op0, xop1 = op1;
1267 int no_extend = 0;
1269 /* For certain integer operations, we need not actually extend
1270 the narrow operands, as long as we will truncate
1271 the results to the same narrowness. */
1273 if ((binoptab == ior_optab || binoptab == and_optab
1274 || binoptab == xor_optab
1275 || binoptab == add_optab || binoptab == sub_optab
1276 || binoptab == smul_optab || binoptab == ashl_optab)
1277 && mclass == MODE_INT)
1279 no_extend = 1;
1280 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1281 xop0, unsignedp);
1282 if (binoptab != ashl_optab)
1283 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1284 xop1, unsignedp);
1287 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1289 /* The second operand of a shift must always be extended. */
1290 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1291 no_extend && binoptab != ashl_optab);
1293 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1294 unsignedp, OPTAB_DIRECT);
1295 if (temp)
1297 if (mclass != MODE_INT
1298 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1300 if (target == 0)
1301 target = gen_reg_rtx (mode);
1302 convert_move (target, temp, 0);
1303 return target;
1305 else
1306 return gen_lowpart (mode, temp);
1308 else
1309 delete_insns_since (last);
1313 /* If operation is commutative,
1314 try to make the first operand a register.
1315 Even better, try to make it the same as the target.
1316 Also try to make the last operand a constant. */
1317 if (commutative_optab_p (binoptab)
1318 && swap_commutative_operands_with_target (target, op0, op1))
1319 std::swap (op0, op1);
1321 /* These can be done a word at a time. */
1322 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1323 && mclass == MODE_INT
1324 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1325 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1327 int i;
1328 rtx_insn *insns;
1330 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1331 won't be accurate, so use a new target. */
1332 if (target == 0
1333 || target == op0
1334 || target == op1
1335 || !valid_multiword_target_p (target))
1336 target = gen_reg_rtx (mode);
1338 start_sequence ();
1340 /* Do the actual arithmetic. */
1341 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1343 rtx target_piece = operand_subword (target, i, 1, mode);
1344 rtx x = expand_binop (word_mode, binoptab,
1345 operand_subword_force (op0, i, mode),
1346 operand_subword_force (op1, i, mode),
1347 target_piece, unsignedp, next_methods);
1349 if (x == 0)
1350 break;
1352 if (target_piece != x)
1353 emit_move_insn (target_piece, x);
1356 insns = get_insns ();
1357 end_sequence ();
1359 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1361 emit_insn (insns);
1362 return target;
1366 /* Synthesize double word shifts from single word shifts. */
1367 if ((binoptab == lshr_optab || binoptab == ashl_optab
1368 || binoptab == ashr_optab)
1369 && mclass == MODE_INT
1370 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1371 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1372 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1373 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1374 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1375 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1377 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1378 machine_mode op1_mode;
1380 double_shift_mask = targetm.shift_truncation_mask (mode);
1381 shift_mask = targetm.shift_truncation_mask (word_mode);
1382 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1384 /* Apply the truncation to constant shifts. */
1385 if (double_shift_mask > 0 && CONST_INT_P (op1))
1386 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1388 if (op1 == CONST0_RTX (op1_mode))
1389 return op0;
1391 /* Make sure that this is a combination that expand_doubleword_shift
1392 can handle. See the comments there for details. */
1393 if (double_shift_mask == 0
1394 || (shift_mask == BITS_PER_WORD - 1
1395 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1397 rtx_insn *insns;
1398 rtx into_target, outof_target;
1399 rtx into_input, outof_input;
1400 int left_shift, outof_word;
1402 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1403 won't be accurate, so use a new target. */
1404 if (target == 0
1405 || target == op0
1406 || target == op1
1407 || !valid_multiword_target_p (target))
1408 target = gen_reg_rtx (mode);
1410 start_sequence ();
1412 /* OUTOF_* is the word we are shifting bits away from, and
1413 INTO_* is the word that we are shifting bits towards, thus
1414 they differ depending on the direction of the shift and
1415 WORDS_BIG_ENDIAN. */
1417 left_shift = binoptab == ashl_optab;
1418 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1420 outof_target = operand_subword (target, outof_word, 1, mode);
1421 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1423 outof_input = operand_subword_force (op0, outof_word, mode);
1424 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1426 if (expand_doubleword_shift (op1_mode, binoptab,
1427 outof_input, into_input, op1,
1428 outof_target, into_target,
1429 unsignedp, next_methods, shift_mask))
1431 insns = get_insns ();
1432 end_sequence ();
1434 emit_insn (insns);
1435 return target;
1437 end_sequence ();
1441 /* Synthesize double word rotates from single word shifts. */
1442 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1443 && mclass == MODE_INT
1444 && CONST_INT_P (op1)
1445 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1446 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1447 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1449 rtx_insn *insns;
1450 rtx into_target, outof_target;
1451 rtx into_input, outof_input;
1452 rtx inter;
1453 int shift_count, left_shift, outof_word;
1455 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1456 won't be accurate, so use a new target. Do this also if target is not
1457 a REG, first because having a register instead may open optimization
1458 opportunities, and second because if target and op0 happen to be MEMs
1459 designating the same location, we would risk clobbering it too early
1460 in the code sequence we generate below. */
1461 if (target == 0
1462 || target == op0
1463 || target == op1
1464 || !REG_P (target)
1465 || !valid_multiword_target_p (target))
1466 target = gen_reg_rtx (mode);
1468 start_sequence ();
1470 shift_count = INTVAL (op1);
1472 /* OUTOF_* is the word we are shifting bits away from, and
1473 INTO_* is the word that we are shifting bits towards, thus
1474 they differ depending on the direction of the shift and
1475 WORDS_BIG_ENDIAN. */
1477 left_shift = (binoptab == rotl_optab);
1478 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1480 outof_target = operand_subword (target, outof_word, 1, mode);
1481 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1483 outof_input = operand_subword_force (op0, outof_word, mode);
1484 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1486 if (shift_count == BITS_PER_WORD)
1488 /* This is just a word swap. */
1489 emit_move_insn (outof_target, into_input);
1490 emit_move_insn (into_target, outof_input);
1491 inter = const0_rtx;
1493 else
1495 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1496 rtx first_shift_count, second_shift_count;
1497 optab reverse_unsigned_shift, unsigned_shift;
1499 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1500 ? lshr_optab : ashl_optab);
1502 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1503 ? ashl_optab : lshr_optab);
1505 if (shift_count > BITS_PER_WORD)
1507 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1508 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1510 else
1512 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1513 second_shift_count = GEN_INT (shift_count);
1516 into_temp1 = expand_binop (word_mode, unsigned_shift,
1517 outof_input, first_shift_count,
1518 NULL_RTX, unsignedp, next_methods);
1519 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1520 into_input, second_shift_count,
1521 NULL_RTX, unsignedp, next_methods);
1523 if (into_temp1 != 0 && into_temp2 != 0)
1524 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1525 into_target, unsignedp, next_methods);
1526 else
1527 inter = 0;
1529 if (inter != 0 && inter != into_target)
1530 emit_move_insn (into_target, inter);
1532 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1533 into_input, first_shift_count,
1534 NULL_RTX, unsignedp, next_methods);
1535 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1536 outof_input, second_shift_count,
1537 NULL_RTX, unsignedp, next_methods);
1539 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1540 inter = expand_binop (word_mode, ior_optab,
1541 outof_temp1, outof_temp2,
1542 outof_target, unsignedp, next_methods);
1544 if (inter != 0 && inter != outof_target)
1545 emit_move_insn (outof_target, inter);
1548 insns = get_insns ();
1549 end_sequence ();
1551 if (inter != 0)
1553 emit_insn (insns);
1554 return target;
1558 /* These can be done a word at a time by propagating carries. */
1559 if ((binoptab == add_optab || binoptab == sub_optab)
1560 && mclass == MODE_INT
1561 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1562 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1564 unsigned int i;
1565 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1566 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1567 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1568 rtx xop0, xop1, xtarget;
1570 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1571 value is one of those, use it. Otherwise, use 1 since it is the
1572 one easiest to get. */
1573 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1574 int normalizep = STORE_FLAG_VALUE;
1575 #else
1576 int normalizep = 1;
1577 #endif
1579 /* Prepare the operands. */
1580 xop0 = force_reg (mode, op0);
1581 xop1 = force_reg (mode, op1);
1583 xtarget = gen_reg_rtx (mode);
1585 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1586 target = xtarget;
1588 /* Indicate for flow that the entire target reg is being set. */
1589 if (REG_P (target))
1590 emit_clobber (xtarget);
1592 /* Do the actual arithmetic. */
1593 for (i = 0; i < nwords; i++)
1595 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1596 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1597 rtx op0_piece = operand_subword_force (xop0, index, mode);
1598 rtx op1_piece = operand_subword_force (xop1, index, mode);
1599 rtx x;
1601 /* Main add/subtract of the input operands. */
1602 x = expand_binop (word_mode, binoptab,
1603 op0_piece, op1_piece,
1604 target_piece, unsignedp, next_methods);
1605 if (x == 0)
1606 break;
1608 if (i + 1 < nwords)
1610 /* Store carry from main add/subtract. */
1611 carry_out = gen_reg_rtx (word_mode);
1612 carry_out = emit_store_flag_force (carry_out,
1613 (binoptab == add_optab
1614 ? LT : GT),
1615 x, op0_piece,
1616 word_mode, 1, normalizep);
1619 if (i > 0)
1621 rtx newx;
1623 /* Add/subtract previous carry to main result. */
1624 newx = expand_binop (word_mode,
1625 normalizep == 1 ? binoptab : otheroptab,
1626 x, carry_in,
1627 NULL_RTX, 1, next_methods);
1629 if (i + 1 < nwords)
1631 /* Get out carry from adding/subtracting carry in. */
1632 rtx carry_tmp = gen_reg_rtx (word_mode);
1633 carry_tmp = emit_store_flag_force (carry_tmp,
1634 (binoptab == add_optab
1635 ? LT : GT),
1636 newx, x,
1637 word_mode, 1, normalizep);
1639 /* Logical-ior the two poss. carry together. */
1640 carry_out = expand_binop (word_mode, ior_optab,
1641 carry_out, carry_tmp,
1642 carry_out, 0, next_methods);
1643 if (carry_out == 0)
1644 break;
1646 emit_move_insn (target_piece, newx);
1648 else
1650 if (x != target_piece)
1651 emit_move_insn (target_piece, x);
1654 carry_in = carry_out;
1657 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1659 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
1660 || ! rtx_equal_p (target, xtarget))
1662 rtx_insn *temp = emit_move_insn (target, xtarget);
1664 set_dst_reg_note (temp, REG_EQUAL,
1665 gen_rtx_fmt_ee (optab_to_code (binoptab),
1666 mode, copy_rtx (xop0),
1667 copy_rtx (xop1)),
1668 target);
1670 else
1671 target = xtarget;
1673 return target;
1676 else
1677 delete_insns_since (last);
1680 /* Attempt to synthesize double word multiplies using a sequence of word
1681 mode multiplications. We first attempt to generate a sequence using a
1682 more efficient unsigned widening multiply, and if that fails we then
1683 try using a signed widening multiply. */
1685 if (binoptab == smul_optab
1686 && mclass == MODE_INT
1687 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1688 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1689 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1691 rtx product = NULL_RTX;
1692 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
1693 != CODE_FOR_nothing)
1695 product = expand_doubleword_mult (mode, op0, op1, target,
1696 true, methods);
1697 if (!product)
1698 delete_insns_since (last);
1701 if (product == NULL_RTX
1702 && widening_optab_handler (smul_widen_optab, mode, word_mode)
1703 != CODE_FOR_nothing)
1705 product = expand_doubleword_mult (mode, op0, op1, target,
1706 false, methods);
1707 if (!product)
1708 delete_insns_since (last);
1711 if (product != NULL_RTX)
1713 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1715 rtx_insn *move = emit_move_insn (target ? target : product,
1716 product);
1717 set_dst_reg_note (move,
1718 REG_EQUAL,
1719 gen_rtx_fmt_ee (MULT, mode,
1720 copy_rtx (op0),
1721 copy_rtx (op1)),
1722 target ? target : product);
1724 return product;
1728 /* It can't be open-coded in this mode.
1729 Use a library call if one is available and caller says that's ok. */
1731 libfunc = optab_libfunc (binoptab, mode);
1732 if (libfunc
1733 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1735 rtx_insn *insns;
1736 rtx op1x = op1;
1737 machine_mode op1_mode = mode;
1738 rtx value;
1740 start_sequence ();
1742 if (shift_optab_p (binoptab))
1744 op1_mode = targetm.libgcc_shift_count_mode ();
1745 /* Specify unsigned here,
1746 since negative shift counts are meaningless. */
1747 op1x = convert_to_mode (op1_mode, op1, 1);
1750 if (GET_MODE (op0) != VOIDmode
1751 && GET_MODE (op0) != mode)
1752 op0 = convert_to_mode (mode, op0, unsignedp);
1754 /* Pass 1 for NO_QUEUE so we don't lose any increments
1755 if the libcall is cse'd or moved. */
1756 value = emit_library_call_value (libfunc,
1757 NULL_RTX, LCT_CONST, mode, 2,
1758 op0, mode, op1x, op1_mode);
1760 insns = get_insns ();
1761 end_sequence ();
1763 bool trapv = trapv_binoptab_p (binoptab);
1764 target = gen_reg_rtx (mode);
1765 emit_libcall_block_1 (insns, target, value,
1766 trapv ? NULL_RTX
1767 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1768 mode, op0, op1), trapv);
1770 return target;
1773 delete_insns_since (last);
1775 /* It can't be done in this mode. Can we do it in a wider mode? */
1777 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1778 || methods == OPTAB_MUST_WIDEN))
1780 /* Caller says, don't even try. */
1781 delete_insns_since (entry_last);
1782 return 0;
1785 /* Compute the value of METHODS to pass to recursive calls.
1786 Don't allow widening to be tried recursively. */
1788 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1790 /* Look for a wider mode of the same class for which it appears we can do
1791 the operation. */
1793 if (CLASS_HAS_WIDER_MODES_P (mclass))
1795 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1796 wider_mode != VOIDmode;
1797 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1799 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
1800 != CODE_FOR_nothing
1801 || (methods == OPTAB_LIB
1802 && optab_libfunc (binoptab, wider_mode)))
1804 rtx xop0 = op0, xop1 = op1;
1805 int no_extend = 0;
1807 /* For certain integer operations, we need not actually extend
1808 the narrow operands, as long as we will truncate
1809 the results to the same narrowness. */
1811 if ((binoptab == ior_optab || binoptab == and_optab
1812 || binoptab == xor_optab
1813 || binoptab == add_optab || binoptab == sub_optab
1814 || binoptab == smul_optab || binoptab == ashl_optab)
1815 && mclass == MODE_INT)
1816 no_extend = 1;
1818 xop0 = widen_operand (xop0, wider_mode, mode,
1819 unsignedp, no_extend);
1821 /* The second operand of a shift must always be extended. */
1822 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1823 no_extend && binoptab != ashl_optab);
1825 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1826 unsignedp, methods);
1827 if (temp)
1829 if (mclass != MODE_INT
1830 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1832 if (target == 0)
1833 target = gen_reg_rtx (mode);
1834 convert_move (target, temp, 0);
1835 return target;
1837 else
1838 return gen_lowpart (mode, temp);
1840 else
1841 delete_insns_since (last);
1846 delete_insns_since (entry_last);
1847 return 0;
1850 /* Expand a binary operator which has both signed and unsigned forms.
1851 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1852 signed operations.
1854 If we widen unsigned operands, we may use a signed wider operation instead
1855 of an unsigned wider operation, since the result would be the same. */
1858 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1859 rtx op0, rtx op1, rtx target, int unsignedp,
1860 enum optab_methods methods)
1862 rtx temp;
1863 optab direct_optab = unsignedp ? uoptab : soptab;
1864 bool save_enable;
1866 /* Do it without widening, if possible. */
1867 temp = expand_binop (mode, direct_optab, op0, op1, target,
1868 unsignedp, OPTAB_DIRECT);
1869 if (temp || methods == OPTAB_DIRECT)
1870 return temp;
1872 /* Try widening to a signed int. Disable any direct use of any
1873 signed insn in the current mode. */
1874 save_enable = swap_optab_enable (soptab, mode, false);
1876 temp = expand_binop (mode, soptab, op0, op1, target,
1877 unsignedp, OPTAB_WIDEN);
1879 /* For unsigned operands, try widening to an unsigned int. */
1880 if (!temp && unsignedp)
1881 temp = expand_binop (mode, uoptab, op0, op1, target,
1882 unsignedp, OPTAB_WIDEN);
1883 if (temp || methods == OPTAB_WIDEN)
1884 goto egress;
1886 /* Use the right width libcall if that exists. */
1887 temp = expand_binop (mode, direct_optab, op0, op1, target,
1888 unsignedp, OPTAB_LIB);
1889 if (temp || methods == OPTAB_LIB)
1890 goto egress;
1892 /* Must widen and use a libcall, use either signed or unsigned. */
1893 temp = expand_binop (mode, soptab, op0, op1, target,
1894 unsignedp, methods);
1895 if (!temp && unsignedp)
1896 temp = expand_binop (mode, uoptab, op0, op1, target,
1897 unsignedp, methods);
1899 egress:
1900 /* Undo the fiddling above. */
1901 if (save_enable)
1902 swap_optab_enable (soptab, mode, true);
1903 return temp;
1906 /* Generate code to perform an operation specified by UNOPPTAB
1907 on operand OP0, with two results to TARG0 and TARG1.
1908 We assume that the order of the operands for the instruction
1909 is TARG0, TARG1, OP0.
1911 Either TARG0 or TARG1 may be zero, but what that means is that
1912 the result is not actually wanted. We will generate it into
1913 a dummy pseudo-reg and discard it. They may not both be zero.
1915 Returns 1 if this operation can be performed; 0 if not. */
1918 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
1919 int unsignedp)
1921 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1922 enum mode_class mclass;
1923 machine_mode wider_mode;
1924 rtx_insn *entry_last = get_last_insn ();
1925 rtx_insn *last;
1927 mclass = GET_MODE_CLASS (mode);
1929 if (!targ0)
1930 targ0 = gen_reg_rtx (mode);
1931 if (!targ1)
1932 targ1 = gen_reg_rtx (mode);
1934 /* Record where to go back to if we fail. */
1935 last = get_last_insn ();
1937 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
1939 struct expand_operand ops[3];
1940 enum insn_code icode = optab_handler (unoptab, mode);
1942 create_fixed_operand (&ops[0], targ0);
1943 create_fixed_operand (&ops[1], targ1);
1944 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
1945 if (maybe_expand_insn (icode, 3, ops))
1946 return 1;
1949 /* It can't be done in this mode. Can we do it in a wider mode? */
1951 if (CLASS_HAS_WIDER_MODES_P (mclass))
1953 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1954 wider_mode != VOIDmode;
1955 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1957 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
1959 rtx t0 = gen_reg_rtx (wider_mode);
1960 rtx t1 = gen_reg_rtx (wider_mode);
1961 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
1963 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
1965 convert_move (targ0, t0, unsignedp);
1966 convert_move (targ1, t1, unsignedp);
1967 return 1;
1969 else
1970 delete_insns_since (last);
1975 delete_insns_since (entry_last);
1976 return 0;
1979 /* Generate code to perform an operation specified by BINOPTAB
1980 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1981 We assume that the order of the operands for the instruction
1982 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1983 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1985 Either TARG0 or TARG1 may be zero, but what that means is that
1986 the result is not actually wanted. We will generate it into
1987 a dummy pseudo-reg and discard it. They may not both be zero.
1989 Returns 1 if this operation can be performed; 0 if not. */
1992 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
1993 int unsignedp)
1995 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1996 enum mode_class mclass;
1997 machine_mode wider_mode;
1998 rtx_insn *entry_last = get_last_insn ();
1999 rtx_insn *last;
2001 mclass = GET_MODE_CLASS (mode);
2003 if (!targ0)
2004 targ0 = gen_reg_rtx (mode);
2005 if (!targ1)
2006 targ1 = gen_reg_rtx (mode);
2008 /* Record where to go back to if we fail. */
2009 last = get_last_insn ();
2011 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2013 struct expand_operand ops[4];
2014 enum insn_code icode = optab_handler (binoptab, mode);
2015 machine_mode mode0 = insn_data[icode].operand[1].mode;
2016 machine_mode mode1 = insn_data[icode].operand[2].mode;
2017 rtx xop0 = op0, xop1 = op1;
2019 /* If we are optimizing, force expensive constants into a register. */
2020 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2021 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2023 create_fixed_operand (&ops[0], targ0);
2024 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2025 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2026 create_fixed_operand (&ops[3], targ1);
2027 if (maybe_expand_insn (icode, 4, ops))
2028 return 1;
2029 delete_insns_since (last);
2032 /* It can't be done in this mode. Can we do it in a wider mode? */
2034 if (CLASS_HAS_WIDER_MODES_P (mclass))
2036 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2037 wider_mode != VOIDmode;
2038 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2040 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2042 rtx t0 = gen_reg_rtx (wider_mode);
2043 rtx t1 = gen_reg_rtx (wider_mode);
2044 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2045 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2047 if (expand_twoval_binop (binoptab, cop0, cop1,
2048 t0, t1, unsignedp))
2050 convert_move (targ0, t0, unsignedp);
2051 convert_move (targ1, t1, unsignedp);
2052 return 1;
2054 else
2055 delete_insns_since (last);
2060 delete_insns_since (entry_last);
2061 return 0;
2064 /* Expand the two-valued library call indicated by BINOPTAB, but
2065 preserve only one of the values. If TARG0 is non-NULL, the first
2066 value is placed into TARG0; otherwise the second value is placed
2067 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2068 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2069 This routine assumes that the value returned by the library call is
2070 as if the return value was of an integral mode twice as wide as the
2071 mode of OP0. Returns 1 if the call was successful. */
2073 bool
2074 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2075 rtx targ0, rtx targ1, enum rtx_code code)
2077 machine_mode mode;
2078 machine_mode libval_mode;
2079 rtx libval;
2080 rtx_insn *insns;
2081 rtx libfunc;
2083 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2084 gcc_assert (!targ0 != !targ1);
2086 mode = GET_MODE (op0);
2087 libfunc = optab_libfunc (binoptab, mode);
2088 if (!libfunc)
2089 return false;
2091 /* The value returned by the library function will have twice as
2092 many bits as the nominal MODE. */
2093 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2094 MODE_INT);
2095 start_sequence ();
2096 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2097 libval_mode, 2,
2098 op0, mode,
2099 op1, mode);
2100 /* Get the part of VAL containing the value that we want. */
2101 libval = simplify_gen_subreg (mode, libval, libval_mode,
2102 targ0 ? 0 : GET_MODE_SIZE (mode));
2103 insns = get_insns ();
2104 end_sequence ();
2105 /* Move the into the desired location. */
2106 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2107 gen_rtx_fmt_ee (code, mode, op0, op1));
2109 return true;
2113 /* Wrapper around expand_unop which takes an rtx code to specify
2114 the operation to perform, not an optab pointer. All other
2115 arguments are the same. */
2117 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2118 rtx target, int unsignedp)
2120 optab unop = code_to_optab (code);
2121 gcc_assert (unop);
2123 return expand_unop (mode, unop, op0, target, unsignedp);
2126 /* Try calculating
2127 (clz:narrow x)
2129 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2131 A similar operation can be used for clrsb. UNOPTAB says which operation
2132 we are trying to expand. */
2133 static rtx
2134 widen_leading (machine_mode mode, rtx op0, rtx target, optab unoptab)
2136 enum mode_class mclass = GET_MODE_CLASS (mode);
2137 if (CLASS_HAS_WIDER_MODES_P (mclass))
2139 machine_mode wider_mode;
2140 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2141 wider_mode != VOIDmode;
2142 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2144 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2146 rtx xop0, temp;
2147 rtx_insn *last;
2149 last = get_last_insn ();
2151 if (target == 0)
2152 target = gen_reg_rtx (mode);
2153 xop0 = widen_operand (op0, wider_mode, mode,
2154 unoptab != clrsb_optab, false);
2155 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2156 unoptab != clrsb_optab);
2157 if (temp != 0)
2158 temp = expand_binop
2159 (wider_mode, sub_optab, temp,
2160 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2161 - GET_MODE_PRECISION (mode),
2162 wider_mode),
2163 target, true, OPTAB_DIRECT);
2164 if (temp == 0)
2165 delete_insns_since (last);
2167 return temp;
2171 return 0;
2174 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2175 quantities, choosing which based on whether the high word is nonzero. */
2176 static rtx
2177 expand_doubleword_clz (machine_mode mode, rtx op0, rtx target)
2179 rtx xop0 = force_reg (mode, op0);
2180 rtx subhi = gen_highpart (word_mode, xop0);
2181 rtx sublo = gen_lowpart (word_mode, xop0);
2182 rtx_code_label *hi0_label = gen_label_rtx ();
2183 rtx_code_label *after_label = gen_label_rtx ();
2184 rtx_insn *seq;
2185 rtx temp, result;
2187 /* If we were not given a target, use a word_mode register, not a
2188 'mode' register. The result will fit, and nobody is expecting
2189 anything bigger (the return type of __builtin_clz* is int). */
2190 if (!target)
2191 target = gen_reg_rtx (word_mode);
2193 /* In any case, write to a word_mode scratch in both branches of the
2194 conditional, so we can ensure there is a single move insn setting
2195 'target' to tag a REG_EQUAL note on. */
2196 result = gen_reg_rtx (word_mode);
2198 start_sequence ();
2200 /* If the high word is not equal to zero,
2201 then clz of the full value is clz of the high word. */
2202 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2203 word_mode, true, hi0_label);
2205 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2206 if (!temp)
2207 goto fail;
2209 if (temp != result)
2210 convert_move (result, temp, true);
2212 emit_jump_insn (targetm.gen_jump (after_label));
2213 emit_barrier ();
2215 /* Else clz of the full value is clz of the low word plus the number
2216 of bits in the high word. */
2217 emit_label (hi0_label);
2219 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2220 if (!temp)
2221 goto fail;
2222 temp = expand_binop (word_mode, add_optab, temp,
2223 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2224 result, true, OPTAB_DIRECT);
2225 if (!temp)
2226 goto fail;
2227 if (temp != result)
2228 convert_move (result, temp, true);
2230 emit_label (after_label);
2231 convert_move (target, result, true);
2233 seq = get_insns ();
2234 end_sequence ();
2236 add_equal_note (seq, target, CLZ, xop0, 0);
2237 emit_insn (seq);
2238 return target;
2240 fail:
2241 end_sequence ();
2242 return 0;
2245 /* Try calculating popcount of a double-word quantity as two popcount's of
2246 word-sized quantities and summing up the results. */
2247 static rtx
2248 expand_doubleword_popcount (machine_mode mode, rtx op0, rtx target)
2250 rtx t0, t1, t;
2251 rtx_insn *seq;
2253 start_sequence ();
2255 t0 = expand_unop_direct (word_mode, popcount_optab,
2256 operand_subword_force (op0, 0, mode), NULL_RTX,
2257 true);
2258 t1 = expand_unop_direct (word_mode, popcount_optab,
2259 operand_subword_force (op0, 1, mode), NULL_RTX,
2260 true);
2261 if (!t0 || !t1)
2263 end_sequence ();
2264 return NULL_RTX;
2267 /* If we were not given a target, use a word_mode register, not a
2268 'mode' register. The result will fit, and nobody is expecting
2269 anything bigger (the return type of __builtin_popcount* is int). */
2270 if (!target)
2271 target = gen_reg_rtx (word_mode);
2273 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2275 seq = get_insns ();
2276 end_sequence ();
2278 add_equal_note (seq, t, POPCOUNT, op0, 0);
2279 emit_insn (seq);
2280 return t;
2283 /* Try calculating
2284 (parity:wide x)
2286 (parity:narrow (low (x) ^ high (x))) */
2287 static rtx
2288 expand_doubleword_parity (machine_mode mode, rtx op0, rtx target)
2290 rtx t = expand_binop (word_mode, xor_optab,
2291 operand_subword_force (op0, 0, mode),
2292 operand_subword_force (op0, 1, mode),
2293 NULL_RTX, 0, OPTAB_DIRECT);
2294 return expand_unop (word_mode, parity_optab, t, target, true);
2297 /* Try calculating
2298 (bswap:narrow x)
2300 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2301 static rtx
2302 widen_bswap (machine_mode mode, rtx op0, rtx target)
2304 enum mode_class mclass = GET_MODE_CLASS (mode);
2305 machine_mode wider_mode;
2306 rtx x;
2307 rtx_insn *last;
2309 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2310 return NULL_RTX;
2312 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2313 wider_mode != VOIDmode;
2314 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2315 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2316 goto found;
2317 return NULL_RTX;
2319 found:
2320 last = get_last_insn ();
2322 x = widen_operand (op0, wider_mode, mode, true, true);
2323 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2325 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2326 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2327 if (x != 0)
2328 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2329 GET_MODE_BITSIZE (wider_mode)
2330 - GET_MODE_BITSIZE (mode),
2331 NULL_RTX, true);
2333 if (x != 0)
2335 if (target == 0)
2336 target = gen_reg_rtx (mode);
2337 emit_move_insn (target, gen_lowpart (mode, x));
2339 else
2340 delete_insns_since (last);
2342 return target;
2345 /* Try calculating bswap as two bswaps of two word-sized operands. */
2347 static rtx
2348 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2350 rtx t0, t1;
2352 t1 = expand_unop (word_mode, bswap_optab,
2353 operand_subword_force (op, 0, mode), NULL_RTX, true);
2354 t0 = expand_unop (word_mode, bswap_optab,
2355 operand_subword_force (op, 1, mode), NULL_RTX, true);
2357 if (target == 0 || !valid_multiword_target_p (target))
2358 target = gen_reg_rtx (mode);
2359 if (REG_P (target))
2360 emit_clobber (target);
2361 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2362 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2364 return target;
2367 /* Try calculating (parity x) as (and (popcount x) 1), where
2368 popcount can also be done in a wider mode. */
2369 static rtx
2370 expand_parity (machine_mode mode, rtx op0, rtx target)
2372 enum mode_class mclass = GET_MODE_CLASS (mode);
2373 if (CLASS_HAS_WIDER_MODES_P (mclass))
2375 machine_mode wider_mode;
2376 for (wider_mode = mode; wider_mode != VOIDmode;
2377 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2379 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2381 rtx xop0, temp;
2382 rtx_insn *last;
2384 last = get_last_insn ();
2386 if (target == 0 || GET_MODE (target) != wider_mode)
2387 target = gen_reg_rtx (wider_mode);
2389 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2390 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2391 true);
2392 if (temp != 0)
2393 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2394 target, true, OPTAB_DIRECT);
2396 if (temp)
2398 if (mclass != MODE_INT
2399 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2400 return convert_to_mode (mode, temp, 0);
2401 else
2402 return gen_lowpart (mode, temp);
2404 else
2405 delete_insns_since (last);
2409 return 0;
2412 /* Try calculating ctz(x) as K - clz(x & -x) ,
2413 where K is GET_MODE_PRECISION(mode) - 1.
2415 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2416 don't have to worry about what the hardware does in that case. (If
2417 the clz instruction produces the usual value at 0, which is K, the
2418 result of this code sequence will be -1; expand_ffs, below, relies
2419 on this. It might be nice to have it be K instead, for consistency
2420 with the (very few) processors that provide a ctz with a defined
2421 value, but that would take one more instruction, and it would be
2422 less convenient for expand_ffs anyway. */
2424 static rtx
2425 expand_ctz (machine_mode mode, rtx op0, rtx target)
2427 rtx_insn *seq;
2428 rtx temp;
2430 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2431 return 0;
2433 start_sequence ();
2435 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2436 if (temp)
2437 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2438 true, OPTAB_DIRECT);
2439 if (temp)
2440 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2441 if (temp)
2442 temp = expand_binop (mode, sub_optab,
2443 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2444 temp, target,
2445 true, OPTAB_DIRECT);
2446 if (temp == 0)
2448 end_sequence ();
2449 return 0;
2452 seq = get_insns ();
2453 end_sequence ();
2455 add_equal_note (seq, temp, CTZ, op0, 0);
2456 emit_insn (seq);
2457 return temp;
2461 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2462 else with the sequence used by expand_clz.
2464 The ffs builtin promises to return zero for a zero value and ctz/clz
2465 may have an undefined value in that case. If they do not give us a
2466 convenient value, we have to generate a test and branch. */
2467 static rtx
2468 expand_ffs (machine_mode mode, rtx op0, rtx target)
2470 HOST_WIDE_INT val = 0;
2471 bool defined_at_zero = false;
2472 rtx temp;
2473 rtx_insn *seq;
2475 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2477 start_sequence ();
2479 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2480 if (!temp)
2481 goto fail;
2483 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2485 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2487 start_sequence ();
2488 temp = expand_ctz (mode, op0, 0);
2489 if (!temp)
2490 goto fail;
2492 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2494 defined_at_zero = true;
2495 val = (GET_MODE_PRECISION (mode) - 1) - val;
2498 else
2499 return 0;
2501 if (defined_at_zero && val == -1)
2502 /* No correction needed at zero. */;
2503 else
2505 /* We don't try to do anything clever with the situation found
2506 on some processors (eg Alpha) where ctz(0:mode) ==
2507 bitsize(mode). If someone can think of a way to send N to -1
2508 and leave alone all values in the range 0..N-1 (where N is a
2509 power of two), cheaper than this test-and-branch, please add it.
2511 The test-and-branch is done after the operation itself, in case
2512 the operation sets condition codes that can be recycled for this.
2513 (This is true on i386, for instance.) */
2515 rtx_code_label *nonzero_label = gen_label_rtx ();
2516 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2517 mode, true, nonzero_label);
2519 convert_move (temp, GEN_INT (-1), false);
2520 emit_label (nonzero_label);
2523 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2524 to produce a value in the range 0..bitsize. */
2525 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2526 target, false, OPTAB_DIRECT);
2527 if (!temp)
2528 goto fail;
2530 seq = get_insns ();
2531 end_sequence ();
2533 add_equal_note (seq, temp, FFS, op0, 0);
2534 emit_insn (seq);
2535 return temp;
2537 fail:
2538 end_sequence ();
2539 return 0;
2542 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2543 conditions, VAL may already be a SUBREG against which we cannot generate
2544 a further SUBREG. In this case, we expect forcing the value into a
2545 register will work around the situation. */
2547 static rtx
2548 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2549 machine_mode imode)
2551 rtx ret;
2552 ret = lowpart_subreg (omode, val, imode);
2553 if (ret == NULL)
2555 val = force_reg (imode, val);
2556 ret = lowpart_subreg (omode, val, imode);
2557 gcc_assert (ret != NULL);
2559 return ret;
2562 /* Expand a floating point absolute value or negation operation via a
2563 logical operation on the sign bit. */
2565 static rtx
2566 expand_absneg_bit (enum rtx_code code, machine_mode mode,
2567 rtx op0, rtx target)
2569 const struct real_format *fmt;
2570 int bitpos, word, nwords, i;
2571 machine_mode imode;
2572 rtx temp;
2573 rtx_insn *insns;
2575 /* The format has to have a simple sign bit. */
2576 fmt = REAL_MODE_FORMAT (mode);
2577 if (fmt == NULL)
2578 return NULL_RTX;
2580 bitpos = fmt->signbit_rw;
2581 if (bitpos < 0)
2582 return NULL_RTX;
2584 /* Don't create negative zeros if the format doesn't support them. */
2585 if (code == NEG && !fmt->has_signed_zero)
2586 return NULL_RTX;
2588 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2590 imode = int_mode_for_mode (mode);
2591 if (imode == BLKmode)
2592 return NULL_RTX;
2593 word = 0;
2594 nwords = 1;
2596 else
2598 imode = word_mode;
2600 if (FLOAT_WORDS_BIG_ENDIAN)
2601 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2602 else
2603 word = bitpos / BITS_PER_WORD;
2604 bitpos = bitpos % BITS_PER_WORD;
2605 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2608 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2609 if (code == ABS)
2610 mask = ~mask;
2612 if (target == 0
2613 || target == op0
2614 || (nwords > 1 && !valid_multiword_target_p (target)))
2615 target = gen_reg_rtx (mode);
2617 if (nwords > 1)
2619 start_sequence ();
2621 for (i = 0; i < nwords; ++i)
2623 rtx targ_piece = operand_subword (target, i, 1, mode);
2624 rtx op0_piece = operand_subword_force (op0, i, mode);
2626 if (i == word)
2628 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2629 op0_piece,
2630 immed_wide_int_const (mask, imode),
2631 targ_piece, 1, OPTAB_LIB_WIDEN);
2632 if (temp != targ_piece)
2633 emit_move_insn (targ_piece, temp);
2635 else
2636 emit_move_insn (targ_piece, op0_piece);
2639 insns = get_insns ();
2640 end_sequence ();
2642 emit_insn (insns);
2644 else
2646 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2647 gen_lowpart (imode, op0),
2648 immed_wide_int_const (mask, imode),
2649 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2650 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2652 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2653 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2654 target);
2657 return target;
2660 /* As expand_unop, but will fail rather than attempt the operation in a
2661 different mode or with a libcall. */
2662 static rtx
2663 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2664 int unsignedp)
2666 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2668 struct expand_operand ops[2];
2669 enum insn_code icode = optab_handler (unoptab, mode);
2670 rtx_insn *last = get_last_insn ();
2671 rtx_insn *pat;
2673 create_output_operand (&ops[0], target, mode);
2674 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2675 pat = maybe_gen_insn (icode, 2, ops);
2676 if (pat)
2678 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2679 && ! add_equal_note (pat, ops[0].value,
2680 optab_to_code (unoptab),
2681 ops[1].value, NULL_RTX))
2683 delete_insns_since (last);
2684 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2687 emit_insn (pat);
2689 return ops[0].value;
2692 return 0;
2695 /* Generate code to perform an operation specified by UNOPTAB
2696 on operand OP0, with result having machine-mode MODE.
2698 UNSIGNEDP is for the case where we have to widen the operands
2699 to perform the operation. It says to use zero-extension.
2701 If TARGET is nonzero, the value
2702 is generated there, if it is convenient to do so.
2703 In all cases an rtx is returned for the locus of the value;
2704 this may or may not be TARGET. */
2707 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2708 int unsignedp)
2710 enum mode_class mclass = GET_MODE_CLASS (mode);
2711 machine_mode wider_mode;
2712 rtx temp;
2713 rtx libfunc;
2715 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2716 if (temp)
2717 return temp;
2719 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2721 /* Widening (or narrowing) clz needs special treatment. */
2722 if (unoptab == clz_optab)
2724 temp = widen_leading (mode, op0, target, unoptab);
2725 if (temp)
2726 return temp;
2728 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2729 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2731 temp = expand_doubleword_clz (mode, op0, target);
2732 if (temp)
2733 return temp;
2736 goto try_libcall;
2739 if (unoptab == clrsb_optab)
2741 temp = widen_leading (mode, op0, target, unoptab);
2742 if (temp)
2743 return temp;
2744 goto try_libcall;
2747 if (unoptab == popcount_optab
2748 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2749 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2750 && optimize_insn_for_speed_p ())
2752 temp = expand_doubleword_popcount (mode, op0, target);
2753 if (temp)
2754 return temp;
2757 if (unoptab == parity_optab
2758 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2759 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2760 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2761 && optimize_insn_for_speed_p ())
2763 temp = expand_doubleword_parity (mode, op0, target);
2764 if (temp)
2765 return temp;
2768 /* Widening (or narrowing) bswap needs special treatment. */
2769 if (unoptab == bswap_optab)
2771 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2772 or ROTATERT. First try these directly; if this fails, then try the
2773 obvious pair of shifts with allowed widening, as this will probably
2774 be always more efficient than the other fallback methods. */
2775 if (mode == HImode)
2777 rtx_insn *last;
2778 rtx temp1, temp2;
2780 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2782 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
2783 unsignedp, OPTAB_DIRECT);
2784 if (temp)
2785 return temp;
2788 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2790 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
2791 unsignedp, OPTAB_DIRECT);
2792 if (temp)
2793 return temp;
2796 last = get_last_insn ();
2798 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
2799 unsignedp, OPTAB_WIDEN);
2800 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
2801 unsignedp, OPTAB_WIDEN);
2802 if (temp1 && temp2)
2804 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2805 unsignedp, OPTAB_WIDEN);
2806 if (temp)
2807 return temp;
2810 delete_insns_since (last);
2813 temp = widen_bswap (mode, op0, target);
2814 if (temp)
2815 return temp;
2817 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2818 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2820 temp = expand_doubleword_bswap (mode, op0, target);
2821 if (temp)
2822 return temp;
2825 goto try_libcall;
2828 if (CLASS_HAS_WIDER_MODES_P (mclass))
2829 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2830 wider_mode != VOIDmode;
2831 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2833 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2835 rtx xop0 = op0;
2836 rtx_insn *last = get_last_insn ();
2838 /* For certain operations, we need not actually extend
2839 the narrow operand, as long as we will truncate the
2840 results to the same narrowness. */
2842 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2843 (unoptab == neg_optab
2844 || unoptab == one_cmpl_optab)
2845 && mclass == MODE_INT);
2847 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2848 unsignedp);
2850 if (temp)
2852 if (mclass != MODE_INT
2853 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2855 if (target == 0)
2856 target = gen_reg_rtx (mode);
2857 convert_move (target, temp, 0);
2858 return target;
2860 else
2861 return gen_lowpart (mode, temp);
2863 else
2864 delete_insns_since (last);
2868 /* These can be done a word at a time. */
2869 if (unoptab == one_cmpl_optab
2870 && mclass == MODE_INT
2871 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2872 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2874 int i;
2875 rtx_insn *insns;
2877 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
2878 target = gen_reg_rtx (mode);
2880 start_sequence ();
2882 /* Do the actual arithmetic. */
2883 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2885 rtx target_piece = operand_subword (target, i, 1, mode);
2886 rtx x = expand_unop (word_mode, unoptab,
2887 operand_subword_force (op0, i, mode),
2888 target_piece, unsignedp);
2890 if (target_piece != x)
2891 emit_move_insn (target_piece, x);
2894 insns = get_insns ();
2895 end_sequence ();
2897 emit_insn (insns);
2898 return target;
2901 if (optab_to_code (unoptab) == NEG)
2903 /* Try negating floating point values by flipping the sign bit. */
2904 if (SCALAR_FLOAT_MODE_P (mode))
2906 temp = expand_absneg_bit (NEG, mode, op0, target);
2907 if (temp)
2908 return temp;
2911 /* If there is no negation pattern, and we have no negative zero,
2912 try subtracting from zero. */
2913 if (!HONOR_SIGNED_ZEROS (mode))
2915 temp = expand_binop (mode, (unoptab == negv_optab
2916 ? subv_optab : sub_optab),
2917 CONST0_RTX (mode), op0, target,
2918 unsignedp, OPTAB_DIRECT);
2919 if (temp)
2920 return temp;
2924 /* Try calculating parity (x) as popcount (x) % 2. */
2925 if (unoptab == parity_optab)
2927 temp = expand_parity (mode, op0, target);
2928 if (temp)
2929 return temp;
2932 /* Try implementing ffs (x) in terms of clz (x). */
2933 if (unoptab == ffs_optab)
2935 temp = expand_ffs (mode, op0, target);
2936 if (temp)
2937 return temp;
2940 /* Try implementing ctz (x) in terms of clz (x). */
2941 if (unoptab == ctz_optab)
2943 temp = expand_ctz (mode, op0, target);
2944 if (temp)
2945 return temp;
2948 try_libcall:
2949 /* Now try a library call in this mode. */
2950 libfunc = optab_libfunc (unoptab, mode);
2951 if (libfunc)
2953 rtx_insn *insns;
2954 rtx value;
2955 rtx eq_value;
2956 machine_mode outmode = mode;
2958 /* All of these functions return small values. Thus we choose to
2959 have them return something that isn't a double-word. */
2960 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2961 || unoptab == clrsb_optab || unoptab == popcount_optab
2962 || unoptab == parity_optab)
2963 outmode
2964 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
2965 optab_libfunc (unoptab, mode)));
2967 start_sequence ();
2969 /* Pass 1 for NO_QUEUE so we don't lose any increments
2970 if the libcall is cse'd or moved. */
2971 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
2972 1, op0, mode);
2973 insns = get_insns ();
2974 end_sequence ();
2976 target = gen_reg_rtx (outmode);
2977 bool trapv = trapv_unoptab_p (unoptab);
2978 if (trapv)
2979 eq_value = NULL_RTX;
2980 else
2982 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
2983 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
2984 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
2985 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
2986 eq_value = simplify_gen_unary (ZERO_EXTEND,
2987 outmode, eq_value, mode);
2989 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
2991 return target;
2994 /* It can't be done in this mode. Can we do it in a wider mode? */
2996 if (CLASS_HAS_WIDER_MODES_P (mclass))
2998 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2999 wider_mode != VOIDmode;
3000 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3002 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3003 || optab_libfunc (unoptab, wider_mode))
3005 rtx xop0 = op0;
3006 rtx_insn *last = get_last_insn ();
3008 /* For certain operations, we need not actually extend
3009 the narrow operand, as long as we will truncate the
3010 results to the same narrowness. */
3011 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3012 (unoptab == neg_optab
3013 || unoptab == one_cmpl_optab
3014 || unoptab == bswap_optab)
3015 && mclass == MODE_INT);
3017 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3018 unsignedp);
3020 /* If we are generating clz using wider mode, adjust the
3021 result. Similarly for clrsb. */
3022 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3023 && temp != 0)
3024 temp = expand_binop
3025 (wider_mode, sub_optab, temp,
3026 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3027 - GET_MODE_PRECISION (mode),
3028 wider_mode),
3029 target, true, OPTAB_DIRECT);
3031 /* Likewise for bswap. */
3032 if (unoptab == bswap_optab && temp != 0)
3034 gcc_assert (GET_MODE_PRECISION (wider_mode)
3035 == GET_MODE_BITSIZE (wider_mode)
3036 && GET_MODE_PRECISION (mode)
3037 == GET_MODE_BITSIZE (mode));
3039 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3040 GET_MODE_BITSIZE (wider_mode)
3041 - GET_MODE_BITSIZE (mode),
3042 NULL_RTX, true);
3045 if (temp)
3047 if (mclass != MODE_INT)
3049 if (target == 0)
3050 target = gen_reg_rtx (mode);
3051 convert_move (target, temp, 0);
3052 return target;
3054 else
3055 return gen_lowpart (mode, temp);
3057 else
3058 delete_insns_since (last);
3063 /* One final attempt at implementing negation via subtraction,
3064 this time allowing widening of the operand. */
3065 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3067 rtx temp;
3068 temp = expand_binop (mode,
3069 unoptab == negv_optab ? subv_optab : sub_optab,
3070 CONST0_RTX (mode), op0,
3071 target, unsignedp, OPTAB_LIB_WIDEN);
3072 if (temp)
3073 return temp;
3076 return 0;
3079 /* Emit code to compute the absolute value of OP0, with result to
3080 TARGET if convenient. (TARGET may be 0.) The return value says
3081 where the result actually is to be found.
3083 MODE is the mode of the operand; the mode of the result is
3084 different but can be deduced from MODE.
3089 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3090 int result_unsignedp)
3092 rtx temp;
3094 if (GET_MODE_CLASS (mode) != MODE_INT
3095 || ! flag_trapv)
3096 result_unsignedp = 1;
3098 /* First try to do it with a special abs instruction. */
3099 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3100 op0, target, 0);
3101 if (temp != 0)
3102 return temp;
3104 /* For floating point modes, try clearing the sign bit. */
3105 if (SCALAR_FLOAT_MODE_P (mode))
3107 temp = expand_absneg_bit (ABS, mode, op0, target);
3108 if (temp)
3109 return temp;
3112 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3113 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3114 && !HONOR_SIGNED_ZEROS (mode))
3116 rtx_insn *last = get_last_insn ();
3118 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3119 op0, NULL_RTX, 0);
3120 if (temp != 0)
3121 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3122 OPTAB_WIDEN);
3124 if (temp != 0)
3125 return temp;
3127 delete_insns_since (last);
3130 /* If this machine has expensive jumps, we can do integer absolute
3131 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3132 where W is the width of MODE. */
3134 if (GET_MODE_CLASS (mode) == MODE_INT
3135 && BRANCH_COST (optimize_insn_for_speed_p (),
3136 false) >= 2)
3138 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3139 GET_MODE_PRECISION (mode) - 1,
3140 NULL_RTX, 0);
3142 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3143 OPTAB_LIB_WIDEN);
3144 if (temp != 0)
3145 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3146 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3148 if (temp != 0)
3149 return temp;
3152 return NULL_RTX;
3156 expand_abs (machine_mode mode, rtx op0, rtx target,
3157 int result_unsignedp, int safe)
3159 rtx temp;
3160 rtx_code_label *op1;
3162 if (GET_MODE_CLASS (mode) != MODE_INT
3163 || ! flag_trapv)
3164 result_unsignedp = 1;
3166 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3167 if (temp != 0)
3168 return temp;
3170 /* If that does not win, use conditional jump and negate. */
3172 /* It is safe to use the target if it is the same
3173 as the source if this is also a pseudo register */
3174 if (op0 == target && REG_P (op0)
3175 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3176 safe = 1;
3178 op1 = gen_label_rtx ();
3179 if (target == 0 || ! safe
3180 || GET_MODE (target) != mode
3181 || (MEM_P (target) && MEM_VOLATILE_P (target))
3182 || (REG_P (target)
3183 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3184 target = gen_reg_rtx (mode);
3186 emit_move_insn (target, op0);
3187 NO_DEFER_POP;
3189 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3190 NULL_RTX, NULL, op1, -1);
3192 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3193 target, target, 0);
3194 if (op0 != target)
3195 emit_move_insn (target, op0);
3196 emit_label (op1);
3197 OK_DEFER_POP;
3198 return target;
3201 /* Emit code to compute the one's complement absolute value of OP0
3202 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3203 (TARGET may be NULL_RTX.) The return value says where the result
3204 actually is to be found.
3206 MODE is the mode of the operand; the mode of the result is
3207 different but can be deduced from MODE. */
3210 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3212 rtx temp;
3214 /* Not applicable for floating point modes. */
3215 if (FLOAT_MODE_P (mode))
3216 return NULL_RTX;
3218 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3219 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3221 rtx_insn *last = get_last_insn ();
3223 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3224 if (temp != 0)
3225 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3226 OPTAB_WIDEN);
3228 if (temp != 0)
3229 return temp;
3231 delete_insns_since (last);
3234 /* If this machine has expensive jumps, we can do one's complement
3235 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3237 if (GET_MODE_CLASS (mode) == MODE_INT
3238 && BRANCH_COST (optimize_insn_for_speed_p (),
3239 false) >= 2)
3241 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3242 GET_MODE_PRECISION (mode) - 1,
3243 NULL_RTX, 0);
3245 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3246 OPTAB_LIB_WIDEN);
3248 if (temp != 0)
3249 return temp;
3252 return NULL_RTX;
3255 /* A subroutine of expand_copysign, perform the copysign operation using the
3256 abs and neg primitives advertised to exist on the target. The assumption
3257 is that we have a split register file, and leaving op0 in fp registers,
3258 and not playing with subregs so much, will help the register allocator. */
3260 static rtx
3261 expand_copysign_absneg (machine_mode mode, rtx op0, rtx op1, rtx target,
3262 int bitpos, bool op0_is_abs)
3264 machine_mode imode;
3265 enum insn_code icode;
3266 rtx sign;
3267 rtx_code_label *label;
3269 if (target == op1)
3270 target = NULL_RTX;
3272 /* Check if the back end provides an insn that handles signbit for the
3273 argument's mode. */
3274 icode = optab_handler (signbit_optab, mode);
3275 if (icode != CODE_FOR_nothing)
3277 imode = insn_data[(int) icode].operand[0].mode;
3278 sign = gen_reg_rtx (imode);
3279 emit_unop_insn (icode, sign, op1, UNKNOWN);
3281 else
3283 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3285 imode = int_mode_for_mode (mode);
3286 if (imode == BLKmode)
3287 return NULL_RTX;
3288 op1 = gen_lowpart (imode, op1);
3290 else
3292 int word;
3294 imode = word_mode;
3295 if (FLOAT_WORDS_BIG_ENDIAN)
3296 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3297 else
3298 word = bitpos / BITS_PER_WORD;
3299 bitpos = bitpos % BITS_PER_WORD;
3300 op1 = operand_subword_force (op1, word, mode);
3303 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3304 sign = expand_binop (imode, and_optab, op1,
3305 immed_wide_int_const (mask, imode),
3306 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3309 if (!op0_is_abs)
3311 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3312 if (op0 == NULL)
3313 return NULL_RTX;
3314 target = op0;
3316 else
3318 if (target == NULL_RTX)
3319 target = copy_to_reg (op0);
3320 else
3321 emit_move_insn (target, op0);
3324 label = gen_label_rtx ();
3325 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3327 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3328 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3329 else
3330 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3331 if (op0 != target)
3332 emit_move_insn (target, op0);
3334 emit_label (label);
3336 return target;
3340 /* A subroutine of expand_copysign, perform the entire copysign operation
3341 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3342 is true if op0 is known to have its sign bit clear. */
3344 static rtx
3345 expand_copysign_bit (machine_mode mode, rtx op0, rtx op1, rtx target,
3346 int bitpos, bool op0_is_abs)
3348 machine_mode imode;
3349 int word, nwords, i;
3350 rtx temp;
3351 rtx_insn *insns;
3353 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3355 imode = int_mode_for_mode (mode);
3356 if (imode == BLKmode)
3357 return NULL_RTX;
3358 word = 0;
3359 nwords = 1;
3361 else
3363 imode = word_mode;
3365 if (FLOAT_WORDS_BIG_ENDIAN)
3366 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3367 else
3368 word = bitpos / BITS_PER_WORD;
3369 bitpos = bitpos % BITS_PER_WORD;
3370 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3373 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3375 if (target == 0
3376 || target == op0
3377 || target == op1
3378 || (nwords > 1 && !valid_multiword_target_p (target)))
3379 target = gen_reg_rtx (mode);
3381 if (nwords > 1)
3383 start_sequence ();
3385 for (i = 0; i < nwords; ++i)
3387 rtx targ_piece = operand_subword (target, i, 1, mode);
3388 rtx op0_piece = operand_subword_force (op0, i, mode);
3390 if (i == word)
3392 if (!op0_is_abs)
3393 op0_piece
3394 = expand_binop (imode, and_optab, op0_piece,
3395 immed_wide_int_const (~mask, imode),
3396 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3397 op1 = expand_binop (imode, and_optab,
3398 operand_subword_force (op1, i, mode),
3399 immed_wide_int_const (mask, imode),
3400 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3402 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3403 targ_piece, 1, OPTAB_LIB_WIDEN);
3404 if (temp != targ_piece)
3405 emit_move_insn (targ_piece, temp);
3407 else
3408 emit_move_insn (targ_piece, op0_piece);
3411 insns = get_insns ();
3412 end_sequence ();
3414 emit_insn (insns);
3416 else
3418 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3419 immed_wide_int_const (mask, imode),
3420 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3422 op0 = gen_lowpart (imode, op0);
3423 if (!op0_is_abs)
3424 op0 = expand_binop (imode, and_optab, op0,
3425 immed_wide_int_const (~mask, imode),
3426 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3428 temp = expand_binop (imode, ior_optab, op0, op1,
3429 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3430 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3433 return target;
3436 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3437 scalar floating point mode. Return NULL if we do not know how to
3438 expand the operation inline. */
3441 expand_copysign (rtx op0, rtx op1, rtx target)
3443 machine_mode mode = GET_MODE (op0);
3444 const struct real_format *fmt;
3445 bool op0_is_abs;
3446 rtx temp;
3448 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3449 gcc_assert (GET_MODE (op1) == mode);
3451 /* First try to do it with a special instruction. */
3452 temp = expand_binop (mode, copysign_optab, op0, op1,
3453 target, 0, OPTAB_DIRECT);
3454 if (temp)
3455 return temp;
3457 fmt = REAL_MODE_FORMAT (mode);
3458 if (fmt == NULL || !fmt->has_signed_zero)
3459 return NULL_RTX;
3461 op0_is_abs = false;
3462 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3464 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3465 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3466 op0_is_abs = true;
3469 if (fmt->signbit_ro >= 0
3470 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3471 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3472 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3474 temp = expand_copysign_absneg (mode, op0, op1, target,
3475 fmt->signbit_ro, op0_is_abs);
3476 if (temp)
3477 return temp;
3480 if (fmt->signbit_rw < 0)
3481 return NULL_RTX;
3482 return expand_copysign_bit (mode, op0, op1, target,
3483 fmt->signbit_rw, op0_is_abs);
3486 /* Generate an instruction whose insn-code is INSN_CODE,
3487 with two operands: an output TARGET and an input OP0.
3488 TARGET *must* be nonzero, and the output is always stored there.
3489 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3490 the value that is stored into TARGET.
3492 Return false if expansion failed. */
3494 bool
3495 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3496 enum rtx_code code)
3498 struct expand_operand ops[2];
3499 rtx_insn *pat;
3501 create_output_operand (&ops[0], target, GET_MODE (target));
3502 create_input_operand (&ops[1], op0, GET_MODE (op0));
3503 pat = maybe_gen_insn (icode, 2, ops);
3504 if (!pat)
3505 return false;
3507 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3508 && code != UNKNOWN)
3509 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3511 emit_insn (pat);
3513 if (ops[0].value != target)
3514 emit_move_insn (target, ops[0].value);
3515 return true;
3517 /* Generate an instruction whose insn-code is INSN_CODE,
3518 with two operands: an output TARGET and an input OP0.
3519 TARGET *must* be nonzero, and the output is always stored there.
3520 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3521 the value that is stored into TARGET. */
3523 void
3524 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3526 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3527 gcc_assert (ok);
3530 struct no_conflict_data
3532 rtx target;
3533 rtx_insn *first, *insn;
3534 bool must_stay;
3537 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3538 the currently examined clobber / store has to stay in the list of
3539 insns that constitute the actual libcall block. */
3540 static void
3541 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3543 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3545 /* If this inns directly contributes to setting the target, it must stay. */
3546 if (reg_overlap_mentioned_p (p->target, dest))
3547 p->must_stay = true;
3548 /* If we haven't committed to keeping any other insns in the list yet,
3549 there is nothing more to check. */
3550 else if (p->insn == p->first)
3551 return;
3552 /* If this insn sets / clobbers a register that feeds one of the insns
3553 already in the list, this insn has to stay too. */
3554 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3555 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3556 || reg_used_between_p (dest, p->first, p->insn)
3557 /* Likewise if this insn depends on a register set by a previous
3558 insn in the list, or if it sets a result (presumably a hard
3559 register) that is set or clobbered by a previous insn.
3560 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3561 SET_DEST perform the former check on the address, and the latter
3562 check on the MEM. */
3563 || (GET_CODE (set) == SET
3564 && (modified_in_p (SET_SRC (set), p->first)
3565 || modified_in_p (SET_DEST (set), p->first)
3566 || modified_between_p (SET_SRC (set), p->first, p->insn)
3567 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3568 p->must_stay = true;
3572 /* Emit code to make a call to a constant function or a library call.
3574 INSNS is a list containing all insns emitted in the call.
3575 These insns leave the result in RESULT. Our block is to copy RESULT
3576 to TARGET, which is logically equivalent to EQUIV.
3578 We first emit any insns that set a pseudo on the assumption that these are
3579 loading constants into registers; doing so allows them to be safely cse'ed
3580 between blocks. Then we emit all the other insns in the block, followed by
3581 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3582 note with an operand of EQUIV. */
3584 static void
3585 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3586 bool equiv_may_trap)
3588 rtx final_dest = target;
3589 rtx_insn *next, *last, *insn;
3591 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3592 into a MEM later. Protect the libcall block from this change. */
3593 if (! REG_P (target) || REG_USERVAR_P (target))
3594 target = gen_reg_rtx (GET_MODE (target));
3596 /* If we're using non-call exceptions, a libcall corresponding to an
3597 operation that may trap may also trap. */
3598 /* ??? See the comment in front of make_reg_eh_region_note. */
3599 if (cfun->can_throw_non_call_exceptions
3600 && (equiv_may_trap || may_trap_p (equiv)))
3602 for (insn = insns; insn; insn = NEXT_INSN (insn))
3603 if (CALL_P (insn))
3605 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3606 if (note)
3608 int lp_nr = INTVAL (XEXP (note, 0));
3609 if (lp_nr == 0 || lp_nr == INT_MIN)
3610 remove_note (insn, note);
3614 else
3616 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3617 reg note to indicate that this call cannot throw or execute a nonlocal
3618 goto (unless there is already a REG_EH_REGION note, in which case
3619 we update it). */
3620 for (insn = insns; insn; insn = NEXT_INSN (insn))
3621 if (CALL_P (insn))
3622 make_reg_eh_region_note_nothrow_nononlocal (insn);
3625 /* First emit all insns that set pseudos. Remove them from the list as
3626 we go. Avoid insns that set pseudos which were referenced in previous
3627 insns. These can be generated by move_by_pieces, for example,
3628 to update an address. Similarly, avoid insns that reference things
3629 set in previous insns. */
3631 for (insn = insns; insn; insn = next)
3633 rtx set = single_set (insn);
3635 next = NEXT_INSN (insn);
3637 if (set != 0 && REG_P (SET_DEST (set))
3638 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3640 struct no_conflict_data data;
3642 data.target = const0_rtx;
3643 data.first = insns;
3644 data.insn = insn;
3645 data.must_stay = 0;
3646 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3647 if (! data.must_stay)
3649 if (PREV_INSN (insn))
3650 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3651 else
3652 insns = next;
3654 if (next)
3655 SET_PREV_INSN (next) = PREV_INSN (insn);
3657 add_insn (insn);
3661 /* Some ports use a loop to copy large arguments onto the stack.
3662 Don't move anything outside such a loop. */
3663 if (LABEL_P (insn))
3664 break;
3667 /* Write the remaining insns followed by the final copy. */
3668 for (insn = insns; insn; insn = next)
3670 next = NEXT_INSN (insn);
3672 add_insn (insn);
3675 last = emit_move_insn (target, result);
3676 if (equiv)
3677 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3679 if (final_dest != target)
3680 emit_move_insn (final_dest, target);
3683 void
3684 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3686 emit_libcall_block_1 (safe_as_a <rtx_insn *> (insns),
3687 target, result, equiv, false);
3690 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3691 PURPOSE describes how this comparison will be used. CODE is the rtx
3692 comparison code we will be using.
3694 ??? Actually, CODE is slightly weaker than that. A target is still
3695 required to implement all of the normal bcc operations, but not
3696 required to implement all (or any) of the unordered bcc operations. */
3699 can_compare_p (enum rtx_code code, machine_mode mode,
3700 enum can_compare_purpose purpose)
3702 rtx test;
3703 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3706 enum insn_code icode;
3708 if (purpose == ccp_jump
3709 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3710 && insn_operand_matches (icode, 0, test))
3711 return 1;
3712 if (purpose == ccp_store_flag
3713 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3714 && insn_operand_matches (icode, 1, test))
3715 return 1;
3716 if (purpose == ccp_cmov
3717 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3718 return 1;
3720 mode = GET_MODE_WIDER_MODE (mode);
3721 PUT_MODE (test, mode);
3723 while (mode != VOIDmode);
3725 return 0;
3728 /* This function is called when we are going to emit a compare instruction that
3729 compares the values found in X and Y, using the rtl operator COMPARISON.
3731 If they have mode BLKmode, then SIZE specifies the size of both operands.
3733 UNSIGNEDP nonzero says that the operands are unsigned;
3734 this matters if they need to be widened (as given by METHODS).
3736 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3737 if we failed to produce one.
3739 *PMODE is the mode of the inputs (in case they are const_int).
3741 This function performs all the setup necessary so that the caller only has
3742 to emit a single comparison insn. This setup can involve doing a BLKmode
3743 comparison or emitting a library call to perform the comparison if no insn
3744 is available to handle it.
3745 The values which are passed in through pointers can be modified; the caller
3746 should perform the comparison on the modified values. Constant
3747 comparisons must have already been folded. */
3749 static void
3750 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3751 int unsignedp, enum optab_methods methods,
3752 rtx *ptest, machine_mode *pmode)
3754 machine_mode mode = *pmode;
3755 rtx libfunc, test;
3756 machine_mode cmp_mode;
3757 enum mode_class mclass;
3759 /* The other methods are not needed. */
3760 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3761 || methods == OPTAB_LIB_WIDEN);
3763 /* If we are optimizing, force expensive constants into a register. */
3764 if (CONSTANT_P (x) && optimize
3765 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3766 > COSTS_N_INSNS (1)))
3767 x = force_reg (mode, x);
3769 if (CONSTANT_P (y) && optimize
3770 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3771 > COSTS_N_INSNS (1)))
3772 y = force_reg (mode, y);
3774 #if HAVE_cc0
3775 /* Make sure if we have a canonical comparison. The RTL
3776 documentation states that canonical comparisons are required only
3777 for targets which have cc0. */
3778 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3779 #endif
3781 /* Don't let both operands fail to indicate the mode. */
3782 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3783 x = force_reg (mode, x);
3784 if (mode == VOIDmode)
3785 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3787 /* Handle all BLKmode compares. */
3789 if (mode == BLKmode)
3791 machine_mode result_mode;
3792 enum insn_code cmp_code;
3793 rtx result;
3794 rtx opalign
3795 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3797 gcc_assert (size);
3799 /* Try to use a memory block compare insn - either cmpstr
3800 or cmpmem will do. */
3801 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3802 cmp_mode != VOIDmode;
3803 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3805 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3806 if (cmp_code == CODE_FOR_nothing)
3807 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3808 if (cmp_code == CODE_FOR_nothing)
3809 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3810 if (cmp_code == CODE_FOR_nothing)
3811 continue;
3813 /* Must make sure the size fits the insn's mode. */
3814 if ((CONST_INT_P (size)
3815 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3816 || (GET_MODE_BITSIZE (GET_MODE (size))
3817 > GET_MODE_BITSIZE (cmp_mode)))
3818 continue;
3820 result_mode = insn_data[cmp_code].operand[0].mode;
3821 result = gen_reg_rtx (result_mode);
3822 size = convert_to_mode (cmp_mode, size, 1);
3823 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3825 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3826 *pmode = result_mode;
3827 return;
3830 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3831 goto fail;
3833 /* Otherwise call a library function. */
3834 result = emit_block_comp_via_libcall (XEXP (x, 0), XEXP (y, 0), size);
3836 x = result;
3837 y = const0_rtx;
3838 mode = TYPE_MODE (integer_type_node);
3839 methods = OPTAB_LIB_WIDEN;
3840 unsignedp = false;
3843 /* Don't allow operands to the compare to trap, as that can put the
3844 compare and branch in different basic blocks. */
3845 if (cfun->can_throw_non_call_exceptions)
3847 if (may_trap_p (x))
3848 x = force_reg (mode, x);
3849 if (may_trap_p (y))
3850 y = force_reg (mode, y);
3853 if (GET_MODE_CLASS (mode) == MODE_CC)
3855 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
3856 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3857 gcc_assert (icode != CODE_FOR_nothing
3858 && insn_operand_matches (icode, 0, test));
3859 *ptest = test;
3860 return;
3863 mclass = GET_MODE_CLASS (mode);
3864 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3865 cmp_mode = mode;
3868 enum insn_code icode;
3869 icode = optab_handler (cbranch_optab, cmp_mode);
3870 if (icode != CODE_FOR_nothing
3871 && insn_operand_matches (icode, 0, test))
3873 rtx_insn *last = get_last_insn ();
3874 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3875 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3876 if (op0 && op1
3877 && insn_operand_matches (icode, 1, op0)
3878 && insn_operand_matches (icode, 2, op1))
3880 XEXP (test, 0) = op0;
3881 XEXP (test, 1) = op1;
3882 *ptest = test;
3883 *pmode = cmp_mode;
3884 return;
3886 delete_insns_since (last);
3889 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
3890 break;
3891 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
3893 while (cmp_mode != VOIDmode);
3895 if (methods != OPTAB_LIB_WIDEN)
3896 goto fail;
3898 if (!SCALAR_FLOAT_MODE_P (mode))
3900 rtx result;
3901 machine_mode ret_mode;
3903 /* Handle a libcall just for the mode we are using. */
3904 libfunc = optab_libfunc (cmp_optab, mode);
3905 gcc_assert (libfunc);
3907 /* If we want unsigned, and this mode has a distinct unsigned
3908 comparison routine, use that. */
3909 if (unsignedp)
3911 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
3912 if (ulibfunc)
3913 libfunc = ulibfunc;
3916 ret_mode = targetm.libgcc_cmp_return_mode ();
3917 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
3918 ret_mode, 2, x, mode, y, mode);
3920 /* There are two kinds of comparison routines. Biased routines
3921 return 0/1/2, and unbiased routines return -1/0/1. Other parts
3922 of gcc expect that the comparison operation is equivalent
3923 to the modified comparison. For signed comparisons compare the
3924 result against 1 in the biased case, and zero in the unbiased
3925 case. For unsigned comparisons always compare against 1 after
3926 biasing the unbiased result by adding 1. This gives us a way to
3927 represent LTU.
3928 The comparisons in the fixed-point helper library are always
3929 biased. */
3930 x = result;
3931 y = const1_rtx;
3933 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
3935 if (unsignedp)
3936 x = plus_constant (ret_mode, result, 1);
3937 else
3938 y = const0_rtx;
3941 *pmode = ret_mode;
3942 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
3943 ptest, pmode);
3945 else
3946 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
3948 return;
3950 fail:
3951 *ptest = NULL_RTX;
3954 /* Before emitting an insn with code ICODE, make sure that X, which is going
3955 to be used for operand OPNUM of the insn, is converted from mode MODE to
3956 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3957 that it is accepted by the operand predicate. Return the new value. */
3960 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
3961 machine_mode wider_mode, int unsignedp)
3963 if (mode != wider_mode)
3964 x = convert_modes (wider_mode, mode, x, unsignedp);
3966 if (!insn_operand_matches (icode, opnum, x))
3968 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
3969 if (reload_completed)
3970 return NULL_RTX;
3971 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
3972 return NULL_RTX;
3973 x = copy_to_mode_reg (op_mode, x);
3976 return x;
3979 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3980 we can do the branch. */
3982 static void
3983 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, int prob)
3985 machine_mode optab_mode;
3986 enum mode_class mclass;
3987 enum insn_code icode;
3988 rtx_insn *insn;
3990 mclass = GET_MODE_CLASS (mode);
3991 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
3992 icode = optab_handler (cbranch_optab, optab_mode);
3994 gcc_assert (icode != CODE_FOR_nothing);
3995 gcc_assert (insn_operand_matches (icode, 0, test));
3996 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
3997 XEXP (test, 1), label));
3998 if (prob != -1
3999 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4000 && insn
4001 && JUMP_P (insn)
4002 && any_condjump_p (insn)
4003 && !find_reg_note (insn, REG_BR_PROB, 0))
4004 add_int_reg_note (insn, REG_BR_PROB, prob);
4007 /* Generate code to compare X with Y so that the condition codes are
4008 set and to jump to LABEL if the condition is true. If X is a
4009 constant and Y is not a constant, then the comparison is swapped to
4010 ensure that the comparison RTL has the canonical form.
4012 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4013 need to be widened. UNSIGNEDP is also used to select the proper
4014 branch condition code.
4016 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4018 MODE is the mode of the inputs (in case they are const_int).
4020 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4021 It will be potentially converted into an unsigned variant based on
4022 UNSIGNEDP to select a proper jump instruction.
4024 PROB is the probability of jumping to LABEL. */
4026 void
4027 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4028 machine_mode mode, int unsignedp, rtx label,
4029 int prob)
4031 rtx op0 = x, op1 = y;
4032 rtx test;
4034 /* Swap operands and condition to ensure canonical RTL. */
4035 if (swap_commutative_operands_p (x, y)
4036 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4038 op0 = y, op1 = x;
4039 comparison = swap_condition (comparison);
4042 /* If OP0 is still a constant, then both X and Y must be constants
4043 or the opposite comparison is not supported. Force X into a register
4044 to create canonical RTL. */
4045 if (CONSTANT_P (op0))
4046 op0 = force_reg (mode, op0);
4048 if (unsignedp)
4049 comparison = unsigned_condition (comparison);
4051 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4052 &test, &mode);
4053 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4057 /* Emit a library call comparison between floating point X and Y.
4058 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4060 static void
4061 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4062 rtx *ptest, machine_mode *pmode)
4064 enum rtx_code swapped = swap_condition (comparison);
4065 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4066 machine_mode orig_mode = GET_MODE (x);
4067 machine_mode mode, cmp_mode;
4068 rtx true_rtx, false_rtx;
4069 rtx value, target, equiv;
4070 rtx_insn *insns;
4071 rtx libfunc = 0;
4072 bool reversed_p = false;
4073 cmp_mode = targetm.libgcc_cmp_return_mode ();
4075 for (mode = orig_mode;
4076 mode != VOIDmode;
4077 mode = GET_MODE_WIDER_MODE (mode))
4079 if (code_to_optab (comparison)
4080 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4081 break;
4083 if (code_to_optab (swapped)
4084 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4086 std::swap (x, y);
4087 comparison = swapped;
4088 break;
4091 if (code_to_optab (reversed)
4092 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4094 comparison = reversed;
4095 reversed_p = true;
4096 break;
4100 gcc_assert (mode != VOIDmode);
4102 if (mode != orig_mode)
4104 x = convert_to_mode (mode, x, 0);
4105 y = convert_to_mode (mode, y, 0);
4108 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4109 the RTL. The allows the RTL optimizers to delete the libcall if the
4110 condition can be determined at compile-time. */
4111 if (comparison == UNORDERED
4112 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4114 true_rtx = const_true_rtx;
4115 false_rtx = const0_rtx;
4117 else
4119 switch (comparison)
4121 case EQ:
4122 true_rtx = const0_rtx;
4123 false_rtx = const_true_rtx;
4124 break;
4126 case NE:
4127 true_rtx = const_true_rtx;
4128 false_rtx = const0_rtx;
4129 break;
4131 case GT:
4132 true_rtx = const1_rtx;
4133 false_rtx = const0_rtx;
4134 break;
4136 case GE:
4137 true_rtx = const0_rtx;
4138 false_rtx = constm1_rtx;
4139 break;
4141 case LT:
4142 true_rtx = constm1_rtx;
4143 false_rtx = const0_rtx;
4144 break;
4146 case LE:
4147 true_rtx = const0_rtx;
4148 false_rtx = const1_rtx;
4149 break;
4151 default:
4152 gcc_unreachable ();
4156 if (comparison == UNORDERED)
4158 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4159 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4160 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4161 temp, const_true_rtx, equiv);
4163 else
4165 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4166 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4167 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4168 equiv, true_rtx, false_rtx);
4171 start_sequence ();
4172 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4173 cmp_mode, 2, x, mode, y, mode);
4174 insns = get_insns ();
4175 end_sequence ();
4177 target = gen_reg_rtx (cmp_mode);
4178 emit_libcall_block (insns, target, value, equiv);
4180 if (comparison == UNORDERED
4181 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4182 || reversed_p)
4183 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4184 else
4185 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4187 *pmode = cmp_mode;
4190 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4192 void
4193 emit_indirect_jump (rtx loc)
4195 if (!targetm.have_indirect_jump ())
4196 sorry ("indirect jumps are not available on this target");
4197 else
4199 struct expand_operand ops[1];
4200 create_address_operand (&ops[0], loc);
4201 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4202 emit_barrier ();
4207 /* Emit a conditional move instruction if the machine supports one for that
4208 condition and machine mode.
4210 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4211 the mode to use should they be constants. If it is VOIDmode, they cannot
4212 both be constants.
4214 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4215 should be stored there. MODE is the mode to use should they be constants.
4216 If it is VOIDmode, they cannot both be constants.
4218 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4219 is not supported. */
4222 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4223 machine_mode cmode, rtx op2, rtx op3,
4224 machine_mode mode, int unsignedp)
4226 rtx comparison;
4227 rtx_insn *last;
4228 enum insn_code icode;
4229 enum rtx_code reversed;
4231 /* If the two source operands are identical, that's just a move. */
4233 if (rtx_equal_p (op2, op3))
4235 if (!target)
4236 target = gen_reg_rtx (mode);
4238 emit_move_insn (target, op3);
4239 return target;
4242 /* If one operand is constant, make it the second one. Only do this
4243 if the other operand is not constant as well. */
4245 if (swap_commutative_operands_p (op0, op1))
4247 std::swap (op0, op1);
4248 code = swap_condition (code);
4251 /* get_condition will prefer to generate LT and GT even if the old
4252 comparison was against zero, so undo that canonicalization here since
4253 comparisons against zero are cheaper. */
4254 if (code == LT && op1 == const1_rtx)
4255 code = LE, op1 = const0_rtx;
4256 else if (code == GT && op1 == constm1_rtx)
4257 code = GE, op1 = const0_rtx;
4259 if (cmode == VOIDmode)
4260 cmode = GET_MODE (op0);
4262 if (swap_commutative_operands_p (op2, op3)
4263 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4264 != UNKNOWN))
4266 std::swap (op2, op3);
4267 code = reversed;
4270 if (mode == VOIDmode)
4271 mode = GET_MODE (op2);
4273 icode = direct_optab_handler (movcc_optab, mode);
4275 if (icode == CODE_FOR_nothing)
4276 return 0;
4278 if (!target)
4279 target = gen_reg_rtx (mode);
4281 code = unsignedp ? unsigned_condition (code) : code;
4282 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4284 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4285 return NULL and let the caller figure out how best to deal with this
4286 situation. */
4287 if (!COMPARISON_P (comparison))
4288 return NULL_RTX;
4290 saved_pending_stack_adjust save;
4291 save_pending_stack_adjust (&save);
4292 last = get_last_insn ();
4293 do_pending_stack_adjust ();
4294 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4295 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4296 &comparison, &cmode);
4297 if (comparison)
4299 struct expand_operand ops[4];
4301 create_output_operand (&ops[0], target, mode);
4302 create_fixed_operand (&ops[1], comparison);
4303 create_input_operand (&ops[2], op2, mode);
4304 create_input_operand (&ops[3], op3, mode);
4305 if (maybe_expand_insn (icode, 4, ops))
4307 if (ops[0].value != target)
4308 convert_move (target, ops[0].value, false);
4309 return target;
4312 delete_insns_since (last);
4313 restore_pending_stack_adjust (&save);
4314 return NULL_RTX;
4318 /* Emit a conditional negate or bitwise complement using the
4319 negcc or notcc optabs if available. Return NULL_RTX if such operations
4320 are not available. Otherwise return the RTX holding the result.
4321 TARGET is the desired destination of the result. COMP is the comparison
4322 on which to negate. If COND is true move into TARGET the negation
4323 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4324 CODE is either NEG or NOT. MODE is the machine mode in which the
4325 operation is performed. */
4328 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4329 machine_mode mode, rtx cond, rtx op1,
4330 rtx op2)
4332 optab op = unknown_optab;
4333 if (code == NEG)
4334 op = negcc_optab;
4335 else if (code == NOT)
4336 op = notcc_optab;
4337 else
4338 gcc_unreachable ();
4340 insn_code icode = direct_optab_handler (op, mode);
4342 if (icode == CODE_FOR_nothing)
4343 return NULL_RTX;
4345 if (!target)
4346 target = gen_reg_rtx (mode);
4348 rtx_insn *last = get_last_insn ();
4349 struct expand_operand ops[4];
4351 create_output_operand (&ops[0], target, mode);
4352 create_fixed_operand (&ops[1], cond);
4353 create_input_operand (&ops[2], op1, mode);
4354 create_input_operand (&ops[3], op2, mode);
4356 if (maybe_expand_insn (icode, 4, ops))
4358 if (ops[0].value != target)
4359 convert_move (target, ops[0].value, false);
4361 return target;
4363 delete_insns_since (last);
4364 return NULL_RTX;
4367 /* Emit a conditional addition instruction if the machine supports one for that
4368 condition and machine mode.
4370 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4371 the mode to use should they be constants. If it is VOIDmode, they cannot
4372 both be constants.
4374 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4375 should be stored there. MODE is the mode to use should they be constants.
4376 If it is VOIDmode, they cannot both be constants.
4378 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4379 is not supported. */
4382 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4383 machine_mode cmode, rtx op2, rtx op3,
4384 machine_mode mode, int unsignedp)
4386 rtx comparison;
4387 rtx_insn *last;
4388 enum insn_code icode;
4390 /* If one operand is constant, make it the second one. Only do this
4391 if the other operand is not constant as well. */
4393 if (swap_commutative_operands_p (op0, op1))
4395 std::swap (op0, op1);
4396 code = swap_condition (code);
4399 /* get_condition will prefer to generate LT and GT even if the old
4400 comparison was against zero, so undo that canonicalization here since
4401 comparisons against zero are cheaper. */
4402 if (code == LT && op1 == const1_rtx)
4403 code = LE, op1 = const0_rtx;
4404 else if (code == GT && op1 == constm1_rtx)
4405 code = GE, op1 = const0_rtx;
4407 if (cmode == VOIDmode)
4408 cmode = GET_MODE (op0);
4410 if (mode == VOIDmode)
4411 mode = GET_MODE (op2);
4413 icode = optab_handler (addcc_optab, mode);
4415 if (icode == CODE_FOR_nothing)
4416 return 0;
4418 if (!target)
4419 target = gen_reg_rtx (mode);
4421 code = unsignedp ? unsigned_condition (code) : code;
4422 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4424 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4425 return NULL and let the caller figure out how best to deal with this
4426 situation. */
4427 if (!COMPARISON_P (comparison))
4428 return NULL_RTX;
4430 do_pending_stack_adjust ();
4431 last = get_last_insn ();
4432 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4433 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4434 &comparison, &cmode);
4435 if (comparison)
4437 struct expand_operand ops[4];
4439 create_output_operand (&ops[0], target, mode);
4440 create_fixed_operand (&ops[1], comparison);
4441 create_input_operand (&ops[2], op2, mode);
4442 create_input_operand (&ops[3], op3, mode);
4443 if (maybe_expand_insn (icode, 4, ops))
4445 if (ops[0].value != target)
4446 convert_move (target, ops[0].value, false);
4447 return target;
4450 delete_insns_since (last);
4451 return NULL_RTX;
4454 /* These functions attempt to generate an insn body, rather than
4455 emitting the insn, but if the gen function already emits them, we
4456 make no attempt to turn them back into naked patterns. */
4458 /* Generate and return an insn body to add Y to X. */
4460 rtx_insn *
4461 gen_add2_insn (rtx x, rtx y)
4463 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4465 gcc_assert (insn_operand_matches (icode, 0, x));
4466 gcc_assert (insn_operand_matches (icode, 1, x));
4467 gcc_assert (insn_operand_matches (icode, 2, y));
4469 return GEN_FCN (icode) (x, x, y);
4472 /* Generate and return an insn body to add r1 and c,
4473 storing the result in r0. */
4475 rtx_insn *
4476 gen_add3_insn (rtx r0, rtx r1, rtx c)
4478 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4480 if (icode == CODE_FOR_nothing
4481 || !insn_operand_matches (icode, 0, r0)
4482 || !insn_operand_matches (icode, 1, r1)
4483 || !insn_operand_matches (icode, 2, c))
4484 return NULL;
4486 return GEN_FCN (icode) (r0, r1, c);
4490 have_add2_insn (rtx x, rtx y)
4492 enum insn_code icode;
4494 gcc_assert (GET_MODE (x) != VOIDmode);
4496 icode = optab_handler (add_optab, GET_MODE (x));
4498 if (icode == CODE_FOR_nothing)
4499 return 0;
4501 if (!insn_operand_matches (icode, 0, x)
4502 || !insn_operand_matches (icode, 1, x)
4503 || !insn_operand_matches (icode, 2, y))
4504 return 0;
4506 return 1;
4509 /* Generate and return an insn body to add Y to X. */
4511 rtx_insn *
4512 gen_addptr3_insn (rtx x, rtx y, rtx z)
4514 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4516 gcc_assert (insn_operand_matches (icode, 0, x));
4517 gcc_assert (insn_operand_matches (icode, 1, y));
4518 gcc_assert (insn_operand_matches (icode, 2, z));
4520 return GEN_FCN (icode) (x, y, z);
4523 /* Return true if the target implements an addptr pattern and X, Y,
4524 and Z are valid for the pattern predicates. */
4527 have_addptr3_insn (rtx x, rtx y, rtx z)
4529 enum insn_code icode;
4531 gcc_assert (GET_MODE (x) != VOIDmode);
4533 icode = optab_handler (addptr3_optab, GET_MODE (x));
4535 if (icode == CODE_FOR_nothing)
4536 return 0;
4538 if (!insn_operand_matches (icode, 0, x)
4539 || !insn_operand_matches (icode, 1, y)
4540 || !insn_operand_matches (icode, 2, z))
4541 return 0;
4543 return 1;
4546 /* Generate and return an insn body to subtract Y from X. */
4548 rtx_insn *
4549 gen_sub2_insn (rtx x, rtx y)
4551 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4553 gcc_assert (insn_operand_matches (icode, 0, x));
4554 gcc_assert (insn_operand_matches (icode, 1, x));
4555 gcc_assert (insn_operand_matches (icode, 2, y));
4557 return GEN_FCN (icode) (x, x, y);
4560 /* Generate and return an insn body to subtract r1 and c,
4561 storing the result in r0. */
4563 rtx_insn *
4564 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4566 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4568 if (icode == CODE_FOR_nothing
4569 || !insn_operand_matches (icode, 0, r0)
4570 || !insn_operand_matches (icode, 1, r1)
4571 || !insn_operand_matches (icode, 2, c))
4572 return NULL;
4574 return GEN_FCN (icode) (r0, r1, c);
4578 have_sub2_insn (rtx x, rtx y)
4580 enum insn_code icode;
4582 gcc_assert (GET_MODE (x) != VOIDmode);
4584 icode = optab_handler (sub_optab, GET_MODE (x));
4586 if (icode == CODE_FOR_nothing)
4587 return 0;
4589 if (!insn_operand_matches (icode, 0, x)
4590 || !insn_operand_matches (icode, 1, x)
4591 || !insn_operand_matches (icode, 2, y))
4592 return 0;
4594 return 1;
4597 /* Generate the body of an insn to extend Y (with mode MFROM)
4598 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4600 rtx_insn *
4601 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4602 machine_mode mfrom, int unsignedp)
4604 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4605 return GEN_FCN (icode) (x, y);
4608 /* Generate code to convert FROM to floating point
4609 and store in TO. FROM must be fixed point and not VOIDmode.
4610 UNSIGNEDP nonzero means regard FROM as unsigned.
4611 Normally this is done by correcting the final value
4612 if it is negative. */
4614 void
4615 expand_float (rtx to, rtx from, int unsignedp)
4617 enum insn_code icode;
4618 rtx target = to;
4619 machine_mode fmode, imode;
4620 bool can_do_signed = false;
4622 /* Crash now, because we won't be able to decide which mode to use. */
4623 gcc_assert (GET_MODE (from) != VOIDmode);
4625 /* Look for an insn to do the conversion. Do it in the specified
4626 modes if possible; otherwise convert either input, output or both to
4627 wider mode. If the integer mode is wider than the mode of FROM,
4628 we can do the conversion signed even if the input is unsigned. */
4630 for (fmode = GET_MODE (to); fmode != VOIDmode;
4631 fmode = GET_MODE_WIDER_MODE (fmode))
4632 for (imode = GET_MODE (from); imode != VOIDmode;
4633 imode = GET_MODE_WIDER_MODE (imode))
4635 int doing_unsigned = unsignedp;
4637 if (fmode != GET_MODE (to)
4638 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4639 continue;
4641 icode = can_float_p (fmode, imode, unsignedp);
4642 if (icode == CODE_FOR_nothing && unsignedp)
4644 enum insn_code scode = can_float_p (fmode, imode, 0);
4645 if (scode != CODE_FOR_nothing)
4646 can_do_signed = true;
4647 if (imode != GET_MODE (from))
4648 icode = scode, doing_unsigned = 0;
4651 if (icode != CODE_FOR_nothing)
4653 if (imode != GET_MODE (from))
4654 from = convert_to_mode (imode, from, unsignedp);
4656 if (fmode != GET_MODE (to))
4657 target = gen_reg_rtx (fmode);
4659 emit_unop_insn (icode, target, from,
4660 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4662 if (target != to)
4663 convert_move (to, target, 0);
4664 return;
4668 /* Unsigned integer, and no way to convert directly. Convert as signed,
4669 then unconditionally adjust the result. */
4670 if (unsignedp && can_do_signed)
4672 rtx_code_label *label = gen_label_rtx ();
4673 rtx temp;
4674 REAL_VALUE_TYPE offset;
4676 /* Look for a usable floating mode FMODE wider than the source and at
4677 least as wide as the target. Using FMODE will avoid rounding woes
4678 with unsigned values greater than the signed maximum value. */
4680 for (fmode = GET_MODE (to); fmode != VOIDmode;
4681 fmode = GET_MODE_WIDER_MODE (fmode))
4682 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4683 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4684 break;
4686 if (fmode == VOIDmode)
4688 /* There is no such mode. Pretend the target is wide enough. */
4689 fmode = GET_MODE (to);
4691 /* Avoid double-rounding when TO is narrower than FROM. */
4692 if ((significand_size (fmode) + 1)
4693 < GET_MODE_PRECISION (GET_MODE (from)))
4695 rtx temp1;
4696 rtx_code_label *neglabel = gen_label_rtx ();
4698 /* Don't use TARGET if it isn't a register, is a hard register,
4699 or is the wrong mode. */
4700 if (!REG_P (target)
4701 || REGNO (target) < FIRST_PSEUDO_REGISTER
4702 || GET_MODE (target) != fmode)
4703 target = gen_reg_rtx (fmode);
4705 imode = GET_MODE (from);
4706 do_pending_stack_adjust ();
4708 /* Test whether the sign bit is set. */
4709 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4710 0, neglabel);
4712 /* The sign bit is not set. Convert as signed. */
4713 expand_float (target, from, 0);
4714 emit_jump_insn (targetm.gen_jump (label));
4715 emit_barrier ();
4717 /* The sign bit is set.
4718 Convert to a usable (positive signed) value by shifting right
4719 one bit, while remembering if a nonzero bit was shifted
4720 out; i.e., compute (from & 1) | (from >> 1). */
4722 emit_label (neglabel);
4723 temp = expand_binop (imode, and_optab, from, const1_rtx,
4724 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4725 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4726 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4727 OPTAB_LIB_WIDEN);
4728 expand_float (target, temp, 0);
4730 /* Multiply by 2 to undo the shift above. */
4731 temp = expand_binop (fmode, add_optab, target, target,
4732 target, 0, OPTAB_LIB_WIDEN);
4733 if (temp != target)
4734 emit_move_insn (target, temp);
4736 do_pending_stack_adjust ();
4737 emit_label (label);
4738 goto done;
4742 /* If we are about to do some arithmetic to correct for an
4743 unsigned operand, do it in a pseudo-register. */
4745 if (GET_MODE (to) != fmode
4746 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4747 target = gen_reg_rtx (fmode);
4749 /* Convert as signed integer to floating. */
4750 expand_float (target, from, 0);
4752 /* If FROM is negative (and therefore TO is negative),
4753 correct its value by 2**bitwidth. */
4755 do_pending_stack_adjust ();
4756 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4757 0, label);
4760 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
4761 temp = expand_binop (fmode, add_optab, target,
4762 const_double_from_real_value (offset, fmode),
4763 target, 0, OPTAB_LIB_WIDEN);
4764 if (temp != target)
4765 emit_move_insn (target, temp);
4767 do_pending_stack_adjust ();
4768 emit_label (label);
4769 goto done;
4772 /* No hardware instruction available; call a library routine. */
4774 rtx libfunc;
4775 rtx_insn *insns;
4776 rtx value;
4777 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4779 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_PRECISION (SImode))
4780 from = convert_to_mode (SImode, from, unsignedp);
4782 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4783 gcc_assert (libfunc);
4785 start_sequence ();
4787 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4788 GET_MODE (to), 1, from,
4789 GET_MODE (from));
4790 insns = get_insns ();
4791 end_sequence ();
4793 emit_libcall_block (insns, target, value,
4794 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4795 GET_MODE (to), from));
4798 done:
4800 /* Copy result to requested destination
4801 if we have been computing in a temp location. */
4803 if (target != to)
4805 if (GET_MODE (target) == GET_MODE (to))
4806 emit_move_insn (to, target);
4807 else
4808 convert_move (to, target, 0);
4812 /* Generate code to convert FROM to fixed point and store in TO. FROM
4813 must be floating point. */
4815 void
4816 expand_fix (rtx to, rtx from, int unsignedp)
4818 enum insn_code icode;
4819 rtx target = to;
4820 machine_mode fmode, imode;
4821 bool must_trunc = false;
4823 /* We first try to find a pair of modes, one real and one integer, at
4824 least as wide as FROM and TO, respectively, in which we can open-code
4825 this conversion. If the integer mode is wider than the mode of TO,
4826 we can do the conversion either signed or unsigned. */
4828 for (fmode = GET_MODE (from); fmode != VOIDmode;
4829 fmode = GET_MODE_WIDER_MODE (fmode))
4830 for (imode = GET_MODE (to); imode != VOIDmode;
4831 imode = GET_MODE_WIDER_MODE (imode))
4833 int doing_unsigned = unsignedp;
4835 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4836 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4837 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4839 if (icode != CODE_FOR_nothing)
4841 rtx_insn *last = get_last_insn ();
4842 if (fmode != GET_MODE (from))
4843 from = convert_to_mode (fmode, from, 0);
4845 if (must_trunc)
4847 rtx temp = gen_reg_rtx (GET_MODE (from));
4848 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4849 temp, 0);
4852 if (imode != GET_MODE (to))
4853 target = gen_reg_rtx (imode);
4855 if (maybe_emit_unop_insn (icode, target, from,
4856 doing_unsigned ? UNSIGNED_FIX : FIX))
4858 if (target != to)
4859 convert_move (to, target, unsignedp);
4860 return;
4862 delete_insns_since (last);
4866 /* For an unsigned conversion, there is one more way to do it.
4867 If we have a signed conversion, we generate code that compares
4868 the real value to the largest representable positive number. If if
4869 is smaller, the conversion is done normally. Otherwise, subtract
4870 one plus the highest signed number, convert, and add it back.
4872 We only need to check all real modes, since we know we didn't find
4873 anything with a wider integer mode.
4875 This code used to extend FP value into mode wider than the destination.
4876 This is needed for decimal float modes which cannot accurately
4877 represent one plus the highest signed number of the same size, but
4878 not for binary modes. Consider, for instance conversion from SFmode
4879 into DImode.
4881 The hot path through the code is dealing with inputs smaller than 2^63
4882 and doing just the conversion, so there is no bits to lose.
4884 In the other path we know the value is positive in the range 2^63..2^64-1
4885 inclusive. (as for other input overflow happens and result is undefined)
4886 So we know that the most important bit set in mantissa corresponds to
4887 2^63. The subtraction of 2^63 should not generate any rounding as it
4888 simply clears out that bit. The rest is trivial. */
4890 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4891 for (fmode = GET_MODE (from); fmode != VOIDmode;
4892 fmode = GET_MODE_WIDER_MODE (fmode))
4893 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
4894 && (!DECIMAL_FLOAT_MODE_P (fmode)
4895 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
4897 int bitsize;
4898 REAL_VALUE_TYPE offset;
4899 rtx limit;
4900 rtx_code_label *lab1, *lab2;
4901 rtx_insn *insn;
4903 bitsize = GET_MODE_PRECISION (GET_MODE (to));
4904 real_2expN (&offset, bitsize - 1, fmode);
4905 limit = const_double_from_real_value (offset, fmode);
4906 lab1 = gen_label_rtx ();
4907 lab2 = gen_label_rtx ();
4909 if (fmode != GET_MODE (from))
4910 from = convert_to_mode (fmode, from, 0);
4912 /* See if we need to do the subtraction. */
4913 do_pending_stack_adjust ();
4914 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4915 0, lab1);
4917 /* If not, do the signed "fix" and branch around fixup code. */
4918 expand_fix (to, from, 0);
4919 emit_jump_insn (targetm.gen_jump (lab2));
4920 emit_barrier ();
4922 /* Otherwise, subtract 2**(N-1), convert to signed number,
4923 then add 2**(N-1). Do the addition using XOR since this
4924 will often generate better code. */
4925 emit_label (lab1);
4926 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4927 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4928 expand_fix (to, target, 0);
4929 target = expand_binop (GET_MODE (to), xor_optab, to,
4930 gen_int_mode
4931 (HOST_WIDE_INT_1 << (bitsize - 1),
4932 GET_MODE (to)),
4933 to, 1, OPTAB_LIB_WIDEN);
4935 if (target != to)
4936 emit_move_insn (to, target);
4938 emit_label (lab2);
4940 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
4942 /* Make a place for a REG_NOTE and add it. */
4943 insn = emit_move_insn (to, to);
4944 set_dst_reg_note (insn, REG_EQUAL,
4945 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
4946 copy_rtx (from)),
4947 to);
4950 return;
4953 /* We can't do it with an insn, so use a library call. But first ensure
4954 that the mode of TO is at least as wide as SImode, since those are the
4955 only library calls we know about. */
4957 if (GET_MODE_PRECISION (GET_MODE (to)) < GET_MODE_PRECISION (SImode))
4959 target = gen_reg_rtx (SImode);
4961 expand_fix (target, from, unsignedp);
4963 else
4965 rtx_insn *insns;
4966 rtx value;
4967 rtx libfunc;
4969 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4970 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4971 gcc_assert (libfunc);
4973 start_sequence ();
4975 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4976 GET_MODE (to), 1, from,
4977 GET_MODE (from));
4978 insns = get_insns ();
4979 end_sequence ();
4981 emit_libcall_block (insns, target, value,
4982 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4983 GET_MODE (to), from));
4986 if (target != to)
4988 if (GET_MODE (to) == GET_MODE (target))
4989 emit_move_insn (to, target);
4990 else
4991 convert_move (to, target, 0);
4996 /* Promote integer arguments for a libcall if necessary.
4997 emit_library_call_value cannot do the promotion because it does not
4998 know if it should do a signed or unsigned promotion. This is because
4999 there are no tree types defined for libcalls. */
5001 static rtx
5002 prepare_libcall_arg (rtx arg, int uintp)
5004 machine_mode mode = GET_MODE (arg);
5005 machine_mode arg_mode;
5006 if (SCALAR_INT_MODE_P (mode))
5008 /* If we need to promote the integer function argument we need to do
5009 it here instead of inside emit_library_call_value because in
5010 emit_library_call_value we don't know if we should do a signed or
5011 unsigned promotion. */
5013 int unsigned_p = 0;
5014 arg_mode = promote_function_mode (NULL_TREE, mode,
5015 &unsigned_p, NULL_TREE, 0);
5016 if (arg_mode != mode)
5017 return convert_to_mode (arg_mode, arg, uintp);
5019 return arg;
5022 /* Generate code to convert FROM or TO a fixed-point.
5023 If UINTP is true, either TO or FROM is an unsigned integer.
5024 If SATP is true, we need to saturate the result. */
5026 void
5027 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5029 machine_mode to_mode = GET_MODE (to);
5030 machine_mode from_mode = GET_MODE (from);
5031 convert_optab tab;
5032 enum rtx_code this_code;
5033 enum insn_code code;
5034 rtx_insn *insns;
5035 rtx value;
5036 rtx libfunc;
5038 if (to_mode == from_mode)
5040 emit_move_insn (to, from);
5041 return;
5044 if (uintp)
5046 tab = satp ? satfractuns_optab : fractuns_optab;
5047 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5049 else
5051 tab = satp ? satfract_optab : fract_optab;
5052 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5054 code = convert_optab_handler (tab, to_mode, from_mode);
5055 if (code != CODE_FOR_nothing)
5057 emit_unop_insn (code, to, from, this_code);
5058 return;
5061 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5062 gcc_assert (libfunc);
5064 from = prepare_libcall_arg (from, uintp);
5065 from_mode = GET_MODE (from);
5067 start_sequence ();
5068 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5069 1, from, from_mode);
5070 insns = get_insns ();
5071 end_sequence ();
5073 emit_libcall_block (insns, to, value,
5074 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5077 /* Generate code to convert FROM to fixed point and store in TO. FROM
5078 must be floating point, TO must be signed. Use the conversion optab
5079 TAB to do the conversion. */
5081 bool
5082 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5084 enum insn_code icode;
5085 rtx target = to;
5086 machine_mode fmode, imode;
5088 /* We first try to find a pair of modes, one real and one integer, at
5089 least as wide as FROM and TO, respectively, in which we can open-code
5090 this conversion. If the integer mode is wider than the mode of TO,
5091 we can do the conversion either signed or unsigned. */
5093 for (fmode = GET_MODE (from); fmode != VOIDmode;
5094 fmode = GET_MODE_WIDER_MODE (fmode))
5095 for (imode = GET_MODE (to); imode != VOIDmode;
5096 imode = GET_MODE_WIDER_MODE (imode))
5098 icode = convert_optab_handler (tab, imode, fmode);
5099 if (icode != CODE_FOR_nothing)
5101 rtx_insn *last = get_last_insn ();
5102 if (fmode != GET_MODE (from))
5103 from = convert_to_mode (fmode, from, 0);
5105 if (imode != GET_MODE (to))
5106 target = gen_reg_rtx (imode);
5108 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5110 delete_insns_since (last);
5111 continue;
5113 if (target != to)
5114 convert_move (to, target, 0);
5115 return true;
5119 return false;
5122 /* Report whether we have an instruction to perform the operation
5123 specified by CODE on operands of mode MODE. */
5125 have_insn_for (enum rtx_code code, machine_mode mode)
5127 return (code_to_optab (code)
5128 && (optab_handler (code_to_optab (code), mode)
5129 != CODE_FOR_nothing));
5132 /* Print information about the current contents of the optabs on
5133 STDERR. */
5135 DEBUG_FUNCTION void
5136 debug_optab_libfuncs (void)
5138 int i, j, k;
5140 /* Dump the arithmetic optabs. */
5141 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5142 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5144 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5145 if (l)
5147 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5148 fprintf (stderr, "%s\t%s:\t%s\n",
5149 GET_RTX_NAME (optab_to_code ((optab) i)),
5150 GET_MODE_NAME (j),
5151 XSTR (l, 0));
5155 /* Dump the conversion optabs. */
5156 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5157 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5158 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5160 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5161 (machine_mode) k);
5162 if (l)
5164 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5165 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5166 GET_RTX_NAME (optab_to_code ((optab) i)),
5167 GET_MODE_NAME (j),
5168 GET_MODE_NAME (k),
5169 XSTR (l, 0));
5174 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5175 CODE. Return 0 on failure. */
5177 rtx_insn *
5178 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5180 machine_mode mode = GET_MODE (op1);
5181 enum insn_code icode;
5182 rtx_insn *insn;
5183 rtx trap_rtx;
5185 if (mode == VOIDmode)
5186 return 0;
5188 icode = optab_handler (ctrap_optab, mode);
5189 if (icode == CODE_FOR_nothing)
5190 return 0;
5192 /* Some targets only accept a zero trap code. */
5193 if (!insn_operand_matches (icode, 3, tcode))
5194 return 0;
5196 do_pending_stack_adjust ();
5197 start_sequence ();
5198 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5199 &trap_rtx, &mode);
5200 if (!trap_rtx)
5201 insn = NULL;
5202 else
5203 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5204 tcode);
5206 /* If that failed, then give up. */
5207 if (insn == 0)
5209 end_sequence ();
5210 return 0;
5213 emit_insn (insn);
5214 insn = get_insns ();
5215 end_sequence ();
5216 return insn;
5219 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5220 or unsigned operation code. */
5222 enum rtx_code
5223 get_rtx_code (enum tree_code tcode, bool unsignedp)
5225 enum rtx_code code;
5226 switch (tcode)
5228 case EQ_EXPR:
5229 code = EQ;
5230 break;
5231 case NE_EXPR:
5232 code = NE;
5233 break;
5234 case LT_EXPR:
5235 code = unsignedp ? LTU : LT;
5236 break;
5237 case LE_EXPR:
5238 code = unsignedp ? LEU : LE;
5239 break;
5240 case GT_EXPR:
5241 code = unsignedp ? GTU : GT;
5242 break;
5243 case GE_EXPR:
5244 code = unsignedp ? GEU : GE;
5245 break;
5247 case UNORDERED_EXPR:
5248 code = UNORDERED;
5249 break;
5250 case ORDERED_EXPR:
5251 code = ORDERED;
5252 break;
5253 case UNLT_EXPR:
5254 code = UNLT;
5255 break;
5256 case UNLE_EXPR:
5257 code = UNLE;
5258 break;
5259 case UNGT_EXPR:
5260 code = UNGT;
5261 break;
5262 case UNGE_EXPR:
5263 code = UNGE;
5264 break;
5265 case UNEQ_EXPR:
5266 code = UNEQ;
5267 break;
5268 case LTGT_EXPR:
5269 code = LTGT;
5270 break;
5272 case BIT_AND_EXPR:
5273 code = AND;
5274 break;
5276 case BIT_IOR_EXPR:
5277 code = IOR;
5278 break;
5280 default:
5281 gcc_unreachable ();
5283 return code;
5286 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
5287 unsigned operators. OPNO holds an index of the first comparison
5288 operand in insn with code ICODE. Do not generate compare instruction. */
5290 static rtx
5291 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
5292 bool unsignedp, enum insn_code icode,
5293 unsigned int opno)
5295 struct expand_operand ops[2];
5296 rtx rtx_op0, rtx_op1;
5297 machine_mode m0, m1;
5298 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5300 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5302 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5303 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5304 cases, use the original mode. */
5305 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5306 EXPAND_STACK_PARM);
5307 m0 = GET_MODE (rtx_op0);
5308 if (m0 == VOIDmode)
5309 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5311 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5312 EXPAND_STACK_PARM);
5313 m1 = GET_MODE (rtx_op1);
5314 if (m1 == VOIDmode)
5315 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5317 create_input_operand (&ops[0], rtx_op0, m0);
5318 create_input_operand (&ops[1], rtx_op1, m1);
5319 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5320 gcc_unreachable ();
5321 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
5324 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
5325 vec_perm operand, assuming the second operand is a constant vector of zeroes.
5326 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
5327 shift. */
5328 static rtx
5329 shift_amt_for_vec_perm_mask (rtx sel)
5331 unsigned int i, first, nelt = GET_MODE_NUNITS (GET_MODE (sel));
5332 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (GET_MODE (sel));
5334 if (GET_CODE (sel) != CONST_VECTOR)
5335 return NULL_RTX;
5337 first = INTVAL (CONST_VECTOR_ELT (sel, 0));
5338 if (first >= nelt)
5339 return NULL_RTX;
5340 for (i = 1; i < nelt; i++)
5342 int idx = INTVAL (CONST_VECTOR_ELT (sel, i));
5343 unsigned int expected = i + first;
5344 /* Indices into the second vector are all equivalent. */
5345 if (idx < 0 || (MIN (nelt, (unsigned) idx) != MIN (nelt, expected)))
5346 return NULL_RTX;
5349 return GEN_INT (first * bitsize);
5352 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
5354 static rtx
5355 expand_vec_perm_1 (enum insn_code icode, rtx target,
5356 rtx v0, rtx v1, rtx sel)
5358 machine_mode tmode = GET_MODE (target);
5359 machine_mode smode = GET_MODE (sel);
5360 struct expand_operand ops[4];
5362 create_output_operand (&ops[0], target, tmode);
5363 create_input_operand (&ops[3], sel, smode);
5365 /* Make an effort to preserve v0 == v1. The target expander is able to
5366 rely on this to determine if we're permuting a single input operand. */
5367 if (rtx_equal_p (v0, v1))
5369 if (!insn_operand_matches (icode, 1, v0))
5370 v0 = force_reg (tmode, v0);
5371 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5372 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5374 create_fixed_operand (&ops[1], v0);
5375 create_fixed_operand (&ops[2], v0);
5377 else
5379 create_input_operand (&ops[1], v0, tmode);
5380 create_input_operand (&ops[2], v1, tmode);
5383 if (maybe_expand_insn (icode, 4, ops))
5384 return ops[0].value;
5385 return NULL_RTX;
5388 /* Generate instructions for vec_perm optab given its mode
5389 and three operands. */
5392 expand_vec_perm (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5394 enum insn_code icode;
5395 machine_mode qimode;
5396 unsigned int i, w, e, u;
5397 rtx tmp, sel_qi = NULL;
5398 rtvec vec;
5400 if (!target || GET_MODE (target) != mode)
5401 target = gen_reg_rtx (mode);
5403 w = GET_MODE_SIZE (mode);
5404 e = GET_MODE_NUNITS (mode);
5405 u = GET_MODE_UNIT_SIZE (mode);
5407 /* Set QIMODE to a different vector mode with byte elements.
5408 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5409 qimode = VOIDmode;
5410 if (GET_MODE_INNER (mode) != QImode)
5412 qimode = mode_for_vector (QImode, w);
5413 if (!VECTOR_MODE_P (qimode))
5414 qimode = VOIDmode;
5417 /* If the input is a constant, expand it specially. */
5418 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
5419 if (GET_CODE (sel) == CONST_VECTOR)
5421 /* See if this can be handled with a vec_shr. We only do this if the
5422 second vector is all zeroes. */
5423 enum insn_code shift_code = optab_handler (vec_shr_optab, mode);
5424 enum insn_code shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5425 ? optab_handler (vec_shr_optab, qimode)
5426 : CODE_FOR_nothing);
5427 rtx shift_amt = NULL_RTX;
5428 if (v1 == CONST0_RTX (GET_MODE (v1))
5429 && (shift_code != CODE_FOR_nothing
5430 || shift_code_qi != CODE_FOR_nothing))
5432 shift_amt = shift_amt_for_vec_perm_mask (sel);
5433 if (shift_amt)
5435 struct expand_operand ops[3];
5436 if (shift_code != CODE_FOR_nothing)
5438 create_output_operand (&ops[0], target, mode);
5439 create_input_operand (&ops[1], v0, mode);
5440 create_convert_operand_from_type (&ops[2], shift_amt,
5441 sizetype);
5442 if (maybe_expand_insn (shift_code, 3, ops))
5443 return ops[0].value;
5445 if (shift_code_qi != CODE_FOR_nothing)
5447 tmp = gen_reg_rtx (qimode);
5448 create_output_operand (&ops[0], tmp, qimode);
5449 create_input_operand (&ops[1], gen_lowpart (qimode, v0),
5450 qimode);
5451 create_convert_operand_from_type (&ops[2], shift_amt,
5452 sizetype);
5453 if (maybe_expand_insn (shift_code_qi, 3, ops))
5454 return gen_lowpart (mode, ops[0].value);
5459 icode = direct_optab_handler (vec_perm_const_optab, mode);
5460 if (icode != CODE_FOR_nothing)
5462 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5463 if (tmp)
5464 return tmp;
5467 /* Fall back to a constant byte-based permutation. */
5468 if (qimode != VOIDmode)
5470 vec = rtvec_alloc (w);
5471 for (i = 0; i < e; ++i)
5473 unsigned int j, this_e;
5475 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
5476 this_e &= 2 * e - 1;
5477 this_e *= u;
5479 for (j = 0; j < u; ++j)
5480 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
5482 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
5484 icode = direct_optab_handler (vec_perm_const_optab, qimode);
5485 if (icode != CODE_FOR_nothing)
5487 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5488 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5489 gen_lowpart (qimode, v1), sel_qi);
5490 if (tmp)
5491 return gen_lowpart (mode, tmp);
5496 /* Otherwise expand as a fully variable permuation. */
5497 icode = direct_optab_handler (vec_perm_optab, mode);
5498 if (icode != CODE_FOR_nothing)
5500 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5501 if (tmp)
5502 return tmp;
5505 /* As a special case to aid several targets, lower the element-based
5506 permutation to a byte-based permutation and try again. */
5507 if (qimode == VOIDmode)
5508 return NULL_RTX;
5509 icode = direct_optab_handler (vec_perm_optab, qimode);
5510 if (icode == CODE_FOR_nothing)
5511 return NULL_RTX;
5513 if (sel_qi == NULL)
5515 /* Multiply each element by its byte size. */
5516 machine_mode selmode = GET_MODE (sel);
5517 if (u == 2)
5518 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5519 NULL, 0, OPTAB_DIRECT);
5520 else
5521 sel = expand_simple_binop (selmode, ASHIFT, sel,
5522 GEN_INT (exact_log2 (u)),
5523 NULL, 0, OPTAB_DIRECT);
5524 gcc_assert (sel != NULL);
5526 /* Broadcast the low byte each element into each of its bytes. */
5527 vec = rtvec_alloc (w);
5528 for (i = 0; i < w; ++i)
5530 int this_e = i / u * u;
5531 if (BYTES_BIG_ENDIAN)
5532 this_e += u - 1;
5533 RTVEC_ELT (vec, i) = GEN_INT (this_e);
5535 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
5536 sel = gen_lowpart (qimode, sel);
5537 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
5538 gcc_assert (sel != NULL);
5540 /* Add the byte offset to each byte element. */
5541 /* Note that the definition of the indicies here is memory ordering,
5542 so there should be no difference between big and little endian. */
5543 vec = rtvec_alloc (w);
5544 for (i = 0; i < w; ++i)
5545 RTVEC_ELT (vec, i) = GEN_INT (i % u);
5546 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
5547 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5548 sel, 0, OPTAB_DIRECT);
5549 gcc_assert (sel_qi != NULL);
5552 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5553 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5554 gen_lowpart (qimode, v1), sel_qi);
5555 if (tmp)
5556 tmp = gen_lowpart (mode, tmp);
5557 return tmp;
5560 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5561 three operands. */
5564 expand_vec_cond_mask_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5565 rtx target)
5567 struct expand_operand ops[4];
5568 machine_mode mode = TYPE_MODE (vec_cond_type);
5569 machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0));
5570 enum insn_code icode = get_vcond_mask_icode (mode, mask_mode);
5571 rtx mask, rtx_op1, rtx_op2;
5573 if (icode == CODE_FOR_nothing)
5574 return 0;
5576 mask = expand_normal (op0);
5577 rtx_op1 = expand_normal (op1);
5578 rtx_op2 = expand_normal (op2);
5580 mask = force_reg (mask_mode, mask);
5581 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
5583 create_output_operand (&ops[0], target, mode);
5584 create_input_operand (&ops[1], rtx_op1, mode);
5585 create_input_operand (&ops[2], rtx_op2, mode);
5586 create_input_operand (&ops[3], mask, mask_mode);
5587 expand_insn (icode, 4, ops);
5589 return ops[0].value;
5592 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5593 three operands. */
5596 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5597 rtx target)
5599 struct expand_operand ops[6];
5600 enum insn_code icode;
5601 rtx comparison, rtx_op1, rtx_op2;
5602 machine_mode mode = TYPE_MODE (vec_cond_type);
5603 machine_mode cmp_op_mode;
5604 bool unsignedp;
5605 tree op0a, op0b;
5606 enum tree_code tcode;
5608 if (COMPARISON_CLASS_P (op0))
5610 op0a = TREE_OPERAND (op0, 0);
5611 op0b = TREE_OPERAND (op0, 1);
5612 tcode = TREE_CODE (op0);
5614 else
5616 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0)));
5617 if (get_vcond_mask_icode (mode, TYPE_MODE (TREE_TYPE (op0)))
5618 != CODE_FOR_nothing)
5619 return expand_vec_cond_mask_expr (vec_cond_type, op0, op1,
5620 op2, target);
5621 /* Fake op0 < 0. */
5622 else
5624 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0)))
5625 == MODE_VECTOR_INT);
5626 op0a = op0;
5627 op0b = build_zero_cst (TREE_TYPE (op0));
5628 tcode = LT_EXPR;
5631 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
5632 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5635 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
5636 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
5638 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
5639 if (icode == CODE_FOR_nothing)
5641 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5642 icode = get_vcond_eq_icode (mode, cmp_op_mode);
5643 if (icode == CODE_FOR_nothing)
5644 return 0;
5647 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode, 4);
5648 rtx_op1 = expand_normal (op1);
5649 rtx_op2 = expand_normal (op2);
5651 create_output_operand (&ops[0], target, mode);
5652 create_input_operand (&ops[1], rtx_op1, mode);
5653 create_input_operand (&ops[2], rtx_op2, mode);
5654 create_fixed_operand (&ops[3], comparison);
5655 create_fixed_operand (&ops[4], XEXP (comparison, 0));
5656 create_fixed_operand (&ops[5], XEXP (comparison, 1));
5657 expand_insn (icode, 6, ops);
5658 return ops[0].value;
5661 /* Generate insns for a vector comparison into a mask. */
5664 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5666 struct expand_operand ops[4];
5667 enum insn_code icode;
5668 rtx comparison;
5669 machine_mode mask_mode = TYPE_MODE (type);
5670 machine_mode vmode;
5671 bool unsignedp;
5672 tree op0a, op0b;
5673 enum tree_code tcode;
5675 op0a = TREE_OPERAND (exp, 0);
5676 op0b = TREE_OPERAND (exp, 1);
5677 tcode = TREE_CODE (exp);
5679 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5680 vmode = TYPE_MODE (TREE_TYPE (op0a));
5682 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5683 if (icode == CODE_FOR_nothing)
5685 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5686 icode = get_vec_cmp_eq_icode (vmode, mask_mode);
5687 if (icode == CODE_FOR_nothing)
5688 return 0;
5691 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode, 2);
5692 create_output_operand (&ops[0], target, mask_mode);
5693 create_fixed_operand (&ops[1], comparison);
5694 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5695 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5696 expand_insn (icode, 4, ops);
5697 return ops[0].value;
5700 /* Expand a highpart multiply. */
5703 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5704 rtx target, bool uns_p)
5706 struct expand_operand eops[3];
5707 enum insn_code icode;
5708 int method, i, nunits;
5709 machine_mode wmode;
5710 rtx m1, m2, perm;
5711 optab tab1, tab2;
5712 rtvec v;
5714 method = can_mult_highpart_p (mode, uns_p);
5715 switch (method)
5717 case 0:
5718 return NULL_RTX;
5719 case 1:
5720 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5721 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5722 OPTAB_LIB_WIDEN);
5723 case 2:
5724 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5725 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5726 break;
5727 case 3:
5728 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5729 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5730 if (BYTES_BIG_ENDIAN)
5731 std::swap (tab1, tab2);
5732 break;
5733 default:
5734 gcc_unreachable ();
5737 icode = optab_handler (tab1, mode);
5738 nunits = GET_MODE_NUNITS (mode);
5739 wmode = insn_data[icode].operand[0].mode;
5740 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
5741 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
5743 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5744 create_input_operand (&eops[1], op0, mode);
5745 create_input_operand (&eops[2], op1, mode);
5746 expand_insn (icode, 3, eops);
5747 m1 = gen_lowpart (mode, eops[0].value);
5749 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5750 create_input_operand (&eops[1], op0, mode);
5751 create_input_operand (&eops[2], op1, mode);
5752 expand_insn (optab_handler (tab2, mode), 3, eops);
5753 m2 = gen_lowpart (mode, eops[0].value);
5755 v = rtvec_alloc (nunits);
5756 if (method == 2)
5758 for (i = 0; i < nunits; ++i)
5759 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
5760 + ((i & 1) ? nunits : 0));
5762 else
5764 for (i = 0; i < nunits; ++i)
5765 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
5767 perm = gen_rtx_CONST_VECTOR (mode, v);
5769 return expand_vec_perm (mode, m1, m2, perm, target);
5772 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5773 pattern. */
5775 static void
5776 find_cc_set (rtx x, const_rtx pat, void *data)
5778 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
5779 && GET_CODE (pat) == SET)
5781 rtx *p_cc_reg = (rtx *) data;
5782 gcc_assert (!*p_cc_reg);
5783 *p_cc_reg = x;
5787 /* This is a helper function for the other atomic operations. This function
5788 emits a loop that contains SEQ that iterates until a compare-and-swap
5789 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5790 a set of instructions that takes a value from OLD_REG as an input and
5791 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5792 set to the current contents of MEM. After SEQ, a compare-and-swap will
5793 attempt to update MEM with NEW_REG. The function returns true when the
5794 loop was generated successfully. */
5796 static bool
5797 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
5799 machine_mode mode = GET_MODE (mem);
5800 rtx_code_label *label;
5801 rtx cmp_reg, success, oldval;
5803 /* The loop we want to generate looks like
5805 cmp_reg = mem;
5806 label:
5807 old_reg = cmp_reg;
5808 seq;
5809 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5810 if (success)
5811 goto label;
5813 Note that we only do the plain load from memory once. Subsequent
5814 iterations use the value loaded by the compare-and-swap pattern. */
5816 label = gen_label_rtx ();
5817 cmp_reg = gen_reg_rtx (mode);
5819 emit_move_insn (cmp_reg, mem);
5820 emit_label (label);
5821 emit_move_insn (old_reg, cmp_reg);
5822 if (seq)
5823 emit_insn (seq);
5825 success = NULL_RTX;
5826 oldval = cmp_reg;
5827 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
5828 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
5829 MEMMODEL_RELAXED))
5830 return false;
5832 if (oldval != cmp_reg)
5833 emit_move_insn (cmp_reg, oldval);
5835 /* Mark this jump predicted not taken. */
5836 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
5837 GET_MODE (success), 1, label, 0);
5838 return true;
5842 /* This function tries to emit an atomic_exchange intruction. VAL is written
5843 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
5844 using TARGET if possible. */
5846 static rtx
5847 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
5849 machine_mode mode = GET_MODE (mem);
5850 enum insn_code icode;
5852 /* If the target supports the exchange directly, great. */
5853 icode = direct_optab_handler (atomic_exchange_optab, mode);
5854 if (icode != CODE_FOR_nothing)
5856 struct expand_operand ops[4];
5858 create_output_operand (&ops[0], target, mode);
5859 create_fixed_operand (&ops[1], mem);
5860 create_input_operand (&ops[2], val, mode);
5861 create_integer_operand (&ops[3], model);
5862 if (maybe_expand_insn (icode, 4, ops))
5863 return ops[0].value;
5866 return NULL_RTX;
5869 /* This function tries to implement an atomic exchange operation using
5870 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
5871 The previous contents of *MEM are returned, using TARGET if possible.
5872 Since this instructionn is an acquire barrier only, stronger memory
5873 models may require additional barriers to be emitted. */
5875 static rtx
5876 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
5877 enum memmodel model)
5879 machine_mode mode = GET_MODE (mem);
5880 enum insn_code icode;
5881 rtx_insn *last_insn = get_last_insn ();
5883 icode = optab_handler (sync_lock_test_and_set_optab, mode);
5885 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
5886 exists, and the memory model is stronger than acquire, add a release
5887 barrier before the instruction. */
5889 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
5890 expand_mem_thread_fence (model);
5892 if (icode != CODE_FOR_nothing)
5894 struct expand_operand ops[3];
5895 create_output_operand (&ops[0], target, mode);
5896 create_fixed_operand (&ops[1], mem);
5897 create_input_operand (&ops[2], val, mode);
5898 if (maybe_expand_insn (icode, 3, ops))
5899 return ops[0].value;
5902 /* If an external test-and-set libcall is provided, use that instead of
5903 any external compare-and-swap that we might get from the compare-and-
5904 swap-loop expansion later. */
5905 if (!can_compare_and_swap_p (mode, false))
5907 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
5908 if (libfunc != NULL)
5910 rtx addr;
5912 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
5913 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
5914 mode, 2, addr, ptr_mode,
5915 val, mode);
5919 /* If the test_and_set can't be emitted, eliminate any barrier that might
5920 have been emitted. */
5921 delete_insns_since (last_insn);
5922 return NULL_RTX;
5925 /* This function tries to implement an atomic exchange operation using a
5926 compare_and_swap loop. VAL is written to *MEM. The previous contents of
5927 *MEM are returned, using TARGET if possible. No memory model is required
5928 since a compare_and_swap loop is seq-cst. */
5930 static rtx
5931 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
5933 machine_mode mode = GET_MODE (mem);
5935 if (can_compare_and_swap_p (mode, true))
5937 if (!target || !register_operand (target, mode))
5938 target = gen_reg_rtx (mode);
5939 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
5940 return target;
5943 return NULL_RTX;
5946 /* This function tries to implement an atomic test-and-set operation
5947 using the atomic_test_and_set instruction pattern. A boolean value
5948 is returned from the operation, using TARGET if possible. */
5950 static rtx
5951 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
5953 machine_mode pat_bool_mode;
5954 struct expand_operand ops[3];
5956 if (!targetm.have_atomic_test_and_set ())
5957 return NULL_RTX;
5959 /* While we always get QImode from __atomic_test_and_set, we get
5960 other memory modes from __sync_lock_test_and_set. Note that we
5961 use no endian adjustment here. This matches the 4.6 behavior
5962 in the Sparc backend. */
5963 enum insn_code icode = targetm.code_for_atomic_test_and_set;
5964 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
5965 if (GET_MODE (mem) != QImode)
5966 mem = adjust_address_nv (mem, QImode, 0);
5968 pat_bool_mode = insn_data[icode].operand[0].mode;
5969 create_output_operand (&ops[0], target, pat_bool_mode);
5970 create_fixed_operand (&ops[1], mem);
5971 create_integer_operand (&ops[2], model);
5973 if (maybe_expand_insn (icode, 3, ops))
5974 return ops[0].value;
5975 return NULL_RTX;
5978 /* This function expands the legacy _sync_lock test_and_set operation which is
5979 generally an atomic exchange. Some limited targets only allow the
5980 constant 1 to be stored. This is an ACQUIRE operation.
5982 TARGET is an optional place to stick the return value.
5983 MEM is where VAL is stored. */
5986 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
5988 rtx ret;
5990 /* Try an atomic_exchange first. */
5991 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
5992 if (ret)
5993 return ret;
5995 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
5996 MEMMODEL_SYNC_ACQUIRE);
5997 if (ret)
5998 return ret;
6000 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6001 if (ret)
6002 return ret;
6004 /* If there are no other options, try atomic_test_and_set if the value
6005 being stored is 1. */
6006 if (val == const1_rtx)
6007 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
6009 return ret;
6012 /* This function expands the atomic test_and_set operation:
6013 atomically store a boolean TRUE into MEM and return the previous value.
6015 MEMMODEL is the memory model variant to use.
6016 TARGET is an optional place to stick the return value. */
6019 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6021 machine_mode mode = GET_MODE (mem);
6022 rtx ret, trueval, subtarget;
6024 ret = maybe_emit_atomic_test_and_set (target, mem, model);
6025 if (ret)
6026 return ret;
6028 /* Be binary compatible with non-default settings of trueval, and different
6029 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6030 another only has atomic-exchange. */
6031 if (targetm.atomic_test_and_set_trueval == 1)
6033 trueval = const1_rtx;
6034 subtarget = target ? target : gen_reg_rtx (mode);
6036 else
6038 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6039 subtarget = gen_reg_rtx (mode);
6042 /* Try the atomic-exchange optab... */
6043 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6045 /* ... then an atomic-compare-and-swap loop ... */
6046 if (!ret)
6047 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6049 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6050 if (!ret)
6051 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6053 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6054 things with the value 1. Thus we try again without trueval. */
6055 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6056 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6058 /* Failing all else, assume a single threaded environment and simply
6059 perform the operation. */
6060 if (!ret)
6062 /* If the result is ignored skip the move to target. */
6063 if (subtarget != const0_rtx)
6064 emit_move_insn (subtarget, mem);
6066 emit_move_insn (mem, trueval);
6067 ret = subtarget;
6070 /* Recall that have to return a boolean value; rectify if trueval
6071 is not exactly one. */
6072 if (targetm.atomic_test_and_set_trueval != 1)
6073 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6075 return ret;
6078 /* This function expands the atomic exchange operation:
6079 atomically store VAL in MEM and return the previous value in MEM.
6081 MEMMODEL is the memory model variant to use.
6082 TARGET is an optional place to stick the return value. */
6085 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6087 rtx ret;
6089 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6091 /* Next try a compare-and-swap loop for the exchange. */
6092 if (!ret)
6093 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6095 return ret;
6098 /* This function expands the atomic compare exchange operation:
6100 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6101 *PTARGET_OVAL is an optional place to store the old value from memory.
6102 Both target parameters may be NULL or const0_rtx to indicate that we do
6103 not care about that return value. Both target parameters are updated on
6104 success to the actual location of the corresponding result.
6106 MEMMODEL is the memory model variant to use.
6108 The return value of the function is true for success. */
6110 bool
6111 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6112 rtx mem, rtx expected, rtx desired,
6113 bool is_weak, enum memmodel succ_model,
6114 enum memmodel fail_model)
6116 machine_mode mode = GET_MODE (mem);
6117 struct expand_operand ops[8];
6118 enum insn_code icode;
6119 rtx target_oval, target_bool = NULL_RTX;
6120 rtx libfunc;
6122 /* Load expected into a register for the compare and swap. */
6123 if (MEM_P (expected))
6124 expected = copy_to_reg (expected);
6126 /* Make sure we always have some place to put the return oldval.
6127 Further, make sure that place is distinct from the input expected,
6128 just in case we need that path down below. */
6129 if (ptarget_oval && *ptarget_oval == const0_rtx)
6130 ptarget_oval = NULL;
6132 if (ptarget_oval == NULL
6133 || (target_oval = *ptarget_oval) == NULL
6134 || reg_overlap_mentioned_p (expected, target_oval))
6135 target_oval = gen_reg_rtx (mode);
6137 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6138 if (icode != CODE_FOR_nothing)
6140 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6142 if (ptarget_bool && *ptarget_bool == const0_rtx)
6143 ptarget_bool = NULL;
6145 /* Make sure we always have a place for the bool operand. */
6146 if (ptarget_bool == NULL
6147 || (target_bool = *ptarget_bool) == NULL
6148 || GET_MODE (target_bool) != bool_mode)
6149 target_bool = gen_reg_rtx (bool_mode);
6151 /* Emit the compare_and_swap. */
6152 create_output_operand (&ops[0], target_bool, bool_mode);
6153 create_output_operand (&ops[1], target_oval, mode);
6154 create_fixed_operand (&ops[2], mem);
6155 create_input_operand (&ops[3], expected, mode);
6156 create_input_operand (&ops[4], desired, mode);
6157 create_integer_operand (&ops[5], is_weak);
6158 create_integer_operand (&ops[6], succ_model);
6159 create_integer_operand (&ops[7], fail_model);
6160 if (maybe_expand_insn (icode, 8, ops))
6162 /* Return success/failure. */
6163 target_bool = ops[0].value;
6164 target_oval = ops[1].value;
6165 goto success;
6169 /* Otherwise fall back to the original __sync_val_compare_and_swap
6170 which is always seq-cst. */
6171 icode = optab_handler (sync_compare_and_swap_optab, mode);
6172 if (icode != CODE_FOR_nothing)
6174 rtx cc_reg;
6176 create_output_operand (&ops[0], target_oval, mode);
6177 create_fixed_operand (&ops[1], mem);
6178 create_input_operand (&ops[2], expected, mode);
6179 create_input_operand (&ops[3], desired, mode);
6180 if (!maybe_expand_insn (icode, 4, ops))
6181 return false;
6183 target_oval = ops[0].value;
6185 /* If the caller isn't interested in the boolean return value,
6186 skip the computation of it. */
6187 if (ptarget_bool == NULL)
6188 goto success;
6190 /* Otherwise, work out if the compare-and-swap succeeded. */
6191 cc_reg = NULL_RTX;
6192 if (have_insn_for (COMPARE, CCmode))
6193 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6194 if (cc_reg)
6196 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6197 const0_rtx, VOIDmode, 0, 1);
6198 goto success;
6200 goto success_bool_from_val;
6203 /* Also check for library support for __sync_val_compare_and_swap. */
6204 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6205 if (libfunc != NULL)
6207 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6208 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6209 mode, 3, addr, ptr_mode,
6210 expected, mode, desired, mode);
6211 emit_move_insn (target_oval, target);
6213 /* Compute the boolean return value only if requested. */
6214 if (ptarget_bool)
6215 goto success_bool_from_val;
6216 else
6217 goto success;
6220 /* Failure. */
6221 return false;
6223 success_bool_from_val:
6224 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6225 expected, VOIDmode, 1, 1);
6226 success:
6227 /* Make sure that the oval output winds up where the caller asked. */
6228 if (ptarget_oval)
6229 *ptarget_oval = target_oval;
6230 if (ptarget_bool)
6231 *ptarget_bool = target_bool;
6232 return true;
6235 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
6237 static void
6238 expand_asm_memory_barrier (void)
6240 rtx asm_op, clob;
6242 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
6243 rtvec_alloc (0), rtvec_alloc (0),
6244 rtvec_alloc (0), UNKNOWN_LOCATION);
6245 MEM_VOLATILE_P (asm_op) = 1;
6247 clob = gen_rtx_SCRATCH (VOIDmode);
6248 clob = gen_rtx_MEM (BLKmode, clob);
6249 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6251 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6254 /* This routine will either emit the mem_thread_fence pattern or issue a
6255 sync_synchronize to generate a fence for memory model MEMMODEL. */
6257 void
6258 expand_mem_thread_fence (enum memmodel model)
6260 if (targetm.have_mem_thread_fence ())
6261 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6262 else if (!is_mm_relaxed (model))
6264 if (targetm.have_memory_barrier ())
6265 emit_insn (targetm.gen_memory_barrier ());
6266 else if (synchronize_libfunc != NULL_RTX)
6267 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
6268 else
6269 expand_asm_memory_barrier ();
6273 /* This routine will either emit the mem_signal_fence pattern or issue a
6274 sync_synchronize to generate a fence for memory model MEMMODEL. */
6276 void
6277 expand_mem_signal_fence (enum memmodel model)
6279 if (targetm.have_mem_signal_fence ())
6280 emit_insn (targetm.gen_mem_signal_fence (GEN_INT (model)));
6281 else if (!is_mm_relaxed (model))
6283 /* By default targets are coherent between a thread and the signal
6284 handler running on the same thread. Thus this really becomes a
6285 compiler barrier, in that stores must not be sunk past
6286 (or raised above) a given point. */
6287 expand_asm_memory_barrier ();
6291 /* This function expands the atomic load operation:
6292 return the atomically loaded value in MEM.
6294 MEMMODEL is the memory model variant to use.
6295 TARGET is an option place to stick the return value. */
6298 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6300 machine_mode mode = GET_MODE (mem);
6301 enum insn_code icode;
6303 /* If the target supports the load directly, great. */
6304 icode = direct_optab_handler (atomic_load_optab, mode);
6305 if (icode != CODE_FOR_nothing)
6307 struct expand_operand ops[3];
6309 create_output_operand (&ops[0], target, mode);
6310 create_fixed_operand (&ops[1], mem);
6311 create_integer_operand (&ops[2], model);
6312 if (maybe_expand_insn (icode, 3, ops))
6313 return ops[0].value;
6316 /* If the size of the object is greater than word size on this target,
6317 then we assume that a load will not be atomic. */
6318 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
6320 /* Issue val = compare_and_swap (mem, 0, 0).
6321 This may cause the occasional harmless store of 0 when the value is
6322 already 0, but it seems to be OK according to the standards guys. */
6323 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
6324 const0_rtx, false, model, model))
6325 return target;
6326 else
6327 /* Otherwise there is no atomic load, leave the library call. */
6328 return NULL_RTX;
6331 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6332 if (!target || target == const0_rtx)
6333 target = gen_reg_rtx (mode);
6335 /* For SEQ_CST, emit a barrier before the load. */
6336 if (is_mm_seq_cst (model))
6337 expand_mem_thread_fence (model);
6339 emit_move_insn (target, mem);
6341 /* Emit the appropriate barrier after the load. */
6342 expand_mem_thread_fence (model);
6344 return target;
6347 /* This function expands the atomic store operation:
6348 Atomically store VAL in MEM.
6349 MEMMODEL is the memory model variant to use.
6350 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6351 function returns const0_rtx if a pattern was emitted. */
6354 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6356 machine_mode mode = GET_MODE (mem);
6357 enum insn_code icode;
6358 struct expand_operand ops[3];
6360 /* If the target supports the store directly, great. */
6361 icode = direct_optab_handler (atomic_store_optab, mode);
6362 if (icode != CODE_FOR_nothing)
6364 create_fixed_operand (&ops[0], mem);
6365 create_input_operand (&ops[1], val, mode);
6366 create_integer_operand (&ops[2], model);
6367 if (maybe_expand_insn (icode, 3, ops))
6368 return const0_rtx;
6371 /* If using __sync_lock_release is a viable alternative, try it. */
6372 if (use_release)
6374 icode = direct_optab_handler (sync_lock_release_optab, mode);
6375 if (icode != CODE_FOR_nothing)
6377 create_fixed_operand (&ops[0], mem);
6378 create_input_operand (&ops[1], const0_rtx, mode);
6379 if (maybe_expand_insn (icode, 2, ops))
6381 /* lock_release is only a release barrier. */
6382 if (is_mm_seq_cst (model))
6383 expand_mem_thread_fence (model);
6384 return const0_rtx;
6389 /* If the size of the object is greater than word size on this target,
6390 a default store will not be atomic, Try a mem_exchange and throw away
6391 the result. If that doesn't work, don't do anything. */
6392 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
6394 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6395 if (!target)
6396 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
6397 if (target)
6398 return const0_rtx;
6399 else
6400 return NULL_RTX;
6403 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6404 expand_mem_thread_fence (model);
6406 emit_move_insn (mem, val);
6408 /* For SEQ_CST, also emit a barrier after the store. */
6409 if (is_mm_seq_cst (model))
6410 expand_mem_thread_fence (model);
6412 return const0_rtx;
6416 /* Structure containing the pointers and values required to process the
6417 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6419 struct atomic_op_functions
6421 direct_optab mem_fetch_before;
6422 direct_optab mem_fetch_after;
6423 direct_optab mem_no_result;
6424 optab fetch_before;
6425 optab fetch_after;
6426 direct_optab no_result;
6427 enum rtx_code reverse_code;
6431 /* Fill in structure pointed to by OP with the various optab entries for an
6432 operation of type CODE. */
6434 static void
6435 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6437 gcc_assert (op!= NULL);
6439 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6440 in the source code during compilation, and the optab entries are not
6441 computable until runtime. Fill in the values at runtime. */
6442 switch (code)
6444 case PLUS:
6445 op->mem_fetch_before = atomic_fetch_add_optab;
6446 op->mem_fetch_after = atomic_add_fetch_optab;
6447 op->mem_no_result = atomic_add_optab;
6448 op->fetch_before = sync_old_add_optab;
6449 op->fetch_after = sync_new_add_optab;
6450 op->no_result = sync_add_optab;
6451 op->reverse_code = MINUS;
6452 break;
6453 case MINUS:
6454 op->mem_fetch_before = atomic_fetch_sub_optab;
6455 op->mem_fetch_after = atomic_sub_fetch_optab;
6456 op->mem_no_result = atomic_sub_optab;
6457 op->fetch_before = sync_old_sub_optab;
6458 op->fetch_after = sync_new_sub_optab;
6459 op->no_result = sync_sub_optab;
6460 op->reverse_code = PLUS;
6461 break;
6462 case XOR:
6463 op->mem_fetch_before = atomic_fetch_xor_optab;
6464 op->mem_fetch_after = atomic_xor_fetch_optab;
6465 op->mem_no_result = atomic_xor_optab;
6466 op->fetch_before = sync_old_xor_optab;
6467 op->fetch_after = sync_new_xor_optab;
6468 op->no_result = sync_xor_optab;
6469 op->reverse_code = XOR;
6470 break;
6471 case AND:
6472 op->mem_fetch_before = atomic_fetch_and_optab;
6473 op->mem_fetch_after = atomic_and_fetch_optab;
6474 op->mem_no_result = atomic_and_optab;
6475 op->fetch_before = sync_old_and_optab;
6476 op->fetch_after = sync_new_and_optab;
6477 op->no_result = sync_and_optab;
6478 op->reverse_code = UNKNOWN;
6479 break;
6480 case IOR:
6481 op->mem_fetch_before = atomic_fetch_or_optab;
6482 op->mem_fetch_after = atomic_or_fetch_optab;
6483 op->mem_no_result = atomic_or_optab;
6484 op->fetch_before = sync_old_ior_optab;
6485 op->fetch_after = sync_new_ior_optab;
6486 op->no_result = sync_ior_optab;
6487 op->reverse_code = UNKNOWN;
6488 break;
6489 case NOT:
6490 op->mem_fetch_before = atomic_fetch_nand_optab;
6491 op->mem_fetch_after = atomic_nand_fetch_optab;
6492 op->mem_no_result = atomic_nand_optab;
6493 op->fetch_before = sync_old_nand_optab;
6494 op->fetch_after = sync_new_nand_optab;
6495 op->no_result = sync_nand_optab;
6496 op->reverse_code = UNKNOWN;
6497 break;
6498 default:
6499 gcc_unreachable ();
6503 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6504 using memory order MODEL. If AFTER is true the operation needs to return
6505 the value of *MEM after the operation, otherwise the previous value.
6506 TARGET is an optional place to place the result. The result is unused if
6507 it is const0_rtx.
6508 Return the result if there is a better sequence, otherwise NULL_RTX. */
6510 static rtx
6511 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6512 enum memmodel model, bool after)
6514 /* If the value is prefetched, or not used, it may be possible to replace
6515 the sequence with a native exchange operation. */
6516 if (!after || target == const0_rtx)
6518 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6519 if (code == AND && val == const0_rtx)
6521 if (target == const0_rtx)
6522 target = gen_reg_rtx (GET_MODE (mem));
6523 return maybe_emit_atomic_exchange (target, mem, val, model);
6526 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6527 if (code == IOR && val == constm1_rtx)
6529 if (target == const0_rtx)
6530 target = gen_reg_rtx (GET_MODE (mem));
6531 return maybe_emit_atomic_exchange (target, mem, val, model);
6535 return NULL_RTX;
6538 /* Try to emit an instruction for a specific operation varaition.
6539 OPTAB contains the OP functions.
6540 TARGET is an optional place to return the result. const0_rtx means unused.
6541 MEM is the memory location to operate on.
6542 VAL is the value to use in the operation.
6543 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6544 MODEL is the memory model, if used.
6545 AFTER is true if the returned result is the value after the operation. */
6547 static rtx
6548 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6549 rtx val, bool use_memmodel, enum memmodel model, bool after)
6551 machine_mode mode = GET_MODE (mem);
6552 struct expand_operand ops[4];
6553 enum insn_code icode;
6554 int op_counter = 0;
6555 int num_ops;
6557 /* Check to see if there is a result returned. */
6558 if (target == const0_rtx)
6560 if (use_memmodel)
6562 icode = direct_optab_handler (optab->mem_no_result, mode);
6563 create_integer_operand (&ops[2], model);
6564 num_ops = 3;
6566 else
6568 icode = direct_optab_handler (optab->no_result, mode);
6569 num_ops = 2;
6572 /* Otherwise, we need to generate a result. */
6573 else
6575 if (use_memmodel)
6577 icode = direct_optab_handler (after ? optab->mem_fetch_after
6578 : optab->mem_fetch_before, mode);
6579 create_integer_operand (&ops[3], model);
6580 num_ops = 4;
6582 else
6584 icode = optab_handler (after ? optab->fetch_after
6585 : optab->fetch_before, mode);
6586 num_ops = 3;
6588 create_output_operand (&ops[op_counter++], target, mode);
6590 if (icode == CODE_FOR_nothing)
6591 return NULL_RTX;
6593 create_fixed_operand (&ops[op_counter++], mem);
6594 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6595 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6597 if (maybe_expand_insn (icode, num_ops, ops))
6598 return (target == const0_rtx ? const0_rtx : ops[0].value);
6600 return NULL_RTX;
6604 /* This function expands an atomic fetch_OP or OP_fetch operation:
6605 TARGET is an option place to stick the return value. const0_rtx indicates
6606 the result is unused.
6607 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6608 CODE is the operation being performed (OP)
6609 MEMMODEL is the memory model variant to use.
6610 AFTER is true to return the result of the operation (OP_fetch).
6611 AFTER is false to return the value before the operation (fetch_OP).
6613 This function will *only* generate instructions if there is a direct
6614 optab. No compare and swap loops or libcalls will be generated. */
6616 static rtx
6617 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6618 enum rtx_code code, enum memmodel model,
6619 bool after)
6621 machine_mode mode = GET_MODE (mem);
6622 struct atomic_op_functions optab;
6623 rtx result;
6624 bool unused_result = (target == const0_rtx);
6626 get_atomic_op_for_code (&optab, code);
6628 /* Check to see if there are any better instructions. */
6629 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6630 if (result)
6631 return result;
6633 /* Check for the case where the result isn't used and try those patterns. */
6634 if (unused_result)
6636 /* Try the memory model variant first. */
6637 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6638 if (result)
6639 return result;
6641 /* Next try the old style withuot a memory model. */
6642 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6643 if (result)
6644 return result;
6646 /* There is no no-result pattern, so try patterns with a result. */
6647 target = NULL_RTX;
6650 /* Try the __atomic version. */
6651 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6652 if (result)
6653 return result;
6655 /* Try the older __sync version. */
6656 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6657 if (result)
6658 return result;
6660 /* If the fetch value can be calculated from the other variation of fetch,
6661 try that operation. */
6662 if (after || unused_result || optab.reverse_code != UNKNOWN)
6664 /* Try the __atomic version, then the older __sync version. */
6665 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6666 if (!result)
6667 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6669 if (result)
6671 /* If the result isn't used, no need to do compensation code. */
6672 if (unused_result)
6673 return result;
6675 /* Issue compensation code. Fetch_after == fetch_before OP val.
6676 Fetch_before == after REVERSE_OP val. */
6677 if (!after)
6678 code = optab.reverse_code;
6679 if (code == NOT)
6681 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6682 true, OPTAB_LIB_WIDEN);
6683 result = expand_simple_unop (mode, NOT, result, target, true);
6685 else
6686 result = expand_simple_binop (mode, code, result, val, target,
6687 true, OPTAB_LIB_WIDEN);
6688 return result;
6692 /* No direct opcode can be generated. */
6693 return NULL_RTX;
6698 /* This function expands an atomic fetch_OP or OP_fetch operation:
6699 TARGET is an option place to stick the return value. const0_rtx indicates
6700 the result is unused.
6701 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6702 CODE is the operation being performed (OP)
6703 MEMMODEL is the memory model variant to use.
6704 AFTER is true to return the result of the operation (OP_fetch).
6705 AFTER is false to return the value before the operation (fetch_OP). */
6707 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6708 enum memmodel model, bool after)
6710 machine_mode mode = GET_MODE (mem);
6711 rtx result;
6712 bool unused_result = (target == const0_rtx);
6714 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
6715 after);
6717 if (result)
6718 return result;
6720 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6721 if (code == PLUS || code == MINUS)
6723 rtx tmp;
6724 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
6726 start_sequence ();
6727 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
6728 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
6729 model, after);
6730 if (result)
6732 /* PLUS worked so emit the insns and return. */
6733 tmp = get_insns ();
6734 end_sequence ();
6735 emit_insn (tmp);
6736 return result;
6739 /* PLUS did not work, so throw away the negation code and continue. */
6740 end_sequence ();
6743 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6744 if (!can_compare_and_swap_p (mode, false))
6746 rtx libfunc;
6747 bool fixup = false;
6748 enum rtx_code orig_code = code;
6749 struct atomic_op_functions optab;
6751 get_atomic_op_for_code (&optab, code);
6752 libfunc = optab_libfunc (after ? optab.fetch_after
6753 : optab.fetch_before, mode);
6754 if (libfunc == NULL
6755 && (after || unused_result || optab.reverse_code != UNKNOWN))
6757 fixup = true;
6758 if (!after)
6759 code = optab.reverse_code;
6760 libfunc = optab_libfunc (after ? optab.fetch_before
6761 : optab.fetch_after, mode);
6763 if (libfunc != NULL)
6765 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6766 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
6767 2, addr, ptr_mode, val, mode);
6769 if (!unused_result && fixup)
6770 result = expand_simple_binop (mode, code, result, val, target,
6771 true, OPTAB_LIB_WIDEN);
6772 return result;
6775 /* We need the original code for any further attempts. */
6776 code = orig_code;
6779 /* If nothing else has succeeded, default to a compare and swap loop. */
6780 if (can_compare_and_swap_p (mode, true))
6782 rtx_insn *insn;
6783 rtx t0 = gen_reg_rtx (mode), t1;
6785 start_sequence ();
6787 /* If the result is used, get a register for it. */
6788 if (!unused_result)
6790 if (!target || !register_operand (target, mode))
6791 target = gen_reg_rtx (mode);
6792 /* If fetch_before, copy the value now. */
6793 if (!after)
6794 emit_move_insn (target, t0);
6796 else
6797 target = const0_rtx;
6799 t1 = t0;
6800 if (code == NOT)
6802 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
6803 true, OPTAB_LIB_WIDEN);
6804 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
6806 else
6807 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
6808 OPTAB_LIB_WIDEN);
6810 /* For after, copy the value now. */
6811 if (!unused_result && after)
6812 emit_move_insn (target, t1);
6813 insn = get_insns ();
6814 end_sequence ();
6816 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
6817 return target;
6820 return NULL_RTX;
6823 /* Return true if OPERAND is suitable for operand number OPNO of
6824 instruction ICODE. */
6826 bool
6827 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
6829 return (!insn_data[(int) icode].operand[opno].predicate
6830 || (insn_data[(int) icode].operand[opno].predicate
6831 (operand, insn_data[(int) icode].operand[opno].mode)));
6834 /* TARGET is a target of a multiword operation that we are going to
6835 implement as a series of word-mode operations. Return true if
6836 TARGET is suitable for this purpose. */
6838 bool
6839 valid_multiword_target_p (rtx target)
6841 machine_mode mode;
6842 int i;
6844 mode = GET_MODE (target);
6845 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
6846 if (!validate_subreg (word_mode, mode, target, i))
6847 return false;
6848 return true;
6851 /* Like maybe_legitimize_operand, but do not change the code of the
6852 current rtx value. */
6854 static bool
6855 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
6856 struct expand_operand *op)
6858 /* See if the operand matches in its current form. */
6859 if (insn_operand_matches (icode, opno, op->value))
6860 return true;
6862 /* If the operand is a memory whose address has no side effects,
6863 try forcing the address into a non-virtual pseudo register.
6864 The check for side effects is important because copy_to_mode_reg
6865 cannot handle things like auto-modified addresses. */
6866 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
6868 rtx addr, mem;
6870 mem = op->value;
6871 addr = XEXP (mem, 0);
6872 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
6873 && !side_effects_p (addr))
6875 rtx_insn *last;
6876 machine_mode mode;
6878 last = get_last_insn ();
6879 mode = get_address_mode (mem);
6880 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
6881 if (insn_operand_matches (icode, opno, mem))
6883 op->value = mem;
6884 return true;
6886 delete_insns_since (last);
6890 return false;
6893 /* Try to make OP match operand OPNO of instruction ICODE. Return true
6894 on success, storing the new operand value back in OP. */
6896 static bool
6897 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
6898 struct expand_operand *op)
6900 machine_mode mode, imode;
6901 bool old_volatile_ok, result;
6903 mode = op->mode;
6904 switch (op->type)
6906 case EXPAND_FIXED:
6907 old_volatile_ok = volatile_ok;
6908 volatile_ok = true;
6909 result = maybe_legitimize_operand_same_code (icode, opno, op);
6910 volatile_ok = old_volatile_ok;
6911 return result;
6913 case EXPAND_OUTPUT:
6914 gcc_assert (mode != VOIDmode);
6915 if (op->value
6916 && op->value != const0_rtx
6917 && GET_MODE (op->value) == mode
6918 && maybe_legitimize_operand_same_code (icode, opno, op))
6919 return true;
6921 op->value = gen_reg_rtx (mode);
6922 break;
6924 case EXPAND_INPUT:
6925 input:
6926 gcc_assert (mode != VOIDmode);
6927 gcc_assert (GET_MODE (op->value) == VOIDmode
6928 || GET_MODE (op->value) == mode);
6929 if (maybe_legitimize_operand_same_code (icode, opno, op))
6930 return true;
6932 op->value = copy_to_mode_reg (mode, op->value);
6933 break;
6935 case EXPAND_CONVERT_TO:
6936 gcc_assert (mode != VOIDmode);
6937 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
6938 goto input;
6940 case EXPAND_CONVERT_FROM:
6941 if (GET_MODE (op->value) != VOIDmode)
6942 mode = GET_MODE (op->value);
6943 else
6944 /* The caller must tell us what mode this value has. */
6945 gcc_assert (mode != VOIDmode);
6947 imode = insn_data[(int) icode].operand[opno].mode;
6948 if (imode != VOIDmode && imode != mode)
6950 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
6951 mode = imode;
6953 goto input;
6955 case EXPAND_ADDRESS:
6956 gcc_assert (mode != VOIDmode);
6957 op->value = convert_memory_address (mode, op->value);
6958 goto input;
6960 case EXPAND_INTEGER:
6961 mode = insn_data[(int) icode].operand[opno].mode;
6962 if (mode != VOIDmode && const_int_operand (op->value, mode))
6963 goto input;
6964 break;
6966 return insn_operand_matches (icode, opno, op->value);
6969 /* Make OP describe an input operand that should have the same value
6970 as VALUE, after any mode conversion that the target might request.
6971 TYPE is the type of VALUE. */
6973 void
6974 create_convert_operand_from_type (struct expand_operand *op,
6975 rtx value, tree type)
6977 create_convert_operand_from (op, value, TYPE_MODE (type),
6978 TYPE_UNSIGNED (type));
6981 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
6982 of instruction ICODE. Return true on success, leaving the new operand
6983 values in the OPS themselves. Emit no code on failure. */
6985 bool
6986 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
6987 unsigned int nops, struct expand_operand *ops)
6989 rtx_insn *last;
6990 unsigned int i;
6992 last = get_last_insn ();
6993 for (i = 0; i < nops; i++)
6994 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
6996 delete_insns_since (last);
6997 return false;
6999 return true;
7002 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7003 as its operands. Return the instruction pattern on success,
7004 and emit any necessary set-up code. Return null and emit no
7005 code on failure. */
7007 rtx_insn *
7008 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7009 struct expand_operand *ops)
7011 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
7012 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7013 return NULL;
7015 switch (nops)
7017 case 1:
7018 return GEN_FCN (icode) (ops[0].value);
7019 case 2:
7020 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7021 case 3:
7022 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7023 case 4:
7024 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7025 ops[3].value);
7026 case 5:
7027 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7028 ops[3].value, ops[4].value);
7029 case 6:
7030 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7031 ops[3].value, ops[4].value, ops[5].value);
7032 case 7:
7033 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7034 ops[3].value, ops[4].value, ops[5].value,
7035 ops[6].value);
7036 case 8:
7037 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7038 ops[3].value, ops[4].value, ops[5].value,
7039 ops[6].value, ops[7].value);
7040 case 9:
7041 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7042 ops[3].value, ops[4].value, ops[5].value,
7043 ops[6].value, ops[7].value, ops[8].value);
7045 gcc_unreachable ();
7048 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7049 as its operands. Return true on success and emit no code on failure. */
7051 bool
7052 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7053 struct expand_operand *ops)
7055 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7056 if (pat)
7058 emit_insn (pat);
7059 return true;
7061 return false;
7064 /* Like maybe_expand_insn, but for jumps. */
7066 bool
7067 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7068 struct expand_operand *ops)
7070 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7071 if (pat)
7073 emit_jump_insn (pat);
7074 return true;
7076 return false;
7079 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7080 as its operands. */
7082 void
7083 expand_insn (enum insn_code icode, unsigned int nops,
7084 struct expand_operand *ops)
7086 if (!maybe_expand_insn (icode, nops, ops))
7087 gcc_unreachable ();
7090 /* Like expand_insn, but for jumps. */
7092 void
7093 expand_jump_insn (enum insn_code icode, unsigned int nops,
7094 struct expand_operand *ops)
7096 if (!maybe_expand_jump_insn (icode, nops, ops))
7097 gcc_unreachable ();