* decl.c (add_decl_to_level): Remove TREE_PERMANENT assertion.
[official-gcc.git] / gcc / loop.c
blobea1a3d57b01d0084a792f39bd25314cda9a3250a
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "obstack.h"
41 #include "function.h"
42 #include "expr.h"
43 #include "insn-config.h"
44 #include "insn-flags.h"
45 #include "regs.h"
46 #include "hard-reg-set.h"
47 #include "recog.h"
48 #include "flags.h"
49 #include "real.h"
50 #include "loop.h"
51 #include "except.h"
52 #include "toplev.h"
54 /* Information about the loop being processed used to compute
55 the number of loop iterations for loop unrolling and doloop
56 optimization. */
57 static struct loop_info this_loop_info;
59 /* Vector mapping INSN_UIDs to luids.
60 The luids are like uids but increase monotonically always.
61 We use them to see whether a jump comes from outside a given loop. */
63 int *uid_luid;
65 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
66 number the insn is contained in. */
68 int *uid_loop_num;
70 /* 1 + largest uid of any insn. */
72 int max_uid_for_loop;
74 /* 1 + luid of last insn. */
76 static int max_luid;
78 /* Number of loops detected in current function. Used as index to the
79 next few tables. */
81 static int max_loop_num;
83 /* Indexed by loop number, contains the first and last insn of each loop. */
85 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
87 /* Likewise for the continue insn */
88 static rtx *loop_number_loop_cont;
90 /* The first code_label that is reached in every loop iteration.
91 0 when not computed yet, initially const0_rtx if a jump couldn't be
92 followed.
93 Also set to 0 when there is no such label before the NOTE_INSN_LOOP_CONT
94 of this loop, or in verify_dominator, if a jump couldn't be followed. */
95 static rtx *loop_number_cont_dominator;
97 /* For each loop, gives the containing loop number, -1 if none. */
99 int *loop_outer_loop;
101 #ifdef HAVE_decrement_and_branch_on_count
102 /* Records whether resource in use by inner loop. */
104 int *loop_used_count_register;
105 #endif /* HAVE_decrement_and_branch_on_count */
107 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
108 really a loop (an insn outside the loop branches into it). */
110 static char *loop_invalid;
112 /* Indexed by loop number, links together all LABEL_REFs which refer to
113 code labels outside the loop. Used by routines that need to know all
114 loop exits, such as final_biv_value and final_giv_value.
116 This does not include loop exits due to return instructions. This is
117 because all bivs and givs are pseudos, and hence must be dead after a
118 return, so the presense of a return does not affect any of the
119 optimizations that use this info. It is simpler to just not include return
120 instructions on this list. */
122 rtx *loop_number_exit_labels;
124 /* Indexed by loop number, counts the number of LABEL_REFs on
125 loop_number_exit_labels for this loop and all loops nested inside it. */
127 int *loop_number_exit_count;
129 /* Indexed by register number, contains the number of times the reg
130 is set during the loop being scanned.
131 During code motion, a negative value indicates a reg that has been
132 made a candidate; in particular -2 means that it is an candidate that
133 we know is equal to a constant and -1 means that it is an candidate
134 not known equal to a constant.
135 After code motion, regs moved have 0 (which is accurate now)
136 while the failed candidates have the original number of times set.
138 Therefore, at all times, == 0 indicates an invariant register;
139 < 0 a conditionally invariant one. */
141 static varray_type set_in_loop;
143 /* Original value of set_in_loop; same except that this value
144 is not set negative for a reg whose sets have been made candidates
145 and not set to 0 for a reg that is moved. */
147 static varray_type n_times_set;
149 /* Index by register number, 1 indicates that the register
150 cannot be moved or strength reduced. */
152 static varray_type may_not_optimize;
154 /* Contains the insn in which a register was used if it was used
155 exactly once; contains const0_rtx if it was used more than once. */
157 static varray_type reg_single_usage;
159 /* Nonzero means reg N has already been moved out of one loop.
160 This reduces the desire to move it out of another. */
162 static char *moved_once;
164 /* List of MEMs that are stored in this loop. */
166 static rtx loop_store_mems;
168 /* The insn where the first of these was found. */
169 static rtx first_loop_store_insn;
171 typedef struct loop_mem_info {
172 rtx mem; /* The MEM itself. */
173 rtx reg; /* Corresponding pseudo, if any. */
174 int optimize; /* Nonzero if we can optimize access to this MEM. */
175 } loop_mem_info;
177 /* Array of MEMs that are used (read or written) in this loop, but
178 cannot be aliased by anything in this loop, except perhaps
179 themselves. In other words, if loop_mems[i] is altered during the
180 loop, it is altered by an expression that is rtx_equal_p to it. */
182 static loop_mem_info *loop_mems;
184 /* The index of the next available slot in LOOP_MEMS. */
186 static int loop_mems_idx;
188 /* The number of elements allocated in LOOP_MEMs. */
190 static int loop_mems_allocated;
192 /* Nonzero if we don't know what MEMs were changed in the current
193 loop. This happens if the loop contains a call (in which case
194 `loop_info->has_call' will also be set) or if we store into more
195 than NUM_STORES MEMs. */
197 static int unknown_address_altered;
199 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
200 static int num_movables;
202 /* Count of memory write instructions discovered in the loop. */
203 static int num_mem_sets;
205 /* Bound on pseudo register number before loop optimization.
206 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
207 int max_reg_before_loop;
209 /* This obstack is used in product_cheap_p to allocate its rtl. It
210 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
211 If we used the same obstack that it did, we would be deallocating
212 that array. */
214 static struct obstack temp_obstack;
216 /* This is where the pointer to the obstack being used for RTL is stored. */
218 extern struct obstack *rtl_obstack;
220 #define obstack_chunk_alloc xmalloc
221 #define obstack_chunk_free free
223 /* During the analysis of a loop, a chain of `struct movable's
224 is made to record all the movable insns found.
225 Then the entire chain can be scanned to decide which to move. */
227 struct movable
229 rtx insn; /* A movable insn */
230 rtx set_src; /* The expression this reg is set from. */
231 rtx set_dest; /* The destination of this SET. */
232 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
233 of any registers used within the LIBCALL. */
234 int consec; /* Number of consecutive following insns
235 that must be moved with this one. */
236 int regno; /* The register it sets */
237 short lifetime; /* lifetime of that register;
238 may be adjusted when matching movables
239 that load the same value are found. */
240 short savings; /* Number of insns we can move for this reg,
241 including other movables that force this
242 or match this one. */
243 unsigned int cond : 1; /* 1 if only conditionally movable */
244 unsigned int force : 1; /* 1 means MUST move this insn */
245 unsigned int global : 1; /* 1 means reg is live outside this loop */
246 /* If PARTIAL is 1, GLOBAL means something different:
247 that the reg is live outside the range from where it is set
248 to the following label. */
249 unsigned int done : 1; /* 1 inhibits further processing of this */
251 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
252 In particular, moving it does not make it
253 invariant. */
254 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
255 load SRC, rather than copying INSN. */
256 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
257 first insn of a consecutive sets group. */
258 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
259 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
260 that we should avoid changing when clearing
261 the rest of the reg. */
262 struct movable *match; /* First entry for same value */
263 struct movable *forces; /* An insn that must be moved if this is */
264 struct movable *next;
267 static struct movable *the_movables;
269 FILE *loop_dump_stream;
271 /* Forward declarations. */
273 static void verify_dominator PROTO((int));
274 static void find_and_verify_loops PROTO((rtx));
275 static void mark_loop_jump PROTO((rtx, int));
276 static void prescan_loop PROTO((rtx, rtx, struct loop_info *));
277 static int reg_in_basic_block_p PROTO((rtx, rtx));
278 static int consec_sets_invariant_p PROTO((rtx, int, rtx));
279 static int labels_in_range_p PROTO((rtx, int));
280 static void count_one_set PROTO((rtx, rtx, varray_type, rtx *));
282 static void count_loop_regs_set PROTO((rtx, rtx, varray_type, varray_type,
283 int *, int));
284 static void note_addr_stored PROTO((rtx, rtx));
285 static int loop_reg_used_before_p PROTO((rtx, rtx, rtx, rtx, rtx));
286 static void scan_loop PROTO((rtx, rtx, rtx, int, int));
287 #if 0
288 static void replace_call_address PROTO((rtx, rtx, rtx));
289 #endif
290 static rtx skip_consec_insns PROTO((rtx, int));
291 static int libcall_benefit PROTO((rtx));
292 static void ignore_some_movables PROTO((struct movable *));
293 static void force_movables PROTO((struct movable *));
294 static void combine_movables PROTO((struct movable *, int));
295 static int regs_match_p PROTO((rtx, rtx, struct movable *));
296 static int rtx_equal_for_loop_p PROTO((rtx, rtx, struct movable *));
297 static void add_label_notes PROTO((rtx, rtx));
298 static void move_movables PROTO((struct movable *, int, int, rtx, rtx, int));
299 static int count_nonfixed_reads PROTO((rtx));
300 static void strength_reduce PROTO((rtx, rtx, rtx, int, rtx, rtx,
301 struct loop_info *, rtx, int, int));
302 static void find_single_use_in_loop PROTO((rtx, rtx, varray_type));
303 static int valid_initial_value_p PROTO((rtx, rtx, int, rtx));
304 static void find_mem_givs PROTO((rtx, rtx, int, int, rtx, rtx));
305 static void record_biv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx *, int, int));
306 static void check_final_value PROTO((struct induction *, rtx, rtx,
307 unsigned HOST_WIDE_INT));
308 static void record_giv PROTO((struct induction *, rtx, rtx, rtx, rtx, rtx, int, enum g_types, int, int, rtx *, rtx, rtx));
309 static void update_giv_derive PROTO((rtx));
310 static int basic_induction_var PROTO((rtx, enum machine_mode, rtx, rtx, rtx *, rtx *, rtx **));
311 static rtx simplify_giv_expr PROTO((rtx, int *));
312 static int general_induction_var PROTO((rtx, rtx *, rtx *, rtx *, int, int *));
313 static int consec_sets_giv PROTO((int, rtx, rtx, rtx, rtx *, rtx *, rtx *));
314 static int check_dbra_loop PROTO((rtx, int, rtx, struct loop_info *));
315 static rtx express_from_1 PROTO((rtx, rtx, rtx));
316 static rtx combine_givs_p PROTO((struct induction *, struct induction *));
317 static void combine_givs PROTO((struct iv_class *));
318 struct recombine_givs_stats;
319 static int find_life_end PROTO((rtx, struct recombine_givs_stats *, rtx, rtx));
320 static void recombine_givs PROTO((struct iv_class *, rtx, rtx, int));
321 static int product_cheap_p PROTO((rtx, rtx));
322 static int maybe_eliminate_biv PROTO((struct iv_class *, rtx, rtx, int, int, int));
323 static int maybe_eliminate_biv_1 PROTO((rtx, rtx, struct iv_class *, int, rtx));
324 static int last_use_this_basic_block PROTO((rtx, rtx));
325 static void record_initial PROTO((rtx, rtx));
326 static void update_reg_last_use PROTO((rtx, rtx));
327 static rtx next_insn_in_loop PROTO((rtx, rtx, rtx, rtx));
328 static void load_mems_and_recount_loop_regs_set PROTO((rtx, rtx, rtx,
329 rtx, int *));
330 static void load_mems PROTO((rtx, rtx, rtx, rtx));
331 static int insert_loop_mem PROTO((rtx *, void *));
332 static int replace_loop_mem PROTO((rtx *, void *));
333 static int replace_label PROTO((rtx *, void *));
335 typedef struct rtx_and_int {
336 rtx r;
337 int i;
338 } rtx_and_int;
340 typedef struct rtx_pair {
341 rtx r1;
342 rtx r2;
343 } rtx_pair;
345 /* Nonzero iff INSN is between START and END, inclusive. */
346 #define INSN_IN_RANGE_P(INSN, START, END) \
347 (INSN_UID (INSN) < max_uid_for_loop \
348 && INSN_LUID (INSN) >= INSN_LUID (START) \
349 && INSN_LUID (INSN) <= INSN_LUID (END))
351 #ifdef HAVE_decrement_and_branch_on_count
352 /* Test whether BCT applicable and safe. */
353 static void insert_bct PROTO((rtx, rtx, struct loop_info *));
355 /* Auxiliary function that inserts the BCT pattern into the loop. */
356 static void instrument_loop_bct PROTO((rtx, rtx, rtx));
357 #endif /* HAVE_decrement_and_branch_on_count */
359 /* Indirect_jump_in_function is computed once per function. */
360 int indirect_jump_in_function = 0;
361 static int indirect_jump_in_function_p PROTO((rtx));
363 static int compute_luids PROTO((rtx, rtx, int));
365 static int biv_elimination_giv_has_0_offset PROTO((struct induction *,
366 struct induction *, rtx));
368 /* Relative gain of eliminating various kinds of operations. */
369 static int add_cost;
370 #if 0
371 static int shift_cost;
372 static int mult_cost;
373 #endif
375 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
376 copy the value of the strength reduced giv to its original register. */
377 static int copy_cost;
379 /* Cost of using a register, to normalize the benefits of a giv. */
380 static int reg_address_cost;
383 void
384 init_loop ()
386 char *free_point = (char *) oballoc (1);
387 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
389 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
391 #ifdef ADDRESS_COST
392 reg_address_cost = ADDRESS_COST (reg);
393 #else
394 reg_address_cost = rtx_cost (reg, MEM);
395 #endif
397 /* We multiply by 2 to reconcile the difference in scale between
398 these two ways of computing costs. Otherwise the cost of a copy
399 will be far less than the cost of an add. */
401 copy_cost = 2 * 2;
403 /* Free the objects we just allocated. */
404 obfree (free_point);
406 /* Initialize the obstack used for rtl in product_cheap_p. */
407 gcc_obstack_init (&temp_obstack);
410 /* Compute the mapping from uids to luids.
411 LUIDs are numbers assigned to insns, like uids,
412 except that luids increase monotonically through the code.
413 Start at insn START and stop just before END. Assign LUIDs
414 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
415 static int
416 compute_luids (start, end, prev_luid)
417 rtx start, end;
418 int prev_luid;
420 int i;
421 rtx insn;
423 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
425 if (INSN_UID (insn) >= max_uid_for_loop)
426 continue;
427 /* Don't assign luids to line-number NOTEs, so that the distance in
428 luids between two insns is not affected by -g. */
429 if (GET_CODE (insn) != NOTE
430 || NOTE_LINE_NUMBER (insn) <= 0)
431 uid_luid[INSN_UID (insn)] = ++i;
432 else
433 /* Give a line number note the same luid as preceding insn. */
434 uid_luid[INSN_UID (insn)] = i;
436 return i + 1;
439 /* Entry point of this file. Perform loop optimization
440 on the current function. F is the first insn of the function
441 and DUMPFILE is a stream for output of a trace of actions taken
442 (or 0 if none should be output). */
444 void
445 loop_optimize (f, dumpfile, unroll_p, bct_p)
446 /* f is the first instruction of a chain of insns for one function */
447 rtx f;
448 FILE *dumpfile;
449 int unroll_p, bct_p;
451 register rtx insn;
452 register int i;
454 loop_dump_stream = dumpfile;
456 init_recog_no_volatile ();
458 max_reg_before_loop = max_reg_num ();
460 moved_once = (char *) alloca (max_reg_before_loop);
461 bzero (moved_once, max_reg_before_loop);
463 regs_may_share = 0;
465 /* Count the number of loops. */
467 max_loop_num = 0;
468 for (insn = f; insn; insn = NEXT_INSN (insn))
470 if (GET_CODE (insn) == NOTE
471 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
472 max_loop_num++;
475 /* Don't waste time if no loops. */
476 if (max_loop_num == 0)
477 return;
479 /* Get size to use for tables indexed by uids.
480 Leave some space for labels allocated by find_and_verify_loops. */
481 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
483 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
484 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
486 bzero ((char *) uid_luid, max_uid_for_loop * sizeof (int));
487 bzero ((char *) uid_loop_num, max_uid_for_loop * sizeof (int));
489 /* Allocate tables for recording each loop. We set each entry, so they need
490 not be zeroed. */
491 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
492 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
493 loop_number_loop_cont = (rtx *) alloca (max_loop_num * sizeof (rtx));
494 loop_number_cont_dominator = (rtx *) alloca (max_loop_num * sizeof (rtx));
495 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
496 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
497 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
498 loop_number_exit_count = (int *) alloca (max_loop_num * sizeof (int));
500 #ifdef HAVE_decrement_and_branch_on_count
501 /* Allocate for BCT optimization */
502 loop_used_count_register = (int *) alloca (max_loop_num * sizeof (int));
503 bzero ((char *) loop_used_count_register, max_loop_num * sizeof (int));
504 #endif /* HAVE_decrement_and_branch_on_count */
506 /* Find and process each loop.
507 First, find them, and record them in order of their beginnings. */
508 find_and_verify_loops (f);
510 /* Now find all register lifetimes. This must be done after
511 find_and_verify_loops, because it might reorder the insns in the
512 function. */
513 reg_scan (f, max_reg_num (), 1);
515 /* This must occur after reg_scan so that registers created by gcse
516 will have entries in the register tables.
518 We could have added a call to reg_scan after gcse_main in toplev.c,
519 but moving this call to init_alias_analysis is more efficient. */
520 init_alias_analysis ();
522 /* See if we went too far. Note that get_max_uid already returns
523 one more that the maximum uid of all insn. */
524 if (get_max_uid () > max_uid_for_loop)
525 abort ();
526 /* Now reset it to the actual size we need. See above. */
527 max_uid_for_loop = get_max_uid ();
529 /* find_and_verify_loops has already called compute_luids, but it might
530 have rearranged code afterwards, so we need to recompute the luids now. */
531 max_luid = compute_luids (f, NULL_RTX, 0);
533 /* Don't leave gaps in uid_luid for insns that have been
534 deleted. It is possible that the first or last insn
535 using some register has been deleted by cross-jumping.
536 Make sure that uid_luid for that former insn's uid
537 points to the general area where that insn used to be. */
538 for (i = 0; i < max_uid_for_loop; i++)
540 uid_luid[0] = uid_luid[i];
541 if (uid_luid[0] != 0)
542 break;
544 for (i = 0; i < max_uid_for_loop; i++)
545 if (uid_luid[i] == 0)
546 uid_luid[i] = uid_luid[i - 1];
548 /* Create a mapping from loops to BLOCK tree nodes. */
549 if (unroll_p && write_symbols != NO_DEBUG)
550 find_loop_tree_blocks ();
552 /* Determine if the function has indirect jump. On some systems
553 this prevents low overhead loop instructions from being used. */
554 indirect_jump_in_function = indirect_jump_in_function_p (f);
556 /* Now scan the loops, last ones first, since this means inner ones are done
557 before outer ones. */
558 for (i = max_loop_num-1; i >= 0; i--)
559 if (! loop_invalid[i] && loop_number_loop_ends[i])
560 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
561 loop_number_loop_cont[i], unroll_p, bct_p);
563 /* If debugging and unrolling loops, we must replicate the tree nodes
564 corresponding to the blocks inside the loop, so that the original one
565 to one mapping will remain. */
566 if (unroll_p && write_symbols != NO_DEBUG)
567 unroll_block_trees ();
569 end_alias_analysis ();
572 /* Returns the next insn, in execution order, after INSN. START and
573 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
574 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
575 insn-stream; it is used with loops that are entered near the
576 bottom. */
578 static rtx
579 next_insn_in_loop (insn, start, end, loop_top)
580 rtx insn;
581 rtx start;
582 rtx end;
583 rtx loop_top;
585 insn = NEXT_INSN (insn);
587 if (insn == end)
589 if (loop_top)
590 /* Go to the top of the loop, and continue there. */
591 insn = loop_top;
592 else
593 /* We're done. */
594 insn = NULL_RTX;
597 if (insn == start)
598 /* We're done. */
599 insn = NULL_RTX;
601 return insn;
604 /* Optimize one loop whose start is LOOP_START and end is END.
605 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
606 NOTE_INSN_LOOP_END.
607 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
609 /* ??? Could also move memory writes out of loops if the destination address
610 is invariant, the source is invariant, the memory write is not volatile,
611 and if we can prove that no read inside the loop can read this address
612 before the write occurs. If there is a read of this address after the
613 write, then we can also mark the memory read as invariant. */
615 static void
616 scan_loop (loop_start, end, loop_cont, unroll_p, bct_p)
617 rtx loop_start, end, loop_cont;
618 int unroll_p, bct_p;
620 register int i;
621 rtx p;
622 /* 1 if we are scanning insns that could be executed zero times. */
623 int maybe_never = 0;
624 /* 1 if we are scanning insns that might never be executed
625 due to a subroutine call which might exit before they are reached. */
626 int call_passed = 0;
627 /* For a rotated loop that is entered near the bottom,
628 this is the label at the top. Otherwise it is zero. */
629 rtx loop_top = 0;
630 /* Jump insn that enters the loop, or 0 if control drops in. */
631 rtx loop_entry_jump = 0;
632 /* Place in the loop where control enters. */
633 rtx scan_start;
634 /* Number of insns in the loop. */
635 int insn_count;
636 int in_libcall = 0;
637 int tem;
638 rtx temp;
639 /* The SET from an insn, if it is the only SET in the insn. */
640 rtx set, set1;
641 /* Chain describing insns movable in current loop. */
642 struct movable *movables = 0;
643 /* Last element in `movables' -- so we can add elements at the end. */
644 struct movable *last_movable = 0;
645 /* Ratio of extra register life span we can justify
646 for saving an instruction. More if loop doesn't call subroutines
647 since in that case saving an insn makes more difference
648 and more registers are available. */
649 int threshold;
650 /* Nonzero if we are scanning instructions in a sub-loop. */
651 int loop_depth = 0;
652 int nregs;
653 struct loop_info *loop_info = &this_loop_info;
655 /* Determine whether this loop starts with a jump down to a test at
656 the end. This will occur for a small number of loops with a test
657 that is too complex to duplicate in front of the loop.
659 We search for the first insn or label in the loop, skipping NOTEs.
660 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
661 (because we might have a loop executed only once that contains a
662 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
663 (in case we have a degenerate loop).
665 Note that if we mistakenly think that a loop is entered at the top
666 when, in fact, it is entered at the exit test, the only effect will be
667 slightly poorer optimization. Making the opposite error can generate
668 incorrect code. Since very few loops now start with a jump to the
669 exit test, the code here to detect that case is very conservative. */
671 for (p = NEXT_INSN (loop_start);
672 p != end
673 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
674 && (GET_CODE (p) != NOTE
675 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
676 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
677 p = NEXT_INSN (p))
680 scan_start = p;
682 /* Set up variables describing this loop. */
683 prescan_loop (loop_start, end, loop_info);
684 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
686 /* If loop has a jump before the first label,
687 the true entry is the target of that jump.
688 Start scan from there.
689 But record in LOOP_TOP the place where the end-test jumps
690 back to so we can scan that after the end of the loop. */
691 if (GET_CODE (p) == JUMP_INSN)
693 loop_entry_jump = p;
695 /* Loop entry must be unconditional jump (and not a RETURN) */
696 if (simplejump_p (p)
697 && JUMP_LABEL (p) != 0
698 /* Check to see whether the jump actually
699 jumps out of the loop (meaning it's no loop).
700 This case can happen for things like
701 do {..} while (0). If this label was generated previously
702 by loop, we can't tell anything about it and have to reject
703 the loop. */
704 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, end))
706 loop_top = next_label (scan_start);
707 scan_start = JUMP_LABEL (p);
711 /* If SCAN_START was an insn created by loop, we don't know its luid
712 as required by loop_reg_used_before_p. So skip such loops. (This
713 test may never be true, but it's best to play it safe.)
715 Also, skip loops where we do not start scanning at a label. This
716 test also rejects loops starting with a JUMP_INSN that failed the
717 test above. */
719 if (INSN_UID (scan_start) >= max_uid_for_loop
720 || GET_CODE (scan_start) != CODE_LABEL)
722 if (loop_dump_stream)
723 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
724 INSN_UID (loop_start), INSN_UID (end));
725 return;
728 /* Count number of times each reg is set during this loop.
729 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
730 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
732 /* Allocate extra space for REGS that might be created by
733 load_mems. We allocate a little extra slop as well, in the hopes
734 that even after the moving of movables creates some new registers
735 we won't have to reallocate these arrays. However, we do grow
736 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
737 nregs = max_reg_num () + loop_mems_idx + 16;
738 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
739 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
740 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
741 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
743 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
744 may_not_optimize, reg_single_usage, &insn_count, nregs);
746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
748 VARRAY_CHAR (may_not_optimize, i) = 1;
749 VARRAY_INT (set_in_loop, i) = 1;
752 #ifdef AVOID_CCMODE_COPIES
753 /* Don't try to move insns which set CC registers if we should not
754 create CCmode register copies. */
755 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
756 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
757 VARRAY_CHAR (may_not_optimize, i) = 1;
758 #endif
760 bcopy ((char *) &set_in_loop->data,
761 (char *) &n_times_set->data, nregs * sizeof (int));
763 if (loop_dump_stream)
765 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
766 INSN_UID (loop_start), INSN_UID (end), insn_count);
767 if (loop_info->cont)
768 fprintf (loop_dump_stream, "Continue at insn %d.\n",
769 INSN_UID (loop_info->cont));
772 /* Scan through the loop finding insns that are safe to move.
773 Set set_in_loop negative for the reg being set, so that
774 this reg will be considered invariant for subsequent insns.
775 We consider whether subsequent insns use the reg
776 in deciding whether it is worth actually moving.
778 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
779 and therefore it is possible that the insns we are scanning
780 would never be executed. At such times, we must make sure
781 that it is safe to execute the insn once instead of zero times.
782 When MAYBE_NEVER is 0, all insns will be executed at least once
783 so that is not a problem. */
785 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
786 p != NULL_RTX;
787 p = next_insn_in_loop (p, scan_start, end, loop_top))
789 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
790 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
791 in_libcall = 1;
792 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
793 && find_reg_note (p, REG_RETVAL, NULL_RTX))
794 in_libcall = 0;
796 if (GET_CODE (p) == INSN
797 && (set = single_set (p))
798 && GET_CODE (SET_DEST (set)) == REG
799 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
801 int tem1 = 0;
802 int tem2 = 0;
803 int move_insn = 0;
804 rtx src = SET_SRC (set);
805 rtx dependencies = 0;
807 /* Figure out what to use as a source of this insn. If a REG_EQUIV
808 note is given or if a REG_EQUAL note with a constant operand is
809 specified, use it as the source and mark that we should move
810 this insn by calling emit_move_insn rather that duplicating the
811 insn.
813 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
814 is present. */
815 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
816 if (temp)
817 src = XEXP (temp, 0), move_insn = 1;
818 else
820 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
821 if (temp && CONSTANT_P (XEXP (temp, 0)))
822 src = XEXP (temp, 0), move_insn = 1;
823 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
825 src = XEXP (temp, 0);
826 /* A libcall block can use regs that don't appear in
827 the equivalent expression. To move the libcall,
828 we must move those regs too. */
829 dependencies = libcall_other_reg (p, src);
833 /* Don't try to optimize a register that was made
834 by loop-optimization for an inner loop.
835 We don't know its life-span, so we can't compute the benefit. */
836 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
838 else if (/* The register is used in basic blocks other
839 than the one where it is set (meaning that
840 something after this point in the loop might
841 depend on its value before the set). */
842 ! reg_in_basic_block_p (p, SET_DEST (set))
843 /* And the set is not guaranteed to be executed one
844 the loop starts, or the value before the set is
845 needed before the set occurs...
847 ??? Note we have quadratic behaviour here, mitigated
848 by the fact that the previous test will often fail for
849 large loops. Rather than re-scanning the entire loop
850 each time for register usage, we should build tables
851 of the register usage and use them here instead. */
852 && (maybe_never
853 || loop_reg_used_before_p (set, p, loop_start,
854 scan_start, end)))
855 /* It is unsafe to move the set.
857 This code used to consider it OK to move a set of a variable
858 which was not created by the user and not used in an exit test.
859 That behavior is incorrect and was removed. */
861 else if ((tem = invariant_p (src))
862 && (dependencies == 0
863 || (tem2 = invariant_p (dependencies)) != 0)
864 && (VARRAY_INT (set_in_loop,
865 REGNO (SET_DEST (set))) == 1
866 || (tem1
867 = consec_sets_invariant_p
868 (SET_DEST (set),
869 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
870 p)))
871 /* If the insn can cause a trap (such as divide by zero),
872 can't move it unless it's guaranteed to be executed
873 once loop is entered. Even a function call might
874 prevent the trap insn from being reached
875 (since it might exit!) */
876 && ! ((maybe_never || call_passed)
877 && may_trap_p (src)))
879 register struct movable *m;
880 register int regno = REGNO (SET_DEST (set));
882 /* A potential lossage is where we have a case where two insns
883 can be combined as long as they are both in the loop, but
884 we move one of them outside the loop. For large loops,
885 this can lose. The most common case of this is the address
886 of a function being called.
888 Therefore, if this register is marked as being used exactly
889 once if we are in a loop with calls (a "large loop"), see if
890 we can replace the usage of this register with the source
891 of this SET. If we can, delete this insn.
893 Don't do this if P has a REG_RETVAL note or if we have
894 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
896 if (loop_info->has_call
897 && VARRAY_RTX (reg_single_usage, regno) != 0
898 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
899 && REGNO_FIRST_UID (regno) == INSN_UID (p)
900 && (REGNO_LAST_UID (regno)
901 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
902 && VARRAY_INT (set_in_loop, regno) == 1
903 && ! side_effects_p (SET_SRC (set))
904 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
905 && (! SMALL_REGISTER_CLASSES
906 || (! (GET_CODE (SET_SRC (set)) == REG
907 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
908 /* This test is not redundant; SET_SRC (set) might be
909 a call-clobbered register and the life of REGNO
910 might span a call. */
911 && ! modified_between_p (SET_SRC (set), p,
912 VARRAY_RTX
913 (reg_single_usage, regno))
914 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
915 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
916 VARRAY_RTX
917 (reg_single_usage, regno)))
919 /* Replace any usage in a REG_EQUAL note. Must copy the
920 new source, so that we don't get rtx sharing between the
921 SET_SOURCE and REG_NOTES of insn p. */
922 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
923 = replace_rtx (REG_NOTES (VARRAY_RTX
924 (reg_single_usage, regno)),
925 SET_DEST (set), copy_rtx (SET_SRC (set)));
927 PUT_CODE (p, NOTE);
928 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
929 NOTE_SOURCE_FILE (p) = 0;
930 VARRAY_INT (set_in_loop, regno) = 0;
931 continue;
934 m = (struct movable *) alloca (sizeof (struct movable));
935 m->next = 0;
936 m->insn = p;
937 m->set_src = src;
938 m->dependencies = dependencies;
939 m->set_dest = SET_DEST (set);
940 m->force = 0;
941 m->consec = VARRAY_INT (set_in_loop,
942 REGNO (SET_DEST (set))) - 1;
943 m->done = 0;
944 m->forces = 0;
945 m->partial = 0;
946 m->move_insn = move_insn;
947 m->move_insn_first = 0;
948 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
949 m->savemode = VOIDmode;
950 m->regno = regno;
951 /* Set M->cond if either invariant_p or consec_sets_invariant_p
952 returned 2 (only conditionally invariant). */
953 m->cond = ((tem | tem1 | tem2) > 1);
954 m->global = (uid_luid[REGNO_LAST_UID (regno)] > INSN_LUID (end)
955 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
956 m->match = 0;
957 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
958 - uid_luid[REGNO_FIRST_UID (regno)]);
959 m->savings = VARRAY_INT (n_times_set, regno);
960 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
961 m->savings += libcall_benefit (p);
962 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
963 /* Add M to the end of the chain MOVABLES. */
964 if (movables == 0)
965 movables = m;
966 else
967 last_movable->next = m;
968 last_movable = m;
970 if (m->consec > 0)
972 /* It is possible for the first instruction to have a
973 REG_EQUAL note but a non-invariant SET_SRC, so we must
974 remember the status of the first instruction in case
975 the last instruction doesn't have a REG_EQUAL note. */
976 m->move_insn_first = m->move_insn;
978 /* Skip this insn, not checking REG_LIBCALL notes. */
979 p = next_nonnote_insn (p);
980 /* Skip the consecutive insns, if there are any. */
981 p = skip_consec_insns (p, m->consec);
982 /* Back up to the last insn of the consecutive group. */
983 p = prev_nonnote_insn (p);
985 /* We must now reset m->move_insn, m->is_equiv, and possibly
986 m->set_src to correspond to the effects of all the
987 insns. */
988 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
989 if (temp)
990 m->set_src = XEXP (temp, 0), m->move_insn = 1;
991 else
993 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
994 if (temp && CONSTANT_P (XEXP (temp, 0)))
995 m->set_src = XEXP (temp, 0), m->move_insn = 1;
996 else
997 m->move_insn = 0;
1000 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
1003 /* If this register is always set within a STRICT_LOW_PART
1004 or set to zero, then its high bytes are constant.
1005 So clear them outside the loop and within the loop
1006 just load the low bytes.
1007 We must check that the machine has an instruction to do so.
1008 Also, if the value loaded into the register
1009 depends on the same register, this cannot be done. */
1010 else if (SET_SRC (set) == const0_rtx
1011 && GET_CODE (NEXT_INSN (p)) == INSN
1012 && (set1 = single_set (NEXT_INSN (p)))
1013 && GET_CODE (set1) == SET
1014 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1015 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1016 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1017 == SET_DEST (set))
1018 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1020 register int regno = REGNO (SET_DEST (set));
1021 if (VARRAY_INT (set_in_loop, regno) == 2)
1023 register struct movable *m;
1024 m = (struct movable *) alloca (sizeof (struct movable));
1025 m->next = 0;
1026 m->insn = p;
1027 m->set_dest = SET_DEST (set);
1028 m->dependencies = 0;
1029 m->force = 0;
1030 m->consec = 0;
1031 m->done = 0;
1032 m->forces = 0;
1033 m->move_insn = 0;
1034 m->move_insn_first = 0;
1035 m->partial = 1;
1036 /* If the insn may not be executed on some cycles,
1037 we can't clear the whole reg; clear just high part.
1038 Not even if the reg is used only within this loop.
1039 Consider this:
1040 while (1)
1041 while (s != t) {
1042 if (foo ()) x = *s;
1043 use (x);
1045 Clearing x before the inner loop could clobber a value
1046 being saved from the last time around the outer loop.
1047 However, if the reg is not used outside this loop
1048 and all uses of the register are in the same
1049 basic block as the store, there is no problem.
1051 If this insn was made by loop, we don't know its
1052 INSN_LUID and hence must make a conservative
1053 assumption. */
1054 m->global = (INSN_UID (p) >= max_uid_for_loop
1055 || (uid_luid[REGNO_LAST_UID (regno)]
1056 > INSN_LUID (end))
1057 || (uid_luid[REGNO_FIRST_UID (regno)]
1058 < INSN_LUID (p))
1059 || (labels_in_range_p
1060 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1061 if (maybe_never && m->global)
1062 m->savemode = GET_MODE (SET_SRC (set1));
1063 else
1064 m->savemode = VOIDmode;
1065 m->regno = regno;
1066 m->cond = 0;
1067 m->match = 0;
1068 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1069 - uid_luid[REGNO_FIRST_UID (regno)]);
1070 m->savings = 1;
1071 VARRAY_INT (set_in_loop, regno) = -1;
1072 /* Add M to the end of the chain MOVABLES. */
1073 if (movables == 0)
1074 movables = m;
1075 else
1076 last_movable->next = m;
1077 last_movable = m;
1081 /* Past a call insn, we get to insns which might not be executed
1082 because the call might exit. This matters for insns that trap.
1083 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1084 so they don't count. */
1085 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1086 call_passed = 1;
1087 /* Past a label or a jump, we get to insns for which we
1088 can't count on whether or how many times they will be
1089 executed during each iteration. Therefore, we can
1090 only move out sets of trivial variables
1091 (those not used after the loop). */
1092 /* Similar code appears twice in strength_reduce. */
1093 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1094 /* If we enter the loop in the middle, and scan around to the
1095 beginning, don't set maybe_never for that. This must be an
1096 unconditional jump, otherwise the code at the top of the
1097 loop might never be executed. Unconditional jumps are
1098 followed a by barrier then loop end. */
1099 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
1100 && NEXT_INSN (NEXT_INSN (p)) == end
1101 && simplejump_p (p)))
1102 maybe_never = 1;
1103 else if (GET_CODE (p) == NOTE)
1105 /* At the virtual top of a converted loop, insns are again known to
1106 be executed: logically, the loop begins here even though the exit
1107 code has been duplicated. */
1108 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1109 maybe_never = call_passed = 0;
1110 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1111 loop_depth++;
1112 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1113 loop_depth--;
1117 /* If one movable subsumes another, ignore that other. */
1119 ignore_some_movables (movables);
1121 /* For each movable insn, see if the reg that it loads
1122 leads when it dies right into another conditionally movable insn.
1123 If so, record that the second insn "forces" the first one,
1124 since the second can be moved only if the first is. */
1126 force_movables (movables);
1128 /* See if there are multiple movable insns that load the same value.
1129 If there are, make all but the first point at the first one
1130 through the `match' field, and add the priorities of them
1131 all together as the priority of the first. */
1133 combine_movables (movables, nregs);
1135 /* Now consider each movable insn to decide whether it is worth moving.
1136 Store 0 in set_in_loop for each reg that is moved.
1138 Generally this increases code size, so do not move moveables when
1139 optimizing for code size. */
1141 if (! optimize_size)
1142 move_movables (movables, threshold,
1143 insn_count, loop_start, end, nregs);
1145 /* Now candidates that still are negative are those not moved.
1146 Change set_in_loop to indicate that those are not actually invariant. */
1147 for (i = 0; i < nregs; i++)
1148 if (VARRAY_INT (set_in_loop, i) < 0)
1149 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1151 /* Now that we've moved some things out of the loop, we might be able to
1152 hoist even more memory references. */
1153 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top,
1154 loop_start, &insn_count);
1156 if (flag_strength_reduce)
1158 the_movables = movables;
1159 strength_reduce (scan_start, end, loop_top,
1160 insn_count, loop_start, end,
1161 loop_info, loop_cont, unroll_p, bct_p);
1164 VARRAY_FREE (reg_single_usage);
1165 VARRAY_FREE (set_in_loop);
1166 VARRAY_FREE (n_times_set);
1167 VARRAY_FREE (may_not_optimize);
1170 /* Add elements to *OUTPUT to record all the pseudo-regs
1171 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1173 void
1174 record_excess_regs (in_this, not_in_this, output)
1175 rtx in_this, not_in_this;
1176 rtx *output;
1178 enum rtx_code code;
1179 const char *fmt;
1180 int i;
1182 code = GET_CODE (in_this);
1184 switch (code)
1186 case PC:
1187 case CC0:
1188 case CONST_INT:
1189 case CONST_DOUBLE:
1190 case CONST:
1191 case SYMBOL_REF:
1192 case LABEL_REF:
1193 return;
1195 case REG:
1196 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1197 && ! reg_mentioned_p (in_this, not_in_this))
1198 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1199 return;
1201 default:
1202 break;
1205 fmt = GET_RTX_FORMAT (code);
1206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1208 int j;
1210 switch (fmt[i])
1212 case 'E':
1213 for (j = 0; j < XVECLEN (in_this, i); j++)
1214 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1215 break;
1217 case 'e':
1218 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1219 break;
1224 /* Check what regs are referred to in the libcall block ending with INSN,
1225 aside from those mentioned in the equivalent value.
1226 If there are none, return 0.
1227 If there are one or more, return an EXPR_LIST containing all of them. */
1230 libcall_other_reg (insn, equiv)
1231 rtx insn, equiv;
1233 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1234 rtx p = XEXP (note, 0);
1235 rtx output = 0;
1237 /* First, find all the regs used in the libcall block
1238 that are not mentioned as inputs to the result. */
1240 while (p != insn)
1242 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1243 || GET_CODE (p) == CALL_INSN)
1244 record_excess_regs (PATTERN (p), equiv, &output);
1245 p = NEXT_INSN (p);
1248 return output;
1251 /* Return 1 if all uses of REG
1252 are between INSN and the end of the basic block. */
1254 static int
1255 reg_in_basic_block_p (insn, reg)
1256 rtx insn, reg;
1258 int regno = REGNO (reg);
1259 rtx p;
1261 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1262 return 0;
1264 /* Search this basic block for the already recorded last use of the reg. */
1265 for (p = insn; p; p = NEXT_INSN (p))
1267 switch (GET_CODE (p))
1269 case NOTE:
1270 break;
1272 case INSN:
1273 case CALL_INSN:
1274 /* Ordinary insn: if this is the last use, we win. */
1275 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1276 return 1;
1277 break;
1279 case JUMP_INSN:
1280 /* Jump insn: if this is the last use, we win. */
1281 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1282 return 1;
1283 /* Otherwise, it's the end of the basic block, so we lose. */
1284 return 0;
1286 case CODE_LABEL:
1287 case BARRIER:
1288 /* It's the end of the basic block, so we lose. */
1289 return 0;
1291 default:
1292 break;
1296 /* The "last use" doesn't follow the "first use"?? */
1297 abort ();
1300 /* Compute the benefit of eliminating the insns in the block whose
1301 last insn is LAST. This may be a group of insns used to compute a
1302 value directly or can contain a library call. */
1304 static int
1305 libcall_benefit (last)
1306 rtx last;
1308 rtx insn;
1309 int benefit = 0;
1311 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1312 insn != last; insn = NEXT_INSN (insn))
1314 if (GET_CODE (insn) == CALL_INSN)
1315 benefit += 10; /* Assume at least this many insns in a library
1316 routine. */
1317 else if (GET_CODE (insn) == INSN
1318 && GET_CODE (PATTERN (insn)) != USE
1319 && GET_CODE (PATTERN (insn)) != CLOBBER)
1320 benefit++;
1323 return benefit;
1326 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1328 static rtx
1329 skip_consec_insns (insn, count)
1330 rtx insn;
1331 int count;
1333 for (; count > 0; count--)
1335 rtx temp;
1337 /* If first insn of libcall sequence, skip to end. */
1338 /* Do this at start of loop, since INSN is guaranteed to
1339 be an insn here. */
1340 if (GET_CODE (insn) != NOTE
1341 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1342 insn = XEXP (temp, 0);
1344 do insn = NEXT_INSN (insn);
1345 while (GET_CODE (insn) == NOTE);
1348 return insn;
1351 /* Ignore any movable whose insn falls within a libcall
1352 which is part of another movable.
1353 We make use of the fact that the movable for the libcall value
1354 was made later and so appears later on the chain. */
1356 static void
1357 ignore_some_movables (movables)
1358 struct movable *movables;
1360 register struct movable *m, *m1;
1362 for (m = movables; m; m = m->next)
1364 /* Is this a movable for the value of a libcall? */
1365 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1366 if (note)
1368 rtx insn;
1369 /* Check for earlier movables inside that range,
1370 and mark them invalid. We cannot use LUIDs here because
1371 insns created by loop.c for prior loops don't have LUIDs.
1372 Rather than reject all such insns from movables, we just
1373 explicitly check each insn in the libcall (since invariant
1374 libcalls aren't that common). */
1375 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1376 for (m1 = movables; m1 != m; m1 = m1->next)
1377 if (m1->insn == insn)
1378 m1->done = 1;
1383 /* For each movable insn, see if the reg that it loads
1384 leads when it dies right into another conditionally movable insn.
1385 If so, record that the second insn "forces" the first one,
1386 since the second can be moved only if the first is. */
1388 static void
1389 force_movables (movables)
1390 struct movable *movables;
1392 register struct movable *m, *m1;
1393 for (m1 = movables; m1; m1 = m1->next)
1394 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1395 if (!m1->partial && !m1->done)
1397 int regno = m1->regno;
1398 for (m = m1->next; m; m = m->next)
1399 /* ??? Could this be a bug? What if CSE caused the
1400 register of M1 to be used after this insn?
1401 Since CSE does not update regno_last_uid,
1402 this insn M->insn might not be where it dies.
1403 But very likely this doesn't matter; what matters is
1404 that M's reg is computed from M1's reg. */
1405 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1406 && !m->done)
1407 break;
1408 if (m != 0 && m->set_src == m1->set_dest
1409 /* If m->consec, m->set_src isn't valid. */
1410 && m->consec == 0)
1411 m = 0;
1413 /* Increase the priority of the moving the first insn
1414 since it permits the second to be moved as well. */
1415 if (m != 0)
1417 m->forces = m1;
1418 m1->lifetime += m->lifetime;
1419 m1->savings += m->savings;
1424 /* Find invariant expressions that are equal and can be combined into
1425 one register. */
1427 static void
1428 combine_movables (movables, nregs)
1429 struct movable *movables;
1430 int nregs;
1432 register struct movable *m;
1433 char *matched_regs = (char *) alloca (nregs);
1434 enum machine_mode mode;
1436 /* Regs that are set more than once are not allowed to match
1437 or be matched. I'm no longer sure why not. */
1438 /* Perhaps testing m->consec_sets would be more appropriate here? */
1440 for (m = movables; m; m = m->next)
1441 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1443 register struct movable *m1;
1444 int regno = m->regno;
1446 bzero (matched_regs, nregs);
1447 matched_regs[regno] = 1;
1449 /* We want later insns to match the first one. Don't make the first
1450 one match any later ones. So start this loop at m->next. */
1451 for (m1 = m->next; m1; m1 = m1->next)
1452 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1453 /* A reg used outside the loop mustn't be eliminated. */
1454 && !m1->global
1455 /* A reg used for zero-extending mustn't be eliminated. */
1456 && !m1->partial
1457 && (matched_regs[m1->regno]
1460 /* Can combine regs with different modes loaded from the
1461 same constant only if the modes are the same or
1462 if both are integer modes with M wider or the same
1463 width as M1. The check for integer is redundant, but
1464 safe, since the only case of differing destination
1465 modes with equal sources is when both sources are
1466 VOIDmode, i.e., CONST_INT. */
1467 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1468 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1469 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1470 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1471 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1472 /* See if the source of M1 says it matches M. */
1473 && ((GET_CODE (m1->set_src) == REG
1474 && matched_regs[REGNO (m1->set_src)])
1475 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1476 movables))))
1477 && ((m->dependencies == m1->dependencies)
1478 || rtx_equal_p (m->dependencies, m1->dependencies)))
1480 m->lifetime += m1->lifetime;
1481 m->savings += m1->savings;
1482 m1->done = 1;
1483 m1->match = m;
1484 matched_regs[m1->regno] = 1;
1488 /* Now combine the regs used for zero-extension.
1489 This can be done for those not marked `global'
1490 provided their lives don't overlap. */
1492 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1493 mode = GET_MODE_WIDER_MODE (mode))
1495 register struct movable *m0 = 0;
1497 /* Combine all the registers for extension from mode MODE.
1498 Don't combine any that are used outside this loop. */
1499 for (m = movables; m; m = m->next)
1500 if (m->partial && ! m->global
1501 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1503 register struct movable *m1;
1504 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1505 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1507 if (m0 == 0)
1509 /* First one: don't check for overlap, just record it. */
1510 m0 = m;
1511 continue;
1514 /* Make sure they extend to the same mode.
1515 (Almost always true.) */
1516 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1517 continue;
1519 /* We already have one: check for overlap with those
1520 already combined together. */
1521 for (m1 = movables; m1 != m; m1 = m1->next)
1522 if (m1 == m0 || (m1->partial && m1->match == m0))
1523 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1524 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1525 goto overlap;
1527 /* No overlap: we can combine this with the others. */
1528 m0->lifetime += m->lifetime;
1529 m0->savings += m->savings;
1530 m->done = 1;
1531 m->match = m0;
1533 overlap: ;
1538 /* Return 1 if regs X and Y will become the same if moved. */
1540 static int
1541 regs_match_p (x, y, movables)
1542 rtx x, y;
1543 struct movable *movables;
1545 int xn = REGNO (x);
1546 int yn = REGNO (y);
1547 struct movable *mx, *my;
1549 for (mx = movables; mx; mx = mx->next)
1550 if (mx->regno == xn)
1551 break;
1553 for (my = movables; my; my = my->next)
1554 if (my->regno == yn)
1555 break;
1557 return (mx && my
1558 && ((mx->match == my->match && mx->match != 0)
1559 || mx->match == my
1560 || mx == my->match));
1563 /* Return 1 if X and Y are identical-looking rtx's.
1564 This is the Lisp function EQUAL for rtx arguments.
1566 If two registers are matching movables or a movable register and an
1567 equivalent constant, consider them equal. */
1569 static int
1570 rtx_equal_for_loop_p (x, y, movables)
1571 rtx x, y;
1572 struct movable *movables;
1574 register int i;
1575 register int j;
1576 register struct movable *m;
1577 register enum rtx_code code;
1578 register const char *fmt;
1580 if (x == y)
1581 return 1;
1582 if (x == 0 || y == 0)
1583 return 0;
1585 code = GET_CODE (x);
1587 /* If we have a register and a constant, they may sometimes be
1588 equal. */
1589 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1590 && CONSTANT_P (y))
1592 for (m = movables; m; m = m->next)
1593 if (m->move_insn && m->regno == REGNO (x)
1594 && rtx_equal_p (m->set_src, y))
1595 return 1;
1597 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1598 && CONSTANT_P (x))
1600 for (m = movables; m; m = m->next)
1601 if (m->move_insn && m->regno == REGNO (y)
1602 && rtx_equal_p (m->set_src, x))
1603 return 1;
1606 /* Otherwise, rtx's of different codes cannot be equal. */
1607 if (code != GET_CODE (y))
1608 return 0;
1610 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1611 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1613 if (GET_MODE (x) != GET_MODE (y))
1614 return 0;
1616 /* These three types of rtx's can be compared nonrecursively. */
1617 if (code == REG)
1618 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1620 if (code == LABEL_REF)
1621 return XEXP (x, 0) == XEXP (y, 0);
1622 if (code == SYMBOL_REF)
1623 return XSTR (x, 0) == XSTR (y, 0);
1625 /* Compare the elements. If any pair of corresponding elements
1626 fail to match, return 0 for the whole things. */
1628 fmt = GET_RTX_FORMAT (code);
1629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1631 switch (fmt[i])
1633 case 'w':
1634 if (XWINT (x, i) != XWINT (y, i))
1635 return 0;
1636 break;
1638 case 'i':
1639 if (XINT (x, i) != XINT (y, i))
1640 return 0;
1641 break;
1643 case 'E':
1644 /* Two vectors must have the same length. */
1645 if (XVECLEN (x, i) != XVECLEN (y, i))
1646 return 0;
1648 /* And the corresponding elements must match. */
1649 for (j = 0; j < XVECLEN (x, i); j++)
1650 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1651 return 0;
1652 break;
1654 case 'e':
1655 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1656 return 0;
1657 break;
1659 case 's':
1660 if (strcmp (XSTR (x, i), XSTR (y, i)))
1661 return 0;
1662 break;
1664 case 'u':
1665 /* These are just backpointers, so they don't matter. */
1666 break;
1668 case '0':
1669 break;
1671 /* It is believed that rtx's at this level will never
1672 contain anything but integers and other rtx's,
1673 except for within LABEL_REFs and SYMBOL_REFs. */
1674 default:
1675 abort ();
1678 return 1;
1681 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1682 insns in INSNS which use the reference. */
1684 static void
1685 add_label_notes (x, insns)
1686 rtx x;
1687 rtx insns;
1689 enum rtx_code code = GET_CODE (x);
1690 int i, j;
1691 const char *fmt;
1692 rtx insn;
1694 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1696 /* This code used to ignore labels that referred to dispatch tables to
1697 avoid flow generating (slighly) worse code.
1699 We no longer ignore such label references (see LABEL_REF handling in
1700 mark_jump_label for additional information). */
1701 for (insn = insns; insn; insn = NEXT_INSN (insn))
1702 if (reg_mentioned_p (XEXP (x, 0), insn))
1703 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1704 REG_NOTES (insn));
1707 fmt = GET_RTX_FORMAT (code);
1708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1710 if (fmt[i] == 'e')
1711 add_label_notes (XEXP (x, i), insns);
1712 else if (fmt[i] == 'E')
1713 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1714 add_label_notes (XVECEXP (x, i, j), insns);
1718 /* Scan MOVABLES, and move the insns that deserve to be moved.
1719 If two matching movables are combined, replace one reg with the
1720 other throughout. */
1722 static void
1723 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1724 struct movable *movables;
1725 int threshold;
1726 int insn_count;
1727 rtx loop_start;
1728 rtx end;
1729 int nregs;
1731 rtx new_start = 0;
1732 register struct movable *m;
1733 register rtx p;
1734 /* Map of pseudo-register replacements to handle combining
1735 when we move several insns that load the same value
1736 into different pseudo-registers. */
1737 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1738 char *already_moved = (char *) alloca (nregs);
1740 bzero (already_moved, nregs);
1741 bzero ((char *) reg_map, nregs * sizeof (rtx));
1743 num_movables = 0;
1745 for (m = movables; m; m = m->next)
1747 /* Describe this movable insn. */
1749 if (loop_dump_stream)
1751 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1752 INSN_UID (m->insn), m->regno, m->lifetime);
1753 if (m->consec > 0)
1754 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1755 if (m->cond)
1756 fprintf (loop_dump_stream, "cond ");
1757 if (m->force)
1758 fprintf (loop_dump_stream, "force ");
1759 if (m->global)
1760 fprintf (loop_dump_stream, "global ");
1761 if (m->done)
1762 fprintf (loop_dump_stream, "done ");
1763 if (m->move_insn)
1764 fprintf (loop_dump_stream, "move-insn ");
1765 if (m->match)
1766 fprintf (loop_dump_stream, "matches %d ",
1767 INSN_UID (m->match->insn));
1768 if (m->forces)
1769 fprintf (loop_dump_stream, "forces %d ",
1770 INSN_UID (m->forces->insn));
1773 /* Count movables. Value used in heuristics in strength_reduce. */
1774 num_movables++;
1776 /* Ignore the insn if it's already done (it matched something else).
1777 Otherwise, see if it is now safe to move. */
1779 if (!m->done
1780 && (! m->cond
1781 || (1 == invariant_p (m->set_src)
1782 && (m->dependencies == 0
1783 || 1 == invariant_p (m->dependencies))
1784 && (m->consec == 0
1785 || 1 == consec_sets_invariant_p (m->set_dest,
1786 m->consec + 1,
1787 m->insn))))
1788 && (! m->forces || m->forces->done))
1790 register int regno;
1791 register rtx p;
1792 int savings = m->savings;
1794 /* We have an insn that is safe to move.
1795 Compute its desirability. */
1797 p = m->insn;
1798 regno = m->regno;
1800 if (loop_dump_stream)
1801 fprintf (loop_dump_stream, "savings %d ", savings);
1803 if (moved_once[regno] && loop_dump_stream)
1804 fprintf (loop_dump_stream, "halved since already moved ");
1806 /* An insn MUST be moved if we already moved something else
1807 which is safe only if this one is moved too: that is,
1808 if already_moved[REGNO] is nonzero. */
1810 /* An insn is desirable to move if the new lifetime of the
1811 register is no more than THRESHOLD times the old lifetime.
1812 If it's not desirable, it means the loop is so big
1813 that moving won't speed things up much,
1814 and it is liable to make register usage worse. */
1816 /* It is also desirable to move if it can be moved at no
1817 extra cost because something else was already moved. */
1819 if (already_moved[regno]
1820 || flag_move_all_movables
1821 || (threshold * savings * m->lifetime) >=
1822 (moved_once[regno] ? insn_count * 2 : insn_count)
1823 || (m->forces && m->forces->done
1824 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1826 int count;
1827 register struct movable *m1;
1828 rtx first = NULL_RTX;
1830 /* Now move the insns that set the reg. */
1832 if (m->partial && m->match)
1834 rtx newpat, i1;
1835 rtx r1, r2;
1836 /* Find the end of this chain of matching regs.
1837 Thus, we load each reg in the chain from that one reg.
1838 And that reg is loaded with 0 directly,
1839 since it has ->match == 0. */
1840 for (m1 = m; m1->match; m1 = m1->match);
1841 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1842 SET_DEST (PATTERN (m1->insn)));
1843 i1 = emit_insn_before (newpat, loop_start);
1845 /* Mark the moved, invariant reg as being allowed to
1846 share a hard reg with the other matching invariant. */
1847 REG_NOTES (i1) = REG_NOTES (m->insn);
1848 r1 = SET_DEST (PATTERN (m->insn));
1849 r2 = SET_DEST (PATTERN (m1->insn));
1850 regs_may_share
1851 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1852 gen_rtx_EXPR_LIST (VOIDmode, r2,
1853 regs_may_share));
1854 delete_insn (m->insn);
1856 if (new_start == 0)
1857 new_start = i1;
1859 if (loop_dump_stream)
1860 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1862 /* If we are to re-generate the item being moved with a
1863 new move insn, first delete what we have and then emit
1864 the move insn before the loop. */
1865 else if (m->move_insn)
1867 rtx i1, temp;
1869 for (count = m->consec; count >= 0; count--)
1871 /* If this is the first insn of a library call sequence,
1872 skip to the end. */
1873 if (GET_CODE (p) != NOTE
1874 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1875 p = XEXP (temp, 0);
1877 /* If this is the last insn of a libcall sequence, then
1878 delete every insn in the sequence except the last.
1879 The last insn is handled in the normal manner. */
1880 if (GET_CODE (p) != NOTE
1881 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1883 temp = XEXP (temp, 0);
1884 while (temp != p)
1885 temp = delete_insn (temp);
1888 temp = p;
1889 p = delete_insn (p);
1891 /* simplify_giv_expr expects that it can walk the insns
1892 at m->insn forwards and see this old sequence we are
1893 tossing here. delete_insn does preserve the next
1894 pointers, but when we skip over a NOTE we must fix
1895 it up. Otherwise that code walks into the non-deleted
1896 insn stream. */
1897 while (p && GET_CODE (p) == NOTE)
1898 p = NEXT_INSN (temp) = NEXT_INSN (p);
1901 start_sequence ();
1902 emit_move_insn (m->set_dest, m->set_src);
1903 temp = get_insns ();
1904 end_sequence ();
1906 add_label_notes (m->set_src, temp);
1908 i1 = emit_insns_before (temp, loop_start);
1909 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1910 REG_NOTES (i1)
1911 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1912 m->set_src, REG_NOTES (i1));
1914 if (loop_dump_stream)
1915 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1917 /* The more regs we move, the less we like moving them. */
1918 threshold -= 3;
1920 else
1922 for (count = m->consec; count >= 0; count--)
1924 rtx i1, temp;
1926 /* If first insn of libcall sequence, skip to end. */
1927 /* Do this at start of loop, since p is guaranteed to
1928 be an insn here. */
1929 if (GET_CODE (p) != NOTE
1930 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1931 p = XEXP (temp, 0);
1933 /* If last insn of libcall sequence, move all
1934 insns except the last before the loop. The last
1935 insn is handled in the normal manner. */
1936 if (GET_CODE (p) != NOTE
1937 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1939 rtx fn_address = 0;
1940 rtx fn_reg = 0;
1941 rtx fn_address_insn = 0;
1943 first = 0;
1944 for (temp = XEXP (temp, 0); temp != p;
1945 temp = NEXT_INSN (temp))
1947 rtx body;
1948 rtx n;
1949 rtx next;
1951 if (GET_CODE (temp) == NOTE)
1952 continue;
1954 body = PATTERN (temp);
1956 /* Find the next insn after TEMP,
1957 not counting USE or NOTE insns. */
1958 for (next = NEXT_INSN (temp); next != p;
1959 next = NEXT_INSN (next))
1960 if (! (GET_CODE (next) == INSN
1961 && GET_CODE (PATTERN (next)) == USE)
1962 && GET_CODE (next) != NOTE)
1963 break;
1965 /* If that is the call, this may be the insn
1966 that loads the function address.
1968 Extract the function address from the insn
1969 that loads it into a register.
1970 If this insn was cse'd, we get incorrect code.
1972 So emit a new move insn that copies the
1973 function address into the register that the
1974 call insn will use. flow.c will delete any
1975 redundant stores that we have created. */
1976 if (GET_CODE (next) == CALL_INSN
1977 && GET_CODE (body) == SET
1978 && GET_CODE (SET_DEST (body)) == REG
1979 && (n = find_reg_note (temp, REG_EQUAL,
1980 NULL_RTX)))
1982 fn_reg = SET_SRC (body);
1983 if (GET_CODE (fn_reg) != REG)
1984 fn_reg = SET_DEST (body);
1985 fn_address = XEXP (n, 0);
1986 fn_address_insn = temp;
1988 /* We have the call insn.
1989 If it uses the register we suspect it might,
1990 load it with the correct address directly. */
1991 if (GET_CODE (temp) == CALL_INSN
1992 && fn_address != 0
1993 && reg_referenced_p (fn_reg, body))
1994 emit_insn_after (gen_move_insn (fn_reg,
1995 fn_address),
1996 fn_address_insn);
1998 if (GET_CODE (temp) == CALL_INSN)
2000 i1 = emit_call_insn_before (body, loop_start);
2001 /* Because the USAGE information potentially
2002 contains objects other than hard registers
2003 we need to copy it. */
2004 if (CALL_INSN_FUNCTION_USAGE (temp))
2005 CALL_INSN_FUNCTION_USAGE (i1)
2006 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2008 else
2009 i1 = emit_insn_before (body, loop_start);
2010 if (first == 0)
2011 first = i1;
2012 if (temp == fn_address_insn)
2013 fn_address_insn = i1;
2014 REG_NOTES (i1) = REG_NOTES (temp);
2015 delete_insn (temp);
2017 if (new_start == 0)
2018 new_start = first;
2020 if (m->savemode != VOIDmode)
2022 /* P sets REG to zero; but we should clear only
2023 the bits that are not covered by the mode
2024 m->savemode. */
2025 rtx reg = m->set_dest;
2026 rtx sequence;
2027 rtx tem;
2029 start_sequence ();
2030 tem = expand_binop
2031 (GET_MODE (reg), and_optab, reg,
2032 GEN_INT ((((HOST_WIDE_INT) 1
2033 << GET_MODE_BITSIZE (m->savemode)))
2034 - 1),
2035 reg, 1, OPTAB_LIB_WIDEN);
2036 if (tem == 0)
2037 abort ();
2038 if (tem != reg)
2039 emit_move_insn (reg, tem);
2040 sequence = gen_sequence ();
2041 end_sequence ();
2042 i1 = emit_insn_before (sequence, loop_start);
2044 else if (GET_CODE (p) == CALL_INSN)
2046 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2047 /* Because the USAGE information potentially
2048 contains objects other than hard registers
2049 we need to copy it. */
2050 if (CALL_INSN_FUNCTION_USAGE (p))
2051 CALL_INSN_FUNCTION_USAGE (i1)
2052 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2054 else if (count == m->consec && m->move_insn_first)
2056 /* The SET_SRC might not be invariant, so we must
2057 use the REG_EQUAL note. */
2058 start_sequence ();
2059 emit_move_insn (m->set_dest, m->set_src);
2060 temp = get_insns ();
2061 end_sequence ();
2063 add_label_notes (m->set_src, temp);
2065 i1 = emit_insns_before (temp, loop_start);
2066 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2067 REG_NOTES (i1)
2068 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2069 : REG_EQUAL),
2070 m->set_src, REG_NOTES (i1));
2072 else
2073 i1 = emit_insn_before (PATTERN (p), loop_start);
2075 if (REG_NOTES (i1) == 0)
2077 REG_NOTES (i1) = REG_NOTES (p);
2079 /* If there is a REG_EQUAL note present whose value
2080 is not loop invariant, then delete it, since it
2081 may cause problems with later optimization passes.
2082 It is possible for cse to create such notes
2083 like this as a result of record_jump_cond. */
2085 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2086 && ! invariant_p (XEXP (temp, 0)))
2087 remove_note (i1, temp);
2090 if (new_start == 0)
2091 new_start = i1;
2093 if (loop_dump_stream)
2094 fprintf (loop_dump_stream, " moved to %d",
2095 INSN_UID (i1));
2097 /* If library call, now fix the REG_NOTES that contain
2098 insn pointers, namely REG_LIBCALL on FIRST
2099 and REG_RETVAL on I1. */
2100 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2102 XEXP (temp, 0) = first;
2103 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2104 XEXP (temp, 0) = i1;
2107 temp = p;
2108 delete_insn (p);
2109 p = NEXT_INSN (p);
2111 /* simplify_giv_expr expects that it can walk the insns
2112 at m->insn forwards and see this old sequence we are
2113 tossing here. delete_insn does preserve the next
2114 pointers, but when we skip over a NOTE we must fix
2115 it up. Otherwise that code walks into the non-deleted
2116 insn stream. */
2117 while (p && GET_CODE (p) == NOTE)
2118 p = NEXT_INSN (temp) = NEXT_INSN (p);
2121 /* The more regs we move, the less we like moving them. */
2122 threshold -= 3;
2125 /* Any other movable that loads the same register
2126 MUST be moved. */
2127 already_moved[regno] = 1;
2129 /* This reg has been moved out of one loop. */
2130 moved_once[regno] = 1;
2132 /* The reg set here is now invariant. */
2133 if (! m->partial)
2134 VARRAY_INT (set_in_loop, regno) = 0;
2136 m->done = 1;
2138 /* Change the length-of-life info for the register
2139 to say it lives at least the full length of this loop.
2140 This will help guide optimizations in outer loops. */
2142 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2143 /* This is the old insn before all the moved insns.
2144 We can't use the moved insn because it is out of range
2145 in uid_luid. Only the old insns have luids. */
2146 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2147 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (end))
2148 REGNO_LAST_UID (regno) = INSN_UID (end);
2150 /* Combine with this moved insn any other matching movables. */
2152 if (! m->partial)
2153 for (m1 = movables; m1; m1 = m1->next)
2154 if (m1->match == m)
2156 rtx temp;
2158 /* Schedule the reg loaded by M1
2159 for replacement so that shares the reg of M.
2160 If the modes differ (only possible in restricted
2161 circumstances, make a SUBREG.
2163 Note this assumes that the target dependent files
2164 treat REG and SUBREG equally, including within
2165 GO_IF_LEGITIMATE_ADDRESS and in all the
2166 predicates since we never verify that replacing the
2167 original register with a SUBREG results in a
2168 recognizable insn. */
2169 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2170 reg_map[m1->regno] = m->set_dest;
2171 else
2172 reg_map[m1->regno]
2173 = gen_lowpart_common (GET_MODE (m1->set_dest),
2174 m->set_dest);
2176 /* Get rid of the matching insn
2177 and prevent further processing of it. */
2178 m1->done = 1;
2180 /* if library call, delete all insn except last, which
2181 is deleted below */
2182 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2183 NULL_RTX)))
2185 for (temp = XEXP (temp, 0); temp != m1->insn;
2186 temp = NEXT_INSN (temp))
2187 delete_insn (temp);
2189 delete_insn (m1->insn);
2191 /* Any other movable that loads the same register
2192 MUST be moved. */
2193 already_moved[m1->regno] = 1;
2195 /* The reg merged here is now invariant,
2196 if the reg it matches is invariant. */
2197 if (! m->partial)
2198 VARRAY_INT (set_in_loop, m1->regno) = 0;
2201 else if (loop_dump_stream)
2202 fprintf (loop_dump_stream, "not desirable");
2204 else if (loop_dump_stream && !m->match)
2205 fprintf (loop_dump_stream, "not safe");
2207 if (loop_dump_stream)
2208 fprintf (loop_dump_stream, "\n");
2211 if (new_start == 0)
2212 new_start = loop_start;
2214 /* Go through all the instructions in the loop, making
2215 all the register substitutions scheduled in REG_MAP. */
2216 for (p = new_start; p != end; p = NEXT_INSN (p))
2217 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2218 || GET_CODE (p) == CALL_INSN)
2220 replace_regs (PATTERN (p), reg_map, nregs, 0);
2221 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2222 INSN_CODE (p) = -1;
2226 #if 0
2227 /* Scan X and replace the address of any MEM in it with ADDR.
2228 REG is the address that MEM should have before the replacement. */
2230 static void
2231 replace_call_address (x, reg, addr)
2232 rtx x, reg, addr;
2234 register enum rtx_code code;
2235 register int i;
2236 register const char *fmt;
2238 if (x == 0)
2239 return;
2240 code = GET_CODE (x);
2241 switch (code)
2243 case PC:
2244 case CC0:
2245 case CONST_INT:
2246 case CONST_DOUBLE:
2247 case CONST:
2248 case SYMBOL_REF:
2249 case LABEL_REF:
2250 case REG:
2251 return;
2253 case SET:
2254 /* Short cut for very common case. */
2255 replace_call_address (XEXP (x, 1), reg, addr);
2256 return;
2258 case CALL:
2259 /* Short cut for very common case. */
2260 replace_call_address (XEXP (x, 0), reg, addr);
2261 return;
2263 case MEM:
2264 /* If this MEM uses a reg other than the one we expected,
2265 something is wrong. */
2266 if (XEXP (x, 0) != reg)
2267 abort ();
2268 XEXP (x, 0) = addr;
2269 return;
2271 default:
2272 break;
2275 fmt = GET_RTX_FORMAT (code);
2276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2278 if (fmt[i] == 'e')
2279 replace_call_address (XEXP (x, i), reg, addr);
2280 if (fmt[i] == 'E')
2282 register int j;
2283 for (j = 0; j < XVECLEN (x, i); j++)
2284 replace_call_address (XVECEXP (x, i, j), reg, addr);
2288 #endif
2290 /* Return the number of memory refs to addresses that vary
2291 in the rtx X. */
2293 static int
2294 count_nonfixed_reads (x)
2295 rtx x;
2297 register enum rtx_code code;
2298 register int i;
2299 register const char *fmt;
2300 int value;
2302 if (x == 0)
2303 return 0;
2305 code = GET_CODE (x);
2306 switch (code)
2308 case PC:
2309 case CC0:
2310 case CONST_INT:
2311 case CONST_DOUBLE:
2312 case CONST:
2313 case SYMBOL_REF:
2314 case LABEL_REF:
2315 case REG:
2316 return 0;
2318 case MEM:
2319 return ((invariant_p (XEXP (x, 0)) != 1)
2320 + count_nonfixed_reads (XEXP (x, 0)));
2322 default:
2323 break;
2326 value = 0;
2327 fmt = GET_RTX_FORMAT (code);
2328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2330 if (fmt[i] == 'e')
2331 value += count_nonfixed_reads (XEXP (x, i));
2332 if (fmt[i] == 'E')
2334 register int j;
2335 for (j = 0; j < XVECLEN (x, i); j++)
2336 value += count_nonfixed_reads (XVECEXP (x, i, j));
2339 return value;
2343 #if 0
2344 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2345 Replace it with an instruction to load just the low bytes
2346 if the machine supports such an instruction,
2347 and insert above LOOP_START an instruction to clear the register. */
2349 static void
2350 constant_high_bytes (p, loop_start)
2351 rtx p, loop_start;
2353 register rtx new;
2354 register int insn_code_number;
2356 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2357 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2360 = gen_rtx_SET
2361 (VOIDmode,
2362 gen_rtx_STRICT_LOW_PART
2363 (VOIDmode,
2364 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2365 SET_DEST (PATTERN (p)), 0)),
2366 XEXP (SET_SRC (PATTERN (p)), 0));
2368 insn_code_number = recog (new, p);
2370 if (insn_code_number)
2372 register int i;
2374 /* Clear destination register before the loop. */
2375 emit_insn_before (gen_rtx_SET (VOIDmode,
2376 SET_DEST (PATTERN (p)), const0_rtx),
2377 loop_start);
2379 /* Inside the loop, just load the low part. */
2380 PATTERN (p) = new;
2383 #endif
2385 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2386 `has_call', `has_volatile', and `has_tablejump' within LOOP_INFO.
2387 Set the global variables `unknown_address_altered' and
2388 `num_mem_sets'. Also, fill in the array `loop_mems' and the list
2389 `loop_store_mems'. */
2391 static void
2392 prescan_loop (start, end, loop_info)
2393 rtx start, end;
2394 struct loop_info *loop_info;
2396 register int level = 1;
2397 rtx insn;
2398 /* The label after END. Jumping here is just like falling off the
2399 end of the loop. We use next_nonnote_insn instead of next_label
2400 as a hedge against the (pathological) case where some actual insn
2401 might end up between the two. */
2402 rtx exit_target = next_nonnote_insn (end);
2404 loop_info->num = uid_loop_num [INSN_UID (start)];
2405 loop_info->has_indirect_jump = indirect_jump_in_function;
2406 loop_info->has_call = 0;
2407 loop_info->has_volatile = 0;
2408 loop_info->has_tablejump = 0;
2409 loop_info->loops_enclosed = 1;
2410 loop_info->has_multiple_exit_targets = 0;
2411 loop_info->cont = 0;
2412 loop_info->vtop = 0;
2414 unknown_address_altered = 0;
2415 loop_store_mems = NULL_RTX;
2416 first_loop_store_insn = NULL_RTX;
2417 loop_mems_idx = 0;
2418 num_mem_sets = 0;
2420 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2421 insn = NEXT_INSN (insn))
2423 if (GET_CODE (insn) == NOTE)
2425 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2427 ++level;
2428 /* Count number of loops contained in this one. */
2429 loop_info->loops_enclosed++;
2431 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2433 --level;
2434 if (level == 0)
2436 end = insn;
2437 break;
2440 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2442 if (level == 1)
2443 loop_info->cont = insn;
2445 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
2447 /* If there is a NOTE_INSN_LOOP_VTOP, then this is a for
2448 or while style loop, with a loop exit test at the
2449 start. Thus, we can assume that the loop condition
2450 was true when the loop was entered. */
2451 if (level == 1)
2452 loop_info->vtop = insn;
2455 else if (GET_CODE (insn) == CALL_INSN)
2457 if (! CONST_CALL_P (insn))
2458 unknown_address_altered = 1;
2459 loop_info->has_call = 1;
2461 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2463 rtx label1 = NULL_RTX;
2464 rtx label2 = NULL_RTX;
2466 if (volatile_refs_p (PATTERN (insn)))
2467 loop_info->has_volatile = 1;
2469 if (GET_CODE (insn) == JUMP_INSN
2470 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2471 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2472 loop_info->has_tablejump = 1;
2474 note_stores (PATTERN (insn), note_addr_stored);
2475 if (! first_loop_store_insn && loop_store_mems)
2476 first_loop_store_insn = insn;
2478 if (! loop_info->has_multiple_exit_targets
2479 && GET_CODE (insn) == JUMP_INSN
2480 && GET_CODE (PATTERN (insn)) == SET
2481 && SET_DEST (PATTERN (insn)) == pc_rtx)
2483 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2485 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2486 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2488 else
2490 label1 = SET_SRC (PATTERN (insn));
2493 do {
2494 if (label1 && label1 != pc_rtx)
2496 if (GET_CODE (label1) != LABEL_REF)
2498 /* Something tricky. */
2499 loop_info->has_multiple_exit_targets = 1;
2500 break;
2502 else if (XEXP (label1, 0) != exit_target
2503 && LABEL_OUTSIDE_LOOP_P (label1))
2505 /* A jump outside the current loop. */
2506 loop_info->has_multiple_exit_targets = 1;
2507 break;
2511 label1 = label2;
2512 label2 = NULL_RTX;
2513 } while (label1);
2516 else if (GET_CODE (insn) == RETURN)
2517 loop_info->has_multiple_exit_targets = 1;
2520 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2521 if (/* We can't tell what MEMs are aliased by what. */
2522 !unknown_address_altered
2523 /* An exception thrown by a called function might land us
2524 anywhere. */
2525 && !loop_info->has_call
2526 /* We don't want loads for MEMs moved to a location before the
2527 one at which their stack memory becomes allocated. (Note
2528 that this is not a problem for malloc, etc., since those
2529 require actual function calls. */
2530 && !current_function_calls_alloca
2531 /* There are ways to leave the loop other than falling off the
2532 end. */
2533 && !loop_info->has_multiple_exit_targets)
2534 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2535 insn = NEXT_INSN (insn))
2536 for_each_rtx (&insn, insert_loop_mem, 0);
2539 /* LOOP_NUMBER_CONT_DOMINATOR is now the last label between the loop start
2540 and the continue note that is a the destination of a (cond)jump after
2541 the continue note. If there is any (cond)jump between the loop start
2542 and what we have so far as LOOP_NUMBER_CONT_DOMINATOR that has a
2543 target between LOOP_DOMINATOR and the continue note, move
2544 LOOP_NUMBER_CONT_DOMINATOR forward to that label; if a jump's
2545 destination cannot be determined, clear LOOP_NUMBER_CONT_DOMINATOR. */
2547 static void
2548 verify_dominator (loop_number)
2549 int loop_number;
2551 rtx insn;
2553 if (! loop_number_cont_dominator[loop_number])
2554 /* This can happen for an empty loop, e.g. in
2555 gcc.c-torture/compile/920410-2.c */
2556 return;
2557 if (loop_number_cont_dominator[loop_number] == const0_rtx)
2559 loop_number_cont_dominator[loop_number] = 0;
2560 return;
2562 for (insn = loop_number_loop_starts[loop_number];
2563 insn != loop_number_cont_dominator[loop_number];
2564 insn = NEXT_INSN (insn))
2566 if (GET_CODE (insn) == JUMP_INSN
2567 && GET_CODE (PATTERN (insn)) != RETURN)
2569 rtx label = JUMP_LABEL (insn);
2570 int label_luid;
2572 /* If it is not a jump we can easily understand or for
2573 which we do not have jump target information in the JUMP_LABEL
2574 field (consider ADDR_VEC and ADDR_DIFF_VEC insns), then clear
2575 LOOP_NUMBER_CONT_DOMINATOR. */
2576 if ((! condjump_p (insn)
2577 && ! condjump_in_parallel_p (insn))
2578 || label == NULL_RTX)
2580 loop_number_cont_dominator[loop_number] = NULL_RTX;
2581 return;
2584 label_luid = INSN_LUID (label);
2585 if (label_luid < INSN_LUID (loop_number_loop_cont[loop_number])
2586 && (label_luid
2587 > INSN_LUID (loop_number_cont_dominator[loop_number])))
2588 loop_number_cont_dominator[loop_number] = label;
2593 /* Scan the function looking for loops. Record the start and end of each loop.
2594 Also mark as invalid loops any loops that contain a setjmp or are branched
2595 to from outside the loop. */
2597 static void
2598 find_and_verify_loops (f)
2599 rtx f;
2601 rtx insn, label;
2602 int current_loop = -1;
2603 int next_loop = -1;
2604 int loop;
2606 compute_luids (f, NULL_RTX, 0);
2608 /* If there are jumps to undefined labels,
2609 treat them as jumps out of any/all loops.
2610 This also avoids writing past end of tables when there are no loops. */
2611 uid_loop_num[0] = -1;
2613 /* Find boundaries of loops, mark which loops are contained within
2614 loops, and invalidate loops that have setjmp. */
2616 for (insn = f; insn; insn = NEXT_INSN (insn))
2618 if (GET_CODE (insn) == NOTE)
2619 switch (NOTE_LINE_NUMBER (insn))
2621 case NOTE_INSN_LOOP_BEG:
2622 loop_number_loop_starts[++next_loop] = insn;
2623 loop_number_loop_ends[next_loop] = 0;
2624 loop_number_loop_cont[next_loop] = 0;
2625 loop_number_cont_dominator[next_loop] = 0;
2626 loop_outer_loop[next_loop] = current_loop;
2627 loop_invalid[next_loop] = 0;
2628 loop_number_exit_labels[next_loop] = 0;
2629 loop_number_exit_count[next_loop] = 0;
2630 current_loop = next_loop;
2631 break;
2633 case NOTE_INSN_SETJMP:
2634 /* In this case, we must invalidate our current loop and any
2635 enclosing loop. */
2636 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2638 loop_invalid[loop] = 1;
2639 if (loop_dump_stream)
2640 fprintf (loop_dump_stream,
2641 "\nLoop at %d ignored due to setjmp.\n",
2642 INSN_UID (loop_number_loop_starts[loop]));
2644 break;
2646 case NOTE_INSN_LOOP_CONT:
2647 loop_number_loop_cont[current_loop] = insn;
2648 break;
2649 case NOTE_INSN_LOOP_END:
2650 if (current_loop == -1)
2651 abort ();
2653 loop_number_loop_ends[current_loop] = insn;
2654 verify_dominator (current_loop);
2655 current_loop = loop_outer_loop[current_loop];
2656 break;
2658 default:
2659 break;
2661 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2662 and NOTE_INSN_LOOP_END notes, update loop_number_loop_dominator. */
2663 else if (GET_CODE (insn) == JUMP_INSN
2664 && GET_CODE (PATTERN (insn)) != RETURN
2665 && current_loop >= 0)
2667 int this_loop_num;
2668 rtx label = JUMP_LABEL (insn);
2670 if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
2671 label = NULL_RTX;
2673 this_loop_num = current_loop;
2676 /* First see if we care about this loop. */
2677 if (loop_number_loop_cont[this_loop_num]
2678 && loop_number_cont_dominator[this_loop_num] != const0_rtx)
2680 /* If the jump destination is not known, invalidate
2681 loop_number_const_dominator. */
2682 if (! label)
2683 loop_number_cont_dominator[this_loop_num] = const0_rtx;
2684 else
2685 /* Check if the destination is between loop start and
2686 cont. */
2687 if ((INSN_LUID (label)
2688 < INSN_LUID (loop_number_loop_cont[this_loop_num]))
2689 && (INSN_LUID (label)
2690 > INSN_LUID (loop_number_loop_starts[this_loop_num]))
2691 /* And if there is no later destination already
2692 recorded. */
2693 && (! loop_number_cont_dominator[this_loop_num]
2694 || (INSN_LUID (label)
2695 > INSN_LUID (loop_number_cont_dominator
2696 [this_loop_num]))))
2697 loop_number_cont_dominator[this_loop_num] = label;
2699 this_loop_num = loop_outer_loop[this_loop_num];
2701 while (this_loop_num >= 0);
2704 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2705 enclosing loop, but this doesn't matter. */
2706 uid_loop_num[INSN_UID (insn)] = current_loop;
2709 /* Any loop containing a label used in an initializer must be invalidated,
2710 because it can be jumped into from anywhere. */
2712 for (label = forced_labels; label; label = XEXP (label, 1))
2714 int loop_num;
2716 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2717 loop_num != -1;
2718 loop_num = loop_outer_loop[loop_num])
2719 loop_invalid[loop_num] = 1;
2722 /* Any loop containing a label used for an exception handler must be
2723 invalidated, because it can be jumped into from anywhere. */
2725 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2727 int loop_num;
2729 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2730 loop_num != -1;
2731 loop_num = loop_outer_loop[loop_num])
2732 loop_invalid[loop_num] = 1;
2735 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2736 loop that it is not contained within, that loop is marked invalid.
2737 If any INSN or CALL_INSN uses a label's address, then the loop containing
2738 that label is marked invalid, because it could be jumped into from
2739 anywhere.
2741 Also look for blocks of code ending in an unconditional branch that
2742 exits the loop. If such a block is surrounded by a conditional
2743 branch around the block, move the block elsewhere (see below) and
2744 invert the jump to point to the code block. This may eliminate a
2745 label in our loop and will simplify processing by both us and a
2746 possible second cse pass. */
2748 for (insn = f; insn; insn = NEXT_INSN (insn))
2749 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2751 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2753 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2755 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2756 if (note)
2758 int loop_num;
2760 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2761 loop_num != -1;
2762 loop_num = loop_outer_loop[loop_num])
2763 loop_invalid[loop_num] = 1;
2767 if (GET_CODE (insn) != JUMP_INSN)
2768 continue;
2770 mark_loop_jump (PATTERN (insn), this_loop_num);
2772 /* See if this is an unconditional branch outside the loop. */
2773 if (this_loop_num != -1
2774 && (GET_CODE (PATTERN (insn)) == RETURN
2775 || (simplejump_p (insn)
2776 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2777 != this_loop_num)))
2778 && get_max_uid () < max_uid_for_loop)
2780 rtx p;
2781 rtx our_next = next_real_insn (insn);
2782 int dest_loop;
2783 int outer_loop = -1;
2785 /* Go backwards until we reach the start of the loop, a label,
2786 or a JUMP_INSN. */
2787 for (p = PREV_INSN (insn);
2788 GET_CODE (p) != CODE_LABEL
2789 && ! (GET_CODE (p) == NOTE
2790 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2791 && GET_CODE (p) != JUMP_INSN;
2792 p = PREV_INSN (p))
2795 /* Check for the case where we have a jump to an inner nested
2796 loop, and do not perform the optimization in that case. */
2798 if (JUMP_LABEL (insn))
2800 dest_loop = uid_loop_num[INSN_UID (JUMP_LABEL (insn))];
2801 if (dest_loop != -1)
2803 for (outer_loop = dest_loop; outer_loop != -1;
2804 outer_loop = loop_outer_loop[outer_loop])
2805 if (outer_loop == this_loop_num)
2806 break;
2810 /* Make sure that the target of P is within the current loop. */
2812 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2813 && uid_loop_num[INSN_UID (JUMP_LABEL (p))] != this_loop_num)
2814 outer_loop = this_loop_num;
2816 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2817 we have a block of code to try to move.
2819 We look backward and then forward from the target of INSN
2820 to find a BARRIER at the same loop depth as the target.
2821 If we find such a BARRIER, we make a new label for the start
2822 of the block, invert the jump in P and point it to that label,
2823 and move the block of code to the spot we found. */
2825 if (outer_loop == -1
2826 && GET_CODE (p) == JUMP_INSN
2827 && JUMP_LABEL (p) != 0
2828 /* Just ignore jumps to labels that were never emitted.
2829 These always indicate compilation errors. */
2830 && INSN_UID (JUMP_LABEL (p)) != 0
2831 && condjump_p (p)
2832 && ! simplejump_p (p)
2833 && next_real_insn (JUMP_LABEL (p)) == our_next)
2835 rtx target
2836 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2837 int target_loop_num = uid_loop_num[INSN_UID (target)];
2838 rtx loc;
2840 for (loc = target; loc; loc = PREV_INSN (loc))
2841 if (GET_CODE (loc) == BARRIER
2842 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2843 break;
2845 if (loc == 0)
2846 for (loc = target; loc; loc = NEXT_INSN (loc))
2847 if (GET_CODE (loc) == BARRIER
2848 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2849 break;
2851 if (loc)
2853 rtx cond_label = JUMP_LABEL (p);
2854 rtx new_label = get_label_after (p);
2856 /* Ensure our label doesn't go away. */
2857 LABEL_NUSES (cond_label)++;
2859 /* Verify that uid_loop_num is large enough and that
2860 we can invert P. */
2861 if (invert_jump (p, new_label))
2863 rtx q, r;
2865 /* If no suitable BARRIER was found, create a suitable
2866 one before TARGET. Since TARGET is a fall through
2867 path, we'll need to insert an jump around our block
2868 and a add a BARRIER before TARGET.
2870 This creates an extra unconditional jump outside
2871 the loop. However, the benefits of removing rarely
2872 executed instructions from inside the loop usually
2873 outweighs the cost of the extra unconditional jump
2874 outside the loop. */
2875 if (loc == 0)
2877 rtx temp;
2879 temp = gen_jump (JUMP_LABEL (insn));
2880 temp = emit_jump_insn_before (temp, target);
2881 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2882 LABEL_NUSES (JUMP_LABEL (insn))++;
2883 loc = emit_barrier_before (target);
2886 /* Include the BARRIER after INSN and copy the
2887 block after LOC. */
2888 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2889 reorder_insns (new_label, NEXT_INSN (insn), loc);
2891 /* All those insns are now in TARGET_LOOP_NUM. */
2892 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2893 q = NEXT_INSN (q))
2894 uid_loop_num[INSN_UID (q)] = target_loop_num;
2896 /* The label jumped to by INSN is no longer a loop exit.
2897 Unless INSN does not have a label (e.g., it is a
2898 RETURN insn), search loop_number_exit_labels to find
2899 its label_ref, and remove it. Also turn off
2900 LABEL_OUTSIDE_LOOP_P bit. */
2901 if (JUMP_LABEL (insn))
2903 int loop_num;
2905 for (q = 0,
2906 r = loop_number_exit_labels[this_loop_num];
2907 r; q = r, r = LABEL_NEXTREF (r))
2908 if (XEXP (r, 0) == JUMP_LABEL (insn))
2910 LABEL_OUTSIDE_LOOP_P (r) = 0;
2911 if (q)
2912 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2913 else
2914 loop_number_exit_labels[this_loop_num]
2915 = LABEL_NEXTREF (r);
2916 break;
2919 for (loop_num = this_loop_num;
2920 loop_num != -1 && loop_num != target_loop_num;
2921 loop_num = loop_outer_loop[loop_num])
2922 loop_number_exit_count[loop_num]--;
2924 /* If we didn't find it, then something is wrong. */
2925 if (! r)
2926 abort ();
2929 /* P is now a jump outside the loop, so it must be put
2930 in loop_number_exit_labels, and marked as such.
2931 The easiest way to do this is to just call
2932 mark_loop_jump again for P. */
2933 mark_loop_jump (PATTERN (p), this_loop_num);
2935 /* If INSN now jumps to the insn after it,
2936 delete INSN. */
2937 if (JUMP_LABEL (insn) != 0
2938 && (next_real_insn (JUMP_LABEL (insn))
2939 == next_real_insn (insn)))
2940 delete_insn (insn);
2943 /* Continue the loop after where the conditional
2944 branch used to jump, since the only branch insn
2945 in the block (if it still remains) is an inter-loop
2946 branch and hence needs no processing. */
2947 insn = NEXT_INSN (cond_label);
2949 if (--LABEL_NUSES (cond_label) == 0)
2950 delete_insn (cond_label);
2952 /* This loop will be continued with NEXT_INSN (insn). */
2953 insn = PREV_INSN (insn);
2960 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2961 loops it is contained in, mark the target loop invalid.
2963 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2965 static void
2966 mark_loop_jump (x, loop_num)
2967 rtx x;
2968 int loop_num;
2970 int dest_loop;
2971 int outer_loop;
2972 int i;
2974 switch (GET_CODE (x))
2976 case PC:
2977 case USE:
2978 case CLOBBER:
2979 case REG:
2980 case MEM:
2981 case CONST_INT:
2982 case CONST_DOUBLE:
2983 case RETURN:
2984 return;
2986 case CONST:
2987 /* There could be a label reference in here. */
2988 mark_loop_jump (XEXP (x, 0), loop_num);
2989 return;
2991 case PLUS:
2992 case MINUS:
2993 case MULT:
2994 mark_loop_jump (XEXP (x, 0), loop_num);
2995 mark_loop_jump (XEXP (x, 1), loop_num);
2996 return;
2998 case LO_SUM:
2999 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3000 mark_loop_jump (XEXP (x, 1), loop_num);
3001 return;
3003 case SIGN_EXTEND:
3004 case ZERO_EXTEND:
3005 mark_loop_jump (XEXP (x, 0), loop_num);
3006 return;
3008 case LABEL_REF:
3009 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
3011 /* Link together all labels that branch outside the loop. This
3012 is used by final_[bg]iv_value and the loop unrolling code. Also
3013 mark this LABEL_REF so we know that this branch should predict
3014 false. */
3016 /* A check to make sure the label is not in an inner nested loop,
3017 since this does not count as a loop exit. */
3018 if (dest_loop != -1)
3020 for (outer_loop = dest_loop; outer_loop != -1;
3021 outer_loop = loop_outer_loop[outer_loop])
3022 if (outer_loop == loop_num)
3023 break;
3025 else
3026 outer_loop = -1;
3028 if (loop_num != -1 && outer_loop == -1)
3030 LABEL_OUTSIDE_LOOP_P (x) = 1;
3031 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
3032 loop_number_exit_labels[loop_num] = x;
3034 for (outer_loop = loop_num;
3035 outer_loop != -1 && outer_loop != dest_loop;
3036 outer_loop = loop_outer_loop[outer_loop])
3037 loop_number_exit_count[outer_loop]++;
3040 /* If this is inside a loop, but not in the current loop or one enclosed
3041 by it, it invalidates at least one loop. */
3043 if (dest_loop == -1)
3044 return;
3046 /* We must invalidate every nested loop containing the target of this
3047 label, except those that also contain the jump insn. */
3049 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
3051 /* Stop when we reach a loop that also contains the jump insn. */
3052 for (outer_loop = loop_num; outer_loop != -1;
3053 outer_loop = loop_outer_loop[outer_loop])
3054 if (dest_loop == outer_loop)
3055 return;
3057 /* If we get here, we know we need to invalidate a loop. */
3058 if (loop_dump_stream && ! loop_invalid[dest_loop])
3059 fprintf (loop_dump_stream,
3060 "\nLoop at %d ignored due to multiple entry points.\n",
3061 INSN_UID (loop_number_loop_starts[dest_loop]));
3063 loop_invalid[dest_loop] = 1;
3065 return;
3067 case SET:
3068 /* If this is not setting pc, ignore. */
3069 if (SET_DEST (x) == pc_rtx)
3070 mark_loop_jump (SET_SRC (x), loop_num);
3071 return;
3073 case IF_THEN_ELSE:
3074 mark_loop_jump (XEXP (x, 1), loop_num);
3075 mark_loop_jump (XEXP (x, 2), loop_num);
3076 return;
3078 case PARALLEL:
3079 case ADDR_VEC:
3080 for (i = 0; i < XVECLEN (x, 0); i++)
3081 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
3082 return;
3084 case ADDR_DIFF_VEC:
3085 for (i = 0; i < XVECLEN (x, 1); i++)
3086 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
3087 return;
3089 default:
3090 /* Strictly speaking this is not a jump into the loop, only a possible
3091 jump out of the loop. However, we have no way to link the destination
3092 of this jump onto the list of exit labels. To be safe we mark this
3093 loop and any containing loops as invalid. */
3094 if (loop_num != -1)
3096 for (outer_loop = loop_num; outer_loop != -1;
3097 outer_loop = loop_outer_loop[outer_loop])
3099 if (loop_dump_stream && ! loop_invalid[outer_loop])
3100 fprintf (loop_dump_stream,
3101 "\nLoop at %d ignored due to unknown exit jump.\n",
3102 INSN_UID (loop_number_loop_starts[outer_loop]));
3103 loop_invalid[outer_loop] = 1;
3106 return;
3110 /* Return nonzero if there is a label in the range from
3111 insn INSN to and including the insn whose luid is END
3112 INSN must have an assigned luid (i.e., it must not have
3113 been previously created by loop.c). */
3115 static int
3116 labels_in_range_p (insn, end)
3117 rtx insn;
3118 int end;
3120 while (insn && INSN_LUID (insn) <= end)
3122 if (GET_CODE (insn) == CODE_LABEL)
3123 return 1;
3124 insn = NEXT_INSN (insn);
3127 return 0;
3130 /* Record that a memory reference X is being set. */
3132 static void
3133 note_addr_stored (x, y)
3134 rtx x;
3135 rtx y ATTRIBUTE_UNUSED;
3137 if (x == 0 || GET_CODE (x) != MEM)
3138 return;
3140 /* Count number of memory writes.
3141 This affects heuristics in strength_reduce. */
3142 num_mem_sets++;
3144 /* BLKmode MEM means all memory is clobbered. */
3145 if (GET_MODE (x) == BLKmode)
3146 unknown_address_altered = 1;
3148 if (unknown_address_altered)
3149 return;
3151 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3154 /* Return nonzero if the rtx X is invariant over the current loop.
3156 The value is 2 if we refer to something only conditionally invariant.
3158 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3159 Otherwise, a memory ref is invariant if it does not conflict with
3160 anything stored in `loop_store_mems'. */
3163 invariant_p (x)
3164 register rtx x;
3166 register int i;
3167 register enum rtx_code code;
3168 register const char *fmt;
3169 int conditional = 0;
3170 rtx mem_list_entry;
3172 if (x == 0)
3173 return 1;
3174 code = GET_CODE (x);
3175 switch (code)
3177 case CONST_INT:
3178 case CONST_DOUBLE:
3179 case SYMBOL_REF:
3180 case CONST:
3181 return 1;
3183 case LABEL_REF:
3184 /* A LABEL_REF is normally invariant, however, if we are unrolling
3185 loops, and this label is inside the loop, then it isn't invariant.
3186 This is because each unrolled copy of the loop body will have
3187 a copy of this label. If this was invariant, then an insn loading
3188 the address of this label into a register might get moved outside
3189 the loop, and then each loop body would end up using the same label.
3191 We don't know the loop bounds here though, so just fail for all
3192 labels. */
3193 if (flag_unroll_loops)
3194 return 0;
3195 else
3196 return 1;
3198 case PC:
3199 case CC0:
3200 case UNSPEC_VOLATILE:
3201 return 0;
3203 case REG:
3204 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3205 since the reg might be set by initialization within the loop. */
3207 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3208 || x == arg_pointer_rtx)
3209 && ! current_function_has_nonlocal_goto)
3210 return 1;
3212 if (this_loop_info.has_call
3213 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3214 return 0;
3216 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3217 return 2;
3219 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3221 case MEM:
3222 /* Volatile memory references must be rejected. Do this before
3223 checking for read-only items, so that volatile read-only items
3224 will be rejected also. */
3225 if (MEM_VOLATILE_P (x))
3226 return 0;
3228 /* Read-only items (such as constants in a constant pool) are
3229 invariant if their address is. */
3230 if (RTX_UNCHANGING_P (x))
3231 break;
3233 /* If we had a subroutine call, any location in memory could have been
3234 clobbered. */
3235 if (unknown_address_altered)
3236 return 0;
3238 /* See if there is any dependence between a store and this load. */
3239 mem_list_entry = loop_store_mems;
3240 while (mem_list_entry)
3242 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3243 x, rtx_varies_p))
3244 return 0;
3245 mem_list_entry = XEXP (mem_list_entry, 1);
3248 /* It's not invalidated by a store in memory
3249 but we must still verify the address is invariant. */
3250 break;
3252 case ASM_OPERANDS:
3253 /* Don't mess with insns declared volatile. */
3254 if (MEM_VOLATILE_P (x))
3255 return 0;
3256 break;
3258 default:
3259 break;
3262 fmt = GET_RTX_FORMAT (code);
3263 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3265 if (fmt[i] == 'e')
3267 int tem = invariant_p (XEXP (x, i));
3268 if (tem == 0)
3269 return 0;
3270 if (tem == 2)
3271 conditional = 1;
3273 else if (fmt[i] == 'E')
3275 register int j;
3276 for (j = 0; j < XVECLEN (x, i); j++)
3278 int tem = invariant_p (XVECEXP (x, i, j));
3279 if (tem == 0)
3280 return 0;
3281 if (tem == 2)
3282 conditional = 1;
3288 return 1 + conditional;
3292 /* Return nonzero if all the insns in the loop that set REG
3293 are INSN and the immediately following insns,
3294 and if each of those insns sets REG in an invariant way
3295 (not counting uses of REG in them).
3297 The value is 2 if some of these insns are only conditionally invariant.
3299 We assume that INSN itself is the first set of REG
3300 and that its source is invariant. */
3302 static int
3303 consec_sets_invariant_p (reg, n_sets, insn)
3304 int n_sets;
3305 rtx reg, insn;
3307 register rtx p = insn;
3308 register int regno = REGNO (reg);
3309 rtx temp;
3310 /* Number of sets we have to insist on finding after INSN. */
3311 int count = n_sets - 1;
3312 int old = VARRAY_INT (set_in_loop, regno);
3313 int value = 0;
3314 int this;
3316 /* If N_SETS hit the limit, we can't rely on its value. */
3317 if (n_sets == 127)
3318 return 0;
3320 VARRAY_INT (set_in_loop, regno) = 0;
3322 while (count > 0)
3324 register enum rtx_code code;
3325 rtx set;
3327 p = NEXT_INSN (p);
3328 code = GET_CODE (p);
3330 /* If library call, skip to end of it. */
3331 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3332 p = XEXP (temp, 0);
3334 this = 0;
3335 if (code == INSN
3336 && (set = single_set (p))
3337 && GET_CODE (SET_DEST (set)) == REG
3338 && REGNO (SET_DEST (set)) == regno)
3340 this = invariant_p (SET_SRC (set));
3341 if (this != 0)
3342 value |= this;
3343 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3345 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3346 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3347 notes are OK. */
3348 this = (CONSTANT_P (XEXP (temp, 0))
3349 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3350 && invariant_p (XEXP (temp, 0))));
3351 if (this != 0)
3352 value |= this;
3355 if (this != 0)
3356 count--;
3357 else if (code != NOTE)
3359 VARRAY_INT (set_in_loop, regno) = old;
3360 return 0;
3364 VARRAY_INT (set_in_loop, regno) = old;
3365 /* If invariant_p ever returned 2, we return 2. */
3366 return 1 + (value & 2);
3369 #if 0
3370 /* I don't think this condition is sufficient to allow INSN
3371 to be moved, so we no longer test it. */
3373 /* Return 1 if all insns in the basic block of INSN and following INSN
3374 that set REG are invariant according to TABLE. */
3376 static int
3377 all_sets_invariant_p (reg, insn, table)
3378 rtx reg, insn;
3379 short *table;
3381 register rtx p = insn;
3382 register int regno = REGNO (reg);
3384 while (1)
3386 register enum rtx_code code;
3387 p = NEXT_INSN (p);
3388 code = GET_CODE (p);
3389 if (code == CODE_LABEL || code == JUMP_INSN)
3390 return 1;
3391 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3392 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3393 && REGNO (SET_DEST (PATTERN (p))) == regno)
3395 if (!invariant_p (SET_SRC (PATTERN (p)), table))
3396 return 0;
3400 #endif /* 0 */
3402 /* Look at all uses (not sets) of registers in X. For each, if it is
3403 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3404 a different insn, set USAGE[REGNO] to const0_rtx. */
3406 static void
3407 find_single_use_in_loop (insn, x, usage)
3408 rtx insn;
3409 rtx x;
3410 varray_type usage;
3412 enum rtx_code code = GET_CODE (x);
3413 const char *fmt = GET_RTX_FORMAT (code);
3414 int i, j;
3416 if (code == REG)
3417 VARRAY_RTX (usage, REGNO (x))
3418 = (VARRAY_RTX (usage, REGNO (x)) != 0
3419 && VARRAY_RTX (usage, REGNO (x)) != insn)
3420 ? const0_rtx : insn;
3422 else if (code == SET)
3424 /* Don't count SET_DEST if it is a REG; otherwise count things
3425 in SET_DEST because if a register is partially modified, it won't
3426 show up as a potential movable so we don't care how USAGE is set
3427 for it. */
3428 if (GET_CODE (SET_DEST (x)) != REG)
3429 find_single_use_in_loop (insn, SET_DEST (x), usage);
3430 find_single_use_in_loop (insn, SET_SRC (x), usage);
3432 else
3433 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3435 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3436 find_single_use_in_loop (insn, XEXP (x, i), usage);
3437 else if (fmt[i] == 'E')
3438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3439 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3443 /* Count and record any set in X which is contained in INSN. Update
3444 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3446 static void
3447 count_one_set (insn, x, may_not_move, last_set)
3448 rtx insn, x;
3449 varray_type may_not_move;
3450 rtx *last_set;
3452 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3453 /* Don't move a reg that has an explicit clobber.
3454 It's not worth the pain to try to do it correctly. */
3455 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3457 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3459 rtx dest = SET_DEST (x);
3460 while (GET_CODE (dest) == SUBREG
3461 || GET_CODE (dest) == ZERO_EXTRACT
3462 || GET_CODE (dest) == SIGN_EXTRACT
3463 || GET_CODE (dest) == STRICT_LOW_PART)
3464 dest = XEXP (dest, 0);
3465 if (GET_CODE (dest) == REG)
3467 register int regno = REGNO (dest);
3468 /* If this is the first setting of this reg
3469 in current basic block, and it was set before,
3470 it must be set in two basic blocks, so it cannot
3471 be moved out of the loop. */
3472 if (VARRAY_INT (set_in_loop, regno) > 0
3473 && last_set[regno] == 0)
3474 VARRAY_CHAR (may_not_move, regno) = 1;
3475 /* If this is not first setting in current basic block,
3476 see if reg was used in between previous one and this.
3477 If so, neither one can be moved. */
3478 if (last_set[regno] != 0
3479 && reg_used_between_p (dest, last_set[regno], insn))
3480 VARRAY_CHAR (may_not_move, regno) = 1;
3481 if (VARRAY_INT (set_in_loop, regno) < 127)
3482 ++VARRAY_INT (set_in_loop, regno);
3483 last_set[regno] = insn;
3488 /* Increment SET_IN_LOOP at the index of each register
3489 that is modified by an insn between FROM and TO.
3490 If the value of an element of SET_IN_LOOP becomes 127 or more,
3491 stop incrementing it, to avoid overflow.
3493 Store in SINGLE_USAGE[I] the single insn in which register I is
3494 used, if it is only used once. Otherwise, it is set to 0 (for no
3495 uses) or const0_rtx for more than one use. This parameter may be zero,
3496 in which case this processing is not done.
3498 Store in *COUNT_PTR the number of actual instruction
3499 in the loop. We use this to decide what is worth moving out. */
3501 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3502 In that case, it is the insn that last set reg n. */
3504 static void
3505 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3506 register rtx from, to;
3507 varray_type may_not_move;
3508 varray_type single_usage;
3509 int *count_ptr;
3510 int nregs;
3512 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
3513 register rtx insn;
3514 register int count = 0;
3516 bzero ((char *) last_set, nregs * sizeof (rtx));
3517 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3519 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3521 ++count;
3523 /* Record registers that have exactly one use. */
3524 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3526 /* Include uses in REG_EQUAL notes. */
3527 if (REG_NOTES (insn))
3528 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3530 if (GET_CODE (PATTERN (insn)) == SET
3531 || GET_CODE (PATTERN (insn)) == CLOBBER)
3532 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3533 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3535 register int i;
3536 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3537 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3538 may_not_move, last_set);
3542 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3543 bzero ((char *) last_set, nregs * sizeof (rtx));
3545 *count_ptr = count;
3548 /* Given a loop that is bounded by LOOP_START and LOOP_END
3549 and that is entered at SCAN_START,
3550 return 1 if the register set in SET contained in insn INSN is used by
3551 any insn that precedes INSN in cyclic order starting
3552 from the loop entry point.
3554 We don't want to use INSN_LUID here because if we restrict INSN to those
3555 that have a valid INSN_LUID, it means we cannot move an invariant out
3556 from an inner loop past two loops. */
3558 static int
3559 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3560 rtx set, insn, loop_start, scan_start, loop_end;
3562 rtx reg = SET_DEST (set);
3563 rtx p;
3565 /* Scan forward checking for register usage. If we hit INSN, we
3566 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3567 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3569 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3570 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3571 return 1;
3573 if (p == loop_end)
3574 p = loop_start;
3577 return 0;
3580 /* A "basic induction variable" or biv is a pseudo reg that is set
3581 (within this loop) only by incrementing or decrementing it. */
3582 /* A "general induction variable" or giv is a pseudo reg whose
3583 value is a linear function of a biv. */
3585 /* Bivs are recognized by `basic_induction_var';
3586 Givs by `general_induction_var'. */
3588 /* Indexed by register number, indicates whether or not register is an
3589 induction variable, and if so what type. */
3591 varray_type reg_iv_type;
3593 /* Indexed by register number, contains pointer to `struct induction'
3594 if register is an induction variable. This holds general info for
3595 all induction variables. */
3597 varray_type reg_iv_info;
3599 /* Indexed by register number, contains pointer to `struct iv_class'
3600 if register is a basic induction variable. This holds info describing
3601 the class (a related group) of induction variables that the biv belongs
3602 to. */
3604 struct iv_class **reg_biv_class;
3606 /* The head of a list which links together (via the next field)
3607 every iv class for the current loop. */
3609 struct iv_class *loop_iv_list;
3611 /* Givs made from biv increments are always splittable for loop unrolling.
3612 Since there is no regscan info for them, we have to keep track of them
3613 separately. */
3614 int first_increment_giv, last_increment_giv;
3616 /* Communication with routines called via `note_stores'. */
3618 static rtx note_insn;
3620 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3622 static rtx addr_placeholder;
3624 /* ??? Unfinished optimizations, and possible future optimizations,
3625 for the strength reduction code. */
3627 /* ??? The interaction of biv elimination, and recognition of 'constant'
3628 bivs, may cause problems. */
3630 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3631 performance problems.
3633 Perhaps don't eliminate things that can be combined with an addressing
3634 mode. Find all givs that have the same biv, mult_val, and add_val;
3635 then for each giv, check to see if its only use dies in a following
3636 memory address. If so, generate a new memory address and check to see
3637 if it is valid. If it is valid, then store the modified memory address,
3638 otherwise, mark the giv as not done so that it will get its own iv. */
3640 /* ??? Could try to optimize branches when it is known that a biv is always
3641 positive. */
3643 /* ??? When replace a biv in a compare insn, we should replace with closest
3644 giv so that an optimized branch can still be recognized by the combiner,
3645 e.g. the VAX acb insn. */
3647 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3648 was rerun in loop_optimize whenever a register was added or moved.
3649 Also, some of the optimizations could be a little less conservative. */
3651 /* Perform strength reduction and induction variable elimination.
3653 Pseudo registers created during this function will be beyond the last
3654 valid index in several tables including n_times_set and regno_last_uid.
3655 This does not cause a problem here, because the added registers cannot be
3656 givs outside of their loop, and hence will never be reconsidered.
3657 But scan_loop must check regnos to make sure they are in bounds.
3659 SCAN_START is the first instruction in the loop, as the loop would
3660 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3661 the first instruction in the loop, as it is layed out in the
3662 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG.
3663 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
3665 static void
3666 strength_reduce (scan_start, end, loop_top, insn_count,
3667 loop_start, loop_end, loop_info, loop_cont, unroll_p, bct_p)
3668 rtx scan_start;
3669 rtx end;
3670 rtx loop_top;
3671 int insn_count;
3672 rtx loop_start;
3673 rtx loop_end;
3674 struct loop_info *loop_info;
3675 rtx loop_cont;
3676 int unroll_p, bct_p ATTRIBUTE_UNUSED;
3678 rtx p;
3679 rtx set;
3680 rtx inc_val;
3681 rtx mult_val;
3682 rtx dest_reg;
3683 rtx *location;
3684 /* This is 1 if current insn is not executed at least once for every loop
3685 iteration. */
3686 int not_every_iteration = 0;
3687 /* This is 1 if current insn may be executed more than once for every
3688 loop iteration. */
3689 int maybe_multiple = 0;
3690 /* This is 1 if we have past a branch back to the top of the loop
3691 (aka a loop latch). */
3692 int past_loop_latch = 0;
3693 /* Temporary list pointers for traversing loop_iv_list. */
3694 struct iv_class *bl, **backbl;
3695 /* Ratio of extra register life span we can justify
3696 for saving an instruction. More if loop doesn't call subroutines
3697 since in that case saving an insn makes more difference
3698 and more registers are available. */
3699 /* ??? could set this to last value of threshold in move_movables */
3700 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3701 /* Map of pseudo-register replacements. */
3702 rtx *reg_map;
3703 int reg_map_size;
3704 int call_seen;
3705 rtx test;
3706 rtx end_insert_before;
3707 int loop_depth = 0;
3708 int n_extra_increment;
3709 int unrolled_insn_copies;
3711 /* If scan_start points to the loop exit test, we have to be wary of
3712 subversive use of gotos inside expression statements. */
3713 if (prev_nonnote_insn (scan_start) != prev_nonnote_insn (loop_start))
3714 maybe_multiple = back_branch_in_range_p (scan_start, loop_start, loop_end);
3716 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3717 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3718 reg_biv_class = (struct iv_class **)
3719 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3720 bzero ((char *) reg_biv_class, (max_reg_before_loop
3721 * sizeof (struct iv_class *)));
3723 loop_iv_list = 0;
3724 addr_placeholder = gen_reg_rtx (Pmode);
3726 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3727 must be put before this insn, so that they will appear in the right
3728 order (i.e. loop order).
3730 If loop_end is the end of the current function, then emit a
3731 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3732 dummy note insn. */
3733 if (NEXT_INSN (loop_end) != 0)
3734 end_insert_before = NEXT_INSN (loop_end);
3735 else
3736 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3738 /* Scan through loop to find all possible bivs. */
3740 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
3741 p != NULL_RTX;
3742 p = next_insn_in_loop (p, scan_start, end, loop_top))
3744 if (GET_CODE (p) == INSN
3745 && (set = single_set (p))
3746 && GET_CODE (SET_DEST (set)) == REG)
3748 dest_reg = SET_DEST (set);
3749 if (REGNO (dest_reg) < max_reg_before_loop
3750 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3751 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
3753 if (basic_induction_var (SET_SRC (set), GET_MODE (SET_SRC (set)),
3754 dest_reg, p, &inc_val, &mult_val,
3755 &location))
3757 /* It is a possible basic induction variable.
3758 Create and initialize an induction structure for it. */
3760 struct induction *v
3761 = (struct induction *) alloca (sizeof (struct induction));
3763 record_biv (v, p, dest_reg, inc_val, mult_val, location,
3764 not_every_iteration, maybe_multiple);
3765 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
3767 else if (REGNO (dest_reg) < max_reg_before_loop)
3768 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
3772 /* Past CODE_LABEL, we get to insns that may be executed multiple
3773 times. The only way we can be sure that they can't is if every
3774 jump insn between here and the end of the loop either
3775 returns, exits the loop, is a jump to a location that is still
3776 behind the label, or is a jump to the loop start. */
3778 if (GET_CODE (p) == CODE_LABEL)
3780 rtx insn = p;
3782 maybe_multiple = 0;
3784 while (1)
3786 insn = NEXT_INSN (insn);
3787 if (insn == scan_start)
3788 break;
3789 if (insn == end)
3791 if (loop_top != 0)
3792 insn = loop_top;
3793 else
3794 break;
3795 if (insn == scan_start)
3796 break;
3799 if (GET_CODE (insn) == JUMP_INSN
3800 && GET_CODE (PATTERN (insn)) != RETURN
3801 && (! condjump_p (insn)
3802 || (JUMP_LABEL (insn) != 0
3803 && JUMP_LABEL (insn) != scan_start
3804 && ! loop_insn_first_p (p, JUMP_LABEL (insn)))))
3806 maybe_multiple = 1;
3807 break;
3812 /* Past a jump, we get to insns for which we can't count
3813 on whether they will be executed during each iteration. */
3814 /* This code appears twice in strength_reduce. There is also similar
3815 code in scan_loop. */
3816 if (GET_CODE (p) == JUMP_INSN
3817 /* If we enter the loop in the middle, and scan around to the
3818 beginning, don't set not_every_iteration for that.
3819 This can be any kind of jump, since we want to know if insns
3820 will be executed if the loop is executed. */
3821 && ! (JUMP_LABEL (p) == loop_top
3822 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3823 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3825 rtx label = 0;
3827 /* If this is a jump outside the loop, then it also doesn't
3828 matter. Check to see if the target of this branch is on the
3829 loop_number_exits_labels list. */
3831 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
3832 label;
3833 label = LABEL_NEXTREF (label))
3834 if (XEXP (label, 0) == JUMP_LABEL (p))
3835 break;
3837 if (! label)
3838 not_every_iteration = 1;
3841 else if (GET_CODE (p) == NOTE)
3843 /* At the virtual top of a converted loop, insns are again known to
3844 be executed each iteration: logically, the loop begins here
3845 even though the exit code has been duplicated.
3847 Insns are also again known to be executed each iteration at
3848 the LOOP_CONT note. */
3849 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3850 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3851 && loop_depth == 0)
3852 not_every_iteration = 0;
3853 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3854 loop_depth++;
3855 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3856 loop_depth--;
3859 /* Note if we pass a loop latch. If we do, then we can not clear
3860 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3861 a loop since a jump before the last CODE_LABEL may have started
3862 a new loop iteration.
3864 Note that LOOP_TOP is only set for rotated loops and we need
3865 this check for all loops, so compare against the CODE_LABEL
3866 which immediately follows LOOP_START. */
3867 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == NEXT_INSN (loop_start))
3868 past_loop_latch = 1;
3870 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3871 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3872 or not an insn is known to be executed each iteration of the
3873 loop, whether or not any iterations are known to occur.
3875 Therefore, if we have just passed a label and have no more labels
3876 between here and the test insn of the loop, and we have not passed
3877 a jump to the top of the loop, then we know these insns will be
3878 executed each iteration. */
3880 if (not_every_iteration
3881 && ! past_loop_latch
3882 && GET_CODE (p) == CODE_LABEL
3883 && no_labels_between_p (p, loop_end)
3884 && loop_insn_first_p (p, loop_cont))
3885 not_every_iteration = 0;
3888 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3889 Make a sanity check against n_times_set. */
3890 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3892 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3893 /* Above happens if register modified by subreg, etc. */
3894 /* Make sure it is not recognized as a basic induction var: */
3895 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3896 /* If never incremented, it is invariant that we decided not to
3897 move. So leave it alone. */
3898 || ! bl->incremented)
3900 if (loop_dump_stream)
3901 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3902 bl->regno,
3903 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3904 ? "not induction variable"
3905 : (! bl->incremented ? "never incremented"
3906 : "count error")));
3908 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3909 *backbl = bl->next;
3911 else
3913 backbl = &bl->next;
3915 if (loop_dump_stream)
3916 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3920 /* Exit if there are no bivs. */
3921 if (! loop_iv_list)
3923 /* Can still unroll the loop anyways, but indicate that there is no
3924 strength reduction info available. */
3925 if (unroll_p)
3926 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
3927 loop_info, 0);
3929 goto egress;
3932 /* Find initial value for each biv by searching backwards from loop_start,
3933 halting at first label. Also record any test condition. */
3935 call_seen = 0;
3936 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3938 note_insn = p;
3940 if (GET_CODE (p) == CALL_INSN)
3941 call_seen = 1;
3943 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3944 || GET_CODE (p) == CALL_INSN)
3945 note_stores (PATTERN (p), record_initial);
3947 /* Record any test of a biv that branches around the loop if no store
3948 between it and the start of loop. We only care about tests with
3949 constants and registers and only certain of those. */
3950 if (GET_CODE (p) == JUMP_INSN
3951 && JUMP_LABEL (p) != 0
3952 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3953 && (test = get_condition_for_loop (p)) != 0
3954 && GET_CODE (XEXP (test, 0)) == REG
3955 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3956 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3957 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3958 && bl->init_insn == 0)
3960 /* If an NE test, we have an initial value! */
3961 if (GET_CODE (test) == NE)
3963 bl->init_insn = p;
3964 bl->init_set = gen_rtx_SET (VOIDmode,
3965 XEXP (test, 0), XEXP (test, 1));
3967 else
3968 bl->initial_test = test;
3972 /* Look at the each biv and see if we can say anything better about its
3973 initial value from any initializing insns set up above. (This is done
3974 in two passes to avoid missing SETs in a PARALLEL.) */
3975 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
3977 rtx src;
3978 rtx note;
3980 if (! bl->init_insn)
3981 continue;
3983 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3984 is a constant, use the value of that. */
3985 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3986 && CONSTANT_P (XEXP (note, 0)))
3987 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3988 && CONSTANT_P (XEXP (note, 0))))
3989 src = XEXP (note, 0);
3990 else
3991 src = SET_SRC (bl->init_set);
3993 if (loop_dump_stream)
3994 fprintf (loop_dump_stream,
3995 "Biv %d initialized at insn %d: initial value ",
3996 bl->regno, INSN_UID (bl->init_insn));
3998 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3999 || GET_MODE (src) == VOIDmode)
4000 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
4002 bl->initial_value = src;
4004 if (loop_dump_stream)
4006 if (GET_CODE (src) == CONST_INT)
4008 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
4009 fputc ('\n', loop_dump_stream);
4011 else
4013 print_rtl (loop_dump_stream, src);
4014 fprintf (loop_dump_stream, "\n");
4018 else
4020 struct iv_class *bl2 = 0;
4021 rtx increment = NULL_RTX;
4023 /* Biv initial value is not a simple move. If it is the sum of
4024 another biv and a constant, check if both bivs are incremented
4025 in lockstep. Then we are actually looking at a giv.
4026 For simplicity, we only handle the case where there is but a
4027 single increment, and the register is not used elsewhere. */
4028 if (bl->biv_count == 1
4029 && bl->regno < max_reg_before_loop
4030 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4031 && GET_CODE (src) == PLUS
4032 && GET_CODE (XEXP (src, 0)) == REG
4033 && CONSTANT_P (XEXP (src, 1))
4034 && ((increment = biv_total_increment (bl, loop_start, loop_end))
4035 != NULL_RTX))
4037 int regno = REGNO (XEXP (src, 0));
4039 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4040 if (bl2->regno == regno)
4041 break;
4044 /* Now, can we transform this biv into a giv? */
4045 if (bl2
4046 && bl2->biv_count == 1
4047 && rtx_equal_p (increment,
4048 biv_total_increment (bl2, loop_start, loop_end))
4049 /* init_insn is only set to insns that are before loop_start
4050 without any intervening labels. */
4051 && ! reg_set_between_p (bl2->biv->src_reg,
4052 PREV_INSN (bl->init_insn), loop_start)
4053 /* The register from BL2 must be set before the register from
4054 BL is set, or we must be able to move the latter set after
4055 the former set. Currently there can't be any labels
4056 in-between when biv_toal_increment returns nonzero both times
4057 but we test it here in case some day some real cfg analysis
4058 gets used to set always_computable. */
4059 && ((loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4060 && no_labels_between_p (bl2->biv->insn, bl->biv->insn))
4061 || (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4062 bl2->biv->insn)
4063 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4064 && validate_change (bl->biv->insn,
4065 &SET_SRC (single_set (bl->biv->insn)),
4066 copy_rtx (src), 0))
4068 int loop_num = uid_loop_num[INSN_UID (loop_start)];
4069 rtx dominator = loop_number_cont_dominator[loop_num];
4070 rtx giv = bl->biv->src_reg;
4071 rtx giv_insn = bl->biv->insn;
4072 rtx after_giv = NEXT_INSN (giv_insn);
4074 if (loop_dump_stream)
4075 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4076 /* Let this giv be discovered by the generic code. */
4077 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4078 reg_biv_class[bl->regno] = NULL_PTR;
4079 /* We can get better optimization if we can move the giv setting
4080 before the first giv use. */
4081 if (dominator
4082 && ! loop_insn_first_p (dominator, scan_start)
4083 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4084 dominator)
4085 && ! reg_used_between_p (giv, loop_start, dominator)
4086 && ! reg_used_between_p (giv, giv_insn, loop_end))
4088 rtx p;
4089 rtx next;
4091 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4093 if ((GET_RTX_CLASS (GET_CODE (next)) == 'i'
4094 && (reg_mentioned_p (giv, PATTERN (next))
4095 || reg_set_p (bl2->biv->src_reg, next)))
4096 || GET_CODE (next) == JUMP_INSN)
4097 break;
4098 #ifdef HAVE_cc0
4099 if (GET_RTX_CLASS (GET_CODE (next)) != 'i'
4100 || ! sets_cc0_p (PATTERN (next)))
4101 #endif
4102 dominator = next;
4104 if (loop_dump_stream)
4105 fprintf (loop_dump_stream, "move after insn %d\n",
4106 INSN_UID (dominator));
4107 /* Avoid problems with luids by actually moving the insn
4108 and adjusting all luids in the range. */
4109 reorder_insns (giv_insn, giv_insn, dominator);
4110 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4111 p = PREV_INSN (p);
4112 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4113 /* If the only purpose of the init insn is to initialize
4114 this giv, delete it. */
4115 if (single_set (bl->init_insn)
4116 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4117 delete_insn (bl->init_insn);
4119 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4121 rtx p = PREV_INSN (giv_insn);
4122 while (INSN_UID (p) >= max_uid_for_loop)
4123 p = PREV_INSN (p);
4124 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4125 compute_luids (after_giv, NEXT_INSN (giv_insn),
4126 INSN_LUID (p));
4128 /* Remove this biv from the chain. */
4129 if (bl->next)
4131 /* We move the following giv from *bl->next into *bl.
4132 We have to update reg_biv_class for that moved biv
4133 to point to its new address. */
4134 *bl = *bl->next;
4135 reg_biv_class[bl->regno] = bl;
4137 else
4139 *backbl = 0;
4140 break;
4144 /* If we can't make it a giv,
4145 let biv keep initial value of "itself". */
4146 else if (loop_dump_stream)
4147 fprintf (loop_dump_stream, "is complex\n");
4151 /* If a biv is unconditionally incremented several times in a row, convert
4152 all but the last increment into a giv. */
4154 /* Get an upper bound for the number of registers
4155 we might have after all bivs have been processed. */
4156 first_increment_giv = max_reg_num ();
4157 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4158 n_extra_increment += bl->biv_count - 1;
4160 /* If the loop contains volatile memory references do not allow any
4161 replacements to take place, since this could loose the volatile markers. */
4162 if (n_extra_increment && ! loop_info->has_volatile)
4164 int nregs = first_increment_giv + n_extra_increment;
4166 /* Reallocate reg_iv_type and reg_iv_info. */
4167 VARRAY_GROW (reg_iv_type, nregs);
4168 VARRAY_GROW (reg_iv_info, nregs);
4170 for (bl = loop_iv_list; bl; bl = bl->next)
4172 struct induction **vp, *v, *next;
4173 int biv_dead_after_loop = 0;
4175 /* The biv increments lists are in reverse order. Fix this first. */
4176 for (v = bl->biv, bl->biv = 0; v; v = next)
4178 next = v->next_iv;
4179 v->next_iv = bl->biv;
4180 bl->biv = v;
4183 /* We must guard against the case that an early exit between v->insn
4184 and next->insn leaves the biv live after the loop, since that
4185 would mean that we'd be missing an increment for the final
4186 value. The following test to set biv_dead_after_loop is like
4187 the first part of the test to set bl->eliminable.
4188 We don't check here if we can calculate the final value, since
4189 this can't succeed if we already know that there is a jump
4190 between v->insn and next->insn, yet next->always_executed is
4191 set and next->maybe_multiple is cleared. Such a combination
4192 implies that the jump destination is outside the loop.
4193 If we want to make this check more sophisticated, we should
4194 check each branch between v->insn and next->insn individually
4195 to see if the biv is dead at its destination. */
4197 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4198 && bl->init_insn
4199 && INSN_UID (bl->init_insn) < max_uid_for_loop
4200 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4201 >= INSN_LUID (bl->init_insn))
4202 #ifdef HAVE_decrement_and_branch_until_zero
4203 && ! bl->nonneg
4204 #endif
4205 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4206 biv_dead_after_loop = 1;
4208 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4210 HOST_WIDE_INT offset;
4211 rtx set, add_val, old_reg, dest_reg, last_use_insn, note;
4212 int old_regno, new_regno;
4214 if (! v->always_executed
4215 || v->maybe_multiple
4216 || GET_CODE (v->add_val) != CONST_INT
4217 || ! next->always_executed
4218 || next->maybe_multiple
4219 || ! CONSTANT_P (next->add_val)
4220 || v->mult_val != const1_rtx
4221 || next->mult_val != const1_rtx
4222 || ! (biv_dead_after_loop
4223 || no_jumps_between_p (v->insn, next->insn)))
4225 vp = &v->next_iv;
4226 continue;
4228 offset = INTVAL (v->add_val);
4229 set = single_set (v->insn);
4230 add_val = plus_constant (next->add_val, offset);
4231 old_reg = v->dest_reg;
4232 dest_reg = gen_reg_rtx (v->mode);
4234 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4235 have been allocated with some slop space, so we may not
4236 actually need to reallocate them. If we do, the following
4237 if statement will be executed just once in this loop. */
4238 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4240 /* Grow all the remaining arrays. */
4241 VARRAY_GROW (set_in_loop, nregs);
4242 VARRAY_GROW (n_times_set, nregs);
4243 VARRAY_GROW (may_not_optimize, nregs);
4244 VARRAY_GROW (reg_single_usage, nregs);
4247 if (! validate_change (next->insn, next->location, add_val, 0))
4249 vp = &v->next_iv;
4250 continue;
4253 /* Here we can try to eliminate the increment by combining
4254 it into the uses. */
4256 /* Set last_use_insn so that we can check against it. */
4258 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4259 p != next->insn;
4260 p = next_insn_in_loop (p, scan_start, end, loop_top))
4262 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4263 continue;
4264 if (reg_mentioned_p (old_reg, PATTERN (p)))
4266 last_use_insn = p;
4270 /* If we can't get the LUIDs for the insns, we can't
4271 calculate the lifetime. This is likely from unrolling
4272 of an inner loop, so there is little point in making this
4273 a DEST_REG giv anyways. */
4274 if (INSN_UID (v->insn) >= max_uid_for_loop
4275 || INSN_UID (last_use_insn) >= max_uid_for_loop
4276 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4278 /* Change the increment at NEXT back to what it was. */
4279 if (! validate_change (next->insn, next->location,
4280 next->add_val, 0))
4281 abort ();
4282 vp = &v->next_iv;
4283 continue;
4285 next->add_val = add_val;
4286 v->dest_reg = dest_reg;
4287 v->giv_type = DEST_REG;
4288 v->location = &SET_SRC (set);
4289 v->cant_derive = 0;
4290 v->combined_with = 0;
4291 v->maybe_dead = 0;
4292 v->derive_adjustment = 0;
4293 v->same = 0;
4294 v->ignore = 0;
4295 v->new_reg = 0;
4296 v->final_value = 0;
4297 v->same_insn = 0;
4298 v->auto_inc_opt = 0;
4299 v->unrolled = 0;
4300 v->shared = 0;
4301 v->derived_from = 0;
4302 v->always_computable = 1;
4303 v->always_executed = 1;
4304 v->replaceable = 1;
4305 v->no_const_addval = 0;
4307 old_regno = REGNO (old_reg);
4308 new_regno = REGNO (dest_reg);
4309 VARRAY_INT (set_in_loop, old_regno)--;
4310 VARRAY_INT (set_in_loop, new_regno) = 1;
4311 VARRAY_INT (n_times_set, old_regno)--;
4312 VARRAY_INT (n_times_set, new_regno) = 1;
4313 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4315 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4316 REG_IV_INFO (new_regno) = v;
4318 /* If next_insn has a REG_EQUAL note that mentiones OLD_REG,
4319 it must be replaced. */
4320 note = find_reg_note (next->insn, REG_EQUAL, NULL_RTX);
4321 if (note && reg_mentioned_p (old_reg, XEXP (note, 0)))
4322 XEXP (note, 0) = copy_rtx (SET_SRC (single_set (next->insn)));
4324 /* Remove the increment from the list of biv increments,
4325 and record it as a giv. */
4326 *vp = next;
4327 bl->biv_count--;
4328 v->next_iv = bl->giv;
4329 bl->giv = v;
4330 bl->giv_count++;
4331 v->benefit = rtx_cost (SET_SRC (set), SET);
4332 bl->total_benefit += v->benefit;
4334 /* Now replace the biv with DEST_REG in all insns between
4335 the replaced increment and the next increment, and
4336 remember the last insn that needed a replacement. */
4337 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4338 p != next->insn;
4339 p = next_insn_in_loop (p, scan_start, end, loop_top))
4341 rtx note;
4343 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4344 continue;
4345 if (reg_mentioned_p (old_reg, PATTERN (p)))
4347 last_use_insn = p;
4348 if (! validate_replace_rtx (old_reg, dest_reg, p))
4349 abort ();
4351 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4353 if (GET_CODE (note) == EXPR_LIST)
4354 XEXP (note, 0)
4355 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4359 v->last_use = last_use_insn;
4360 v->lifetime = INSN_LUID (v->insn) - INSN_LUID (last_use_insn);
4361 /* If the lifetime is zero, it means that this register is really
4362 a dead store. So mark this as a giv that can be ignored.
4363 This will not prevent the biv from being eliminated. */
4364 if (v->lifetime == 0)
4365 v->ignore = 1;
4367 if (loop_dump_stream)
4368 fprintf (loop_dump_stream,
4369 "Increment %d of biv %d converted to giv %d.\n\n",
4370 INSN_UID (v->insn), old_regno, new_regno);
4374 last_increment_giv = max_reg_num () - 1;
4376 /* Search the loop for general induction variables. */
4378 /* A register is a giv if: it is only set once, it is a function of a
4379 biv and a constant (or invariant), and it is not a biv. */
4381 not_every_iteration = 0;
4382 loop_depth = 0;
4383 maybe_multiple = 0;
4384 p = scan_start;
4385 while (1)
4387 p = NEXT_INSN (p);
4388 /* At end of a straight-in loop, we are done.
4389 At end of a loop entered at the bottom, scan the top. */
4390 if (p == scan_start)
4391 break;
4392 if (p == end)
4394 if (loop_top != 0)
4395 p = loop_top;
4396 else
4397 break;
4398 if (p == scan_start)
4399 break;
4402 /* Look for a general induction variable in a register. */
4403 if (GET_CODE (p) == INSN
4404 && (set = single_set (p))
4405 && GET_CODE (SET_DEST (set)) == REG
4406 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
4408 rtx src_reg;
4409 rtx add_val;
4410 rtx mult_val;
4411 int benefit;
4412 rtx regnote = 0;
4413 rtx last_consec_insn;
4415 dest_reg = SET_DEST (set);
4416 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4417 continue;
4419 if (/* SET_SRC is a giv. */
4420 (general_induction_var (SET_SRC (set), &src_reg, &add_val,
4421 &mult_val, 0, &benefit)
4422 /* Equivalent expression is a giv. */
4423 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4424 && general_induction_var (XEXP (regnote, 0), &src_reg,
4425 &add_val, &mult_val, 0,
4426 &benefit)))
4427 /* Don't try to handle any regs made by loop optimization.
4428 We have nothing on them in regno_first_uid, etc. */
4429 && REGNO (dest_reg) < max_reg_before_loop
4430 /* Don't recognize a BASIC_INDUCT_VAR here. */
4431 && dest_reg != src_reg
4432 /* This must be the only place where the register is set. */
4433 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
4434 /* or all sets must be consecutive and make a giv. */
4435 || (benefit = consec_sets_giv (benefit, p,
4436 src_reg, dest_reg,
4437 &add_val, &mult_val,
4438 &last_consec_insn))))
4440 struct induction *v
4441 = (struct induction *) alloca (sizeof (struct induction));
4443 /* If this is a library call, increase benefit. */
4444 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4445 benefit += libcall_benefit (p);
4447 /* Skip the consecutive insns, if there are any. */
4448 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
4449 p = last_consec_insn;
4451 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
4452 DEST_REG, not_every_iteration, maybe_multiple,
4453 NULL_PTR, loop_start, loop_end);
4458 #ifndef DONT_REDUCE_ADDR
4459 /* Look for givs which are memory addresses. */
4460 /* This resulted in worse code on a VAX 8600. I wonder if it
4461 still does. */
4462 if (GET_CODE (p) == INSN)
4463 find_mem_givs (PATTERN (p), p, not_every_iteration, maybe_multiple,
4464 loop_start, loop_end);
4465 #endif
4467 /* Update the status of whether giv can derive other givs. This can
4468 change when we pass a label or an insn that updates a biv. */
4469 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4470 || GET_CODE (p) == CODE_LABEL)
4471 update_giv_derive (p);
4473 /* Past CODE_LABEL, we get to insns that may be executed multiple
4474 times. The only way we can be sure that they can't is if every
4475 every jump insn between here and the end of the loop either
4476 returns, exits the loop, is a forward jump, or is a jump
4477 to the loop start. */
4479 if (GET_CODE (p) == CODE_LABEL)
4481 rtx insn = p;
4483 maybe_multiple = 0;
4485 while (1)
4487 insn = NEXT_INSN (insn);
4488 if (insn == scan_start)
4489 break;
4490 if (insn == end)
4492 if (loop_top != 0)
4493 insn = loop_top;
4494 else
4495 break;
4496 if (insn == scan_start)
4497 break;
4500 if (GET_CODE (insn) == JUMP_INSN
4501 && GET_CODE (PATTERN (insn)) != RETURN
4502 && (! condjump_p (insn)
4503 || (JUMP_LABEL (insn) != 0
4504 && JUMP_LABEL (insn) != scan_start
4505 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
4506 || INSN_UID (insn) >= max_uid_for_loop
4507 || (INSN_LUID (JUMP_LABEL (insn))
4508 < INSN_LUID (insn))))))
4510 maybe_multiple = 1;
4511 break;
4516 /* Past a jump, we get to insns for which we can't count
4517 on whether they will be executed during each iteration. */
4518 /* This code appears twice in strength_reduce. There is also similar
4519 code in scan_loop. */
4520 if (GET_CODE (p) == JUMP_INSN
4521 /* If we enter the loop in the middle, and scan around to the
4522 beginning, don't set not_every_iteration for that.
4523 This can be any kind of jump, since we want to know if insns
4524 will be executed if the loop is executed. */
4525 && ! (JUMP_LABEL (p) == loop_top
4526 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
4527 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
4529 rtx label = 0;
4531 /* If this is a jump outside the loop, then it also doesn't
4532 matter. Check to see if the target of this branch is on the
4533 loop_number_exits_labels list. */
4535 for (label = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
4536 label;
4537 label = LABEL_NEXTREF (label))
4538 if (XEXP (label, 0) == JUMP_LABEL (p))
4539 break;
4541 if (! label)
4542 not_every_iteration = 1;
4545 else if (GET_CODE (p) == NOTE)
4547 /* At the virtual top of a converted loop, insns are again known to
4548 be executed each iteration: logically, the loop begins here
4549 even though the exit code has been duplicated.
4551 Insns are also again known to be executed each iteration at
4552 the LOOP_CONT note. */
4553 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4554 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4555 && loop_depth == 0)
4556 not_every_iteration = 0;
4557 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4558 loop_depth++;
4559 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4560 loop_depth--;
4563 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4564 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4565 or not an insn is known to be executed each iteration of the
4566 loop, whether or not any iterations are known to occur.
4568 Therefore, if we have just passed a label and have no more labels
4569 between here and the test insn of the loop, we know these insns
4570 will be executed each iteration. */
4572 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
4573 && no_labels_between_p (p, loop_end)
4574 && loop_insn_first_p (p, loop_cont))
4575 not_every_iteration = 0;
4578 /* Try to calculate and save the number of loop iterations. This is
4579 set to zero if the actual number can not be calculated. This must
4580 be called after all giv's have been identified, since otherwise it may
4581 fail if the iteration variable is a giv. */
4583 loop_iterations (loop_start, loop_end, loop_info);
4585 /* Now for each giv for which we still don't know whether or not it is
4586 replaceable, check to see if it is replaceable because its final value
4587 can be calculated. This must be done after loop_iterations is called,
4588 so that final_giv_value will work correctly. */
4590 for (bl = loop_iv_list; bl; bl = bl->next)
4592 struct induction *v;
4594 for (v = bl->giv; v; v = v->next_iv)
4595 if (! v->replaceable && ! v->not_replaceable)
4596 check_final_value (v, loop_start, loop_end, loop_info->n_iterations);
4599 /* Try to prove that the loop counter variable (if any) is always
4600 nonnegative; if so, record that fact with a REG_NONNEG note
4601 so that "decrement and branch until zero" insn can be used. */
4602 check_dbra_loop (loop_end, insn_count, loop_start, loop_info);
4604 /* Create reg_map to hold substitutions for replaceable giv regs.
4605 Some givs might have been made from biv increments, so look at
4606 reg_iv_type for a suitable size. */
4607 reg_map_size = reg_iv_type->num_elements;
4608 reg_map = (rtx *) alloca (reg_map_size * sizeof (rtx));
4609 bzero ((char *) reg_map, reg_map_size * sizeof (rtx));
4611 /* Examine each iv class for feasibility of strength reduction/induction
4612 variable elimination. */
4614 for (bl = loop_iv_list; bl; bl = bl->next)
4616 struct induction *v;
4617 int benefit;
4618 int all_reduced;
4619 rtx final_value = 0;
4620 unsigned int nregs;
4622 /* Test whether it will be possible to eliminate this biv
4623 provided all givs are reduced. This is possible if either
4624 the reg is not used outside the loop, or we can compute
4625 what its final value will be.
4627 For architectures with a decrement_and_branch_until_zero insn,
4628 don't do this if we put a REG_NONNEG note on the endtest for
4629 this biv. */
4631 /* Compare against bl->init_insn rather than loop_start.
4632 We aren't concerned with any uses of the biv between
4633 init_insn and loop_start since these won't be affected
4634 by the value of the biv elsewhere in the function, so
4635 long as init_insn doesn't use the biv itself.
4636 March 14, 1989 -- self@bayes.arc.nasa.gov */
4638 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4639 && bl->init_insn
4640 && INSN_UID (bl->init_insn) < max_uid_for_loop
4641 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4642 #ifdef HAVE_decrement_and_branch_until_zero
4643 && ! bl->nonneg
4644 #endif
4645 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4646 || ((final_value = final_biv_value (bl, loop_start, loop_end,
4647 loop_info->n_iterations))
4648 #ifdef HAVE_decrement_and_branch_until_zero
4649 && ! bl->nonneg
4650 #endif
4652 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
4653 threshold, insn_count);
4654 else
4656 if (loop_dump_stream)
4658 fprintf (loop_dump_stream,
4659 "Cannot eliminate biv %d.\n",
4660 bl->regno);
4661 fprintf (loop_dump_stream,
4662 "First use: insn %d, last use: insn %d.\n",
4663 REGNO_FIRST_UID (bl->regno),
4664 REGNO_LAST_UID (bl->regno));
4668 /* Combine all giv's for this iv_class. */
4669 combine_givs (bl);
4671 /* This will be true at the end, if all givs which depend on this
4672 biv have been strength reduced.
4673 We can't (currently) eliminate the biv unless this is so. */
4674 all_reduced = 1;
4676 /* Check each giv in this class to see if we will benefit by reducing
4677 it. Skip giv's combined with others. */
4678 for (v = bl->giv; v; v = v->next_iv)
4680 struct induction *tv;
4682 if (v->ignore || v->same)
4683 continue;
4685 benefit = v->benefit;
4687 /* Reduce benefit if not replaceable, since we will insert
4688 a move-insn to replace the insn that calculates this giv.
4689 Don't do this unless the giv is a user variable, since it
4690 will often be marked non-replaceable because of the duplication
4691 of the exit code outside the loop. In such a case, the copies
4692 we insert are dead and will be deleted. So they don't have
4693 a cost. Similar situations exist. */
4694 /* ??? The new final_[bg]iv_value code does a much better job
4695 of finding replaceable giv's, and hence this code may no longer
4696 be necessary. */
4697 if (! v->replaceable && ! bl->eliminable
4698 && REG_USERVAR_P (v->dest_reg))
4699 benefit -= copy_cost;
4701 /* Decrease the benefit to count the add-insns that we will
4702 insert to increment the reduced reg for the giv. */
4703 benefit -= add_cost * bl->biv_count;
4705 /* Decide whether to strength-reduce this giv or to leave the code
4706 unchanged (recompute it from the biv each time it is used).
4707 This decision can be made independently for each giv. */
4709 #ifdef AUTO_INC_DEC
4710 /* Attempt to guess whether autoincrement will handle some of the
4711 new add insns; if so, increase BENEFIT (undo the subtraction of
4712 add_cost that was done above). */
4713 if (v->giv_type == DEST_ADDR
4714 && GET_CODE (v->mult_val) == CONST_INT)
4716 if (HAVE_POST_INCREMENT
4717 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4718 benefit += add_cost * bl->biv_count;
4719 else if (HAVE_PRE_INCREMENT
4720 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4721 benefit += add_cost * bl->biv_count;
4722 else if (HAVE_POST_DECREMENT
4723 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4724 benefit += add_cost * bl->biv_count;
4725 else if (HAVE_PRE_DECREMENT
4726 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4727 benefit += add_cost * bl->biv_count;
4729 #endif
4731 /* If an insn is not to be strength reduced, then set its ignore
4732 flag, and clear all_reduced. */
4734 /* A giv that depends on a reversed biv must be reduced if it is
4735 used after the loop exit, otherwise, it would have the wrong
4736 value after the loop exit. To make it simple, just reduce all
4737 of such giv's whether or not we know they are used after the loop
4738 exit. */
4740 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4741 && ! bl->reversed )
4743 if (loop_dump_stream)
4744 fprintf (loop_dump_stream,
4745 "giv of insn %d not worth while, %d vs %d.\n",
4746 INSN_UID (v->insn),
4747 v->lifetime * threshold * benefit, insn_count);
4748 v->ignore = 1;
4749 all_reduced = 0;
4751 else
4753 /* Check that we can increment the reduced giv without a
4754 multiply insn. If not, reject it. */
4756 for (tv = bl->biv; tv; tv = tv->next_iv)
4757 if (tv->mult_val == const1_rtx
4758 && ! product_cheap_p (tv->add_val, v->mult_val))
4760 if (loop_dump_stream)
4761 fprintf (loop_dump_stream,
4762 "giv of insn %d: would need a multiply.\n",
4763 INSN_UID (v->insn));
4764 v->ignore = 1;
4765 all_reduced = 0;
4766 break;
4771 /* Check for givs whose first use is their definition and whose
4772 last use is the definition of another giv. If so, it is likely
4773 dead and should not be used to derive another giv nor to
4774 eliminate a biv. */
4775 for (v = bl->giv; v; v = v->next_iv)
4777 if (v->ignore
4778 || (v->same && v->same->ignore))
4779 continue;
4781 if (v->last_use)
4783 struct induction *v1;
4785 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4786 if (v->last_use == v1->insn)
4787 v->maybe_dead = 1;
4789 else if (v->giv_type == DEST_REG
4790 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4792 struct induction *v1;
4794 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4795 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4796 v->maybe_dead = 1;
4800 /* Now that we know which givs will be reduced, try to rearrange the
4801 combinations to reduce register pressure.
4802 recombine_givs calls find_life_end, which needs reg_iv_type and
4803 reg_iv_info to be valid for all pseudos. We do the necessary
4804 reallocation here since it allows to check if there are still
4805 more bivs to process. */
4806 nregs = max_reg_num ();
4807 if (nregs > reg_iv_type->num_elements)
4809 /* If there are still more bivs to process, allocate some slack
4810 space so that we're not constantly reallocating these arrays. */
4811 if (bl->next)
4812 nregs += nregs / 4;
4813 /* Reallocate reg_iv_type and reg_iv_info. */
4814 VARRAY_GROW (reg_iv_type, nregs);
4815 VARRAY_GROW (reg_iv_info, nregs);
4817 recombine_givs (bl, loop_start, loop_end, unroll_p);
4819 /* Reduce each giv that we decided to reduce. */
4821 for (v = bl->giv; v; v = v->next_iv)
4823 struct induction *tv;
4824 if (! v->ignore && v->same == 0)
4826 int auto_inc_opt = 0;
4828 /* If the code for derived givs immediately below has already
4829 allocated a new_reg, we must keep it. */
4830 if (! v->new_reg)
4831 v->new_reg = gen_reg_rtx (v->mode);
4833 if (v->derived_from)
4835 struct induction *d = v->derived_from;
4837 /* In case d->dest_reg is not replaceable, we have
4838 to replace it in v->insn now. */
4839 if (! d->new_reg)
4840 d->new_reg = gen_reg_rtx (d->mode);
4841 PATTERN (v->insn)
4842 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4843 PATTERN (v->insn)
4844 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4845 /* For each place where the biv is incremented, add an
4846 insn to set the new, reduced reg for the giv.
4847 We used to do this only for biv_count != 1, but
4848 this fails when there is a giv after a single biv
4849 increment, e.g. when the last giv was expressed as
4850 pre-decrement. */
4851 for (tv = bl->biv; tv; tv = tv->next_iv)
4853 /* We always emit reduced giv increments before the
4854 biv increment when bl->biv_count != 1. So by
4855 emitting the add insns for derived givs after the
4856 biv increment, they pick up the updated value of
4857 the reduced giv.
4858 If the reduced giv is processed with
4859 auto_inc_opt == 1, then it is incremented earlier
4860 than the biv, hence we'll still pick up the right
4861 value.
4862 If it's processed with auto_inc_opt == -1,
4863 that implies that the biv increment is before the
4864 first reduced giv's use. The derived giv's lifetime
4865 is after the reduced giv's lifetime, hence in this
4866 case, the biv increment doesn't matter. */
4867 emit_insn_after (copy_rtx (PATTERN (v->insn)), tv->insn);
4869 continue;
4872 #ifdef AUTO_INC_DEC
4873 /* If the target has auto-increment addressing modes, and
4874 this is an address giv, then try to put the increment
4875 immediately after its use, so that flow can create an
4876 auto-increment addressing mode. */
4877 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4878 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4879 /* We don't handle reversed biv's because bl->biv->insn
4880 does not have a valid INSN_LUID. */
4881 && ! bl->reversed
4882 && v->always_executed && ! v->maybe_multiple
4883 && INSN_UID (v->insn) < max_uid_for_loop)
4885 /* If other giv's have been combined with this one, then
4886 this will work only if all uses of the other giv's occur
4887 before this giv's insn. This is difficult to check.
4889 We simplify this by looking for the common case where
4890 there is one DEST_REG giv, and this giv's insn is the
4891 last use of the dest_reg of that DEST_REG giv. If the
4892 increment occurs after the address giv, then we can
4893 perform the optimization. (Otherwise, the increment
4894 would have to go before other_giv, and we would not be
4895 able to combine it with the address giv to get an
4896 auto-inc address.) */
4897 if (v->combined_with)
4899 struct induction *other_giv = 0;
4901 for (tv = bl->giv; tv; tv = tv->next_iv)
4902 if (tv->same == v)
4904 if (other_giv)
4905 break;
4906 else
4907 other_giv = tv;
4909 if (! tv && other_giv
4910 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4911 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4912 == INSN_UID (v->insn))
4913 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4914 auto_inc_opt = 1;
4916 /* Check for case where increment is before the address
4917 giv. Do this test in "loop order". */
4918 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4919 && (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4920 || (INSN_LUID (bl->biv->insn)
4921 > INSN_LUID (scan_start))))
4922 || (INSN_LUID (v->insn) < INSN_LUID (scan_start)
4923 && (INSN_LUID (scan_start)
4924 < INSN_LUID (bl->biv->insn))))
4925 auto_inc_opt = -1;
4926 else
4927 auto_inc_opt = 1;
4929 #ifdef HAVE_cc0
4931 rtx prev;
4933 /* We can't put an insn immediately after one setting
4934 cc0, or immediately before one using cc0. */
4935 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4936 || (auto_inc_opt == -1
4937 && (prev = prev_nonnote_insn (v->insn)) != 0
4938 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4939 && sets_cc0_p (PATTERN (prev))))
4940 auto_inc_opt = 0;
4942 #endif
4944 if (auto_inc_opt)
4945 v->auto_inc_opt = 1;
4947 #endif
4949 /* For each place where the biv is incremented, add an insn
4950 to increment the new, reduced reg for the giv. */
4951 for (tv = bl->biv; tv; tv = tv->next_iv)
4953 rtx insert_before;
4955 if (! auto_inc_opt)
4956 insert_before = tv->insn;
4957 else if (auto_inc_opt == 1)
4958 insert_before = NEXT_INSN (v->insn);
4959 else
4960 insert_before = v->insn;
4962 if (tv->mult_val == const1_rtx)
4963 emit_iv_add_mult (tv->add_val, v->mult_val,
4964 v->new_reg, v->new_reg, insert_before);
4965 else /* tv->mult_val == const0_rtx */
4966 /* A multiply is acceptable here
4967 since this is presumed to be seldom executed. */
4968 emit_iv_add_mult (tv->add_val, v->mult_val,
4969 v->add_val, v->new_reg, insert_before);
4972 /* Add code at loop start to initialize giv's reduced reg. */
4974 emit_iv_add_mult (bl->initial_value, v->mult_val,
4975 v->add_val, v->new_reg, loop_start);
4979 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4980 as not reduced.
4982 For each giv register that can be reduced now: if replaceable,
4983 substitute reduced reg wherever the old giv occurs;
4984 else add new move insn "giv_reg = reduced_reg". */
4986 for (v = bl->giv; v; v = v->next_iv)
4988 if (v->same && v->same->ignore)
4989 v->ignore = 1;
4991 if (v->ignore)
4992 continue;
4994 /* Update expression if this was combined, in case other giv was
4995 replaced. */
4996 if (v->same)
4997 v->new_reg = replace_rtx (v->new_reg,
4998 v->same->dest_reg, v->same->new_reg);
5000 if (v->giv_type == DEST_ADDR)
5001 /* Store reduced reg as the address in the memref where we found
5002 this giv. */
5003 validate_change (v->insn, v->location, v->new_reg, 0);
5004 else if (v->replaceable)
5006 reg_map[REGNO (v->dest_reg)] = v->new_reg;
5008 #if 0
5009 /* I can no longer duplicate the original problem. Perhaps
5010 this is unnecessary now? */
5012 /* Replaceable; it isn't strictly necessary to delete the old
5013 insn and emit a new one, because v->dest_reg is now dead.
5015 However, especially when unrolling loops, the special
5016 handling for (set REG0 REG1) in the second cse pass may
5017 make v->dest_reg live again. To avoid this problem, emit
5018 an insn to set the original giv reg from the reduced giv.
5019 We can not delete the original insn, since it may be part
5020 of a LIBCALL, and the code in flow that eliminates dead
5021 libcalls will fail if it is deleted. */
5022 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
5023 v->insn);
5024 #endif
5026 else
5028 /* Not replaceable; emit an insn to set the original giv reg from
5029 the reduced giv, same as above. */
5030 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
5031 v->insn);
5034 /* When a loop is reversed, givs which depend on the reversed
5035 biv, and which are live outside the loop, must be set to their
5036 correct final value. This insn is only needed if the giv is
5037 not replaceable. The correct final value is the same as the
5038 value that the giv starts the reversed loop with. */
5039 if (bl->reversed && ! v->replaceable)
5040 emit_iv_add_mult (bl->initial_value, v->mult_val,
5041 v->add_val, v->dest_reg, end_insert_before);
5042 else if (v->final_value)
5044 rtx insert_before;
5046 /* If the loop has multiple exits, emit the insn before the
5047 loop to ensure that it will always be executed no matter
5048 how the loop exits. Otherwise, emit the insn after the loop,
5049 since this is slightly more efficient. */
5050 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5051 insert_before = loop_start;
5052 else
5053 insert_before = end_insert_before;
5054 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
5055 insert_before);
5057 #if 0
5058 /* If the insn to set the final value of the giv was emitted
5059 before the loop, then we must delete the insn inside the loop
5060 that sets it. If this is a LIBCALL, then we must delete
5061 every insn in the libcall. Note, however, that
5062 final_giv_value will only succeed when there are multiple
5063 exits if the giv is dead at each exit, hence it does not
5064 matter that the original insn remains because it is dead
5065 anyways. */
5066 /* Delete the insn inside the loop that sets the giv since
5067 the giv is now set before (or after) the loop. */
5068 delete_insn (v->insn);
5069 #endif
5072 if (loop_dump_stream)
5074 fprintf (loop_dump_stream, "giv at %d reduced to ",
5075 INSN_UID (v->insn));
5076 print_rtl (loop_dump_stream, v->new_reg);
5077 fprintf (loop_dump_stream, "\n");
5081 /* All the givs based on the biv bl have been reduced if they
5082 merit it. */
5084 /* For each giv not marked as maybe dead that has been combined with a
5085 second giv, clear any "maybe dead" mark on that second giv.
5086 v->new_reg will either be or refer to the register of the giv it
5087 combined with.
5089 Doing this clearing avoids problems in biv elimination where a
5090 giv's new_reg is a complex value that can't be put in the insn but
5091 the giv combined with (with a reg as new_reg) is marked maybe_dead.
5092 Since the register will be used in either case, we'd prefer it be
5093 used from the simpler giv. */
5095 for (v = bl->giv; v; v = v->next_iv)
5096 if (! v->maybe_dead && v->same)
5097 v->same->maybe_dead = 0;
5099 /* Try to eliminate the biv, if it is a candidate.
5100 This won't work if ! all_reduced,
5101 since the givs we planned to use might not have been reduced.
5103 We have to be careful that we didn't initially think we could eliminate
5104 this biv because of a giv that we now think may be dead and shouldn't
5105 be used as a biv replacement.
5107 Also, there is the possibility that we may have a giv that looks
5108 like it can be used to eliminate a biv, but the resulting insn
5109 isn't valid. This can happen, for example, on the 88k, where a
5110 JUMP_INSN can compare a register only with zero. Attempts to
5111 replace it with a compare with a constant will fail.
5113 Note that in cases where this call fails, we may have replaced some
5114 of the occurrences of the biv with a giv, but no harm was done in
5115 doing so in the rare cases where it can occur. */
5117 if (all_reduced == 1 && bl->eliminable
5118 && maybe_eliminate_biv (bl, loop_start, end, 1,
5119 threshold, insn_count))
5122 /* ?? If we created a new test to bypass the loop entirely,
5123 or otherwise drop straight in, based on this test, then
5124 we might want to rewrite it also. This way some later
5125 pass has more hope of removing the initialization of this
5126 biv entirely. */
5128 /* If final_value != 0, then the biv may be used after loop end
5129 and we must emit an insn to set it just in case.
5131 Reversed bivs already have an insn after the loop setting their
5132 value, so we don't need another one. We can't calculate the
5133 proper final value for such a biv here anyways. */
5134 if (final_value != 0 && ! bl->reversed)
5136 rtx insert_before;
5138 /* If the loop has multiple exits, emit the insn before the
5139 loop to ensure that it will always be executed no matter
5140 how the loop exits. Otherwise, emit the insn after the
5141 loop, since this is slightly more efficient. */
5142 if (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
5143 insert_before = loop_start;
5144 else
5145 insert_before = end_insert_before;
5147 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
5148 end_insert_before);
5151 #if 0
5152 /* Delete all of the instructions inside the loop which set
5153 the biv, as they are all dead. If is safe to delete them,
5154 because an insn setting a biv will never be part of a libcall. */
5155 /* However, deleting them will invalidate the regno_last_uid info,
5156 so keeping them around is more convenient. Final_biv_value
5157 will only succeed when there are multiple exits if the biv
5158 is dead at each exit, hence it does not matter that the original
5159 insn remains, because it is dead anyways. */
5160 for (v = bl->biv; v; v = v->next_iv)
5161 delete_insn (v->insn);
5162 #endif
5164 if (loop_dump_stream)
5165 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5166 bl->regno);
5170 /* Go through all the instructions in the loop, making all the
5171 register substitutions scheduled in REG_MAP. */
5173 for (p = loop_start; p != end; p = NEXT_INSN (p))
5174 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5175 || GET_CODE (p) == CALL_INSN)
5177 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5178 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5179 INSN_CODE (p) = -1;
5182 if (loop_info->n_iterations > 0)
5184 /* When we completely unroll a loop we will likely not need the increment
5185 of the loop BIV and we will not need the conditional branch at the
5186 end of the loop. */
5187 unrolled_insn_copies = insn_count - 2;
5189 #ifdef HAVE_cc0
5190 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5191 need the comparison before the conditional branch at the end of the
5192 loop. */
5193 unrolled_insn_copies -= 1;
5194 #endif
5196 /* We'll need one copy for each loop iteration. */
5197 unrolled_insn_copies *= loop_info->n_iterations;
5199 /* A little slop to account for the ability to remove initialization
5200 code, better CSE, and other secondary benefits of completely
5201 unrolling some loops. */
5202 unrolled_insn_copies -= 1;
5204 /* Clamp the value. */
5205 if (unrolled_insn_copies < 0)
5206 unrolled_insn_copies = 0;
5209 /* Unroll loops from within strength reduction so that we can use the
5210 induction variable information that strength_reduce has already
5211 collected. Always unroll loops that would be as small or smaller
5212 unrolled than when rolled. */
5213 if (unroll_p
5214 || (loop_info->n_iterations > 0
5215 && unrolled_insn_copies <= insn_count))
5216 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
5217 loop_info, 1);
5219 #ifdef HAVE_decrement_and_branch_on_count
5220 /* Instrument the loop with BCT insn. */
5221 if (HAVE_decrement_and_branch_on_count && bct_p
5222 && flag_branch_on_count_reg)
5223 insert_bct (loop_start, loop_end, loop_info);
5224 #endif /* HAVE_decrement_and_branch_on_count */
5226 if (loop_dump_stream)
5227 fprintf (loop_dump_stream, "\n");
5229 egress:
5230 VARRAY_FREE (reg_iv_type);
5231 VARRAY_FREE (reg_iv_info);
5234 /* Return 1 if X is a valid source for an initial value (or as value being
5235 compared against in an initial test).
5237 X must be either a register or constant and must not be clobbered between
5238 the current insn and the start of the loop.
5240 INSN is the insn containing X. */
5242 static int
5243 valid_initial_value_p (x, insn, call_seen, loop_start)
5244 rtx x;
5245 rtx insn;
5246 int call_seen;
5247 rtx loop_start;
5249 if (CONSTANT_P (x))
5250 return 1;
5252 /* Only consider pseudos we know about initialized in insns whose luids
5253 we know. */
5254 if (GET_CODE (x) != REG
5255 || REGNO (x) >= max_reg_before_loop)
5256 return 0;
5258 /* Don't use call-clobbered registers across a call which clobbers it. On
5259 some machines, don't use any hard registers at all. */
5260 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5261 && (SMALL_REGISTER_CLASSES
5262 || (call_used_regs[REGNO (x)] && call_seen)))
5263 return 0;
5265 /* Don't use registers that have been clobbered before the start of the
5266 loop. */
5267 if (reg_set_between_p (x, insn, loop_start))
5268 return 0;
5270 return 1;
5273 /* Scan X for memory refs and check each memory address
5274 as a possible giv. INSN is the insn whose pattern X comes from.
5275 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5276 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5277 more thanonce in each loop iteration. */
5279 static void
5280 find_mem_givs (x, insn, not_every_iteration, maybe_multiple, loop_start,
5281 loop_end)
5282 rtx x;
5283 rtx insn;
5284 int not_every_iteration, maybe_multiple;
5285 rtx loop_start, loop_end;
5287 register int i, j;
5288 register enum rtx_code code;
5289 register const char *fmt;
5291 if (x == 0)
5292 return;
5294 code = GET_CODE (x);
5295 switch (code)
5297 case REG:
5298 case CONST_INT:
5299 case CONST:
5300 case CONST_DOUBLE:
5301 case SYMBOL_REF:
5302 case LABEL_REF:
5303 case PC:
5304 case CC0:
5305 case ADDR_VEC:
5306 case ADDR_DIFF_VEC:
5307 case USE:
5308 case CLOBBER:
5309 return;
5311 case MEM:
5313 rtx src_reg;
5314 rtx add_val;
5315 rtx mult_val;
5316 int benefit;
5318 /* This code used to disable creating GIVs with mult_val == 1 and
5319 add_val == 0. However, this leads to lost optimizations when
5320 it comes time to combine a set of related DEST_ADDR GIVs, since
5321 this one would not be seen. */
5323 if (general_induction_var (XEXP (x, 0), &src_reg, &add_val,
5324 &mult_val, 1, &benefit))
5326 /* Found one; record it. */
5327 struct induction *v
5328 = (struct induction *) oballoc (sizeof (struct induction));
5330 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
5331 add_val, benefit, DEST_ADDR, not_every_iteration,
5332 maybe_multiple, &XEXP (x, 0), loop_start, loop_end);
5334 v->mem_mode = GET_MODE (x);
5337 return;
5339 default:
5340 break;
5343 /* Recursively scan the subexpressions for other mem refs. */
5345 fmt = GET_RTX_FORMAT (code);
5346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5347 if (fmt[i] == 'e')
5348 find_mem_givs (XEXP (x, i), insn, not_every_iteration, maybe_multiple,
5349 loop_start, loop_end);
5350 else if (fmt[i] == 'E')
5351 for (j = 0; j < XVECLEN (x, i); j++)
5352 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
5353 maybe_multiple, loop_start, loop_end);
5356 /* Fill in the data about one biv update.
5357 V is the `struct induction' in which we record the biv. (It is
5358 allocated by the caller, with alloca.)
5359 INSN is the insn that sets it.
5360 DEST_REG is the biv's reg.
5362 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5363 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5364 being set to INC_VAL.
5366 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5367 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5368 can be executed more than once per iteration. If MAYBE_MULTIPLE
5369 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5370 executed exactly once per iteration. */
5372 static void
5373 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5374 not_every_iteration, maybe_multiple)
5375 struct induction *v;
5376 rtx insn;
5377 rtx dest_reg;
5378 rtx inc_val;
5379 rtx mult_val;
5380 rtx *location;
5381 int not_every_iteration;
5382 int maybe_multiple;
5384 struct iv_class *bl;
5386 v->insn = insn;
5387 v->src_reg = dest_reg;
5388 v->dest_reg = dest_reg;
5389 v->mult_val = mult_val;
5390 v->add_val = inc_val;
5391 v->location = location;
5392 v->mode = GET_MODE (dest_reg);
5393 v->always_computable = ! not_every_iteration;
5394 v->always_executed = ! not_every_iteration;
5395 v->maybe_multiple = maybe_multiple;
5397 /* Add this to the reg's iv_class, creating a class
5398 if this is the first incrementation of the reg. */
5400 bl = reg_biv_class[REGNO (dest_reg)];
5401 if (bl == 0)
5403 /* Create and initialize new iv_class. */
5405 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5407 bl->regno = REGNO (dest_reg);
5408 bl->biv = 0;
5409 bl->giv = 0;
5410 bl->biv_count = 0;
5411 bl->giv_count = 0;
5413 /* Set initial value to the reg itself. */
5414 bl->initial_value = dest_reg;
5415 /* We haven't seen the initializing insn yet */
5416 bl->init_insn = 0;
5417 bl->init_set = 0;
5418 bl->initial_test = 0;
5419 bl->incremented = 0;
5420 bl->eliminable = 0;
5421 bl->nonneg = 0;
5422 bl->reversed = 0;
5423 bl->total_benefit = 0;
5425 /* Add this class to loop_iv_list. */
5426 bl->next = loop_iv_list;
5427 loop_iv_list = bl;
5429 /* Put it in the array of biv register classes. */
5430 reg_biv_class[REGNO (dest_reg)] = bl;
5433 /* Update IV_CLASS entry for this biv. */
5434 v->next_iv = bl->biv;
5435 bl->biv = v;
5436 bl->biv_count++;
5437 if (mult_val == const1_rtx)
5438 bl->incremented = 1;
5440 if (loop_dump_stream)
5442 fprintf (loop_dump_stream,
5443 "Insn %d: possible biv, reg %d,",
5444 INSN_UID (insn), REGNO (dest_reg));
5445 if (GET_CODE (inc_val) == CONST_INT)
5447 fprintf (loop_dump_stream, " const =");
5448 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5449 fputc ('\n', loop_dump_stream);
5451 else
5453 fprintf (loop_dump_stream, " const = ");
5454 print_rtl (loop_dump_stream, inc_val);
5455 fprintf (loop_dump_stream, "\n");
5460 /* Fill in the data about one giv.
5461 V is the `struct induction' in which we record the giv. (It is
5462 allocated by the caller, with alloca.)
5463 INSN is the insn that sets it.
5464 BENEFIT estimates the savings from deleting this insn.
5465 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5466 into a register or is used as a memory address.
5468 SRC_REG is the biv reg which the giv is computed from.
5469 DEST_REG is the giv's reg (if the giv is stored in a reg).
5470 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5471 LOCATION points to the place where this giv's value appears in INSN. */
5473 static void
5474 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5475 type, not_every_iteration, maybe_multiple, location, loop_start,
5476 loop_end)
5477 struct induction *v;
5478 rtx insn;
5479 rtx src_reg;
5480 rtx dest_reg;
5481 rtx mult_val, add_val;
5482 int benefit;
5483 enum g_types type;
5484 int not_every_iteration, maybe_multiple;
5485 rtx *location;
5486 rtx loop_start, loop_end;
5488 struct induction *b;
5489 struct iv_class *bl;
5490 rtx set = single_set (insn);
5492 v->insn = insn;
5493 v->src_reg = src_reg;
5494 v->giv_type = type;
5495 v->dest_reg = dest_reg;
5496 v->mult_val = mult_val;
5497 v->add_val = add_val;
5498 v->benefit = benefit;
5499 v->location = location;
5500 v->cant_derive = 0;
5501 v->combined_with = 0;
5502 v->maybe_multiple = maybe_multiple;
5503 v->maybe_dead = 0;
5504 v->derive_adjustment = 0;
5505 v->same = 0;
5506 v->ignore = 0;
5507 v->new_reg = 0;
5508 v->final_value = 0;
5509 v->same_insn = 0;
5510 v->auto_inc_opt = 0;
5511 v->unrolled = 0;
5512 v->shared = 0;
5513 v->derived_from = 0;
5514 v->last_use = 0;
5516 /* The v->always_computable field is used in update_giv_derive, to
5517 determine whether a giv can be used to derive another giv. For a
5518 DEST_REG giv, INSN computes a new value for the giv, so its value
5519 isn't computable if INSN insn't executed every iteration.
5520 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5521 it does not compute a new value. Hence the value is always computable
5522 regardless of whether INSN is executed each iteration. */
5524 if (type == DEST_ADDR)
5525 v->always_computable = 1;
5526 else
5527 v->always_computable = ! not_every_iteration;
5529 v->always_executed = ! not_every_iteration;
5531 if (type == DEST_ADDR)
5533 v->mode = GET_MODE (*location);
5534 v->lifetime = 1;
5536 else /* type == DEST_REG */
5538 v->mode = GET_MODE (SET_DEST (set));
5540 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5541 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5543 /* If the lifetime is zero, it means that this register is
5544 really a dead store. So mark this as a giv that can be
5545 ignored. This will not prevent the biv from being eliminated. */
5546 if (v->lifetime == 0)
5547 v->ignore = 1;
5549 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5550 REG_IV_INFO (REGNO (dest_reg)) = v;
5553 /* Add the giv to the class of givs computed from one biv. */
5555 bl = reg_biv_class[REGNO (src_reg)];
5556 if (bl)
5558 v->next_iv = bl->giv;
5559 bl->giv = v;
5560 /* Don't count DEST_ADDR. This is supposed to count the number of
5561 insns that calculate givs. */
5562 if (type == DEST_REG)
5563 bl->giv_count++;
5564 bl->total_benefit += benefit;
5566 else
5567 /* Fatal error, biv missing for this giv? */
5568 abort ();
5570 if (type == DEST_ADDR)
5571 v->replaceable = 1;
5572 else
5574 /* The giv can be replaced outright by the reduced register only if all
5575 of the following conditions are true:
5576 - the insn that sets the giv is always executed on any iteration
5577 on which the giv is used at all
5578 (there are two ways to deduce this:
5579 either the insn is executed on every iteration,
5580 or all uses follow that insn in the same basic block),
5581 - the giv is not used outside the loop
5582 - no assignments to the biv occur during the giv's lifetime. */
5584 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5585 /* Previous line always fails if INSN was moved by loop opt. */
5586 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))] < INSN_LUID (loop_end)
5587 && (! not_every_iteration
5588 || last_use_this_basic_block (dest_reg, insn)))
5590 /* Now check that there are no assignments to the biv within the
5591 giv's lifetime. This requires two separate checks. */
5593 /* Check each biv update, and fail if any are between the first
5594 and last use of the giv.
5596 If this loop contains an inner loop that was unrolled, then
5597 the insn modifying the biv may have been emitted by the loop
5598 unrolling code, and hence does not have a valid luid. Just
5599 mark the biv as not replaceable in this case. It is not very
5600 useful as a biv, because it is used in two different loops.
5601 It is very unlikely that we would be able to optimize the giv
5602 using this biv anyways. */
5604 v->replaceable = 1;
5605 for (b = bl->biv; b; b = b->next_iv)
5607 if (INSN_UID (b->insn) >= max_uid_for_loop
5608 || ((uid_luid[INSN_UID (b->insn)]
5609 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5610 && (uid_luid[INSN_UID (b->insn)]
5611 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5613 v->replaceable = 0;
5614 v->not_replaceable = 1;
5615 break;
5619 /* If there are any backwards branches that go from after the
5620 biv update to before it, then this giv is not replaceable. */
5621 if (v->replaceable)
5622 for (b = bl->biv; b; b = b->next_iv)
5623 if (back_branch_in_range_p (b->insn, loop_start, loop_end))
5625 v->replaceable = 0;
5626 v->not_replaceable = 1;
5627 break;
5630 else
5632 /* May still be replaceable, we don't have enough info here to
5633 decide. */
5634 v->replaceable = 0;
5635 v->not_replaceable = 0;
5639 /* Record whether the add_val contains a const_int, for later use by
5640 combine_givs. */
5642 rtx tem = add_val;
5644 v->no_const_addval = 1;
5645 if (tem == const0_rtx)
5647 else if (GET_CODE (tem) == CONST_INT)
5648 v->no_const_addval = 0;
5649 else if (GET_CODE (tem) == PLUS)
5651 while (1)
5653 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5654 tem = XEXP (tem, 0);
5655 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5656 tem = XEXP (tem, 1);
5657 else
5658 break;
5660 if (GET_CODE (XEXP (tem, 1)) == CONST_INT)
5661 v->no_const_addval = 0;
5665 if (loop_dump_stream)
5667 if (type == DEST_REG)
5668 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5669 INSN_UID (insn), REGNO (dest_reg));
5670 else
5671 fprintf (loop_dump_stream, "Insn %d: dest address",
5672 INSN_UID (insn));
5674 fprintf (loop_dump_stream, " src reg %d benefit %d",
5675 REGNO (src_reg), v->benefit);
5676 fprintf (loop_dump_stream, " lifetime %d",
5677 v->lifetime);
5679 if (v->replaceable)
5680 fprintf (loop_dump_stream, " replaceable");
5682 if (v->no_const_addval)
5683 fprintf (loop_dump_stream, " ncav");
5685 if (GET_CODE (mult_val) == CONST_INT)
5687 fprintf (loop_dump_stream, " mult ");
5688 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5690 else
5692 fprintf (loop_dump_stream, " mult ");
5693 print_rtl (loop_dump_stream, mult_val);
5696 if (GET_CODE (add_val) == CONST_INT)
5698 fprintf (loop_dump_stream, " add ");
5699 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5701 else
5703 fprintf (loop_dump_stream, " add ");
5704 print_rtl (loop_dump_stream, add_val);
5708 if (loop_dump_stream)
5709 fprintf (loop_dump_stream, "\n");
5714 /* All this does is determine whether a giv can be made replaceable because
5715 its final value can be calculated. This code can not be part of record_giv
5716 above, because final_giv_value requires that the number of loop iterations
5717 be known, and that can not be accurately calculated until after all givs
5718 have been identified. */
5720 static void
5721 check_final_value (v, loop_start, loop_end, n_iterations)
5722 struct induction *v;
5723 rtx loop_start, loop_end;
5724 unsigned HOST_WIDE_INT n_iterations;
5726 struct iv_class *bl;
5727 rtx final_value = 0;
5729 bl = reg_biv_class[REGNO (v->src_reg)];
5731 /* DEST_ADDR givs will never reach here, because they are always marked
5732 replaceable above in record_giv. */
5734 /* The giv can be replaced outright by the reduced register only if all
5735 of the following conditions are true:
5736 - the insn that sets the giv is always executed on any iteration
5737 on which the giv is used at all
5738 (there are two ways to deduce this:
5739 either the insn is executed on every iteration,
5740 or all uses follow that insn in the same basic block),
5741 - its final value can be calculated (this condition is different
5742 than the one above in record_giv)
5743 - no assignments to the biv occur during the giv's lifetime. */
5745 #if 0
5746 /* This is only called now when replaceable is known to be false. */
5747 /* Clear replaceable, so that it won't confuse final_giv_value. */
5748 v->replaceable = 0;
5749 #endif
5751 if ((final_value = final_giv_value (v, loop_start, loop_end, n_iterations))
5752 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5754 int biv_increment_seen = 0;
5755 rtx p = v->insn;
5756 rtx last_giv_use;
5758 v->replaceable = 1;
5760 /* When trying to determine whether or not a biv increment occurs
5761 during the lifetime of the giv, we can ignore uses of the variable
5762 outside the loop because final_value is true. Hence we can not
5763 use regno_last_uid and regno_first_uid as above in record_giv. */
5765 /* Search the loop to determine whether any assignments to the
5766 biv occur during the giv's lifetime. Start with the insn
5767 that sets the giv, and search around the loop until we come
5768 back to that insn again.
5770 Also fail if there is a jump within the giv's lifetime that jumps
5771 to somewhere outside the lifetime but still within the loop. This
5772 catches spaghetti code where the execution order is not linear, and
5773 hence the above test fails. Here we assume that the giv lifetime
5774 does not extend from one iteration of the loop to the next, so as
5775 to make the test easier. Since the lifetime isn't known yet,
5776 this requires two loops. See also record_giv above. */
5778 last_giv_use = v->insn;
5780 while (1)
5782 p = NEXT_INSN (p);
5783 if (p == loop_end)
5784 p = NEXT_INSN (loop_start);
5785 if (p == v->insn)
5786 break;
5788 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5789 || GET_CODE (p) == CALL_INSN)
5791 if (biv_increment_seen)
5793 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5795 v->replaceable = 0;
5796 v->not_replaceable = 1;
5797 break;
5800 else if (reg_set_p (v->src_reg, PATTERN (p)))
5801 biv_increment_seen = 1;
5802 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5803 last_giv_use = p;
5807 /* Now that the lifetime of the giv is known, check for branches
5808 from within the lifetime to outside the lifetime if it is still
5809 replaceable. */
5811 if (v->replaceable)
5813 p = v->insn;
5814 while (1)
5816 p = NEXT_INSN (p);
5817 if (p == loop_end)
5818 p = NEXT_INSN (loop_start);
5819 if (p == last_giv_use)
5820 break;
5822 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5823 && LABEL_NAME (JUMP_LABEL (p))
5824 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5825 && loop_insn_first_p (loop_start, JUMP_LABEL (p)))
5826 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5827 && loop_insn_first_p (JUMP_LABEL (p), loop_end))))
5829 v->replaceable = 0;
5830 v->not_replaceable = 1;
5832 if (loop_dump_stream)
5833 fprintf (loop_dump_stream,
5834 "Found branch outside giv lifetime.\n");
5836 break;
5841 /* If it is replaceable, then save the final value. */
5842 if (v->replaceable)
5843 v->final_value = final_value;
5846 if (loop_dump_stream && v->replaceable)
5847 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5848 INSN_UID (v->insn), REGNO (v->dest_reg));
5851 /* Update the status of whether a giv can derive other givs.
5853 We need to do something special if there is or may be an update to the biv
5854 between the time the giv is defined and the time it is used to derive
5855 another giv.
5857 In addition, a giv that is only conditionally set is not allowed to
5858 derive another giv once a label has been passed.
5860 The cases we look at are when a label or an update to a biv is passed. */
5862 static void
5863 update_giv_derive (p)
5864 rtx p;
5866 struct iv_class *bl;
5867 struct induction *biv, *giv;
5868 rtx tem;
5869 int dummy;
5871 /* Search all IV classes, then all bivs, and finally all givs.
5873 There are three cases we are concerned with. First we have the situation
5874 of a giv that is only updated conditionally. In that case, it may not
5875 derive any givs after a label is passed.
5877 The second case is when a biv update occurs, or may occur, after the
5878 definition of a giv. For certain biv updates (see below) that are
5879 known to occur between the giv definition and use, we can adjust the
5880 giv definition. For others, or when the biv update is conditional,
5881 we must prevent the giv from deriving any other givs. There are two
5882 sub-cases within this case.
5884 If this is a label, we are concerned with any biv update that is done
5885 conditionally, since it may be done after the giv is defined followed by
5886 a branch here (actually, we need to pass both a jump and a label, but
5887 this extra tracking doesn't seem worth it).
5889 If this is a jump, we are concerned about any biv update that may be
5890 executed multiple times. We are actually only concerned about
5891 backward jumps, but it is probably not worth performing the test
5892 on the jump again here.
5894 If this is a biv update, we must adjust the giv status to show that a
5895 subsequent biv update was performed. If this adjustment cannot be done,
5896 the giv cannot derive further givs. */
5898 for (bl = loop_iv_list; bl; bl = bl->next)
5899 for (biv = bl->biv; biv; biv = biv->next_iv)
5900 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5901 || biv->insn == p)
5903 for (giv = bl->giv; giv; giv = giv->next_iv)
5905 /* If cant_derive is already true, there is no point in
5906 checking all of these conditions again. */
5907 if (giv->cant_derive)
5908 continue;
5910 /* If this giv is conditionally set and we have passed a label,
5911 it cannot derive anything. */
5912 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5913 giv->cant_derive = 1;
5915 /* Skip givs that have mult_val == 0, since
5916 they are really invariants. Also skip those that are
5917 replaceable, since we know their lifetime doesn't contain
5918 any biv update. */
5919 else if (giv->mult_val == const0_rtx || giv->replaceable)
5920 continue;
5922 /* The only way we can allow this giv to derive another
5923 is if this is a biv increment and we can form the product
5924 of biv->add_val and giv->mult_val. In this case, we will
5925 be able to compute a compensation. */
5926 else if (biv->insn == p)
5928 tem = 0;
5930 if (biv->mult_val == const1_rtx)
5931 tem = simplify_giv_expr (gen_rtx_MULT (giv->mode,
5932 biv->add_val,
5933 giv->mult_val),
5934 &dummy);
5936 if (tem && giv->derive_adjustment)
5937 tem = simplify_giv_expr
5938 (gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5939 &dummy);
5941 if (tem)
5942 giv->derive_adjustment = tem;
5943 else
5944 giv->cant_derive = 1;
5946 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5947 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5948 giv->cant_derive = 1;
5953 /* Check whether an insn is an increment legitimate for a basic induction var.
5954 X is the source of insn P, or a part of it.
5955 MODE is the mode in which X should be interpreted.
5957 DEST_REG is the putative biv, also the destination of the insn.
5958 We accept patterns of these forms:
5959 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5960 REG = INVARIANT + REG
5962 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5963 store the additive term into *INC_VAL, and store the place where
5964 we found the additive term into *LOCATION.
5966 If X is an assignment of an invariant into DEST_REG, we set
5967 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5969 We also want to detect a BIV when it corresponds to a variable
5970 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5971 of the variable may be a PLUS that adds a SUBREG of that variable to
5972 an invariant and then sign- or zero-extends the result of the PLUS
5973 into the variable.
5975 Most GIVs in such cases will be in the promoted mode, since that is the
5976 probably the natural computation mode (and almost certainly the mode
5977 used for addresses) on the machine. So we view the pseudo-reg containing
5978 the variable as the BIV, as if it were simply incremented.
5980 Note that treating the entire pseudo as a BIV will result in making
5981 simple increments to any GIVs based on it. However, if the variable
5982 overflows in its declared mode but not its promoted mode, the result will
5983 be incorrect. This is acceptable if the variable is signed, since
5984 overflows in such cases are undefined, but not if it is unsigned, since
5985 those overflows are defined. So we only check for SIGN_EXTEND and
5986 not ZERO_EXTEND.
5988 If we cannot find a biv, we return 0. */
5990 static int
5991 basic_induction_var (x, mode, dest_reg, p, inc_val, mult_val, location)
5992 register rtx x;
5993 enum machine_mode mode;
5994 rtx p;
5995 rtx dest_reg;
5996 rtx *inc_val;
5997 rtx *mult_val;
5998 rtx **location;
6000 register enum rtx_code code;
6001 rtx *argp, arg;
6002 rtx insn, set = 0;
6004 code = GET_CODE (x);
6005 *location = NULL;
6006 switch (code)
6008 case PLUS:
6009 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6010 || (GET_CODE (XEXP (x, 0)) == SUBREG
6011 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6012 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6014 argp = &XEXP (x, 1);
6016 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6017 || (GET_CODE (XEXP (x, 1)) == SUBREG
6018 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6019 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6021 argp = &XEXP (x, 0);
6023 else
6024 return 0;
6026 arg = *argp;
6027 if (invariant_p (arg) != 1)
6028 return 0;
6030 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6031 *mult_val = const1_rtx;
6032 *location = argp;
6033 return 1;
6035 case SUBREG:
6036 /* If this is a SUBREG for a promoted variable, check the inner
6037 value. */
6038 if (SUBREG_PROMOTED_VAR_P (x))
6039 return basic_induction_var (SUBREG_REG (x), GET_MODE (SUBREG_REG (x)),
6040 dest_reg, p, inc_val, mult_val, location);
6041 return 0;
6043 case REG:
6044 /* If this register is assigned in a previous insn, look at its
6045 source, but don't go outside the loop or past a label. */
6047 insn = p;
6048 while (1)
6050 do {
6051 insn = PREV_INSN (insn);
6052 } while (insn && GET_CODE (insn) == NOTE
6053 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6055 if (!insn)
6056 break;
6057 set = single_set (insn);
6058 if (set == 0)
6059 break;
6061 if ((SET_DEST (set) == x
6062 || (GET_CODE (SET_DEST (set)) == SUBREG
6063 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
6064 <= UNITS_PER_WORD)
6065 && SUBREG_REG (SET_DEST (set)) == x))
6066 && basic_induction_var (SET_SRC (set),
6067 (GET_MODE (SET_SRC (set)) == VOIDmode
6068 ? GET_MODE (x)
6069 : GET_MODE (SET_SRC (set))),
6070 dest_reg, insn,
6071 inc_val, mult_val, location))
6072 return 1;
6074 /* ... fall through ... */
6076 /* Can accept constant setting of biv only when inside inner most loop.
6077 Otherwise, a biv of an inner loop may be incorrectly recognized
6078 as a biv of the outer loop,
6079 causing code to be moved INTO the inner loop. */
6080 case MEM:
6081 if (invariant_p (x) != 1)
6082 return 0;
6083 case CONST_INT:
6084 case SYMBOL_REF:
6085 case CONST:
6086 /* convert_modes aborts if we try to convert to or from CCmode, so just
6087 exclude that case. It is very unlikely that a condition code value
6088 would be a useful iterator anyways. */
6089 if (this_loop_info.loops_enclosed == 1
6090 && GET_MODE_CLASS (mode) != MODE_CC
6091 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
6093 /* Possible bug here? Perhaps we don't know the mode of X. */
6094 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6095 *mult_val = const0_rtx;
6096 return 1;
6098 else
6099 return 0;
6101 case SIGN_EXTEND:
6102 return basic_induction_var (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6103 dest_reg, p, inc_val, mult_val, location);
6105 case ASHIFTRT:
6106 /* Similar, since this can be a sign extension. */
6107 for (insn = PREV_INSN (p);
6108 (insn && GET_CODE (insn) == NOTE
6109 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6110 insn = PREV_INSN (insn))
6113 if (insn)
6114 set = single_set (insn);
6116 if (set && SET_DEST (set) == XEXP (x, 0)
6117 && GET_CODE (XEXP (x, 1)) == CONST_INT
6118 && INTVAL (XEXP (x, 1)) >= 0
6119 && GET_CODE (SET_SRC (set)) == ASHIFT
6120 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6121 return basic_induction_var (XEXP (SET_SRC (set), 0),
6122 GET_MODE (XEXP (x, 0)),
6123 dest_reg, insn, inc_val, mult_val,
6124 location);
6125 return 0;
6127 default:
6128 return 0;
6132 /* A general induction variable (giv) is any quantity that is a linear
6133 function of a basic induction variable,
6134 i.e. giv = biv * mult_val + add_val.
6135 The coefficients can be any loop invariant quantity.
6136 A giv need not be computed directly from the biv;
6137 it can be computed by way of other givs. */
6139 /* Determine whether X computes a giv.
6140 If it does, return a nonzero value
6141 which is the benefit from eliminating the computation of X;
6142 set *SRC_REG to the register of the biv that it is computed from;
6143 set *ADD_VAL and *MULT_VAL to the coefficients,
6144 such that the value of X is biv * mult + add; */
6146 static int
6147 general_induction_var (x, src_reg, add_val, mult_val, is_addr, pbenefit)
6148 rtx x;
6149 rtx *src_reg;
6150 rtx *add_val;
6151 rtx *mult_val;
6152 int is_addr;
6153 int *pbenefit;
6155 rtx orig_x = x;
6156 char *storage;
6158 /* If this is an invariant, forget it, it isn't a giv. */
6159 if (invariant_p (x) == 1)
6160 return 0;
6162 /* See if the expression could be a giv and get its form.
6163 Mark our place on the obstack in case we don't find a giv. */
6164 storage = (char *) oballoc (0);
6165 *pbenefit = 0;
6166 x = simplify_giv_expr (x, pbenefit);
6167 if (x == 0)
6169 obfree (storage);
6170 return 0;
6173 switch (GET_CODE (x))
6175 case USE:
6176 case CONST_INT:
6177 /* Since this is now an invariant and wasn't before, it must be a giv
6178 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6179 with. */
6180 *src_reg = loop_iv_list->biv->dest_reg;
6181 *mult_val = const0_rtx;
6182 *add_val = x;
6183 break;
6185 case REG:
6186 /* This is equivalent to a BIV. */
6187 *src_reg = x;
6188 *mult_val = const1_rtx;
6189 *add_val = const0_rtx;
6190 break;
6192 case PLUS:
6193 /* Either (plus (biv) (invar)) or
6194 (plus (mult (biv) (invar_1)) (invar_2)). */
6195 if (GET_CODE (XEXP (x, 0)) == MULT)
6197 *src_reg = XEXP (XEXP (x, 0), 0);
6198 *mult_val = XEXP (XEXP (x, 0), 1);
6200 else
6202 *src_reg = XEXP (x, 0);
6203 *mult_val = const1_rtx;
6205 *add_val = XEXP (x, 1);
6206 break;
6208 case MULT:
6209 /* ADD_VAL is zero. */
6210 *src_reg = XEXP (x, 0);
6211 *mult_val = XEXP (x, 1);
6212 *add_val = const0_rtx;
6213 break;
6215 default:
6216 abort ();
6219 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6220 unless they are CONST_INT). */
6221 if (GET_CODE (*add_val) == USE)
6222 *add_val = XEXP (*add_val, 0);
6223 if (GET_CODE (*mult_val) == USE)
6224 *mult_val = XEXP (*mult_val, 0);
6226 if (is_addr)
6228 #ifdef ADDRESS_COST
6229 *pbenefit += ADDRESS_COST (orig_x) - reg_address_cost;
6230 #else
6231 *pbenefit += rtx_cost (orig_x, MEM) - reg_address_cost;
6232 #endif
6234 else
6235 *pbenefit += rtx_cost (orig_x, SET);
6237 /* Always return true if this is a giv so it will be detected as such,
6238 even if the benefit is zero or negative. This allows elimination
6239 of bivs that might otherwise not be eliminated. */
6240 return 1;
6243 /* Given an expression, X, try to form it as a linear function of a biv.
6244 We will canonicalize it to be of the form
6245 (plus (mult (BIV) (invar_1))
6246 (invar_2))
6247 with possible degeneracies.
6249 The invariant expressions must each be of a form that can be used as a
6250 machine operand. We surround then with a USE rtx (a hack, but localized
6251 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6252 routine; it is the caller's responsibility to strip them.
6254 If no such canonicalization is possible (i.e., two biv's are used or an
6255 expression that is neither invariant nor a biv or giv), this routine
6256 returns 0.
6258 For a non-zero return, the result will have a code of CONST_INT, USE,
6259 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6261 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6263 static rtx sge_plus PROTO ((enum machine_mode, rtx, rtx));
6264 static rtx sge_plus_constant PROTO ((rtx, rtx));
6266 static rtx
6267 simplify_giv_expr (x, benefit)
6268 rtx x;
6269 int *benefit;
6271 enum machine_mode mode = GET_MODE (x);
6272 rtx arg0, arg1;
6273 rtx tem;
6275 /* If this is not an integer mode, or if we cannot do arithmetic in this
6276 mode, this can't be a giv. */
6277 if (mode != VOIDmode
6278 && (GET_MODE_CLASS (mode) != MODE_INT
6279 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6280 return NULL_RTX;
6282 switch (GET_CODE (x))
6284 case PLUS:
6285 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6286 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6287 if (arg0 == 0 || arg1 == 0)
6288 return NULL_RTX;
6290 /* Put constant last, CONST_INT last if both constant. */
6291 if ((GET_CODE (arg0) == USE
6292 || GET_CODE (arg0) == CONST_INT)
6293 && ! ((GET_CODE (arg0) == USE
6294 && GET_CODE (arg1) == USE)
6295 || GET_CODE (arg1) == CONST_INT))
6296 tem = arg0, arg0 = arg1, arg1 = tem;
6298 /* Handle addition of zero, then addition of an invariant. */
6299 if (arg1 == const0_rtx)
6300 return arg0;
6301 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6302 switch (GET_CODE (arg0))
6304 case CONST_INT:
6305 case USE:
6306 /* Adding two invariants must result in an invariant, so enclose
6307 addition operation inside a USE and return it. */
6308 if (GET_CODE (arg0) == USE)
6309 arg0 = XEXP (arg0, 0);
6310 if (GET_CODE (arg1) == USE)
6311 arg1 = XEXP (arg1, 0);
6313 if (GET_CODE (arg0) == CONST_INT)
6314 tem = arg0, arg0 = arg1, arg1 = tem;
6315 if (GET_CODE (arg1) == CONST_INT)
6316 tem = sge_plus_constant (arg0, arg1);
6317 else
6318 tem = sge_plus (mode, arg0, arg1);
6320 if (GET_CODE (tem) != CONST_INT)
6321 tem = gen_rtx_USE (mode, tem);
6322 return tem;
6324 case REG:
6325 case MULT:
6326 /* biv + invar or mult + invar. Return sum. */
6327 return gen_rtx_PLUS (mode, arg0, arg1);
6329 case PLUS:
6330 /* (a + invar_1) + invar_2. Associate. */
6331 return
6332 simplify_giv_expr (gen_rtx_PLUS (mode,
6333 XEXP (arg0, 0),
6334 gen_rtx_PLUS (mode,
6335 XEXP (arg0, 1),
6336 arg1)),
6337 benefit);
6339 default:
6340 abort ();
6343 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6344 MULT to reduce cases. */
6345 if (GET_CODE (arg0) == REG)
6346 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6347 if (GET_CODE (arg1) == REG)
6348 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6350 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6351 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6352 Recurse to associate the second PLUS. */
6353 if (GET_CODE (arg1) == MULT)
6354 tem = arg0, arg0 = arg1, arg1 = tem;
6356 if (GET_CODE (arg1) == PLUS)
6357 return
6358 simplify_giv_expr (gen_rtx_PLUS (mode,
6359 gen_rtx_PLUS (mode, arg0,
6360 XEXP (arg1, 0)),
6361 XEXP (arg1, 1)),
6362 benefit);
6364 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6365 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6366 return NULL_RTX;
6368 if (!rtx_equal_p (arg0, arg1))
6369 return NULL_RTX;
6371 return simplify_giv_expr (gen_rtx_MULT (mode,
6372 XEXP (arg0, 0),
6373 gen_rtx_PLUS (mode,
6374 XEXP (arg0, 1),
6375 XEXP (arg1, 1))),
6376 benefit);
6378 case MINUS:
6379 /* Handle "a - b" as "a + b * (-1)". */
6380 return simplify_giv_expr (gen_rtx_PLUS (mode,
6381 XEXP (x, 0),
6382 gen_rtx_MULT (mode,
6383 XEXP (x, 1),
6384 constm1_rtx)),
6385 benefit);
6387 case MULT:
6388 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
6389 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
6390 if (arg0 == 0 || arg1 == 0)
6391 return NULL_RTX;
6393 /* Put constant last, CONST_INT last if both constant. */
6394 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6395 && GET_CODE (arg1) != CONST_INT)
6396 tem = arg0, arg0 = arg1, arg1 = tem;
6398 /* If second argument is not now constant, not giv. */
6399 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6400 return NULL_RTX;
6402 /* Handle multiply by 0 or 1. */
6403 if (arg1 == const0_rtx)
6404 return const0_rtx;
6406 else if (arg1 == const1_rtx)
6407 return arg0;
6409 switch (GET_CODE (arg0))
6411 case REG:
6412 /* biv * invar. Done. */
6413 return gen_rtx_MULT (mode, arg0, arg1);
6415 case CONST_INT:
6416 /* Product of two constants. */
6417 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6419 case USE:
6420 /* invar * invar. It is a giv, but very few of these will
6421 actually pay off, so limit to simple registers. */
6422 if (GET_CODE (arg1) != CONST_INT)
6423 return NULL_RTX;
6425 arg0 = XEXP (arg0, 0);
6426 if (GET_CODE (arg0) == REG)
6427 tem = gen_rtx_MULT (mode, arg0, arg1);
6428 else if (GET_CODE (arg0) == MULT
6429 && GET_CODE (XEXP (arg0, 0)) == REG
6430 && GET_CODE (XEXP (arg0, 1)) == CONST_INT)
6432 tem = gen_rtx_MULT (mode, XEXP (arg0, 0),
6433 GEN_INT (INTVAL (XEXP (arg0, 1))
6434 * INTVAL (arg1)));
6436 else
6437 return NULL_RTX;
6438 return gen_rtx_USE (mode, tem);
6440 case MULT:
6441 /* (a * invar_1) * invar_2. Associate. */
6442 return simplify_giv_expr (gen_rtx_MULT (mode,
6443 XEXP (arg0, 0),
6444 gen_rtx_MULT (mode,
6445 XEXP (arg0, 1),
6446 arg1)),
6447 benefit);
6449 case PLUS:
6450 /* (a + invar_1) * invar_2. Distribute. */
6451 return simplify_giv_expr (gen_rtx_PLUS (mode,
6452 gen_rtx_MULT (mode,
6453 XEXP (arg0, 0),
6454 arg1),
6455 gen_rtx_MULT (mode,
6456 XEXP (arg0, 1),
6457 arg1)),
6458 benefit);
6460 default:
6461 abort ();
6464 case ASHIFT:
6465 /* Shift by constant is multiply by power of two. */
6466 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6467 return 0;
6469 return
6470 simplify_giv_expr (gen_rtx_MULT (mode,
6471 XEXP (x, 0),
6472 GEN_INT ((HOST_WIDE_INT) 1
6473 << INTVAL (XEXP (x, 1)))),
6474 benefit);
6476 case NEG:
6477 /* "-a" is "a * (-1)" */
6478 return simplify_giv_expr (gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6479 benefit);
6481 case NOT:
6482 /* "~a" is "-a - 1". Silly, but easy. */
6483 return simplify_giv_expr (gen_rtx_MINUS (mode,
6484 gen_rtx_NEG (mode, XEXP (x, 0)),
6485 const1_rtx),
6486 benefit);
6488 case USE:
6489 /* Already in proper form for invariant. */
6490 return x;
6492 case REG:
6493 /* If this is a new register, we can't deal with it. */
6494 if (REGNO (x) >= max_reg_before_loop)
6495 return 0;
6497 /* Check for biv or giv. */
6498 switch (REG_IV_TYPE (REGNO (x)))
6500 case BASIC_INDUCT:
6501 return x;
6502 case GENERAL_INDUCT:
6504 struct induction *v = REG_IV_INFO (REGNO (x));
6506 /* Form expression from giv and add benefit. Ensure this giv
6507 can derive another and subtract any needed adjustment if so. */
6508 *benefit += v->benefit;
6509 if (v->cant_derive)
6510 return 0;
6512 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6513 v->src_reg, v->mult_val),
6514 v->add_val);
6516 if (v->derive_adjustment)
6517 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6518 return simplify_giv_expr (tem, benefit);
6521 default:
6522 /* If it isn't an induction variable, and it is invariant, we
6523 may be able to simplify things further by looking through
6524 the bits we just moved outside the loop. */
6525 if (invariant_p (x) == 1)
6527 struct movable *m;
6529 for (m = the_movables; m ; m = m->next)
6530 if (rtx_equal_p (x, m->set_dest))
6532 /* Ok, we found a match. Substitute and simplify. */
6534 /* If we match another movable, we must use that, as
6535 this one is going away. */
6536 if (m->match)
6537 return simplify_giv_expr (m->match->set_dest, benefit);
6539 /* If consec is non-zero, this is a member of a group of
6540 instructions that were moved together. We handle this
6541 case only to the point of seeking to the last insn and
6542 looking for a REG_EQUAL. Fail if we don't find one. */
6543 if (m->consec != 0)
6545 int i = m->consec;
6546 tem = m->insn;
6547 do { tem = NEXT_INSN (tem); } while (--i > 0);
6549 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6550 if (tem)
6551 tem = XEXP (tem, 0);
6553 else
6555 tem = single_set (m->insn);
6556 if (tem)
6557 tem = SET_SRC (tem);
6560 if (tem)
6562 /* What we are most interested in is pointer
6563 arithmetic on invariants -- only take
6564 patterns we may be able to do something with. */
6565 if (GET_CODE (tem) == PLUS
6566 || GET_CODE (tem) == MULT
6567 || GET_CODE (tem) == ASHIFT
6568 || GET_CODE (tem) == CONST_INT
6569 || GET_CODE (tem) == SYMBOL_REF)
6571 tem = simplify_giv_expr (tem, benefit);
6572 if (tem)
6573 return tem;
6575 else if (GET_CODE (tem) == CONST
6576 && GET_CODE (XEXP (tem, 0)) == PLUS
6577 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6578 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6580 tem = simplify_giv_expr (XEXP (tem, 0), benefit);
6581 if (tem)
6582 return tem;
6585 break;
6588 break;
6591 /* Fall through to general case. */
6592 default:
6593 /* If invariant, return as USE (unless CONST_INT).
6594 Otherwise, not giv. */
6595 if (GET_CODE (x) == USE)
6596 x = XEXP (x, 0);
6598 if (invariant_p (x) == 1)
6600 if (GET_CODE (x) == CONST_INT)
6601 return x;
6602 if (GET_CODE (x) == CONST
6603 && GET_CODE (XEXP (x, 0)) == PLUS
6604 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6605 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6606 x = XEXP (x, 0);
6607 return gen_rtx_USE (mode, x);
6609 else
6610 return 0;
6614 /* This routine folds invariants such that there is only ever one
6615 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6617 static rtx
6618 sge_plus_constant (x, c)
6619 rtx x, c;
6621 if (GET_CODE (x) == CONST_INT)
6622 return GEN_INT (INTVAL (x) + INTVAL (c));
6623 else if (GET_CODE (x) != PLUS)
6624 return gen_rtx_PLUS (GET_MODE (x), x, c);
6625 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6627 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6628 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6630 else if (GET_CODE (XEXP (x, 0)) == PLUS
6631 || GET_CODE (XEXP (x, 1)) != PLUS)
6633 return gen_rtx_PLUS (GET_MODE (x),
6634 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6636 else
6638 return gen_rtx_PLUS (GET_MODE (x),
6639 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6643 static rtx
6644 sge_plus (mode, x, y)
6645 enum machine_mode mode;
6646 rtx x, y;
6648 while (GET_CODE (y) == PLUS)
6650 rtx a = XEXP (y, 0);
6651 if (GET_CODE (a) == CONST_INT)
6652 x = sge_plus_constant (x, a);
6653 else
6654 x = gen_rtx_PLUS (mode, x, a);
6655 y = XEXP (y, 1);
6657 if (GET_CODE (y) == CONST_INT)
6658 x = sge_plus_constant (x, y);
6659 else
6660 x = gen_rtx_PLUS (mode, x, y);
6661 return x;
6664 /* Help detect a giv that is calculated by several consecutive insns;
6665 for example,
6666 giv = biv * M
6667 giv = giv + A
6668 The caller has already identified the first insn P as having a giv as dest;
6669 we check that all other insns that set the same register follow
6670 immediately after P, that they alter nothing else,
6671 and that the result of the last is still a giv.
6673 The value is 0 if the reg set in P is not really a giv.
6674 Otherwise, the value is the amount gained by eliminating
6675 all the consecutive insns that compute the value.
6677 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6678 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6680 The coefficients of the ultimate giv value are stored in
6681 *MULT_VAL and *ADD_VAL. */
6683 static int
6684 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
6685 add_val, mult_val, last_consec_insn)
6686 int first_benefit;
6687 rtx p;
6688 rtx src_reg;
6689 rtx dest_reg;
6690 rtx *add_val;
6691 rtx *mult_val;
6692 rtx *last_consec_insn;
6694 int count;
6695 enum rtx_code code;
6696 int benefit;
6697 rtx temp;
6698 rtx set;
6700 /* Indicate that this is a giv so that we can update the value produced in
6701 each insn of the multi-insn sequence.
6703 This induction structure will be used only by the call to
6704 general_induction_var below, so we can allocate it on our stack.
6705 If this is a giv, our caller will replace the induct var entry with
6706 a new induction structure. */
6707 struct induction *v
6708 = (struct induction *) alloca (sizeof (struct induction));
6709 v->src_reg = src_reg;
6710 v->mult_val = *mult_val;
6711 v->add_val = *add_val;
6712 v->benefit = first_benefit;
6713 v->cant_derive = 0;
6714 v->derive_adjustment = 0;
6716 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6717 REG_IV_INFO (REGNO (dest_reg)) = v;
6719 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6721 while (count > 0)
6723 p = NEXT_INSN (p);
6724 code = GET_CODE (p);
6726 /* If libcall, skip to end of call sequence. */
6727 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6728 p = XEXP (temp, 0);
6730 if (code == INSN
6731 && (set = single_set (p))
6732 && GET_CODE (SET_DEST (set)) == REG
6733 && SET_DEST (set) == dest_reg
6734 && (general_induction_var (SET_SRC (set), &src_reg,
6735 add_val, mult_val, 0, &benefit)
6736 /* Giv created by equivalent expression. */
6737 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6738 && general_induction_var (XEXP (temp, 0), &src_reg,
6739 add_val, mult_val, 0, &benefit)))
6740 && src_reg == v->src_reg)
6742 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6743 benefit += libcall_benefit (p);
6745 count--;
6746 v->mult_val = *mult_val;
6747 v->add_val = *add_val;
6748 v->benefit = benefit;
6750 else if (code != NOTE)
6752 /* Allow insns that set something other than this giv to a
6753 constant. Such insns are needed on machines which cannot
6754 include long constants and should not disqualify a giv. */
6755 if (code == INSN
6756 && (set = single_set (p))
6757 && SET_DEST (set) != dest_reg
6758 && CONSTANT_P (SET_SRC (set)))
6759 continue;
6761 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6762 return 0;
6766 *last_consec_insn = p;
6767 return v->benefit;
6770 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6771 represented by G1. If no such expression can be found, or it is clear that
6772 it cannot possibly be a valid address, 0 is returned.
6774 To perform the computation, we note that
6775 G1 = x * v + a and
6776 G2 = y * v + b
6777 where `v' is the biv.
6779 So G2 = (y/b) * G1 + (b - a*y/x).
6781 Note that MULT = y/x.
6783 Update: A and B are now allowed to be additive expressions such that
6784 B contains all variables in A. That is, computing B-A will not require
6785 subtracting variables. */
6787 static rtx
6788 express_from_1 (a, b, mult)
6789 rtx a, b, mult;
6791 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6793 if (mult == const0_rtx)
6794 return b;
6796 /* If MULT is not 1, we cannot handle A with non-constants, since we
6797 would then be required to subtract multiples of the registers in A.
6798 This is theoretically possible, and may even apply to some Fortran
6799 constructs, but it is a lot of work and we do not attempt it here. */
6801 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6802 return NULL_RTX;
6804 /* In general these structures are sorted top to bottom (down the PLUS
6805 chain), but not left to right across the PLUS. If B is a higher
6806 order giv than A, we can strip one level and recurse. If A is higher
6807 order, we'll eventually bail out, but won't know that until the end.
6808 If they are the same, we'll strip one level around this loop. */
6810 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6812 rtx ra, rb, oa, ob, tmp;
6814 ra = XEXP (a, 0), oa = XEXP (a, 1);
6815 if (GET_CODE (ra) == PLUS)
6816 tmp = ra, ra = oa, oa = tmp;
6818 rb = XEXP (b, 0), ob = XEXP (b, 1);
6819 if (GET_CODE (rb) == PLUS)
6820 tmp = rb, rb = ob, ob = tmp;
6822 if (rtx_equal_p (ra, rb))
6823 /* We matched: remove one reg completely. */
6824 a = oa, b = ob;
6825 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6826 /* An alternate match. */
6827 a = oa, b = rb;
6828 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6829 /* An alternate match. */
6830 a = ra, b = ob;
6831 else
6833 /* Indicates an extra register in B. Strip one level from B and
6834 recurse, hoping B was the higher order expression. */
6835 ob = express_from_1 (a, ob, mult);
6836 if (ob == NULL_RTX)
6837 return NULL_RTX;
6838 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6842 /* Here we are at the last level of A, go through the cases hoping to
6843 get rid of everything but a constant. */
6845 if (GET_CODE (a) == PLUS)
6847 rtx ra, oa;
6849 ra = XEXP (a, 0), oa = XEXP (a, 1);
6850 if (rtx_equal_p (oa, b))
6851 oa = ra;
6852 else if (!rtx_equal_p (ra, b))
6853 return NULL_RTX;
6855 if (GET_CODE (oa) != CONST_INT)
6856 return NULL_RTX;
6858 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6860 else if (GET_CODE (a) == CONST_INT)
6862 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6864 else if (GET_CODE (b) == PLUS)
6866 if (rtx_equal_p (a, XEXP (b, 0)))
6867 return XEXP (b, 1);
6868 else if (rtx_equal_p (a, XEXP (b, 1)))
6869 return XEXP (b, 0);
6870 else
6871 return NULL_RTX;
6873 else if (rtx_equal_p (a, b))
6874 return const0_rtx;
6876 return NULL_RTX;
6880 express_from (g1, g2)
6881 struct induction *g1, *g2;
6883 rtx mult, add;
6885 /* The value that G1 will be multiplied by must be a constant integer. Also,
6886 the only chance we have of getting a valid address is if b*c/a (see above
6887 for notation) is also an integer. */
6888 if (GET_CODE (g1->mult_val) == CONST_INT
6889 && GET_CODE (g2->mult_val) == CONST_INT)
6891 if (g1->mult_val == const0_rtx
6892 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6893 return NULL_RTX;
6894 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6896 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6897 mult = const1_rtx;
6898 else
6900 /* ??? Find out if the one is a multiple of the other? */
6901 return NULL_RTX;
6904 add = express_from_1 (g1->add_val, g2->add_val, mult);
6905 if (add == NULL_RTX)
6907 /* Failed. If we've got a multiplication factor between G1 and G2,
6908 scale G1's addend and try again. */
6909 if (INTVAL (mult) > 1)
6911 rtx g1_add_val = g1->add_val;
6912 if (GET_CODE (g1_add_val) == MULT
6913 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
6915 HOST_WIDE_INT m;
6916 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
6917 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
6918 XEXP (g1_add_val, 0), GEN_INT (m));
6920 else
6922 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
6923 mult);
6926 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
6929 if (add == NULL_RTX)
6930 return NULL_RTX;
6932 /* Form simplified final result. */
6933 if (mult == const0_rtx)
6934 return add;
6935 else if (mult == const1_rtx)
6936 mult = g1->dest_reg;
6937 else
6938 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6940 if (add == const0_rtx)
6941 return mult;
6942 else
6944 if (GET_CODE (add) == PLUS
6945 && CONSTANT_P (XEXP (add, 1)))
6947 rtx tem = XEXP (add, 1);
6948 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6949 add = tem;
6952 return gen_rtx_PLUS (g2->mode, mult, add);
6957 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6958 represented by G1. This indicates that G2 should be combined with G1 and
6959 that G2 can use (either directly or via an address expression) a register
6960 used to represent G1. */
6962 static rtx
6963 combine_givs_p (g1, g2)
6964 struct induction *g1, *g2;
6966 rtx tem = express_from (g1, g2);
6968 /* If these givs are identical, they can be combined. We use the results
6969 of express_from because the addends are not in a canonical form, so
6970 rtx_equal_p is a weaker test. */
6971 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6972 combination to be the other way round. */
6973 if (tem == g1->dest_reg
6974 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6976 return g1->dest_reg;
6979 /* If G2 can be expressed as a function of G1 and that function is valid
6980 as an address and no more expensive than using a register for G2,
6981 the expression of G2 in terms of G1 can be used. */
6982 if (tem != NULL_RTX
6983 && g2->giv_type == DEST_ADDR
6984 && memory_address_p (g2->mem_mode, tem)
6985 /* ??? Looses, especially with -fforce-addr, where *g2->location
6986 will always be a register, and so anything more complicated
6987 gets discarded. */
6988 #if 0
6989 #ifdef ADDRESS_COST
6990 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6991 #else
6992 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6993 #endif
6994 #endif
6997 return tem;
7000 return NULL_RTX;
7003 struct combine_givs_stats
7005 int giv_number;
7006 int total_benefit;
7009 static int
7010 cmp_combine_givs_stats (x, y)
7011 struct combine_givs_stats *x, *y;
7013 int d;
7014 d = y->total_benefit - x->total_benefit;
7015 /* Stabilize the sort. */
7016 if (!d)
7017 d = x->giv_number - y->giv_number;
7018 return d;
7021 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7022 any other. If so, point SAME to the giv combined with and set NEW_REG to
7023 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7024 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7026 static void
7027 combine_givs (bl)
7028 struct iv_class *bl;
7030 /* Additional benefit to add for being combined multiple times. */
7031 const int extra_benefit = 3;
7033 struct induction *g1, *g2, **giv_array;
7034 int i, j, k, giv_count;
7035 struct combine_givs_stats *stats;
7036 rtx *can_combine;
7038 /* Count givs, because bl->giv_count is incorrect here. */
7039 giv_count = 0;
7040 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7041 if (!g1->ignore)
7042 giv_count++;
7044 giv_array
7045 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7046 i = 0;
7047 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7048 if (!g1->ignore)
7049 giv_array[i++] = g1;
7051 stats = (struct combine_givs_stats *) alloca (giv_count * sizeof (*stats));
7052 bzero ((char *) stats, giv_count * sizeof (*stats));
7054 can_combine = (rtx *) alloca (giv_count * giv_count * sizeof(rtx));
7055 bzero ((char *) can_combine, giv_count * giv_count * sizeof(rtx));
7057 for (i = 0; i < giv_count; i++)
7059 int this_benefit;
7060 rtx single_use;
7062 g1 = giv_array[i];
7063 stats[i].giv_number = i;
7065 /* If a DEST_REG GIV is used only once, do not allow it to combine
7066 with anything, for in doing so we will gain nothing that cannot
7067 be had by simply letting the GIV with which we would have combined
7068 to be reduced on its own. The losage shows up in particular with
7069 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7070 be seen elsewhere as well. */
7071 if (g1->giv_type == DEST_REG
7072 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
7073 && single_use != const0_rtx)
7074 continue;
7076 this_benefit = g1->benefit;
7077 /* Add an additional weight for zero addends. */
7078 if (g1->no_const_addval)
7079 this_benefit += 1;
7081 for (j = 0; j < giv_count; j++)
7083 rtx this_combine;
7085 g2 = giv_array[j];
7086 if (g1 != g2
7087 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7089 can_combine[i*giv_count + j] = this_combine;
7090 this_benefit += g2->benefit + extra_benefit;
7093 stats[i].total_benefit = this_benefit;
7096 /* Iterate, combining until we can't. */
7097 restart:
7098 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
7100 if (loop_dump_stream)
7102 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7103 for (k = 0; k < giv_count; k++)
7105 g1 = giv_array[stats[k].giv_number];
7106 if (!g1->combined_with && !g1->same)
7107 fprintf (loop_dump_stream, " {%d, %d}",
7108 INSN_UID (giv_array[stats[k].giv_number]->insn),
7109 stats[k].total_benefit);
7111 putc ('\n', loop_dump_stream);
7114 for (k = 0; k < giv_count; k++)
7116 int g1_add_benefit = 0;
7118 i = stats[k].giv_number;
7119 g1 = giv_array[i];
7121 /* If it has already been combined, skip. */
7122 if (g1->combined_with || g1->same)
7123 continue;
7125 for (j = 0; j < giv_count; j++)
7127 g2 = giv_array[j];
7128 if (g1 != g2 && can_combine[i*giv_count + j]
7129 /* If it has already been combined, skip. */
7130 && ! g2->same && ! g2->combined_with)
7132 int l;
7134 g2->new_reg = can_combine[i*giv_count + j];
7135 g2->same = g1;
7136 g1->combined_with++;
7137 g1->lifetime += g2->lifetime;
7139 g1_add_benefit += g2->benefit;
7141 /* ??? The new final_[bg]iv_value code does a much better job
7142 of finding replaceable giv's, and hence this code may no
7143 longer be necessary. */
7144 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7145 g1_add_benefit -= copy_cost;
7147 /* To help optimize the next set of combinations, remove
7148 this giv from the benefits of other potential mates. */
7149 for (l = 0; l < giv_count; ++l)
7151 int m = stats[l].giv_number;
7152 if (can_combine[m*giv_count + j])
7153 stats[l].total_benefit -= g2->benefit + extra_benefit;
7156 if (loop_dump_stream)
7157 fprintf (loop_dump_stream,
7158 "giv at %d combined with giv at %d\n",
7159 INSN_UID (g2->insn), INSN_UID (g1->insn));
7163 /* To help optimize the next set of combinations, remove
7164 this giv from the benefits of other potential mates. */
7165 if (g1->combined_with)
7167 for (j = 0; j < giv_count; ++j)
7169 int m = stats[j].giv_number;
7170 if (can_combine[m*giv_count + i])
7171 stats[j].total_benefit -= g1->benefit + extra_benefit;
7174 g1->benefit += g1_add_benefit;
7176 /* We've finished with this giv, and everything it touched.
7177 Restart the combination so that proper weights for the
7178 rest of the givs are properly taken into account. */
7179 /* ??? Ideally we would compact the arrays at this point, so
7180 as to not cover old ground. But sanely compacting
7181 can_combine is tricky. */
7182 goto restart;
7187 struct recombine_givs_stats
7189 int giv_number;
7190 int start_luid, end_luid;
7193 /* Used below as comparison function for qsort. We want a ascending luid
7194 when scanning the array starting at the end, thus the arguments are
7195 used in reverse. */
7196 static int
7197 cmp_recombine_givs_stats (x, y)
7198 struct recombine_givs_stats *x, *y;
7200 int d;
7201 d = y->start_luid - x->start_luid;
7202 /* Stabilize the sort. */
7203 if (!d)
7204 d = y->giv_number - x->giv_number;
7205 return d;
7208 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7209 look for the start of life of a giv where the start has not been seen
7210 yet to unlock the search for the end of its life.
7211 Only consider givs that belong to BIV.
7212 Return the total number of lifetime ends that have been found. */
7213 static int
7214 find_life_end (x, stats, insn, biv)
7215 rtx x, insn, biv;
7216 struct recombine_givs_stats *stats;
7218 enum rtx_code code;
7219 const char *fmt;
7220 int i, j;
7221 int retval;
7223 code = GET_CODE (x);
7224 switch (code)
7226 case SET:
7228 rtx reg = SET_DEST (x);
7229 if (GET_CODE (reg) == REG)
7231 int regno = REGNO (reg);
7232 struct induction *v = REG_IV_INFO (regno);
7234 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7235 && ! v->ignore
7236 && v->src_reg == biv
7237 && stats[v->ix].end_luid <= 0)
7239 /* If we see a 0 here for end_luid, it means that we have
7240 scanned the entire loop without finding any use at all.
7241 We must not predicate this code on a start_luid match
7242 since that would make the test fail for givs that have
7243 been hoisted out of inner loops. */
7244 if (stats[v->ix].end_luid == 0)
7246 stats[v->ix].end_luid = stats[v->ix].start_luid;
7247 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7249 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7250 stats[v->ix].end_luid = 0;
7252 return find_life_end (SET_SRC (x), stats, insn, biv);
7254 break;
7256 case REG:
7258 int regno = REGNO (x);
7259 struct induction *v = REG_IV_INFO (regno);
7261 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7262 && ! v->ignore
7263 && v->src_reg == biv
7264 && stats[v->ix].end_luid == 0)
7266 while (INSN_UID (insn) >= max_uid_for_loop)
7267 insn = NEXT_INSN (insn);
7268 stats[v->ix].end_luid = INSN_LUID (insn);
7269 return 1;
7271 return 0;
7273 case LABEL_REF:
7274 case CONST_DOUBLE:
7275 case CONST_INT:
7276 case CONST:
7277 return 0;
7278 default:
7279 break;
7281 fmt = GET_RTX_FORMAT (code);
7282 retval = 0;
7283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7285 if (fmt[i] == 'e')
7286 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7288 else if (fmt[i] == 'E')
7289 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7290 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7292 return retval;
7295 /* For each giv that has been combined with another, look if
7296 we can combine it with the most recently used one instead.
7297 This tends to shorten giv lifetimes, and helps the next step:
7298 try to derive givs from other givs. */
7299 static void
7300 recombine_givs (bl, loop_start, loop_end, unroll_p)
7301 struct iv_class *bl;
7302 rtx loop_start, loop_end;
7303 int unroll_p;
7305 struct induction *v, **giv_array, *last_giv;
7306 struct recombine_givs_stats *stats;
7307 int giv_count;
7308 int i, rescan;
7309 int ends_need_computing;
7311 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7313 if (! v->ignore)
7314 giv_count++;
7316 giv_array
7317 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7318 stats = (struct recombine_givs_stats *) alloca (giv_count * sizeof *stats);
7320 /* Initialize stats and set up the ix field for each giv in stats to name
7321 the corresponding index into stats. */
7322 for (i = 0, v = bl->giv; v; v = v->next_iv)
7324 rtx p;
7326 if (v->ignore)
7327 continue;
7328 giv_array[i] = v;
7329 stats[i].giv_number = i;
7330 /* If this giv has been hoisted out of an inner loop, use the luid of
7331 the previous insn. */
7332 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7333 p = PREV_INSN (p);
7334 stats[i].start_luid = INSN_LUID (p);
7335 i++;
7338 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7340 /* Set up the ix field for each giv in stats to name
7341 the corresponding index into stats, and
7342 do the actual most-recently-used recombination. */
7343 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7345 v = giv_array[stats[i].giv_number];
7346 v->ix = i;
7347 if (v->same)
7349 struct induction *old_same = v->same;
7350 rtx new_combine;
7352 /* combine_givs_p actually says if we can make this transformation.
7353 The other tests are here only to avoid keeping a giv alive
7354 that could otherwise be eliminated. */
7355 if (last_giv
7356 && ((old_same->maybe_dead && ! old_same->combined_with)
7357 || ! last_giv->maybe_dead
7358 || last_giv->combined_with)
7359 && (new_combine = combine_givs_p (last_giv, v)))
7361 old_same->combined_with--;
7362 v->new_reg = new_combine;
7363 v->same = last_giv;
7364 last_giv->combined_with++;
7365 /* No need to update lifetimes / benefits here since we have
7366 already decided what to reduce. */
7368 if (loop_dump_stream)
7370 fprintf (loop_dump_stream,
7371 "giv at %d recombined with giv at %d as ",
7372 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7373 print_rtl (loop_dump_stream, v->new_reg);
7374 putc ('\n', loop_dump_stream);
7376 continue;
7378 v = v->same;
7380 else if (v->giv_type != DEST_REG)
7381 continue;
7382 if (! last_giv
7383 || (last_giv->maybe_dead && ! last_giv->combined_with)
7384 || ! v->maybe_dead
7385 || v->combined_with)
7386 last_giv = v;
7389 ends_need_computing = 0;
7390 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7391 lifetime ends from regscan info. */
7392 for (i = giv_count - 1; i >= 0; i--)
7394 v = giv_array[stats[i].giv_number];
7395 if (v->ignore)
7396 continue;
7397 if (v->giv_type == DEST_ADDR)
7399 /* Loop unrolling of an inner loop can even create new DEST_REG
7400 givs. */
7401 rtx p;
7402 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7403 p = PREV_INSN (p);
7404 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7405 if (p != v->insn)
7406 stats[i].end_luid++;
7408 else /* v->giv_type == DEST_REG */
7410 if (v->last_use)
7412 stats[i].start_luid = INSN_LUID (v->insn);
7413 stats[i].end_luid = INSN_LUID (v->last_use);
7415 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7417 rtx p;
7418 /* This insn has been created by loop optimization on an inner
7419 loop. We don't have a proper start_luid that will match
7420 when we see the first set. But we do know that there will
7421 be no use before the set, so we can set end_luid to 0 so that
7422 we'll start looking for the last use right away. */
7423 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7424 p = PREV_INSN (p);
7425 stats[i].start_luid = INSN_LUID (p);
7426 stats[i].end_luid = 0;
7427 ends_need_computing++;
7429 else
7431 int regno = REGNO (v->dest_reg);
7432 int count = VARRAY_INT (n_times_set, regno) - 1;
7433 rtx p = v->insn;
7435 /* Find the first insn that sets the giv, so that we can verify
7436 if this giv's lifetime wraps around the loop. We also need
7437 the luid of the first setting insn in order to detect the
7438 last use properly. */
7439 while (count)
7441 p = prev_nonnote_insn (p);
7442 if (reg_set_p (v->dest_reg, p))
7443 count--;
7446 stats[i].start_luid = INSN_LUID (p);
7447 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7449 stats[i].end_luid = -1;
7450 ends_need_computing++;
7452 else
7454 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7455 if (stats[i].end_luid > INSN_LUID (loop_end))
7457 stats[i].end_luid = -1;
7458 ends_need_computing++;
7465 /* If the regscan information was unconclusive for one or more DEST_REG
7466 givs, scan the all insn in the loop to find out lifetime ends. */
7467 if (ends_need_computing)
7469 rtx biv = bl->biv->src_reg;
7470 rtx p = loop_end;
7474 if (p == loop_start)
7475 p = loop_end;
7476 p = PREV_INSN (p);
7477 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7478 continue;
7479 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7481 while (ends_need_computing);
7484 /* Set start_luid back to the last insn that sets the giv. This allows
7485 more combinations. */
7486 for (i = giv_count - 1; i >= 0; i--)
7488 v = giv_array[stats[i].giv_number];
7489 if (v->ignore)
7490 continue;
7491 if (INSN_UID (v->insn) < max_uid_for_loop)
7492 stats[i].start_luid = INSN_LUID (v->insn);
7495 /* Now adjust lifetime ends by taking combined givs into account. */
7496 for (i = giv_count - 1; i >= 0; i--)
7498 unsigned luid;
7499 int j;
7501 v = giv_array[stats[i].giv_number];
7502 if (v->ignore)
7503 continue;
7504 if (v->same && ! v->same->ignore)
7506 j = v->same->ix;
7507 luid = stats[i].start_luid;
7508 /* Use unsigned arithmetic to model loop wrap-around. */
7509 if (luid - stats[j].start_luid
7510 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7511 stats[j].end_luid = luid;
7515 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7517 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7518 same mult_val and non-overlapping lifetime. This reduces register
7519 pressure.
7520 Once we find a DEST_REG giv that is suitable to derive others from,
7521 we set last_giv to this giv, and try to derive as many other DEST_REG
7522 givs from it without joining overlapping lifetimes. If we then
7523 encounter a DEST_REG giv that we can't derive, we set rescan to the
7524 index for this giv (unless rescan is already set).
7525 When we are finished with the current LAST_GIV (i.e. the inner loop
7526 terminates), we start again with rescan, which then becomes the new
7527 LAST_GIV. */
7528 for (i = giv_count - 1; i >= 0; i = rescan)
7530 int life_start, life_end;
7532 for (last_giv = 0, rescan = -1; i >= 0; i--)
7534 rtx sum;
7536 v = giv_array[stats[i].giv_number];
7537 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7538 continue;
7539 if (! last_giv)
7541 /* Don't use a giv that's likely to be dead to derive
7542 others - that would be likely to keep that giv alive. */
7543 if (! v->maybe_dead || v->combined_with)
7545 last_giv = v;
7546 life_start = stats[i].start_luid;
7547 life_end = stats[i].end_luid;
7549 continue;
7551 /* Use unsigned arithmetic to model loop wrap around. */
7552 if (((unsigned) stats[i].start_luid - life_start
7553 >= (unsigned) life_end - life_start)
7554 && ((unsigned) stats[i].end_luid - life_start
7555 > (unsigned) life_end - life_start)
7556 /* Check that the giv insn we're about to use for deriving
7557 precedes all uses of that giv. Note that initializing the
7558 derived giv would defeat the purpose of reducing register
7559 pressure.
7560 ??? We could arrange to move the insn. */
7561 && ((unsigned) stats[i].end_luid - INSN_LUID (loop_start)
7562 > (unsigned) stats[i].start_luid - INSN_LUID (loop_start))
7563 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7564 /* ??? Could handle libcalls, but would need more logic. */
7565 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7566 /* We would really like to know if for any giv that v
7567 is combined with, v->insn or any intervening biv increment
7568 dominates that combined giv. However, we
7569 don't have this detailed control flow information.
7570 N.B. since last_giv will be reduced, it is valid
7571 anywhere in the loop, so we don't need to check the
7572 validity of last_giv.
7573 We rely here on the fact that v->always_executed implies that
7574 there is no jump to someplace else in the loop before the
7575 giv insn, and hence any insn that is executed before the
7576 giv insn in the loop will have a lower luid. */
7577 && (v->always_executed || ! v->combined_with)
7578 && (sum = express_from (last_giv, v))
7579 /* Make sure we don't make the add more expensive. ADD_COST
7580 doesn't take different costs of registers and constants into
7581 account, so compare the cost of the actual SET_SRCs. */
7582 && (rtx_cost (sum, SET)
7583 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7584 /* ??? unroll can't understand anything but reg + const_int
7585 sums. It would be cleaner to fix unroll. */
7586 && ((GET_CODE (sum) == PLUS
7587 && GET_CODE (XEXP (sum, 0)) == REG
7588 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7589 || ! unroll_p)
7590 && validate_change (v->insn, &PATTERN (v->insn),
7591 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7593 v->derived_from = last_giv;
7594 life_end = stats[i].end_luid;
7596 if (loop_dump_stream)
7598 fprintf (loop_dump_stream,
7599 "giv at %d derived from %d as ",
7600 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7601 print_rtl (loop_dump_stream, sum);
7602 putc ('\n', loop_dump_stream);
7605 else if (rescan < 0)
7606 rescan = i;
7611 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7613 void
7614 emit_iv_add_mult (b, m, a, reg, insert_before)
7615 rtx b; /* initial value of basic induction variable */
7616 rtx m; /* multiplicative constant */
7617 rtx a; /* additive constant */
7618 rtx reg; /* destination register */
7619 rtx insert_before;
7621 rtx seq;
7622 rtx result;
7624 /* Prevent unexpected sharing of these rtx. */
7625 a = copy_rtx (a);
7626 b = copy_rtx (b);
7628 /* Increase the lifetime of any invariants moved further in code. */
7629 update_reg_last_use (a, insert_before);
7630 update_reg_last_use (b, insert_before);
7631 update_reg_last_use (m, insert_before);
7633 start_sequence ();
7634 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7635 if (reg != result)
7636 emit_move_insn (reg, result);
7637 seq = gen_sequence ();
7638 end_sequence ();
7640 emit_insn_before (seq, insert_before);
7642 /* It is entirely possible that the expansion created lots of new
7643 registers. Iterate over the sequence we just created and
7644 record them all. */
7646 if (GET_CODE (seq) == SEQUENCE)
7648 int i;
7649 for (i = 0; i < XVECLEN (seq, 0); ++i)
7651 rtx set = single_set (XVECEXP (seq, 0, i));
7652 if (set && GET_CODE (SET_DEST (set)) == REG)
7653 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7656 else if (GET_CODE (seq) == SET
7657 && GET_CODE (SET_DEST (seq)) == REG)
7658 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7661 /* Test whether A * B can be computed without
7662 an actual multiply insn. Value is 1 if so. */
7664 static int
7665 product_cheap_p (a, b)
7666 rtx a;
7667 rtx b;
7669 int i;
7670 rtx tmp;
7671 struct obstack *old_rtl_obstack = rtl_obstack;
7672 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7673 int win = 1;
7675 /* If only one is constant, make it B. */
7676 if (GET_CODE (a) == CONST_INT)
7677 tmp = a, a = b, b = tmp;
7679 /* If first constant, both constant, so don't need multiply. */
7680 if (GET_CODE (a) == CONST_INT)
7681 return 1;
7683 /* If second not constant, neither is constant, so would need multiply. */
7684 if (GET_CODE (b) != CONST_INT)
7685 return 0;
7687 /* One operand is constant, so might not need multiply insn. Generate the
7688 code for the multiply and see if a call or multiply, or long sequence
7689 of insns is generated. */
7691 rtl_obstack = &temp_obstack;
7692 start_sequence ();
7693 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7694 tmp = gen_sequence ();
7695 end_sequence ();
7697 if (GET_CODE (tmp) == SEQUENCE)
7699 if (XVEC (tmp, 0) == 0)
7700 win = 1;
7701 else if (XVECLEN (tmp, 0) > 3)
7702 win = 0;
7703 else
7704 for (i = 0; i < XVECLEN (tmp, 0); i++)
7706 rtx insn = XVECEXP (tmp, 0, i);
7708 if (GET_CODE (insn) != INSN
7709 || (GET_CODE (PATTERN (insn)) == SET
7710 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7711 || (GET_CODE (PATTERN (insn)) == PARALLEL
7712 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7713 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7715 win = 0;
7716 break;
7720 else if (GET_CODE (tmp) == SET
7721 && GET_CODE (SET_SRC (tmp)) == MULT)
7722 win = 0;
7723 else if (GET_CODE (tmp) == PARALLEL
7724 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7725 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7726 win = 0;
7728 /* Free any storage we obtained in generating this multiply and restore rtl
7729 allocation to its normal obstack. */
7730 obstack_free (&temp_obstack, storage);
7731 rtl_obstack = old_rtl_obstack;
7733 return win;
7736 /* Check to see if loop can be terminated by a "decrement and branch until
7737 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7738 Also try reversing an increment loop to a decrement loop
7739 to see if the optimization can be performed.
7740 Value is nonzero if optimization was performed. */
7742 /* This is useful even if the architecture doesn't have such an insn,
7743 because it might change a loops which increments from 0 to n to a loop
7744 which decrements from n to 0. A loop that decrements to zero is usually
7745 faster than one that increments from zero. */
7747 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7748 such as approx_final_value, biv_total_increment, loop_iterations, and
7749 final_[bg]iv_value. */
7751 static int
7752 check_dbra_loop (loop_end, insn_count, loop_start, loop_info)
7753 rtx loop_end;
7754 int insn_count;
7755 rtx loop_start;
7756 struct loop_info *loop_info;
7758 struct iv_class *bl;
7759 rtx reg;
7760 rtx jump_label;
7761 rtx final_value;
7762 rtx start_value;
7763 rtx new_add_val;
7764 rtx comparison;
7765 rtx before_comparison;
7766 rtx p;
7767 rtx jump;
7768 rtx first_compare;
7769 int compare_and_branch;
7771 /* If last insn is a conditional branch, and the insn before tests a
7772 register value, try to optimize it. Otherwise, we can't do anything. */
7774 jump = PREV_INSN (loop_end);
7775 comparison = get_condition_for_loop (jump);
7776 if (comparison == 0)
7777 return 0;
7779 /* Try to compute whether the compare/branch at the loop end is one or
7780 two instructions. */
7781 get_condition (jump, &first_compare);
7782 if (first_compare == jump)
7783 compare_and_branch = 1;
7784 else if (first_compare == prev_nonnote_insn (jump))
7785 compare_and_branch = 2;
7786 else
7787 return 0;
7789 /* Check all of the bivs to see if the compare uses one of them.
7790 Skip biv's set more than once because we can't guarantee that
7791 it will be zero on the last iteration. Also skip if the biv is
7792 used between its update and the test insn. */
7794 for (bl = loop_iv_list; bl; bl = bl->next)
7796 if (bl->biv_count == 1
7797 && bl->biv->dest_reg == XEXP (comparison, 0)
7798 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7799 first_compare))
7800 break;
7803 if (! bl)
7804 return 0;
7806 /* Look for the case where the basic induction variable is always
7807 nonnegative, and equals zero on the last iteration.
7808 In this case, add a reg_note REG_NONNEG, which allows the
7809 m68k DBRA instruction to be used. */
7811 if (((GET_CODE (comparison) == GT
7812 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7813 && INTVAL (XEXP (comparison, 1)) == -1)
7814 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7815 && GET_CODE (bl->biv->add_val) == CONST_INT
7816 && INTVAL (bl->biv->add_val) < 0)
7818 /* Initial value must be greater than 0,
7819 init_val % -dec_value == 0 to ensure that it equals zero on
7820 the last iteration */
7822 if (GET_CODE (bl->initial_value) == CONST_INT
7823 && INTVAL (bl->initial_value) > 0
7824 && (INTVAL (bl->initial_value)
7825 % (-INTVAL (bl->biv->add_val))) == 0)
7827 /* register always nonnegative, add REG_NOTE to branch */
7828 REG_NOTES (PREV_INSN (loop_end))
7829 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7830 REG_NOTES (PREV_INSN (loop_end)));
7831 bl->nonneg = 1;
7833 return 1;
7836 /* If the decrement is 1 and the value was tested as >= 0 before
7837 the loop, then we can safely optimize. */
7838 for (p = loop_start; p; p = PREV_INSN (p))
7840 if (GET_CODE (p) == CODE_LABEL)
7841 break;
7842 if (GET_CODE (p) != JUMP_INSN)
7843 continue;
7845 before_comparison = get_condition_for_loop (p);
7846 if (before_comparison
7847 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7848 && GET_CODE (before_comparison) == LT
7849 && XEXP (before_comparison, 1) == const0_rtx
7850 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7851 && INTVAL (bl->biv->add_val) == -1)
7853 REG_NOTES (PREV_INSN (loop_end))
7854 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7855 REG_NOTES (PREV_INSN (loop_end)));
7856 bl->nonneg = 1;
7858 return 1;
7862 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7863 && INTVAL (bl->biv->add_val) > 0)
7865 /* Try to change inc to dec, so can apply above optimization. */
7866 /* Can do this if:
7867 all registers modified are induction variables or invariant,
7868 all memory references have non-overlapping addresses
7869 (obviously true if only one write)
7870 allow 2 insns for the compare/jump at the end of the loop. */
7871 /* Also, we must avoid any instructions which use both the reversed
7872 biv and another biv. Such instructions will fail if the loop is
7873 reversed. We meet this condition by requiring that either
7874 no_use_except_counting is true, or else that there is only
7875 one biv. */
7876 int num_nonfixed_reads = 0;
7877 /* 1 if the iteration var is used only to count iterations. */
7878 int no_use_except_counting = 0;
7879 /* 1 if the loop has no memory store, or it has a single memory store
7880 which is reversible. */
7881 int reversible_mem_store = 1;
7883 if (bl->giv_count == 0
7884 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
7886 rtx bivreg = regno_reg_rtx[bl->regno];
7888 /* If there are no givs for this biv, and the only exit is the
7889 fall through at the end of the loop, then
7890 see if perhaps there are no uses except to count. */
7891 no_use_except_counting = 1;
7892 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7893 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7895 rtx set = single_set (p);
7897 if (set && GET_CODE (SET_DEST (set)) == REG
7898 && REGNO (SET_DEST (set)) == bl->regno)
7899 /* An insn that sets the biv is okay. */
7901 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7902 || p == prev_nonnote_insn (loop_end))
7903 /* Don't bother about the end test. */
7905 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7907 no_use_except_counting = 0;
7908 break;
7913 if (no_use_except_counting)
7914 ; /* no need to worry about MEMs. */
7915 else if (num_mem_sets <= 1)
7917 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7918 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7919 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
7921 /* If the loop has a single store, and the destination address is
7922 invariant, then we can't reverse the loop, because this address
7923 might then have the wrong value at loop exit.
7924 This would work if the source was invariant also, however, in that
7925 case, the insn should have been moved out of the loop. */
7927 if (num_mem_sets == 1)
7929 struct induction *v;
7931 reversible_mem_store
7932 = (! unknown_address_altered
7933 && ! invariant_p (XEXP (XEXP (loop_store_mems, 0), 0)));
7935 /* If the store depends on a register that is set after the
7936 store, it depends on the initial value, and is thus not
7937 reversible. */
7938 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7940 if (v->giv_type == DEST_REG
7941 && reg_mentioned_p (v->dest_reg,
7942 XEXP (loop_store_mems, 0))
7943 && loop_insn_first_p (first_loop_store_insn, v->insn))
7944 reversible_mem_store = 0;
7948 else
7949 return 0;
7951 /* This code only acts for innermost loops. Also it simplifies
7952 the memory address check by only reversing loops with
7953 zero or one memory access.
7954 Two memory accesses could involve parts of the same array,
7955 and that can't be reversed.
7956 If the biv is used only for counting, than we don't need to worry
7957 about all these things. */
7959 if ((num_nonfixed_reads <= 1
7960 && ! loop_info->has_call
7961 && ! loop_info->has_volatile
7962 && reversible_mem_store
7963 && (bl->giv_count + bl->biv_count + num_mem_sets
7964 + num_movables + compare_and_branch == insn_count)
7965 && (bl == loop_iv_list && bl->next == 0))
7966 || no_use_except_counting)
7968 rtx tem;
7970 /* Loop can be reversed. */
7971 if (loop_dump_stream)
7972 fprintf (loop_dump_stream, "Can reverse loop\n");
7974 /* Now check other conditions:
7976 The increment must be a constant, as must the initial value,
7977 and the comparison code must be LT.
7979 This test can probably be improved since +/- 1 in the constant
7980 can be obtained by changing LT to LE and vice versa; this is
7981 confusing. */
7983 if (comparison
7984 /* for constants, LE gets turned into LT */
7985 && (GET_CODE (comparison) == LT
7986 || (GET_CODE (comparison) == LE
7987 && no_use_except_counting)))
7989 HOST_WIDE_INT add_val, add_adjust, comparison_val;
7990 rtx initial_value, comparison_value;
7991 int nonneg = 0;
7992 enum rtx_code cmp_code;
7993 int comparison_const_width;
7994 unsigned HOST_WIDE_INT comparison_sign_mask;
7996 add_val = INTVAL (bl->biv->add_val);
7997 comparison_value = XEXP (comparison, 1);
7998 if (GET_MODE (comparison_value) == VOIDmode)
7999 comparison_const_width
8000 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8001 else
8002 comparison_const_width
8003 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8004 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8005 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8006 comparison_sign_mask
8007 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
8009 /* If the comparison value is not a loop invariant, then we
8010 can not reverse this loop.
8012 ??? If the insns which initialize the comparison value as
8013 a whole compute an invariant result, then we could move
8014 them out of the loop and proceed with loop reversal. */
8015 if (!invariant_p (comparison_value))
8016 return 0;
8018 if (GET_CODE (comparison_value) == CONST_INT)
8019 comparison_val = INTVAL (comparison_value);
8020 initial_value = bl->initial_value;
8022 /* Normalize the initial value if it is an integer and
8023 has no other use except as a counter. This will allow
8024 a few more loops to be reversed. */
8025 if (no_use_except_counting
8026 && GET_CODE (comparison_value) == CONST_INT
8027 && GET_CODE (initial_value) == CONST_INT)
8029 comparison_val = comparison_val - INTVAL (bl->initial_value);
8030 /* The code below requires comparison_val to be a multiple
8031 of add_val in order to do the loop reversal, so
8032 round up comparison_val to a multiple of add_val.
8033 Since comparison_value is constant, we know that the
8034 current comparison code is LT. */
8035 comparison_val = comparison_val + add_val - 1;
8036 comparison_val
8037 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8038 /* We postpone overflow checks for COMPARISON_VAL here;
8039 even if there is an overflow, we might still be able to
8040 reverse the loop, if converting the loop exit test to
8041 NE is possible. */
8042 initial_value = const0_rtx;
8045 /* First check if we can do a vanilla loop reversal. */
8046 if (initial_value == const0_rtx
8047 /* If we have a decrement_and_branch_on_count,
8048 prefer the NE test, since this will allow that
8049 instruction to be generated. Note that we must
8050 use a vanilla loop reversal if the biv is used to
8051 calculate a giv or has a non-counting use. */
8052 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8053 && defined (HAVE_decrement_and_branch_on_count)
8054 && (! (add_val == 1 && loop_info->vtop
8055 && (bl->biv_count == 0
8056 || no_use_except_counting)))
8057 #endif
8058 && GET_CODE (comparison_value) == CONST_INT
8059 /* Now do postponed overflow checks on COMPARISON_VAL. */
8060 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8061 & comparison_sign_mask))
8063 /* Register will always be nonnegative, with value
8064 0 on last iteration */
8065 add_adjust = add_val;
8066 nonneg = 1;
8067 cmp_code = GE;
8069 else if (add_val == 1 && loop_info->vtop
8070 && (bl->biv_count == 0
8071 || no_use_except_counting))
8073 add_adjust = 0;
8074 cmp_code = NE;
8076 else
8077 return 0;
8079 if (GET_CODE (comparison) == LE)
8080 add_adjust -= add_val;
8082 /* If the initial value is not zero, or if the comparison
8083 value is not an exact multiple of the increment, then we
8084 can not reverse this loop. */
8085 if (initial_value == const0_rtx
8086 && GET_CODE (comparison_value) == CONST_INT)
8088 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8089 return 0;
8091 else
8093 if (! no_use_except_counting || add_val != 1)
8094 return 0;
8097 final_value = comparison_value;
8099 /* Reset these in case we normalized the initial value
8100 and comparison value above. */
8101 if (GET_CODE (comparison_value) == CONST_INT
8102 && GET_CODE (initial_value) == CONST_INT)
8104 comparison_value = GEN_INT (comparison_val);
8105 final_value
8106 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8108 bl->initial_value = initial_value;
8110 /* Save some info needed to produce the new insns. */
8111 reg = bl->biv->dest_reg;
8112 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
8113 if (jump_label == pc_rtx)
8114 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
8115 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
8117 /* Set start_value; if this is not a CONST_INT, we need
8118 to generate a SUB.
8119 Initialize biv to start_value before loop start.
8120 The old initializing insn will be deleted as a
8121 dead store by flow.c. */
8122 if (initial_value == const0_rtx
8123 && GET_CODE (comparison_value) == CONST_INT)
8125 start_value = GEN_INT (comparison_val - add_adjust);
8126 emit_insn_before (gen_move_insn (reg, start_value),
8127 loop_start);
8129 else if (GET_CODE (initial_value) == CONST_INT)
8131 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8132 enum machine_mode mode = GET_MODE (reg);
8133 enum insn_code icode
8134 = add_optab->handlers[(int) mode].insn_code;
8136 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8137 || ! ((*insn_data[icode].operand[1].predicate)
8138 (comparison_value, mode))
8139 || ! ((*insn_data[icode].operand[2].predicate)
8140 (offset, mode)))
8141 return 0;
8142 start_value
8143 = gen_rtx_PLUS (mode, comparison_value, offset);
8144 emit_insn_before ((GEN_FCN (icode)
8145 (reg, comparison_value, offset)),
8146 loop_start);
8147 if (GET_CODE (comparison) == LE)
8148 final_value = gen_rtx_PLUS (mode, comparison_value,
8149 GEN_INT (add_val));
8151 else if (! add_adjust)
8153 enum machine_mode mode = GET_MODE (reg);
8154 enum insn_code icode
8155 = sub_optab->handlers[(int) mode].insn_code;
8156 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8157 || ! ((*insn_data[icode].operand[1].predicate)
8158 (comparison_value, mode))
8159 || ! ((*insn_data[icode].operand[2].predicate)
8160 (initial_value, mode)))
8161 return 0;
8162 start_value
8163 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8164 emit_insn_before ((GEN_FCN (icode)
8165 (reg, comparison_value, initial_value)),
8166 loop_start);
8168 else
8169 /* We could handle the other cases too, but it'll be
8170 better to have a testcase first. */
8171 return 0;
8173 /* We may not have a single insn which can increment a reg, so
8174 create a sequence to hold all the insns from expand_inc. */
8175 start_sequence ();
8176 expand_inc (reg, new_add_val);
8177 tem = gen_sequence ();
8178 end_sequence ();
8180 p = emit_insn_before (tem, bl->biv->insn);
8181 delete_insn (bl->biv->insn);
8183 /* Update biv info to reflect its new status. */
8184 bl->biv->insn = p;
8185 bl->initial_value = start_value;
8186 bl->biv->add_val = new_add_val;
8188 /* Update loop info. */
8189 loop_info->initial_value = reg;
8190 loop_info->initial_equiv_value = reg;
8191 loop_info->final_value = const0_rtx;
8192 loop_info->final_equiv_value = const0_rtx;
8193 loop_info->comparison_value = const0_rtx;
8194 loop_info->comparison_code = cmp_code;
8195 loop_info->increment = new_add_val;
8197 /* Inc LABEL_NUSES so that delete_insn will
8198 not delete the label. */
8199 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8201 /* Emit an insn after the end of the loop to set the biv's
8202 proper exit value if it is used anywhere outside the loop. */
8203 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8204 || ! bl->init_insn
8205 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8206 emit_insn_after (gen_move_insn (reg, final_value),
8207 loop_end);
8209 /* Delete compare/branch at end of loop. */
8210 delete_insn (PREV_INSN (loop_end));
8211 if (compare_and_branch == 2)
8212 delete_insn (first_compare);
8214 /* Add new compare/branch insn at end of loop. */
8215 start_sequence ();
8216 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8217 GET_MODE (reg), 0, 0,
8218 XEXP (jump_label, 0));
8219 tem = gen_sequence ();
8220 end_sequence ();
8221 emit_jump_insn_before (tem, loop_end);
8223 for (tem = PREV_INSN (loop_end);
8224 tem && GET_CODE (tem) != JUMP_INSN;
8225 tem = PREV_INSN (tem))
8228 if (tem)
8229 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8231 if (nonneg)
8233 if (tem)
8235 /* Increment of LABEL_NUSES done above. */
8236 /* Register is now always nonnegative,
8237 so add REG_NONNEG note to the branch. */
8238 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8239 REG_NOTES (tem));
8241 bl->nonneg = 1;
8244 /* No insn may reference both the reversed and another biv or it
8245 will fail (see comment near the top of the loop reversal
8246 code).
8247 Earlier on, we have verified that the biv has no use except
8248 counting, or it is the only biv in this function.
8249 However, the code that computes no_use_except_counting does
8250 not verify reg notes. It's possible to have an insn that
8251 references another biv, and has a REG_EQUAL note with an
8252 expression based on the reversed biv. To avoid this case,
8253 remove all REG_EQUAL notes based on the reversed biv
8254 here. */
8255 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8256 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
8258 rtx *pnote;
8259 rtx set = single_set (p);
8260 /* If this is a set of a GIV based on the reversed biv, any
8261 REG_EQUAL notes should still be correct. */
8262 if (! set
8263 || GET_CODE (SET_DEST (set)) != REG
8264 || (size_t) REGNO (SET_DEST (set)) >= reg_iv_type->num_elements
8265 || REG_IV_TYPE (REGNO (SET_DEST (set))) != GENERAL_INDUCT
8266 || REG_IV_INFO (REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8267 for (pnote = &REG_NOTES (p); *pnote;)
8269 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8270 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8271 XEXP (*pnote, 0)))
8272 *pnote = XEXP (*pnote, 1);
8273 else
8274 pnote = &XEXP (*pnote, 1);
8278 /* Mark that this biv has been reversed. Each giv which depends
8279 on this biv, and which is also live past the end of the loop
8280 will have to be fixed up. */
8282 bl->reversed = 1;
8284 if (loop_dump_stream)
8286 fprintf (loop_dump_stream, "Reversed loop");
8287 if (bl->nonneg)
8288 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8289 else
8290 fprintf (loop_dump_stream, "\n");
8293 return 1;
8298 return 0;
8301 /* Verify whether the biv BL appears to be eliminable,
8302 based on the insns in the loop that refer to it.
8303 LOOP_START is the first insn of the loop, and END is the end insn.
8305 If ELIMINATE_P is non-zero, actually do the elimination.
8307 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8308 determine whether invariant insns should be placed inside or at the
8309 start of the loop. */
8311 static int
8312 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
8313 struct iv_class *bl;
8314 rtx loop_start;
8315 rtx end;
8316 int eliminate_p;
8317 int threshold, insn_count;
8319 rtx reg = bl->biv->dest_reg;
8320 rtx p;
8322 /* Scan all insns in the loop, stopping if we find one that uses the
8323 biv in a way that we cannot eliminate. */
8325 for (p = loop_start; p != end; p = NEXT_INSN (p))
8327 enum rtx_code code = GET_CODE (p);
8328 rtx where = threshold >= insn_count ? loop_start : p;
8330 /* If this is a libcall that sets a giv, skip ahead to its end. */
8331 if (GET_RTX_CLASS (code) == 'i')
8333 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8335 if (note)
8337 rtx last = XEXP (note, 0);
8338 rtx set = single_set (last);
8340 if (set && GET_CODE (SET_DEST (set)) == REG)
8342 int regno = REGNO (SET_DEST (set));
8344 if (regno < max_reg_before_loop
8345 && REG_IV_TYPE (regno) == GENERAL_INDUCT
8346 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8347 p = last;
8351 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8352 && reg_mentioned_p (reg, PATTERN (p))
8353 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
8355 if (loop_dump_stream)
8356 fprintf (loop_dump_stream,
8357 "Cannot eliminate biv %d: biv used in insn %d.\n",
8358 bl->regno, INSN_UID (p));
8359 break;
8363 if (p == end)
8365 if (loop_dump_stream)
8366 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8367 bl->regno, eliminate_p ? "was" : "can be");
8368 return 1;
8371 return 0;
8374 /* INSN and REFERENCE are instructions in the same insn chain.
8375 Return non-zero if INSN is first. */
8378 loop_insn_first_p (insn, reference)
8379 rtx insn, reference;
8381 rtx p, q;
8383 for (p = insn, q = reference; ;)
8385 /* Start with test for not first so that INSN == REFERENCE yields not
8386 first. */
8387 if (q == insn || ! p)
8388 return 0;
8389 if (p == reference || ! q)
8390 return 1;
8392 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8393 previous insn, hence the <= comparison below does not work if
8394 P is a note. */
8395 if (INSN_UID (p) < max_uid_for_loop
8396 && INSN_UID (q) < max_uid_for_loop
8397 && GET_CODE (p) != NOTE)
8398 return INSN_LUID (p) <= INSN_LUID (q);
8400 if (INSN_UID (p) >= max_uid_for_loop
8401 || GET_CODE (p) == NOTE)
8402 p = NEXT_INSN (p);
8403 if (INSN_UID (q) >= max_uid_for_loop)
8404 q = NEXT_INSN (q);
8408 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8409 the offset that we have to take into account due to auto-increment /
8410 div derivation is zero. */
8411 static int
8412 biv_elimination_giv_has_0_offset (biv, giv, insn)
8413 struct induction *biv, *giv;
8414 rtx insn;
8416 /* If the giv V had the auto-inc address optimization applied
8417 to it, and INSN occurs between the giv insn and the biv
8418 insn, then we'd have to adjust the value used here.
8419 This is rare, so we don't bother to make this possible. */
8420 if (giv->auto_inc_opt
8421 && ((loop_insn_first_p (giv->insn, insn)
8422 && loop_insn_first_p (insn, biv->insn))
8423 || (loop_insn_first_p (biv->insn, insn)
8424 && loop_insn_first_p (insn, giv->insn))))
8425 return 0;
8427 /* If the giv V was derived from another giv, and INSN does
8428 not occur between the giv insn and the biv insn, then we'd
8429 have to adjust the value used here. This is rare, so we don't
8430 bother to make this possible. */
8431 if (giv->derived_from
8432 && ! (giv->always_executed
8433 && loop_insn_first_p (giv->insn, insn)
8434 && loop_insn_first_p (insn, biv->insn)))
8435 return 0;
8436 if (giv->same
8437 && giv->same->derived_from
8438 && ! (giv->same->always_executed
8439 && loop_insn_first_p (giv->same->insn, insn)
8440 && loop_insn_first_p (insn, biv->insn)))
8441 return 0;
8443 return 1;
8446 /* If BL appears in X (part of the pattern of INSN), see if we can
8447 eliminate its use. If so, return 1. If not, return 0.
8449 If BIV does not appear in X, return 1.
8451 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8452 where extra insns should be added. Depending on how many items have been
8453 moved out of the loop, it will either be before INSN or at the start of
8454 the loop. */
8456 static int
8457 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
8458 rtx x, insn;
8459 struct iv_class *bl;
8460 int eliminate_p;
8461 rtx where;
8463 enum rtx_code code = GET_CODE (x);
8464 rtx reg = bl->biv->dest_reg;
8465 enum machine_mode mode = GET_MODE (reg);
8466 struct induction *v;
8467 rtx arg, tem;
8468 #ifdef HAVE_cc0
8469 rtx new;
8470 #endif
8471 int arg_operand;
8472 const char *fmt;
8473 int i, j;
8475 switch (code)
8477 case REG:
8478 /* If we haven't already been able to do something with this BIV,
8479 we can't eliminate it. */
8480 if (x == reg)
8481 return 0;
8482 return 1;
8484 case SET:
8485 /* If this sets the BIV, it is not a problem. */
8486 if (SET_DEST (x) == reg)
8487 return 1;
8489 /* If this is an insn that defines a giv, it is also ok because
8490 it will go away when the giv is reduced. */
8491 for (v = bl->giv; v; v = v->next_iv)
8492 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8493 return 1;
8495 #ifdef HAVE_cc0
8496 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8498 /* Can replace with any giv that was reduced and
8499 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8500 Require a constant for MULT_VAL, so we know it's nonzero.
8501 ??? We disable this optimization to avoid potential
8502 overflows. */
8504 for (v = bl->giv; v; v = v->next_iv)
8505 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8506 && v->add_val == const0_rtx
8507 && ! v->ignore && ! v->maybe_dead && v->always_computable
8508 && v->mode == mode
8509 && 0)
8511 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8512 continue;
8514 if (! eliminate_p)
8515 return 1;
8517 /* If the giv has the opposite direction of change,
8518 then reverse the comparison. */
8519 if (INTVAL (v->mult_val) < 0)
8520 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8521 const0_rtx, v->new_reg);
8522 else
8523 new = v->new_reg;
8525 /* We can probably test that giv's reduced reg. */
8526 if (validate_change (insn, &SET_SRC (x), new, 0))
8527 return 1;
8530 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8531 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8532 Require a constant for MULT_VAL, so we know it's nonzero.
8533 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8534 overflow problem. */
8536 for (v = bl->giv; v; v = v->next_iv)
8537 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
8538 && ! v->ignore && ! v->maybe_dead && v->always_computable
8539 && v->mode == mode
8540 && (GET_CODE (v->add_val) == SYMBOL_REF
8541 || GET_CODE (v->add_val) == LABEL_REF
8542 || GET_CODE (v->add_val) == CONST
8543 || (GET_CODE (v->add_val) == REG
8544 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8546 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8547 continue;
8549 if (! eliminate_p)
8550 return 1;
8552 /* If the giv has the opposite direction of change,
8553 then reverse the comparison. */
8554 if (INTVAL (v->mult_val) < 0)
8555 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8556 v->new_reg);
8557 else
8558 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8559 copy_rtx (v->add_val));
8561 /* Replace biv with the giv's reduced register. */
8562 update_reg_last_use (v->add_val, insn);
8563 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8564 return 1;
8566 /* Insn doesn't support that constant or invariant. Copy it
8567 into a register (it will be a loop invariant.) */
8568 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8570 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8571 where);
8573 /* Substitute the new register for its invariant value in
8574 the compare expression. */
8575 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8576 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8577 return 1;
8580 #endif
8581 break;
8583 case COMPARE:
8584 case EQ: case NE:
8585 case GT: case GE: case GTU: case GEU:
8586 case LT: case LE: case LTU: case LEU:
8587 /* See if either argument is the biv. */
8588 if (XEXP (x, 0) == reg)
8589 arg = XEXP (x, 1), arg_operand = 1;
8590 else if (XEXP (x, 1) == reg)
8591 arg = XEXP (x, 0), arg_operand = 0;
8592 else
8593 break;
8595 if (CONSTANT_P (arg))
8597 /* First try to replace with any giv that has constant positive
8598 mult_val and constant add_val. We might be able to support
8599 negative mult_val, but it seems complex to do it in general. */
8601 for (v = bl->giv; v; v = v->next_iv)
8602 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8603 && (GET_CODE (v->add_val) == SYMBOL_REF
8604 || GET_CODE (v->add_val) == LABEL_REF
8605 || GET_CODE (v->add_val) == CONST
8606 || (GET_CODE (v->add_val) == REG
8607 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8608 && ! v->ignore && ! v->maybe_dead && v->always_computable
8609 && v->mode == mode)
8611 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8612 continue;
8614 if (! eliminate_p)
8615 return 1;
8617 /* Replace biv with the giv's reduced reg. */
8618 XEXP (x, 1-arg_operand) = v->new_reg;
8620 /* If all constants are actually constant integers and
8621 the derived constant can be directly placed in the COMPARE,
8622 do so. */
8623 if (GET_CODE (arg) == CONST_INT
8624 && GET_CODE (v->mult_val) == CONST_INT
8625 && GET_CODE (v->add_val) == CONST_INT
8626 && validate_change (insn, &XEXP (x, arg_operand),
8627 GEN_INT (INTVAL (arg)
8628 * INTVAL (v->mult_val)
8629 + INTVAL (v->add_val)), 0))
8630 return 1;
8632 /* Otherwise, load it into a register. */
8633 tem = gen_reg_rtx (mode);
8634 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8635 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
8636 return 1;
8638 /* If that failed, put back the change we made above. */
8639 XEXP (x, 1-arg_operand) = reg;
8642 /* Look for giv with positive constant mult_val and nonconst add_val.
8643 Insert insns to calculate new compare value.
8644 ??? Turn this off due to possible overflow. */
8646 for (v = bl->giv; v; v = v->next_iv)
8647 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8648 && ! v->ignore && ! v->maybe_dead && v->always_computable
8649 && v->mode == mode
8650 && 0)
8652 rtx tem;
8654 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8655 continue;
8657 if (! eliminate_p)
8658 return 1;
8660 tem = gen_reg_rtx (mode);
8662 /* Replace biv with giv's reduced register. */
8663 validate_change (insn, &XEXP (x, 1 - arg_operand),
8664 v->new_reg, 1);
8666 /* Compute value to compare against. */
8667 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8668 /* Use it in this insn. */
8669 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8670 if (apply_change_group ())
8671 return 1;
8674 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8676 if (invariant_p (arg) == 1)
8678 /* Look for giv with constant positive mult_val and nonconst
8679 add_val. Insert insns to compute new compare value.
8680 ??? Turn this off due to possible overflow. */
8682 for (v = bl->giv; v; v = v->next_iv)
8683 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
8684 && ! v->ignore && ! v->maybe_dead && v->always_computable
8685 && v->mode == mode
8686 && 0)
8688 rtx tem;
8690 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8691 continue;
8693 if (! eliminate_p)
8694 return 1;
8696 tem = gen_reg_rtx (mode);
8698 /* Replace biv with giv's reduced register. */
8699 validate_change (insn, &XEXP (x, 1 - arg_operand),
8700 v->new_reg, 1);
8702 /* Compute value to compare against. */
8703 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8704 tem, where);
8705 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8706 if (apply_change_group ())
8707 return 1;
8711 /* This code has problems. Basically, you can't know when
8712 seeing if we will eliminate BL, whether a particular giv
8713 of ARG will be reduced. If it isn't going to be reduced,
8714 we can't eliminate BL. We can try forcing it to be reduced,
8715 but that can generate poor code.
8717 The problem is that the benefit of reducing TV, below should
8718 be increased if BL can actually be eliminated, but this means
8719 we might have to do a topological sort of the order in which
8720 we try to process biv. It doesn't seem worthwhile to do
8721 this sort of thing now. */
8723 #if 0
8724 /* Otherwise the reg compared with had better be a biv. */
8725 if (GET_CODE (arg) != REG
8726 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8727 return 0;
8729 /* Look for a pair of givs, one for each biv,
8730 with identical coefficients. */
8731 for (v = bl->giv; v; v = v->next_iv)
8733 struct induction *tv;
8735 if (v->ignore || v->maybe_dead || v->mode != mode)
8736 continue;
8738 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8739 if (! tv->ignore && ! tv->maybe_dead
8740 && rtx_equal_p (tv->mult_val, v->mult_val)
8741 && rtx_equal_p (tv->add_val, v->add_val)
8742 && tv->mode == mode)
8744 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8745 continue;
8747 if (! eliminate_p)
8748 return 1;
8750 /* Replace biv with its giv's reduced reg. */
8751 XEXP (x, 1-arg_operand) = v->new_reg;
8752 /* Replace other operand with the other giv's
8753 reduced reg. */
8754 XEXP (x, arg_operand) = tv->new_reg;
8755 return 1;
8758 #endif
8761 /* If we get here, the biv can't be eliminated. */
8762 return 0;
8764 case MEM:
8765 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8766 biv is used in it, since it will be replaced. */
8767 for (v = bl->giv; v; v = v->next_iv)
8768 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8769 return 1;
8770 break;
8772 default:
8773 break;
8776 /* See if any subexpression fails elimination. */
8777 fmt = GET_RTX_FORMAT (code);
8778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8780 switch (fmt[i])
8782 case 'e':
8783 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
8784 eliminate_p, where))
8785 return 0;
8786 break;
8788 case 'E':
8789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8790 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
8791 eliminate_p, where))
8792 return 0;
8793 break;
8797 return 1;
8800 /* Return nonzero if the last use of REG
8801 is in an insn following INSN in the same basic block. */
8803 static int
8804 last_use_this_basic_block (reg, insn)
8805 rtx reg;
8806 rtx insn;
8808 rtx n;
8809 for (n = insn;
8810 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8811 n = NEXT_INSN (n))
8813 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8814 return 1;
8816 return 0;
8819 /* Called via `note_stores' to record the initial value of a biv. Here we
8820 just record the location of the set and process it later. */
8822 static void
8823 record_initial (dest, set)
8824 rtx dest;
8825 rtx set;
8827 struct iv_class *bl;
8829 if (GET_CODE (dest) != REG
8830 || REGNO (dest) >= max_reg_before_loop
8831 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8832 return;
8834 bl = reg_biv_class[REGNO (dest)];
8836 /* If this is the first set found, record it. */
8837 if (bl->init_insn == 0)
8839 bl->init_insn = note_insn;
8840 bl->init_set = set;
8844 /* If any of the registers in X are "old" and currently have a last use earlier
8845 than INSN, update them to have a last use of INSN. Their actual last use
8846 will be the previous insn but it will not have a valid uid_luid so we can't
8847 use it. */
8849 static void
8850 update_reg_last_use (x, insn)
8851 rtx x;
8852 rtx insn;
8854 /* Check for the case where INSN does not have a valid luid. In this case,
8855 there is no need to modify the regno_last_uid, as this can only happen
8856 when code is inserted after the loop_end to set a pseudo's final value,
8857 and hence this insn will never be the last use of x. */
8858 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8859 && INSN_UID (insn) < max_uid_for_loop
8860 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8861 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8862 else
8864 register int i, j;
8865 register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8866 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8868 if (fmt[i] == 'e')
8869 update_reg_last_use (XEXP (x, i), insn);
8870 else if (fmt[i] == 'E')
8871 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8872 update_reg_last_use (XVECEXP (x, i, j), insn);
8877 /* Given a jump insn JUMP, return the condition that will cause it to branch
8878 to its JUMP_LABEL. If the condition cannot be understood, or is an
8879 inequality floating-point comparison which needs to be reversed, 0 will
8880 be returned.
8882 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8883 insn used in locating the condition was found. If a replacement test
8884 of the condition is desired, it should be placed in front of that
8885 insn and we will be sure that the inputs are still valid.
8887 The condition will be returned in a canonical form to simplify testing by
8888 callers. Specifically:
8890 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8891 (2) Both operands will be machine operands; (cc0) will have been replaced.
8892 (3) If an operand is a constant, it will be the second operand.
8893 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8894 for GE, GEU, and LEU. */
8897 get_condition (jump, earliest)
8898 rtx jump;
8899 rtx *earliest;
8901 enum rtx_code code;
8902 rtx prev = jump;
8903 rtx set;
8904 rtx tem;
8905 rtx op0, op1;
8906 int reverse_code = 0;
8907 int did_reverse_condition = 0;
8908 enum machine_mode mode;
8910 /* If this is not a standard conditional jump, we can't parse it. */
8911 if (GET_CODE (jump) != JUMP_INSN
8912 || ! condjump_p (jump) || simplejump_p (jump))
8913 return 0;
8915 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8916 mode = GET_MODE (XEXP (SET_SRC (PATTERN (jump)), 0));
8917 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
8918 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
8920 if (earliest)
8921 *earliest = jump;
8923 /* If this branches to JUMP_LABEL when the condition is false, reverse
8924 the condition. */
8925 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
8926 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
8927 code = reverse_condition (code), did_reverse_condition ^= 1;
8929 /* If we are comparing a register with zero, see if the register is set
8930 in the previous insn to a COMPARE or a comparison operation. Perform
8931 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8932 in cse.c */
8934 while (GET_RTX_CLASS (code) == '<' && op1 == CONST0_RTX (GET_MODE (op0)))
8936 /* Set non-zero when we find something of interest. */
8937 rtx x = 0;
8939 #ifdef HAVE_cc0
8940 /* If comparison with cc0, import actual comparison from compare
8941 insn. */
8942 if (op0 == cc0_rtx)
8944 if ((prev = prev_nonnote_insn (prev)) == 0
8945 || GET_CODE (prev) != INSN
8946 || (set = single_set (prev)) == 0
8947 || SET_DEST (set) != cc0_rtx)
8948 return 0;
8950 op0 = SET_SRC (set);
8951 op1 = CONST0_RTX (GET_MODE (op0));
8952 if (earliest)
8953 *earliest = prev;
8955 #endif
8957 /* If this is a COMPARE, pick up the two things being compared. */
8958 if (GET_CODE (op0) == COMPARE)
8960 op1 = XEXP (op0, 1);
8961 op0 = XEXP (op0, 0);
8962 continue;
8964 else if (GET_CODE (op0) != REG)
8965 break;
8967 /* Go back to the previous insn. Stop if it is not an INSN. We also
8968 stop if it isn't a single set or if it has a REG_INC note because
8969 we don't want to bother dealing with it. */
8971 if ((prev = prev_nonnote_insn (prev)) == 0
8972 || GET_CODE (prev) != INSN
8973 || FIND_REG_INC_NOTE (prev, 0)
8974 || (set = single_set (prev)) == 0)
8975 break;
8977 /* If this is setting OP0, get what it sets it to if it looks
8978 relevant. */
8979 if (rtx_equal_p (SET_DEST (set), op0))
8981 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
8983 /* ??? We may not combine comparisons done in a CCmode with
8984 comparisons not done in a CCmode. This is to aid targets
8985 like Alpha that have an IEEE compliant EQ instruction, and
8986 a non-IEEE compliant BEQ instruction. The use of CCmode is
8987 actually artificial, simply to prevent the combination, but
8988 should not affect other platforms.
8990 However, we must allow VOIDmode comparisons to match either
8991 CCmode or non-CCmode comparison, because some ports have
8992 modeless comparisons inside branch patterns.
8994 ??? This mode check should perhaps look more like the mode check
8995 in simplify_comparison in combine. */
8997 if ((GET_CODE (SET_SRC (set)) == COMPARE
8998 || (((code == NE
8999 || (code == LT
9000 && GET_MODE_CLASS (inner_mode) == MODE_INT
9001 && (GET_MODE_BITSIZE (inner_mode)
9002 <= HOST_BITS_PER_WIDE_INT)
9003 && (STORE_FLAG_VALUE
9004 & ((HOST_WIDE_INT) 1
9005 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9006 #ifdef FLOAT_STORE_FLAG_VALUE
9007 || (code == LT
9008 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9009 && FLOAT_STORE_FLAG_VALUE < 0)
9010 #endif
9012 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9013 && (((GET_MODE_CLASS (mode) == MODE_CC)
9014 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9015 || mode == VOIDmode || inner_mode == VOIDmode))
9016 x = SET_SRC (set);
9017 else if (((code == EQ
9018 || (code == GE
9019 && (GET_MODE_BITSIZE (inner_mode)
9020 <= HOST_BITS_PER_WIDE_INT)
9021 && GET_MODE_CLASS (inner_mode) == MODE_INT
9022 && (STORE_FLAG_VALUE
9023 & ((HOST_WIDE_INT) 1
9024 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9025 #ifdef FLOAT_STORE_FLAG_VALUE
9026 || (code == GE
9027 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9028 && FLOAT_STORE_FLAG_VALUE < 0)
9029 #endif
9031 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9032 && (((GET_MODE_CLASS (mode) == MODE_CC)
9033 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9034 || mode == VOIDmode || inner_mode == VOIDmode))
9037 /* We might have reversed a LT to get a GE here. But this wasn't
9038 actually the comparison of data, so we don't flag that we
9039 have had to reverse the condition. */
9040 did_reverse_condition ^= 1;
9041 reverse_code = 1;
9042 x = SET_SRC (set);
9044 else
9045 break;
9048 else if (reg_set_p (op0, prev))
9049 /* If this sets OP0, but not directly, we have to give up. */
9050 break;
9052 if (x)
9054 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9055 code = GET_CODE (x);
9056 if (reverse_code)
9058 code = reverse_condition (code);
9059 did_reverse_condition ^= 1;
9060 reverse_code = 0;
9063 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9064 if (earliest)
9065 *earliest = prev;
9069 /* If constant is first, put it last. */
9070 if (CONSTANT_P (op0))
9071 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9073 /* If OP0 is the result of a comparison, we weren't able to find what
9074 was really being compared, so fail. */
9075 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9076 return 0;
9078 /* Canonicalize any ordered comparison with integers involving equality
9079 if we can do computations in the relevant mode and we do not
9080 overflow. */
9082 if (GET_CODE (op1) == CONST_INT
9083 && GET_MODE (op0) != VOIDmode
9084 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9086 HOST_WIDE_INT const_val = INTVAL (op1);
9087 unsigned HOST_WIDE_INT uconst_val = const_val;
9088 unsigned HOST_WIDE_INT max_val
9089 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9091 switch (code)
9093 case LE:
9094 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9095 code = LT, op1 = GEN_INT (const_val + 1);
9096 break;
9098 /* When cross-compiling, const_val might be sign-extended from
9099 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9100 case GE:
9101 if ((HOST_WIDE_INT) (const_val & max_val)
9102 != (((HOST_WIDE_INT) 1
9103 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9104 code = GT, op1 = GEN_INT (const_val - 1);
9105 break;
9107 case LEU:
9108 if (uconst_val < max_val)
9109 code = LTU, op1 = GEN_INT (uconst_val + 1);
9110 break;
9112 case GEU:
9113 if (uconst_val != 0)
9114 code = GTU, op1 = GEN_INT (uconst_val - 1);
9115 break;
9117 default:
9118 break;
9122 /* If this was floating-point and we reversed anything other than an
9123 EQ or NE, return zero. */
9124 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
9125 && did_reverse_condition && code != NE && code != EQ
9126 && ! flag_fast_math
9127 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
9128 return 0;
9130 #ifdef HAVE_cc0
9131 /* Never return CC0; return zero instead. */
9132 if (op0 == cc0_rtx)
9133 return 0;
9134 #endif
9136 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9139 /* Similar to above routine, except that we also put an invariant last
9140 unless both operands are invariants. */
9143 get_condition_for_loop (x)
9144 rtx x;
9146 rtx comparison = get_condition (x, NULL_PTR);
9148 if (comparison == 0
9149 || ! invariant_p (XEXP (comparison, 0))
9150 || invariant_p (XEXP (comparison, 1)))
9151 return comparison;
9153 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9154 XEXP (comparison, 1), XEXP (comparison, 0));
9157 #ifdef HAVE_decrement_and_branch_on_count
9158 /* Instrument loop for insertion of bct instruction. We distinguish between
9159 loops with compile-time bounds and those with run-time bounds.
9160 Information from loop_iterations() is used to compute compile-time bounds.
9161 Run-time bounds should use loop preconditioning, but currently ignored.
9164 static void
9165 insert_bct (loop_start, loop_end, loop_info)
9166 rtx loop_start, loop_end;
9167 struct loop_info *loop_info;
9169 int i;
9170 unsigned HOST_WIDE_INT n_iterations;
9172 int increment_direction, compare_direction;
9174 /* If the loop condition is <= or >=, the number of iteration
9175 is 1 more than the range of the bounds of the loop. */
9176 int add_iteration = 0;
9178 enum machine_mode loop_var_mode = word_mode;
9180 int loop_num = uid_loop_num [INSN_UID (loop_start)];
9182 /* It's impossible to instrument a competely unrolled loop. */
9183 if (loop_info->unroll_number == loop_info->n_iterations)
9184 return;
9186 /* Make sure that the count register is not in use. */
9187 if (loop_used_count_register [loop_num])
9189 if (loop_dump_stream)
9190 fprintf (loop_dump_stream,
9191 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9192 loop_num);
9193 return;
9196 /* Make sure that the function has no indirect jumps. */
9197 if (indirect_jump_in_function)
9199 if (loop_dump_stream)
9200 fprintf (loop_dump_stream,
9201 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9202 loop_num);
9203 return;
9206 /* Make sure that the last loop insn is a conditional jump. */
9207 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
9208 || ! condjump_p (PREV_INSN (loop_end))
9209 || simplejump_p (PREV_INSN (loop_end)))
9211 if (loop_dump_stream)
9212 fprintf (loop_dump_stream,
9213 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9214 loop_num);
9215 return;
9218 /* Make sure that the loop does not contain a function call
9219 (the count register might be altered by the called function). */
9220 if (loop_info->has_call)
9222 if (loop_dump_stream)
9223 fprintf (loop_dump_stream,
9224 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9225 loop_num);
9226 return;
9229 /* Make sure that the loop does not jump via a table.
9230 (the count register might be used to perform the branch on table). */
9231 if (loop_info->has_tablejump)
9233 if (loop_dump_stream)
9234 fprintf (loop_dump_stream,
9235 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9236 loop_num);
9237 return;
9240 /* Account for loop unrolling in instrumented iteration count. */
9241 if (loop_info->unroll_number > 1)
9242 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9243 else
9244 n_iterations = loop_info->n_iterations;
9246 if (n_iterations != 0 && n_iterations < 3)
9248 /* Allow an enclosing outer loop to benefit if possible. */
9249 if (loop_dump_stream)
9250 fprintf (loop_dump_stream,
9251 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9252 loop_num);
9253 return;
9256 /* Try to instrument the loop. */
9258 /* Handle the simpler case, where the bounds are known at compile time. */
9259 if (n_iterations > 0)
9261 /* Mark all enclosing loops that they cannot use count register. */
9262 for (i = loop_num; i != -1; i = loop_outer_loop[i])
9263 loop_used_count_register[i] = 1;
9264 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9265 return;
9268 /* Handle the more complex case, that the bounds are NOT known
9269 at compile time. In this case we generate run_time calculation
9270 of the number of iterations. */
9272 if (loop_info->iteration_var == 0)
9274 if (loop_dump_stream)
9275 fprintf (loop_dump_stream,
9276 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9277 loop_num);
9278 return;
9281 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9282 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9284 if (loop_dump_stream)
9285 fprintf (loop_dump_stream,
9286 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9287 loop_num);
9288 return;
9291 /* With runtime bounds, if the compare is of the form '!=' we give up */
9292 if (loop_info->comparison_code == NE)
9294 if (loop_dump_stream)
9295 fprintf (loop_dump_stream,
9296 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9297 loop_num);
9298 return;
9300 /* Use common loop preconditioning code instead. */
9301 #if 0
9302 else
9304 /* We rely on the existence of run-time guard to ensure that the
9305 loop executes at least once. */
9306 rtx sequence;
9307 rtx iterations_num_reg;
9309 unsigned HOST_WIDE_INT increment_value_abs
9310 = INTVAL (increment) * increment_direction;
9312 /* make sure that the increment is a power of two, otherwise (an
9313 expensive) divide is needed. */
9314 if (exact_log2 (increment_value_abs) == -1)
9316 if (loop_dump_stream)
9317 fprintf (loop_dump_stream,
9318 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9319 return;
9322 /* compute the number of iterations */
9323 start_sequence ();
9325 rtx temp_reg;
9327 /* Again, the number of iterations is calculated by:
9329 ; compare-val - initial-val + (increment -1) + additional-iteration
9330 ; num_iterations = -----------------------------------------------------------------
9331 ; increment
9333 /* ??? Do we have to call copy_rtx here before passing rtx to
9334 expand_binop? */
9335 if (compare_direction > 0)
9337 /* <, <= :the loop variable is increasing */
9338 temp_reg = expand_binop (loop_var_mode, sub_optab,
9339 comparison_value, initial_value,
9340 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9342 else
9344 temp_reg = expand_binop (loop_var_mode, sub_optab,
9345 initial_value, comparison_value,
9346 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9349 if (increment_value_abs - 1 + add_iteration != 0)
9350 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9351 GEN_INT (increment_value_abs - 1
9352 + add_iteration),
9353 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9355 if (increment_value_abs != 1)
9356 iterations_num_reg = expand_binop (loop_var_mode, asr_optab,
9357 temp_reg,
9358 GEN_INT (exact_log2 (increment_value_abs)),
9359 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9360 else
9361 iterations_num_reg = temp_reg;
9363 sequence = gen_sequence ();
9364 end_sequence ();
9365 emit_insn_before (sequence, loop_start);
9366 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9369 return;
9370 #endif /* Complex case */
9373 /* Instrument loop by inserting a bct in it as follows:
9374 1. A new counter register is created.
9375 2. In the head of the loop the new variable is initialized to the value
9376 passed in the loop_num_iterations parameter.
9377 3. At the end of the loop, comparison of the register with 0 is generated.
9378 The created comparison follows the pattern defined for the
9379 decrement_and_branch_on_count insn, so this insn will be generated.
9380 4. The branch on the old variable are deleted. The compare must remain
9381 because it might be used elsewhere. If the loop-variable or condition
9382 register are used elsewhere, they will be eliminated by flow. */
9384 static void
9385 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9386 rtx loop_start, loop_end;
9387 rtx loop_num_iterations;
9389 rtx counter_reg;
9390 rtx start_label;
9391 rtx sequence;
9393 if (HAVE_decrement_and_branch_on_count)
9395 if (loop_dump_stream)
9397 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9398 if (GET_CODE (loop_num_iterations) == CONST_INT)
9399 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9400 INTVAL (loop_num_iterations));
9401 else
9402 fputs ("runtime", loop_dump_stream);
9403 fputs (" iterations)", loop_dump_stream);
9406 /* Discard original jump to continue loop. Original compare result
9407 may still be live, so it cannot be discarded explicitly. */
9408 delete_insn (PREV_INSN (loop_end));
9410 /* Insert the label which will delimit the start of the loop. */
9411 start_label = gen_label_rtx ();
9412 emit_label_after (start_label, loop_start);
9414 /* Insert initialization of the count register into the loop header. */
9415 start_sequence ();
9416 counter_reg = gen_reg_rtx (word_mode);
9417 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9418 sequence = gen_sequence ();
9419 end_sequence ();
9420 emit_insn_before (sequence, loop_start);
9422 /* Insert new comparison on the count register instead of the
9423 old one, generating the needed BCT pattern (that will be
9424 later recognized by assembly generation phase). */
9425 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
9426 start_label),
9427 loop_end);
9428 LABEL_NUSES (start_label)++;
9432 #endif /* HAVE_decrement_and_branch_on_count */
9434 /* Scan the function and determine whether it has indirect (computed) jumps.
9436 This is taken mostly from flow.c; similar code exists elsewhere
9437 in the compiler. It may be useful to put this into rtlanal.c. */
9438 static int
9439 indirect_jump_in_function_p (start)
9440 rtx start;
9442 rtx insn;
9444 for (insn = start; insn; insn = NEXT_INSN (insn))
9445 if (computed_jump_p (insn))
9446 return 1;
9448 return 0;
9451 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9452 documentation for LOOP_MEMS for the definition of `appropriate'.
9453 This function is called from prescan_loop via for_each_rtx. */
9455 static int
9456 insert_loop_mem (mem, data)
9457 rtx *mem;
9458 void *data ATTRIBUTE_UNUSED;
9460 int i;
9461 rtx m = *mem;
9463 if (m == NULL_RTX)
9464 return 0;
9466 switch (GET_CODE (m))
9468 case MEM:
9469 break;
9471 case CONST_DOUBLE:
9472 /* We're not interested in the MEM associated with a
9473 CONST_DOUBLE, so there's no need to traverse into this. */
9474 return -1;
9476 default:
9477 /* This is not a MEM. */
9478 return 0;
9481 /* See if we've already seen this MEM. */
9482 for (i = 0; i < loop_mems_idx; ++i)
9483 if (rtx_equal_p (m, loop_mems[i].mem))
9485 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9486 /* The modes of the two memory accesses are different. If
9487 this happens, something tricky is going on, and we just
9488 don't optimize accesses to this MEM. */
9489 loop_mems[i].optimize = 0;
9491 return 0;
9494 /* Resize the array, if necessary. */
9495 if (loop_mems_idx == loop_mems_allocated)
9497 if (loop_mems_allocated != 0)
9498 loop_mems_allocated *= 2;
9499 else
9500 loop_mems_allocated = 32;
9502 loop_mems = (loop_mem_info*)
9503 xrealloc (loop_mems,
9504 loop_mems_allocated * sizeof (loop_mem_info));
9507 /* Actually insert the MEM. */
9508 loop_mems[loop_mems_idx].mem = m;
9509 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9510 because we can't put it in a register. We still store it in the
9511 table, though, so that if we see the same address later, but in a
9512 non-BLK mode, we'll not think we can optimize it at that point. */
9513 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9514 loop_mems[loop_mems_idx].reg = NULL_RTX;
9515 ++loop_mems_idx;
9517 return 0;
9520 /* Like load_mems, but also ensures that SET_IN_LOOP,
9521 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9522 values after load_mems. */
9524 static void
9525 load_mems_and_recount_loop_regs_set (scan_start, end, loop_top, start,
9526 insn_count)
9527 rtx scan_start;
9528 rtx end;
9529 rtx loop_top;
9530 rtx start;
9531 int *insn_count;
9533 int nregs = max_reg_num ();
9535 load_mems (scan_start, end, loop_top, start);
9537 /* Recalculate set_in_loop and friends since load_mems may have
9538 created new registers. */
9539 if (max_reg_num () > nregs)
9541 int i;
9542 int old_nregs;
9544 old_nregs = nregs;
9545 nregs = max_reg_num ();
9547 if ((unsigned) nregs > set_in_loop->num_elements)
9549 /* Grow all the arrays. */
9550 VARRAY_GROW (set_in_loop, nregs);
9551 VARRAY_GROW (n_times_set, nregs);
9552 VARRAY_GROW (may_not_optimize, nregs);
9553 VARRAY_GROW (reg_single_usage, nregs);
9555 /* Clear the arrays */
9556 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9557 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9558 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9560 count_loop_regs_set (loop_top ? loop_top : start, end,
9561 may_not_optimize, reg_single_usage,
9562 insn_count, nregs);
9564 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9566 VARRAY_CHAR (may_not_optimize, i) = 1;
9567 VARRAY_INT (set_in_loop, i) = 1;
9570 #ifdef AVOID_CCMODE_COPIES
9571 /* Don't try to move insns which set CC registers if we should not
9572 create CCmode register copies. */
9573 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9574 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9575 VARRAY_CHAR (may_not_optimize, i) = 1;
9576 #endif
9578 /* Set n_times_set for the new registers. */
9579 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9580 (char *) (&n_times_set->data.i[0] + old_nregs),
9581 (nregs - old_nregs) * sizeof (int));
9585 /* Move MEMs into registers for the duration of the loop. SCAN_START
9586 is the first instruction in the loop (as it is executed). The
9587 other parameters are as for next_insn_in_loop. */
9589 static void
9590 load_mems (scan_start, end, loop_top, start)
9591 rtx scan_start;
9592 rtx end;
9593 rtx loop_top;
9594 rtx start;
9596 int maybe_never = 0;
9597 int i;
9598 rtx p;
9599 rtx label = NULL_RTX;
9600 rtx end_label = NULL_RTX;
9602 if (loop_mems_idx > 0)
9604 /* Nonzero if the next instruction may never be executed. */
9605 int next_maybe_never = 0;
9607 /* Check to see if it's possible that some instructions in the
9608 loop are never executed. */
9609 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9610 p != NULL_RTX && !maybe_never;
9611 p = next_insn_in_loop (p, scan_start, end, loop_top))
9613 if (GET_CODE (p) == CODE_LABEL)
9614 maybe_never = 1;
9615 else if (GET_CODE (p) == JUMP_INSN
9616 /* If we enter the loop in the middle, and scan
9617 around to the beginning, don't set maybe_never
9618 for that. This must be an unconditional jump,
9619 otherwise the code at the top of the loop might
9620 never be executed. Unconditional jumps are
9621 followed a by barrier then loop end. */
9622 && ! (GET_CODE (p) == JUMP_INSN
9623 && JUMP_LABEL (p) == loop_top
9624 && NEXT_INSN (NEXT_INSN (p)) == end
9625 && simplejump_p (p)))
9627 if (!condjump_p (p))
9628 /* Something complicated. */
9629 maybe_never = 1;
9630 else
9631 /* If there are any more instructions in the loop, they
9632 might not be reached. */
9633 next_maybe_never = 1;
9635 else if (next_maybe_never)
9636 maybe_never = 1;
9639 /* Actually move the MEMs. */
9640 for (i = 0; i < loop_mems_idx; ++i)
9642 int written = 0;
9643 rtx reg;
9644 rtx mem = loop_mems[i].mem;
9645 rtx mem_list_entry;
9647 if (MEM_VOLATILE_P (mem)
9648 || invariant_p (XEXP (mem, 0)) != 1)
9649 /* There's no telling whether or not MEM is modified. */
9650 loop_mems[i].optimize = 0;
9652 /* Go through the MEMs written to in the loop to see if this
9653 one is aliased by one of them. */
9654 mem_list_entry = loop_store_mems;
9655 while (mem_list_entry)
9657 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9658 written = 1;
9659 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9660 mem, rtx_varies_p))
9662 /* MEM is indeed aliased by this store. */
9663 loop_mems[i].optimize = 0;
9664 break;
9666 mem_list_entry = XEXP (mem_list_entry, 1);
9669 /* If this MEM is written to, we must be sure that there
9670 are no reads from another MEM that aliases this one. */
9671 if (loop_mems[i].optimize && written)
9673 int j;
9675 for (j = 0; j < loop_mems_idx; ++j)
9677 if (j == i)
9678 continue;
9679 else if (true_dependence (mem,
9680 VOIDmode,
9681 loop_mems[j].mem,
9682 rtx_varies_p))
9684 /* It's not safe to hoist loop_mems[i] out of
9685 the loop because writes to it might not be
9686 seen by reads from loop_mems[j]. */
9687 loop_mems[i].optimize = 0;
9688 break;
9693 if (maybe_never && may_trap_p (mem))
9694 /* We can't access the MEM outside the loop; it might
9695 cause a trap that wouldn't have happened otherwise. */
9696 loop_mems[i].optimize = 0;
9698 if (!loop_mems[i].optimize)
9699 /* We thought we were going to lift this MEM out of the
9700 loop, but later discovered that we could not. */
9701 continue;
9703 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9704 order to keep scan_loop from moving stores to this MEM
9705 out of the loop just because this REG is neither a
9706 user-variable nor used in the loop test. */
9707 reg = gen_reg_rtx (GET_MODE (mem));
9708 REG_USERVAR_P (reg) = 1;
9709 loop_mems[i].reg = reg;
9711 /* Now, replace all references to the MEM with the
9712 corresponding pesudos. */
9713 for (p = next_insn_in_loop (scan_start, scan_start, end, loop_top);
9714 p != NULL_RTX;
9715 p = next_insn_in_loop (p, scan_start, end, loop_top))
9717 rtx_and_int ri;
9718 ri.r = p;
9719 ri.i = i;
9720 for_each_rtx (&p, replace_loop_mem, &ri);
9723 if (!apply_change_group ())
9724 /* We couldn't replace all occurrences of the MEM. */
9725 loop_mems[i].optimize = 0;
9726 else
9728 rtx set;
9730 /* Load the memory immediately before START, which is
9731 the NOTE_LOOP_BEG. */
9732 set = gen_move_insn (reg, mem);
9733 emit_insn_before (set, start);
9735 if (written)
9737 if (label == NULL_RTX)
9739 /* We must compute the former
9740 right-after-the-end label before we insert
9741 the new one. */
9742 end_label = next_label (end);
9743 label = gen_label_rtx ();
9744 emit_label_after (label, end);
9747 /* Store the memory immediately after END, which is
9748 the NOTE_LOOP_END. */
9749 set = gen_move_insn (copy_rtx (mem), reg);
9750 emit_insn_after (set, label);
9753 if (loop_dump_stream)
9755 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9756 REGNO (reg), (written ? "r/w" : "r/o"));
9757 print_rtl (loop_dump_stream, mem);
9758 fputc ('\n', loop_dump_stream);
9764 if (label != NULL_RTX)
9766 /* Now, we need to replace all references to the previous exit
9767 label with the new one. */
9768 rtx_pair rr;
9769 rr.r1 = end_label;
9770 rr.r2 = label;
9772 for (p = start; p != end; p = NEXT_INSN (p))
9774 for_each_rtx (&p, replace_label, &rr);
9776 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9777 field. This is not handled by for_each_rtx because it doesn't
9778 handle unprinted ('0') fields. We need to update JUMP_LABEL
9779 because the immediately following unroll pass will use it.
9780 replace_label would not work anyways, because that only handles
9781 LABEL_REFs. */
9782 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9783 JUMP_LABEL (p) = label;
9788 /* Replace MEM with its associated pseudo register. This function is
9789 called from load_mems via for_each_rtx. DATA is actually an
9790 rtx_and_int * describing the instruction currently being scanned
9791 and the MEM we are currently replacing. */
9793 static int
9794 replace_loop_mem (mem, data)
9795 rtx *mem;
9796 void *data;
9798 rtx_and_int *ri;
9799 rtx insn;
9800 int i;
9801 rtx m = *mem;
9803 if (m == NULL_RTX)
9804 return 0;
9806 switch (GET_CODE (m))
9808 case MEM:
9809 break;
9811 case CONST_DOUBLE:
9812 /* We're not interested in the MEM associated with a
9813 CONST_DOUBLE, so there's no need to traverse into one. */
9814 return -1;
9816 default:
9817 /* This is not a MEM. */
9818 return 0;
9821 ri = (rtx_and_int*) data;
9822 i = ri->i;
9824 if (!rtx_equal_p (loop_mems[i].mem, m))
9825 /* This is not the MEM we are currently replacing. */
9826 return 0;
9828 insn = ri->r;
9830 /* Actually replace the MEM. */
9831 validate_change (insn, mem, loop_mems[i].reg, 1);
9833 return 0;
9836 /* Replace occurrences of the old exit label for the loop with the new
9837 one. DATA is an rtx_pair containing the old and new labels,
9838 respectively. */
9840 static int
9841 replace_label (x, data)
9842 rtx *x;
9843 void *data;
9845 rtx l = *x;
9846 rtx old_label = ((rtx_pair*) data)->r1;
9847 rtx new_label = ((rtx_pair*) data)->r2;
9849 if (l == NULL_RTX)
9850 return 0;
9852 if (GET_CODE (l) != LABEL_REF)
9853 return 0;
9855 if (XEXP (l, 0) != old_label)
9856 return 0;
9858 XEXP (l, 0) = new_label;
9859 ++LABEL_NUSES (new_label);
9860 --LABEL_NUSES (old_label);
9862 return 0;