1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
35 /* This file is part of the graph coloring register allocator.
36 It contains the graph colorizer. Given an interference graph
37 as set up in ra-build.c the toplevel function in this file
38 (ra_colorize_graph) colorizes the graph, leaving a list
39 of colored, coalesced and spilled nodes.
41 The algorithm used is a merge of George & Appels iterative coalescing
42 and optimistic coalescing, switchable at runtime. The current default
43 is "optimistic coalescing +", which is based on the normal Briggs/Cooper
44 framework. We can also use biased coloring. Most of the structure
45 here follows the different papers.
47 Additionally there is a custom step to locally improve the overall
48 spill cost of the colored graph (recolor_spills). */
50 static void push_list
PARAMS ((struct dlist
*, struct dlist
**));
51 static void push_list_end
PARAMS ((struct dlist
*, struct dlist
**));
52 static void free_dlist
PARAMS ((struct dlist
**));
53 static void put_web_at_end
PARAMS ((struct web
*, enum node_type
));
54 static void put_move
PARAMS ((struct move
*, enum move_type
));
55 static void build_worklists
PARAMS ((struct df
*));
56 static void enable_move
PARAMS ((struct web
*));
57 static void decrement_degree
PARAMS ((struct web
*, int));
58 static void simplify
PARAMS ((void));
59 static void remove_move_1
PARAMS ((struct web
*, struct move
*));
60 static void remove_move
PARAMS ((struct web
*, struct move
*));
61 static void add_worklist
PARAMS ((struct web
*));
62 static int ok
PARAMS ((struct web
*, struct web
*));
63 static int conservative
PARAMS ((struct web
*, struct web
*));
64 static inline unsigned int simplify_p
PARAMS ((enum node_type
));
65 static void combine
PARAMS ((struct web
*, struct web
*));
66 static void coalesce
PARAMS ((void));
67 static void freeze_moves
PARAMS ((struct web
*));
68 static void freeze
PARAMS ((void));
69 static void select_spill
PARAMS ((void));
70 static int color_usable_p
PARAMS ((int, HARD_REG_SET
, HARD_REG_SET
,
72 int get_free_reg
PARAMS ((HARD_REG_SET
, HARD_REG_SET
, enum machine_mode
));
73 static int get_biased_reg
PARAMS ((HARD_REG_SET
, HARD_REG_SET
, HARD_REG_SET
,
74 HARD_REG_SET
, enum machine_mode
));
75 static int count_long_blocks
PARAMS ((HARD_REG_SET
, int));
76 static char * hardregset_to_string
PARAMS ((HARD_REG_SET
));
77 static void calculate_dont_begin
PARAMS ((struct web
*, HARD_REG_SET
*));
78 static void colorize_one_web
PARAMS ((struct web
*, int));
79 static void assign_colors
PARAMS ((void));
80 static void try_recolor_web
PARAMS ((struct web
*));
81 static void insert_coalesced_conflicts
PARAMS ((void));
82 static int comp_webs_maxcost
PARAMS ((const void *, const void *));
83 static void recolor_spills
PARAMS ((void));
84 static void check_colors
PARAMS ((void));
85 static void restore_conflicts_from_coalesce
PARAMS ((struct web
*));
86 static void break_coalesced_spills
PARAMS ((void));
87 static void unalias_web
PARAMS ((struct web
*));
88 static void break_aliases_to_web
PARAMS ((struct web
*));
89 static void break_precolored_alias
PARAMS ((struct web
*));
90 static void init_web_pairs
PARAMS ((void));
91 static void add_web_pair_cost
PARAMS ((struct web
*, struct web
*,
92 unsigned HOST_WIDE_INT
, unsigned int));
93 static int comp_web_pairs
PARAMS ((const void *, const void *));
94 static void sort_and_combine_web_pairs
PARAMS ((int));
95 static void aggressive_coalesce
PARAMS ((void));
96 static void extended_coalesce_2
PARAMS ((void));
97 static void check_uncoalesced_moves
PARAMS ((void));
99 static struct dlist
*mv_worklist
, *mv_coalesced
, *mv_constrained
;
100 static struct dlist
*mv_frozen
, *mv_active
;
102 /* Push a node onto the front of the list. */
109 if (x
->next
|| x
->prev
)
118 push_list_end (x
, list
)
122 if (x
->prev
|| x
->next
)
129 while ((*list
)->next
)
130 list
= &((*list
)->next
);
135 /* Remove a node from the list. */
138 remove_list (x
, list
)
142 struct dlist
*y
= x
->prev
;
150 x
->next
= x
->prev
= NULL
;
153 /* Pop the front of the list. */
159 struct dlist
*r
= *list
;
161 remove_list (r
, list
);
165 /* Free the given double linked list. */
174 /* The web WEB should get the given new TYPE. Put it onto the
176 Inline, because it's called with constant TYPE every time. */
193 push_list (web
->dlink
, &WEBS(type
));
196 push_list (web
->dlink
, &WEBS(INITIAL
));
200 push_list (web
->dlink
, &WEBS(type
= SIMPLIFY_SPILL
));
201 else if (web
->add_hardregs
)
202 push_list (web
->dlink
, &WEBS(type
= SIMPLIFY_FAT
));
204 push_list (web
->dlink
, &WEBS(SIMPLIFY
));
212 /* After we are done with the whole pass of coloring/spilling,
213 we reset the lists of webs, in preparation of the next pass.
214 The spilled webs become free, colored webs go to the initial list,
215 coalesced webs become free or initial, according to what type of web
216 they are coalesced to. */
223 if (WEBS(SIMPLIFY
) || WEBS(SIMPLIFY_SPILL
) || WEBS(SIMPLIFY_FAT
)
224 || WEBS(FREEZE
) || WEBS(SPILL
) || WEBS(SELECT
))
227 while ((d
= pop_list (&WEBS(COALESCED
))) != NULL
)
229 struct web
*web
= DLIST_WEB (d
);
230 struct web
*aweb
= alias (web
);
231 /* Note, how alias() becomes invalid through the two put_web()'s
232 below. It might set the type of a web to FREE (from COALESCED),
233 which itself is a target of aliasing (i.e. in the middle of
234 an alias chain). We can handle this by checking also for
235 type == FREE. Note nevertheless, that alias() is invalid
237 if (aweb
->type
== SPILLED
|| aweb
->type
== FREE
)
240 put_web (web
, INITIAL
);
242 while ((d
= pop_list (&WEBS(SPILLED
))) != NULL
)
243 put_web (DLIST_WEB (d
), FREE
);
244 while ((d
= pop_list (&WEBS(COLORED
))) != NULL
)
245 put_web (DLIST_WEB (d
), INITIAL
);
247 /* All free webs have no conflicts anymore. */
248 for (d
= WEBS(FREE
); d
; d
= d
->next
)
250 struct web
*web
= DLIST_WEB (d
);
251 BITMAP_XFREE (web
->useless_conflicts
);
252 web
->useless_conflicts
= NULL
;
255 /* Sanity check, that we only have free, initial or precolored webs. */
256 for (i
= 0; i
< num_webs
; i
++)
258 struct web
*web
= ID2WEB (i
);
259 if (web
->type
!= INITIAL
&& web
->type
!= FREE
&& web
->type
!= PRECOLORED
)
262 free_dlist (&mv_worklist
);
263 free_dlist (&mv_coalesced
);
264 free_dlist (&mv_constrained
);
265 free_dlist (&mv_frozen
);
266 free_dlist (&mv_active
);
269 /* Similar to put_web(), but add the web to the end of the appropriate
270 list. Additionally TYPE may not be SIMPLIFY. */
273 put_web_at_end (web
, type
)
277 if (type
== PRECOLORED
)
279 else if (type
== SIMPLIFY
)
281 push_list_end (web
->dlink
, &WEBS(type
));
285 /* Unlink WEB from the list it's currently on (which corresponds to
286 its current type). */
289 remove_web_from_list (web
)
292 if (web
->type
== PRECOLORED
)
293 remove_list (web
->dlink
, &WEBS(INITIAL
));
295 remove_list (web
->dlink
, &WEBS(web
->type
));
298 /* Give MOVE the TYPE, and link it into the correct list. */
301 put_move (move
, type
)
308 push_list (move
->dlink
, &mv_worklist
);
311 push_list (move
->dlink
, &mv_coalesced
);
314 push_list (move
->dlink
, &mv_constrained
);
317 push_list (move
->dlink
, &mv_frozen
);
320 push_list (move
->dlink
, &mv_active
);
328 /* Build the worklists we are going to process. */
332 struct df
*df ATTRIBUTE_UNUSED
;
334 struct dlist
*d
, *d_next
;
335 struct move_list
*ml
;
337 /* If we are not the first pass, put all stackwebs (which are still
338 backed by a new pseudo, but conceptually can stand for a stackslot,
339 i.e. it doesn't really matter if they get a color or not), on
340 the SELECT stack first, those with lowest cost first. This way
341 they will be colored last, so do not constrain the coloring of the
342 normal webs. But still those with the highest count are colored
343 before, i.e. get a color more probable. The use of stackregs is
344 a pure optimization, and all would work, if we used real stackslots
348 unsigned int i
, num
, max_num
;
349 struct web
**order2web
;
350 max_num
= num_webs
- num_subwebs
;
351 order2web
= (struct web
**) xmalloc (max_num
* sizeof (order2web
[0]));
352 for (i
= 0, num
= 0; i
< max_num
; i
++)
353 if (id2web
[i
]->regno
>= max_normal_pseudo
)
354 order2web
[num
++] = id2web
[i
];
357 qsort (order2web
, num
, sizeof (order2web
[0]), comp_webs_maxcost
);
358 for (i
= num
- 1;; i
--)
360 struct web
*web
= order2web
[i
];
361 struct conflict_link
*wl
;
362 remove_list (web
->dlink
, &WEBS(INITIAL
));
363 put_web (web
, SELECT
);
364 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
366 struct web
*pweb
= wl
->t
;
367 pweb
->num_conflicts
-= 1 + web
->add_hardregs
;
376 /* For all remaining initial webs, classify them. */
377 for (d
= WEBS(INITIAL
); d
; d
= d_next
)
379 struct web
*web
= DLIST_WEB (d
);
381 if (web
->type
== PRECOLORED
)
384 remove_list (d
, &WEBS(INITIAL
));
385 if (web
->num_conflicts
>= NUM_REGS (web
))
386 put_web (web
, SPILL
);
388 put_web (web
, FREEZE
);
390 put_web (web
, SIMPLIFY
);
393 /* And put all moves on the worklist for iterated coalescing.
394 Note, that if iterated coalescing is off, then wl_moves doesn't
395 contain any moves. */
396 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
399 struct move
*m
= ml
->move
;
400 d
= (struct dlist
*) ra_calloc (sizeof (struct dlist
));
403 put_move (m
, WORKLIST
);
407 /* Enable the active moves, in which WEB takes part, to be processed. */
413 struct move_list
*ml
;
414 for (ml
= web
->moves
; ml
; ml
= ml
->next
)
415 if (ml
->move
->type
== ACTIVE
)
417 remove_list (ml
->move
->dlink
, &mv_active
);
418 put_move (ml
->move
, WORKLIST
);
422 /* Decrement the degree of node WEB by the amount DEC.
423 Possibly change the type of WEB, if the number of conflicts is
424 now smaller than its freedom. */
427 decrement_degree (web
, dec
)
431 int before
= web
->num_conflicts
;
432 web
->num_conflicts
-= dec
;
433 if (web
->num_conflicts
< NUM_REGS (web
) && before
>= NUM_REGS (web
))
435 struct conflict_link
*a
;
437 for (a
= web
->conflict_list
; a
; a
= a
->next
)
439 struct web
*aweb
= a
->t
;
440 if (aweb
->type
!= SELECT
&& aweb
->type
!= COALESCED
)
443 if (web
->type
!= FREEZE
)
445 remove_web_from_list (web
);
447 put_web (web
, FREEZE
);
449 put_web (web
, SIMPLIFY
);
454 /* Repeatedly simplify the nodes on the simplify worklists. */
461 struct conflict_link
*wl
;
464 /* We try hard to color all the webs resulting from spills first.
465 Without that on register starved machines (x86 e.g) with some live
466 DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
467 we do rounds over rounds, because the conflict graph says, we can
468 simplify those short webs, but later due to irregularities we can't
469 color those pseudos. So we have to spill them, which in later rounds
470 leads to other spills. */
471 d
= pop_list (&WEBS(SIMPLIFY
));
473 d
= pop_list (&WEBS(SIMPLIFY_FAT
));
475 d
= pop_list (&WEBS(SIMPLIFY_SPILL
));
479 ra_debug_msg (DUMP_PROCESS
, " simplifying web %3d, conflicts = %d\n",
480 web
->id
, web
->num_conflicts
);
481 put_web (web
, SELECT
);
482 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
484 struct web
*pweb
= wl
->t
;
485 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
)
487 decrement_degree (pweb
, 1 + web
->add_hardregs
);
493 /* Helper function to remove a move from the movelist of the web. */
496 remove_move_1 (web
, move
)
500 struct move_list
*ml
= web
->moves
;
503 if (ml
->move
== move
)
505 web
->moves
= ml
->next
;
508 for (; ml
->next
&& ml
->next
->move
!= move
; ml
= ml
->next
) ;
511 ml
->next
= ml
->next
->next
;
514 /* Remove a move from the movelist of the web. Actually this is just a
515 wrapper around remove_move_1(), making sure, the removed move really is
516 not in the list anymore. */
519 remove_move (web
, move
)
523 struct move_list
*ml
;
524 remove_move_1 (web
, move
);
525 for (ml
= web
->moves
; ml
; ml
= ml
->next
)
526 if (ml
->move
== move
)
530 /* Merge the moves for the two webs into the first web's movelist. */
537 struct move_list
*ml
, *ml_next
;
539 seen
= BITMAP_XMALLOC ();
540 for (ml
= u
->moves
; ml
; ml
= ml
->next
)
541 bitmap_set_bit (seen
, INSN_UID (ml
->move
->insn
));
542 for (ml
= v
->moves
; ml
; ml
= ml_next
)
545 if (! bitmap_bit_p (seen
, INSN_UID (ml
->move
->insn
)))
555 /* Add a web to the simplify worklist, from the freeze worklist. */
561 if (web
->type
!= PRECOLORED
&& !web
->moves
562 && web
->num_conflicts
< NUM_REGS (web
))
564 remove_list (web
->dlink
, &WEBS(FREEZE
));
565 put_web (web
, SIMPLIFY
);
569 /* Precolored node coalescing heuristic. */
573 struct web
*target
, *source
;
575 struct conflict_link
*wl
;
577 int color
= source
->color
;
580 /* Normally one would think, the next test wouldn't be needed.
581 We try to coalesce S and T, and S has already a color, and we checked
582 when processing the insns, that both have the same mode. So naively
583 we could conclude, that of course that mode was valid for this color.
584 Hah. But there is sparc. Before reload there are copy insns
585 (e.g. the ones copying arguments to locals) which happily refer to
586 colors in invalid modes. We can't coalesce those things. */
587 if (! HARD_REGNO_MODE_OK (source
->color
, GET_MODE (target
->orig_x
)))
590 /* Sanity for funny modes. */
591 size
= HARD_REGNO_NREGS (color
, GET_MODE (target
->orig_x
));
595 /* We can't coalesce target with a precolored register which isn't in
598 if (TEST_HARD_REG_BIT (never_use_colors
, color
+ i
)
599 || !TEST_HARD_REG_BIT (target
->usable_regs
, color
+ i
)
600 /* Before usually calling ok() at all, we already test, if the
601 candidates conflict in sup_igraph. But when wide webs are
602 coalesced to hardregs, we only test the hardweb coalesced into.
603 This is only the begin color. When actually coalescing both,
604 it will also take the following size colors, i.e. their webs.
605 We nowhere checked if the candidate possibly conflicts with
606 one of _those_, which is possible with partial conflicts,
607 so we simply do it here (this does one bit-test more than
608 necessary, the first color). Note, that if X is precolored
609 bit [X*num_webs + Y] can't be set (see add_conflict_edge()). */
610 || TEST_BIT (sup_igraph
,
611 target
->id
* num_webs
+ hardreg2web
[color
+ i
]->id
))
614 for (wl
= target
->conflict_list
; wl
; wl
= wl
->next
)
616 struct web
*pweb
= wl
->t
;
617 if (pweb
->type
== SELECT
|| pweb
->type
== COALESCED
)
620 /* Coalescing target (T) and source (S) is o.k, if for
621 all conflicts C of T it is true, that:
622 1) C will be colored, or
623 2) C is a hardreg (precolored), or
624 3) C already conflicts with S too, or
625 4) a web which contains C conflicts already with S.
626 XXX: we handle here only the special case of 4), that C is
627 a subreg, and the containing thing is the reg itself, i.e.
628 we dont handle the situation, were T conflicts with
629 (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
630 would be allowed also, as the S-conflict overlaps
632 So, we first test the whole web for any of these conditions, and
633 continue with the next C, if 1, 2 or 3 is true. */
634 if (pweb
->num_conflicts
< NUM_REGS (pweb
)
635 || pweb
->type
== PRECOLORED
636 || TEST_BIT (igraph
, igraph_index (source
->id
, pweb
->id
)) )
639 /* This is reached, if not one of 1, 2 or 3 was true. In the case C has
640 no subwebs, 4 can't be true either, so we can't coalesce S and T. */
645 /* The main webs do _not_ conflict, only some parts of both. This
646 means, that 4 is possibly true, so we need to check this too.
647 For this we go thru all sub conflicts between T and C, and see if
648 the target part of C already conflicts with S. When this is not
649 the case we disallow coalescing. */
650 struct sub_conflict
*sl
;
651 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
653 if (!TEST_BIT (igraph
, igraph_index (source
->id
, sl
->t
->id
)))
661 /* Non-precolored node coalescing heuristic. */
664 conservative (target
, source
)
665 struct web
*target
, *source
;
670 struct conflict_link
*wl
;
671 unsigned int num_regs
= NUM_REGS (target
); /* XXX */
673 /* k counts the resulting conflict weight, if target and source
674 would be merged, and all low-degree neighbors would be
676 k
= 0 * MAX (target
->add_hardregs
, source
->add_hardregs
);
677 seen
= BITMAP_XMALLOC ();
678 for (loop
= 0; loop
< 2; loop
++)
679 for (wl
= ((loop
== 0) ? target
: source
)->conflict_list
;
682 struct web
*pweb
= wl
->t
;
683 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
684 && pweb
->num_conflicts
>= NUM_REGS (pweb
)
685 && ! REGNO_REG_SET_P (seen
, pweb
->id
))
687 SET_REGNO_REG_SET (seen
, pweb
->id
);
688 k
+= 1 + pweb
->add_hardregs
;
698 /* If the web is coalesced, return it's alias. Otherwise, return what
705 while (web
->type
== COALESCED
)
710 /* Returns nonzero, if the TYPE belongs to one of those representing
713 static inline unsigned int
717 return type
== SIMPLIFY
|| type
== SIMPLIFY_SPILL
|| type
== SIMPLIFY_FAT
;
720 /* Actually combine two webs, that can be coalesced. */
727 struct conflict_link
*wl
;
728 if (u
== v
|| v
->type
== COALESCED
)
730 if ((u
->regno
>= max_normal_pseudo
) != (v
->regno
>= max_normal_pseudo
))
732 remove_web_from_list (v
);
733 put_web (v
, COALESCED
);
737 u
->num_aliased
+= 1 + v
->num_aliased
;
738 if (flag_ra_merge_spill_costs
&& u
->type
!= PRECOLORED
)
739 u
->spill_cost
+= v
->spill_cost
;
740 /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
742 /* combine add_hardregs's of U and V. */
744 for (wl
= v
->conflict_list
; wl
; wl
= wl
->next
)
746 struct web
*pweb
= wl
->t
;
747 /* We don't strictly need to move conflicts between webs which are
748 already coalesced or selected, if we do iterated coalescing, or
749 better if we need not to be able to break aliases again.
750 I.e. normally we would use the condition
751 (pweb->type != SELECT && pweb->type != COALESCED).
752 But for now we simply merge all conflicts. It doesn't take that
757 int nregs
= 1 + v
->add_hardregs
;
758 if (u
->type
== PRECOLORED
)
759 nregs
= HARD_REGNO_NREGS (u
->color
, GET_MODE (v
->orig_x
));
761 /* For precolored U's we need to make conflicts between V's
762 neighbors and as many hardregs from U as V needed if it gets
763 color U. For now we approximate this by V->add_hardregs, which
764 could be too much in multi-length classes. We should really
765 count how many hardregs are needed for V with color U. When U
766 isn't precolored this loop breaks out after one iteration. */
767 for (i
= 0; i
< nregs
; i
++)
769 if (u
->type
== PRECOLORED
)
770 web
= hardreg2web
[i
+ u
->color
];
772 record_conflict (web
, pweb
);
775 struct sub_conflict
*sl
;
776 /* So, between V and PWEB there are sub_conflicts. We
777 need to relocate those conflicts to be between WEB (==
778 U when it wasn't precolored) and PWEB. In the case
779 only a part of V conflicted with (part of) PWEB we
780 nevertheless make the new conflict between the whole U
781 and the (part of) PWEB. Later we might try to find in
782 U the correct subpart corresponding (by size and
783 offset) to the part of V (sl->s) which was the source
785 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
787 /* Beware: sl->s is no subweb of web (== U) but of V.
788 We try to search a corresponding subpart of U.
789 If we found none we let it conflict with the whole U.
790 Note that find_subweb() only looks for mode and
791 subreg_byte of the REG rtx but not for the pseudo
792 reg number (otherwise it would be guaranteed to
793 _not_ find any subpart). */
794 struct web
*sweb
= NULL
;
795 if (SUBWEB_P (sl
->s
))
796 sweb
= find_subweb (web
, sl
->s
->orig_x
);
799 record_conflict (sweb
, sl
->t
);
802 if (u
->type
!= PRECOLORED
)
805 if (pweb
->type
!= SELECT
&& pweb
->type
!= COALESCED
)
806 decrement_degree (pweb
, 1 + v
->add_hardregs
);
810 /* Now merge the usable_regs together. */
811 /* XXX That merging might normally make it necessary to
812 adjust add_hardregs, which also means to adjust neighbors. This can
813 result in making some more webs trivially colorable, (or the opposite,
814 if this increases our add_hardregs). Because we intersect the
815 usable_regs it should only be possible to decrease add_hardregs. So a
816 conservative solution for now is to simply don't change it. */
818 AND_HARD_REG_SET (u
->usable_regs
, v
->usable_regs
);
819 u
->regclass
= reg_class_subunion
[u
->regclass
][v
->regclass
];
820 /* Count number of possible hardregs. This might make U a spillweb,
821 but that could also happen, if U and V together had too many
823 u
->num_freedom
= hard_regs_count (u
->usable_regs
);
824 u
->num_freedom
-= u
->add_hardregs
;
825 /* The next would mean an invalid coalesced move (both webs have no
826 possible hardreg in common), so abort. */
830 if (u
->num_conflicts
>= NUM_REGS (u
)
831 && (u
->type
== FREEZE
|| simplify_p (u
->type
)))
833 remove_web_from_list (u
);
837 /* We want the most relaxed combination of spill_temp state.
838 I.e. if any was no spilltemp or a spilltemp2, the result is so too,
839 otherwise if any is short, the result is too. It remains, when both
840 are normal spilltemps. */
841 if (v
->spill_temp
== 0)
843 else if (v
->spill_temp
== 2 && u
->spill_temp
!= 0)
845 else if (v
->spill_temp
== 3 && u
->spill_temp
== 1)
849 /* Attempt to coalesce the first thing on the move worklist.
850 This is used only for iterated coalescing. */
855 struct dlist
*d
= pop_list (&mv_worklist
);
856 struct move
*m
= DLIST_MOVE (d
);
857 struct web
*source
= alias (m
->source_web
);
858 struct web
*target
= alias (m
->target_web
);
860 if (target
->type
== PRECOLORED
)
862 struct web
*h
= source
;
866 if (source
== target
)
868 remove_move (source
, m
);
869 put_move (m
, MV_COALESCED
);
870 add_worklist (source
);
872 else if (target
->type
== PRECOLORED
873 || TEST_BIT (sup_igraph
, source
->id
* num_webs
+ target
->id
)
874 || TEST_BIT (sup_igraph
, target
->id
* num_webs
+ source
->id
))
876 remove_move (source
, m
);
877 remove_move (target
, m
);
878 put_move (m
, CONSTRAINED
);
879 add_worklist (source
);
880 add_worklist (target
);
882 else if ((source
->type
== PRECOLORED
&& ok (target
, source
))
883 || (source
->type
!= PRECOLORED
884 && conservative (target
, source
)))
886 remove_move (source
, m
);
887 remove_move (target
, m
);
888 put_move (m
, MV_COALESCED
);
889 combine (source
, target
);
890 add_worklist (source
);
893 put_move (m
, ACTIVE
);
896 /* Freeze the moves associated with the web. Used for iterated coalescing. */
902 struct move_list
*ml
, *ml_next
;
903 for (ml
= web
->moves
; ml
; ml
= ml_next
)
905 struct move
*m
= ml
->move
;
906 struct web
*src
, *dest
;
908 if (m
->type
== ACTIVE
)
909 remove_list (m
->dlink
, &mv_active
);
911 remove_list (m
->dlink
, &mv_worklist
);
912 put_move (m
, FROZEN
);
913 remove_move (web
, m
);
914 src
= alias (m
->source_web
);
915 dest
= alias (m
->target_web
);
916 src
= (src
== web
) ? dest
: src
;
917 remove_move (src
, m
);
918 /* XXX GA use the original v, instead of alias(v) */
919 if (!src
->moves
&& src
->num_conflicts
< NUM_REGS (src
))
921 remove_list (src
->dlink
, &WEBS(FREEZE
));
922 put_web (src
, SIMPLIFY
);
927 /* Freeze the first thing on the freeze worklist (only for iterated
933 struct dlist
*d
= pop_list (&WEBS(FREEZE
));
934 put_web (DLIST_WEB (d
), SIMPLIFY
);
935 freeze_moves (DLIST_WEB (d
));
938 /* The current spill heuristic. Returns a number for a WEB.
939 Webs with higher numbers are selected later. */
941 static unsigned HOST_WIDE_INT (*spill_heuristic
) PARAMS ((struct web
*));
943 static unsigned HOST_WIDE_INT default_spill_heuristic
PARAMS ((struct web
*));
945 /* Our default heuristic is similar to spill_cost / num_conflicts.
946 Just scaled for integer arithmetic, and it favors coalesced webs,
947 and webs which span more insns with deaths. */
949 static unsigned HOST_WIDE_INT
950 default_spill_heuristic (web
)
953 unsigned HOST_WIDE_INT ret
;
954 unsigned int divisor
= 1;
955 /* Make coalesce targets cheaper to spill, because they will be broken
956 up again into smaller parts. */
957 if (flag_ra_break_aliases
)
958 divisor
+= web
->num_aliased
;
959 divisor
+= web
->num_conflicts
;
960 ret
= ((web
->spill_cost
<< 8) + divisor
- 1) / divisor
;
961 /* It is better to spill webs that span more insns (deaths in our
962 case) than other webs with the otherwise same spill_cost. So make
963 them a little bit cheaper. Remember that spill_cost is unsigned. */
964 if (web
->span_deaths
< ret
)
965 ret
-= web
->span_deaths
;
969 /* Select the cheapest spill to be potentially spilled (we don't
970 *actually* spill until we need to). */
975 unsigned HOST_WIDE_INT best
= (unsigned HOST_WIDE_INT
) -1;
976 struct dlist
*bestd
= NULL
;
977 unsigned HOST_WIDE_INT best2
= (unsigned HOST_WIDE_INT
) -1;
978 struct dlist
*bestd2
= NULL
;
980 for (d
= WEBS(SPILL
); d
; d
= d
->next
)
982 struct web
*w
= DLIST_WEB (d
);
983 unsigned HOST_WIDE_INT cost
= spill_heuristic (w
);
984 if ((!w
->spill_temp
) && cost
< best
)
989 /* Specially marked spill temps can be spilled. Also coalesce
990 targets can. Eventually they will be broken up later in the
991 colorizing process, so if we have nothing better take that. */
992 else if ((w
->spill_temp
== 2 || w
->is_coalesced
) && cost
< best2
)
1006 /* Note the potential spill. */
1007 DLIST_WEB (bestd
)->was_spilled
= 1;
1008 remove_list (bestd
, &WEBS(SPILL
));
1009 put_web (DLIST_WEB (bestd
), SIMPLIFY
);
1010 freeze_moves (DLIST_WEB (bestd
));
1011 ra_debug_msg (DUMP_PROCESS
, " potential spill web %3d, conflicts = %d\n",
1012 DLIST_WEB (bestd
)->id
, DLIST_WEB (bestd
)->num_conflicts
);
1015 /* Given a set of forbidden colors to begin at, and a set of still
1016 free colors, and MODE, returns nonzero of color C is still usable. */
1019 color_usable_p (c
, dont_begin_colors
, free_colors
, mode
)
1021 HARD_REG_SET dont_begin_colors
, free_colors
;
1022 enum machine_mode mode
;
1024 if (!TEST_HARD_REG_BIT (dont_begin_colors
, c
)
1025 && TEST_HARD_REG_BIT (free_colors
, c
)
1026 && HARD_REGNO_MODE_OK (c
, mode
))
1029 size
= HARD_REGNO_NREGS (c
, mode
);
1030 for (i
= 1; i
< size
&& TEST_HARD_REG_BIT (free_colors
, c
+ i
); i
++);
1037 /* I don't want to clutter up the actual code with ifdef's. */
1038 #ifdef REG_ALLOC_ORDER
1039 #define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
1041 #define INV_REG_ALLOC_ORDER(c) c
1044 /* Searches in FREE_COLORS for a block of hardregs of the right length
1045 for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
1046 If it needs more than one hardreg it prefers blocks beginning
1047 at an even hardreg, and only gives an odd begin reg if no other
1048 block could be found. */
1051 get_free_reg (dont_begin_colors
, free_colors
, mode
)
1052 HARD_REG_SET dont_begin_colors
, free_colors
;
1053 enum machine_mode mode
;
1056 int last_resort_reg
= -1;
1058 int pref_reg_order
= INT_MAX
;
1059 int last_resort_reg_order
= INT_MAX
;
1061 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1062 if (!TEST_HARD_REG_BIT (dont_begin_colors
, c
)
1063 && TEST_HARD_REG_BIT (free_colors
, c
)
1064 && HARD_REGNO_MODE_OK (c
, mode
))
1067 size
= HARD_REGNO_NREGS (c
, mode
);
1068 for (i
= 1; i
< size
&& TEST_HARD_REG_BIT (free_colors
, c
+ i
); i
++);
1076 if (size
< 2 || (c
& 1) == 0)
1078 if (INV_REG_ALLOC_ORDER (c
) < pref_reg_order
)
1081 pref_reg_order
= INV_REG_ALLOC_ORDER (c
);
1084 else if (INV_REG_ALLOC_ORDER (c
) < last_resort_reg_order
)
1086 last_resort_reg
= c
;
1087 last_resort_reg_order
= INV_REG_ALLOC_ORDER (c
);
1093 return pref_reg
>= 0 ? pref_reg
: last_resort_reg
;
1096 /* Similar to get_free_reg(), but first search in colors provided
1097 by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
1098 alone, and only then for any free color. If flag_ra_biased is zero
1099 only do the last two steps. */
1102 get_biased_reg (dont_begin_colors
, bias
, prefer_colors
, free_colors
, mode
)
1103 HARD_REG_SET dont_begin_colors
, bias
, prefer_colors
, free_colors
;
1104 enum machine_mode mode
;
1110 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1111 IOR_COMPL_HARD_REG_SET (s
, bias
);
1112 IOR_COMPL_HARD_REG_SET (s
, prefer_colors
);
1113 c
= get_free_reg (s
, free_colors
, mode
);
1116 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1117 IOR_COMPL_HARD_REG_SET (s
, bias
);
1118 c
= get_free_reg (s
, free_colors
, mode
);
1122 COPY_HARD_REG_SET (s
, dont_begin_colors
);
1123 IOR_COMPL_HARD_REG_SET (s
, prefer_colors
);
1124 c
= get_free_reg (s
, free_colors
, mode
);
1127 c
= get_free_reg (dont_begin_colors
, free_colors
, mode
);
1131 /* Counts the number of non-overlapping bitblocks of length LEN
1135 count_long_blocks (free_colors
, len
)
1136 HARD_REG_SET free_colors
;
1141 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1143 if (!TEST_HARD_REG_BIT (free_colors
, i
))
1145 for (j
= 1; j
< len
; j
++)
1146 if (!TEST_HARD_REG_BIT (free_colors
, i
+ j
))
1148 /* Bits [i .. i+j-1] are free. */
1156 /* Given a hardreg set S, return a string representing it.
1157 Either as 0/1 string, or as hex value depending on the implementation
1158 of hardreg sets. Note that this string is statically allocated. */
1161 hardregset_to_string (s
)
1164 static char string
[/*FIRST_PSEUDO_REGISTER + 30*/1024];
1165 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
1166 sprintf (string
, HOST_WIDE_INT_PRINT_HEX
, s
);
1170 c
+= sprintf (c
, "{ ");
1171 for (i
= 0;i
< HARD_REG_SET_LONGS
; i
++)
1173 for (j
= 0; j
< HOST_BITS_PER_WIDE_INT
; j
++)
1174 c
+= sprintf (c
, "%s", ( 1 << j
) & s
[i
] ? "1" : "0");
1175 c
+= sprintf (c
, "%s", i
? ", " : "");
1177 c
+= sprintf (c
, " }");
1182 /* For WEB, look at its already colored neighbors, and calculate
1183 the set of hardregs which is not allowed as color for WEB. Place
1184 that set int *RESULT. Note that the set of forbidden begin colors
1185 is not the same as all colors taken up by neighbors. E.g. suppose
1186 two DImode webs, but only the lo-part from one conflicts with the
1187 hipart from the other, and suppose the other gets colors 2 and 3
1188 (it needs two SImode hardregs). Now the first can take also color
1189 1 or 2, although in those cases there's a partial overlap. Only
1190 3 can't be used as begin color. */
1193 calculate_dont_begin (web
, result
)
1195 HARD_REG_SET
*result
;
1197 struct conflict_link
*wl
;
1198 HARD_REG_SET dont_begin
;
1199 /* The bits set in dont_begin correspond to the hardregs, at which
1200 WEB may not begin. This differs from the set of _all_ hardregs which
1201 are taken by WEB's conflicts in the presence of wide webs, where only
1202 some parts conflict with others. */
1203 CLEAR_HARD_REG_SET (dont_begin
);
1204 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1207 struct web
*ptarget
= alias (wl
->t
);
1208 struct sub_conflict
*sl
= wl
->sub
;
1209 w
= sl
? sl
->t
: wl
->t
;
1212 if (ptarget
->type
== COLORED
|| ptarget
->type
== PRECOLORED
)
1214 struct web
*source
= (sl
) ? sl
->s
: web
;
1215 unsigned int tsize
= HARD_REGNO_NREGS (ptarget
->color
,
1216 GET_MODE (w
->orig_x
));
1217 /* ssize is only a first guess for the size. */
1218 unsigned int ssize
= HARD_REGNO_NREGS (ptarget
->color
, GET_MODE
1220 unsigned int tofs
= 0;
1221 unsigned int sofs
= 0;
1222 /* C1 and C2 can become negative, so unsigned
1227 && GET_MODE_SIZE (GET_MODE (w
->orig_x
)) >= UNITS_PER_WORD
)
1228 tofs
= (SUBREG_BYTE (w
->orig_x
) / UNITS_PER_WORD
);
1229 if (SUBWEB_P (source
)
1230 && GET_MODE_SIZE (GET_MODE (source
->orig_x
))
1232 sofs
= (SUBREG_BYTE (source
->orig_x
) / UNITS_PER_WORD
);
1233 c1
= ptarget
->color
+ tofs
- sofs
- ssize
+ 1;
1234 c2
= ptarget
->color
+ tofs
+ tsize
- 1 - sofs
;
1239 /* Because ssize was only guessed above, which influenced our
1240 begin color (c1), we need adjustment, if for that color
1241 another size would be needed. This is done by moving
1242 c1 to a place, where the last of sources hardregs does not
1243 overlap the first of targets colors. */
1245 + HARD_REGNO_NREGS (c1
, GET_MODE (source
->orig_x
)) - 1
1246 < ptarget
->color
+ tofs
)
1248 while (c1
> 0 && c1
+ sofs
1249 + HARD_REGNO_NREGS (c1
, GET_MODE (source
->orig_x
)) - 1
1250 > ptarget
->color
+ tofs
)
1252 for (; c1
<= c2
; c1
++)
1253 SET_HARD_REG_BIT (dont_begin
, c1
);
1256 /* The next if() only gets true, if there was no wl->sub at all, in
1257 which case we are only making one go thru this loop with W being
1262 w
= sl
? sl
->t
: NULL
;
1265 COPY_HARD_REG_SET (*result
, dont_begin
);
1268 /* Try to assign a color to WEB. If HARD if nonzero, we try many
1269 tricks to get it one color, including respilling already colored
1272 We also trie very hard, to not constrain the uncolored non-spill
1273 neighbors, which need more hardregs than we. Consider a situation, 2
1274 hardregs free for us (0 and 1), and one of our neighbors needs 2
1275 hardregs, and only conflicts with us. There are 3 hardregs at all. Now
1276 a simple minded method might choose 1 as color for us. Then our neighbor
1277 has two free colors (0 and 2) as it should, but they are not consecutive,
1278 so coloring it later would fail. This leads to nasty problems on
1279 register starved machines, so we try to avoid this. */
1282 colorize_one_web (web
, hard
)
1286 struct conflict_link
*wl
;
1287 HARD_REG_SET colors
, dont_begin
;
1290 int neighbor_needs
= 0;
1291 struct web
*fats_parent
= NULL
;
1293 int long_blocks
= 0;
1294 int best_long_blocks
= -1;
1295 HARD_REG_SET fat_colors
;
1298 CLEAR_HARD_REG_SET (fat_colors
);
1300 if (web
->regno
>= max_normal_pseudo
)
1303 /* First we want to know the colors at which we can't begin. */
1304 calculate_dont_begin (web
, &dont_begin
);
1305 CLEAR_HARD_REG_SET (bias
);
1307 /* Now setup the set of colors used by our neighbors neighbors,
1308 and search the biggest noncolored neighbor. */
1309 neighbor_needs
= web
->add_hardregs
+ 1;
1310 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1313 struct web
*ptarget
= alias (wl
->t
);
1314 struct sub_conflict
*sl
= wl
->sub
;
1315 IOR_HARD_REG_SET (bias
, ptarget
->bias_colors
);
1316 w
= sl
? sl
->t
: wl
->t
;
1317 if (ptarget
->type
!= COLORED
&& ptarget
->type
!= PRECOLORED
1318 && !ptarget
->was_spilled
)
1321 if (find_web_for_subweb (w
)->type
!= COALESCED
1322 && w
->add_hardregs
>= neighbor_needs
)
1324 neighbor_needs
= w
->add_hardregs
;
1325 fats_parent
= ptarget
;
1331 w
= sl
? sl
->t
: NULL
;
1335 ra_debug_msg (DUMP_COLORIZE
, "colorize web %d [don't begin at %s]", web
->id
,
1336 hardregset_to_string (dont_begin
));
1338 /* If there are some fat neighbors, remember their usable regs,
1339 and how many blocks are free in it for that neighbor. */
1342 COPY_HARD_REG_SET (fat_colors
, fats_parent
->usable_regs
);
1343 long_blocks
= count_long_blocks (fat_colors
, neighbor_needs
+ 1);
1346 /* We break out, if we found a color which doesn't constrain
1347 neighbors, or if we can't find any colors. */
1350 HARD_REG_SET call_clobbered
;
1352 /* Here we choose a hard-reg for the current web. For non spill
1353 temporaries we first search in the hardregs for it's preferred
1354 class, then, if we found nothing appropriate, in those of the
1355 alternate class. For spill temporaries we only search in
1356 usable_regs of this web (which is probably larger than that of
1357 the preferred or alternate class). All searches first try to
1358 find a non-call-clobbered hard-reg.
1359 XXX this should be more finegraned... First look into preferred
1360 non-callclobbered hardregs, then _if_ the web crosses calls, in
1361 alternate non-cc hardregs, and only _then_ also in preferred cc
1362 hardregs (and alternate ones). Currently we don't track the number
1363 of calls crossed for webs. We should. */
1364 if (web
->use_my_regs
)
1366 COPY_HARD_REG_SET (colors
, web
->usable_regs
);
1367 AND_HARD_REG_SET (colors
,
1368 usable_regs
[reg_preferred_class (web
->regno
)]);
1371 COPY_HARD_REG_SET (colors
,
1372 usable_regs
[reg_preferred_class (web
->regno
)]);
1373 #ifdef CANNOT_CHANGE_MODE_CLASS
1374 if (web
->mode_changed
)
1375 AND_COMPL_HARD_REG_SET (colors
, invalid_mode_change_regs
);
1377 COPY_HARD_REG_SET (call_clobbered
, colors
);
1378 AND_HARD_REG_SET (call_clobbered
, call_used_reg_set
);
1380 /* If this web got a color in the last pass, try to give it the
1381 same color again. This will to much better colorization
1382 down the line, as we spilled for a certain coloring last time. */
1385 c
= web
->old_color
- 1;
1386 if (!color_usable_p (c
, dont_begin
, colors
,
1387 PSEUDO_REGNO_MODE (web
->regno
)))
1393 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1394 call_clobbered
, PSEUDO_REGNO_MODE (web
->regno
));
1396 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1397 colors
, PSEUDO_REGNO_MODE (web
->regno
));
1401 if (web
->use_my_regs
)
1402 IOR_HARD_REG_SET (colors
, web
->usable_regs
);
1404 IOR_HARD_REG_SET (colors
, usable_regs
1405 [reg_alternate_class (web
->regno
)]);
1406 #ifdef CANNOT_CHANGE_MODE_CLASS
1407 if (web
->mode_changed
)
1408 AND_COMPL_HARD_REG_SET (colors
, invalid_mode_change_regs
);
1410 COPY_HARD_REG_SET (call_clobbered
, colors
);
1411 AND_HARD_REG_SET (call_clobbered
, call_used_reg_set
);
1413 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1414 call_clobbered
, PSEUDO_REGNO_MODE (web
->regno
));
1416 c
= get_biased_reg (dont_begin
, bias
, web
->prefer_colors
,
1417 colors
, PSEUDO_REGNO_MODE (web
->regno
));
1423 /* If one of the yet uncolored neighbors, which is not a potential
1424 spill needs a block of hardregs be sure, not to destroy such a block
1425 by coloring one reg in the middle. */
1430 HARD_REG_SET colors1
;
1431 COPY_HARD_REG_SET (colors1
, fat_colors
);
1432 for (i
= 0; i
< 1 + web
->add_hardregs
; i
++)
1433 CLEAR_HARD_REG_BIT (colors1
, c
+ i
);
1434 new_long
= count_long_blocks (colors1
, neighbor_needs
+ 1);
1435 /* If we changed the number of long blocks, and it's now smaller
1436 than needed, we try to avoid this color. */
1437 if (long_blocks
!= new_long
&& new_long
< num_fat
)
1439 if (new_long
> best_long_blocks
)
1441 best_long_blocks
= new_long
;
1444 SET_HARD_REG_BIT (dont_begin
, c
);
1445 ra_debug_msg (DUMP_COLORIZE
, " avoid %d", c
);
1448 /* We found a color which doesn't destroy a block. */
1451 /* If we havee no fat neighbors, the current color won't become
1452 "better", so we've found it. */
1456 ra_debug_msg (DUMP_COLORIZE
, " --> got %d", c
< 0 ? bestc
: c
);
1457 if (bestc
>= 0 && c
< 0 && !web
->was_spilled
)
1459 /* This is a non-potential-spill web, which got a color, which did
1460 destroy a hardreg block for one of it's neighbors. We color
1461 this web anyway and hope for the best for the neighbor, if we are
1463 if (1 || web
->spill_temp
)
1465 ra_debug_msg (DUMP_COLORIZE
, " [constrains neighbors]");
1467 ra_debug_msg (DUMP_COLORIZE
, "\n");
1471 /* Guard against a simplified node being spilled. */
1472 /* Don't abort. This can happen, when e.g. enough registers
1473 are available in colors, but they are not consecutive. This is a
1474 very serious issue if this web is a short live one, because
1475 even if we spill this one here, the situation won't become better
1476 in the next iteration. It probably will have the same conflicts,
1477 those will have the same colors, and we would come here again, for
1478 all parts, in which this one gets splitted by the spill. This
1479 can result in endless iteration spilling the same register again and
1480 again. That's why we try to find a neighbor, which spans more
1481 instructions that ourself, and got a color, and try to spill _that_.
1483 if (DLIST_WEB (d)->was_spilled < 0)
1485 if (hard
&& (!web
->was_spilled
|| web
->spill_temp
))
1488 struct web
*try = NULL
;
1489 struct web
*candidates
[8];
1491 ra_debug_msg (DUMP_COLORIZE
, " *** %d spilled, although %s ***\n",
1492 web
->id
, web
->spill_temp
? "spilltemp" : "non-spill");
1493 /* We make multiple passes over our conflicts, first trying to
1494 spill those webs, which only got a color by chance, but
1495 were potential spill ones, and if that isn't enough, in a second
1496 pass also to spill normal colored webs. If we still didn't find
1497 a candidate, but we are a spill-temp, we make a third pass
1498 and include also webs, which were targets for coalescing, and
1500 memset (candidates
, 0, sizeof candidates
);
1501 #define set_cand(i, w) \
1503 if (!candidates[(i)] \
1504 || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
1505 candidates[(i)] = (w); \
1507 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1509 struct web
*w
= wl
->t
;
1510 struct web
*aw
= alias (w
);
1511 /* If we are a spill-temp, we also look at webs coalesced
1512 to precolored ones. Otherwise we only look at webs which
1513 themselves were colored, or coalesced to one. */
1514 if (aw
->type
== PRECOLORED
&& w
!= aw
&& web
->spill_temp
1515 && flag_ra_optimistic_coalescing
)
1519 else if (web
->spill_temp
== 2
1520 && w
->spill_temp
== 2
1521 && w
->spill_cost
< web
->spill_cost
)
1523 else if (web
->spill_temp
!= 2
1524 && (w
->spill_temp
== 2
1525 || w
->spill_cost
< web
->spill_cost
))
1529 if (aw
->type
!= COLORED
)
1531 if (w
->type
== COLORED
&& !w
->spill_temp
&& !w
->is_coalesced
1534 if (w
->spill_cost
< web
->spill_cost
)
1536 else if (web
->spill_temp
)
1539 if (w
->type
== COLORED
&& !w
->spill_temp
&& !w
->is_coalesced
1542 if (w
->spill_cost
< web
->spill_cost
)
1544 else if (web
->spill_temp
&& web
->spill_temp
!= 2)
1547 if (web
->spill_temp
)
1549 if (w
->type
== COLORED
&& w
->spill_temp
== 2
1551 && (w
->spill_cost
< web
->spill_cost
1552 || web
->spill_temp
!= 2))
1554 if (!aw
->spill_temp
)
1556 if (aw
->spill_temp
== 2
1557 && (aw
->spill_cost
< web
->spill_cost
1558 || web
->spill_temp
!= 2))
1560 /* For boehm-gc/misc.c. If we are a difficult spilltemp,
1561 also coalesced neighbors are a chance, _even_ if they
1562 too are spilltemps. At least their coalescing can be
1563 broken up, which may be reset usable_regs, and makes
1564 it easier colorable. */
1565 if (web
->spill_temp
!= 2 && aw
->is_coalesced
1566 && flag_ra_optimistic_coalescing
)
1570 for (loop
= 0; try == NULL
&& loop
< 8; loop
++)
1571 if (candidates
[loop
])
1572 try = candidates
[loop
];
1576 int old_c
= try->color
;
1577 if (try->type
== COALESCED
)
1579 if (alias (try)->type
!= PRECOLORED
)
1581 ra_debug_msg (DUMP_COLORIZE
, " breaking alias %d -> %d\n",
1582 try->id
, alias (try)->id
);
1583 break_precolored_alias (try);
1584 colorize_one_web (web
, hard
);
1588 remove_list (try->dlink
, &WEBS(COLORED
));
1589 put_web (try, SPILLED
);
1590 /* Now try to colorize us again. Can recursively make other
1591 webs also spill, until there are no more unspilled
1593 ra_debug_msg (DUMP_COLORIZE
, " trying to spill %d\n", try->id
);
1594 colorize_one_web (web
, hard
);
1595 if (web
->type
!= COLORED
)
1597 /* We tried recursively to spill all already colored
1598 neighbors, but we are still uncolorable. So it made
1599 no sense to spill those neighbors. Recolor them. */
1600 remove_list (try->dlink
, &WEBS(SPILLED
));
1601 put_web (try, COLORED
);
1603 ra_debug_msg (DUMP_COLORIZE
,
1604 " spilling %d was useless\n", try->id
);
1608 ra_debug_msg (DUMP_COLORIZE
,
1609 " to spill %d was a good idea\n",
1611 remove_list (try->dlink
, &WEBS(SPILLED
));
1612 if (try->was_spilled
)
1613 colorize_one_web (try, 0);
1615 colorize_one_web (try, hard
- 1);
1620 /* No more chances to get a color, so give up hope and
1622 put_web (web
, SPILLED
);
1625 put_web (web
, SPILLED
);
1629 put_web (web
, COLORED
);
1633 int nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
1634 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1636 struct web
*ptarget
= alias (wl
->t
);
1638 for (i
= 0; i
< nregs
; i
++)
1639 SET_HARD_REG_BIT (ptarget
->bias_colors
, c
+ i
);
1643 if (web
->regno
>= max_normal_pseudo
&& web
->type
== SPILLED
)
1645 web
->color
= an_unusable_color
;
1646 remove_list (web
->dlink
, &WEBS(SPILLED
));
1647 put_web (web
, COLORED
);
1649 if (web
->type
== SPILLED
&& flag_ra_optimistic_coalescing
1650 && web
->is_coalesced
)
1652 ra_debug_msg (DUMP_COLORIZE
, "breaking aliases to web %d:", web
->id
);
1653 restore_conflicts_from_coalesce (web
);
1654 break_aliases_to_web (web
);
1655 insert_coalesced_conflicts ();
1656 ra_debug_msg (DUMP_COLORIZE
, "\n");
1657 remove_list (web
->dlink
, &WEBS(SPILLED
));
1658 put_web (web
, SELECT
);
1663 /* Assign the colors to all nodes on the select stack. And update the
1664 colors of coalesced webs. */
1671 while (WEBS(SELECT
))
1673 d
= pop_list (&WEBS(SELECT
));
1674 colorize_one_web (DLIST_WEB (d
), 1);
1677 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
1679 struct web
*a
= alias (DLIST_WEB (d
));
1680 DLIST_WEB (d
)->color
= a
->color
;
1684 /* WEB is a spilled web. Look if we can improve the cost of the graph,
1685 by coloring WEB, even if we then need to spill some of it's neighbors.
1686 For this we calculate the cost for each color C, that results when we
1687 _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
1688 If the lowest cost among them is smaller than the spillcost of WEB, we
1689 do that recoloring, and instead spill the neighbors.
1691 This can sometime help, when due to irregularities in register file,
1692 and due to multi word pseudos, the colorization is suboptimal. But
1693 be aware, that currently this pass is quite slow. */
1696 try_recolor_web (web
)
1699 struct conflict_link
*wl
;
1700 unsigned HOST_WIDE_INT
*cost_neighbors
;
1701 unsigned int *min_color
;
1703 HARD_REG_SET precolored_neighbors
, spill_temps
;
1704 HARD_REG_SET possible_begin
, wide_seen
;
1705 cost_neighbors
= (unsigned HOST_WIDE_INT
*)
1706 xcalloc (FIRST_PSEUDO_REGISTER
, sizeof (cost_neighbors
[0]));
1707 /* For each hard-regs count the number of preceding hardregs, which
1708 would overlap this color, if used in WEB's mode. */
1709 min_color
= (unsigned int *) xcalloc (FIRST_PSEUDO_REGISTER
, sizeof (int));
1710 CLEAR_HARD_REG_SET (possible_begin
);
1711 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1714 if (!HARD_REGNO_MODE_OK (c
, GET_MODE (web
->orig_x
)))
1716 nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
1717 for (i
= 0; i
< nregs
; i
++)
1718 if (!TEST_HARD_REG_BIT (web
->usable_regs
, c
+ i
))
1720 if (i
< nregs
|| nregs
== 0)
1722 SET_HARD_REG_BIT (possible_begin
, c
);
1724 if (!min_color
[c
+ nregs
])
1725 min_color
[c
+ nregs
] = 1 + c
;
1727 CLEAR_HARD_REG_SET (precolored_neighbors
);
1728 CLEAR_HARD_REG_SET (spill_temps
);
1729 CLEAR_HARD_REG_SET (wide_seen
);
1730 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1732 HARD_REG_SET dont_begin
;
1733 struct web
*web2
= alias (wl
->t
);
1734 struct conflict_link
*nn
;
1737 if (wl
->t
->type
== COALESCED
|| web2
->type
!= COLORED
)
1739 if (web2
->type
== PRECOLORED
)
1741 c1
= min_color
[web2
->color
];
1742 c1
= (c1
== 0) ? web2
->color
: (c1
- 1);
1744 for (; c1
<= c2
; c1
++)
1745 SET_HARD_REG_BIT (precolored_neighbors
, c1
);
1749 /* Mark colors for which some wide webs are involved. For
1750 those the independent sets are not simply one-node graphs, so
1751 they can't be recolored independent from their neighborhood. This
1752 means, that our cost calculation can be incorrect (assuming it
1753 can avoid spilling a web because it thinks some colors are available,
1754 although it's neighbors which itself need recoloring might take
1755 away exactly those colors). */
1756 if (web2
->add_hardregs
)
1758 for (nn
= web2
->conflict_list
; nn
&& !wide_p
; nn
= nn
->next
)
1759 if (alias (nn
->t
)->add_hardregs
)
1761 calculate_dont_begin (web2
, &dont_begin
);
1762 c1
= min_color
[web2
->color
];
1763 /* Note that min_color[] contains 1-based values (zero means
1765 c1
= c1
== 0 ? web2
->color
: (c1
- 1);
1766 c2
= web2
->color
+ HARD_REGNO_NREGS (web2
->color
, GET_MODE
1767 (web2
->orig_x
)) - 1;
1768 for (; c1
<= c2
; c1
++)
1769 if (TEST_HARD_REG_BIT (possible_begin
, c1
))
1772 HARD_REG_SET colors
;
1773 nregs
= HARD_REGNO_NREGS (c1
, GET_MODE (web
->orig_x
));
1774 COPY_HARD_REG_SET (colors
, web2
->usable_regs
);
1776 CLEAR_HARD_REG_BIT (colors
, c1
+ nregs
);
1778 SET_HARD_REG_BIT (wide_seen
, c1
);
1779 if (get_free_reg (dont_begin
, colors
,
1780 GET_MODE (web2
->orig_x
)) < 0)
1782 if (web2
->spill_temp
)
1783 SET_HARD_REG_BIT (spill_temps
, c1
);
1785 cost_neighbors
[c1
] += web2
->spill_cost
;
1790 for (c
= 0; c
< FIRST_PSEUDO_REGISTER
; c
++)
1791 if (TEST_HARD_REG_BIT (possible_begin
, c
)
1792 && !TEST_HARD_REG_BIT (precolored_neighbors
, c
)
1793 && !TEST_HARD_REG_BIT (spill_temps
, c
)
1795 || cost_neighbors
[c
] < cost_neighbors
[newcol
]))
1797 if (newcol
>= 0 && cost_neighbors
[newcol
] < web
->spill_cost
)
1799 int nregs
= HARD_REGNO_NREGS (newcol
, GET_MODE (web
->orig_x
));
1800 unsigned HOST_WIDE_INT cost
= 0;
1802 struct conflict_link
*wl_next
;
1803 ra_debug_msg (DUMP_COLORIZE
, "try to set web %d to color %d\n", web
->id
,
1805 remove_list (web
->dlink
, &WEBS(SPILLED
));
1806 put_web (web
, COLORED
);
1807 web
->color
= newcol
;
1808 old_colors
= (int *) xcalloc (num_webs
, sizeof (int));
1809 for (wl
= web
->conflict_list
; wl
; wl
= wl_next
)
1811 struct web
*web2
= alias (wl
->t
);
1812 /* If web2 is a coalesce-target, and will become spilled
1813 below in colorize_one_web(), and the current conflict wl
1814 between web and web2 was only the result of that coalescing
1815 this conflict will be deleted, making wl invalid. So save
1816 the next conflict right now. Note that if web2 has indeed
1817 such state, then wl->next can not be deleted in this
1820 if (web2
->type
== COLORED
)
1822 int nregs2
= HARD_REGNO_NREGS (web2
->color
, GET_MODE
1824 if (web
->color
>= web2
->color
+ nregs2
1825 || web2
->color
>= web
->color
+ nregs
)
1827 old_colors
[web2
->id
] = web2
->color
+ 1;
1829 remove_list (web2
->dlink
, &WEBS(COLORED
));
1830 web2
->type
= SELECT
;
1831 /* Allow webs to be spilled. */
1832 if (web2
->spill_temp
== 0 || web2
->spill_temp
== 2)
1833 web2
->was_spilled
= 1;
1834 colorize_one_web (web2
, 1);
1835 if (web2
->type
== SPILLED
)
1836 cost
+= web2
->spill_cost
;
1839 /* The actual cost may be smaller than the guessed one, because
1840 partial conflicts could result in some conflicting webs getting
1841 a color, where we assumed it must be spilled. See the comment
1842 above what happens, when wide webs are involved, and why in that
1843 case there might actually be some webs spilled although thought to
1845 if (cost
> cost_neighbors
[newcol
]
1846 && nregs
== 1 && !TEST_HARD_REG_BIT (wide_seen
, newcol
))
1848 /* But if the new spill-cost is higher than our own, then really loose.
1849 Respill us and recolor neighbors as before. */
1850 if (cost
> web
->spill_cost
)
1852 ra_debug_msg (DUMP_COLORIZE
,
1853 "reset coloring of web %d, too expensive\n", web
->id
);
1854 remove_list (web
->dlink
, &WEBS(COLORED
));
1856 put_web (web
, SPILLED
);
1857 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1859 struct web
*web2
= alias (wl
->t
);
1860 if (old_colors
[web2
->id
])
1862 if (web2
->type
== SPILLED
)
1864 remove_list (web2
->dlink
, &WEBS(SPILLED
));
1865 web2
->color
= old_colors
[web2
->id
] - 1;
1866 put_web (web2
, COLORED
);
1868 else if (web2
->type
== COLORED
)
1869 web2
->color
= old_colors
[web2
->id
] - 1;
1870 else if (web2
->type
== SELECT
)
1871 /* This means, that WEB2 once was a part of a coalesced
1872 web, which got spilled in the above colorize_one_web()
1873 call, and whose parts then got splitted and put back
1874 onto the SELECT stack. As the cause for that splitting
1875 (the coloring of WEB) was worthless, we should again
1876 coalesce the parts, as they were before. For now we
1877 simply leave them SELECTed, for our caller to take
1888 free (cost_neighbors
);
1891 /* This ensures that all conflicts of coalesced webs are seen from
1892 the webs coalesced into. combine() only adds the conflicts which
1893 at the time of combining were not already SELECTed or COALESCED
1894 to not destroy num_conflicts. Here we add all remaining conflicts
1895 and thereby destroy num_conflicts. This should be used when num_conflicts
1896 isn't used anymore, e.g. on a completely colored graph. */
1899 insert_coalesced_conflicts ()
1902 for (d
= WEBS(COALESCED
); 0 && d
; d
= d
->next
)
1904 struct web
*web
= DLIST_WEB (d
);
1905 struct web
*aweb
= alias (web
);
1906 struct conflict_link
*wl
;
1907 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
1909 struct web
*tweb
= aweb
;
1911 int nregs
= 1 + web
->add_hardregs
;
1912 if (aweb
->type
== PRECOLORED
)
1913 nregs
= HARD_REGNO_NREGS (aweb
->color
, GET_MODE (web
->orig_x
));
1914 for (i
= 0; i
< nregs
; i
++)
1916 if (aweb
->type
== PRECOLORED
)
1917 tweb
= hardreg2web
[i
+ aweb
->color
];
1918 /* There might be some conflict edges laying around
1919 where the usable_regs don't intersect. This can happen
1920 when first some webs were coalesced and conflicts
1921 propagated, then some combining narrowed usable_regs and
1922 further coalescing ignored those conflicts. Now there are
1923 some edges to COALESCED webs but not to it's alias.
1924 So abort only when they really should conflict. */
1925 if ((!(tweb
->type
== PRECOLORED
1926 || TEST_BIT (sup_igraph
, tweb
->id
* num_webs
+ wl
->t
->id
))
1927 || !(wl
->t
->type
== PRECOLORED
1928 || TEST_BIT (sup_igraph
,
1929 wl
->t
->id
* num_webs
+ tweb
->id
)))
1930 && hard_regs_intersect_p (&tweb
->usable_regs
,
1931 &wl
->t
->usable_regs
))
1933 /*if (wl->sub == NULL)
1934 record_conflict (tweb, wl->t);
1937 struct sub_conflict *sl;
1938 for (sl = wl->sub; sl; sl = sl->next)
1939 record_conflict (tweb, sl->t);
1941 if (aweb
->type
!= PRECOLORED
)
1948 /* A function suitable to pass to qsort(). Compare the spill costs
1949 of webs W1 and W2. When used by qsort, this would order webs with
1950 largest cost first. */
1953 comp_webs_maxcost (w1
, w2
)
1954 const void *w1
, *w2
;
1956 struct web
*web1
= *(struct web
**)w1
;
1957 struct web
*web2
= *(struct web
**)w2
;
1958 if (web1
->spill_cost
> web2
->spill_cost
)
1960 else if (web1
->spill_cost
< web2
->spill_cost
)
1966 /* This tries to recolor all spilled webs. See try_recolor_web()
1967 how this is done. This just calls it for each spilled web. */
1972 unsigned int i
, num
;
1973 struct web
**order2web
;
1974 num
= num_webs
- num_subwebs
;
1975 order2web
= (struct web
**) xmalloc (num
* sizeof (order2web
[0]));
1976 for (i
= 0; i
< num
; i
++)
1978 order2web
[i
] = id2web
[i
];
1979 /* If we aren't breaking aliases, combine() wasn't merging the
1980 spill_costs. So do that here to have sane measures. */
1981 if (!flag_ra_merge_spill_costs
&& id2web
[i
]->type
== COALESCED
)
1982 alias (id2web
[i
])->spill_cost
+= id2web
[i
]->spill_cost
;
1984 qsort (order2web
, num
, sizeof (order2web
[0]), comp_webs_maxcost
);
1985 insert_coalesced_conflicts ();
1986 dump_graph_cost (DUMP_COSTS
, "before spill-recolor");
1987 for (i
= 0; i
< num
; i
++)
1989 struct web
*web
= order2web
[i
];
1990 if (web
->type
== SPILLED
)
1991 try_recolor_web (web
);
1993 /* It might have been decided in try_recolor_web() (in colorize_one_web())
1994 that a coalesced web should be spilled, so it was put on the
1995 select stack. Those webs need recoloring again, and all remaining
1996 coalesced webs might need their color updated, so simply call
1997 assign_colors() again. */
2002 /* This checks the current color assignment for obvious errors,
2003 like two conflicting webs overlapping in colors, or the used colors
2004 not being in usable regs. */
2010 for (i
= 0; i
< num_webs
- num_subwebs
; i
++)
2012 struct web
*web
= id2web
[i
];
2013 struct web
*aweb
= alias (web
);
2014 struct conflict_link
*wl
;
2016 if (aweb
->type
== SPILLED
|| web
->regno
>= max_normal_pseudo
)
2018 else if (aweb
->type
== COLORED
)
2019 nregs
= HARD_REGNO_NREGS (aweb
->color
, GET_MODE (web
->orig_x
));
2020 else if (aweb
->type
== PRECOLORED
)
2024 /* The color must be valid for the original usable_regs. */
2025 for (c
= 0; c
< nregs
; c
++)
2026 if (!TEST_HARD_REG_BIT (web
->usable_regs
, aweb
->color
+ c
))
2028 /* Search the original (pre-coalesce) conflict list. In the current
2029 one some imprecise conflicts may be noted (due to combine() or
2030 insert_coalesced_conflicts() relocating partial conflicts) making
2031 it look like some wide webs are in conflict and having the same
2033 wl
= (web
->have_orig_conflicts
? web
->orig_conflict_list
2034 : web
->conflict_list
);
2035 for (; wl
; wl
= wl
->next
)
2036 if (wl
->t
->regno
>= max_normal_pseudo
)
2040 struct web
*web2
= alias (wl
->t
);
2042 if (web2
->type
== COLORED
)
2043 nregs2
= HARD_REGNO_NREGS (web2
->color
, GET_MODE (web2
->orig_x
));
2044 else if (web2
->type
== PRECOLORED
)
2048 if (aweb
->color
>= web2
->color
+ nregs2
2049 || web2
->color
>= aweb
->color
+ nregs
)
2055 struct sub_conflict
*sl
;
2056 int scol
= aweb
->color
;
2057 int tcol
= alias (wl
->t
)->color
;
2058 if (alias (wl
->t
)->type
== SPILLED
)
2060 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2062 int ssize
= HARD_REGNO_NREGS (scol
, GET_MODE (sl
->s
->orig_x
));
2063 int tsize
= HARD_REGNO_NREGS (tcol
, GET_MODE (sl
->t
->orig_x
));
2064 int sofs
= 0, tofs
= 0;
2065 if (SUBWEB_P (sl
->t
)
2066 && GET_MODE_SIZE (GET_MODE (sl
->t
->orig_x
)) >= UNITS_PER_WORD
)
2067 tofs
= (SUBREG_BYTE (sl
->t
->orig_x
) / UNITS_PER_WORD
);
2068 if (SUBWEB_P (sl
->s
)
2069 && GET_MODE_SIZE (GET_MODE (sl
->s
->orig_x
))
2071 sofs
= (SUBREG_BYTE (sl
->s
->orig_x
) / UNITS_PER_WORD
);
2072 if ((tcol
+ tofs
>= scol
+ sofs
+ ssize
)
2073 || (scol
+ sofs
>= tcol
+ tofs
+ tsize
))
2081 /* WEB was a coalesced web. Make it unaliased again, and put it
2082 back onto SELECT stack. */
2089 web
->is_coalesced
= 0;
2091 /* Well, initially everything was spilled, so it isn't incorrect,
2092 that also the individual parts can be spilled.
2093 XXX this isn't entirely correct, as we also relaxed the
2094 spill_temp flag in combine(), which might have made components
2095 spill, although they were a short or spilltemp web. */
2096 web
->was_spilled
= 1;
2097 remove_list (web
->dlink
, &WEBS(COALESCED
));
2098 /* Spilltemps must be colored right now (i.e. as early as possible),
2099 other webs can be deferred to the end (the code building the
2100 stack assumed that in this stage only one web was colored). */
2101 if (web
->spill_temp
&& web
->spill_temp
!= 2)
2102 put_web (web
, SELECT
);
2104 put_web_at_end (web
, SELECT
);
2107 /* WEB is a _target_ for coalescing which got spilled.
2108 Break all aliases to WEB, and restore some of its member to the state
2109 they were before coalescing. Due to the suboptimal structure of
2110 the interference graph we need to go through all coalesced webs.
2111 Somewhen we'll change this to be more sane. */
2114 break_aliases_to_web (web
)
2117 struct dlist
*d
, *d_next
;
2118 if (web
->type
!= SPILLED
)
2120 for (d
= WEBS(COALESCED
); d
; d
= d_next
)
2122 struct web
*other
= DLIST_WEB (d
);
2124 /* Beware: Don't use alias() here. We really want to check only
2125 one level of aliasing, i.e. only break up webs directly
2126 aliased to WEB, not also those aliased through other webs. */
2127 if (other
->alias
== web
)
2129 unalias_web (other
);
2130 ra_debug_msg (DUMP_COLORIZE
, " %d", other
->id
);
2133 web
->spill_temp
= web
->orig_spill_temp
;
2134 web
->spill_cost
= web
->orig_spill_cost
;
2135 /* Beware: The following possibly widens usable_regs again. While
2136 it was narrower there might have been some conflicts added which got
2137 ignored because of non-intersecting hardregsets. All those conflicts
2138 would now matter again. Fortunately we only add conflicts when
2139 coalescing, which is also the time of narrowing. And we remove all
2140 those added conflicts again now that we unalias this web.
2141 Therefore this is safe to do. */
2142 COPY_HARD_REG_SET (web
->usable_regs
, web
->orig_usable_regs
);
2143 web
->is_coalesced
= 0;
2144 web
->num_aliased
= 0;
2145 web
->was_spilled
= 1;
2146 /* Reset is_coalesced flag for webs which itself are target of coalescing.
2147 It was cleared above if it was coalesced to WEB. */
2148 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
2149 DLIST_WEB (d
)->alias
->is_coalesced
= 1;
2152 /* WEB is a web coalesced into a precolored one. Break that alias,
2153 making WEB SELECTed again. Also restores the conflicts which resulted
2154 from initially coalescing both. */
2157 break_precolored_alias (web
)
2160 struct web
*pre
= web
->alias
;
2161 struct conflict_link
*wl
;
2162 unsigned int c
= pre
->color
;
2163 unsigned int nregs
= HARD_REGNO_NREGS (c
, GET_MODE (web
->orig_x
));
2164 if (pre
->type
!= PRECOLORED
)
2167 /* Now we need to look at each conflict X of WEB, if it conflicts
2168 with [PRE, PRE+nregs), and remove such conflicts, of X has not other
2169 conflicts, which are coalesced into those precolored webs. */
2170 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
2172 struct web
*x
= wl
->t
;
2175 struct conflict_link
*wl2
;
2176 struct conflict_link
**pcl
;
2178 if (!x
->have_orig_conflicts
)
2180 /* First look at which colors can not go away, due to other coalesces
2182 CLEAR_HARD_REG_SET (regs
);
2183 for (i
= 0; i
< nregs
; i
++)
2184 SET_HARD_REG_BIT (regs
, c
+ i
);
2185 for (wl2
= x
->conflict_list
; wl2
; wl2
= wl2
->next
)
2186 if (wl2
->t
->type
== COALESCED
&& alias (wl2
->t
)->type
== PRECOLORED
)
2187 CLEAR_HARD_REG_BIT (regs
, alias (wl2
->t
)->color
);
2188 /* Now also remove the colors of those conflicts which already
2189 were there before coalescing at all. */
2190 for (wl2
= x
->orig_conflict_list
; wl2
; wl2
= wl2
->next
)
2191 if (wl2
->t
->type
== PRECOLORED
)
2192 CLEAR_HARD_REG_BIT (regs
, wl2
->t
->color
);
2193 /* The colors now still set are those for which WEB was the last
2194 cause, i.e. those which can be removed. */
2196 for (i
= 0; i
< nregs
; i
++)
2197 if (TEST_HARD_REG_BIT (regs
, c
+ i
))
2200 y
= hardreg2web
[c
+ i
];
2201 RESET_BIT (sup_igraph
, x
->id
* num_webs
+ y
->id
);
2202 RESET_BIT (sup_igraph
, y
->id
* num_webs
+ x
->id
);
2203 RESET_BIT (igraph
, igraph_index (x
->id
, y
->id
));
2204 for (sub
= x
->subreg_next
; sub
; sub
= sub
->subreg_next
)
2205 RESET_BIT (igraph
, igraph_index (sub
->id
, y
->id
));
2209 pcl
= &(x
->conflict_list
);
2212 struct web
*y
= (*pcl
)->t
;
2213 if (y
->type
!= PRECOLORED
|| !TEST_HARD_REG_BIT (regs
, y
->color
))
2214 pcl
= &((*pcl
)->next
);
2216 *pcl
= (*pcl
)->next
;
2221 /* WEB is a spilled web which was target for coalescing.
2222 Delete all interference edges which were added due to that coalescing,
2223 and break up the coalescing. */
2226 restore_conflicts_from_coalesce (web
)
2229 struct conflict_link
**pcl
;
2230 struct conflict_link
*wl
;
2231 pcl
= &(web
->conflict_list
);
2232 /* No original conflict list means no conflict was added at all
2233 after building the graph. So neither we nor any neighbors have
2234 conflicts due to this coalescing. */
2235 if (!web
->have_orig_conflicts
)
2239 struct web
*other
= (*pcl
)->t
;
2240 for (wl
= web
->orig_conflict_list
; wl
; wl
= wl
->next
)
2245 /* We found this conflict also in the original list, so this
2246 was no new conflict. */
2247 pcl
= &((*pcl
)->next
);
2251 /* This is a new conflict, so delete it from us and
2253 struct conflict_link
**opcl
;
2254 struct conflict_link
*owl
;
2255 struct sub_conflict
*sl
;
2258 if (!other
->have_orig_conflicts
&& other
->type
!= PRECOLORED
)
2260 for (owl
= other
->orig_conflict_list
; owl
; owl
= owl
->next
)
2265 opcl
= &(other
->conflict_list
);
2268 if ((*opcl
)->t
== web
)
2276 opcl
= &((*opcl
)->next
);
2279 if (!owl
&& other
->type
!= PRECOLORED
)
2281 /* wl and owl contain the edge data to be deleted. */
2282 RESET_BIT (sup_igraph
, web
->id
* num_webs
+ other
->id
);
2283 RESET_BIT (sup_igraph
, other
->id
* num_webs
+ web
->id
);
2284 RESET_BIT (igraph
, igraph_index (web
->id
, other
->id
));
2285 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2286 RESET_BIT (igraph
, igraph_index (sl
->s
->id
, sl
->t
->id
));
2287 if (other
->type
!= PRECOLORED
)
2289 for (sl
= owl
->sub
; sl
; sl
= sl
->next
)
2290 RESET_BIT (igraph
, igraph_index (sl
->s
->id
, sl
->t
->id
));
2295 /* We must restore usable_regs because record_conflict will use it. */
2296 COPY_HARD_REG_SET (web
->usable_regs
, web
->orig_usable_regs
);
2297 /* We might have deleted some conflicts above, which really are still
2298 there (diamond pattern coalescing). This is because we don't reference
2299 count interference edges but some of them were the result of different
2301 for (wl
= web
->conflict_list
; wl
; wl
= wl
->next
)
2302 if (wl
->t
->type
== COALESCED
)
2305 for (tweb
= wl
->t
->alias
; tweb
; tweb
= tweb
->alias
)
2307 if (wl
->sub
== NULL
)
2308 record_conflict (web
, tweb
);
2311 struct sub_conflict
*sl
;
2312 for (sl
= wl
->sub
; sl
; sl
= sl
->next
)
2314 struct web
*sweb
= NULL
;
2315 if (SUBWEB_P (sl
->t
))
2316 sweb
= find_subweb (tweb
, sl
->t
->orig_x
);
2319 record_conflict (sl
->s
, sweb
);
2322 if (tweb
->type
!= COALESCED
)
2328 /* Repeatedly break aliases for spilled webs, which were target for
2329 coalescing, and recolorize the resulting parts. Do this as long as
2330 there are any spilled coalesce targets. */
2333 break_coalesced_spills ()
2340 for (d
= WEBS(SPILLED
); d
; d
= d
->next
)
2341 if (DLIST_WEB (d
)->is_coalesced
)
2346 web
= DLIST_WEB (d
);
2347 ra_debug_msg (DUMP_COLORIZE
, "breaking aliases to web %d:", web
->id
);
2348 restore_conflicts_from_coalesce (web
);
2349 break_aliases_to_web (web
);
2350 /* WEB was a spilled web and isn't anymore. Everything coalesced
2351 to WEB is now SELECTed and might potentially get a color.
2352 If those other webs were itself targets of coalescing it might be
2353 that there are still some conflicts from aliased webs missing,
2354 because they were added in combine() right into the now
2355 SELECTed web. So we need to add those missing conflicts here. */
2356 insert_coalesced_conflicts ();
2357 ra_debug_msg (DUMP_COLORIZE
, "\n");
2358 remove_list (d
, &WEBS(SPILLED
));
2359 put_web (web
, SELECT
);
2361 while (WEBS(SELECT
))
2363 d
= pop_list (&WEBS(SELECT
));
2364 colorize_one_web (DLIST_WEB (d
), 1);
2370 for (d
= WEBS(COALESCED
); d
; d
= d
->next
)
2372 struct web
*a
= alias (DLIST_WEB (d
));
2373 DLIST_WEB (d
)->color
= a
->color
;
2376 dump_graph_cost (DUMP_COSTS
, "after alias-breaking");
2379 /* A structure for fast hashing of a pair of webs.
2380 Used to cumulate savings (from removing copy insns) for coalesced webs.
2381 All the pairs are also put into a single linked list. */
2384 struct web_pair
*next_hash
;
2385 struct web_pair
*next_list
;
2386 struct web
*smaller
;
2388 unsigned int conflicts
;
2389 unsigned HOST_WIDE_INT cost
;
2392 /* The actual hash table. */
2393 #define WEB_PAIR_HASH_SIZE 8192
2394 static struct web_pair
*web_pair_hash
[WEB_PAIR_HASH_SIZE
];
2395 static struct web_pair
*web_pair_list
;
2396 static unsigned int num_web_pairs
;
2398 /* Clear the hash table of web pairs. */
2403 memset (web_pair_hash
, 0, sizeof web_pair_hash
);
2405 web_pair_list
= NULL
;
2408 /* Given two webs connected by a move with cost COST which together
2409 have CONFLICTS conflicts, add that pair to the hash table, or if
2410 already in, cumulate the costs and conflict number. */
2413 add_web_pair_cost (web1
, web2
, cost
, conflicts
)
2414 struct web
*web1
, *web2
;
2415 unsigned HOST_WIDE_INT cost
;
2416 unsigned int conflicts
;
2420 if (web1
->id
> web2
->id
)
2422 struct web
*h
= web1
;
2426 hash
= (web1
->id
* num_webs
+ web2
->id
) % WEB_PAIR_HASH_SIZE
;
2427 for (p
= web_pair_hash
[hash
]; p
; p
= p
->next_hash
)
2428 if (p
->smaller
== web1
&& p
->larger
== web2
)
2431 p
->conflicts
+= conflicts
;
2434 p
= (struct web_pair
*) ra_alloc (sizeof *p
);
2435 p
->next_hash
= web_pair_hash
[hash
];
2436 p
->next_list
= web_pair_list
;
2439 p
->conflicts
= conflicts
;
2441 web_pair_hash
[hash
] = p
;
2446 /* Suitable to be passed to qsort(). Sort web pairs so, that those
2447 with more conflicts and higher cost (which actually is a saving
2448 when the moves are removed) come first. */
2451 comp_web_pairs (w1
, w2
)
2452 const void *w1
, *w2
;
2454 struct web_pair
*p1
= *(struct web_pair
**)w1
;
2455 struct web_pair
*p2
= *(struct web_pair
**)w2
;
2456 if (p1
->conflicts
> p2
->conflicts
)
2458 else if (p1
->conflicts
< p2
->conflicts
)
2460 else if (p1
->cost
> p2
->cost
)
2462 else if (p1
->cost
< p2
->cost
)
2468 /* Given the list of web pairs, begin to combine them from the one
2469 with the most savings. */
2472 sort_and_combine_web_pairs (for_move
)
2476 struct web_pair
**sorted
;
2480 sorted
= (struct web_pair
**) xmalloc (num_web_pairs
* sizeof (sorted
[0]));
2481 for (p
= web_pair_list
, i
= 0; p
; p
= p
->next_list
)
2483 if (i
!= num_web_pairs
)
2485 qsort (sorted
, num_web_pairs
, sizeof (sorted
[0]), comp_web_pairs
);
2487 /* After combining one pair, we actually should adjust the savings
2488 of the other pairs, if they are connected to one of the just coalesced
2490 for (i
= 0; i
< num_web_pairs
; i
++)
2492 struct web
*w1
, *w2
;
2494 w1
= alias (p
->smaller
);
2495 w2
= alias (p
->larger
);
2496 if (!for_move
&& (w1
->type
== PRECOLORED
|| w2
->type
== PRECOLORED
))
2498 else if (w2
->type
== PRECOLORED
)
2505 && !TEST_BIT (sup_igraph
, w1
->id
* num_webs
+ w2
->id
)
2506 && !TEST_BIT (sup_igraph
, w2
->id
* num_webs
+ w1
->id
)
2507 && w2
->type
!= PRECOLORED
2508 && hard_regs_intersect_p (&w1
->usable_regs
, &w2
->usable_regs
))
2510 if (w1
->type
!= PRECOLORED
2511 || (w1
->type
== PRECOLORED
&& ok (w2
, w1
)))
2513 else if (w1
->type
== PRECOLORED
)
2514 SET_HARD_REG_BIT (w2
->prefer_colors
, w1
->color
);
2520 /* Greedily coalesce all moves possible. Begin with the web pair
2521 giving the most saving if coalesced. */
2524 aggressive_coalesce ()
2529 while ((d
= pop_list (&mv_worklist
)) != NULL
)
2530 if ((m
= DLIST_MOVE (d
)))
2532 struct web
*s
= alias (m
->source_web
);
2533 struct web
*t
= alias (m
->target_web
);
2534 if (t
->type
== PRECOLORED
)
2541 && t
->type
!= PRECOLORED
2542 && !TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
2543 && !TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
))
2545 if ((s
->type
== PRECOLORED
&& ok (t
, s
))
2546 || s
->type
!= PRECOLORED
)
2548 put_move (m
, MV_COALESCED
);
2549 add_web_pair_cost (s
, t
, BLOCK_FOR_INSN (m
->insn
)->frequency
,
2552 else if (s
->type
== PRECOLORED
)
2553 /* It is !ok(t, s). But later when coloring the graph it might
2554 be possible to take that color. So we remember the preferred
2555 color to try that first. */
2557 put_move (m
, CONSTRAINED
);
2558 SET_HARD_REG_BIT (t
->prefer_colors
, s
->color
);
2563 put_move (m
, CONSTRAINED
);
2566 sort_and_combine_web_pairs (1);
2569 /* This is the difference between optimistic coalescing and
2570 optimistic coalescing+. Extended coalesce tries to coalesce also
2571 non-conflicting nodes, not related by a move. The criteria here is,
2572 the one web must be a source, the other a destination of the same insn.
2573 This actually makes sense, as (because they are in the same insn) they
2574 share many of their neighbors, and if they are coalesced, reduce the
2575 number of conflicts of those neighbors by one. For this we sort the
2576 candidate pairs again according to savings (and this time also conflict
2579 This is also a comparatively slow operation, as we need to go through
2580 all insns, and for each insn, through all defs and uses. */
2583 extended_coalesce_2 ()
2586 struct ra_insn_info info
;
2589 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2590 if (INSN_P (insn
) && (info
= insn_df
[INSN_UID (insn
)]).num_defs
)
2591 for (n
= 0; n
< info
.num_defs
; n
++)
2593 struct web
*dest
= def2web
[DF_REF_ID (info
.defs
[n
])];
2594 dest
= alias (find_web_for_subweb (dest
));
2595 if (dest
->type
!= PRECOLORED
&& dest
->regno
< max_normal_pseudo
)
2598 for (n2
= 0; n2
< info
.num_uses
; n2
++)
2600 struct web
*source
= use2web
[DF_REF_ID (info
.uses
[n2
])];
2601 source
= alias (find_web_for_subweb (source
));
2602 if (source
->type
!= PRECOLORED
2604 && source
->regno
< max_normal_pseudo
2605 /* Coalesced webs end up using the same REG rtx in
2606 emit_colors(). So we can only coalesce something
2608 && GET_MODE (source
->orig_x
) == GET_MODE (dest
->orig_x
)
2609 && !TEST_BIT (sup_igraph
,
2610 dest
->id
* num_webs
+ source
->id
)
2611 && !TEST_BIT (sup_igraph
,
2612 source
->id
* num_webs
+ dest
->id
)
2613 && hard_regs_intersect_p (&source
->usable_regs
,
2614 &dest
->usable_regs
))
2615 add_web_pair_cost (dest
, source
,
2616 BLOCK_FOR_INSN (insn
)->frequency
,
2618 + source
->num_conflicts
);
2622 sort_and_combine_web_pairs (0);
2625 /* Check if we forgot to coalesce some moves. */
2628 check_uncoalesced_moves ()
2630 struct move_list
*ml
;
2632 for (ml
= wl_moves
; ml
; ml
= ml
->next
)
2635 struct web
*s
= alias (m
->source_web
);
2636 struct web
*t
= alias (m
->target_web
);
2637 if (t
->type
== PRECOLORED
)
2644 && m
->type
!= CONSTRAINED
2645 /* Following can happen when a move was coalesced, but later
2646 broken up again. Then s!=t, but m is still MV_COALESCED. */
2647 && m
->type
!= MV_COALESCED
2648 && t
->type
!= PRECOLORED
2649 && ((s
->type
== PRECOLORED
&& ok (t
, s
))
2650 || s
->type
!= PRECOLORED
)
2651 && !TEST_BIT (sup_igraph
, s
->id
* num_webs
+ t
->id
)
2652 && !TEST_BIT (sup_igraph
, t
->id
* num_webs
+ s
->id
))
2657 /* The toplevel function in this file. Precondition is, that
2658 the interference graph is built completely by ra-build.c. This
2659 produces a list of spilled, colored and coalesced nodes. */
2662 ra_colorize_graph (df
)
2667 build_worklists (df
);
2669 /* With optimistic coalescing we coalesce everything we can. */
2670 if (flag_ra_optimistic_coalescing
)
2672 aggressive_coalesce ();
2673 extended_coalesce_2 ();
2676 /* Now build the select stack. */
2682 else if (WEBS(FREEZE
))
2684 else if (WEBS(SPILL
))
2687 while (WEBS(SIMPLIFY
) || WEBS(SIMPLIFY_FAT
) || WEBS(SIMPLIFY_SPILL
)
2688 || mv_worklist
|| WEBS(FREEZE
) || WEBS(SPILL
));
2689 if (flag_ra_optimistic_coalescing
)
2690 check_uncoalesced_moves ();
2692 /* Actually colorize the webs from the select stack. */
2695 dump_graph_cost (DUMP_COSTS
, "initially");
2696 if (flag_ra_break_aliases
)
2697 break_coalesced_spills ();
2700 /* And try to improve the cost by recoloring spilled webs. */
2702 dump_graph_cost (DUMP_COSTS
, "after spill-recolor");
2706 /* Initialize this module. */
2708 void ra_colorize_init ()
2710 /* FIXME: Choose spill heuristic for platform if we have one */
2711 spill_heuristic
= default_spill_heuristic
;
2714 /* Free all memory. (Note that we don't need to free any per pass
2718 ra_colorize_free_all ()
2721 while ((d
= pop_list (&WEBS(FREE
))) != NULL
)
2722 put_web (DLIST_WEB (d
), INITIAL
);
2723 while ((d
= pop_list (&WEBS(INITIAL
))) != NULL
)
2725 struct web
*web
= DLIST_WEB (d
);
2727 web
->orig_conflict_list
= NULL
;
2728 web
->conflict_list
= NULL
;
2729 for (web
= web
->subreg_next
; web
; web
= wnext
)
2731 wnext
= web
->subreg_next
;
2734 free (DLIST_WEB (d
));
2739 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: