* gcc-interface/trans.c (gnat_to_gnu) <N_Op_Add>: Adjust comment.
[official-gcc.git] / contrib / analyze_brprob.py
blobc083d2bffb0a2eb7f67dbb1eef6f7580b7371f52
1 #!/usr/bin/env python3
3 # Script to analyze results of our branch prediction heuristics
5 # This file is part of GCC.
7 # GCC is free software; you can redistribute it and/or modify it under
8 # the terms of the GNU General Public License as published by the Free
9 # Software Foundation; either version 3, or (at your option) any later
10 # version.
12 # GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 # WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 # for more details.
17 # You should have received a copy of the GNU General Public License
18 # along with GCC; see the file COPYING3. If not see
19 # <http://www.gnu.org/licenses/>. */
23 # This script is used to calculate two basic properties of the branch prediction
24 # heuristics - coverage and hitrate. Coverage is number of executions
25 # of a given branch matched by the heuristics and hitrate is probability
26 # that once branch is predicted as taken it is really taken.
28 # These values are useful to determine the quality of given heuristics.
29 # Hitrate may be directly used in predict.def.
31 # Usage:
32 # Step 1: Compile and profile your program. You need to use -fprofile-generate
33 # flag to get the profiles.
34 # Step 2: Make a reference run of the intrumented application.
35 # Step 3: Compile the program with collected profile and dump IPA profiles
36 # (-fprofile-use -fdump-ipa-profile-details)
37 # Step 4: Collect all generated dump files:
38 # find . -name '*.profile' | xargs cat > dump_file
39 # Step 5: Run the script:
40 # ./analyze_brprob.py dump_file
41 # and read results. Basically the following table is printed:
43 # HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
44 # early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
45 # guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
46 # call 18 1.4% 31.95% / 69.95% 51880179 0.2%
47 # loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
48 # opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
49 # opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
50 # loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
51 # loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
52 # DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
53 # no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
54 # guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
55 # first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
56 # combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
59 # The heuristics called "first match" is a heuristics used by GCC branch
60 # prediction pass and it predicts 55.2% branches correctly. As you can,
61 # the heuristics has very good covertage (69.05%). On the other hand,
62 # "opcode values nonequal (on trees)" heuristics has good hirate, but poor
63 # coverage.
65 import sys
66 import os
67 import re
68 import argparse
70 from math import *
72 def percentage(a, b):
73 return 100.0 * a / b
75 def average(values):
76 return 1.0 * sum(values) / len(values)
78 def average_cutoff(values, cut):
79 l = len(values)
80 skip = floor(l * cut / 2)
81 if skip > 0:
82 values.sort()
83 values = values[skip:-skip]
84 return average(values)
86 def median(values):
87 values.sort()
88 return values[int(len(values) / 2)]
90 class Summary:
91 def __init__(self, name):
92 self.name = name
93 self.branches = 0
94 self.count = 0
95 self.hits = 0
96 self.fits = 0
98 def get_hitrate(self):
99 return self.hits / self.count
101 def count_formatted(self):
102 v = self.count
103 for unit in ['','K','M','G','T','P','E','Z']:
104 if v < 1000:
105 return "%3.2f%s" % (v, unit)
106 v /= 1000.0
107 return "%.1f%s" % (v, 'Y')
109 class Profile:
110 def __init__(self, filename):
111 self.filename = filename
112 self.heuristics = {}
113 self.niter_vector = []
115 def add(self, name, prediction, count, hits):
116 if not name in self.heuristics:
117 self.heuristics[name] = Summary(name)
119 s = self.heuristics[name]
120 s.branches += 1
121 s.count += count
122 if prediction < 50:
123 hits = count - hits
124 s.hits += hits
125 s.fits += max(hits, count - hits)
127 def add_loop_niter(self, niter):
128 if niter > 0:
129 self.niter_vector.append(niter)
131 def branches_max(self):
132 return max([v.branches for k, v in self.heuristics.items()])
134 def count_max(self):
135 return max([v.count for k, v in self.heuristics.items()])
137 def dump(self, sorting):
138 sorter = lambda x: x[1].branches
139 if sorting == 'hitrate':
140 sorter = lambda x: x[1].get_hitrate()
141 elif sorting == 'coverage':
142 sorter = lambda x: x[1].count
144 print('%-40s %8s %6s %-16s %14s %8s %6s' % ('HEURISTICS', 'BRANCHES', '(REL)',
145 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
146 for (k, v) in sorted(self.heuristics.items(), key = sorter):
147 print('%-40s %8i %5.1f%% %6.2f%% / %6.2f%% %14i %8s %5.1f%%' %
148 (k, v.branches, percentage(v.branches, self.branches_max ()),
149 percentage(v.hits, v.count), percentage(v.fits, v.count),
150 v.count, v.count_formatted(), percentage(v.count, self.count_max()) ))
152 if len(self.niter_vector) > 0:
153 print ('\nLoop count: %d' % len(self.niter_vector)),
154 print(' avg. # of iter: %.2f' % average(self.niter_vector))
155 print(' median # of iter: %.2f' % median(self.niter_vector))
156 for v in [1, 5, 10, 20, 30]:
157 cut = 0.01 * v
158 print(' avg. (%d%% cutoff) # of iter: %.2f' % (v, average_cutoff(self.niter_vector, cut)))
160 parser = argparse.ArgumentParser()
161 parser.add_argument('dump_file', metavar = 'dump_file', help = 'IPA profile dump file')
162 parser.add_argument('-s', '--sorting', dest = 'sorting', choices = ['branches', 'hitrate', 'coverage'], default = 'branches')
164 args = parser.parse_args()
166 profile = Profile(sys.argv[1])
167 r = re.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
168 loop_niter_str = ';; profile-based iteration count: '
169 for l in open(args.dump_file).readlines():
170 m = r.match(l)
171 if m != None and m.group(3) == None:
172 name = m.group(1)
173 prediction = float(m.group(4))
174 count = int(m.group(5))
175 hits = int(m.group(6))
177 profile.add(name, prediction, count, hits)
178 elif l.startswith(loop_niter_str):
179 v = int(l[len(loop_niter_str):])
180 profile.add_loop_niter(v)
182 profile.dump(args.sorting)