* testsuite/gcc.c-torture/execute/simd-3.c: New.
[official-gcc.git] / gcc / function.c
blob40186b04a995b49daee384482749a859a3c9b7c6
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "libfuncs.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "toplev.h"
59 #include "hashtab.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62 #include "integrate.h"
63 #include "langhooks.h"
65 #ifndef TRAMPOLINE_ALIGNMENT
66 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
67 #endif
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
113 int current_function_nothrow;
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero.
127 calls.c:emit_library_call_value_1 uses it to set up
128 post-instantiation libcalls. */
129 int virtuals_instantiated;
131 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
132 static GTY(()) int funcdef_no;
134 /* These variables hold pointers to functions to create and destroy
135 target specific, per-function data structures. */
136 struct machine_function * (*init_machine_status) PARAMS ((void));
138 /* The FUNCTION_DECL for an inline function currently being expanded. */
139 tree inline_function_decl;
141 /* The currently compiled function. */
142 struct function *cfun = 0;
144 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
145 static GTY(()) varray_type prologue;
146 static GTY(()) varray_type epilogue;
148 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
149 in this function. */
150 static GTY(()) varray_type sibcall_epilogue;
152 /* In order to evaluate some expressions, such as function calls returning
153 structures in memory, we need to temporarily allocate stack locations.
154 We record each allocated temporary in the following structure.
156 Associated with each temporary slot is a nesting level. When we pop up
157 one level, all temporaries associated with the previous level are freed.
158 Normally, all temporaries are freed after the execution of the statement
159 in which they were created. However, if we are inside a ({...}) grouping,
160 the result may be in a temporary and hence must be preserved. If the
161 result could be in a temporary, we preserve it if we can determine which
162 one it is in. If we cannot determine which temporary may contain the
163 result, all temporaries are preserved. A temporary is preserved by
164 pretending it was allocated at the previous nesting level.
166 Automatic variables are also assigned temporary slots, at the nesting
167 level where they are defined. They are marked a "kept" so that
168 free_temp_slots will not free them. */
170 struct temp_slot GTY(())
172 /* Points to next temporary slot. */
173 struct temp_slot *next;
174 /* The rtx to used to reference the slot. */
175 rtx slot;
176 /* The rtx used to represent the address if not the address of the
177 slot above. May be an EXPR_LIST if multiple addresses exist. */
178 rtx address;
179 /* The alignment (in bits) of the slot. */
180 unsigned int align;
181 /* The size, in units, of the slot. */
182 HOST_WIDE_INT size;
183 /* The type of the object in the slot, or zero if it doesn't correspond
184 to a type. We use this to determine whether a slot can be reused.
185 It can be reused if objects of the type of the new slot will always
186 conflict with objects of the type of the old slot. */
187 tree type;
188 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
189 tree rtl_expr;
190 /* Nonzero if this temporary is currently in use. */
191 char in_use;
192 /* Nonzero if this temporary has its address taken. */
193 char addr_taken;
194 /* Nesting level at which this slot is being used. */
195 int level;
196 /* Nonzero if this should survive a call to free_temp_slots. */
197 int keep;
198 /* The offset of the slot from the frame_pointer, including extra space
199 for alignment. This info is for combine_temp_slots. */
200 HOST_WIDE_INT base_offset;
201 /* The size of the slot, including extra space for alignment. This
202 info is for combine_temp_slots. */
203 HOST_WIDE_INT full_size;
206 /* This structure is used to record MEMs or pseudos used to replace VAR, any
207 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
208 maintain this list in case two operands of an insn were required to match;
209 in that case we must ensure we use the same replacement. */
211 struct fixup_replacement GTY(())
213 rtx old;
214 rtx new;
215 struct fixup_replacement *next;
218 struct insns_for_mem_entry
220 /* A MEM. */
221 rtx key;
222 /* These are the INSNs which reference the MEM. */
223 rtx insns;
226 /* Forward declarations. */
228 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
229 int, struct function *));
230 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
231 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
232 enum machine_mode, enum machine_mode,
233 int, unsigned int, int,
234 htab_t));
235 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
236 enum machine_mode,
237 htab_t));
238 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
239 htab_t));
240 static struct fixup_replacement
241 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
242 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
243 int, int, rtx));
244 static void fixup_var_refs_insns_with_hash
245 PARAMS ((htab_t, rtx,
246 enum machine_mode, int, rtx));
247 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
248 int, int, rtx));
249 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
250 struct fixup_replacement **, rtx));
251 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode, int));
252 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode,
253 int));
254 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
255 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
256 static void instantiate_decls PARAMS ((tree, int));
257 static void instantiate_decls_1 PARAMS ((tree, int));
258 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
259 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
260 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
261 static void delete_handlers PARAMS ((void));
262 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
263 struct args_size *));
264 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
265 tree));
266 static rtx round_trampoline_addr PARAMS ((rtx));
267 static rtx adjust_trampoline_addr PARAMS ((rtx));
268 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
269 static void reorder_blocks_0 PARAMS ((tree));
270 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
271 static void reorder_fix_fragments PARAMS ((tree));
272 static tree blocks_nreverse PARAMS ((tree));
273 static int all_blocks PARAMS ((tree, tree *));
274 static tree *get_block_vector PARAMS ((tree, int *));
275 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
276 /* We always define `record_insns' even if its not used so that we
277 can always export `prologue_epilogue_contains'. */
278 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
279 static int contains PARAMS ((rtx, varray_type));
280 #ifdef HAVE_return
281 static void emit_return_into_block PARAMS ((basic_block, rtx));
282 #endif
283 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
284 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
285 htab_t));
286 static void purge_single_hard_subreg_set PARAMS ((rtx));
287 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
288 static rtx keep_stack_depressed PARAMS ((rtx));
289 #endif
290 static int is_addressof PARAMS ((rtx *, void *));
291 static hashval_t insns_for_mem_hash PARAMS ((const void *));
292 static int insns_for_mem_comp PARAMS ((const void *, const void *));
293 static int insns_for_mem_walk PARAMS ((rtx *, void *));
294 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
295 static void prepare_function_start PARAMS ((void));
296 static void do_clobber_return_reg PARAMS ((rtx, void *));
297 static void do_use_return_reg PARAMS ((rtx, void *));
298 static void instantiate_virtual_regs_lossage PARAMS ((rtx));
300 /* Pointer to chain of `struct function' for containing functions. */
301 static GTY(()) struct function *outer_function_chain;
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
306 struct function *
307 find_function_data (decl)
308 tree decl;
310 struct function *p;
312 for (p = outer_function_chain; p; p = p->outer)
313 if (p->decl == decl)
314 return p;
316 abort ();
319 /* Save the current context for compilation of a nested function.
320 This is called from language-specific code. The caller should use
321 the enter_nested langhook to save any language-specific state,
322 since this function knows only about language-independent
323 variables. */
325 void
326 push_function_context_to (context)
327 tree context;
329 struct function *p;
331 if (context)
333 if (context == current_function_decl)
334 cfun->contains_functions = 1;
335 else
337 struct function *containing = find_function_data (context);
338 containing->contains_functions = 1;
342 if (cfun == 0)
343 init_dummy_function_start ();
344 p = cfun;
346 p->outer = outer_function_chain;
347 outer_function_chain = p;
348 p->fixup_var_refs_queue = 0;
350 (*lang_hooks.function.enter_nested) (p);
352 cfun = 0;
355 void
356 push_function_context ()
358 push_function_context_to (current_function_decl);
361 /* Restore the last saved context, at the end of a nested function.
362 This function is called from language-specific code. */
364 void
365 pop_function_context_from (context)
366 tree context ATTRIBUTE_UNUSED;
368 struct function *p = outer_function_chain;
369 struct var_refs_queue *queue;
371 cfun = p;
372 outer_function_chain = p->outer;
374 current_function_decl = p->decl;
375 reg_renumber = 0;
377 restore_emit_status (p);
379 (*lang_hooks.function.leave_nested) (p);
381 /* Finish doing put_var_into_stack for any of our variables which became
382 addressable during the nested function. If only one entry has to be
383 fixed up, just do that one. Otherwise, first make a list of MEMs that
384 are not to be unshared. */
385 if (p->fixup_var_refs_queue == 0)
387 else if (p->fixup_var_refs_queue->next == 0)
388 fixup_var_refs (p->fixup_var_refs_queue->modified,
389 p->fixup_var_refs_queue->promoted_mode,
390 p->fixup_var_refs_queue->unsignedp,
391 p->fixup_var_refs_queue->modified, 0);
392 else
394 rtx list = 0;
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
399 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
400 fixup_var_refs (queue->modified, queue->promoted_mode,
401 queue->unsignedp, list, 0);
405 p->fixup_var_refs_queue = 0;
407 /* Reset variables that have known state during rtx generation. */
408 rtx_equal_function_value_matters = 1;
409 virtuals_instantiated = 0;
410 generating_concat_p = 1;
413 void
414 pop_function_context ()
416 pop_function_context_from (current_function_decl);
419 /* Clear out all parts of the state in F that can safely be discarded
420 after the function has been parsed, but not compiled, to let
421 garbage collection reclaim the memory. */
423 void
424 free_after_parsing (f)
425 struct function *f;
427 /* f->expr->forced_labels is used by code generation. */
428 /* f->emit->regno_reg_rtx is used by code generation. */
429 /* f->varasm is used by code generation. */
430 /* f->eh->eh_return_stub_label is used by code generation. */
432 (*lang_hooks.function.final) (f);
433 f->stmt = NULL;
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
440 void
441 free_after_compilation (f)
442 struct function *f;
444 f->eh = NULL;
445 f->expr = NULL;
446 f->emit = NULL;
447 f->varasm = NULL;
448 f->machine = NULL;
450 f->x_temp_slots = NULL;
451 f->arg_offset_rtx = NULL;
452 f->return_rtx = NULL;
453 f->internal_arg_pointer = NULL;
454 f->x_nonlocal_labels = NULL;
455 f->x_nonlocal_goto_handler_slots = NULL;
456 f->x_nonlocal_goto_handler_labels = NULL;
457 f->x_nonlocal_goto_stack_level = NULL;
458 f->x_cleanup_label = NULL;
459 f->x_return_label = NULL;
460 f->computed_goto_common_label = NULL;
461 f->computed_goto_common_reg = NULL;
462 f->x_save_expr_regs = NULL;
463 f->x_stack_slot_list = NULL;
464 f->x_rtl_expr_chain = NULL;
465 f->x_tail_recursion_label = NULL;
466 f->x_tail_recursion_reentry = NULL;
467 f->x_arg_pointer_save_area = NULL;
468 f->x_clobber_return_insn = NULL;
469 f->x_context_display = NULL;
470 f->x_trampoline_list = NULL;
471 f->x_parm_birth_insn = NULL;
472 f->x_last_parm_insn = NULL;
473 f->x_parm_reg_stack_loc = NULL;
474 f->fixup_var_refs_queue = NULL;
475 f->original_arg_vector = NULL;
476 f->original_decl_initial = NULL;
477 f->inl_last_parm_insn = NULL;
478 f->epilogue_delay_list = NULL;
481 /* Allocate fixed slots in the stack frame of the current function. */
483 /* Return size needed for stack frame based on slots so far allocated in
484 function F.
485 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
486 the caller may have to do that. */
488 HOST_WIDE_INT
489 get_func_frame_size (f)
490 struct function *f;
492 #ifdef FRAME_GROWS_DOWNWARD
493 return -f->x_frame_offset;
494 #else
495 return f->x_frame_offset;
496 #endif
499 /* Return size needed for stack frame based on slots so far allocated.
500 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
501 the caller may have to do that. */
502 HOST_WIDE_INT
503 get_frame_size ()
505 return get_func_frame_size (cfun);
508 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
509 with machine mode MODE.
511 ALIGN controls the amount of alignment for the address of the slot:
512 0 means according to MODE,
513 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
514 positive specifies alignment boundary in bits.
516 We do not round to stack_boundary here.
518 FUNCTION specifies the function to allocate in. */
520 static rtx
521 assign_stack_local_1 (mode, size, align, function)
522 enum machine_mode mode;
523 HOST_WIDE_INT size;
524 int align;
525 struct function *function;
527 rtx x, addr;
528 int bigend_correction = 0;
529 int alignment;
530 int frame_off, frame_alignment, frame_phase;
532 if (align == 0)
534 tree type;
536 if (mode == BLKmode)
537 alignment = BIGGEST_ALIGNMENT;
538 else
539 alignment = GET_MODE_ALIGNMENT (mode);
541 /* Allow the target to (possibly) increase the alignment of this
542 stack slot. */
543 type = (*lang_hooks.types.type_for_mode) (mode, 0);
544 if (type)
545 alignment = LOCAL_ALIGNMENT (type, alignment);
547 alignment /= BITS_PER_UNIT;
549 else if (align == -1)
551 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
552 size = CEIL_ROUND (size, alignment);
554 else
555 alignment = align / BITS_PER_UNIT;
557 #ifdef FRAME_GROWS_DOWNWARD
558 function->x_frame_offset -= size;
559 #endif
561 /* Ignore alignment we can't do with expected alignment of the boundary. */
562 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
563 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
565 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
566 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
568 /* Calculate how many bytes the start of local variables is off from
569 stack alignment. */
570 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
571 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
572 frame_phase = frame_off ? frame_alignment - frame_off : 0;
574 /* Round the frame offset to the specified alignment. The default is
575 to always honor requests to align the stack but a port may choose to
576 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
577 if (STACK_ALIGNMENT_NEEDED
578 || mode != BLKmode
579 || size != 0)
581 /* We must be careful here, since FRAME_OFFSET might be negative and
582 division with a negative dividend isn't as well defined as we might
583 like. So we instead assume that ALIGNMENT is a power of two and
584 use logical operations which are unambiguous. */
585 #ifdef FRAME_GROWS_DOWNWARD
586 function->x_frame_offset
587 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
588 + frame_phase);
589 #else
590 function->x_frame_offset
591 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
592 + frame_phase);
593 #endif
596 /* On a big-endian machine, if we are allocating more space than we will use,
597 use the least significant bytes of those that are allocated. */
598 if (BYTES_BIG_ENDIAN && mode != BLKmode)
599 bigend_correction = size - GET_MODE_SIZE (mode);
601 /* If we have already instantiated virtual registers, return the actual
602 address relative to the frame pointer. */
603 if (function == cfun && virtuals_instantiated)
604 addr = plus_constant (frame_pointer_rtx,
605 trunc_int_for_mode
606 (frame_offset + bigend_correction
607 + STARTING_FRAME_OFFSET, Pmode));
608 else
609 addr = plus_constant (virtual_stack_vars_rtx,
610 trunc_int_for_mode
611 (function->x_frame_offset + bigend_correction,
612 Pmode));
614 #ifndef FRAME_GROWS_DOWNWARD
615 function->x_frame_offset += size;
616 #endif
618 x = gen_rtx_MEM (mode, addr);
620 function->x_stack_slot_list
621 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
623 return x;
626 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
627 current function. */
630 assign_stack_local (mode, size, align)
631 enum machine_mode mode;
632 HOST_WIDE_INT size;
633 int align;
635 return assign_stack_local_1 (mode, size, align, cfun);
638 /* Allocate a temporary stack slot and record it for possible later
639 reuse.
641 MODE is the machine mode to be given to the returned rtx.
643 SIZE is the size in units of the space required. We do no rounding here
644 since assign_stack_local will do any required rounding.
646 KEEP is 1 if this slot is to be retained after a call to
647 free_temp_slots. Automatic variables for a block are allocated
648 with this flag. KEEP is 2 if we allocate a longer term temporary,
649 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
650 if we are to allocate something at an inner level to be treated as
651 a variable in the block (e.g., a SAVE_EXPR).
653 TYPE is the type that will be used for the stack slot. */
656 assign_stack_temp_for_type (mode, size, keep, type)
657 enum machine_mode mode;
658 HOST_WIDE_INT size;
659 int keep;
660 tree type;
662 unsigned int align;
663 struct temp_slot *p, *best_p = 0;
664 rtx slot;
666 /* If SIZE is -1 it means that somebody tried to allocate a temporary
667 of a variable size. */
668 if (size == -1)
669 abort ();
671 if (mode == BLKmode)
672 align = BIGGEST_ALIGNMENT;
673 else
674 align = GET_MODE_ALIGNMENT (mode);
676 if (! type)
677 type = (*lang_hooks.types.type_for_mode) (mode, 0);
679 if (type)
680 align = LOCAL_ALIGNMENT (type, align);
682 /* Try to find an available, already-allocated temporary of the proper
683 mode which meets the size and alignment requirements. Choose the
684 smallest one with the closest alignment. */
685 for (p = temp_slots; p; p = p->next)
686 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
687 && ! p->in_use
688 && objects_must_conflict_p (p->type, type)
689 && (best_p == 0 || best_p->size > p->size
690 || (best_p->size == p->size && best_p->align > p->align)))
692 if (p->align == align && p->size == size)
694 best_p = 0;
695 break;
697 best_p = p;
700 /* Make our best, if any, the one to use. */
701 if (best_p)
703 /* If there are enough aligned bytes left over, make them into a new
704 temp_slot so that the extra bytes don't get wasted. Do this only
705 for BLKmode slots, so that we can be sure of the alignment. */
706 if (GET_MODE (best_p->slot) == BLKmode)
708 int alignment = best_p->align / BITS_PER_UNIT;
709 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
711 if (best_p->size - rounded_size >= alignment)
713 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
714 p->in_use = p->addr_taken = 0;
715 p->size = best_p->size - rounded_size;
716 p->base_offset = best_p->base_offset + rounded_size;
717 p->full_size = best_p->full_size - rounded_size;
718 p->slot = gen_rtx_MEM (BLKmode,
719 plus_constant (XEXP (best_p->slot, 0),
720 rounded_size));
721 p->align = best_p->align;
722 p->address = 0;
723 p->rtl_expr = 0;
724 p->type = best_p->type;
725 p->next = temp_slots;
726 temp_slots = p;
728 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
729 stack_slot_list);
731 best_p->size = rounded_size;
732 best_p->full_size = rounded_size;
736 p = best_p;
739 /* If we still didn't find one, make a new temporary. */
740 if (p == 0)
742 HOST_WIDE_INT frame_offset_old = frame_offset;
744 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
746 /* We are passing an explicit alignment request to assign_stack_local.
747 One side effect of that is assign_stack_local will not round SIZE
748 to ensure the frame offset remains suitably aligned.
750 So for requests which depended on the rounding of SIZE, we go ahead
751 and round it now. We also make sure ALIGNMENT is at least
752 BIGGEST_ALIGNMENT. */
753 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
754 abort ();
755 p->slot = assign_stack_local (mode,
756 (mode == BLKmode
757 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
758 : size),
759 align);
761 p->align = align;
763 /* The following slot size computation is necessary because we don't
764 know the actual size of the temporary slot until assign_stack_local
765 has performed all the frame alignment and size rounding for the
766 requested temporary. Note that extra space added for alignment
767 can be either above or below this stack slot depending on which
768 way the frame grows. We include the extra space if and only if it
769 is above this slot. */
770 #ifdef FRAME_GROWS_DOWNWARD
771 p->size = frame_offset_old - frame_offset;
772 #else
773 p->size = size;
774 #endif
776 /* Now define the fields used by combine_temp_slots. */
777 #ifdef FRAME_GROWS_DOWNWARD
778 p->base_offset = frame_offset;
779 p->full_size = frame_offset_old - frame_offset;
780 #else
781 p->base_offset = frame_offset_old;
782 p->full_size = frame_offset - frame_offset_old;
783 #endif
784 p->address = 0;
785 p->next = temp_slots;
786 temp_slots = p;
789 p->in_use = 1;
790 p->addr_taken = 0;
791 p->rtl_expr = seq_rtl_expr;
792 p->type = type;
794 if (keep == 2)
796 p->level = target_temp_slot_level;
797 p->keep = 0;
799 else if (keep == 3)
801 p->level = var_temp_slot_level;
802 p->keep = 0;
804 else
806 p->level = temp_slot_level;
807 p->keep = keep;
811 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
812 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
813 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
815 /* If we know the alias set for the memory that will be used, use
816 it. If there's no TYPE, then we don't know anything about the
817 alias set for the memory. */
818 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
819 set_mem_align (slot, align);
821 /* If a type is specified, set the relevant flags. */
822 if (type != 0)
824 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
825 && TYPE_READONLY (type));
826 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
827 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
830 return slot;
833 /* Allocate a temporary stack slot and record it for possible later
834 reuse. First three arguments are same as in preceding function. */
837 assign_stack_temp (mode, size, keep)
838 enum machine_mode mode;
839 HOST_WIDE_INT size;
840 int keep;
842 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
845 /* Assign a temporary.
846 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
847 and so that should be used in error messages. In either case, we
848 allocate of the given type.
849 KEEP is as for assign_stack_temp.
850 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
851 it is 0 if a register is OK.
852 DONT_PROMOTE is 1 if we should not promote values in register
853 to wider modes. */
856 assign_temp (type_or_decl, keep, memory_required, dont_promote)
857 tree type_or_decl;
858 int keep;
859 int memory_required;
860 int dont_promote ATTRIBUTE_UNUSED;
862 tree type, decl;
863 enum machine_mode mode;
864 #ifndef PROMOTE_FOR_CALL_ONLY
865 int unsignedp;
866 #endif
868 if (DECL_P (type_or_decl))
869 decl = type_or_decl, type = TREE_TYPE (decl);
870 else
871 decl = NULL, type = type_or_decl;
873 mode = TYPE_MODE (type);
874 #ifndef PROMOTE_FOR_CALL_ONLY
875 unsignedp = TREE_UNSIGNED (type);
876 #endif
878 if (mode == BLKmode || memory_required)
880 HOST_WIDE_INT size = int_size_in_bytes (type);
881 rtx tmp;
883 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
884 problems with allocating the stack space. */
885 if (size == 0)
886 size = 1;
888 /* Unfortunately, we don't yet know how to allocate variable-sized
889 temporaries. However, sometimes we have a fixed upper limit on
890 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
891 instead. This is the case for Chill variable-sized strings. */
892 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
893 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
894 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
895 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
897 /* The size of the temporary may be too large to fit into an integer. */
898 /* ??? Not sure this should happen except for user silliness, so limit
899 this to things that aren't compiler-generated temporaries. The
900 rest of the time we'll abort in assign_stack_temp_for_type. */
901 if (decl && size == -1
902 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
904 error_with_decl (decl, "size of variable `%s' is too large");
905 size = 1;
908 tmp = assign_stack_temp_for_type (mode, size, keep, type);
909 return tmp;
912 #ifndef PROMOTE_FOR_CALL_ONLY
913 if (! dont_promote)
914 mode = promote_mode (type, mode, &unsignedp, 0);
915 #endif
917 return gen_reg_rtx (mode);
920 /* Combine temporary stack slots which are adjacent on the stack.
922 This allows for better use of already allocated stack space. This is only
923 done for BLKmode slots because we can be sure that we won't have alignment
924 problems in this case. */
926 void
927 combine_temp_slots ()
929 struct temp_slot *p, *q;
930 struct temp_slot *prev_p, *prev_q;
931 int num_slots;
933 /* We can't combine slots, because the information about which slot
934 is in which alias set will be lost. */
935 if (flag_strict_aliasing)
936 return;
938 /* If there are a lot of temp slots, don't do anything unless
939 high levels of optimization. */
940 if (! flag_expensive_optimizations)
941 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
942 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
943 return;
945 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
947 int delete_p = 0;
949 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
950 for (q = p->next, prev_q = p; q; q = prev_q->next)
952 int delete_q = 0;
953 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
955 if (p->base_offset + p->full_size == q->base_offset)
957 /* Q comes after P; combine Q into P. */
958 p->size += q->size;
959 p->full_size += q->full_size;
960 delete_q = 1;
962 else if (q->base_offset + q->full_size == p->base_offset)
964 /* P comes after Q; combine P into Q. */
965 q->size += p->size;
966 q->full_size += p->full_size;
967 delete_p = 1;
968 break;
971 /* Either delete Q or advance past it. */
972 if (delete_q)
973 prev_q->next = q->next;
974 else
975 prev_q = q;
977 /* Either delete P or advance past it. */
978 if (delete_p)
980 if (prev_p)
981 prev_p->next = p->next;
982 else
983 temp_slots = p->next;
985 else
986 prev_p = p;
990 /* Find the temp slot corresponding to the object at address X. */
992 static struct temp_slot *
993 find_temp_slot_from_address (x)
994 rtx x;
996 struct temp_slot *p;
997 rtx next;
999 for (p = temp_slots; p; p = p->next)
1001 if (! p->in_use)
1002 continue;
1004 else if (XEXP (p->slot, 0) == x
1005 || p->address == x
1006 || (GET_CODE (x) == PLUS
1007 && XEXP (x, 0) == virtual_stack_vars_rtx
1008 && GET_CODE (XEXP (x, 1)) == CONST_INT
1009 && INTVAL (XEXP (x, 1)) >= p->base_offset
1010 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1011 return p;
1013 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1014 for (next = p->address; next; next = XEXP (next, 1))
1015 if (XEXP (next, 0) == x)
1016 return p;
1019 /* If we have a sum involving a register, see if it points to a temp
1020 slot. */
1021 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1022 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1023 return p;
1024 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1025 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1026 return p;
1028 return 0;
1031 /* Indicate that NEW is an alternate way of referring to the temp slot
1032 that previously was known by OLD. */
1034 void
1035 update_temp_slot_address (old, new)
1036 rtx old, new;
1038 struct temp_slot *p;
1040 if (rtx_equal_p (old, new))
1041 return;
1043 p = find_temp_slot_from_address (old);
1045 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1046 is a register, see if one operand of the PLUS is a temporary
1047 location. If so, NEW points into it. Otherwise, if both OLD and
1048 NEW are a PLUS and if there is a register in common between them.
1049 If so, try a recursive call on those values. */
1050 if (p == 0)
1052 if (GET_CODE (old) != PLUS)
1053 return;
1055 if (GET_CODE (new) == REG)
1057 update_temp_slot_address (XEXP (old, 0), new);
1058 update_temp_slot_address (XEXP (old, 1), new);
1059 return;
1061 else if (GET_CODE (new) != PLUS)
1062 return;
1064 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1065 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1066 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1067 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1068 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1069 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1070 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1071 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1073 return;
1076 /* Otherwise add an alias for the temp's address. */
1077 else if (p->address == 0)
1078 p->address = new;
1079 else
1081 if (GET_CODE (p->address) != EXPR_LIST)
1082 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1084 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1088 /* If X could be a reference to a temporary slot, mark the fact that its
1089 address was taken. */
1091 void
1092 mark_temp_addr_taken (x)
1093 rtx x;
1095 struct temp_slot *p;
1097 if (x == 0)
1098 return;
1100 /* If X is not in memory or is at a constant address, it cannot be in
1101 a temporary slot. */
1102 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1103 return;
1105 p = find_temp_slot_from_address (XEXP (x, 0));
1106 if (p != 0)
1107 p->addr_taken = 1;
1110 /* If X could be a reference to a temporary slot, mark that slot as
1111 belonging to the to one level higher than the current level. If X
1112 matched one of our slots, just mark that one. Otherwise, we can't
1113 easily predict which it is, so upgrade all of them. Kept slots
1114 need not be touched.
1116 This is called when an ({...}) construct occurs and a statement
1117 returns a value in memory. */
1119 void
1120 preserve_temp_slots (x)
1121 rtx x;
1123 struct temp_slot *p = 0;
1125 /* If there is no result, we still might have some objects whose address
1126 were taken, so we need to make sure they stay around. */
1127 if (x == 0)
1129 for (p = temp_slots; p; p = p->next)
1130 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1131 p->level--;
1133 return;
1136 /* If X is a register that is being used as a pointer, see if we have
1137 a temporary slot we know it points to. To be consistent with
1138 the code below, we really should preserve all non-kept slots
1139 if we can't find a match, but that seems to be much too costly. */
1140 if (GET_CODE (x) == REG && REG_POINTER (x))
1141 p = find_temp_slot_from_address (x);
1143 /* If X is not in memory or is at a constant address, it cannot be in
1144 a temporary slot, but it can contain something whose address was
1145 taken. */
1146 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1148 for (p = temp_slots; p; p = p->next)
1149 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1150 p->level--;
1152 return;
1155 /* First see if we can find a match. */
1156 if (p == 0)
1157 p = find_temp_slot_from_address (XEXP (x, 0));
1159 if (p != 0)
1161 /* Move everything at our level whose address was taken to our new
1162 level in case we used its address. */
1163 struct temp_slot *q;
1165 if (p->level == temp_slot_level)
1167 for (q = temp_slots; q; q = q->next)
1168 if (q != p && q->addr_taken && q->level == p->level)
1169 q->level--;
1171 p->level--;
1172 p->addr_taken = 0;
1174 return;
1177 /* Otherwise, preserve all non-kept slots at this level. */
1178 for (p = temp_slots; p; p = p->next)
1179 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1180 p->level--;
1183 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1184 with that RTL_EXPR, promote it into a temporary slot at the present
1185 level so it will not be freed when we free slots made in the
1186 RTL_EXPR. */
1188 void
1189 preserve_rtl_expr_result (x)
1190 rtx x;
1192 struct temp_slot *p;
1194 /* If X is not in memory or is at a constant address, it cannot be in
1195 a temporary slot. */
1196 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1197 return;
1199 /* If we can find a match, move it to our level unless it is already at
1200 an upper level. */
1201 p = find_temp_slot_from_address (XEXP (x, 0));
1202 if (p != 0)
1204 p->level = MIN (p->level, temp_slot_level);
1205 p->rtl_expr = 0;
1208 return;
1211 /* Free all temporaries used so far. This is normally called at the end
1212 of generating code for a statement. Don't free any temporaries
1213 currently in use for an RTL_EXPR that hasn't yet been emitted.
1214 We could eventually do better than this since it can be reused while
1215 generating the same RTL_EXPR, but this is complex and probably not
1216 worthwhile. */
1218 void
1219 free_temp_slots ()
1221 struct temp_slot *p;
1223 for (p = temp_slots; p; p = p->next)
1224 if (p->in_use && p->level == temp_slot_level && ! p->keep
1225 && p->rtl_expr == 0)
1226 p->in_use = 0;
1228 combine_temp_slots ();
1231 /* Free all temporary slots used in T, an RTL_EXPR node. */
1233 void
1234 free_temps_for_rtl_expr (t)
1235 tree t;
1237 struct temp_slot *p;
1239 for (p = temp_slots; p; p = p->next)
1240 if (p->rtl_expr == t)
1242 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1243 needs to be preserved. This can happen if a temporary in
1244 the RTL_EXPR was addressed; preserve_temp_slots will move
1245 the temporary into a higher level. */
1246 if (temp_slot_level <= p->level)
1247 p->in_use = 0;
1248 else
1249 p->rtl_expr = NULL_TREE;
1252 combine_temp_slots ();
1255 /* Mark all temporaries ever allocated in this function as not suitable
1256 for reuse until the current level is exited. */
1258 void
1259 mark_all_temps_used ()
1261 struct temp_slot *p;
1263 for (p = temp_slots; p; p = p->next)
1265 p->in_use = p->keep = 1;
1266 p->level = MIN (p->level, temp_slot_level);
1270 /* Push deeper into the nesting level for stack temporaries. */
1272 void
1273 push_temp_slots ()
1275 temp_slot_level++;
1278 /* Pop a temporary nesting level. All slots in use in the current level
1279 are freed. */
1281 void
1282 pop_temp_slots ()
1284 struct temp_slot *p;
1286 for (p = temp_slots; p; p = p->next)
1287 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1288 p->in_use = 0;
1290 combine_temp_slots ();
1292 temp_slot_level--;
1295 /* Initialize temporary slots. */
1297 void
1298 init_temp_slots ()
1300 /* We have not allocated any temporaries yet. */
1301 temp_slots = 0;
1302 temp_slot_level = 0;
1303 var_temp_slot_level = 0;
1304 target_temp_slot_level = 0;
1307 /* Retroactively move an auto variable from a register to a stack
1308 slot. This is done when an address-reference to the variable is
1309 seen. If RESCAN is true, all previously emitted instructions are
1310 examined and modified to handle the fact that DECL is now
1311 addressable. */
1313 void
1314 put_var_into_stack (decl, rescan)
1315 tree decl;
1316 int rescan;
1318 rtx reg;
1319 enum machine_mode promoted_mode, decl_mode;
1320 struct function *function = 0;
1321 tree context;
1322 int can_use_addressof;
1323 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1324 int usedp = (TREE_USED (decl)
1325 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1327 context = decl_function_context (decl);
1329 /* Get the current rtl used for this object and its original mode. */
1330 reg = (TREE_CODE (decl) == SAVE_EXPR
1331 ? SAVE_EXPR_RTL (decl)
1332 : DECL_RTL_IF_SET (decl));
1334 /* No need to do anything if decl has no rtx yet
1335 since in that case caller is setting TREE_ADDRESSABLE
1336 and a stack slot will be assigned when the rtl is made. */
1337 if (reg == 0)
1338 return;
1340 /* Get the declared mode for this object. */
1341 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1342 : DECL_MODE (decl));
1343 /* Get the mode it's actually stored in. */
1344 promoted_mode = GET_MODE (reg);
1346 /* If this variable comes from an outer function, find that
1347 function's saved context. Don't use find_function_data here,
1348 because it might not be in any active function.
1349 FIXME: Is that really supposed to happen?
1350 It does in ObjC at least. */
1351 if (context != current_function_decl && context != inline_function_decl)
1352 for (function = outer_function_chain; function; function = function->outer)
1353 if (function->decl == context)
1354 break;
1356 /* If this is a variable-size object with a pseudo to address it,
1357 put that pseudo into the stack, if the var is nonlocal. */
1358 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1359 && GET_CODE (reg) == MEM
1360 && GET_CODE (XEXP (reg, 0)) == REG
1361 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1363 reg = XEXP (reg, 0);
1364 decl_mode = promoted_mode = GET_MODE (reg);
1367 can_use_addressof
1368 = (function == 0
1369 && optimize > 0
1370 /* FIXME make it work for promoted modes too */
1371 && decl_mode == promoted_mode
1372 #ifdef NON_SAVING_SETJMP
1373 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1374 #endif
1377 /* If we can't use ADDRESSOF, make sure we see through one we already
1378 generated. */
1379 if (! can_use_addressof && GET_CODE (reg) == MEM
1380 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1381 reg = XEXP (XEXP (reg, 0), 0);
1383 /* Now we should have a value that resides in one or more pseudo regs. */
1385 if (GET_CODE (reg) == REG)
1387 /* If this variable lives in the current function and we don't need
1388 to put things in the stack for the sake of setjmp, try to keep it
1389 in a register until we know we actually need the address. */
1390 if (can_use_addressof)
1391 gen_mem_addressof (reg, decl, rescan);
1392 else
1393 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1394 decl_mode, volatilep, 0, usedp, 0);
1396 else if (GET_CODE (reg) == CONCAT)
1398 /* A CONCAT contains two pseudos; put them both in the stack.
1399 We do it so they end up consecutive.
1400 We fixup references to the parts only after we fixup references
1401 to the whole CONCAT, lest we do double fixups for the latter
1402 references. */
1403 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1404 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1405 rtx lopart = XEXP (reg, 0);
1406 rtx hipart = XEXP (reg, 1);
1407 #ifdef FRAME_GROWS_DOWNWARD
1408 /* Since part 0 should have a lower address, do it second. */
1409 put_reg_into_stack (function, hipart, part_type, part_mode,
1410 part_mode, volatilep, 0, 0, 0);
1411 put_reg_into_stack (function, lopart, part_type, part_mode,
1412 part_mode, volatilep, 0, 0, 0);
1413 #else
1414 put_reg_into_stack (function, lopart, part_type, part_mode,
1415 part_mode, volatilep, 0, 0, 0);
1416 put_reg_into_stack (function, hipart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 #endif
1420 /* Change the CONCAT into a combined MEM for both parts. */
1421 PUT_CODE (reg, MEM);
1422 MEM_ATTRS (reg) = 0;
1424 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1425 already computed alias sets. Here we want to re-generate. */
1426 if (DECL_P (decl))
1427 SET_DECL_RTL (decl, NULL);
1428 set_mem_attributes (reg, decl, 1);
1429 if (DECL_P (decl))
1430 SET_DECL_RTL (decl, reg);
1432 /* The two parts are in memory order already.
1433 Use the lower parts address as ours. */
1434 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1435 /* Prevent sharing of rtl that might lose. */
1436 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1437 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1438 if (usedp && rescan)
1440 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1441 promoted_mode, 0);
1442 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1443 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1446 else
1447 return;
1450 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1451 into the stack frame of FUNCTION (0 means the current function).
1452 DECL_MODE is the machine mode of the user-level data type.
1453 PROMOTED_MODE is the machine mode of the register.
1454 VOLATILE_P is nonzero if this is for a "volatile" decl.
1455 USED_P is nonzero if this reg might have already been used in an insn. */
1457 static void
1458 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1459 original_regno, used_p, ht)
1460 struct function *function;
1461 rtx reg;
1462 tree type;
1463 enum machine_mode promoted_mode, decl_mode;
1464 int volatile_p;
1465 unsigned int original_regno;
1466 int used_p;
1467 htab_t ht;
1469 struct function *func = function ? function : cfun;
1470 rtx new = 0;
1471 unsigned int regno = original_regno;
1473 if (regno == 0)
1474 regno = REGNO (reg);
1476 if (regno < func->x_max_parm_reg)
1477 new = func->x_parm_reg_stack_loc[regno];
1479 if (new == 0)
1480 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1482 PUT_CODE (reg, MEM);
1483 PUT_MODE (reg, decl_mode);
1484 XEXP (reg, 0) = XEXP (new, 0);
1485 MEM_ATTRS (reg) = 0;
1486 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1487 MEM_VOLATILE_P (reg) = volatile_p;
1489 /* If this is a memory ref that contains aggregate components,
1490 mark it as such for cse and loop optimize. If we are reusing a
1491 previously generated stack slot, then we need to copy the bit in
1492 case it was set for other reasons. For instance, it is set for
1493 __builtin_va_alist. */
1494 if (type)
1496 MEM_SET_IN_STRUCT_P (reg,
1497 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1498 set_mem_alias_set (reg, get_alias_set (type));
1501 if (used_p)
1502 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1505 /* Make sure that all refs to the variable, previously made
1506 when it was a register, are fixed up to be valid again.
1507 See function above for meaning of arguments. */
1509 static void
1510 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1511 struct function *function;
1512 rtx reg;
1513 tree type;
1514 enum machine_mode promoted_mode;
1515 htab_t ht;
1517 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1519 if (function != 0)
1521 struct var_refs_queue *temp;
1523 temp
1524 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1525 temp->modified = reg;
1526 temp->promoted_mode = promoted_mode;
1527 temp->unsignedp = unsigned_p;
1528 temp->next = function->fixup_var_refs_queue;
1529 function->fixup_var_refs_queue = temp;
1531 else
1532 /* Variable is local; fix it up now. */
1533 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1536 static void
1537 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1538 rtx var;
1539 enum machine_mode promoted_mode;
1540 int unsignedp;
1541 htab_t ht;
1542 rtx may_share;
1544 tree pending;
1545 rtx first_insn = get_insns ();
1546 struct sequence_stack *stack = seq_stack;
1547 tree rtl_exps = rtl_expr_chain;
1549 /* If there's a hash table, it must record all uses of VAR. */
1550 if (ht)
1552 if (stack != 0)
1553 abort ();
1554 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1555 may_share);
1556 return;
1559 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1560 stack == 0, may_share);
1562 /* Scan all pending sequences too. */
1563 for (; stack; stack = stack->next)
1565 push_to_full_sequence (stack->first, stack->last);
1566 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1567 stack->next != 0, may_share);
1568 /* Update remembered end of sequence
1569 in case we added an insn at the end. */
1570 stack->last = get_last_insn ();
1571 end_sequence ();
1574 /* Scan all waiting RTL_EXPRs too. */
1575 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1577 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1578 if (seq != const0_rtx && seq != 0)
1580 push_to_sequence (seq);
1581 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1582 may_share);
1583 end_sequence ();
1588 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1589 some part of an insn. Return a struct fixup_replacement whose OLD
1590 value is equal to X. Allocate a new structure if no such entry exists. */
1592 static struct fixup_replacement *
1593 find_fixup_replacement (replacements, x)
1594 struct fixup_replacement **replacements;
1595 rtx x;
1597 struct fixup_replacement *p;
1599 /* See if we have already replaced this. */
1600 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1603 if (p == 0)
1605 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1606 p->old = x;
1607 p->new = 0;
1608 p->next = *replacements;
1609 *replacements = p;
1612 return p;
1615 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1616 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1617 for the current function. MAY_SHARE is either a MEM that is not
1618 to be unshared or a list of them. */
1620 static void
1621 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1622 rtx insn;
1623 rtx var;
1624 enum machine_mode promoted_mode;
1625 int unsignedp;
1626 int toplevel;
1627 rtx may_share;
1629 while (insn)
1631 /* fixup_var_refs_insn might modify insn, so save its next
1632 pointer now. */
1633 rtx next = NEXT_INSN (insn);
1635 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1636 the three sequences they (potentially) contain, and process
1637 them recursively. The CALL_INSN itself is not interesting. */
1639 if (GET_CODE (insn) == CALL_INSN
1640 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1642 int i;
1644 /* Look at the Normal call, sibling call and tail recursion
1645 sequences attached to the CALL_PLACEHOLDER. */
1646 for (i = 0; i < 3; i++)
1648 rtx seq = XEXP (PATTERN (insn), i);
1649 if (seq)
1651 push_to_sequence (seq);
1652 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1653 may_share);
1654 XEXP (PATTERN (insn), i) = get_insns ();
1655 end_sequence ();
1660 else if (INSN_P (insn))
1661 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1662 may_share);
1664 insn = next;
1668 /* Look up the insns which reference VAR in HT and fix them up. Other
1669 arguments are the same as fixup_var_refs_insns.
1671 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1672 because the hash table will point straight to the interesting insn
1673 (inside the CALL_PLACEHOLDER). */
1675 static void
1676 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1677 htab_t ht;
1678 rtx var;
1679 enum machine_mode promoted_mode;
1680 int unsignedp;
1681 rtx may_share;
1683 struct insns_for_mem_entry tmp;
1684 struct insns_for_mem_entry *ime;
1685 rtx insn_list;
1687 tmp.key = var;
1688 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1689 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1690 if (INSN_P (XEXP (insn_list, 0)))
1691 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1692 unsignedp, 1, may_share);
1696 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1697 the insn under examination, VAR is the variable to fix up
1698 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1699 TOPLEVEL is nonzero if this is the main insn chain for this
1700 function. */
1702 static void
1703 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1704 rtx insn;
1705 rtx var;
1706 enum machine_mode promoted_mode;
1707 int unsignedp;
1708 int toplevel;
1709 rtx no_share;
1711 rtx call_dest = 0;
1712 rtx set, prev, prev_set;
1713 rtx note;
1715 /* Remember the notes in case we delete the insn. */
1716 note = REG_NOTES (insn);
1718 /* If this is a CLOBBER of VAR, delete it.
1720 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1721 and REG_RETVAL notes too. */
1722 if (GET_CODE (PATTERN (insn)) == CLOBBER
1723 && (XEXP (PATTERN (insn), 0) == var
1724 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1725 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1726 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1728 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1729 /* The REG_LIBCALL note will go away since we are going to
1730 turn INSN into a NOTE, so just delete the
1731 corresponding REG_RETVAL note. */
1732 remove_note (XEXP (note, 0),
1733 find_reg_note (XEXP (note, 0), REG_RETVAL,
1734 NULL_RTX));
1736 delete_insn (insn);
1739 /* The insn to load VAR from a home in the arglist
1740 is now a no-op. When we see it, just delete it.
1741 Similarly if this is storing VAR from a register from which
1742 it was loaded in the previous insn. This will occur
1743 when an ADDRESSOF was made for an arglist slot. */
1744 else if (toplevel
1745 && (set = single_set (insn)) != 0
1746 && SET_DEST (set) == var
1747 /* If this represents the result of an insn group,
1748 don't delete the insn. */
1749 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1750 && (rtx_equal_p (SET_SRC (set), var)
1751 || (GET_CODE (SET_SRC (set)) == REG
1752 && (prev = prev_nonnote_insn (insn)) != 0
1753 && (prev_set = single_set (prev)) != 0
1754 && SET_DEST (prev_set) == SET_SRC (set)
1755 && rtx_equal_p (SET_SRC (prev_set), var))))
1757 delete_insn (insn);
1759 else
1761 struct fixup_replacement *replacements = 0;
1762 rtx next_insn = NEXT_INSN (insn);
1764 if (SMALL_REGISTER_CLASSES)
1766 /* If the insn that copies the results of a CALL_INSN
1767 into a pseudo now references VAR, we have to use an
1768 intermediate pseudo since we want the life of the
1769 return value register to be only a single insn.
1771 If we don't use an intermediate pseudo, such things as
1772 address computations to make the address of VAR valid
1773 if it is not can be placed between the CALL_INSN and INSN.
1775 To make sure this doesn't happen, we record the destination
1776 of the CALL_INSN and see if the next insn uses both that
1777 and VAR. */
1779 if (call_dest != 0 && GET_CODE (insn) == INSN
1780 && reg_mentioned_p (var, PATTERN (insn))
1781 && reg_mentioned_p (call_dest, PATTERN (insn)))
1783 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1785 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1787 PATTERN (insn) = replace_rtx (PATTERN (insn),
1788 call_dest, temp);
1791 if (GET_CODE (insn) == CALL_INSN
1792 && GET_CODE (PATTERN (insn)) == SET)
1793 call_dest = SET_DEST (PATTERN (insn));
1794 else if (GET_CODE (insn) == CALL_INSN
1795 && GET_CODE (PATTERN (insn)) == PARALLEL
1796 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1797 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1798 else
1799 call_dest = 0;
1802 /* See if we have to do anything to INSN now that VAR is in
1803 memory. If it needs to be loaded into a pseudo, use a single
1804 pseudo for the entire insn in case there is a MATCH_DUP
1805 between two operands. We pass a pointer to the head of
1806 a list of struct fixup_replacements. If fixup_var_refs_1
1807 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1808 it will record them in this list.
1810 If it allocated a pseudo for any replacement, we copy into
1811 it here. */
1813 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1814 &replacements, no_share);
1816 /* If this is last_parm_insn, and any instructions were output
1817 after it to fix it up, then we must set last_parm_insn to
1818 the last such instruction emitted. */
1819 if (insn == last_parm_insn)
1820 last_parm_insn = PREV_INSN (next_insn);
1822 while (replacements)
1824 struct fixup_replacement *next;
1826 if (GET_CODE (replacements->new) == REG)
1828 rtx insert_before;
1829 rtx seq;
1831 /* OLD might be a (subreg (mem)). */
1832 if (GET_CODE (replacements->old) == SUBREG)
1833 replacements->old
1834 = fixup_memory_subreg (replacements->old, insn,
1835 promoted_mode, 0);
1836 else
1837 replacements->old
1838 = fixup_stack_1 (replacements->old, insn);
1840 insert_before = insn;
1842 /* If we are changing the mode, do a conversion.
1843 This might be wasteful, but combine.c will
1844 eliminate much of the waste. */
1846 if (GET_MODE (replacements->new)
1847 != GET_MODE (replacements->old))
1849 start_sequence ();
1850 convert_move (replacements->new,
1851 replacements->old, unsignedp);
1852 seq = get_insns ();
1853 end_sequence ();
1855 else
1856 seq = gen_move_insn (replacements->new,
1857 replacements->old);
1859 emit_insn_before (seq, insert_before);
1862 next = replacements->next;
1863 free (replacements);
1864 replacements = next;
1868 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1869 But don't touch other insns referred to by reg-notes;
1870 we will get them elsewhere. */
1871 while (note)
1873 if (GET_CODE (note) != INSN_LIST)
1874 XEXP (note, 0)
1875 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1876 promoted_mode, 1);
1877 note = XEXP (note, 1);
1881 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1882 See if the rtx expression at *LOC in INSN needs to be changed.
1884 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1885 contain a list of original rtx's and replacements. If we find that we need
1886 to modify this insn by replacing a memory reference with a pseudo or by
1887 making a new MEM to implement a SUBREG, we consult that list to see if
1888 we have already chosen a replacement. If none has already been allocated,
1889 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1890 or the SUBREG, as appropriate, to the pseudo. */
1892 static void
1893 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1894 rtx var;
1895 enum machine_mode promoted_mode;
1896 rtx *loc;
1897 rtx insn;
1898 struct fixup_replacement **replacements;
1899 rtx no_share;
1901 int i;
1902 rtx x = *loc;
1903 RTX_CODE code = GET_CODE (x);
1904 const char *fmt;
1905 rtx tem, tem1;
1906 struct fixup_replacement *replacement;
1908 switch (code)
1910 case ADDRESSOF:
1911 if (XEXP (x, 0) == var)
1913 /* Prevent sharing of rtl that might lose. */
1914 rtx sub = copy_rtx (XEXP (var, 0));
1916 if (! validate_change (insn, loc, sub, 0))
1918 rtx y = gen_reg_rtx (GET_MODE (sub));
1919 rtx seq, new_insn;
1921 /* We should be able to replace with a register or all is lost.
1922 Note that we can't use validate_change to verify this, since
1923 we're not caring for replacing all dups simultaneously. */
1924 if (! validate_replace_rtx (*loc, y, insn))
1925 abort ();
1927 /* Careful! First try to recognize a direct move of the
1928 value, mimicking how things are done in gen_reload wrt
1929 PLUS. Consider what happens when insn is a conditional
1930 move instruction and addsi3 clobbers flags. */
1932 start_sequence ();
1933 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1934 seq = get_insns ();
1935 end_sequence ();
1937 if (recog_memoized (new_insn) < 0)
1939 /* That failed. Fall back on force_operand and hope. */
1941 start_sequence ();
1942 sub = force_operand (sub, y);
1943 if (sub != y)
1944 emit_insn (gen_move_insn (y, sub));
1945 seq = get_insns ();
1946 end_sequence ();
1949 #ifdef HAVE_cc0
1950 /* Don't separate setter from user. */
1951 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1952 insn = PREV_INSN (insn);
1953 #endif
1955 emit_insn_before (seq, insn);
1958 return;
1960 case MEM:
1961 if (var == x)
1963 /* If we already have a replacement, use it. Otherwise,
1964 try to fix up this address in case it is invalid. */
1966 replacement = find_fixup_replacement (replacements, var);
1967 if (replacement->new)
1969 *loc = replacement->new;
1970 return;
1973 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1975 /* Unless we are forcing memory to register or we changed the mode,
1976 we can leave things the way they are if the insn is valid. */
1978 INSN_CODE (insn) = -1;
1979 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1980 && recog_memoized (insn) >= 0)
1981 return;
1983 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1984 return;
1987 /* If X contains VAR, we need to unshare it here so that we update
1988 each occurrence separately. But all identical MEMs in one insn
1989 must be replaced with the same rtx because of the possibility of
1990 MATCH_DUPs. */
1992 if (reg_mentioned_p (var, x))
1994 replacement = find_fixup_replacement (replacements, x);
1995 if (replacement->new == 0)
1996 replacement->new = copy_most_rtx (x, no_share);
1998 *loc = x = replacement->new;
1999 code = GET_CODE (x);
2001 break;
2003 case REG:
2004 case CC0:
2005 case PC:
2006 case CONST_INT:
2007 case CONST:
2008 case SYMBOL_REF:
2009 case LABEL_REF:
2010 case CONST_DOUBLE:
2011 case CONST_VECTOR:
2012 return;
2014 case SIGN_EXTRACT:
2015 case ZERO_EXTRACT:
2016 /* Note that in some cases those types of expressions are altered
2017 by optimize_bit_field, and do not survive to get here. */
2018 if (XEXP (x, 0) == var
2019 || (GET_CODE (XEXP (x, 0)) == SUBREG
2020 && SUBREG_REG (XEXP (x, 0)) == var))
2022 /* Get TEM as a valid MEM in the mode presently in the insn.
2024 We don't worry about the possibility of MATCH_DUP here; it
2025 is highly unlikely and would be tricky to handle. */
2027 tem = XEXP (x, 0);
2028 if (GET_CODE (tem) == SUBREG)
2030 if (GET_MODE_BITSIZE (GET_MODE (tem))
2031 > GET_MODE_BITSIZE (GET_MODE (var)))
2033 replacement = find_fixup_replacement (replacements, var);
2034 if (replacement->new == 0)
2035 replacement->new = gen_reg_rtx (GET_MODE (var));
2036 SUBREG_REG (tem) = replacement->new;
2038 /* The following code works only if we have a MEM, so we
2039 need to handle the subreg here. We directly substitute
2040 it assuming that a subreg must be OK here. We already
2041 scheduled a replacement to copy the mem into the
2042 subreg. */
2043 XEXP (x, 0) = tem;
2044 return;
2046 else
2047 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2049 else
2050 tem = fixup_stack_1 (tem, insn);
2052 /* Unless we want to load from memory, get TEM into the proper mode
2053 for an extract from memory. This can only be done if the
2054 extract is at a constant position and length. */
2056 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2057 && GET_CODE (XEXP (x, 2)) == CONST_INT
2058 && ! mode_dependent_address_p (XEXP (tem, 0))
2059 && ! MEM_VOLATILE_P (tem))
2061 enum machine_mode wanted_mode = VOIDmode;
2062 enum machine_mode is_mode = GET_MODE (tem);
2063 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2065 if (GET_CODE (x) == ZERO_EXTRACT)
2067 enum machine_mode new_mode
2068 = mode_for_extraction (EP_extzv, 1);
2069 if (new_mode != MAX_MACHINE_MODE)
2070 wanted_mode = new_mode;
2072 else if (GET_CODE (x) == SIGN_EXTRACT)
2074 enum machine_mode new_mode
2075 = mode_for_extraction (EP_extv, 1);
2076 if (new_mode != MAX_MACHINE_MODE)
2077 wanted_mode = new_mode;
2080 /* If we have a narrower mode, we can do something. */
2081 if (wanted_mode != VOIDmode
2082 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2084 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2085 rtx old_pos = XEXP (x, 2);
2086 rtx newmem;
2088 /* If the bytes and bits are counted differently, we
2089 must adjust the offset. */
2090 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2091 offset = (GET_MODE_SIZE (is_mode)
2092 - GET_MODE_SIZE (wanted_mode) - offset);
2094 pos %= GET_MODE_BITSIZE (wanted_mode);
2096 newmem = adjust_address_nv (tem, wanted_mode, offset);
2098 /* Make the change and see if the insn remains valid. */
2099 INSN_CODE (insn) = -1;
2100 XEXP (x, 0) = newmem;
2101 XEXP (x, 2) = GEN_INT (pos);
2103 if (recog_memoized (insn) >= 0)
2104 return;
2106 /* Otherwise, restore old position. XEXP (x, 0) will be
2107 restored later. */
2108 XEXP (x, 2) = old_pos;
2112 /* If we get here, the bitfield extract insn can't accept a memory
2113 reference. Copy the input into a register. */
2115 tem1 = gen_reg_rtx (GET_MODE (tem));
2116 emit_insn_before (gen_move_insn (tem1, tem), insn);
2117 XEXP (x, 0) = tem1;
2118 return;
2120 break;
2122 case SUBREG:
2123 if (SUBREG_REG (x) == var)
2125 /* If this is a special SUBREG made because VAR was promoted
2126 from a wider mode, replace it with VAR and call ourself
2127 recursively, this time saying that the object previously
2128 had its current mode (by virtue of the SUBREG). */
2130 if (SUBREG_PROMOTED_VAR_P (x))
2132 *loc = var;
2133 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2134 no_share);
2135 return;
2138 /* If this SUBREG makes VAR wider, it has become a paradoxical
2139 SUBREG with VAR in memory, but these aren't allowed at this
2140 stage of the compilation. So load VAR into a pseudo and take
2141 a SUBREG of that pseudo. */
2142 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2144 replacement = find_fixup_replacement (replacements, var);
2145 if (replacement->new == 0)
2146 replacement->new = gen_reg_rtx (promoted_mode);
2147 SUBREG_REG (x) = replacement->new;
2148 return;
2151 /* See if we have already found a replacement for this SUBREG.
2152 If so, use it. Otherwise, make a MEM and see if the insn
2153 is recognized. If not, or if we should force MEM into a register,
2154 make a pseudo for this SUBREG. */
2155 replacement = find_fixup_replacement (replacements, x);
2156 if (replacement->new)
2158 *loc = replacement->new;
2159 return;
2162 replacement->new = *loc = fixup_memory_subreg (x, insn,
2163 promoted_mode, 0);
2165 INSN_CODE (insn) = -1;
2166 if (! flag_force_mem && recog_memoized (insn) >= 0)
2167 return;
2169 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2170 return;
2172 break;
2174 case SET:
2175 /* First do special simplification of bit-field references. */
2176 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2177 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2178 optimize_bit_field (x, insn, 0);
2179 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2180 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2181 optimize_bit_field (x, insn, 0);
2183 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2184 into a register and then store it back out. */
2185 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2186 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2187 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2188 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2189 > GET_MODE_SIZE (GET_MODE (var))))
2191 replacement = find_fixup_replacement (replacements, var);
2192 if (replacement->new == 0)
2193 replacement->new = gen_reg_rtx (GET_MODE (var));
2195 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2196 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2199 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2200 insn into a pseudo and store the low part of the pseudo into VAR. */
2201 if (GET_CODE (SET_DEST (x)) == SUBREG
2202 && SUBREG_REG (SET_DEST (x)) == var
2203 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2204 > GET_MODE_SIZE (GET_MODE (var))))
2206 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2207 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2208 tem)),
2209 insn);
2210 break;
2214 rtx dest = SET_DEST (x);
2215 rtx src = SET_SRC (x);
2216 rtx outerdest = dest;
2218 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2219 || GET_CODE (dest) == SIGN_EXTRACT
2220 || GET_CODE (dest) == ZERO_EXTRACT)
2221 dest = XEXP (dest, 0);
2223 if (GET_CODE (src) == SUBREG)
2224 src = SUBREG_REG (src);
2226 /* If VAR does not appear at the top level of the SET
2227 just scan the lower levels of the tree. */
2229 if (src != var && dest != var)
2230 break;
2232 /* We will need to rerecognize this insn. */
2233 INSN_CODE (insn) = -1;
2235 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2236 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2238 /* Since this case will return, ensure we fixup all the
2239 operands here. */
2240 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2241 insn, replacements, no_share);
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2243 insn, replacements, no_share);
2244 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2245 insn, replacements, no_share);
2247 tem = XEXP (outerdest, 0);
2249 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2250 that may appear inside a ZERO_EXTRACT.
2251 This was legitimate when the MEM was a REG. */
2252 if (GET_CODE (tem) == SUBREG
2253 && SUBREG_REG (tem) == var)
2254 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2255 else
2256 tem = fixup_stack_1 (tem, insn);
2258 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2259 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2260 && ! mode_dependent_address_p (XEXP (tem, 0))
2261 && ! MEM_VOLATILE_P (tem))
2263 enum machine_mode wanted_mode;
2264 enum machine_mode is_mode = GET_MODE (tem);
2265 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2267 wanted_mode = mode_for_extraction (EP_insv, 0);
2269 /* If we have a narrower mode, we can do something. */
2270 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2272 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2273 rtx old_pos = XEXP (outerdest, 2);
2274 rtx newmem;
2276 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2277 offset = (GET_MODE_SIZE (is_mode)
2278 - GET_MODE_SIZE (wanted_mode) - offset);
2280 pos %= GET_MODE_BITSIZE (wanted_mode);
2282 newmem = adjust_address_nv (tem, wanted_mode, offset);
2284 /* Make the change and see if the insn remains valid. */
2285 INSN_CODE (insn) = -1;
2286 XEXP (outerdest, 0) = newmem;
2287 XEXP (outerdest, 2) = GEN_INT (pos);
2289 if (recog_memoized (insn) >= 0)
2290 return;
2292 /* Otherwise, restore old position. XEXP (x, 0) will be
2293 restored later. */
2294 XEXP (outerdest, 2) = old_pos;
2298 /* If we get here, the bit-field store doesn't allow memory
2299 or isn't located at a constant position. Load the value into
2300 a register, do the store, and put it back into memory. */
2302 tem1 = gen_reg_rtx (GET_MODE (tem));
2303 emit_insn_before (gen_move_insn (tem1, tem), insn);
2304 emit_insn_after (gen_move_insn (tem, tem1), insn);
2305 XEXP (outerdest, 0) = tem1;
2306 return;
2309 /* STRICT_LOW_PART is a no-op on memory references
2310 and it can cause combinations to be unrecognizable,
2311 so eliminate it. */
2313 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2314 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2316 /* A valid insn to copy VAR into or out of a register
2317 must be left alone, to avoid an infinite loop here.
2318 If the reference to VAR is by a subreg, fix that up,
2319 since SUBREG is not valid for a memref.
2320 Also fix up the address of the stack slot.
2322 Note that we must not try to recognize the insn until
2323 after we know that we have valid addresses and no
2324 (subreg (mem ...) ...) constructs, since these interfere
2325 with determining the validity of the insn. */
2327 if ((SET_SRC (x) == var
2328 || (GET_CODE (SET_SRC (x)) == SUBREG
2329 && SUBREG_REG (SET_SRC (x)) == var))
2330 && (GET_CODE (SET_DEST (x)) == REG
2331 || (GET_CODE (SET_DEST (x)) == SUBREG
2332 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2333 && GET_MODE (var) == promoted_mode
2334 && x == single_set (insn))
2336 rtx pat, last;
2338 if (GET_CODE (SET_SRC (x)) == SUBREG
2339 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2340 > GET_MODE_SIZE (GET_MODE (var))))
2342 /* This (subreg VAR) is now a paradoxical subreg. We need
2343 to replace VAR instead of the subreg. */
2344 replacement = find_fixup_replacement (replacements, var);
2345 if (replacement->new == NULL_RTX)
2346 replacement->new = gen_reg_rtx (GET_MODE (var));
2347 SUBREG_REG (SET_SRC (x)) = replacement->new;
2349 else
2351 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2352 if (replacement->new)
2353 SET_SRC (x) = replacement->new;
2354 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2355 SET_SRC (x) = replacement->new
2356 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2358 else
2359 SET_SRC (x) = replacement->new
2360 = fixup_stack_1 (SET_SRC (x), insn);
2363 if (recog_memoized (insn) >= 0)
2364 return;
2366 /* INSN is not valid, but we know that we want to
2367 copy SET_SRC (x) to SET_DEST (x) in some way. So
2368 we generate the move and see whether it requires more
2369 than one insn. If it does, we emit those insns and
2370 delete INSN. Otherwise, we can just replace the pattern
2371 of INSN; we have already verified above that INSN has
2372 no other function that to do X. */
2374 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2375 if (NEXT_INSN (pat) != NULL_RTX)
2377 last = emit_insn_before (pat, insn);
2379 /* INSN might have REG_RETVAL or other important notes, so
2380 we need to store the pattern of the last insn in the
2381 sequence into INSN similarly to the normal case. LAST
2382 should not have REG_NOTES, but we allow them if INSN has
2383 no REG_NOTES. */
2384 if (REG_NOTES (last) && REG_NOTES (insn))
2385 abort ();
2386 if (REG_NOTES (last))
2387 REG_NOTES (insn) = REG_NOTES (last);
2388 PATTERN (insn) = PATTERN (last);
2390 delete_insn (last);
2392 else
2393 PATTERN (insn) = PATTERN (pat);
2395 return;
2398 if ((SET_DEST (x) == var
2399 || (GET_CODE (SET_DEST (x)) == SUBREG
2400 && SUBREG_REG (SET_DEST (x)) == var))
2401 && (GET_CODE (SET_SRC (x)) == REG
2402 || (GET_CODE (SET_SRC (x)) == SUBREG
2403 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2404 && GET_MODE (var) == promoted_mode
2405 && x == single_set (insn))
2407 rtx pat, last;
2409 if (GET_CODE (SET_DEST (x)) == SUBREG)
2410 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2411 promoted_mode, 0);
2412 else
2413 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2415 if (recog_memoized (insn) >= 0)
2416 return;
2418 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2419 if (NEXT_INSN (pat) != NULL_RTX)
2421 last = emit_insn_before (pat, insn);
2423 /* INSN might have REG_RETVAL or other important notes, so
2424 we need to store the pattern of the last insn in the
2425 sequence into INSN similarly to the normal case. LAST
2426 should not have REG_NOTES, but we allow them if INSN has
2427 no REG_NOTES. */
2428 if (REG_NOTES (last) && REG_NOTES (insn))
2429 abort ();
2430 if (REG_NOTES (last))
2431 REG_NOTES (insn) = REG_NOTES (last);
2432 PATTERN (insn) = PATTERN (last);
2434 delete_insn (last);
2436 else
2437 PATTERN (insn) = PATTERN (pat);
2439 return;
2442 /* Otherwise, storing into VAR must be handled specially
2443 by storing into a temporary and copying that into VAR
2444 with a new insn after this one. Note that this case
2445 will be used when storing into a promoted scalar since
2446 the insn will now have different modes on the input
2447 and output and hence will be invalid (except for the case
2448 of setting it to a constant, which does not need any
2449 change if it is valid). We generate extra code in that case,
2450 but combine.c will eliminate it. */
2452 if (dest == var)
2454 rtx temp;
2455 rtx fixeddest = SET_DEST (x);
2456 enum machine_mode temp_mode;
2458 /* STRICT_LOW_PART can be discarded, around a MEM. */
2459 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2460 fixeddest = XEXP (fixeddest, 0);
2461 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2462 if (GET_CODE (fixeddest) == SUBREG)
2464 fixeddest = fixup_memory_subreg (fixeddest, insn,
2465 promoted_mode, 0);
2466 temp_mode = GET_MODE (fixeddest);
2468 else
2470 fixeddest = fixup_stack_1 (fixeddest, insn);
2471 temp_mode = promoted_mode;
2474 temp = gen_reg_rtx (temp_mode);
2476 emit_insn_after (gen_move_insn (fixeddest,
2477 gen_lowpart (GET_MODE (fixeddest),
2478 temp)),
2479 insn);
2481 SET_DEST (x) = temp;
2485 default:
2486 break;
2489 /* Nothing special about this RTX; fix its operands. */
2491 fmt = GET_RTX_FORMAT (code);
2492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2494 if (fmt[i] == 'e')
2495 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2496 no_share);
2497 else if (fmt[i] == 'E')
2499 int j;
2500 for (j = 0; j < XVECLEN (x, i); j++)
2501 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2502 insn, replacements, no_share);
2507 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2508 The REG was placed on the stack, so X now has the form (SUBREG:m1
2509 (MEM:m2 ...)).
2511 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2512 must be emitted to compute NEWADDR, put them before INSN.
2514 UNCRITICAL nonzero means accept paradoxical subregs.
2515 This is used for subregs found inside REG_NOTES. */
2517 static rtx
2518 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2519 rtx x;
2520 rtx insn;
2521 enum machine_mode promoted_mode;
2522 int uncritical;
2524 int offset;
2525 rtx mem = SUBREG_REG (x);
2526 rtx addr = XEXP (mem, 0);
2527 enum machine_mode mode = GET_MODE (x);
2528 rtx result, seq;
2530 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2531 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2532 abort ();
2534 offset = SUBREG_BYTE (x);
2535 if (BYTES_BIG_ENDIAN)
2536 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2537 the offset so that it points to the right location within the
2538 MEM. */
2539 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2541 if (!flag_force_addr
2542 && memory_address_p (mode, plus_constant (addr, offset)))
2543 /* Shortcut if no insns need be emitted. */
2544 return adjust_address (mem, mode, offset);
2546 start_sequence ();
2547 result = adjust_address (mem, mode, offset);
2548 seq = get_insns ();
2549 end_sequence ();
2551 emit_insn_before (seq, insn);
2552 return result;
2555 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2556 Replace subexpressions of X in place.
2557 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2558 Otherwise return X, with its contents possibly altered.
2560 INSN, PROMOTED_MODE and UNCRITICAL are as for
2561 fixup_memory_subreg. */
2563 static rtx
2564 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2565 rtx x;
2566 rtx insn;
2567 enum machine_mode promoted_mode;
2568 int uncritical;
2570 enum rtx_code code;
2571 const char *fmt;
2572 int i;
2574 if (x == 0)
2575 return 0;
2577 code = GET_CODE (x);
2579 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2580 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2582 /* Nothing special about this RTX; fix its operands. */
2584 fmt = GET_RTX_FORMAT (code);
2585 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2587 if (fmt[i] == 'e')
2588 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2589 promoted_mode, uncritical);
2590 else if (fmt[i] == 'E')
2592 int j;
2593 for (j = 0; j < XVECLEN (x, i); j++)
2594 XVECEXP (x, i, j)
2595 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2596 promoted_mode, uncritical);
2599 return x;
2602 /* For each memory ref within X, if it refers to a stack slot
2603 with an out of range displacement, put the address in a temp register
2604 (emitting new insns before INSN to load these registers)
2605 and alter the memory ref to use that register.
2606 Replace each such MEM rtx with a copy, to avoid clobberage. */
2608 static rtx
2609 fixup_stack_1 (x, insn)
2610 rtx x;
2611 rtx insn;
2613 int i;
2614 RTX_CODE code = GET_CODE (x);
2615 const char *fmt;
2617 if (code == MEM)
2619 rtx ad = XEXP (x, 0);
2620 /* If we have address of a stack slot but it's not valid
2621 (displacement is too large), compute the sum in a register. */
2622 if (GET_CODE (ad) == PLUS
2623 && GET_CODE (XEXP (ad, 0)) == REG
2624 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2625 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2626 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2627 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2628 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2629 #endif
2630 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2631 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2632 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2633 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2635 rtx temp, seq;
2636 if (memory_address_p (GET_MODE (x), ad))
2637 return x;
2639 start_sequence ();
2640 temp = copy_to_reg (ad);
2641 seq = get_insns ();
2642 end_sequence ();
2643 emit_insn_before (seq, insn);
2644 return replace_equiv_address (x, temp);
2646 return x;
2649 fmt = GET_RTX_FORMAT (code);
2650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2652 if (fmt[i] == 'e')
2653 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2654 else if (fmt[i] == 'E')
2656 int j;
2657 for (j = 0; j < XVECLEN (x, i); j++)
2658 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2661 return x;
2664 /* Optimization: a bit-field instruction whose field
2665 happens to be a byte or halfword in memory
2666 can be changed to a move instruction.
2668 We call here when INSN is an insn to examine or store into a bit-field.
2669 BODY is the SET-rtx to be altered.
2671 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2672 (Currently this is called only from function.c, and EQUIV_MEM
2673 is always 0.) */
2675 static void
2676 optimize_bit_field (body, insn, equiv_mem)
2677 rtx body;
2678 rtx insn;
2679 rtx *equiv_mem;
2681 rtx bitfield;
2682 int destflag;
2683 rtx seq = 0;
2684 enum machine_mode mode;
2686 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2687 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2688 bitfield = SET_DEST (body), destflag = 1;
2689 else
2690 bitfield = SET_SRC (body), destflag = 0;
2692 /* First check that the field being stored has constant size and position
2693 and is in fact a byte or halfword suitably aligned. */
2695 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2696 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2697 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2698 != BLKmode)
2699 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2701 rtx memref = 0;
2703 /* Now check that the containing word is memory, not a register,
2704 and that it is safe to change the machine mode. */
2706 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2707 memref = XEXP (bitfield, 0);
2708 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2709 && equiv_mem != 0)
2710 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2711 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2712 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2713 memref = SUBREG_REG (XEXP (bitfield, 0));
2714 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2715 && equiv_mem != 0
2716 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2717 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2719 if (memref
2720 && ! mode_dependent_address_p (XEXP (memref, 0))
2721 && ! MEM_VOLATILE_P (memref))
2723 /* Now adjust the address, first for any subreg'ing
2724 that we are now getting rid of,
2725 and then for which byte of the word is wanted. */
2727 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2728 rtx insns;
2730 /* Adjust OFFSET to count bits from low-address byte. */
2731 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2732 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2733 - offset - INTVAL (XEXP (bitfield, 1)));
2735 /* Adjust OFFSET to count bytes from low-address byte. */
2736 offset /= BITS_PER_UNIT;
2737 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2739 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2740 / UNITS_PER_WORD) * UNITS_PER_WORD;
2741 if (BYTES_BIG_ENDIAN)
2742 offset -= (MIN (UNITS_PER_WORD,
2743 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2744 - MIN (UNITS_PER_WORD,
2745 GET_MODE_SIZE (GET_MODE (memref))));
2748 start_sequence ();
2749 memref = adjust_address (memref, mode, offset);
2750 insns = get_insns ();
2751 end_sequence ();
2752 emit_insn_before (insns, insn);
2754 /* Store this memory reference where
2755 we found the bit field reference. */
2757 if (destflag)
2759 validate_change (insn, &SET_DEST (body), memref, 1);
2760 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2762 rtx src = SET_SRC (body);
2763 while (GET_CODE (src) == SUBREG
2764 && SUBREG_BYTE (src) == 0)
2765 src = SUBREG_REG (src);
2766 if (GET_MODE (src) != GET_MODE (memref))
2767 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2768 validate_change (insn, &SET_SRC (body), src, 1);
2770 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2771 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2772 /* This shouldn't happen because anything that didn't have
2773 one of these modes should have got converted explicitly
2774 and then referenced through a subreg.
2775 This is so because the original bit-field was
2776 handled by agg_mode and so its tree structure had
2777 the same mode that memref now has. */
2778 abort ();
2780 else
2782 rtx dest = SET_DEST (body);
2784 while (GET_CODE (dest) == SUBREG
2785 && SUBREG_BYTE (dest) == 0
2786 && (GET_MODE_CLASS (GET_MODE (dest))
2787 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2788 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2789 <= UNITS_PER_WORD))
2790 dest = SUBREG_REG (dest);
2792 validate_change (insn, &SET_DEST (body), dest, 1);
2794 if (GET_MODE (dest) == GET_MODE (memref))
2795 validate_change (insn, &SET_SRC (body), memref, 1);
2796 else
2798 /* Convert the mem ref to the destination mode. */
2799 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2801 start_sequence ();
2802 convert_move (newreg, memref,
2803 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2804 seq = get_insns ();
2805 end_sequence ();
2807 validate_change (insn, &SET_SRC (body), newreg, 1);
2811 /* See if we can convert this extraction or insertion into
2812 a simple move insn. We might not be able to do so if this
2813 was, for example, part of a PARALLEL.
2815 If we succeed, write out any needed conversions. If we fail,
2816 it is hard to guess why we failed, so don't do anything
2817 special; just let the optimization be suppressed. */
2819 if (apply_change_group () && seq)
2820 emit_insn_before (seq, insn);
2825 /* These routines are responsible for converting virtual register references
2826 to the actual hard register references once RTL generation is complete.
2828 The following four variables are used for communication between the
2829 routines. They contain the offsets of the virtual registers from their
2830 respective hard registers. */
2832 static int in_arg_offset;
2833 static int var_offset;
2834 static int dynamic_offset;
2835 static int out_arg_offset;
2836 static int cfa_offset;
2838 /* In most machines, the stack pointer register is equivalent to the bottom
2839 of the stack. */
2841 #ifndef STACK_POINTER_OFFSET
2842 #define STACK_POINTER_OFFSET 0
2843 #endif
2845 /* If not defined, pick an appropriate default for the offset of dynamically
2846 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2847 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2849 #ifndef STACK_DYNAMIC_OFFSET
2851 /* The bottom of the stack points to the actual arguments. If
2852 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2853 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2854 stack space for register parameters is not pushed by the caller, but
2855 rather part of the fixed stack areas and hence not included in
2856 `current_function_outgoing_args_size'. Nevertheless, we must allow
2857 for it when allocating stack dynamic objects. */
2859 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2860 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2861 ((ACCUMULATE_OUTGOING_ARGS \
2862 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2863 + (STACK_POINTER_OFFSET)) \
2865 #else
2866 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2867 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2868 + (STACK_POINTER_OFFSET))
2869 #endif
2870 #endif
2872 /* On most machines, the CFA coincides with the first incoming parm. */
2874 #ifndef ARG_POINTER_CFA_OFFSET
2875 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2876 #endif
2878 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2879 had its address taken. DECL is the decl or SAVE_EXPR for the
2880 object stored in the register, for later use if we do need to force
2881 REG into the stack. REG is overwritten by the MEM like in
2882 put_reg_into_stack. RESCAN is true if previously emitted
2883 instructions must be rescanned and modified now that the REG has
2884 been transformed. */
2887 gen_mem_addressof (reg, decl, rescan)
2888 rtx reg;
2889 tree decl;
2890 int rescan;
2892 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2893 REGNO (reg), decl);
2895 /* Calculate this before we start messing with decl's RTL. */
2896 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2898 /* If the original REG was a user-variable, then so is the REG whose
2899 address is being taken. Likewise for unchanging. */
2900 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2901 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2903 PUT_CODE (reg, MEM);
2904 MEM_ATTRS (reg) = 0;
2905 XEXP (reg, 0) = r;
2907 if (decl)
2909 tree type = TREE_TYPE (decl);
2910 enum machine_mode decl_mode
2911 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2912 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2913 : DECL_RTL_IF_SET (decl));
2915 PUT_MODE (reg, decl_mode);
2917 /* Clear DECL_RTL momentarily so functions below will work
2918 properly, then set it again. */
2919 if (DECL_P (decl) && decl_rtl == reg)
2920 SET_DECL_RTL (decl, 0);
2922 set_mem_attributes (reg, decl, 1);
2923 set_mem_alias_set (reg, set);
2925 if (DECL_P (decl) && decl_rtl == reg)
2926 SET_DECL_RTL (decl, reg);
2928 if (rescan
2929 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2930 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2932 else if (rescan)
2933 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2935 return reg;
2938 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2940 void
2941 flush_addressof (decl)
2942 tree decl;
2944 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2945 && DECL_RTL (decl) != 0
2946 && GET_CODE (DECL_RTL (decl)) == MEM
2947 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2948 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2949 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2952 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2954 static void
2955 put_addressof_into_stack (r, ht)
2956 rtx r;
2957 htab_t ht;
2959 tree decl, type;
2960 int volatile_p, used_p;
2962 rtx reg = XEXP (r, 0);
2964 if (GET_CODE (reg) != REG)
2965 abort ();
2967 decl = ADDRESSOF_DECL (r);
2968 if (decl)
2970 type = TREE_TYPE (decl);
2971 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2972 && TREE_THIS_VOLATILE (decl));
2973 used_p = (TREE_USED (decl)
2974 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2976 else
2978 type = NULL_TREE;
2979 volatile_p = 0;
2980 used_p = 1;
2983 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2984 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2987 /* List of replacements made below in purge_addressof_1 when creating
2988 bitfield insertions. */
2989 static rtx purge_bitfield_addressof_replacements;
2991 /* List of replacements made below in purge_addressof_1 for patterns
2992 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2993 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2994 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2995 enough in complex cases, e.g. when some field values can be
2996 extracted by usage MEM with narrower mode. */
2997 static rtx purge_addressof_replacements;
2999 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3000 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3001 the stack. If the function returns FALSE then the replacement could not
3002 be made. */
3004 static bool
3005 purge_addressof_1 (loc, insn, force, store, ht)
3006 rtx *loc;
3007 rtx insn;
3008 int force, store;
3009 htab_t ht;
3011 rtx x;
3012 RTX_CODE code;
3013 int i, j;
3014 const char *fmt;
3015 bool result = true;
3017 /* Re-start here to avoid recursion in common cases. */
3018 restart:
3020 x = *loc;
3021 if (x == 0)
3022 return true;
3024 code = GET_CODE (x);
3026 /* If we don't return in any of the cases below, we will recurse inside
3027 the RTX, which will normally result in any ADDRESSOF being forced into
3028 memory. */
3029 if (code == SET)
3031 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3032 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3033 return result;
3035 else if (code == ADDRESSOF)
3037 rtx sub, insns;
3039 if (GET_CODE (XEXP (x, 0)) != MEM)
3040 put_addressof_into_stack (x, ht);
3042 /* We must create a copy of the rtx because it was created by
3043 overwriting a REG rtx which is always shared. */
3044 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3045 if (validate_change (insn, loc, sub, 0)
3046 || validate_replace_rtx (x, sub, insn))
3047 return true;
3049 start_sequence ();
3050 sub = force_operand (sub, NULL_RTX);
3051 if (! validate_change (insn, loc, sub, 0)
3052 && ! validate_replace_rtx (x, sub, insn))
3053 abort ();
3055 insns = get_insns ();
3056 end_sequence ();
3057 emit_insn_before (insns, insn);
3058 return true;
3061 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3063 rtx sub = XEXP (XEXP (x, 0), 0);
3065 if (GET_CODE (sub) == MEM)
3066 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3067 else if (GET_CODE (sub) == REG
3068 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3070 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3072 int size_x, size_sub;
3074 if (!insn)
3076 /* When processing REG_NOTES look at the list of
3077 replacements done on the insn to find the register that X
3078 was replaced by. */
3079 rtx tem;
3081 for (tem = purge_bitfield_addressof_replacements;
3082 tem != NULL_RTX;
3083 tem = XEXP (XEXP (tem, 1), 1))
3084 if (rtx_equal_p (x, XEXP (tem, 0)))
3086 *loc = XEXP (XEXP (tem, 1), 0);
3087 return true;
3090 /* See comment for purge_addressof_replacements. */
3091 for (tem = purge_addressof_replacements;
3092 tem != NULL_RTX;
3093 tem = XEXP (XEXP (tem, 1), 1))
3094 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3096 rtx z = XEXP (XEXP (tem, 1), 0);
3098 if (GET_MODE (x) == GET_MODE (z)
3099 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3100 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3101 abort ();
3103 /* It can happen that the note may speak of things
3104 in a wider (or just different) mode than the
3105 code did. This is especially true of
3106 REG_RETVAL. */
3108 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3109 z = SUBREG_REG (z);
3111 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3112 && (GET_MODE_SIZE (GET_MODE (x))
3113 > GET_MODE_SIZE (GET_MODE (z))))
3115 /* This can occur as a result in invalid
3116 pointer casts, e.g. float f; ...
3117 *(long long int *)&f.
3118 ??? We could emit a warning here, but
3119 without a line number that wouldn't be
3120 very helpful. */
3121 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3123 else
3124 z = gen_lowpart (GET_MODE (x), z);
3126 *loc = z;
3127 return true;
3130 /* Sometimes we may not be able to find the replacement. For
3131 example when the original insn was a MEM in a wider mode,
3132 and the note is part of a sign extension of a narrowed
3133 version of that MEM. Gcc testcase compile/990829-1.c can
3134 generate an example of this situation. Rather than complain
3135 we return false, which will prompt our caller to remove the
3136 offending note. */
3137 return false;
3140 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3141 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3143 /* Don't even consider working with paradoxical subregs,
3144 or the moral equivalent seen here. */
3145 if (size_x <= size_sub
3146 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3148 /* Do a bitfield insertion to mirror what would happen
3149 in memory. */
3151 rtx val, seq;
3153 if (store)
3155 rtx p = PREV_INSN (insn);
3157 start_sequence ();
3158 val = gen_reg_rtx (GET_MODE (x));
3159 if (! validate_change (insn, loc, val, 0))
3161 /* Discard the current sequence and put the
3162 ADDRESSOF on stack. */
3163 end_sequence ();
3164 goto give_up;
3166 seq = get_insns ();
3167 end_sequence ();
3168 emit_insn_before (seq, insn);
3169 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3170 insn, ht);
3172 start_sequence ();
3173 store_bit_field (sub, size_x, 0, GET_MODE (x),
3174 val, GET_MODE_SIZE (GET_MODE (sub)));
3176 /* Make sure to unshare any shared rtl that store_bit_field
3177 might have created. */
3178 unshare_all_rtl_again (get_insns ());
3180 seq = get_insns ();
3181 end_sequence ();
3182 p = emit_insn_after (seq, insn);
3183 if (NEXT_INSN (insn))
3184 compute_insns_for_mem (NEXT_INSN (insn),
3185 p ? NEXT_INSN (p) : NULL_RTX,
3186 ht);
3188 else
3190 rtx p = PREV_INSN (insn);
3192 start_sequence ();
3193 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3194 GET_MODE (x), GET_MODE (x),
3195 GET_MODE_SIZE (GET_MODE (sub)));
3197 if (! validate_change (insn, loc, val, 0))
3199 /* Discard the current sequence and put the
3200 ADDRESSOF on stack. */
3201 end_sequence ();
3202 goto give_up;
3205 seq = get_insns ();
3206 end_sequence ();
3207 emit_insn_before (seq, insn);
3208 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3209 insn, ht);
3212 /* Remember the replacement so that the same one can be done
3213 on the REG_NOTES. */
3214 purge_bitfield_addressof_replacements
3215 = gen_rtx_EXPR_LIST (VOIDmode, x,
3216 gen_rtx_EXPR_LIST
3217 (VOIDmode, val,
3218 purge_bitfield_addressof_replacements));
3220 /* We replaced with a reg -- all done. */
3221 return true;
3225 else if (validate_change (insn, loc, sub, 0))
3227 /* Remember the replacement so that the same one can be done
3228 on the REG_NOTES. */
3229 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3231 rtx tem;
3233 for (tem = purge_addressof_replacements;
3234 tem != NULL_RTX;
3235 tem = XEXP (XEXP (tem, 1), 1))
3236 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3238 XEXP (XEXP (tem, 1), 0) = sub;
3239 return true;
3241 purge_addressof_replacements
3242 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3243 gen_rtx_EXPR_LIST (VOIDmode, sub,
3244 purge_addressof_replacements));
3245 return true;
3247 goto restart;
3251 give_up:
3252 /* Scan all subexpressions. */
3253 fmt = GET_RTX_FORMAT (code);
3254 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3256 if (*fmt == 'e')
3257 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3258 else if (*fmt == 'E')
3259 for (j = 0; j < XVECLEN (x, i); j++)
3260 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3263 return result;
3266 /* Return a hash value for K, a REG. */
3268 static hashval_t
3269 insns_for_mem_hash (k)
3270 const void * k;
3272 /* Use the address of the key for the hash value. */
3273 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3274 return htab_hash_pointer (m->key);
3277 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3279 static int
3280 insns_for_mem_comp (k1, k2)
3281 const void * k1;
3282 const void * k2;
3284 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3285 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3286 return m1->key == m2->key;
3289 struct insns_for_mem_walk_info
3291 /* The hash table that we are using to record which INSNs use which
3292 MEMs. */
3293 htab_t ht;
3295 /* The INSN we are currently processing. */
3296 rtx insn;
3298 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3299 to find the insns that use the REGs in the ADDRESSOFs. */
3300 int pass;
3303 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3304 that might be used in an ADDRESSOF expression, record this INSN in
3305 the hash table given by DATA (which is really a pointer to an
3306 insns_for_mem_walk_info structure). */
3308 static int
3309 insns_for_mem_walk (r, data)
3310 rtx *r;
3311 void *data;
3313 struct insns_for_mem_walk_info *ifmwi
3314 = (struct insns_for_mem_walk_info *) data;
3315 struct insns_for_mem_entry tmp;
3316 tmp.insns = NULL_RTX;
3318 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3319 && GET_CODE (XEXP (*r, 0)) == REG)
3321 PTR *e;
3322 tmp.key = XEXP (*r, 0);
3323 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3324 if (*e == NULL)
3326 *e = ggc_alloc (sizeof (tmp));
3327 memcpy (*e, &tmp, sizeof (tmp));
3330 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3332 struct insns_for_mem_entry *ifme;
3333 tmp.key = *r;
3334 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3336 /* If we have not already recorded this INSN, do so now. Since
3337 we process the INSNs in order, we know that if we have
3338 recorded it it must be at the front of the list. */
3339 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3340 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3341 ifme->insns);
3344 return 0;
3347 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3348 which REGs in HT. */
3350 static void
3351 compute_insns_for_mem (insns, last_insn, ht)
3352 rtx insns;
3353 rtx last_insn;
3354 htab_t ht;
3356 rtx insn;
3357 struct insns_for_mem_walk_info ifmwi;
3358 ifmwi.ht = ht;
3360 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3361 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3362 if (INSN_P (insn))
3364 ifmwi.insn = insn;
3365 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3369 /* Helper function for purge_addressof called through for_each_rtx.
3370 Returns true iff the rtl is an ADDRESSOF. */
3372 static int
3373 is_addressof (rtl, data)
3374 rtx *rtl;
3375 void *data ATTRIBUTE_UNUSED;
3377 return GET_CODE (*rtl) == ADDRESSOF;
3380 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3381 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3382 stack. */
3384 void
3385 purge_addressof (insns)
3386 rtx insns;
3388 rtx insn;
3389 htab_t ht;
3391 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3392 requires a fixup pass over the instruction stream to correct
3393 INSNs that depended on the REG being a REG, and not a MEM. But,
3394 these fixup passes are slow. Furthermore, most MEMs are not
3395 mentioned in very many instructions. So, we speed up the process
3396 by pre-calculating which REGs occur in which INSNs; that allows
3397 us to perform the fixup passes much more quickly. */
3398 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3399 compute_insns_for_mem (insns, NULL_RTX, ht);
3401 for (insn = insns; insn; insn = NEXT_INSN (insn))
3402 if (INSN_P (insn))
3404 if (! purge_addressof_1 (&PATTERN (insn), insn,
3405 asm_noperands (PATTERN (insn)) > 0, 0, ht))
3406 /* If we could not replace the ADDRESSOFs in the insn,
3407 something is wrong. */
3408 abort ();
3410 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, ht))
3412 /* If we could not replace the ADDRESSOFs in the insn's notes,
3413 we can just remove the offending notes instead. */
3414 rtx note;
3416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3418 /* If we find a REG_RETVAL note then the insn is a libcall.
3419 Such insns must have REG_EQUAL notes as well, in order
3420 for later passes of the compiler to work. So it is not
3421 safe to delete the notes here, and instead we abort. */
3422 if (REG_NOTE_KIND (note) == REG_RETVAL)
3423 abort ();
3424 if (for_each_rtx (&note, is_addressof, NULL))
3425 remove_note (insn, note);
3430 /* Clean up. */
3431 purge_bitfield_addressof_replacements = 0;
3432 purge_addressof_replacements = 0;
3434 /* REGs are shared. purge_addressof will destructively replace a REG
3435 with a MEM, which creates shared MEMs.
3437 Unfortunately, the children of put_reg_into_stack assume that MEMs
3438 referring to the same stack slot are shared (fixup_var_refs and
3439 the associated hash table code).
3441 So, we have to do another unsharing pass after we have flushed any
3442 REGs that had their address taken into the stack.
3444 It may be worth tracking whether or not we converted any REGs into
3445 MEMs to avoid this overhead when it is not needed. */
3446 unshare_all_rtl_again (get_insns ());
3449 /* Convert a SET of a hard subreg to a set of the appropriate hard
3450 register. A subroutine of purge_hard_subreg_sets. */
3452 static void
3453 purge_single_hard_subreg_set (pattern)
3454 rtx pattern;
3456 rtx reg = SET_DEST (pattern);
3457 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3458 int offset = 0;
3460 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3461 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3463 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3464 GET_MODE (SUBREG_REG (reg)),
3465 SUBREG_BYTE (reg),
3466 GET_MODE (reg));
3467 reg = SUBREG_REG (reg);
3471 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3473 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3474 SET_DEST (pattern) = reg;
3478 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3479 only such SETs that we expect to see are those left in because
3480 integrate can't handle sets of parts of a return value register.
3482 We don't use alter_subreg because we only want to eliminate subregs
3483 of hard registers. */
3485 void
3486 purge_hard_subreg_sets (insn)
3487 rtx insn;
3489 for (; insn; insn = NEXT_INSN (insn))
3491 if (INSN_P (insn))
3493 rtx pattern = PATTERN (insn);
3494 switch (GET_CODE (pattern))
3496 case SET:
3497 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3498 purge_single_hard_subreg_set (pattern);
3499 break;
3500 case PARALLEL:
3502 int j;
3503 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3505 rtx inner_pattern = XVECEXP (pattern, 0, j);
3506 if (GET_CODE (inner_pattern) == SET
3507 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3508 purge_single_hard_subreg_set (inner_pattern);
3511 break;
3512 default:
3513 break;
3519 /* Pass through the INSNS of function FNDECL and convert virtual register
3520 references to hard register references. */
3522 void
3523 instantiate_virtual_regs (fndecl, insns)
3524 tree fndecl;
3525 rtx insns;
3527 rtx insn;
3528 unsigned int i;
3530 /* Compute the offsets to use for this function. */
3531 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3532 var_offset = STARTING_FRAME_OFFSET;
3533 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3534 out_arg_offset = STACK_POINTER_OFFSET;
3535 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3537 /* Scan all variables and parameters of this function. For each that is
3538 in memory, instantiate all virtual registers if the result is a valid
3539 address. If not, we do it later. That will handle most uses of virtual
3540 regs on many machines. */
3541 instantiate_decls (fndecl, 1);
3543 /* Initialize recognition, indicating that volatile is OK. */
3544 init_recog ();
3546 /* Scan through all the insns, instantiating every virtual register still
3547 present. */
3548 for (insn = insns; insn; insn = NEXT_INSN (insn))
3549 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3550 || GET_CODE (insn) == CALL_INSN)
3552 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3553 if (INSN_DELETED_P (insn))
3554 continue;
3555 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3556 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3557 if (GET_CODE (insn) == CALL_INSN)
3558 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3559 NULL_RTX, 0);
3562 /* Instantiate the stack slots for the parm registers, for later use in
3563 addressof elimination. */
3564 for (i = 0; i < max_parm_reg; ++i)
3565 if (parm_reg_stack_loc[i])
3566 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3568 /* Now instantiate the remaining register equivalences for debugging info.
3569 These will not be valid addresses. */
3570 instantiate_decls (fndecl, 0);
3572 /* Indicate that, from now on, assign_stack_local should use
3573 frame_pointer_rtx. */
3574 virtuals_instantiated = 1;
3577 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3578 all virtual registers in their DECL_RTL's.
3580 If VALID_ONLY, do this only if the resulting address is still valid.
3581 Otherwise, always do it. */
3583 static void
3584 instantiate_decls (fndecl, valid_only)
3585 tree fndecl;
3586 int valid_only;
3588 tree decl;
3590 /* Process all parameters of the function. */
3591 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3593 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3594 HOST_WIDE_INT size_rtl;
3596 instantiate_decl (DECL_RTL (decl), size, valid_only);
3598 /* If the parameter was promoted, then the incoming RTL mode may be
3599 larger than the declared type size. We must use the larger of
3600 the two sizes. */
3601 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3602 size = MAX (size_rtl, size);
3603 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3606 /* Now process all variables defined in the function or its subblocks. */
3607 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3610 /* Subroutine of instantiate_decls: Process all decls in the given
3611 BLOCK node and all its subblocks. */
3613 static void
3614 instantiate_decls_1 (let, valid_only)
3615 tree let;
3616 int valid_only;
3618 tree t;
3620 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3621 if (DECL_RTL_SET_P (t))
3622 instantiate_decl (DECL_RTL (t),
3623 int_size_in_bytes (TREE_TYPE (t)),
3624 valid_only);
3626 /* Process all subblocks. */
3627 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3628 instantiate_decls_1 (t, valid_only);
3631 /* Subroutine of the preceding procedures: Given RTL representing a
3632 decl and the size of the object, do any instantiation required.
3634 If VALID_ONLY is nonzero, it means that the RTL should only be
3635 changed if the new address is valid. */
3637 static void
3638 instantiate_decl (x, size, valid_only)
3639 rtx x;
3640 HOST_WIDE_INT size;
3641 int valid_only;
3643 enum machine_mode mode;
3644 rtx addr;
3646 /* If this is not a MEM, no need to do anything. Similarly if the
3647 address is a constant or a register that is not a virtual register. */
3649 if (x == 0 || GET_CODE (x) != MEM)
3650 return;
3652 addr = XEXP (x, 0);
3653 if (CONSTANT_P (addr)
3654 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3655 || (GET_CODE (addr) == REG
3656 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3657 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3658 return;
3660 /* If we should only do this if the address is valid, copy the address.
3661 We need to do this so we can undo any changes that might make the
3662 address invalid. This copy is unfortunate, but probably can't be
3663 avoided. */
3665 if (valid_only)
3666 addr = copy_rtx (addr);
3668 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3670 if (valid_only && size >= 0)
3672 unsigned HOST_WIDE_INT decl_size = size;
3674 /* Now verify that the resulting address is valid for every integer or
3675 floating-point mode up to and including SIZE bytes long. We do this
3676 since the object might be accessed in any mode and frame addresses
3677 are shared. */
3679 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3680 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3681 mode = GET_MODE_WIDER_MODE (mode))
3682 if (! memory_address_p (mode, addr))
3683 return;
3685 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3686 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3687 mode = GET_MODE_WIDER_MODE (mode))
3688 if (! memory_address_p (mode, addr))
3689 return;
3692 /* Put back the address now that we have updated it and we either know
3693 it is valid or we don't care whether it is valid. */
3695 XEXP (x, 0) = addr;
3698 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3699 is a virtual register, return the equivalent hard register and set the
3700 offset indirectly through the pointer. Otherwise, return 0. */
3702 static rtx
3703 instantiate_new_reg (x, poffset)
3704 rtx x;
3705 HOST_WIDE_INT *poffset;
3707 rtx new;
3708 HOST_WIDE_INT offset;
3710 if (x == virtual_incoming_args_rtx)
3711 new = arg_pointer_rtx, offset = in_arg_offset;
3712 else if (x == virtual_stack_vars_rtx)
3713 new = frame_pointer_rtx, offset = var_offset;
3714 else if (x == virtual_stack_dynamic_rtx)
3715 new = stack_pointer_rtx, offset = dynamic_offset;
3716 else if (x == virtual_outgoing_args_rtx)
3717 new = stack_pointer_rtx, offset = out_arg_offset;
3718 else if (x == virtual_cfa_rtx)
3719 new = arg_pointer_rtx, offset = cfa_offset;
3720 else
3721 return 0;
3723 *poffset = offset;
3724 return new;
3728 /* Called when instantiate_virtual_regs has failed to update the instruction.
3729 Usually this means that non-matching instruction has been emit, however for
3730 asm statements it may be the problem in the constraints. */
3731 static void
3732 instantiate_virtual_regs_lossage (insn)
3733 rtx insn;
3735 if (asm_noperands (PATTERN (insn)) >= 0)
3737 error_for_asm (insn, "impossible constraint in `asm'");
3738 delete_insn (insn);
3740 else
3741 abort ();
3743 /* Given a pointer to a piece of rtx and an optional pointer to the
3744 containing object, instantiate any virtual registers present in it.
3746 If EXTRA_INSNS, we always do the replacement and generate
3747 any extra insns before OBJECT. If it zero, we do nothing if replacement
3748 is not valid.
3750 Return 1 if we either had nothing to do or if we were able to do the
3751 needed replacement. Return 0 otherwise; we only return zero if
3752 EXTRA_INSNS is zero.
3754 We first try some simple transformations to avoid the creation of extra
3755 pseudos. */
3757 static int
3758 instantiate_virtual_regs_1 (loc, object, extra_insns)
3759 rtx *loc;
3760 rtx object;
3761 int extra_insns;
3763 rtx x;
3764 RTX_CODE code;
3765 rtx new = 0;
3766 HOST_WIDE_INT offset = 0;
3767 rtx temp;
3768 rtx seq;
3769 int i, j;
3770 const char *fmt;
3772 /* Re-start here to avoid recursion in common cases. */
3773 restart:
3775 x = *loc;
3776 if (x == 0)
3777 return 1;
3779 /* We may have detected and deleted invalid asm statements. */
3780 if (object && INSN_P (object) && INSN_DELETED_P (object))
3781 return 1;
3783 code = GET_CODE (x);
3785 /* Check for some special cases. */
3786 switch (code)
3788 case CONST_INT:
3789 case CONST_DOUBLE:
3790 case CONST_VECTOR:
3791 case CONST:
3792 case SYMBOL_REF:
3793 case CODE_LABEL:
3794 case PC:
3795 case CC0:
3796 case ASM_INPUT:
3797 case ADDR_VEC:
3798 case ADDR_DIFF_VEC:
3799 case RETURN:
3800 return 1;
3802 case SET:
3803 /* We are allowed to set the virtual registers. This means that
3804 the actual register should receive the source minus the
3805 appropriate offset. This is used, for example, in the handling
3806 of non-local gotos. */
3807 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3809 rtx src = SET_SRC (x);
3811 /* We are setting the register, not using it, so the relevant
3812 offset is the negative of the offset to use were we using
3813 the register. */
3814 offset = - offset;
3815 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3817 /* The only valid sources here are PLUS or REG. Just do
3818 the simplest possible thing to handle them. */
3819 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3821 instantiate_virtual_regs_lossage (object);
3822 return 1;
3825 start_sequence ();
3826 if (GET_CODE (src) != REG)
3827 temp = force_operand (src, NULL_RTX);
3828 else
3829 temp = src;
3830 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3831 seq = get_insns ();
3832 end_sequence ();
3834 emit_insn_before (seq, object);
3835 SET_DEST (x) = new;
3837 if (! validate_change (object, &SET_SRC (x), temp, 0)
3838 || ! extra_insns)
3839 instantiate_virtual_regs_lossage (object);
3841 return 1;
3844 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3845 loc = &SET_SRC (x);
3846 goto restart;
3848 case PLUS:
3849 /* Handle special case of virtual register plus constant. */
3850 if (CONSTANT_P (XEXP (x, 1)))
3852 rtx old, new_offset;
3854 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3855 if (GET_CODE (XEXP (x, 0)) == PLUS)
3857 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3859 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3860 extra_insns);
3861 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3863 else
3865 loc = &XEXP (x, 0);
3866 goto restart;
3870 #ifdef POINTERS_EXTEND_UNSIGNED
3871 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3872 we can commute the PLUS and SUBREG because pointers into the
3873 frame are well-behaved. */
3874 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3875 && GET_CODE (XEXP (x, 1)) == CONST_INT
3876 && 0 != (new
3877 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3878 &offset))
3879 && validate_change (object, loc,
3880 plus_constant (gen_lowpart (ptr_mode,
3881 new),
3882 offset
3883 + INTVAL (XEXP (x, 1))),
3885 return 1;
3886 #endif
3887 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3889 /* We know the second operand is a constant. Unless the
3890 first operand is a REG (which has been already checked),
3891 it needs to be checked. */
3892 if (GET_CODE (XEXP (x, 0)) != REG)
3894 loc = &XEXP (x, 0);
3895 goto restart;
3897 return 1;
3900 new_offset = plus_constant (XEXP (x, 1), offset);
3902 /* If the new constant is zero, try to replace the sum with just
3903 the register. */
3904 if (new_offset == const0_rtx
3905 && validate_change (object, loc, new, 0))
3906 return 1;
3908 /* Next try to replace the register and new offset.
3909 There are two changes to validate here and we can't assume that
3910 in the case of old offset equals new just changing the register
3911 will yield a valid insn. In the interests of a little efficiency,
3912 however, we only call validate change once (we don't queue up the
3913 changes and then call apply_change_group). */
3915 old = XEXP (x, 0);
3916 if (offset == 0
3917 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3918 : (XEXP (x, 0) = new,
3919 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3921 if (! extra_insns)
3923 XEXP (x, 0) = old;
3924 return 0;
3927 /* Otherwise copy the new constant into a register and replace
3928 constant with that register. */
3929 temp = gen_reg_rtx (Pmode);
3930 XEXP (x, 0) = new;
3931 if (validate_change (object, &XEXP (x, 1), temp, 0))
3932 emit_insn_before (gen_move_insn (temp, new_offset), object);
3933 else
3935 /* If that didn't work, replace this expression with a
3936 register containing the sum. */
3938 XEXP (x, 0) = old;
3939 new = gen_rtx_PLUS (Pmode, new, new_offset);
3941 start_sequence ();
3942 temp = force_operand (new, NULL_RTX);
3943 seq = get_insns ();
3944 end_sequence ();
3946 emit_insn_before (seq, object);
3947 if (! validate_change (object, loc, temp, 0)
3948 && ! validate_replace_rtx (x, temp, object))
3950 instantiate_virtual_regs_lossage (object);
3951 return 1;
3956 return 1;
3959 /* Fall through to generic two-operand expression case. */
3960 case EXPR_LIST:
3961 case CALL:
3962 case COMPARE:
3963 case MINUS:
3964 case MULT:
3965 case DIV: case UDIV:
3966 case MOD: case UMOD:
3967 case AND: case IOR: case XOR:
3968 case ROTATERT: case ROTATE:
3969 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3970 case NE: case EQ:
3971 case GE: case GT: case GEU: case GTU:
3972 case LE: case LT: case LEU: case LTU:
3973 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3974 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3975 loc = &XEXP (x, 0);
3976 goto restart;
3978 case MEM:
3979 /* Most cases of MEM that convert to valid addresses have already been
3980 handled by our scan of decls. The only special handling we
3981 need here is to make a copy of the rtx to ensure it isn't being
3982 shared if we have to change it to a pseudo.
3984 If the rtx is a simple reference to an address via a virtual register,
3985 it can potentially be shared. In such cases, first try to make it
3986 a valid address, which can also be shared. Otherwise, copy it and
3987 proceed normally.
3989 First check for common cases that need no processing. These are
3990 usually due to instantiation already being done on a previous instance
3991 of a shared rtx. */
3993 temp = XEXP (x, 0);
3994 if (CONSTANT_ADDRESS_P (temp)
3995 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3996 || temp == arg_pointer_rtx
3997 #endif
3998 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3999 || temp == hard_frame_pointer_rtx
4000 #endif
4001 || temp == frame_pointer_rtx)
4002 return 1;
4004 if (GET_CODE (temp) == PLUS
4005 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4006 && (XEXP (temp, 0) == frame_pointer_rtx
4007 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4008 || XEXP (temp, 0) == hard_frame_pointer_rtx
4009 #endif
4010 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4011 || XEXP (temp, 0) == arg_pointer_rtx
4012 #endif
4014 return 1;
4016 if (temp == virtual_stack_vars_rtx
4017 || temp == virtual_incoming_args_rtx
4018 || (GET_CODE (temp) == PLUS
4019 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4020 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4021 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4023 /* This MEM may be shared. If the substitution can be done without
4024 the need to generate new pseudos, we want to do it in place
4025 so all copies of the shared rtx benefit. The call below will
4026 only make substitutions if the resulting address is still
4027 valid.
4029 Note that we cannot pass X as the object in the recursive call
4030 since the insn being processed may not allow all valid
4031 addresses. However, if we were not passed on object, we can
4032 only modify X without copying it if X will have a valid
4033 address.
4035 ??? Also note that this can still lose if OBJECT is an insn that
4036 has less restrictions on an address that some other insn.
4037 In that case, we will modify the shared address. This case
4038 doesn't seem very likely, though. One case where this could
4039 happen is in the case of a USE or CLOBBER reference, but we
4040 take care of that below. */
4042 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4043 object ? object : x, 0))
4044 return 1;
4046 /* Otherwise make a copy and process that copy. We copy the entire
4047 RTL expression since it might be a PLUS which could also be
4048 shared. */
4049 *loc = x = copy_rtx (x);
4052 /* Fall through to generic unary operation case. */
4053 case PREFETCH:
4054 case SUBREG:
4055 case STRICT_LOW_PART:
4056 case NEG: case NOT:
4057 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4058 case SIGN_EXTEND: case ZERO_EXTEND:
4059 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4060 case FLOAT: case FIX:
4061 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4062 case ABS:
4063 case SQRT:
4064 case FFS:
4065 case CLZ: case CTZ:
4066 case POPCOUNT: case PARITY:
4067 /* These case either have just one operand or we know that we need not
4068 check the rest of the operands. */
4069 loc = &XEXP (x, 0);
4070 goto restart;
4072 case USE:
4073 case CLOBBER:
4074 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4075 go ahead and make the invalid one, but do it to a copy. For a REG,
4076 just make the recursive call, since there's no chance of a problem. */
4078 if ((GET_CODE (XEXP (x, 0)) == MEM
4079 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4081 || (GET_CODE (XEXP (x, 0)) == REG
4082 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4083 return 1;
4085 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4086 loc = &XEXP (x, 0);
4087 goto restart;
4089 case REG:
4090 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4091 in front of this insn and substitute the temporary. */
4092 if ((new = instantiate_new_reg (x, &offset)) != 0)
4094 temp = plus_constant (new, offset);
4095 if (!validate_change (object, loc, temp, 0))
4097 if (! extra_insns)
4098 return 0;
4100 start_sequence ();
4101 temp = force_operand (temp, NULL_RTX);
4102 seq = get_insns ();
4103 end_sequence ();
4105 emit_insn_before (seq, object);
4106 if (! validate_change (object, loc, temp, 0)
4107 && ! validate_replace_rtx (x, temp, object))
4108 instantiate_virtual_regs_lossage (object);
4112 return 1;
4114 case ADDRESSOF:
4115 if (GET_CODE (XEXP (x, 0)) == REG)
4116 return 1;
4118 else if (GET_CODE (XEXP (x, 0)) == MEM)
4120 /* If we have a (addressof (mem ..)), do any instantiation inside
4121 since we know we'll be making the inside valid when we finally
4122 remove the ADDRESSOF. */
4123 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4124 return 1;
4126 break;
4128 default:
4129 break;
4132 /* Scan all subexpressions. */
4133 fmt = GET_RTX_FORMAT (code);
4134 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4135 if (*fmt == 'e')
4137 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4138 return 0;
4140 else if (*fmt == 'E')
4141 for (j = 0; j < XVECLEN (x, i); j++)
4142 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4143 extra_insns))
4144 return 0;
4146 return 1;
4149 /* Optimization: assuming this function does not receive nonlocal gotos,
4150 delete the handlers for such, as well as the insns to establish
4151 and disestablish them. */
4153 static void
4154 delete_handlers ()
4156 rtx insn;
4157 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4159 /* Delete the handler by turning off the flag that would
4160 prevent jump_optimize from deleting it.
4161 Also permit deletion of the nonlocal labels themselves
4162 if nothing local refers to them. */
4163 if (GET_CODE (insn) == CODE_LABEL)
4165 tree t, last_t;
4167 LABEL_PRESERVE_P (insn) = 0;
4169 /* Remove it from the nonlocal_label list, to avoid confusing
4170 flow. */
4171 for (t = nonlocal_labels, last_t = 0; t;
4172 last_t = t, t = TREE_CHAIN (t))
4173 if (DECL_RTL (TREE_VALUE (t)) == insn)
4174 break;
4175 if (t)
4177 if (! last_t)
4178 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4179 else
4180 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4183 if (GET_CODE (insn) == INSN)
4185 int can_delete = 0;
4186 rtx t;
4187 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4188 if (reg_mentioned_p (t, PATTERN (insn)))
4190 can_delete = 1;
4191 break;
4193 if (can_delete
4194 || (nonlocal_goto_stack_level != 0
4195 && reg_mentioned_p (nonlocal_goto_stack_level,
4196 PATTERN (insn))))
4197 delete_related_insns (insn);
4202 /* Return the first insn following those generated by `assign_parms'. */
4205 get_first_nonparm_insn ()
4207 if (last_parm_insn)
4208 return NEXT_INSN (last_parm_insn);
4209 return get_insns ();
4212 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4213 This means a type for which function calls must pass an address to the
4214 function or get an address back from the function.
4215 EXP may be a type node or an expression (whose type is tested). */
4218 aggregate_value_p (exp)
4219 tree exp;
4221 int i, regno, nregs;
4222 rtx reg;
4224 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4226 if (TREE_CODE (type) == VOID_TYPE)
4227 return 0;
4228 if (RETURN_IN_MEMORY (type))
4229 return 1;
4230 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4231 and thus can't be returned in registers. */
4232 if (TREE_ADDRESSABLE (type))
4233 return 1;
4234 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4235 return 1;
4236 /* Make sure we have suitable call-clobbered regs to return
4237 the value in; if not, we must return it in memory. */
4238 reg = hard_function_value (type, 0, 0);
4240 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4241 it is OK. */
4242 if (GET_CODE (reg) != REG)
4243 return 0;
4245 regno = REGNO (reg);
4246 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4247 for (i = 0; i < nregs; i++)
4248 if (! call_used_regs[regno + i])
4249 return 1;
4250 return 0;
4253 /* Assign RTL expressions to the function's parameters.
4254 This may involve copying them into registers and using
4255 those registers as the RTL for them. */
4257 void
4258 assign_parms (fndecl)
4259 tree fndecl;
4261 tree parm;
4262 rtx entry_parm = 0;
4263 rtx stack_parm = 0;
4264 CUMULATIVE_ARGS args_so_far;
4265 enum machine_mode promoted_mode, passed_mode;
4266 enum machine_mode nominal_mode, promoted_nominal_mode;
4267 int unsignedp;
4268 /* Total space needed so far for args on the stack,
4269 given as a constant and a tree-expression. */
4270 struct args_size stack_args_size;
4271 tree fntype = TREE_TYPE (fndecl);
4272 tree fnargs = DECL_ARGUMENTS (fndecl);
4273 /* This is used for the arg pointer when referring to stack args. */
4274 rtx internal_arg_pointer;
4275 /* This is a dummy PARM_DECL that we used for the function result if
4276 the function returns a structure. */
4277 tree function_result_decl = 0;
4278 #ifdef SETUP_INCOMING_VARARGS
4279 int varargs_setup = 0;
4280 #endif
4281 rtx conversion_insns = 0;
4282 struct args_size alignment_pad;
4284 /* Nonzero if function takes extra anonymous args.
4285 This means the last named arg must be on the stack
4286 right before the anonymous ones. */
4287 int stdarg
4288 = (TYPE_ARG_TYPES (fntype) != 0
4289 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4290 != void_type_node));
4292 current_function_stdarg = stdarg;
4294 /* If the reg that the virtual arg pointer will be translated into is
4295 not a fixed reg or is the stack pointer, make a copy of the virtual
4296 arg pointer, and address parms via the copy. The frame pointer is
4297 considered fixed even though it is not marked as such.
4299 The second time through, simply use ap to avoid generating rtx. */
4301 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4302 || ! (fixed_regs[ARG_POINTER_REGNUM]
4303 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4304 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4305 else
4306 internal_arg_pointer = virtual_incoming_args_rtx;
4307 current_function_internal_arg_pointer = internal_arg_pointer;
4309 stack_args_size.constant = 0;
4310 stack_args_size.var = 0;
4312 /* If struct value address is treated as the first argument, make it so. */
4313 if (aggregate_value_p (DECL_RESULT (fndecl))
4314 && ! current_function_returns_pcc_struct
4315 && struct_value_incoming_rtx == 0)
4317 tree type = build_pointer_type (TREE_TYPE (fntype));
4319 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4321 DECL_ARG_TYPE (function_result_decl) = type;
4322 TREE_CHAIN (function_result_decl) = fnargs;
4323 fnargs = function_result_decl;
4326 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4327 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4329 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4330 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4331 #else
4332 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4333 #endif
4335 /* We haven't yet found an argument that we must push and pretend the
4336 caller did. */
4337 current_function_pretend_args_size = 0;
4339 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4341 struct args_size stack_offset;
4342 struct args_size arg_size;
4343 int passed_pointer = 0;
4344 int did_conversion = 0;
4345 tree passed_type = DECL_ARG_TYPE (parm);
4346 tree nominal_type = TREE_TYPE (parm);
4347 int pretend_named;
4348 int last_named = 0, named_arg;
4350 /* Set LAST_NAMED if this is last named arg before last
4351 anonymous args. */
4352 if (stdarg)
4354 tree tem;
4356 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4357 if (DECL_NAME (tem))
4358 break;
4360 if (tem == 0)
4361 last_named = 1;
4363 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4364 most machines, if this is a varargs/stdarg function, then we treat
4365 the last named arg as if it were anonymous too. */
4366 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4368 if (TREE_TYPE (parm) == error_mark_node
4369 /* This can happen after weird syntax errors
4370 or if an enum type is defined among the parms. */
4371 || TREE_CODE (parm) != PARM_DECL
4372 || passed_type == NULL)
4374 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4375 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4376 TREE_USED (parm) = 1;
4377 continue;
4380 /* Find mode of arg as it is passed, and mode of arg
4381 as it should be during execution of this function. */
4382 passed_mode = TYPE_MODE (passed_type);
4383 nominal_mode = TYPE_MODE (nominal_type);
4385 /* If the parm's mode is VOID, its value doesn't matter,
4386 and avoid the usual things like emit_move_insn that could crash. */
4387 if (nominal_mode == VOIDmode)
4389 SET_DECL_RTL (parm, const0_rtx);
4390 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4391 continue;
4394 /* If the parm is to be passed as a transparent union, use the
4395 type of the first field for the tests below. We have already
4396 verified that the modes are the same. */
4397 if (DECL_TRANSPARENT_UNION (parm)
4398 || (TREE_CODE (passed_type) == UNION_TYPE
4399 && TYPE_TRANSPARENT_UNION (passed_type)))
4400 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4402 /* See if this arg was passed by invisible reference. It is if
4403 it is an object whose size depends on the contents of the
4404 object itself or if the machine requires these objects be passed
4405 that way. */
4407 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4408 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4409 || TREE_ADDRESSABLE (passed_type)
4410 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4411 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4412 passed_type, named_arg)
4413 #endif
4416 passed_type = nominal_type = build_pointer_type (passed_type);
4417 passed_pointer = 1;
4418 passed_mode = nominal_mode = Pmode;
4420 /* See if the frontend wants to pass this by invisible reference. */
4421 else if (passed_type != nominal_type
4422 && POINTER_TYPE_P (passed_type)
4423 && TREE_TYPE (passed_type) == nominal_type)
4425 nominal_type = passed_type;
4426 passed_pointer = 1;
4427 passed_mode = nominal_mode = Pmode;
4430 promoted_mode = passed_mode;
4432 #ifdef PROMOTE_FUNCTION_ARGS
4433 /* Compute the mode in which the arg is actually extended to. */
4434 unsignedp = TREE_UNSIGNED (passed_type);
4435 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4436 #endif
4438 /* Let machine desc say which reg (if any) the parm arrives in.
4439 0 means it arrives on the stack. */
4440 #ifdef FUNCTION_INCOMING_ARG
4441 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4442 passed_type, named_arg);
4443 #else
4444 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4445 passed_type, named_arg);
4446 #endif
4448 if (entry_parm == 0)
4449 promoted_mode = passed_mode;
4451 #ifdef SETUP_INCOMING_VARARGS
4452 /* If this is the last named parameter, do any required setup for
4453 varargs or stdargs. We need to know about the case of this being an
4454 addressable type, in which case we skip the registers it
4455 would have arrived in.
4457 For stdargs, LAST_NAMED will be set for two parameters, the one that
4458 is actually the last named, and the dummy parameter. We only
4459 want to do this action once.
4461 Also, indicate when RTL generation is to be suppressed. */
4462 if (last_named && !varargs_setup)
4464 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4465 current_function_pretend_args_size, 0);
4466 varargs_setup = 1;
4468 #endif
4470 /* Determine parm's home in the stack,
4471 in case it arrives in the stack or we should pretend it did.
4473 Compute the stack position and rtx where the argument arrives
4474 and its size.
4476 There is one complexity here: If this was a parameter that would
4477 have been passed in registers, but wasn't only because it is
4478 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4479 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4480 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4481 0 as it was the previous time. */
4483 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4484 locate_and_pad_parm (promoted_mode, passed_type,
4485 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4487 #else
4488 #ifdef FUNCTION_INCOMING_ARG
4489 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4490 passed_type,
4491 pretend_named) != 0,
4492 #else
4493 FUNCTION_ARG (args_so_far, promoted_mode,
4494 passed_type,
4495 pretend_named) != 0,
4496 #endif
4497 #endif
4498 fndecl, &stack_args_size, &stack_offset, &arg_size,
4499 &alignment_pad);
4502 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4504 if (offset_rtx == const0_rtx)
4505 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4506 else
4507 stack_parm = gen_rtx_MEM (promoted_mode,
4508 gen_rtx_PLUS (Pmode,
4509 internal_arg_pointer,
4510 offset_rtx));
4512 set_mem_attributes (stack_parm, parm, 1);
4514 /* Set also REG_ATTRS if parameter was passed in a register. */
4515 if (entry_parm)
4516 set_reg_attrs_for_parm (entry_parm, stack_parm);
4519 /* If this parameter was passed both in registers and in the stack,
4520 use the copy on the stack. */
4521 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4522 entry_parm = 0;
4524 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4525 /* If this parm was passed part in regs and part in memory,
4526 pretend it arrived entirely in memory
4527 by pushing the register-part onto the stack.
4529 In the special case of a DImode or DFmode that is split,
4530 we could put it together in a pseudoreg directly,
4531 but for now that's not worth bothering with. */
4533 if (entry_parm)
4535 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4536 passed_type, named_arg);
4538 if (nregs > 0)
4540 #if defined (REG_PARM_STACK_SPACE) && !defined (MAYBE_REG_PARM_STACK_SPACE)
4541 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4542 split parameters was allocated by our caller, so we
4543 won't be pushing it in the prolog. */
4544 if (REG_PARM_STACK_SPACE (fndecl) == 0)
4545 #endif
4546 current_function_pretend_args_size
4547 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4548 / (PARM_BOUNDARY / BITS_PER_UNIT)
4549 * (PARM_BOUNDARY / BITS_PER_UNIT));
4551 /* Handle calls that pass values in multiple non-contiguous
4552 locations. The Irix 6 ABI has examples of this. */
4553 if (GET_CODE (entry_parm) == PARALLEL)
4554 emit_group_store (validize_mem (stack_parm), entry_parm,
4555 int_size_in_bytes (TREE_TYPE (parm)));
4557 else
4558 move_block_from_reg (REGNO (entry_parm),
4559 validize_mem (stack_parm), nregs,
4560 int_size_in_bytes (TREE_TYPE (parm)));
4562 entry_parm = stack_parm;
4565 #endif
4567 /* If we didn't decide this parm came in a register,
4568 by default it came on the stack. */
4569 if (entry_parm == 0)
4570 entry_parm = stack_parm;
4572 /* Record permanently how this parm was passed. */
4573 DECL_INCOMING_RTL (parm) = entry_parm;
4575 /* If there is actually space on the stack for this parm,
4576 count it in stack_args_size; otherwise set stack_parm to 0
4577 to indicate there is no preallocated stack slot for the parm. */
4579 if (entry_parm == stack_parm
4580 || (GET_CODE (entry_parm) == PARALLEL
4581 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4582 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4583 /* On some machines, even if a parm value arrives in a register
4584 there is still an (uninitialized) stack slot allocated for it.
4586 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4587 whether this parameter already has a stack slot allocated,
4588 because an arg block exists only if current_function_args_size
4589 is larger than some threshold, and we haven't calculated that
4590 yet. So, for now, we just assume that stack slots never exist
4591 in this case. */
4592 || REG_PARM_STACK_SPACE (fndecl) > 0
4593 #endif
4596 stack_args_size.constant += arg_size.constant;
4597 if (arg_size.var)
4598 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4600 else
4601 /* No stack slot was pushed for this parm. */
4602 stack_parm = 0;
4604 /* Update info on where next arg arrives in registers. */
4606 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4607 passed_type, named_arg);
4609 /* If we can't trust the parm stack slot to be aligned enough
4610 for its ultimate type, don't use that slot after entry.
4611 We'll make another stack slot, if we need one. */
4613 unsigned int thisparm_boundary
4614 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4616 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4617 stack_parm = 0;
4620 /* If parm was passed in memory, and we need to convert it on entry,
4621 don't store it back in that same slot. */
4622 if (entry_parm != 0
4623 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4624 stack_parm = 0;
4626 /* When an argument is passed in multiple locations, we can't
4627 make use of this information, but we can save some copying if
4628 the whole argument is passed in a single register. */
4629 if (GET_CODE (entry_parm) == PARALLEL
4630 && nominal_mode != BLKmode && passed_mode != BLKmode)
4632 int i, len = XVECLEN (entry_parm, 0);
4634 for (i = 0; i < len; i++)
4635 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4636 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4637 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4638 == passed_mode)
4639 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4641 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4642 DECL_INCOMING_RTL (parm) = entry_parm;
4643 break;
4647 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4648 in the mode in which it arrives.
4649 STACK_PARM is an RTX for a stack slot where the parameter can live
4650 during the function (in case we want to put it there).
4651 STACK_PARM is 0 if no stack slot was pushed for it.
4653 Now output code if necessary to convert ENTRY_PARM to
4654 the type in which this function declares it,
4655 and store that result in an appropriate place,
4656 which may be a pseudo reg, may be STACK_PARM,
4657 or may be a local stack slot if STACK_PARM is 0.
4659 Set DECL_RTL to that place. */
4661 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4663 /* If a BLKmode arrives in registers, copy it to a stack slot.
4664 Handle calls that pass values in multiple non-contiguous
4665 locations. The Irix 6 ABI has examples of this. */
4666 if (GET_CODE (entry_parm) == REG
4667 || GET_CODE (entry_parm) == PARALLEL)
4669 int size_stored
4670 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4671 UNITS_PER_WORD);
4673 /* Note that we will be storing an integral number of words.
4674 So we have to be careful to ensure that we allocate an
4675 integral number of words. We do this below in the
4676 assign_stack_local if space was not allocated in the argument
4677 list. If it was, this will not work if PARM_BOUNDARY is not
4678 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4679 if it becomes a problem. */
4681 if (stack_parm == 0)
4683 stack_parm
4684 = assign_stack_local (GET_MODE (entry_parm),
4685 size_stored, 0);
4686 set_mem_attributes (stack_parm, parm, 1);
4689 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4690 abort ();
4692 /* Handle calls that pass values in multiple non-contiguous
4693 locations. The Irix 6 ABI has examples of this. */
4694 if (GET_CODE (entry_parm) == PARALLEL)
4695 emit_group_store (validize_mem (stack_parm), entry_parm,
4696 int_size_in_bytes (TREE_TYPE (parm)));
4697 else
4698 move_block_from_reg (REGNO (entry_parm),
4699 validize_mem (stack_parm),
4700 size_stored / UNITS_PER_WORD,
4701 int_size_in_bytes (TREE_TYPE (parm)));
4703 SET_DECL_RTL (parm, stack_parm);
4705 else if (! ((! optimize
4706 && ! DECL_REGISTER (parm))
4707 || TREE_SIDE_EFFECTS (parm)
4708 /* If -ffloat-store specified, don't put explicit
4709 float variables into registers. */
4710 || (flag_float_store
4711 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4712 /* Always assign pseudo to structure return or item passed
4713 by invisible reference. */
4714 || passed_pointer || parm == function_result_decl)
4716 /* Store the parm in a pseudoregister during the function, but we
4717 may need to do it in a wider mode. */
4719 rtx parmreg;
4720 unsigned int regno, regnoi = 0, regnor = 0;
4722 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4724 promoted_nominal_mode
4725 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4727 parmreg = gen_reg_rtx (promoted_nominal_mode);
4728 mark_user_reg (parmreg);
4730 /* If this was an item that we received a pointer to, set DECL_RTL
4731 appropriately. */
4732 if (passed_pointer)
4734 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4735 parmreg);
4736 set_mem_attributes (x, parm, 1);
4737 SET_DECL_RTL (parm, x);
4739 else
4741 SET_DECL_RTL (parm, parmreg);
4742 maybe_set_unchanging (DECL_RTL (parm), parm);
4745 /* Copy the value into the register. */
4746 if (nominal_mode != passed_mode
4747 || promoted_nominal_mode != promoted_mode)
4749 int save_tree_used;
4750 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4751 mode, by the caller. We now have to convert it to
4752 NOMINAL_MODE, if different. However, PARMREG may be in
4753 a different mode than NOMINAL_MODE if it is being stored
4754 promoted.
4756 If ENTRY_PARM is a hard register, it might be in a register
4757 not valid for operating in its mode (e.g., an odd-numbered
4758 register for a DFmode). In that case, moves are the only
4759 thing valid, so we can't do a convert from there. This
4760 occurs when the calling sequence allow such misaligned
4761 usages.
4763 In addition, the conversion may involve a call, which could
4764 clobber parameters which haven't been copied to pseudo
4765 registers yet. Therefore, we must first copy the parm to
4766 a pseudo reg here, and save the conversion until after all
4767 parameters have been moved. */
4769 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4771 emit_move_insn (tempreg, validize_mem (entry_parm));
4773 push_to_sequence (conversion_insns);
4774 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4776 if (GET_CODE (tempreg) == SUBREG
4777 && GET_MODE (tempreg) == nominal_mode
4778 && GET_CODE (SUBREG_REG (tempreg)) == REG
4779 && nominal_mode == passed_mode
4780 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4781 && GET_MODE_SIZE (GET_MODE (tempreg))
4782 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4784 /* The argument is already sign/zero extended, so note it
4785 into the subreg. */
4786 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4787 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4790 /* TREE_USED gets set erroneously during expand_assignment. */
4791 save_tree_used = TREE_USED (parm);
4792 expand_assignment (parm,
4793 make_tree (nominal_type, tempreg), 0, 0);
4794 TREE_USED (parm) = save_tree_used;
4795 conversion_insns = get_insns ();
4796 did_conversion = 1;
4797 end_sequence ();
4799 else
4800 emit_move_insn (parmreg, validize_mem (entry_parm));
4802 /* If we were passed a pointer but the actual value
4803 can safely live in a register, put it in one. */
4804 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4805 /* If by-reference argument was promoted, demote it. */
4806 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4807 || ! ((! optimize
4808 && ! DECL_REGISTER (parm))
4809 || TREE_SIDE_EFFECTS (parm)
4810 /* If -ffloat-store specified, don't put explicit
4811 float variables into registers. */
4812 || (flag_float_store
4813 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4815 /* We can't use nominal_mode, because it will have been set to
4816 Pmode above. We must use the actual mode of the parm. */
4817 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4818 mark_user_reg (parmreg);
4819 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4821 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4822 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4823 push_to_sequence (conversion_insns);
4824 emit_move_insn (tempreg, DECL_RTL (parm));
4825 SET_DECL_RTL (parm,
4826 convert_to_mode (GET_MODE (parmreg),
4827 tempreg,
4828 unsigned_p));
4829 emit_move_insn (parmreg, DECL_RTL (parm));
4830 conversion_insns = get_insns();
4831 did_conversion = 1;
4832 end_sequence ();
4834 else
4835 emit_move_insn (parmreg, DECL_RTL (parm));
4836 SET_DECL_RTL (parm, parmreg);
4837 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4838 now the parm. */
4839 stack_parm = 0;
4841 #ifdef FUNCTION_ARG_CALLEE_COPIES
4842 /* If we are passed an arg by reference and it is our responsibility
4843 to make a copy, do it now.
4844 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4845 original argument, so we must recreate them in the call to
4846 FUNCTION_ARG_CALLEE_COPIES. */
4847 /* ??? Later add code to handle the case that if the argument isn't
4848 modified, don't do the copy. */
4850 else if (passed_pointer
4851 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4852 TYPE_MODE (DECL_ARG_TYPE (parm)),
4853 DECL_ARG_TYPE (parm),
4854 named_arg)
4855 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4857 rtx copy;
4858 tree type = DECL_ARG_TYPE (parm);
4860 /* This sequence may involve a library call perhaps clobbering
4861 registers that haven't been copied to pseudos yet. */
4863 push_to_sequence (conversion_insns);
4865 if (!COMPLETE_TYPE_P (type)
4866 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4867 /* This is a variable sized object. */
4868 copy = gen_rtx_MEM (BLKmode,
4869 allocate_dynamic_stack_space
4870 (expr_size (parm), NULL_RTX,
4871 TYPE_ALIGN (type)));
4872 else
4873 copy = assign_stack_temp (TYPE_MODE (type),
4874 int_size_in_bytes (type), 1);
4875 set_mem_attributes (copy, parm, 1);
4877 store_expr (parm, copy, 0);
4878 emit_move_insn (parmreg, XEXP (copy, 0));
4879 conversion_insns = get_insns ();
4880 did_conversion = 1;
4881 end_sequence ();
4883 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4885 /* In any case, record the parm's desired stack location
4886 in case we later discover it must live in the stack.
4888 If it is a COMPLEX value, store the stack location for both
4889 halves. */
4891 if (GET_CODE (parmreg) == CONCAT)
4892 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4893 else
4894 regno = REGNO (parmreg);
4896 if (regno >= max_parm_reg)
4898 rtx *new;
4899 int old_max_parm_reg = max_parm_reg;
4901 /* It's slow to expand this one register at a time,
4902 but it's also rare and we need max_parm_reg to be
4903 precisely correct. */
4904 max_parm_reg = regno + 1;
4905 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4906 max_parm_reg * sizeof (rtx));
4907 memset ((char *) (new + old_max_parm_reg), 0,
4908 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4909 parm_reg_stack_loc = new;
4912 if (GET_CODE (parmreg) == CONCAT)
4914 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4916 regnor = REGNO (gen_realpart (submode, parmreg));
4917 regnoi = REGNO (gen_imagpart (submode, parmreg));
4919 if (stack_parm != 0)
4921 parm_reg_stack_loc[regnor]
4922 = gen_realpart (submode, stack_parm);
4923 parm_reg_stack_loc[regnoi]
4924 = gen_imagpart (submode, stack_parm);
4926 else
4928 parm_reg_stack_loc[regnor] = 0;
4929 parm_reg_stack_loc[regnoi] = 0;
4932 else
4933 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4935 /* Mark the register as eliminable if we did no conversion
4936 and it was copied from memory at a fixed offset,
4937 and the arg pointer was not copied to a pseudo-reg.
4938 If the arg pointer is a pseudo reg or the offset formed
4939 an invalid address, such memory-equivalences
4940 as we make here would screw up life analysis for it. */
4941 if (nominal_mode == passed_mode
4942 && ! did_conversion
4943 && stack_parm != 0
4944 && GET_CODE (stack_parm) == MEM
4945 && stack_offset.var == 0
4946 && reg_mentioned_p (virtual_incoming_args_rtx,
4947 XEXP (stack_parm, 0)))
4949 rtx linsn = get_last_insn ();
4950 rtx sinsn, set;
4952 /* Mark complex types separately. */
4953 if (GET_CODE (parmreg) == CONCAT)
4954 /* Scan backwards for the set of the real and
4955 imaginary parts. */
4956 for (sinsn = linsn; sinsn != 0;
4957 sinsn = prev_nonnote_insn (sinsn))
4959 set = single_set (sinsn);
4960 if (set != 0
4961 && SET_DEST (set) == regno_reg_rtx [regnoi])
4962 REG_NOTES (sinsn)
4963 = gen_rtx_EXPR_LIST (REG_EQUIV,
4964 parm_reg_stack_loc[regnoi],
4965 REG_NOTES (sinsn));
4966 else if (set != 0
4967 && SET_DEST (set) == regno_reg_rtx [regnor])
4968 REG_NOTES (sinsn)
4969 = gen_rtx_EXPR_LIST (REG_EQUIV,
4970 parm_reg_stack_loc[regnor],
4971 REG_NOTES (sinsn));
4973 else if ((set = single_set (linsn)) != 0
4974 && SET_DEST (set) == parmreg)
4975 REG_NOTES (linsn)
4976 = gen_rtx_EXPR_LIST (REG_EQUIV,
4977 stack_parm, REG_NOTES (linsn));
4980 /* For pointer data type, suggest pointer register. */
4981 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4982 mark_reg_pointer (parmreg,
4983 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4985 /* If something wants our address, try to use ADDRESSOF. */
4986 if (TREE_ADDRESSABLE (parm))
4988 /* If we end up putting something into the stack,
4989 fixup_var_refs_insns will need to make a pass over
4990 all the instructions. It looks through the pending
4991 sequences -- but it can't see the ones in the
4992 CONVERSION_INSNS, if they're not on the sequence
4993 stack. So, we go back to that sequence, just so that
4994 the fixups will happen. */
4995 push_to_sequence (conversion_insns);
4996 put_var_into_stack (parm, /*rescan=*/true);
4997 conversion_insns = get_insns ();
4998 end_sequence ();
5001 else
5003 /* Value must be stored in the stack slot STACK_PARM
5004 during function execution. */
5006 if (promoted_mode != nominal_mode)
5008 /* Conversion is required. */
5009 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5011 emit_move_insn (tempreg, validize_mem (entry_parm));
5013 push_to_sequence (conversion_insns);
5014 entry_parm = convert_to_mode (nominal_mode, tempreg,
5015 TREE_UNSIGNED (TREE_TYPE (parm)));
5016 if (stack_parm)
5017 /* ??? This may need a big-endian conversion on sparc64. */
5018 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5020 conversion_insns = get_insns ();
5021 did_conversion = 1;
5022 end_sequence ();
5025 if (entry_parm != stack_parm)
5027 if (stack_parm == 0)
5029 stack_parm
5030 = assign_stack_local (GET_MODE (entry_parm),
5031 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5032 set_mem_attributes (stack_parm, parm, 1);
5035 if (promoted_mode != nominal_mode)
5037 push_to_sequence (conversion_insns);
5038 emit_move_insn (validize_mem (stack_parm),
5039 validize_mem (entry_parm));
5040 conversion_insns = get_insns ();
5041 end_sequence ();
5043 else
5044 emit_move_insn (validize_mem (stack_parm),
5045 validize_mem (entry_parm));
5048 SET_DECL_RTL (parm, stack_parm);
5052 /* Output all parameter conversion instructions (possibly including calls)
5053 now that all parameters have been copied out of hard registers. */
5054 emit_insn (conversion_insns);
5056 /* If we are receiving a struct value address as the first argument, set up
5057 the RTL for the function result. As this might require code to convert
5058 the transmitted address to Pmode, we do this here to ensure that possible
5059 preliminary conversions of the address have been emitted already. */
5060 if (function_result_decl)
5062 tree result = DECL_RESULT (fndecl);
5063 rtx addr = DECL_RTL (function_result_decl);
5064 rtx x;
5066 #ifdef POINTERS_EXTEND_UNSIGNED
5067 if (GET_MODE (addr) != Pmode)
5068 addr = convert_memory_address (Pmode, addr);
5069 #endif
5071 x = gen_rtx_MEM (DECL_MODE (result), addr);
5072 set_mem_attributes (x, result, 1);
5073 SET_DECL_RTL (result, x);
5076 last_parm_insn = get_last_insn ();
5078 current_function_args_size = stack_args_size.constant;
5080 /* Adjust function incoming argument size for alignment and
5081 minimum length. */
5083 #ifdef REG_PARM_STACK_SPACE
5084 #ifndef MAYBE_REG_PARM_STACK_SPACE
5085 current_function_args_size = MAX (current_function_args_size,
5086 REG_PARM_STACK_SPACE (fndecl));
5087 #endif
5088 #endif
5090 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5092 current_function_args_size
5093 = ((current_function_args_size + STACK_BYTES - 1)
5094 / STACK_BYTES) * STACK_BYTES;
5096 #ifdef ARGS_GROW_DOWNWARD
5097 current_function_arg_offset_rtx
5098 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5099 : expand_expr (size_diffop (stack_args_size.var,
5100 size_int (-stack_args_size.constant)),
5101 NULL_RTX, VOIDmode, 0));
5102 #else
5103 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5104 #endif
5106 /* See how many bytes, if any, of its args a function should try to pop
5107 on return. */
5109 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5110 current_function_args_size);
5112 /* For stdarg.h function, save info about
5113 regs and stack space used by the named args. */
5115 current_function_args_info = args_so_far;
5117 /* Set the rtx used for the function return value. Put this in its
5118 own variable so any optimizers that need this information don't have
5119 to include tree.h. Do this here so it gets done when an inlined
5120 function gets output. */
5122 current_function_return_rtx
5123 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5124 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5126 /* If scalar return value was computed in a pseudo-reg, or was a named
5127 return value that got dumped to the stack, copy that to the hard
5128 return register. */
5129 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5131 tree decl_result = DECL_RESULT (fndecl);
5132 rtx decl_rtl = DECL_RTL (decl_result);
5134 if (REG_P (decl_rtl)
5135 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5136 : DECL_REGISTER (decl_result))
5138 rtx real_decl_rtl;
5140 #ifdef FUNCTION_OUTGOING_VALUE
5141 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5142 fndecl);
5143 #else
5144 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5145 fndecl);
5146 #endif
5147 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5148 /* The delay slot scheduler assumes that current_function_return_rtx
5149 holds the hard register containing the return value, not a
5150 temporary pseudo. */
5151 current_function_return_rtx = real_decl_rtl;
5156 /* Indicate whether REGNO is an incoming argument to the current function
5157 that was promoted to a wider mode. If so, return the RTX for the
5158 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5159 that REGNO is promoted from and whether the promotion was signed or
5160 unsigned. */
5162 #ifdef PROMOTE_FUNCTION_ARGS
5165 promoted_input_arg (regno, pmode, punsignedp)
5166 unsigned int regno;
5167 enum machine_mode *pmode;
5168 int *punsignedp;
5170 tree arg;
5172 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5173 arg = TREE_CHAIN (arg))
5174 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5175 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5176 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5178 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5179 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5181 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5182 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5183 && mode != DECL_MODE (arg))
5185 *pmode = DECL_MODE (arg);
5186 *punsignedp = unsignedp;
5187 return DECL_INCOMING_RTL (arg);
5191 return 0;
5194 #endif
5196 /* Compute the size and offset from the start of the stacked arguments for a
5197 parm passed in mode PASSED_MODE and with type TYPE.
5199 INITIAL_OFFSET_PTR points to the current offset into the stacked
5200 arguments.
5202 The starting offset and size for this parm are returned in *OFFSET_PTR
5203 and *ARG_SIZE_PTR, respectively.
5205 IN_REGS is nonzero if the argument will be passed in registers. It will
5206 never be set if REG_PARM_STACK_SPACE is not defined.
5208 FNDECL is the function in which the argument was defined.
5210 There are two types of rounding that are done. The first, controlled by
5211 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5212 list to be aligned to the specific boundary (in bits). This rounding
5213 affects the initial and starting offsets, but not the argument size.
5215 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5216 optionally rounds the size of the parm to PARM_BOUNDARY. The
5217 initial offset is not affected by this rounding, while the size always
5218 is and the starting offset may be. */
5220 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5221 initial_offset_ptr is positive because locate_and_pad_parm's
5222 callers pass in the total size of args so far as
5223 initial_offset_ptr. arg_size_ptr is always positive. */
5225 void
5226 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5227 initial_offset_ptr, offset_ptr, arg_size_ptr,
5228 alignment_pad)
5229 enum machine_mode passed_mode;
5230 tree type;
5231 int in_regs ATTRIBUTE_UNUSED;
5232 tree fndecl ATTRIBUTE_UNUSED;
5233 struct args_size *initial_offset_ptr;
5234 struct args_size *offset_ptr;
5235 struct args_size *arg_size_ptr;
5236 struct args_size *alignment_pad;
5239 tree sizetree
5240 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5241 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5242 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5243 #ifdef ARGS_GROW_DOWNWARD
5244 tree s2 = sizetree;
5245 #endif
5247 #ifdef REG_PARM_STACK_SPACE
5248 /* If we have found a stack parm before we reach the end of the
5249 area reserved for registers, skip that area. */
5250 if (! in_regs)
5252 int reg_parm_stack_space = 0;
5254 #ifdef MAYBE_REG_PARM_STACK_SPACE
5255 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5256 #else
5257 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5258 #endif
5259 if (reg_parm_stack_space > 0)
5261 if (initial_offset_ptr->var)
5263 initial_offset_ptr->var
5264 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5265 ssize_int (reg_parm_stack_space));
5266 initial_offset_ptr->constant = 0;
5268 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5269 initial_offset_ptr->constant = reg_parm_stack_space;
5272 #endif /* REG_PARM_STACK_SPACE */
5274 arg_size_ptr->var = 0;
5275 arg_size_ptr->constant = 0;
5276 alignment_pad->var = 0;
5277 alignment_pad->constant = 0;
5279 #ifdef ARGS_GROW_DOWNWARD
5280 if (initial_offset_ptr->var)
5282 offset_ptr->constant = 0;
5283 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5284 initial_offset_ptr->var);
5286 else
5288 offset_ptr->constant = -initial_offset_ptr->constant;
5289 offset_ptr->var = 0;
5292 if (where_pad != none
5293 && (!host_integerp (sizetree, 1)
5294 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5295 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5296 SUB_PARM_SIZE (*offset_ptr, s2);
5298 if (!in_regs
5299 #ifdef REG_PARM_STACK_SPACE
5300 || REG_PARM_STACK_SPACE (fndecl) > 0
5301 #endif
5303 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5305 if (initial_offset_ptr->var)
5306 arg_size_ptr->var = size_binop (MINUS_EXPR,
5307 size_binop (MINUS_EXPR,
5308 ssize_int (0),
5309 initial_offset_ptr->var),
5310 offset_ptr->var);
5312 else
5313 arg_size_ptr->constant = (-initial_offset_ptr->constant
5314 - offset_ptr->constant);
5316 /* Pad_below needs the pre-rounded size to know how much to pad below.
5317 We only pad parameters which are not in registers as they have their
5318 padding done elsewhere. */
5319 if (where_pad == downward
5320 && !in_regs)
5321 pad_below (offset_ptr, passed_mode, sizetree);
5323 #else /* !ARGS_GROW_DOWNWARD */
5324 if (!in_regs
5325 #ifdef REG_PARM_STACK_SPACE
5326 || REG_PARM_STACK_SPACE (fndecl) > 0
5327 #endif
5329 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5330 *offset_ptr = *initial_offset_ptr;
5332 #ifdef PUSH_ROUNDING
5333 if (passed_mode != BLKmode)
5334 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5335 #endif
5337 /* Pad_below needs the pre-rounded size to know how much to pad below
5338 so this must be done before rounding up. */
5339 if (where_pad == downward
5340 /* However, BLKmode args passed in regs have their padding done elsewhere.
5341 The stack slot must be able to hold the entire register. */
5342 && !(in_regs && passed_mode == BLKmode))
5343 pad_below (offset_ptr, passed_mode, sizetree);
5345 if (where_pad != none
5346 && (!host_integerp (sizetree, 1)
5347 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5348 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5350 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5351 #endif /* ARGS_GROW_DOWNWARD */
5354 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5355 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5357 static void
5358 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5359 struct args_size *offset_ptr;
5360 int boundary;
5361 struct args_size *alignment_pad;
5363 tree save_var = NULL_TREE;
5364 HOST_WIDE_INT save_constant = 0;
5366 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5368 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5370 save_var = offset_ptr->var;
5371 save_constant = offset_ptr->constant;
5374 alignment_pad->var = NULL_TREE;
5375 alignment_pad->constant = 0;
5377 if (boundary > BITS_PER_UNIT)
5379 if (offset_ptr->var)
5381 offset_ptr->var =
5382 #ifdef ARGS_GROW_DOWNWARD
5383 round_down
5384 #else
5385 round_up
5386 #endif
5387 (ARGS_SIZE_TREE (*offset_ptr),
5388 boundary / BITS_PER_UNIT);
5389 offset_ptr->constant = 0; /*?*/
5390 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5391 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5392 save_var);
5394 else
5396 offset_ptr->constant =
5397 #ifdef ARGS_GROW_DOWNWARD
5398 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5399 #else
5400 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5401 #endif
5402 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5403 alignment_pad->constant = offset_ptr->constant - save_constant;
5408 static void
5409 pad_below (offset_ptr, passed_mode, sizetree)
5410 struct args_size *offset_ptr;
5411 enum machine_mode passed_mode;
5412 tree sizetree;
5414 if (passed_mode != BLKmode)
5416 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5417 offset_ptr->constant
5418 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5419 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5420 - GET_MODE_SIZE (passed_mode));
5422 else
5424 if (TREE_CODE (sizetree) != INTEGER_CST
5425 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5427 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5428 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5429 /* Add it in. */
5430 ADD_PARM_SIZE (*offset_ptr, s2);
5431 SUB_PARM_SIZE (*offset_ptr, sizetree);
5436 /* Walk the tree of blocks describing the binding levels within a function
5437 and warn about uninitialized variables.
5438 This is done after calling flow_analysis and before global_alloc
5439 clobbers the pseudo-regs to hard regs. */
5441 void
5442 uninitialized_vars_warning (block)
5443 tree block;
5445 tree decl, sub;
5446 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5448 if (warn_uninitialized
5449 && TREE_CODE (decl) == VAR_DECL
5450 /* These warnings are unreliable for and aggregates
5451 because assigning the fields one by one can fail to convince
5452 flow.c that the entire aggregate was initialized.
5453 Unions are troublesome because members may be shorter. */
5454 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5455 && DECL_RTL (decl) != 0
5456 && GET_CODE (DECL_RTL (decl)) == REG
5457 /* Global optimizations can make it difficult to determine if a
5458 particular variable has been initialized. However, a VAR_DECL
5459 with a nonzero DECL_INITIAL had an initializer, so do not
5460 claim it is potentially uninitialized.
5462 We do not care about the actual value in DECL_INITIAL, so we do
5463 not worry that it may be a dangling pointer. */
5464 && DECL_INITIAL (decl) == NULL_TREE
5465 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5466 warning_with_decl (decl,
5467 "`%s' might be used uninitialized in this function");
5468 if (extra_warnings
5469 && TREE_CODE (decl) == VAR_DECL
5470 && DECL_RTL (decl) != 0
5471 && GET_CODE (DECL_RTL (decl)) == REG
5472 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5473 warning_with_decl (decl,
5474 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5476 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5477 uninitialized_vars_warning (sub);
5480 /* Do the appropriate part of uninitialized_vars_warning
5481 but for arguments instead of local variables. */
5483 void
5484 setjmp_args_warning ()
5486 tree decl;
5487 for (decl = DECL_ARGUMENTS (current_function_decl);
5488 decl; decl = TREE_CHAIN (decl))
5489 if (DECL_RTL (decl) != 0
5490 && GET_CODE (DECL_RTL (decl)) == REG
5491 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5492 warning_with_decl (decl,
5493 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5496 /* If this function call setjmp, put all vars into the stack
5497 unless they were declared `register'. */
5499 void
5500 setjmp_protect (block)
5501 tree block;
5503 tree decl, sub;
5504 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5505 if ((TREE_CODE (decl) == VAR_DECL
5506 || TREE_CODE (decl) == PARM_DECL)
5507 && DECL_RTL (decl) != 0
5508 && (GET_CODE (DECL_RTL (decl)) == REG
5509 || (GET_CODE (DECL_RTL (decl)) == MEM
5510 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5511 /* If this variable came from an inline function, it must be
5512 that its life doesn't overlap the setjmp. If there was a
5513 setjmp in the function, it would already be in memory. We
5514 must exclude such variable because their DECL_RTL might be
5515 set to strange things such as virtual_stack_vars_rtx. */
5516 && ! DECL_FROM_INLINE (decl)
5517 && (
5518 #ifdef NON_SAVING_SETJMP
5519 /* If longjmp doesn't restore the registers,
5520 don't put anything in them. */
5521 NON_SAVING_SETJMP
5523 #endif
5524 ! DECL_REGISTER (decl)))
5525 put_var_into_stack (decl, /*rescan=*/true);
5526 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5527 setjmp_protect (sub);
5530 /* Like the previous function, but for args instead of local variables. */
5532 void
5533 setjmp_protect_args ()
5535 tree decl;
5536 for (decl = DECL_ARGUMENTS (current_function_decl);
5537 decl; decl = TREE_CHAIN (decl))
5538 if ((TREE_CODE (decl) == VAR_DECL
5539 || TREE_CODE (decl) == PARM_DECL)
5540 && DECL_RTL (decl) != 0
5541 && (GET_CODE (DECL_RTL (decl)) == REG
5542 || (GET_CODE (DECL_RTL (decl)) == MEM
5543 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5544 && (
5545 /* If longjmp doesn't restore the registers,
5546 don't put anything in them. */
5547 #ifdef NON_SAVING_SETJMP
5548 NON_SAVING_SETJMP
5550 #endif
5551 ! DECL_REGISTER (decl)))
5552 put_var_into_stack (decl, /*rescan=*/true);
5555 /* Return the context-pointer register corresponding to DECL,
5556 or 0 if it does not need one. */
5559 lookup_static_chain (decl)
5560 tree decl;
5562 tree context = decl_function_context (decl);
5563 tree link;
5565 if (context == 0
5566 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5567 return 0;
5569 /* We treat inline_function_decl as an alias for the current function
5570 because that is the inline function whose vars, types, etc.
5571 are being merged into the current function.
5572 See expand_inline_function. */
5573 if (context == current_function_decl || context == inline_function_decl)
5574 return virtual_stack_vars_rtx;
5576 for (link = context_display; link; link = TREE_CHAIN (link))
5577 if (TREE_PURPOSE (link) == context)
5578 return RTL_EXPR_RTL (TREE_VALUE (link));
5580 abort ();
5583 /* Convert a stack slot address ADDR for variable VAR
5584 (from a containing function)
5585 into an address valid in this function (using a static chain). */
5588 fix_lexical_addr (addr, var)
5589 rtx addr;
5590 tree var;
5592 rtx basereg;
5593 HOST_WIDE_INT displacement;
5594 tree context = decl_function_context (var);
5595 struct function *fp;
5596 rtx base = 0;
5598 /* If this is the present function, we need not do anything. */
5599 if (context == current_function_decl || context == inline_function_decl)
5600 return addr;
5602 fp = find_function_data (context);
5604 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5605 addr = XEXP (XEXP (addr, 0), 0);
5607 /* Decode given address as base reg plus displacement. */
5608 if (GET_CODE (addr) == REG)
5609 basereg = addr, displacement = 0;
5610 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5611 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5612 else
5613 abort ();
5615 /* We accept vars reached via the containing function's
5616 incoming arg pointer and via its stack variables pointer. */
5617 if (basereg == fp->internal_arg_pointer)
5619 /* If reached via arg pointer, get the arg pointer value
5620 out of that function's stack frame.
5622 There are two cases: If a separate ap is needed, allocate a
5623 slot in the outer function for it and dereference it that way.
5624 This is correct even if the real ap is actually a pseudo.
5625 Otherwise, just adjust the offset from the frame pointer to
5626 compensate. */
5628 #ifdef NEED_SEPARATE_AP
5629 rtx addr;
5631 addr = get_arg_pointer_save_area (fp);
5632 addr = fix_lexical_addr (XEXP (addr, 0), var);
5633 addr = memory_address (Pmode, addr);
5635 base = gen_rtx_MEM (Pmode, addr);
5636 set_mem_alias_set (base, get_frame_alias_set ());
5637 base = copy_to_reg (base);
5638 #else
5639 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5640 base = lookup_static_chain (var);
5641 #endif
5644 else if (basereg == virtual_stack_vars_rtx)
5646 /* This is the same code as lookup_static_chain, duplicated here to
5647 avoid an extra call to decl_function_context. */
5648 tree link;
5650 for (link = context_display; link; link = TREE_CHAIN (link))
5651 if (TREE_PURPOSE (link) == context)
5653 base = RTL_EXPR_RTL (TREE_VALUE (link));
5654 break;
5658 if (base == 0)
5659 abort ();
5661 /* Use same offset, relative to appropriate static chain or argument
5662 pointer. */
5663 return plus_constant (base, displacement);
5666 /* Return the address of the trampoline for entering nested fn FUNCTION.
5667 If necessary, allocate a trampoline (in the stack frame)
5668 and emit rtl to initialize its contents (at entry to this function). */
5671 trampoline_address (function)
5672 tree function;
5674 tree link;
5675 tree rtlexp;
5676 rtx tramp;
5677 struct function *fp;
5678 tree fn_context;
5680 /* Find an existing trampoline and return it. */
5681 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5682 if (TREE_PURPOSE (link) == function)
5683 return
5684 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5686 for (fp = outer_function_chain; fp; fp = fp->outer)
5687 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5688 if (TREE_PURPOSE (link) == function)
5690 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5691 function);
5692 return adjust_trampoline_addr (tramp);
5695 /* None exists; we must make one. */
5697 /* Find the `struct function' for the function containing FUNCTION. */
5698 fp = 0;
5699 fn_context = decl_function_context (function);
5700 if (fn_context != current_function_decl
5701 && fn_context != inline_function_decl)
5702 fp = find_function_data (fn_context);
5704 /* Allocate run-time space for this trampoline
5705 (usually in the defining function's stack frame). */
5706 #ifdef ALLOCATE_TRAMPOLINE
5707 tramp = ALLOCATE_TRAMPOLINE (fp);
5708 #else
5709 /* If rounding needed, allocate extra space
5710 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5711 #define TRAMPOLINE_REAL_SIZE \
5712 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5713 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5714 fp ? fp : cfun);
5715 #endif
5717 /* Record the trampoline for reuse and note it for later initialization
5718 by expand_function_end. */
5719 if (fp != 0)
5721 rtlexp = make_node (RTL_EXPR);
5722 RTL_EXPR_RTL (rtlexp) = tramp;
5723 fp->x_trampoline_list = tree_cons (function, rtlexp,
5724 fp->x_trampoline_list);
5726 else
5728 /* Make the RTL_EXPR node temporary, not momentary, so that the
5729 trampoline_list doesn't become garbage. */
5730 rtlexp = make_node (RTL_EXPR);
5732 RTL_EXPR_RTL (rtlexp) = tramp;
5733 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5736 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5737 return adjust_trampoline_addr (tramp);
5740 /* Given a trampoline address,
5741 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5743 static rtx
5744 round_trampoline_addr (tramp)
5745 rtx tramp;
5747 /* Round address up to desired boundary. */
5748 rtx temp = gen_reg_rtx (Pmode);
5749 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5750 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5752 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5753 temp, 0, OPTAB_LIB_WIDEN);
5754 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5755 temp, 0, OPTAB_LIB_WIDEN);
5757 return tramp;
5760 /* Given a trampoline address, round it then apply any
5761 platform-specific adjustments so that the result can be used for a
5762 function call . */
5764 static rtx
5765 adjust_trampoline_addr (tramp)
5766 rtx tramp;
5768 tramp = round_trampoline_addr (tramp);
5769 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5770 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5771 #endif
5772 return tramp;
5775 /* Put all this function's BLOCK nodes including those that are chained
5776 onto the first block into a vector, and return it.
5777 Also store in each NOTE for the beginning or end of a block
5778 the index of that block in the vector.
5779 The arguments are BLOCK, the chain of top-level blocks of the function,
5780 and INSNS, the insn chain of the function. */
5782 void
5783 identify_blocks ()
5785 int n_blocks;
5786 tree *block_vector, *last_block_vector;
5787 tree *block_stack;
5788 tree block = DECL_INITIAL (current_function_decl);
5790 if (block == 0)
5791 return;
5793 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5794 depth-first order. */
5795 block_vector = get_block_vector (block, &n_blocks);
5796 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5798 last_block_vector = identify_blocks_1 (get_insns (),
5799 block_vector + 1,
5800 block_vector + n_blocks,
5801 block_stack);
5803 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5804 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5805 if (0 && last_block_vector != block_vector + n_blocks)
5806 abort ();
5808 free (block_vector);
5809 free (block_stack);
5812 /* Subroutine of identify_blocks. Do the block substitution on the
5813 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5815 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5816 BLOCK_VECTOR is incremented for each block seen. */
5818 static tree *
5819 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5820 rtx insns;
5821 tree *block_vector;
5822 tree *end_block_vector;
5823 tree *orig_block_stack;
5825 rtx insn;
5826 tree *block_stack = orig_block_stack;
5828 for (insn = insns; insn; insn = NEXT_INSN (insn))
5830 if (GET_CODE (insn) == NOTE)
5832 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5834 tree b;
5836 /* If there are more block notes than BLOCKs, something
5837 is badly wrong. */
5838 if (block_vector == end_block_vector)
5839 abort ();
5841 b = *block_vector++;
5842 NOTE_BLOCK (insn) = b;
5843 *block_stack++ = b;
5845 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5847 /* If there are more NOTE_INSN_BLOCK_ENDs than
5848 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5849 if (block_stack == orig_block_stack)
5850 abort ();
5852 NOTE_BLOCK (insn) = *--block_stack;
5855 else if (GET_CODE (insn) == CALL_INSN
5856 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5858 rtx cp = PATTERN (insn);
5860 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5861 end_block_vector, block_stack);
5862 if (XEXP (cp, 1))
5863 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5864 end_block_vector, block_stack);
5865 if (XEXP (cp, 2))
5866 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5867 end_block_vector, block_stack);
5871 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5872 something is badly wrong. */
5873 if (block_stack != orig_block_stack)
5874 abort ();
5876 return block_vector;
5879 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5880 and create duplicate blocks. */
5881 /* ??? Need an option to either create block fragments or to create
5882 abstract origin duplicates of a source block. It really depends
5883 on what optimization has been performed. */
5885 void
5886 reorder_blocks ()
5888 tree block = DECL_INITIAL (current_function_decl);
5889 varray_type block_stack;
5891 if (block == NULL_TREE)
5892 return;
5894 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5896 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5897 reorder_blocks_0 (block);
5899 /* Prune the old trees away, so that they don't get in the way. */
5900 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5901 BLOCK_CHAIN (block) = NULL_TREE;
5903 /* Recreate the block tree from the note nesting. */
5904 reorder_blocks_1 (get_insns (), block, &block_stack);
5905 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5907 /* Remove deleted blocks from the block fragment chains. */
5908 reorder_fix_fragments (block);
5911 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5913 static void
5914 reorder_blocks_0 (block)
5915 tree block;
5917 while (block)
5919 TREE_ASM_WRITTEN (block) = 0;
5920 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5921 block = BLOCK_CHAIN (block);
5925 static void
5926 reorder_blocks_1 (insns, current_block, p_block_stack)
5927 rtx insns;
5928 tree current_block;
5929 varray_type *p_block_stack;
5931 rtx insn;
5933 for (insn = insns; insn; insn = NEXT_INSN (insn))
5935 if (GET_CODE (insn) == NOTE)
5937 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5939 tree block = NOTE_BLOCK (insn);
5941 /* If we have seen this block before, that means it now
5942 spans multiple address regions. Create a new fragment. */
5943 if (TREE_ASM_WRITTEN (block))
5945 tree new_block = copy_node (block);
5946 tree origin;
5948 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5949 ? BLOCK_FRAGMENT_ORIGIN (block)
5950 : block);
5951 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5952 BLOCK_FRAGMENT_CHAIN (new_block)
5953 = BLOCK_FRAGMENT_CHAIN (origin);
5954 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5956 NOTE_BLOCK (insn) = new_block;
5957 block = new_block;
5960 BLOCK_SUBBLOCKS (block) = 0;
5961 TREE_ASM_WRITTEN (block) = 1;
5962 BLOCK_SUPERCONTEXT (block) = current_block;
5963 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5964 BLOCK_SUBBLOCKS (current_block) = block;
5965 current_block = block;
5966 VARRAY_PUSH_TREE (*p_block_stack, block);
5968 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5970 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5971 VARRAY_POP (*p_block_stack);
5972 BLOCK_SUBBLOCKS (current_block)
5973 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5974 current_block = BLOCK_SUPERCONTEXT (current_block);
5977 else if (GET_CODE (insn) == CALL_INSN
5978 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5980 rtx cp = PATTERN (insn);
5981 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5982 if (XEXP (cp, 1))
5983 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5984 if (XEXP (cp, 2))
5985 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5990 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5991 appears in the block tree, select one of the fragments to become
5992 the new origin block. */
5994 static void
5995 reorder_fix_fragments (block)
5996 tree block;
5998 while (block)
6000 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6001 tree new_origin = NULL_TREE;
6003 if (dup_origin)
6005 if (! TREE_ASM_WRITTEN (dup_origin))
6007 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6009 /* Find the first of the remaining fragments. There must
6010 be at least one -- the current block. */
6011 while (! TREE_ASM_WRITTEN (new_origin))
6012 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6013 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6016 else if (! dup_origin)
6017 new_origin = block;
6019 /* Re-root the rest of the fragments to the new origin. In the
6020 case that DUP_ORIGIN was null, that means BLOCK was the origin
6021 of a chain of fragments and we want to remove those fragments
6022 that didn't make it to the output. */
6023 if (new_origin)
6025 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6026 tree chain = *pp;
6028 while (chain)
6030 if (TREE_ASM_WRITTEN (chain))
6032 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6033 *pp = chain;
6034 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6036 chain = BLOCK_FRAGMENT_CHAIN (chain);
6038 *pp = NULL_TREE;
6041 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6042 block = BLOCK_CHAIN (block);
6046 /* Reverse the order of elements in the chain T of blocks,
6047 and return the new head of the chain (old last element). */
6049 static tree
6050 blocks_nreverse (t)
6051 tree t;
6053 tree prev = 0, decl, next;
6054 for (decl = t; decl; decl = next)
6056 next = BLOCK_CHAIN (decl);
6057 BLOCK_CHAIN (decl) = prev;
6058 prev = decl;
6060 return prev;
6063 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6064 non-NULL, list them all into VECTOR, in a depth-first preorder
6065 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6066 blocks. */
6068 static int
6069 all_blocks (block, vector)
6070 tree block;
6071 tree *vector;
6073 int n_blocks = 0;
6075 while (block)
6077 TREE_ASM_WRITTEN (block) = 0;
6079 /* Record this block. */
6080 if (vector)
6081 vector[n_blocks] = block;
6083 ++n_blocks;
6085 /* Record the subblocks, and their subblocks... */
6086 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6087 vector ? vector + n_blocks : 0);
6088 block = BLOCK_CHAIN (block);
6091 return n_blocks;
6094 /* Return a vector containing all the blocks rooted at BLOCK. The
6095 number of elements in the vector is stored in N_BLOCKS_P. The
6096 vector is dynamically allocated; it is the caller's responsibility
6097 to call `free' on the pointer returned. */
6099 static tree *
6100 get_block_vector (block, n_blocks_p)
6101 tree block;
6102 int *n_blocks_p;
6104 tree *block_vector;
6106 *n_blocks_p = all_blocks (block, NULL);
6107 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6108 all_blocks (block, block_vector);
6110 return block_vector;
6113 static GTY(()) int next_block_index = 2;
6115 /* Set BLOCK_NUMBER for all the blocks in FN. */
6117 void
6118 number_blocks (fn)
6119 tree fn;
6121 int i;
6122 int n_blocks;
6123 tree *block_vector;
6125 /* For SDB and XCOFF debugging output, we start numbering the blocks
6126 from 1 within each function, rather than keeping a running
6127 count. */
6128 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6129 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6130 next_block_index = 1;
6131 #endif
6133 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6135 /* The top-level BLOCK isn't numbered at all. */
6136 for (i = 1; i < n_blocks; ++i)
6137 /* We number the blocks from two. */
6138 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6140 free (block_vector);
6142 return;
6145 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6147 tree
6148 debug_find_var_in_block_tree (var, block)
6149 tree var;
6150 tree block;
6152 tree t;
6154 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6155 if (t == var)
6156 return block;
6158 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6160 tree ret = debug_find_var_in_block_tree (var, t);
6161 if (ret)
6162 return ret;
6165 return NULL_TREE;
6168 /* Allocate a function structure and reset its contents to the defaults. */
6170 static void
6171 prepare_function_start ()
6173 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6175 init_stmt_for_function ();
6176 init_eh_for_function ();
6178 cse_not_expected = ! optimize;
6180 /* Caller save not needed yet. */
6181 caller_save_needed = 0;
6183 /* No stack slots have been made yet. */
6184 stack_slot_list = 0;
6186 current_function_has_nonlocal_label = 0;
6187 current_function_has_nonlocal_goto = 0;
6189 /* There is no stack slot for handling nonlocal gotos. */
6190 nonlocal_goto_handler_slots = 0;
6191 nonlocal_goto_stack_level = 0;
6193 /* No labels have been declared for nonlocal use. */
6194 nonlocal_labels = 0;
6195 nonlocal_goto_handler_labels = 0;
6197 /* No function calls so far in this function. */
6198 function_call_count = 0;
6200 /* No parm regs have been allocated.
6201 (This is important for output_inline_function.) */
6202 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6204 /* Initialize the RTL mechanism. */
6205 init_emit ();
6207 /* Initialize the queue of pending postincrement and postdecrements,
6208 and some other info in expr.c. */
6209 init_expr ();
6211 /* We haven't done register allocation yet. */
6212 reg_renumber = 0;
6214 init_varasm_status (cfun);
6216 /* Clear out data used for inlining. */
6217 cfun->inlinable = 0;
6218 cfun->original_decl_initial = 0;
6219 cfun->original_arg_vector = 0;
6221 cfun->stack_alignment_needed = STACK_BOUNDARY;
6222 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6224 /* Set if a call to setjmp is seen. */
6225 current_function_calls_setjmp = 0;
6227 /* Set if a call to longjmp is seen. */
6228 current_function_calls_longjmp = 0;
6230 current_function_calls_alloca = 0;
6231 current_function_calls_eh_return = 0;
6232 current_function_calls_constant_p = 0;
6233 current_function_contains_functions = 0;
6234 current_function_is_leaf = 0;
6235 current_function_nothrow = 0;
6236 current_function_sp_is_unchanging = 0;
6237 current_function_uses_only_leaf_regs = 0;
6238 current_function_has_computed_jump = 0;
6239 current_function_is_thunk = 0;
6241 current_function_returns_pcc_struct = 0;
6242 current_function_returns_struct = 0;
6243 current_function_epilogue_delay_list = 0;
6244 current_function_uses_const_pool = 0;
6245 current_function_uses_pic_offset_table = 0;
6246 current_function_cannot_inline = 0;
6248 /* We have not yet needed to make a label to jump to for tail-recursion. */
6249 tail_recursion_label = 0;
6251 /* We haven't had a need to make a save area for ap yet. */
6252 arg_pointer_save_area = 0;
6254 /* No stack slots allocated yet. */
6255 frame_offset = 0;
6257 /* No SAVE_EXPRs in this function yet. */
6258 save_expr_regs = 0;
6260 /* No RTL_EXPRs in this function yet. */
6261 rtl_expr_chain = 0;
6263 /* Set up to allocate temporaries. */
6264 init_temp_slots ();
6266 /* Indicate that we need to distinguish between the return value of the
6267 present function and the return value of a function being called. */
6268 rtx_equal_function_value_matters = 1;
6270 /* Indicate that we have not instantiated virtual registers yet. */
6271 virtuals_instantiated = 0;
6273 /* Indicate that we want CONCATs now. */
6274 generating_concat_p = 1;
6276 /* Indicate we have no need of a frame pointer yet. */
6277 frame_pointer_needed = 0;
6279 /* By default assume not stdarg. */
6280 current_function_stdarg = 0;
6282 /* We haven't made any trampolines for this function yet. */
6283 trampoline_list = 0;
6285 init_pending_stack_adjust ();
6286 inhibit_defer_pop = 0;
6288 current_function_outgoing_args_size = 0;
6290 current_function_funcdef_no = funcdef_no++;
6292 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6294 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6296 cfun->max_jumptable_ents = 0;
6298 (*lang_hooks.function.init) (cfun);
6299 if (init_machine_status)
6300 cfun->machine = (*init_machine_status) ();
6303 /* Initialize the rtl expansion mechanism so that we can do simple things
6304 like generate sequences. This is used to provide a context during global
6305 initialization of some passes. */
6306 void
6307 init_dummy_function_start ()
6309 prepare_function_start ();
6312 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6313 and initialize static variables for generating RTL for the statements
6314 of the function. */
6316 void
6317 init_function_start (subr, filename, line)
6318 tree subr;
6319 const char *filename;
6320 int line;
6322 prepare_function_start ();
6324 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6325 cfun->decl = subr;
6327 /* Nonzero if this is a nested function that uses a static chain. */
6329 current_function_needs_context
6330 = (decl_function_context (current_function_decl) != 0
6331 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6333 /* Within function body, compute a type's size as soon it is laid out. */
6334 immediate_size_expand++;
6336 /* Prevent ever trying to delete the first instruction of a function.
6337 Also tell final how to output a linenum before the function prologue.
6338 Note linenums could be missing, e.g. when compiling a Java .class file. */
6339 if (line > 0)
6340 emit_line_note (filename, line);
6342 /* Make sure first insn is a note even if we don't want linenums.
6343 This makes sure the first insn will never be deleted.
6344 Also, final expects a note to appear there. */
6345 emit_note (NULL, NOTE_INSN_DELETED);
6347 /* Set flags used by final.c. */
6348 if (aggregate_value_p (DECL_RESULT (subr)))
6350 #ifdef PCC_STATIC_STRUCT_RETURN
6351 current_function_returns_pcc_struct = 1;
6352 #endif
6353 current_function_returns_struct = 1;
6356 /* Warn if this value is an aggregate type,
6357 regardless of which calling convention we are using for it. */
6358 if (warn_aggregate_return
6359 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6360 warning ("function returns an aggregate");
6362 current_function_returns_pointer
6363 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6366 /* Make sure all values used by the optimization passes have sane
6367 defaults. */
6368 void
6369 init_function_for_compilation ()
6371 reg_renumber = 0;
6373 /* No prologue/epilogue insns yet. */
6374 VARRAY_GROW (prologue, 0);
6375 VARRAY_GROW (epilogue, 0);
6376 VARRAY_GROW (sibcall_epilogue, 0);
6379 /* Expand a call to __main at the beginning of a possible main function. */
6381 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6382 #undef HAS_INIT_SECTION
6383 #define HAS_INIT_SECTION
6384 #endif
6386 void
6387 expand_main_function ()
6389 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6390 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6392 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6393 rtx tmp, seq;
6395 start_sequence ();
6396 /* Forcibly align the stack. */
6397 #ifdef STACK_GROWS_DOWNWARD
6398 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6399 stack_pointer_rtx, 1, OPTAB_WIDEN);
6400 #else
6401 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6402 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6403 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6404 stack_pointer_rtx, 1, OPTAB_WIDEN);
6405 #endif
6406 if (tmp != stack_pointer_rtx)
6407 emit_move_insn (stack_pointer_rtx, tmp);
6409 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6410 tmp = force_reg (Pmode, const0_rtx);
6411 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6412 seq = get_insns ();
6413 end_sequence ();
6415 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6416 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6417 break;
6418 if (tmp)
6419 emit_insn_before (seq, tmp);
6420 else
6421 emit_insn (seq);
6423 #endif
6425 #ifndef HAS_INIT_SECTION
6426 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
6427 VOIDmode, 0);
6428 #endif
6431 /* The PENDING_SIZES represent the sizes of variable-sized types.
6432 Create RTL for the various sizes now (using temporary variables),
6433 so that we can refer to the sizes from the RTL we are generating
6434 for the current function. The PENDING_SIZES are a TREE_LIST. The
6435 TREE_VALUE of each node is a SAVE_EXPR. */
6437 void
6438 expand_pending_sizes (pending_sizes)
6439 tree pending_sizes;
6441 tree tem;
6443 /* Evaluate now the sizes of any types declared among the arguments. */
6444 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6446 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6447 /* Flush the queue in case this parameter declaration has
6448 side-effects. */
6449 emit_queue ();
6453 /* Start the RTL for a new function, and set variables used for
6454 emitting RTL.
6455 SUBR is the FUNCTION_DECL node.
6456 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6457 the function's parameters, which must be run at any return statement. */
6459 void
6460 expand_function_start (subr, parms_have_cleanups)
6461 tree subr;
6462 int parms_have_cleanups;
6464 tree tem;
6465 rtx last_ptr = NULL_RTX;
6467 /* Make sure volatile mem refs aren't considered
6468 valid operands of arithmetic insns. */
6469 init_recog_no_volatile ();
6471 current_function_instrument_entry_exit
6472 = (flag_instrument_function_entry_exit
6473 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6475 current_function_profile
6476 = (profile_flag
6477 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6479 current_function_limit_stack
6480 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6482 /* If function gets a static chain arg, store it in the stack frame.
6483 Do this first, so it gets the first stack slot offset. */
6484 if (current_function_needs_context)
6486 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6488 /* Delay copying static chain if it is not a register to avoid
6489 conflicts with regs used for parameters. */
6490 if (! SMALL_REGISTER_CLASSES
6491 || GET_CODE (static_chain_incoming_rtx) == REG)
6492 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6495 /* If the parameters of this function need cleaning up, get a label
6496 for the beginning of the code which executes those cleanups. This must
6497 be done before doing anything with return_label. */
6498 if (parms_have_cleanups)
6499 cleanup_label = gen_label_rtx ();
6500 else
6501 cleanup_label = 0;
6503 /* Make the label for return statements to jump to. Do not special
6504 case machines with special return instructions -- they will be
6505 handled later during jump, ifcvt, or epilogue creation. */
6506 return_label = gen_label_rtx ();
6508 /* Initialize rtx used to return the value. */
6509 /* Do this before assign_parms so that we copy the struct value address
6510 before any library calls that assign parms might generate. */
6512 /* Decide whether to return the value in memory or in a register. */
6513 if (aggregate_value_p (DECL_RESULT (subr)))
6515 /* Returning something that won't go in a register. */
6516 rtx value_address = 0;
6518 #ifdef PCC_STATIC_STRUCT_RETURN
6519 if (current_function_returns_pcc_struct)
6521 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6522 value_address = assemble_static_space (size);
6524 else
6525 #endif
6527 /* Expect to be passed the address of a place to store the value.
6528 If it is passed as an argument, assign_parms will take care of
6529 it. */
6530 if (struct_value_incoming_rtx)
6532 value_address = gen_reg_rtx (Pmode);
6533 emit_move_insn (value_address, struct_value_incoming_rtx);
6536 if (value_address)
6538 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6539 set_mem_attributes (x, DECL_RESULT (subr), 1);
6540 SET_DECL_RTL (DECL_RESULT (subr), x);
6543 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6544 /* If return mode is void, this decl rtl should not be used. */
6545 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6546 else
6548 /* Compute the return values into a pseudo reg, which we will copy
6549 into the true return register after the cleanups are done. */
6551 /* In order to figure out what mode to use for the pseudo, we
6552 figure out what the mode of the eventual return register will
6553 actually be, and use that. */
6554 rtx hard_reg
6555 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6556 subr, 1);
6558 /* Structures that are returned in registers are not aggregate_value_p,
6559 so we may see a PARALLEL or a REG. */
6560 if (REG_P (hard_reg))
6561 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6562 else if (GET_CODE (hard_reg) == PARALLEL)
6563 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6564 else
6565 abort ();
6567 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6568 result to the real return register(s). */
6569 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6572 /* Initialize rtx for parameters and local variables.
6573 In some cases this requires emitting insns. */
6575 assign_parms (subr);
6577 /* Copy the static chain now if it wasn't a register. The delay is to
6578 avoid conflicts with the parameter passing registers. */
6580 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6581 if (GET_CODE (static_chain_incoming_rtx) != REG)
6582 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6584 /* The following was moved from init_function_start.
6585 The move is supposed to make sdb output more accurate. */
6586 /* Indicate the beginning of the function body,
6587 as opposed to parm setup. */
6588 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6590 if (GET_CODE (get_last_insn ()) != NOTE)
6591 emit_note (NULL, NOTE_INSN_DELETED);
6592 parm_birth_insn = get_last_insn ();
6594 context_display = 0;
6595 if (current_function_needs_context)
6597 /* Fetch static chain values for containing functions. */
6598 tem = decl_function_context (current_function_decl);
6599 /* Copy the static chain pointer into a pseudo. If we have
6600 small register classes, copy the value from memory if
6601 static_chain_incoming_rtx is a REG. */
6602 if (tem)
6604 /* If the static chain originally came in a register, put it back
6605 there, then move it out in the next insn. The reason for
6606 this peculiar code is to satisfy function integration. */
6607 if (SMALL_REGISTER_CLASSES
6608 && GET_CODE (static_chain_incoming_rtx) == REG)
6609 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6610 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6613 while (tem)
6615 tree rtlexp = make_node (RTL_EXPR);
6617 RTL_EXPR_RTL (rtlexp) = last_ptr;
6618 context_display = tree_cons (tem, rtlexp, context_display);
6619 tem = decl_function_context (tem);
6620 if (tem == 0)
6621 break;
6622 /* Chain thru stack frames, assuming pointer to next lexical frame
6623 is found at the place we always store it. */
6624 #ifdef FRAME_GROWS_DOWNWARD
6625 last_ptr = plus_constant (last_ptr,
6626 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6627 #endif
6628 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6629 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6630 last_ptr = copy_to_reg (last_ptr);
6632 /* If we are not optimizing, ensure that we know that this
6633 piece of context is live over the entire function. */
6634 if (! optimize)
6635 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6636 save_expr_regs);
6640 if (current_function_instrument_entry_exit)
6642 rtx fun = DECL_RTL (current_function_decl);
6643 if (GET_CODE (fun) == MEM)
6644 fun = XEXP (fun, 0);
6645 else
6646 abort ();
6647 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6648 2, fun, Pmode,
6649 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6651 hard_frame_pointer_rtx),
6652 Pmode);
6655 if (current_function_profile)
6657 #ifdef PROFILE_HOOK
6658 PROFILE_HOOK (current_function_funcdef_no);
6659 #endif
6662 /* After the display initializations is where the tail-recursion label
6663 should go, if we end up needing one. Ensure we have a NOTE here
6664 since some things (like trampolines) get placed before this. */
6665 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6667 /* Evaluate now the sizes of any types declared among the arguments. */
6668 expand_pending_sizes (nreverse (get_pending_sizes ()));
6670 /* Make sure there is a line number after the function entry setup code. */
6671 force_next_line_note ();
6674 /* Undo the effects of init_dummy_function_start. */
6675 void
6676 expand_dummy_function_end ()
6678 /* End any sequences that failed to be closed due to syntax errors. */
6679 while (in_sequence_p ())
6680 end_sequence ();
6682 /* Outside function body, can't compute type's actual size
6683 until next function's body starts. */
6685 free_after_parsing (cfun);
6686 free_after_compilation (cfun);
6687 cfun = 0;
6690 /* Call DOIT for each hard register used as a return value from
6691 the current function. */
6693 void
6694 diddle_return_value (doit, arg)
6695 void (*doit) PARAMS ((rtx, void *));
6696 void *arg;
6698 rtx outgoing = current_function_return_rtx;
6700 if (! outgoing)
6701 return;
6703 if (GET_CODE (outgoing) == REG)
6704 (*doit) (outgoing, arg);
6705 else if (GET_CODE (outgoing) == PARALLEL)
6707 int i;
6709 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6711 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6713 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6714 (*doit) (x, arg);
6719 static void
6720 do_clobber_return_reg (reg, arg)
6721 rtx reg;
6722 void *arg ATTRIBUTE_UNUSED;
6724 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6727 void
6728 clobber_return_register ()
6730 diddle_return_value (do_clobber_return_reg, NULL);
6732 /* In case we do use pseudo to return value, clobber it too. */
6733 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6735 tree decl_result = DECL_RESULT (current_function_decl);
6736 rtx decl_rtl = DECL_RTL (decl_result);
6737 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6739 do_clobber_return_reg (decl_rtl, NULL);
6744 static void
6745 do_use_return_reg (reg, arg)
6746 rtx reg;
6747 void *arg ATTRIBUTE_UNUSED;
6749 emit_insn (gen_rtx_USE (VOIDmode, reg));
6752 void
6753 use_return_register ()
6755 diddle_return_value (do_use_return_reg, NULL);
6758 static GTY(()) rtx initial_trampoline;
6760 /* Generate RTL for the end of the current function.
6761 FILENAME and LINE are the current position in the source file.
6763 It is up to language-specific callers to do cleanups for parameters--
6764 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6766 void
6767 expand_function_end (filename, line, end_bindings)
6768 const char *filename;
6769 int line;
6770 int end_bindings;
6772 tree link;
6773 rtx clobber_after;
6775 finish_expr_for_function ();
6777 /* If arg_pointer_save_area was referenced only from a nested
6778 function, we will not have initialized it yet. Do that now. */
6779 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6780 get_arg_pointer_save_area (cfun);
6782 #ifdef NON_SAVING_SETJMP
6783 /* Don't put any variables in registers if we call setjmp
6784 on a machine that fails to restore the registers. */
6785 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6787 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6788 setjmp_protect (DECL_INITIAL (current_function_decl));
6790 setjmp_protect_args ();
6792 #endif
6794 /* Initialize any trampolines required by this function. */
6795 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6797 tree function = TREE_PURPOSE (link);
6798 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6799 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6800 #ifdef TRAMPOLINE_TEMPLATE
6801 rtx blktramp;
6802 #endif
6803 rtx seq;
6805 #ifdef TRAMPOLINE_TEMPLATE
6806 /* First make sure this compilation has a template for
6807 initializing trampolines. */
6808 if (initial_trampoline == 0)
6810 initial_trampoline
6811 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6812 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6814 #endif
6816 /* Generate insns to initialize the trampoline. */
6817 start_sequence ();
6818 tramp = round_trampoline_addr (XEXP (tramp, 0));
6819 #ifdef TRAMPOLINE_TEMPLATE
6820 blktramp = replace_equiv_address (initial_trampoline, tramp);
6821 emit_block_move (blktramp, initial_trampoline,
6822 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6823 #endif
6824 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6825 seq = get_insns ();
6826 end_sequence ();
6828 /* Put those insns at entry to the containing function (this one). */
6829 emit_insn_before (seq, tail_recursion_reentry);
6832 /* If we are doing stack checking and this function makes calls,
6833 do a stack probe at the start of the function to ensure we have enough
6834 space for another stack frame. */
6835 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6837 rtx insn, seq;
6839 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6840 if (GET_CODE (insn) == CALL_INSN)
6842 start_sequence ();
6843 probe_stack_range (STACK_CHECK_PROTECT,
6844 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6845 seq = get_insns ();
6846 end_sequence ();
6847 emit_insn_before (seq, tail_recursion_reentry);
6848 break;
6852 /* Warn about unused parms if extra warnings were specified. */
6853 /* Either ``-Wextra -Wunused'' or ``-Wunused-parameter'' enables this
6854 warning. WARN_UNUSED_PARAMETER is negative when set by
6855 -Wunused. Note that -Wall implies -Wunused, so ``-Wall -Wextra'' will
6856 also give these warnings. */
6857 if (warn_unused_parameter > 0
6858 || (warn_unused_parameter < 0 && extra_warnings))
6860 tree decl;
6862 for (decl = DECL_ARGUMENTS (current_function_decl);
6863 decl; decl = TREE_CHAIN (decl))
6864 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6865 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6866 warning_with_decl (decl, "unused parameter `%s'");
6869 /* Delete handlers for nonlocal gotos if nothing uses them. */
6870 if (nonlocal_goto_handler_slots != 0
6871 && ! current_function_has_nonlocal_label)
6872 delete_handlers ();
6874 /* End any sequences that failed to be closed due to syntax errors. */
6875 while (in_sequence_p ())
6876 end_sequence ();
6878 /* Outside function body, can't compute type's actual size
6879 until next function's body starts. */
6880 immediate_size_expand--;
6882 clear_pending_stack_adjust ();
6883 do_pending_stack_adjust ();
6885 /* Mark the end of the function body.
6886 If control reaches this insn, the function can drop through
6887 without returning a value. */
6888 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6890 /* Must mark the last line number note in the function, so that the test
6891 coverage code can avoid counting the last line twice. This just tells
6892 the code to ignore the immediately following line note, since there
6893 already exists a copy of this note somewhere above. This line number
6894 note is still needed for debugging though, so we can't delete it. */
6895 if (flag_test_coverage)
6896 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6898 /* Output a linenumber for the end of the function.
6899 SDB depends on this. */
6900 emit_line_note_force (filename, line);
6902 /* Before the return label (if any), clobber the return
6903 registers so that they are not propagated live to the rest of
6904 the function. This can only happen with functions that drop
6905 through; if there had been a return statement, there would
6906 have either been a return rtx, or a jump to the return label.
6908 We delay actual code generation after the current_function_value_rtx
6909 is computed. */
6910 clobber_after = get_last_insn ();
6912 /* Output the label for the actual return from the function,
6913 if one is expected. This happens either because a function epilogue
6914 is used instead of a return instruction, or because a return was done
6915 with a goto in order to run local cleanups, or because of pcc-style
6916 structure returning. */
6917 if (return_label)
6918 emit_label (return_label);
6920 /* C++ uses this. */
6921 if (end_bindings)
6922 expand_end_bindings (0, 0, 0);
6924 if (current_function_instrument_entry_exit)
6926 rtx fun = DECL_RTL (current_function_decl);
6927 if (GET_CODE (fun) == MEM)
6928 fun = XEXP (fun, 0);
6929 else
6930 abort ();
6931 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6932 2, fun, Pmode,
6933 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6935 hard_frame_pointer_rtx),
6936 Pmode);
6939 /* Let except.c know where it should emit the call to unregister
6940 the function context for sjlj exceptions. */
6941 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6942 sjlj_emit_function_exit_after (get_last_insn ());
6944 /* If we had calls to alloca, and this machine needs
6945 an accurate stack pointer to exit the function,
6946 insert some code to save and restore the stack pointer. */
6947 #ifdef EXIT_IGNORE_STACK
6948 if (! EXIT_IGNORE_STACK)
6949 #endif
6950 if (current_function_calls_alloca)
6952 rtx tem = 0;
6954 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6955 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6958 /* If scalar return value was computed in a pseudo-reg, or was a named
6959 return value that got dumped to the stack, copy that to the hard
6960 return register. */
6961 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6963 tree decl_result = DECL_RESULT (current_function_decl);
6964 rtx decl_rtl = DECL_RTL (decl_result);
6966 if (REG_P (decl_rtl)
6967 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6968 : DECL_REGISTER (decl_result))
6970 rtx real_decl_rtl = current_function_return_rtx;
6972 /* This should be set in assign_parms. */
6973 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6974 abort ();
6976 /* If this is a BLKmode structure being returned in registers,
6977 then use the mode computed in expand_return. Note that if
6978 decl_rtl is memory, then its mode may have been changed,
6979 but that current_function_return_rtx has not. */
6980 if (GET_MODE (real_decl_rtl) == BLKmode)
6981 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
6983 /* If a named return value dumped decl_return to memory, then
6984 we may need to re-do the PROMOTE_MODE signed/unsigned
6985 extension. */
6986 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6988 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6990 #ifdef PROMOTE_FUNCTION_RETURN
6991 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6992 &unsignedp, 1);
6993 #endif
6995 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6997 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6999 /* If expand_function_start has created a PARALLEL for decl_rtl,
7000 move the result to the real return registers. Otherwise, do
7001 a group load from decl_rtl for a named return. */
7002 if (GET_CODE (decl_rtl) == PARALLEL)
7003 emit_group_move (real_decl_rtl, decl_rtl);
7004 else
7005 emit_group_load (real_decl_rtl, decl_rtl,
7006 int_size_in_bytes (TREE_TYPE (decl_result)));
7008 else
7009 emit_move_insn (real_decl_rtl, decl_rtl);
7013 /* If returning a structure, arrange to return the address of the value
7014 in a place where debuggers expect to find it.
7016 If returning a structure PCC style,
7017 the caller also depends on this value.
7018 And current_function_returns_pcc_struct is not necessarily set. */
7019 if (current_function_returns_struct
7020 || current_function_returns_pcc_struct)
7022 rtx value_address
7023 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7024 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7025 #ifdef FUNCTION_OUTGOING_VALUE
7026 rtx outgoing
7027 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7028 current_function_decl);
7029 #else
7030 rtx outgoing
7031 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7032 #endif
7034 /* Mark this as a function return value so integrate will delete the
7035 assignment and USE below when inlining this function. */
7036 REG_FUNCTION_VALUE_P (outgoing) = 1;
7038 #ifdef POINTERS_EXTEND_UNSIGNED
7039 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7040 if (GET_MODE (outgoing) != GET_MODE (value_address))
7041 value_address = convert_memory_address (GET_MODE (outgoing),
7042 value_address);
7043 #endif
7045 emit_move_insn (outgoing, value_address);
7047 /* Show return register used to hold result (in this case the address
7048 of the result. */
7049 current_function_return_rtx = outgoing;
7052 /* If this is an implementation of throw, do what's necessary to
7053 communicate between __builtin_eh_return and the epilogue. */
7054 expand_eh_return ();
7056 /* Emit the actual code to clobber return register. */
7058 rtx seq, after;
7060 start_sequence ();
7061 clobber_return_register ();
7062 seq = get_insns ();
7063 end_sequence ();
7065 after = emit_insn_after (seq, clobber_after);
7067 if (clobber_after != after)
7068 cfun->x_clobber_return_insn = after;
7071 /* ??? This should no longer be necessary since stupid is no longer with
7072 us, but there are some parts of the compiler (eg reload_combine, and
7073 sh mach_dep_reorg) that still try and compute their own lifetime info
7074 instead of using the general framework. */
7075 use_return_register ();
7077 /* Fix up any gotos that jumped out to the outermost
7078 binding level of the function.
7079 Must follow emitting RETURN_LABEL. */
7081 /* If you have any cleanups to do at this point,
7082 and they need to create temporary variables,
7083 then you will lose. */
7084 expand_fixups (get_insns ());
7088 get_arg_pointer_save_area (f)
7089 struct function *f;
7091 rtx ret = f->x_arg_pointer_save_area;
7093 if (! ret)
7095 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7096 f->x_arg_pointer_save_area = ret;
7099 if (f == cfun && ! f->arg_pointer_save_area_init)
7101 rtx seq;
7103 /* Save the arg pointer at the beginning of the function. The
7104 generated stack slot may not be a valid memory address, so we
7105 have to check it and fix it if necessary. */
7106 start_sequence ();
7107 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7108 seq = get_insns ();
7109 end_sequence ();
7111 push_topmost_sequence ();
7112 emit_insn_after (seq, get_insns ());
7113 pop_topmost_sequence ();
7116 return ret;
7119 /* Extend a vector that records the INSN_UIDs of INSNS
7120 (a list of one or more insns). */
7122 static void
7123 record_insns (insns, vecp)
7124 rtx insns;
7125 varray_type *vecp;
7127 int i, len;
7128 rtx tmp;
7130 tmp = insns;
7131 len = 0;
7132 while (tmp != NULL_RTX)
7134 len++;
7135 tmp = NEXT_INSN (tmp);
7138 i = VARRAY_SIZE (*vecp);
7139 VARRAY_GROW (*vecp, i + len);
7140 tmp = insns;
7141 while (tmp != NULL_RTX)
7143 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7144 i++;
7145 tmp = NEXT_INSN (tmp);
7149 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7150 be running after reorg, SEQUENCE rtl is possible. */
7152 static int
7153 contains (insn, vec)
7154 rtx insn;
7155 varray_type vec;
7157 int i, j;
7159 if (GET_CODE (insn) == INSN
7160 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7162 int count = 0;
7163 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7164 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7165 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7166 count++;
7167 return count;
7169 else
7171 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7172 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7173 return 1;
7175 return 0;
7179 prologue_epilogue_contains (insn)
7180 rtx insn;
7182 if (contains (insn, prologue))
7183 return 1;
7184 if (contains (insn, epilogue))
7185 return 1;
7186 return 0;
7190 sibcall_epilogue_contains (insn)
7191 rtx insn;
7193 if (sibcall_epilogue)
7194 return contains (insn, sibcall_epilogue);
7195 return 0;
7198 #ifdef HAVE_return
7199 /* Insert gen_return at the end of block BB. This also means updating
7200 block_for_insn appropriately. */
7202 static void
7203 emit_return_into_block (bb, line_note)
7204 basic_block bb;
7205 rtx line_note;
7207 emit_jump_insn_after (gen_return (), bb->end);
7208 if (line_note)
7209 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7210 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7212 #endif /* HAVE_return */
7214 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7216 /* These functions convert the epilogue into a variant that does not modify the
7217 stack pointer. This is used in cases where a function returns an object
7218 whose size is not known until it is computed. The called function leaves the
7219 object on the stack, leaves the stack depressed, and returns a pointer to
7220 the object.
7222 What we need to do is track all modifications and references to the stack
7223 pointer, deleting the modifications and changing the references to point to
7224 the location the stack pointer would have pointed to had the modifications
7225 taken place.
7227 These functions need to be portable so we need to make as few assumptions
7228 about the epilogue as we can. However, the epilogue basically contains
7229 three things: instructions to reset the stack pointer, instructions to
7230 reload registers, possibly including the frame pointer, and an
7231 instruction to return to the caller.
7233 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7234 We also make no attempt to validate the insns we make since if they are
7235 invalid, we probably can't do anything valid. The intent is that these
7236 routines get "smarter" as more and more machines start to use them and
7237 they try operating on different epilogues.
7239 We use the following structure to track what the part of the epilogue that
7240 we've already processed has done. We keep two copies of the SP equivalence,
7241 one for use during the insn we are processing and one for use in the next
7242 insn. The difference is because one part of a PARALLEL may adjust SP
7243 and the other may use it. */
7245 struct epi_info
7247 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7248 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7249 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7250 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7251 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7252 should be set to once we no longer need
7253 its value. */
7256 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7257 static void emit_equiv_load PARAMS ((struct epi_info *));
7259 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7260 no modifications to the stack pointer. Return the new list of insns. */
7262 static rtx
7263 keep_stack_depressed (insns)
7264 rtx insns;
7266 int j;
7267 struct epi_info info;
7268 rtx insn, next;
7270 /* If the epilogue is just a single instruction, it ust be OK as is. */
7272 if (NEXT_INSN (insns) == NULL_RTX)
7273 return insns;
7275 /* Otherwise, start a sequence, initialize the information we have, and
7276 process all the insns we were given. */
7277 start_sequence ();
7279 info.sp_equiv_reg = stack_pointer_rtx;
7280 info.sp_offset = 0;
7281 info.equiv_reg_src = 0;
7283 insn = insns;
7284 next = NULL_RTX;
7285 while (insn != NULL_RTX)
7287 next = NEXT_INSN (insn);
7289 if (!INSN_P (insn))
7291 add_insn (insn);
7292 insn = next;
7293 continue;
7296 /* If this insn references the register that SP is equivalent to and
7297 we have a pending load to that register, we must force out the load
7298 first and then indicate we no longer know what SP's equivalent is. */
7299 if (info.equiv_reg_src != 0
7300 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7302 emit_equiv_load (&info);
7303 info.sp_equiv_reg = 0;
7306 info.new_sp_equiv_reg = info.sp_equiv_reg;
7307 info.new_sp_offset = info.sp_offset;
7309 /* If this is a (RETURN) and the return address is on the stack,
7310 update the address and change to an indirect jump. */
7311 if (GET_CODE (PATTERN (insn)) == RETURN
7312 || (GET_CODE (PATTERN (insn)) == PARALLEL
7313 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7315 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7316 rtx base = 0;
7317 HOST_WIDE_INT offset = 0;
7318 rtx jump_insn, jump_set;
7320 /* If the return address is in a register, we can emit the insn
7321 unchanged. Otherwise, it must be a MEM and we see what the
7322 base register and offset are. In any case, we have to emit any
7323 pending load to the equivalent reg of SP, if any. */
7324 if (GET_CODE (retaddr) == REG)
7326 emit_equiv_load (&info);
7327 add_insn (insn);
7328 insn = next;
7329 continue;
7331 else if (GET_CODE (retaddr) == MEM
7332 && GET_CODE (XEXP (retaddr, 0)) == REG)
7333 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7334 else if (GET_CODE (retaddr) == MEM
7335 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7336 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7337 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7339 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7340 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7342 else
7343 abort ();
7345 /* If the base of the location containing the return pointer
7346 is SP, we must update it with the replacement address. Otherwise,
7347 just build the necessary MEM. */
7348 retaddr = plus_constant (base, offset);
7349 if (base == stack_pointer_rtx)
7350 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7351 plus_constant (info.sp_equiv_reg,
7352 info.sp_offset));
7354 retaddr = gen_rtx_MEM (Pmode, retaddr);
7356 /* If there is a pending load to the equivalent register for SP
7357 and we reference that register, we must load our address into
7358 a scratch register and then do that load. */
7359 if (info.equiv_reg_src
7360 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7362 unsigned int regno;
7363 rtx reg;
7365 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7366 if (HARD_REGNO_MODE_OK (regno, Pmode)
7367 && !fixed_regs[regno]
7368 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7369 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7370 regno)
7371 && !refers_to_regno_p (regno,
7372 regno + HARD_REGNO_NREGS (regno,
7373 Pmode),
7374 info.equiv_reg_src, NULL))
7375 break;
7377 if (regno == FIRST_PSEUDO_REGISTER)
7378 abort ();
7380 reg = gen_rtx_REG (Pmode, regno);
7381 emit_move_insn (reg, retaddr);
7382 retaddr = reg;
7385 emit_equiv_load (&info);
7386 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7388 /* Show the SET in the above insn is a RETURN. */
7389 jump_set = single_set (jump_insn);
7390 if (jump_set == 0)
7391 abort ();
7392 else
7393 SET_IS_RETURN_P (jump_set) = 1;
7396 /* If SP is not mentioned in the pattern and its equivalent register, if
7397 any, is not modified, just emit it. Otherwise, if neither is set,
7398 replace the reference to SP and emit the insn. If none of those are
7399 true, handle each SET individually. */
7400 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7401 && (info.sp_equiv_reg == stack_pointer_rtx
7402 || !reg_set_p (info.sp_equiv_reg, insn)))
7403 add_insn (insn);
7404 else if (! reg_set_p (stack_pointer_rtx, insn)
7405 && (info.sp_equiv_reg == stack_pointer_rtx
7406 || !reg_set_p (info.sp_equiv_reg, insn)))
7408 if (! validate_replace_rtx (stack_pointer_rtx,
7409 plus_constant (info.sp_equiv_reg,
7410 info.sp_offset),
7411 insn))
7412 abort ();
7414 add_insn (insn);
7416 else if (GET_CODE (PATTERN (insn)) == SET)
7417 handle_epilogue_set (PATTERN (insn), &info);
7418 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7420 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7421 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7422 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7424 else
7425 add_insn (insn);
7427 info.sp_equiv_reg = info.new_sp_equiv_reg;
7428 info.sp_offset = info.new_sp_offset;
7430 insn = next;
7433 insns = get_insns ();
7434 end_sequence ();
7435 return insns;
7438 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7439 structure that contains information about what we've seen so far. We
7440 process this SET by either updating that data or by emitting one or
7441 more insns. */
7443 static void
7444 handle_epilogue_set (set, p)
7445 rtx set;
7446 struct epi_info *p;
7448 /* First handle the case where we are setting SP. Record what it is being
7449 set from. If unknown, abort. */
7450 if (reg_set_p (stack_pointer_rtx, set))
7452 if (SET_DEST (set) != stack_pointer_rtx)
7453 abort ();
7455 if (GET_CODE (SET_SRC (set)) == PLUS
7456 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7458 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7459 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7461 else
7462 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7464 /* If we are adjusting SP, we adjust from the old data. */
7465 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7467 p->new_sp_equiv_reg = p->sp_equiv_reg;
7468 p->new_sp_offset += p->sp_offset;
7471 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7472 abort ();
7474 return;
7477 /* Next handle the case where we are setting SP's equivalent register.
7478 If we already have a value to set it to, abort. We could update, but
7479 there seems little point in handling that case. Note that we have
7480 to allow for the case where we are setting the register set in
7481 the previous part of a PARALLEL inside a single insn. But use the
7482 old offset for any updates within this insn. */
7483 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7485 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7486 || p->equiv_reg_src != 0)
7487 abort ();
7488 else
7489 p->equiv_reg_src
7490 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7491 plus_constant (p->sp_equiv_reg,
7492 p->sp_offset));
7495 /* Otherwise, replace any references to SP in the insn to its new value
7496 and emit the insn. */
7497 else
7499 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7500 plus_constant (p->sp_equiv_reg,
7501 p->sp_offset));
7502 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7503 plus_constant (p->sp_equiv_reg,
7504 p->sp_offset));
7505 emit_insn (set);
7509 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7511 static void
7512 emit_equiv_load (p)
7513 struct epi_info *p;
7515 if (p->equiv_reg_src != 0)
7516 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7518 p->equiv_reg_src = 0;
7520 #endif
7522 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7523 this into place with notes indicating where the prologue ends and where
7524 the epilogue begins. Update the basic block information when possible. */
7526 void
7527 thread_prologue_and_epilogue_insns (f)
7528 rtx f ATTRIBUTE_UNUSED;
7530 int inserted = 0;
7531 edge e;
7532 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7533 rtx seq;
7534 #endif
7535 #ifdef HAVE_prologue
7536 rtx prologue_end = NULL_RTX;
7537 #endif
7538 #if defined (HAVE_epilogue) || defined(HAVE_return)
7539 rtx epilogue_end = NULL_RTX;
7540 #endif
7542 #ifdef HAVE_prologue
7543 if (HAVE_prologue)
7545 start_sequence ();
7546 seq = gen_prologue ();
7547 emit_insn (seq);
7549 /* Retain a map of the prologue insns. */
7550 record_insns (seq, &prologue);
7551 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7553 seq = get_insns ();
7554 end_sequence ();
7556 /* Can't deal with multiple successors of the entry block
7557 at the moment. Function should always have at least one
7558 entry point. */
7559 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7560 abort ();
7562 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7563 inserted = 1;
7565 #endif
7567 /* If the exit block has no non-fake predecessors, we don't need
7568 an epilogue. */
7569 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7570 if ((e->flags & EDGE_FAKE) == 0)
7571 break;
7572 if (e == NULL)
7573 goto epilogue_done;
7575 #ifdef HAVE_return
7576 if (optimize && HAVE_return)
7578 /* If we're allowed to generate a simple return instruction,
7579 then by definition we don't need a full epilogue. Examine
7580 the block that falls through to EXIT. If it does not
7581 contain any code, examine its predecessors and try to
7582 emit (conditional) return instructions. */
7584 basic_block last;
7585 edge e_next;
7586 rtx label;
7588 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7589 if (e->flags & EDGE_FALLTHRU)
7590 break;
7591 if (e == NULL)
7592 goto epilogue_done;
7593 last = e->src;
7595 /* Verify that there are no active instructions in the last block. */
7596 label = last->end;
7597 while (label && GET_CODE (label) != CODE_LABEL)
7599 if (active_insn_p (label))
7600 break;
7601 label = PREV_INSN (label);
7604 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7606 rtx epilogue_line_note = NULL_RTX;
7608 /* Locate the line number associated with the closing brace,
7609 if we can find one. */
7610 for (seq = get_last_insn ();
7611 seq && ! active_insn_p (seq);
7612 seq = PREV_INSN (seq))
7613 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7615 epilogue_line_note = seq;
7616 break;
7619 for (e = last->pred; e; e = e_next)
7621 basic_block bb = e->src;
7622 rtx jump;
7624 e_next = e->pred_next;
7625 if (bb == ENTRY_BLOCK_PTR)
7626 continue;
7628 jump = bb->end;
7629 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7630 continue;
7632 /* If we have an unconditional jump, we can replace that
7633 with a simple return instruction. */
7634 if (simplejump_p (jump))
7636 emit_return_into_block (bb, epilogue_line_note);
7637 delete_insn (jump);
7640 /* If we have a conditional jump, we can try to replace
7641 that with a conditional return instruction. */
7642 else if (condjump_p (jump))
7644 if (! redirect_jump (jump, 0, 0))
7645 continue;
7647 /* If this block has only one successor, it both jumps
7648 and falls through to the fallthru block, so we can't
7649 delete the edge. */
7650 if (bb->succ->succ_next == NULL)
7651 continue;
7653 else
7654 continue;
7656 /* Fix up the CFG for the successful change we just made. */
7657 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7660 /* Emit a return insn for the exit fallthru block. Whether
7661 this is still reachable will be determined later. */
7663 emit_barrier_after (last->end);
7664 emit_return_into_block (last, epilogue_line_note);
7665 epilogue_end = last->end;
7666 last->succ->flags &= ~EDGE_FALLTHRU;
7667 goto epilogue_done;
7670 #endif
7671 #ifdef HAVE_epilogue
7672 if (HAVE_epilogue)
7674 /* Find the edge that falls through to EXIT. Other edges may exist
7675 due to RETURN instructions, but those don't need epilogues.
7676 There really shouldn't be a mixture -- either all should have
7677 been converted or none, however... */
7679 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7680 if (e->flags & EDGE_FALLTHRU)
7681 break;
7682 if (e == NULL)
7683 goto epilogue_done;
7685 start_sequence ();
7686 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7688 seq = gen_epilogue ();
7690 #ifdef INCOMING_RETURN_ADDR_RTX
7691 /* If this function returns with the stack depressed and we can support
7692 it, massage the epilogue to actually do that. */
7693 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7694 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7695 seq = keep_stack_depressed (seq);
7696 #endif
7698 emit_jump_insn (seq);
7700 /* Retain a map of the epilogue insns. */
7701 record_insns (seq, &epilogue);
7703 seq = get_insns ();
7704 end_sequence ();
7706 insert_insn_on_edge (seq, e);
7707 inserted = 1;
7709 #endif
7710 epilogue_done:
7712 if (inserted)
7713 commit_edge_insertions ();
7715 #ifdef HAVE_sibcall_epilogue
7716 /* Emit sibling epilogues before any sibling call sites. */
7717 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7719 basic_block bb = e->src;
7720 rtx insn = bb->end;
7721 rtx i;
7722 rtx newinsn;
7724 if (GET_CODE (insn) != CALL_INSN
7725 || ! SIBLING_CALL_P (insn))
7726 continue;
7728 start_sequence ();
7729 emit_insn (gen_sibcall_epilogue ());
7730 seq = get_insns ();
7731 end_sequence ();
7733 /* Retain a map of the epilogue insns. Used in life analysis to
7734 avoid getting rid of sibcall epilogue insns. Do this before we
7735 actually emit the sequence. */
7736 record_insns (seq, &sibcall_epilogue);
7738 i = PREV_INSN (insn);
7739 newinsn = emit_insn_before (seq, insn);
7741 #endif
7743 #ifdef HAVE_prologue
7744 if (prologue_end)
7746 rtx insn, prev;
7748 /* GDB handles `break f' by setting a breakpoint on the first
7749 line note after the prologue. Which means (1) that if
7750 there are line number notes before where we inserted the
7751 prologue we should move them, and (2) we should generate a
7752 note before the end of the first basic block, if there isn't
7753 one already there.
7755 ??? This behavior is completely broken when dealing with
7756 multiple entry functions. We simply place the note always
7757 into first basic block and let alternate entry points
7758 to be missed.
7761 for (insn = prologue_end; insn; insn = prev)
7763 prev = PREV_INSN (insn);
7764 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7766 /* Note that we cannot reorder the first insn in the
7767 chain, since rest_of_compilation relies on that
7768 remaining constant. */
7769 if (prev == NULL)
7770 break;
7771 reorder_insns (insn, insn, prologue_end);
7775 /* Find the last line number note in the first block. */
7776 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7777 insn != prologue_end && insn;
7778 insn = PREV_INSN (insn))
7779 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7780 break;
7782 /* If we didn't find one, make a copy of the first line number
7783 we run across. */
7784 if (! insn)
7786 for (insn = next_active_insn (prologue_end);
7787 insn;
7788 insn = PREV_INSN (insn))
7789 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7791 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7792 NOTE_LINE_NUMBER (insn),
7793 prologue_end);
7794 break;
7798 #endif
7799 #ifdef HAVE_epilogue
7800 if (epilogue_end)
7802 rtx insn, next;
7804 /* Similarly, move any line notes that appear after the epilogue.
7805 There is no need, however, to be quite so anal about the existence
7806 of such a note. */
7807 for (insn = epilogue_end; insn; insn = next)
7809 next = NEXT_INSN (insn);
7810 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7811 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7814 #endif
7817 /* Reposition the prologue-end and epilogue-begin notes after instruction
7818 scheduling and delayed branch scheduling. */
7820 void
7821 reposition_prologue_and_epilogue_notes (f)
7822 rtx f ATTRIBUTE_UNUSED;
7824 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7825 rtx insn, last, note;
7826 int len;
7828 if ((len = VARRAY_SIZE (prologue)) > 0)
7830 last = 0, note = 0;
7832 /* Scan from the beginning until we reach the last prologue insn.
7833 We apparently can't depend on basic_block_{head,end} after
7834 reorg has run. */
7835 for (insn = f; insn; insn = NEXT_INSN (insn))
7837 if (GET_CODE (insn) == NOTE)
7839 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7840 note = insn;
7842 else if (contains (insn, prologue))
7844 last = insn;
7845 if (--len == 0)
7846 break;
7850 if (last)
7852 /* Find the prologue-end note if we haven't already, and
7853 move it to just after the last prologue insn. */
7854 if (note == 0)
7856 for (note = last; (note = NEXT_INSN (note));)
7857 if (GET_CODE (note) == NOTE
7858 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7859 break;
7862 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7863 if (GET_CODE (last) == CODE_LABEL)
7864 last = NEXT_INSN (last);
7865 reorder_insns (note, note, last);
7869 if ((len = VARRAY_SIZE (epilogue)) > 0)
7871 last = 0, note = 0;
7873 /* Scan from the end until we reach the first epilogue insn.
7874 We apparently can't depend on basic_block_{head,end} after
7875 reorg has run. */
7876 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7878 if (GET_CODE (insn) == NOTE)
7880 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7881 note = insn;
7883 else if (contains (insn, epilogue))
7885 last = insn;
7886 if (--len == 0)
7887 break;
7891 if (last)
7893 /* Find the epilogue-begin note if we haven't already, and
7894 move it to just before the first epilogue insn. */
7895 if (note == 0)
7897 for (note = insn; (note = PREV_INSN (note));)
7898 if (GET_CODE (note) == NOTE
7899 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7900 break;
7903 if (PREV_INSN (last) != note)
7904 reorder_insns (note, note, PREV_INSN (last));
7907 #endif /* HAVE_prologue or HAVE_epilogue */
7910 /* Called once, at initialization, to initialize function.c. */
7912 void
7913 init_function_once ()
7915 VARRAY_INT_INIT (prologue, 0, "prologue");
7916 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7917 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7920 #include "gt-function.h"