Fixed rare threading problem
[official-gcc.git] / gcc / loop.c
blobb3c55170927c0eb9feb9dba1e271849617302cdb
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "hard-reg-set.h"
46 #include "basic-block.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "recog.h"
50 #include "flags.h"
51 #include "real.h"
52 #include "loop.h"
53 #include "cselib.h"
54 #include "except.h"
55 #include "toplev.h"
56 #include "predict.h"
57 #include "insn-flags.h"
58 #include "optabs.h"
59 #include "cfgloop.h"
61 /* Not really meaningful values, but at least something. */
62 #ifndef SIMULTANEOUS_PREFETCHES
63 #define SIMULTANEOUS_PREFETCHES 3
64 #endif
65 #ifndef PREFETCH_BLOCK
66 #define PREFETCH_BLOCK 32
67 #endif
68 #ifndef HAVE_prefetch
69 #define HAVE_prefetch 0
70 #define CODE_FOR_prefetch 0
71 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
72 #endif
74 /* Give up the prefetch optimizations once we exceed a given threshold.
75 It is unlikely that we would be able to optimize something in a loop
76 with so many detected prefetches. */
77 #define MAX_PREFETCHES 100
78 /* The number of prefetch blocks that are beneficial to fetch at once before
79 a loop with a known (and low) iteration count. */
80 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
81 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
82 since it is likely that the data are already in the cache. */
83 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
85 /* Parameterize some prefetch heuristics so they can be turned on and off
86 easily for performance testing on new architectures. These can be
87 defined in target-dependent files. */
89 /* Prefetch is worthwhile only when loads/stores are dense. */
90 #ifndef PREFETCH_ONLY_DENSE_MEM
91 #define PREFETCH_ONLY_DENSE_MEM 1
92 #endif
94 /* Define what we mean by "dense" loads and stores; This value divided by 256
95 is the minimum percentage of memory references that worth prefetching. */
96 #ifndef PREFETCH_DENSE_MEM
97 #define PREFETCH_DENSE_MEM 220
98 #endif
100 /* Do not prefetch for a loop whose iteration count is known to be low. */
101 #ifndef PREFETCH_NO_LOW_LOOPCNT
102 #define PREFETCH_NO_LOW_LOOPCNT 1
103 #endif
105 /* Define what we mean by a "low" iteration count. */
106 #ifndef PREFETCH_LOW_LOOPCNT
107 #define PREFETCH_LOW_LOOPCNT 32
108 #endif
110 /* Do not prefetch for a loop that contains a function call; such a loop is
111 probably not an internal loop. */
112 #ifndef PREFETCH_NO_CALL
113 #define PREFETCH_NO_CALL 1
114 #endif
116 /* Do not prefetch accesses with an extreme stride. */
117 #ifndef PREFETCH_NO_EXTREME_STRIDE
118 #define PREFETCH_NO_EXTREME_STRIDE 1
119 #endif
121 /* Define what we mean by an "extreme" stride. */
122 #ifndef PREFETCH_EXTREME_STRIDE
123 #define PREFETCH_EXTREME_STRIDE 4096
124 #endif
126 /* Define a limit to how far apart indices can be and still be merged
127 into a single prefetch. */
128 #ifndef PREFETCH_EXTREME_DIFFERENCE
129 #define PREFETCH_EXTREME_DIFFERENCE 4096
130 #endif
132 /* Issue prefetch instructions before the loop to fetch data to be used
133 in the first few loop iterations. */
134 #ifndef PREFETCH_BEFORE_LOOP
135 #define PREFETCH_BEFORE_LOOP 1
136 #endif
138 /* Do not handle reversed order prefetches (negative stride). */
139 #ifndef PREFETCH_NO_REVERSE_ORDER
140 #define PREFETCH_NO_REVERSE_ORDER 1
141 #endif
143 /* Prefetch even if the GIV is in conditional code. */
144 #ifndef PREFETCH_CONDITIONAL
145 #define PREFETCH_CONDITIONAL 1
146 #endif
148 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
149 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
151 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
152 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
153 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
155 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
156 ((REGNO) < FIRST_PSEUDO_REGISTER \
157 ? (int) HARD_REGNO_NREGS ((REGNO), GET_MODE (SET_DEST)) : 1)
160 /* Vector mapping INSN_UIDs to luids.
161 The luids are like uids but increase monotonically always.
162 We use them to see whether a jump comes from outside a given loop. */
164 int *uid_luid;
166 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
167 number the insn is contained in. */
169 struct loop **uid_loop;
171 /* 1 + largest uid of any insn. */
173 int max_uid_for_loop;
175 /* Number of loops detected in current function. Used as index to the
176 next few tables. */
178 static int max_loop_num;
180 /* Bound on pseudo register number before loop optimization.
181 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
182 unsigned int max_reg_before_loop;
184 /* The value to pass to the next call of reg_scan_update. */
185 static int loop_max_reg;
187 /* During the analysis of a loop, a chain of `struct movable's
188 is made to record all the movable insns found.
189 Then the entire chain can be scanned to decide which to move. */
191 struct movable
193 rtx insn; /* A movable insn */
194 rtx set_src; /* The expression this reg is set from. */
195 rtx set_dest; /* The destination of this SET. */
196 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
197 of any registers used within the LIBCALL. */
198 int consec; /* Number of consecutive following insns
199 that must be moved with this one. */
200 unsigned int regno; /* The register it sets */
201 short lifetime; /* lifetime of that register;
202 may be adjusted when matching movables
203 that load the same value are found. */
204 short savings; /* Number of insns we can move for this reg,
205 including other movables that force this
206 or match this one. */
207 ENUM_BITFIELD(machine_mode) savemode : 8; /* Nonzero means it is a mode for
208 a low part that we should avoid changing when
209 clearing the rest of the reg. */
210 unsigned int cond : 1; /* 1 if only conditionally movable */
211 unsigned int force : 1; /* 1 means MUST move this insn */
212 unsigned int global : 1; /* 1 means reg is live outside this loop */
213 /* If PARTIAL is 1, GLOBAL means something different:
214 that the reg is live outside the range from where it is set
215 to the following label. */
216 unsigned int done : 1; /* 1 inhibits further processing of this */
218 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
219 In particular, moving it does not make it
220 invariant. */
221 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
222 load SRC, rather than copying INSN. */
223 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
224 first insn of a consecutive sets group. */
225 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
226 unsigned int insert_temp : 1; /* 1 means we copy to a new pseudo and replace
227 the original insn with a copy from that
228 pseudo, rather than deleting it. */
229 struct movable *match; /* First entry for same value */
230 struct movable *forces; /* An insn that must be moved if this is */
231 struct movable *next;
235 FILE *loop_dump_stream;
237 /* Forward declarations. */
239 static void invalidate_loops_containing_label (rtx);
240 static void find_and_verify_loops (rtx, struct loops *);
241 static void mark_loop_jump (rtx, struct loop *);
242 static void prescan_loop (struct loop *);
243 static int reg_in_basic_block_p (rtx, rtx);
244 static int consec_sets_invariant_p (const struct loop *, rtx, int, rtx);
245 static int labels_in_range_p (rtx, int);
246 static void count_one_set (struct loop_regs *, rtx, rtx, rtx *);
247 static void note_addr_stored (rtx, rtx, void *);
248 static void note_set_pseudo_multiple_uses (rtx, rtx, void *);
249 static int loop_reg_used_before_p (const struct loop *, rtx, rtx);
250 static void scan_loop (struct loop*, int);
251 #if 0
252 static void replace_call_address (rtx, rtx, rtx);
253 #endif
254 static rtx skip_consec_insns (rtx, int);
255 static int libcall_benefit (rtx);
256 static void ignore_some_movables (struct loop_movables *);
257 static void force_movables (struct loop_movables *);
258 static void combine_movables (struct loop_movables *, struct loop_regs *);
259 static int num_unmoved_movables (const struct loop *);
260 static int regs_match_p (rtx, rtx, struct loop_movables *);
261 static int rtx_equal_for_loop_p (rtx, rtx, struct loop_movables *,
262 struct loop_regs *);
263 static void add_label_notes (rtx, rtx);
264 static void move_movables (struct loop *loop, struct loop_movables *, int,
265 int);
266 static void loop_movables_add (struct loop_movables *, struct movable *);
267 static void loop_movables_free (struct loop_movables *);
268 static int count_nonfixed_reads (const struct loop *, rtx);
269 static void loop_bivs_find (struct loop *);
270 static void loop_bivs_init_find (struct loop *);
271 static void loop_bivs_check (struct loop *);
272 static void loop_givs_find (struct loop *);
273 static void loop_givs_check (struct loop *);
274 static int loop_biv_eliminable_p (struct loop *, struct iv_class *, int, int);
275 static int loop_giv_reduce_benefit (struct loop *, struct iv_class *,
276 struct induction *, rtx);
277 static void loop_givs_dead_check (struct loop *, struct iv_class *);
278 static void loop_givs_reduce (struct loop *, struct iv_class *);
279 static void loop_givs_rescan (struct loop *, struct iv_class *, rtx *);
280 static void loop_ivs_free (struct loop *);
281 static void strength_reduce (struct loop *, int);
282 static void find_single_use_in_loop (struct loop_regs *, rtx, rtx);
283 static int valid_initial_value_p (rtx, rtx, int, rtx);
284 static void find_mem_givs (const struct loop *, rtx, rtx, int, int);
285 static void record_biv (struct loop *, struct induction *, rtx, rtx, rtx,
286 rtx, rtx *, int, int);
287 static void check_final_value (const struct loop *, struct induction *);
288 static void loop_ivs_dump (const struct loop *, FILE *, int);
289 static void loop_iv_class_dump (const struct iv_class *, FILE *, int);
290 static void loop_biv_dump (const struct induction *, FILE *, int);
291 static void loop_giv_dump (const struct induction *, FILE *, int);
292 static void record_giv (const struct loop *, struct induction *, rtx, rtx,
293 rtx, rtx, rtx, rtx, int, enum g_types, int, int,
294 rtx *);
295 static void update_giv_derive (const struct loop *, rtx);
296 static void check_ext_dependent_givs (struct iv_class *, struct loop_info *);
297 static int basic_induction_var (const struct loop *, rtx, enum machine_mode,
298 rtx, rtx, rtx *, rtx *, rtx **);
299 static rtx simplify_giv_expr (const struct loop *, rtx, rtx *, int *);
300 static int general_induction_var (const struct loop *loop, rtx, rtx *, rtx *,
301 rtx *, rtx *, int, int *, enum machine_mode);
302 static int consec_sets_giv (const struct loop *, int, rtx, rtx, rtx, rtx *,
303 rtx *, rtx *, rtx *);
304 static int check_dbra_loop (struct loop *, int);
305 static rtx express_from_1 (rtx, rtx, rtx);
306 static rtx combine_givs_p (struct induction *, struct induction *);
307 static int cmp_combine_givs_stats (const void *, const void *);
308 static void combine_givs (struct loop_regs *, struct iv_class *);
309 static int product_cheap_p (rtx, rtx);
310 static int maybe_eliminate_biv (const struct loop *, struct iv_class *, int,
311 int, int);
312 static int maybe_eliminate_biv_1 (const struct loop *, rtx, rtx,
313 struct iv_class *, int, basic_block, rtx);
314 static int last_use_this_basic_block (rtx, rtx);
315 static void record_initial (rtx, rtx, void *);
316 static void update_reg_last_use (rtx, rtx);
317 static rtx next_insn_in_loop (const struct loop *, rtx);
318 static void loop_regs_scan (const struct loop *, int);
319 static int count_insns_in_loop (const struct loop *);
320 static int find_mem_in_note_1 (rtx *, void *);
321 static rtx find_mem_in_note (rtx);
322 static void load_mems (const struct loop *);
323 static int insert_loop_mem (rtx *, void *);
324 static int replace_loop_mem (rtx *, void *);
325 static void replace_loop_mems (rtx, rtx, rtx, int);
326 static int replace_loop_reg (rtx *, void *);
327 static void replace_loop_regs (rtx insn, rtx, rtx);
328 static void note_reg_stored (rtx, rtx, void *);
329 static void try_copy_prop (const struct loop *, rtx, unsigned int);
330 static void try_swap_copy_prop (const struct loop *, rtx, unsigned int);
331 static rtx check_insn_for_givs (struct loop *, rtx, int, int);
332 static rtx check_insn_for_bivs (struct loop *, rtx, int, int);
333 static rtx gen_add_mult (rtx, rtx, rtx, rtx);
334 static void loop_regs_update (const struct loop *, rtx);
335 static int iv_add_mult_cost (rtx, rtx, rtx, rtx);
337 static rtx loop_insn_emit_after (const struct loop *, basic_block, rtx, rtx);
338 static rtx loop_call_insn_emit_before (const struct loop *, basic_block,
339 rtx, rtx);
340 static rtx loop_call_insn_hoist (const struct loop *, rtx);
341 static rtx loop_insn_sink_or_swim (const struct loop *, rtx);
343 static void loop_dump_aux (const struct loop *, FILE *, int);
344 static void loop_delete_insns (rtx, rtx);
345 static HOST_WIDE_INT remove_constant_addition (rtx *);
346 static rtx gen_load_of_final_value (rtx, rtx);
347 void debug_ivs (const struct loop *);
348 void debug_iv_class (const struct iv_class *);
349 void debug_biv (const struct induction *);
350 void debug_giv (const struct induction *);
351 void debug_loop (const struct loop *);
352 void debug_loops (const struct loops *);
354 typedef struct loop_replace_args
356 rtx match;
357 rtx replacement;
358 rtx insn;
359 } loop_replace_args;
361 /* Nonzero iff INSN is between START and END, inclusive. */
362 #define INSN_IN_RANGE_P(INSN, START, END) \
363 (INSN_UID (INSN) < max_uid_for_loop \
364 && INSN_LUID (INSN) >= INSN_LUID (START) \
365 && INSN_LUID (INSN) <= INSN_LUID (END))
367 /* Indirect_jump_in_function is computed once per function. */
368 static int indirect_jump_in_function;
369 static int indirect_jump_in_function_p (rtx);
371 static int compute_luids (rtx, rtx, int);
373 static int biv_elimination_giv_has_0_offset (struct induction *,
374 struct induction *, rtx);
376 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
377 copy the value of the strength reduced giv to its original register. */
378 static int copy_cost;
380 /* Cost of using a register, to normalize the benefits of a giv. */
381 static int reg_address_cost;
383 void
384 init_loop (void)
386 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
388 reg_address_cost = address_cost (reg, SImode);
390 copy_cost = COSTS_N_INSNS (1);
393 /* Compute the mapping from uids to luids.
394 LUIDs are numbers assigned to insns, like uids,
395 except that luids increase monotonically through the code.
396 Start at insn START and stop just before END. Assign LUIDs
397 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
398 static int
399 compute_luids (rtx start, rtx end, int prev_luid)
401 int i;
402 rtx insn;
404 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
406 if (INSN_UID (insn) >= max_uid_for_loop)
407 continue;
408 /* Don't assign luids to line-number NOTEs, so that the distance in
409 luids between two insns is not affected by -g. */
410 if (GET_CODE (insn) != NOTE
411 || NOTE_LINE_NUMBER (insn) <= 0)
412 uid_luid[INSN_UID (insn)] = ++i;
413 else
414 /* Give a line number note the same luid as preceding insn. */
415 uid_luid[INSN_UID (insn)] = i;
417 return i + 1;
420 /* Entry point of this file. Perform loop optimization
421 on the current function. F is the first insn of the function
422 and DUMPFILE is a stream for output of a trace of actions taken
423 (or 0 if none should be output). */
425 void
426 loop_optimize (rtx f, FILE *dumpfile, int flags)
428 rtx insn;
429 int i;
430 struct loops loops_data;
431 struct loops *loops = &loops_data;
432 struct loop_info *loops_info;
434 loop_dump_stream = dumpfile;
436 init_recog_no_volatile ();
438 max_reg_before_loop = max_reg_num ();
439 loop_max_reg = max_reg_before_loop;
441 regs_may_share = 0;
443 /* Count the number of loops. */
445 max_loop_num = 0;
446 for (insn = f; insn; insn = NEXT_INSN (insn))
448 if (GET_CODE (insn) == NOTE
449 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
450 max_loop_num++;
453 /* Don't waste time if no loops. */
454 if (max_loop_num == 0)
455 return;
457 loops->num = max_loop_num;
459 /* Get size to use for tables indexed by uids.
460 Leave some space for labels allocated by find_and_verify_loops. */
461 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
463 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
464 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
465 sizeof (struct loop *));
467 /* Allocate storage for array of loops. */
468 loops->array = (struct loop *)
469 xcalloc (loops->num, sizeof (struct loop));
471 /* Find and process each loop.
472 First, find them, and record them in order of their beginnings. */
473 find_and_verify_loops (f, loops);
475 /* Allocate and initialize auxiliary loop information. */
476 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
477 for (i = 0; i < (int) loops->num; i++)
478 loops->array[i].aux = loops_info + i;
480 /* Now find all register lifetimes. This must be done after
481 find_and_verify_loops, because it might reorder the insns in the
482 function. */
483 reg_scan (f, max_reg_before_loop, 1);
485 /* This must occur after reg_scan so that registers created by gcse
486 will have entries in the register tables.
488 We could have added a call to reg_scan after gcse_main in toplev.c,
489 but moving this call to init_alias_analysis is more efficient. */
490 init_alias_analysis ();
492 /* See if we went too far. Note that get_max_uid already returns
493 one more that the maximum uid of all insn. */
494 if (get_max_uid () > max_uid_for_loop)
495 abort ();
496 /* Now reset it to the actual size we need. See above. */
497 max_uid_for_loop = get_max_uid ();
499 /* find_and_verify_loops has already called compute_luids, but it
500 might have rearranged code afterwards, so we need to recompute
501 the luids now. */
502 compute_luids (f, NULL_RTX, 0);
504 /* Don't leave gaps in uid_luid for insns that have been
505 deleted. It is possible that the first or last insn
506 using some register has been deleted by cross-jumping.
507 Make sure that uid_luid for that former insn's uid
508 points to the general area where that insn used to be. */
509 for (i = 0; i < max_uid_for_loop; i++)
511 uid_luid[0] = uid_luid[i];
512 if (uid_luid[0] != 0)
513 break;
515 for (i = 0; i < max_uid_for_loop; i++)
516 if (uid_luid[i] == 0)
517 uid_luid[i] = uid_luid[i - 1];
519 /* Determine if the function has indirect jump. On some systems
520 this prevents low overhead loop instructions from being used. */
521 indirect_jump_in_function = indirect_jump_in_function_p (f);
523 /* Now scan the loops, last ones first, since this means inner ones are done
524 before outer ones. */
525 for (i = max_loop_num - 1; i >= 0; i--)
527 struct loop *loop = &loops->array[i];
529 if (! loop->invalid && loop->end)
530 scan_loop (loop, flags);
533 end_alias_analysis ();
535 /* Clean up. */
536 free (uid_luid);
537 free (uid_loop);
538 free (loops_info);
539 free (loops->array);
542 /* Returns the next insn, in execution order, after INSN. START and
543 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
544 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
545 insn-stream; it is used with loops that are entered near the
546 bottom. */
548 static rtx
549 next_insn_in_loop (const struct loop *loop, rtx insn)
551 insn = NEXT_INSN (insn);
553 if (insn == loop->end)
555 if (loop->top)
556 /* Go to the top of the loop, and continue there. */
557 insn = loop->top;
558 else
559 /* We're done. */
560 insn = NULL_RTX;
563 if (insn == loop->scan_start)
564 /* We're done. */
565 insn = NULL_RTX;
567 return insn;
570 /* Optimize one loop described by LOOP. */
572 /* ??? Could also move memory writes out of loops if the destination address
573 is invariant, the source is invariant, the memory write is not volatile,
574 and if we can prove that no read inside the loop can read this address
575 before the write occurs. If there is a read of this address after the
576 write, then we can also mark the memory read as invariant. */
578 static void
579 scan_loop (struct loop *loop, int flags)
581 struct loop_info *loop_info = LOOP_INFO (loop);
582 struct loop_regs *regs = LOOP_REGS (loop);
583 int i;
584 rtx loop_start = loop->start;
585 rtx loop_end = loop->end;
586 rtx p;
587 /* 1 if we are scanning insns that could be executed zero times. */
588 int maybe_never = 0;
589 /* 1 if we are scanning insns that might never be executed
590 due to a subroutine call which might exit before they are reached. */
591 int call_passed = 0;
592 /* Number of insns in the loop. */
593 int insn_count;
594 int tem;
595 rtx temp, update_start, update_end;
596 /* The SET from an insn, if it is the only SET in the insn. */
597 rtx set, set1;
598 /* Chain describing insns movable in current loop. */
599 struct loop_movables *movables = LOOP_MOVABLES (loop);
600 /* Ratio of extra register life span we can justify
601 for saving an instruction. More if loop doesn't call subroutines
602 since in that case saving an insn makes more difference
603 and more registers are available. */
604 int threshold;
605 /* Nonzero if we are scanning instructions in a sub-loop. */
606 int loop_depth = 0;
607 int in_libcall;
609 loop->top = 0;
611 movables->head = 0;
612 movables->last = 0;
614 /* Determine whether this loop starts with a jump down to a test at
615 the end. This will occur for a small number of loops with a test
616 that is too complex to duplicate in front of the loop.
618 We search for the first insn or label in the loop, skipping NOTEs.
619 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
620 (because we might have a loop executed only once that contains a
621 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
622 (in case we have a degenerate loop).
624 Note that if we mistakenly think that a loop is entered at the top
625 when, in fact, it is entered at the exit test, the only effect will be
626 slightly poorer optimization. Making the opposite error can generate
627 incorrect code. Since very few loops now start with a jump to the
628 exit test, the code here to detect that case is very conservative. */
630 for (p = NEXT_INSN (loop_start);
631 p != loop_end
632 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
633 && (GET_CODE (p) != NOTE
634 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
635 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
636 p = NEXT_INSN (p))
639 loop->scan_start = p;
641 /* If loop end is the end of the current function, then emit a
642 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
643 note insn. This is the position we use when sinking insns out of
644 the loop. */
645 if (NEXT_INSN (loop->end) != 0)
646 loop->sink = NEXT_INSN (loop->end);
647 else
648 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
650 /* Set up variables describing this loop. */
651 prescan_loop (loop);
652 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
654 /* If loop has a jump before the first label,
655 the true entry is the target of that jump.
656 Start scan from there.
657 But record in LOOP->TOP the place where the end-test jumps
658 back to so we can scan that after the end of the loop. */
659 if (GET_CODE (p) == JUMP_INSN
660 /* Loop entry must be unconditional jump (and not a RETURN) */
661 && any_uncondjump_p (p)
662 && JUMP_LABEL (p) != 0
663 /* Check to see whether the jump actually
664 jumps out of the loop (meaning it's no loop).
665 This case can happen for things like
666 do {..} while (0). If this label was generated previously
667 by loop, we can't tell anything about it and have to reject
668 the loop. */
669 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
671 loop->top = next_label (loop->scan_start);
672 loop->scan_start = JUMP_LABEL (p);
675 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
676 as required by loop_reg_used_before_p. So skip such loops. (This
677 test may never be true, but it's best to play it safe.)
679 Also, skip loops where we do not start scanning at a label. This
680 test also rejects loops starting with a JUMP_INSN that failed the
681 test above. */
683 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
684 || GET_CODE (loop->scan_start) != CODE_LABEL)
686 if (loop_dump_stream)
687 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
688 INSN_UID (loop_start), INSN_UID (loop_end));
689 return;
692 /* Allocate extra space for REGs that might be created by load_mems.
693 We allocate a little extra slop as well, in the hopes that we
694 won't have to reallocate the regs array. */
695 loop_regs_scan (loop, loop_info->mems_idx + 16);
696 insn_count = count_insns_in_loop (loop);
698 if (loop_dump_stream)
700 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
701 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
702 if (loop->cont)
703 fprintf (loop_dump_stream, "Continue at insn %d.\n",
704 INSN_UID (loop->cont));
707 /* Scan through the loop finding insns that are safe to move.
708 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
709 this reg will be considered invariant for subsequent insns.
710 We consider whether subsequent insns use the reg
711 in deciding whether it is worth actually moving.
713 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
714 and therefore it is possible that the insns we are scanning
715 would never be executed. At such times, we must make sure
716 that it is safe to execute the insn once instead of zero times.
717 When MAYBE_NEVER is 0, all insns will be executed at least once
718 so that is not a problem. */
720 for (in_libcall = 0, p = next_insn_in_loop (loop, loop->scan_start);
721 p != NULL_RTX;
722 p = next_insn_in_loop (loop, p))
724 if (in_libcall && INSN_P (p) && find_reg_note (p, REG_RETVAL, NULL_RTX))
725 in_libcall--;
726 if (GET_CODE (p) == INSN)
728 temp = find_reg_note (p, REG_LIBCALL, NULL_RTX);
729 if (temp)
730 in_libcall++;
731 if (! in_libcall
732 && (set = single_set (p))
733 && GET_CODE (SET_DEST (set)) == REG
734 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
735 && SET_DEST (set) != pic_offset_table_rtx
736 #endif
737 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
739 int tem1 = 0;
740 int tem2 = 0;
741 int move_insn = 0;
742 int insert_temp = 0;
743 rtx src = SET_SRC (set);
744 rtx dependencies = 0;
746 /* Figure out what to use as a source of this insn. If a
747 REG_EQUIV note is given or if a REG_EQUAL note with a
748 constant operand is specified, use it as the source and
749 mark that we should move this insn by calling
750 emit_move_insn rather that duplicating the insn.
752 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
753 note is present. */
754 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
755 if (temp)
756 src = XEXP (temp, 0), move_insn = 1;
757 else
759 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
760 if (temp && CONSTANT_P (XEXP (temp, 0)))
761 src = XEXP (temp, 0), move_insn = 1;
762 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
764 src = XEXP (temp, 0);
765 /* A libcall block can use regs that don't appear in
766 the equivalent expression. To move the libcall,
767 we must move those regs too. */
768 dependencies = libcall_other_reg (p, src);
772 /* For parallels, add any possible uses to the dependencies, as
773 we can't move the insn without resolving them first. */
774 if (GET_CODE (PATTERN (p)) == PARALLEL)
776 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
778 rtx x = XVECEXP (PATTERN (p), 0, i);
779 if (GET_CODE (x) == USE)
780 dependencies
781 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
782 dependencies);
786 if (/* The register is used in basic blocks other
787 than the one where it is set (meaning that
788 something after this point in the loop might
789 depend on its value before the set). */
790 ! reg_in_basic_block_p (p, SET_DEST (set))
791 /* And the set is not guaranteed to be executed once
792 the loop starts, or the value before the set is
793 needed before the set occurs...
795 ??? Note we have quadratic behavior here, mitigated
796 by the fact that the previous test will often fail for
797 large loops. Rather than re-scanning the entire loop
798 each time for register usage, we should build tables
799 of the register usage and use them here instead. */
800 && (maybe_never
801 || loop_reg_used_before_p (loop, set, p)))
802 /* It is unsafe to move the set. However, it may be OK to
803 move the source into a new pseudo, and substitute a
804 reg-to-reg copy for the original insn.
806 This code used to consider it OK to move a set of a variable
807 which was not created by the user and not used in an exit
808 test.
809 That behavior is incorrect and was removed. */
810 insert_temp = 1;
812 /* Don't try to optimize a MODE_CC set with a constant
813 source. It probably will be combined with a conditional
814 jump. */
815 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set))) == MODE_CC
816 && CONSTANT_P (src))
818 /* Don't try to optimize a register that was made
819 by loop-optimization for an inner loop.
820 We don't know its life-span, so we can't compute
821 the benefit. */
822 else if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
824 /* Don't move the source and add a reg-to-reg copy:
825 - with -Os (this certainly increases size),
826 - if the mode doesn't support copy operations (obviously),
827 - if the source is already a reg (the motion will gain nothing),
828 - if the source is a legitimate constant (likewise). */
829 else if (insert_temp
830 && (optimize_size
831 || ! can_copy_p (GET_MODE (SET_SRC (set)))
832 || GET_CODE (SET_SRC (set)) == REG
833 || (CONSTANT_P (SET_SRC (set))
834 && LEGITIMATE_CONSTANT_P (SET_SRC (set)))))
836 else if ((tem = loop_invariant_p (loop, src))
837 && (dependencies == 0
838 || (tem2
839 = loop_invariant_p (loop, dependencies)) != 0)
840 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
841 || (tem1
842 = consec_sets_invariant_p
843 (loop, SET_DEST (set),
844 regs->array[REGNO (SET_DEST (set))].set_in_loop,
845 p)))
846 /* If the insn can cause a trap (such as divide by zero),
847 can't move it unless it's guaranteed to be executed
848 once loop is entered. Even a function call might
849 prevent the trap insn from being reached
850 (since it might exit!) */
851 && ! ((maybe_never || call_passed)
852 && may_trap_p (src)))
854 struct movable *m;
855 int regno = REGNO (SET_DEST (set));
857 /* A potential lossage is where we have a case where two insns
858 can be combined as long as they are both in the loop, but
859 we move one of them outside the loop. For large loops,
860 this can lose. The most common case of this is the address
861 of a function being called.
863 Therefore, if this register is marked as being used
864 exactly once if we are in a loop with calls
865 (a "large loop"), see if we can replace the usage of
866 this register with the source of this SET. If we can,
867 delete this insn.
869 Don't do this if P has a REG_RETVAL note or if we have
870 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
872 if (loop_info->has_call
873 && regs->array[regno].single_usage != 0
874 && regs->array[regno].single_usage != const0_rtx
875 && REGNO_FIRST_UID (regno) == INSN_UID (p)
876 && (REGNO_LAST_UID (regno)
877 == INSN_UID (regs->array[regno].single_usage))
878 && regs->array[regno].set_in_loop == 1
879 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
880 && ! side_effects_p (SET_SRC (set))
881 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
882 && (! SMALL_REGISTER_CLASSES
883 || (! (GET_CODE (SET_SRC (set)) == REG
884 && (REGNO (SET_SRC (set))
885 < FIRST_PSEUDO_REGISTER))))
886 /* This test is not redundant; SET_SRC (set) might be
887 a call-clobbered register and the life of REGNO
888 might span a call. */
889 && ! modified_between_p (SET_SRC (set), p,
890 regs->array[regno].single_usage)
891 && no_labels_between_p (p,
892 regs->array[regno].single_usage)
893 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
894 regs->array[regno].single_usage))
896 /* Replace any usage in a REG_EQUAL note. Must copy
897 the new source, so that we don't get rtx sharing
898 between the SET_SOURCE and REG_NOTES of insn p. */
899 REG_NOTES (regs->array[regno].single_usage)
900 = (replace_rtx
901 (REG_NOTES (regs->array[regno].single_usage),
902 SET_DEST (set), copy_rtx (SET_SRC (set))));
904 delete_insn (p);
905 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
906 i++)
907 regs->array[regno+i].set_in_loop = 0;
908 continue;
911 m = (struct movable *) xmalloc (sizeof (struct movable));
912 m->next = 0;
913 m->insn = p;
914 m->set_src = src;
915 m->dependencies = dependencies;
916 m->set_dest = SET_DEST (set);
917 m->force = 0;
918 m->consec
919 = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
920 m->done = 0;
921 m->forces = 0;
922 m->partial = 0;
923 m->move_insn = move_insn;
924 m->move_insn_first = 0;
925 m->insert_temp = insert_temp;
926 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
927 m->savemode = VOIDmode;
928 m->regno = regno;
929 /* Set M->cond if either loop_invariant_p
930 or consec_sets_invariant_p returned 2
931 (only conditionally invariant). */
932 m->cond = ((tem | tem1 | tem2) > 1);
933 m->global = LOOP_REG_GLOBAL_P (loop, regno);
934 m->match = 0;
935 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
936 m->savings = regs->array[regno].n_times_set;
937 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
938 m->savings += libcall_benefit (p);
939 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
940 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
941 /* Add M to the end of the chain MOVABLES. */
942 loop_movables_add (movables, m);
944 if (m->consec > 0)
946 /* It is possible for the first instruction to have a
947 REG_EQUAL note but a non-invariant SET_SRC, so we must
948 remember the status of the first instruction in case
949 the last instruction doesn't have a REG_EQUAL note. */
950 m->move_insn_first = m->move_insn;
952 /* Skip this insn, not checking REG_LIBCALL notes. */
953 p = next_nonnote_insn (p);
954 /* Skip the consecutive insns, if there are any. */
955 p = skip_consec_insns (p, m->consec);
956 /* Back up to the last insn of the consecutive group. */
957 p = prev_nonnote_insn (p);
959 /* We must now reset m->move_insn, m->is_equiv, and
960 possibly m->set_src to correspond to the effects of
961 all the insns. */
962 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
963 if (temp)
964 m->set_src = XEXP (temp, 0), m->move_insn = 1;
965 else
967 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
968 if (temp && CONSTANT_P (XEXP (temp, 0)))
969 m->set_src = XEXP (temp, 0), m->move_insn = 1;
970 else
971 m->move_insn = 0;
974 m->is_equiv
975 = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
978 /* If this register is always set within a STRICT_LOW_PART
979 or set to zero, then its high bytes are constant.
980 So clear them outside the loop and within the loop
981 just load the low bytes.
982 We must check that the machine has an instruction to do so.
983 Also, if the value loaded into the register
984 depends on the same register, this cannot be done. */
985 else if (SET_SRC (set) == const0_rtx
986 && GET_CODE (NEXT_INSN (p)) == INSN
987 && (set1 = single_set (NEXT_INSN (p)))
988 && GET_CODE (set1) == SET
989 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
990 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
991 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
992 == SET_DEST (set))
993 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
995 int regno = REGNO (SET_DEST (set));
996 if (regs->array[regno].set_in_loop == 2)
998 struct movable *m;
999 m = (struct movable *) xmalloc (sizeof (struct movable));
1000 m->next = 0;
1001 m->insn = p;
1002 m->set_dest = SET_DEST (set);
1003 m->dependencies = 0;
1004 m->force = 0;
1005 m->consec = 0;
1006 m->done = 0;
1007 m->forces = 0;
1008 m->move_insn = 0;
1009 m->move_insn_first = 0;
1010 m->insert_temp = insert_temp;
1011 m->partial = 1;
1012 /* If the insn may not be executed on some cycles,
1013 we can't clear the whole reg; clear just high part.
1014 Not even if the reg is used only within this loop.
1015 Consider this:
1016 while (1)
1017 while (s != t) {
1018 if (foo ()) x = *s;
1019 use (x);
1021 Clearing x before the inner loop could clobber a value
1022 being saved from the last time around the outer loop.
1023 However, if the reg is not used outside this loop
1024 and all uses of the register are in the same
1025 basic block as the store, there is no problem.
1027 If this insn was made by loop, we don't know its
1028 INSN_LUID and hence must make a conservative
1029 assumption. */
1030 m->global = (INSN_UID (p) >= max_uid_for_loop
1031 || LOOP_REG_GLOBAL_P (loop, regno)
1032 || (labels_in_range_p
1033 (p, REGNO_FIRST_LUID (regno))));
1034 if (maybe_never && m->global)
1035 m->savemode = GET_MODE (SET_SRC (set1));
1036 else
1037 m->savemode = VOIDmode;
1038 m->regno = regno;
1039 m->cond = 0;
1040 m->match = 0;
1041 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1042 m->savings = 1;
1043 for (i = 0;
1044 i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
1045 i++)
1046 regs->array[regno+i].set_in_loop = -1;
1047 /* Add M to the end of the chain MOVABLES. */
1048 loop_movables_add (movables, m);
1053 /* Past a call insn, we get to insns which might not be executed
1054 because the call might exit. This matters for insns that trap.
1055 Constant and pure call insns always return, so they don't count. */
1056 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
1057 call_passed = 1;
1058 /* Past a label or a jump, we get to insns for which we
1059 can't count on whether or how many times they will be
1060 executed during each iteration. Therefore, we can
1061 only move out sets of trivial variables
1062 (those not used after the loop). */
1063 /* Similar code appears twice in strength_reduce. */
1064 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1065 /* If we enter the loop in the middle, and scan around to the
1066 beginning, don't set maybe_never for that. This must be an
1067 unconditional jump, otherwise the code at the top of the
1068 loop might never be executed. Unconditional jumps are
1069 followed by a barrier then the loop_end. */
1070 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1071 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1072 && any_uncondjump_p (p)))
1073 maybe_never = 1;
1074 else if (GET_CODE (p) == NOTE)
1076 /* At the virtual top of a converted loop, insns are again known to
1077 be executed: logically, the loop begins here even though the exit
1078 code has been duplicated. */
1079 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1080 maybe_never = call_passed = 0;
1081 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1082 loop_depth++;
1083 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1084 loop_depth--;
1088 /* If one movable subsumes another, ignore that other. */
1090 ignore_some_movables (movables);
1092 /* For each movable insn, see if the reg that it loads
1093 leads when it dies right into another conditionally movable insn.
1094 If so, record that the second insn "forces" the first one,
1095 since the second can be moved only if the first is. */
1097 force_movables (movables);
1099 /* See if there are multiple movable insns that load the same value.
1100 If there are, make all but the first point at the first one
1101 through the `match' field, and add the priorities of them
1102 all together as the priority of the first. */
1104 combine_movables (movables, regs);
1106 /* Now consider each movable insn to decide whether it is worth moving.
1107 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1109 For machines with few registers this increases code size, so do not
1110 move moveables when optimizing for code size on such machines.
1111 (The 18 below is the value for i386.) */
1113 if (!optimize_size
1114 || (reg_class_size[GENERAL_REGS] > 18 && !loop_info->has_call))
1116 move_movables (loop, movables, threshold, insn_count);
1118 /* Recalculate regs->array if move_movables has created new
1119 registers. */
1120 if (max_reg_num () > regs->num)
1122 loop_regs_scan (loop, 0);
1123 for (update_start = loop_start;
1124 PREV_INSN (update_start)
1125 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1126 update_start = PREV_INSN (update_start))
1128 update_end = NEXT_INSN (loop_end);
1130 reg_scan_update (update_start, update_end, loop_max_reg);
1131 loop_max_reg = max_reg_num ();
1135 /* Now candidates that still are negative are those not moved.
1136 Change regs->array[I].set_in_loop to indicate that those are not actually
1137 invariant. */
1138 for (i = 0; i < regs->num; i++)
1139 if (regs->array[i].set_in_loop < 0)
1140 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1142 /* Now that we've moved some things out of the loop, we might be able to
1143 hoist even more memory references. */
1144 load_mems (loop);
1146 /* Recalculate regs->array if load_mems has created new registers. */
1147 if (max_reg_num () > regs->num)
1148 loop_regs_scan (loop, 0);
1150 for (update_start = loop_start;
1151 PREV_INSN (update_start)
1152 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1153 update_start = PREV_INSN (update_start))
1155 update_end = NEXT_INSN (loop_end);
1157 reg_scan_update (update_start, update_end, loop_max_reg);
1158 loop_max_reg = max_reg_num ();
1160 if (flag_strength_reduce)
1162 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1163 /* Ensure our label doesn't go away. */
1164 LABEL_NUSES (update_end)++;
1166 strength_reduce (loop, flags);
1168 reg_scan_update (update_start, update_end, loop_max_reg);
1169 loop_max_reg = max_reg_num ();
1171 if (update_end && GET_CODE (update_end) == CODE_LABEL
1172 && --LABEL_NUSES (update_end) == 0)
1173 delete_related_insns (update_end);
1177 /* The movable information is required for strength reduction. */
1178 loop_movables_free (movables);
1180 free (regs->array);
1181 regs->array = 0;
1182 regs->num = 0;
1185 /* Add elements to *OUTPUT to record all the pseudo-regs
1186 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1188 void
1189 record_excess_regs (rtx in_this, rtx not_in_this, rtx *output)
1191 enum rtx_code code;
1192 const char *fmt;
1193 int i;
1195 code = GET_CODE (in_this);
1197 switch (code)
1199 case PC:
1200 case CC0:
1201 case CONST_INT:
1202 case CONST_DOUBLE:
1203 case CONST:
1204 case SYMBOL_REF:
1205 case LABEL_REF:
1206 return;
1208 case REG:
1209 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1210 && ! reg_mentioned_p (in_this, not_in_this))
1211 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1212 return;
1214 default:
1215 break;
1218 fmt = GET_RTX_FORMAT (code);
1219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1221 int j;
1223 switch (fmt[i])
1225 case 'E':
1226 for (j = 0; j < XVECLEN (in_this, i); j++)
1227 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1228 break;
1230 case 'e':
1231 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1232 break;
1237 /* Check what regs are referred to in the libcall block ending with INSN,
1238 aside from those mentioned in the equivalent value.
1239 If there are none, return 0.
1240 If there are one or more, return an EXPR_LIST containing all of them. */
1243 libcall_other_reg (rtx insn, rtx equiv)
1245 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1246 rtx p = XEXP (note, 0);
1247 rtx output = 0;
1249 /* First, find all the regs used in the libcall block
1250 that are not mentioned as inputs to the result. */
1252 while (p != insn)
1254 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1255 || GET_CODE (p) == CALL_INSN)
1256 record_excess_regs (PATTERN (p), equiv, &output);
1257 p = NEXT_INSN (p);
1260 return output;
1263 /* Return 1 if all uses of REG
1264 are between INSN and the end of the basic block. */
1266 static int
1267 reg_in_basic_block_p (rtx insn, rtx reg)
1269 int regno = REGNO (reg);
1270 rtx p;
1272 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1273 return 0;
1275 /* Search this basic block for the already recorded last use of the reg. */
1276 for (p = insn; p; p = NEXT_INSN (p))
1278 switch (GET_CODE (p))
1280 case NOTE:
1281 break;
1283 case INSN:
1284 case CALL_INSN:
1285 /* Ordinary insn: if this is the last use, we win. */
1286 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1287 return 1;
1288 break;
1290 case JUMP_INSN:
1291 /* Jump insn: if this is the last use, we win. */
1292 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1293 return 1;
1294 /* Otherwise, it's the end of the basic block, so we lose. */
1295 return 0;
1297 case CODE_LABEL:
1298 case BARRIER:
1299 /* It's the end of the basic block, so we lose. */
1300 return 0;
1302 default:
1303 break;
1307 /* The "last use" that was recorded can't be found after the first
1308 use. This can happen when the last use was deleted while
1309 processing an inner loop, this inner loop was then completely
1310 unrolled, and the outer loop is always exited after the inner loop,
1311 so that everything after the first use becomes a single basic block. */
1312 return 1;
1315 /* Compute the benefit of eliminating the insns in the block whose
1316 last insn is LAST. This may be a group of insns used to compute a
1317 value directly or can contain a library call. */
1319 static int
1320 libcall_benefit (rtx last)
1322 rtx insn;
1323 int benefit = 0;
1325 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1326 insn != last; insn = NEXT_INSN (insn))
1328 if (GET_CODE (insn) == CALL_INSN)
1329 benefit += 10; /* Assume at least this many insns in a library
1330 routine. */
1331 else if (GET_CODE (insn) == INSN
1332 && GET_CODE (PATTERN (insn)) != USE
1333 && GET_CODE (PATTERN (insn)) != CLOBBER)
1334 benefit++;
1337 return benefit;
1340 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1342 static rtx
1343 skip_consec_insns (rtx insn, int count)
1345 for (; count > 0; count--)
1347 rtx temp;
1349 /* If first insn of libcall sequence, skip to end. */
1350 /* Do this at start of loop, since INSN is guaranteed to
1351 be an insn here. */
1352 if (GET_CODE (insn) != NOTE
1353 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1354 insn = XEXP (temp, 0);
1357 insn = NEXT_INSN (insn);
1358 while (GET_CODE (insn) == NOTE);
1361 return insn;
1364 /* Ignore any movable whose insn falls within a libcall
1365 which is part of another movable.
1366 We make use of the fact that the movable for the libcall value
1367 was made later and so appears later on the chain. */
1369 static void
1370 ignore_some_movables (struct loop_movables *movables)
1372 struct movable *m, *m1;
1374 for (m = movables->head; m; m = m->next)
1376 /* Is this a movable for the value of a libcall? */
1377 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1378 if (note)
1380 rtx insn;
1381 /* Check for earlier movables inside that range,
1382 and mark them invalid. We cannot use LUIDs here because
1383 insns created by loop.c for prior loops don't have LUIDs.
1384 Rather than reject all such insns from movables, we just
1385 explicitly check each insn in the libcall (since invariant
1386 libcalls aren't that common). */
1387 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1388 for (m1 = movables->head; m1 != m; m1 = m1->next)
1389 if (m1->insn == insn)
1390 m1->done = 1;
1395 /* For each movable insn, see if the reg that it loads
1396 leads when it dies right into another conditionally movable insn.
1397 If so, record that the second insn "forces" the first one,
1398 since the second can be moved only if the first is. */
1400 static void
1401 force_movables (struct loop_movables *movables)
1403 struct movable *m, *m1;
1405 for (m1 = movables->head; m1; m1 = m1->next)
1406 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1407 if (!m1->partial && !m1->done)
1409 int regno = m1->regno;
1410 for (m = m1->next; m; m = m->next)
1411 /* ??? Could this be a bug? What if CSE caused the
1412 register of M1 to be used after this insn?
1413 Since CSE does not update regno_last_uid,
1414 this insn M->insn might not be where it dies.
1415 But very likely this doesn't matter; what matters is
1416 that M's reg is computed from M1's reg. */
1417 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1418 && !m->done)
1419 break;
1420 if (m != 0 && m->set_src == m1->set_dest
1421 /* If m->consec, m->set_src isn't valid. */
1422 && m->consec == 0)
1423 m = 0;
1425 /* Increase the priority of the moving the first insn
1426 since it permits the second to be moved as well. */
1427 if (m != 0)
1429 m->forces = m1;
1430 m1->lifetime += m->lifetime;
1431 m1->savings += m->savings;
1436 /* Find invariant expressions that are equal and can be combined into
1437 one register. */
1439 static void
1440 combine_movables (struct loop_movables *movables, struct loop_regs *regs)
1442 struct movable *m;
1443 char *matched_regs = (char *) xmalloc (regs->num);
1444 enum machine_mode mode;
1446 /* Regs that are set more than once are not allowed to match
1447 or be matched. I'm no longer sure why not. */
1448 /* Only pseudo registers are allowed to match or be matched,
1449 since move_movables does not validate the change. */
1450 /* Perhaps testing m->consec_sets would be more appropriate here? */
1452 for (m = movables->head; m; m = m->next)
1453 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1454 && m->regno >= FIRST_PSEUDO_REGISTER
1455 && !m->insert_temp
1456 && !m->partial)
1458 struct movable *m1;
1459 int regno = m->regno;
1461 memset (matched_regs, 0, regs->num);
1462 matched_regs[regno] = 1;
1464 /* We want later insns to match the first one. Don't make the first
1465 one match any later ones. So start this loop at m->next. */
1466 for (m1 = m->next; m1; m1 = m1->next)
1467 if (m != m1 && m1->match == 0
1468 && !m1->insert_temp
1469 && regs->array[m1->regno].n_times_set == 1
1470 && m1->regno >= FIRST_PSEUDO_REGISTER
1471 /* A reg used outside the loop mustn't be eliminated. */
1472 && !m1->global
1473 /* A reg used for zero-extending mustn't be eliminated. */
1474 && !m1->partial
1475 && (matched_regs[m1->regno]
1478 /* Can combine regs with different modes loaded from the
1479 same constant only if the modes are the same or
1480 if both are integer modes with M wider or the same
1481 width as M1. The check for integer is redundant, but
1482 safe, since the only case of differing destination
1483 modes with equal sources is when both sources are
1484 VOIDmode, i.e., CONST_INT. */
1485 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1486 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1487 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1488 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1489 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1490 /* See if the source of M1 says it matches M. */
1491 && ((GET_CODE (m1->set_src) == REG
1492 && matched_regs[REGNO (m1->set_src)])
1493 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1494 movables, regs))))
1495 && ((m->dependencies == m1->dependencies)
1496 || rtx_equal_p (m->dependencies, m1->dependencies)))
1498 m->lifetime += m1->lifetime;
1499 m->savings += m1->savings;
1500 m1->done = 1;
1501 m1->match = m;
1502 matched_regs[m1->regno] = 1;
1506 /* Now combine the regs used for zero-extension.
1507 This can be done for those not marked `global'
1508 provided their lives don't overlap. */
1510 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1511 mode = GET_MODE_WIDER_MODE (mode))
1513 struct movable *m0 = 0;
1515 /* Combine all the registers for extension from mode MODE.
1516 Don't combine any that are used outside this loop. */
1517 for (m = movables->head; m; m = m->next)
1518 if (m->partial && ! m->global
1519 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1521 struct movable *m1;
1523 int first = REGNO_FIRST_LUID (m->regno);
1524 int last = REGNO_LAST_LUID (m->regno);
1526 if (m0 == 0)
1528 /* First one: don't check for overlap, just record it. */
1529 m0 = m;
1530 continue;
1533 /* Make sure they extend to the same mode.
1534 (Almost always true.) */
1535 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1536 continue;
1538 /* We already have one: check for overlap with those
1539 already combined together. */
1540 for (m1 = movables->head; m1 != m; m1 = m1->next)
1541 if (m1 == m0 || (m1->partial && m1->match == m0))
1542 if (! (REGNO_FIRST_LUID (m1->regno) > last
1543 || REGNO_LAST_LUID (m1->regno) < first))
1544 goto overlap;
1546 /* No overlap: we can combine this with the others. */
1547 m0->lifetime += m->lifetime;
1548 m0->savings += m->savings;
1549 m->done = 1;
1550 m->match = m0;
1552 overlap:
1557 /* Clean up. */
1558 free (matched_regs);
1561 /* Returns the number of movable instructions in LOOP that were not
1562 moved outside the loop. */
1564 static int
1565 num_unmoved_movables (const struct loop *loop)
1567 int num = 0;
1568 struct movable *m;
1570 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1571 if (!m->done)
1572 ++num;
1574 return num;
1578 /* Return 1 if regs X and Y will become the same if moved. */
1580 static int
1581 regs_match_p (rtx x, rtx y, struct loop_movables *movables)
1583 unsigned int xn = REGNO (x);
1584 unsigned int yn = REGNO (y);
1585 struct movable *mx, *my;
1587 for (mx = movables->head; mx; mx = mx->next)
1588 if (mx->regno == xn)
1589 break;
1591 for (my = movables->head; my; my = my->next)
1592 if (my->regno == yn)
1593 break;
1595 return (mx && my
1596 && ((mx->match == my->match && mx->match != 0)
1597 || mx->match == my
1598 || mx == my->match));
1601 /* Return 1 if X and Y are identical-looking rtx's.
1602 This is the Lisp function EQUAL for rtx arguments.
1604 If two registers are matching movables or a movable register and an
1605 equivalent constant, consider them equal. */
1607 static int
1608 rtx_equal_for_loop_p (rtx x, rtx y, struct loop_movables *movables,
1609 struct loop_regs *regs)
1611 int i;
1612 int j;
1613 struct movable *m;
1614 enum rtx_code code;
1615 const char *fmt;
1617 if (x == y)
1618 return 1;
1619 if (x == 0 || y == 0)
1620 return 0;
1622 code = GET_CODE (x);
1624 /* If we have a register and a constant, they may sometimes be
1625 equal. */
1626 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1627 && CONSTANT_P (y))
1629 for (m = movables->head; m; m = m->next)
1630 if (m->move_insn && m->regno == REGNO (x)
1631 && rtx_equal_p (m->set_src, y))
1632 return 1;
1634 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1635 && CONSTANT_P (x))
1637 for (m = movables->head; m; m = m->next)
1638 if (m->move_insn && m->regno == REGNO (y)
1639 && rtx_equal_p (m->set_src, x))
1640 return 1;
1643 /* Otherwise, rtx's of different codes cannot be equal. */
1644 if (code != GET_CODE (y))
1645 return 0;
1647 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1648 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1650 if (GET_MODE (x) != GET_MODE (y))
1651 return 0;
1653 /* These three types of rtx's can be compared nonrecursively. */
1654 if (code == REG)
1655 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1657 if (code == LABEL_REF)
1658 return XEXP (x, 0) == XEXP (y, 0);
1659 if (code == SYMBOL_REF)
1660 return XSTR (x, 0) == XSTR (y, 0);
1662 /* Compare the elements. If any pair of corresponding elements
1663 fail to match, return 0 for the whole things. */
1665 fmt = GET_RTX_FORMAT (code);
1666 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1668 switch (fmt[i])
1670 case 'w':
1671 if (XWINT (x, i) != XWINT (y, i))
1672 return 0;
1673 break;
1675 case 'i':
1676 if (XINT (x, i) != XINT (y, i))
1677 return 0;
1678 break;
1680 case 'E':
1681 /* Two vectors must have the same length. */
1682 if (XVECLEN (x, i) != XVECLEN (y, i))
1683 return 0;
1685 /* And the corresponding elements must match. */
1686 for (j = 0; j < XVECLEN (x, i); j++)
1687 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1688 movables, regs) == 0)
1689 return 0;
1690 break;
1692 case 'e':
1693 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1694 == 0)
1695 return 0;
1696 break;
1698 case 's':
1699 if (strcmp (XSTR (x, i), XSTR (y, i)))
1700 return 0;
1701 break;
1703 case 'u':
1704 /* These are just backpointers, so they don't matter. */
1705 break;
1707 case '0':
1708 break;
1710 /* It is believed that rtx's at this level will never
1711 contain anything but integers and other rtx's,
1712 except for within LABEL_REFs and SYMBOL_REFs. */
1713 default:
1714 abort ();
1717 return 1;
1720 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1721 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1722 references is incremented once for each added note. */
1724 static void
1725 add_label_notes (rtx x, rtx insns)
1727 enum rtx_code code = GET_CODE (x);
1728 int i, j;
1729 const char *fmt;
1730 rtx insn;
1732 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1734 /* This code used to ignore labels that referred to dispatch tables to
1735 avoid flow generating (slightly) worse code.
1737 We no longer ignore such label references (see LABEL_REF handling in
1738 mark_jump_label for additional information). */
1739 for (insn = insns; insn; insn = NEXT_INSN (insn))
1740 if (reg_mentioned_p (XEXP (x, 0), insn))
1742 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1743 REG_NOTES (insn));
1744 if (LABEL_P (XEXP (x, 0)))
1745 LABEL_NUSES (XEXP (x, 0))++;
1749 fmt = GET_RTX_FORMAT (code);
1750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1752 if (fmt[i] == 'e')
1753 add_label_notes (XEXP (x, i), insns);
1754 else if (fmt[i] == 'E')
1755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1756 add_label_notes (XVECEXP (x, i, j), insns);
1760 /* Scan MOVABLES, and move the insns that deserve to be moved.
1761 If two matching movables are combined, replace one reg with the
1762 other throughout. */
1764 static void
1765 move_movables (struct loop *loop, struct loop_movables *movables,
1766 int threshold, int insn_count)
1768 struct loop_regs *regs = LOOP_REGS (loop);
1769 int nregs = regs->num;
1770 rtx new_start = 0;
1771 struct movable *m;
1772 rtx p;
1773 rtx loop_start = loop->start;
1774 rtx loop_end = loop->end;
1775 /* Map of pseudo-register replacements to handle combining
1776 when we move several insns that load the same value
1777 into different pseudo-registers. */
1778 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1779 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1781 for (m = movables->head; m; m = m->next)
1783 /* Describe this movable insn. */
1785 if (loop_dump_stream)
1787 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1788 INSN_UID (m->insn), m->regno, m->lifetime);
1789 if (m->consec > 0)
1790 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1791 if (m->cond)
1792 fprintf (loop_dump_stream, "cond ");
1793 if (m->force)
1794 fprintf (loop_dump_stream, "force ");
1795 if (m->global)
1796 fprintf (loop_dump_stream, "global ");
1797 if (m->done)
1798 fprintf (loop_dump_stream, "done ");
1799 if (m->move_insn)
1800 fprintf (loop_dump_stream, "move-insn ");
1801 if (m->match)
1802 fprintf (loop_dump_stream, "matches %d ",
1803 INSN_UID (m->match->insn));
1804 if (m->forces)
1805 fprintf (loop_dump_stream, "forces %d ",
1806 INSN_UID (m->forces->insn));
1809 /* Ignore the insn if it's already done (it matched something else).
1810 Otherwise, see if it is now safe to move. */
1812 if (!m->done
1813 && (! m->cond
1814 || (1 == loop_invariant_p (loop, m->set_src)
1815 && (m->dependencies == 0
1816 || 1 == loop_invariant_p (loop, m->dependencies))
1817 && (m->consec == 0
1818 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1819 m->consec + 1,
1820 m->insn))))
1821 && (! m->forces || m->forces->done))
1823 int regno;
1824 rtx p;
1825 int savings = m->savings;
1827 /* We have an insn that is safe to move.
1828 Compute its desirability. */
1830 p = m->insn;
1831 regno = m->regno;
1833 if (loop_dump_stream)
1834 fprintf (loop_dump_stream, "savings %d ", savings);
1836 if (regs->array[regno].moved_once && loop_dump_stream)
1837 fprintf (loop_dump_stream, "halved since already moved ");
1839 /* An insn MUST be moved if we already moved something else
1840 which is safe only if this one is moved too: that is,
1841 if already_moved[REGNO] is nonzero. */
1843 /* An insn is desirable to move if the new lifetime of the
1844 register is no more than THRESHOLD times the old lifetime.
1845 If it's not desirable, it means the loop is so big
1846 that moving won't speed things up much,
1847 and it is liable to make register usage worse. */
1849 /* It is also desirable to move if it can be moved at no
1850 extra cost because something else was already moved. */
1852 if (already_moved[regno]
1853 || flag_move_all_movables
1854 || (threshold * savings * m->lifetime) >=
1855 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1856 || (m->forces && m->forces->done
1857 && regs->array[m->forces->regno].n_times_set == 1))
1859 int count;
1860 struct movable *m1;
1861 rtx first = NULL_RTX;
1862 rtx newreg = NULL_RTX;
1864 if (m->insert_temp)
1865 newreg = gen_reg_rtx (GET_MODE (m->set_dest));
1867 /* Now move the insns that set the reg. */
1869 if (m->partial && m->match)
1871 rtx newpat, i1;
1872 rtx r1, r2;
1873 /* Find the end of this chain of matching regs.
1874 Thus, we load each reg in the chain from that one reg.
1875 And that reg is loaded with 0 directly,
1876 since it has ->match == 0. */
1877 for (m1 = m; m1->match; m1 = m1->match);
1878 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1879 SET_DEST (PATTERN (m1->insn)));
1880 i1 = loop_insn_hoist (loop, newpat);
1882 /* Mark the moved, invariant reg as being allowed to
1883 share a hard reg with the other matching invariant. */
1884 REG_NOTES (i1) = REG_NOTES (m->insn);
1885 r1 = SET_DEST (PATTERN (m->insn));
1886 r2 = SET_DEST (PATTERN (m1->insn));
1887 regs_may_share
1888 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1889 gen_rtx_EXPR_LIST (VOIDmode, r2,
1890 regs_may_share));
1891 delete_insn (m->insn);
1893 if (new_start == 0)
1894 new_start = i1;
1896 if (loop_dump_stream)
1897 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1899 /* If we are to re-generate the item being moved with a
1900 new move insn, first delete what we have and then emit
1901 the move insn before the loop. */
1902 else if (m->move_insn)
1904 rtx i1, temp, seq;
1906 for (count = m->consec; count >= 0; count--)
1908 /* If this is the first insn of a library call sequence,
1909 something is very wrong. */
1910 if (GET_CODE (p) != NOTE
1911 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1912 abort ();
1914 /* If this is the last insn of a libcall sequence, then
1915 delete every insn in the sequence except the last.
1916 The last insn is handled in the normal manner. */
1917 if (GET_CODE (p) != NOTE
1918 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1920 temp = XEXP (temp, 0);
1921 while (temp != p)
1922 temp = delete_insn (temp);
1925 temp = p;
1926 p = delete_insn (p);
1928 /* simplify_giv_expr expects that it can walk the insns
1929 at m->insn forwards and see this old sequence we are
1930 tossing here. delete_insn does preserve the next
1931 pointers, but when we skip over a NOTE we must fix
1932 it up. Otherwise that code walks into the non-deleted
1933 insn stream. */
1934 while (p && GET_CODE (p) == NOTE)
1935 p = NEXT_INSN (temp) = NEXT_INSN (p);
1937 if (m->insert_temp)
1939 /* Replace the original insn with a move from
1940 our newly created temp. */
1941 start_sequence ();
1942 emit_move_insn (m->set_dest, newreg);
1943 seq = get_insns ();
1944 end_sequence ();
1945 emit_insn_before (seq, p);
1949 start_sequence ();
1950 emit_move_insn (m->insert_temp ? newreg : m->set_dest,
1951 m->set_src);
1952 seq = get_insns ();
1953 end_sequence ();
1955 add_label_notes (m->set_src, seq);
1957 i1 = loop_insn_hoist (loop, seq);
1958 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1959 set_unique_reg_note (i1,
1960 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1961 m->set_src);
1963 if (loop_dump_stream)
1964 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1966 /* The more regs we move, the less we like moving them. */
1967 threshold -= 3;
1969 else
1971 for (count = m->consec; count >= 0; count--)
1973 rtx i1, temp;
1975 /* If first insn of libcall sequence, skip to end. */
1976 /* Do this at start of loop, since p is guaranteed to
1977 be an insn here. */
1978 if (GET_CODE (p) != NOTE
1979 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1980 p = XEXP (temp, 0);
1982 /* If last insn of libcall sequence, move all
1983 insns except the last before the loop. The last
1984 insn is handled in the normal manner. */
1985 if (GET_CODE (p) != NOTE
1986 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1988 rtx fn_address = 0;
1989 rtx fn_reg = 0;
1990 rtx fn_address_insn = 0;
1992 first = 0;
1993 for (temp = XEXP (temp, 0); temp != p;
1994 temp = NEXT_INSN (temp))
1996 rtx body;
1997 rtx n;
1998 rtx next;
2000 if (GET_CODE (temp) == NOTE)
2001 continue;
2003 body = PATTERN (temp);
2005 /* Find the next insn after TEMP,
2006 not counting USE or NOTE insns. */
2007 for (next = NEXT_INSN (temp); next != p;
2008 next = NEXT_INSN (next))
2009 if (! (GET_CODE (next) == INSN
2010 && GET_CODE (PATTERN (next)) == USE)
2011 && GET_CODE (next) != NOTE)
2012 break;
2014 /* If that is the call, this may be the insn
2015 that loads the function address.
2017 Extract the function address from the insn
2018 that loads it into a register.
2019 If this insn was cse'd, we get incorrect code.
2021 So emit a new move insn that copies the
2022 function address into the register that the
2023 call insn will use. flow.c will delete any
2024 redundant stores that we have created. */
2025 if (GET_CODE (next) == CALL_INSN
2026 && GET_CODE (body) == SET
2027 && GET_CODE (SET_DEST (body)) == REG
2028 && (n = find_reg_note (temp, REG_EQUAL,
2029 NULL_RTX)))
2031 fn_reg = SET_SRC (body);
2032 if (GET_CODE (fn_reg) != REG)
2033 fn_reg = SET_DEST (body);
2034 fn_address = XEXP (n, 0);
2035 fn_address_insn = temp;
2037 /* We have the call insn.
2038 If it uses the register we suspect it might,
2039 load it with the correct address directly. */
2040 if (GET_CODE (temp) == CALL_INSN
2041 && fn_address != 0
2042 && reg_referenced_p (fn_reg, body))
2043 loop_insn_emit_after (loop, 0, fn_address_insn,
2044 gen_move_insn
2045 (fn_reg, fn_address));
2047 if (GET_CODE (temp) == CALL_INSN)
2049 i1 = loop_call_insn_hoist (loop, body);
2050 /* Because the USAGE information potentially
2051 contains objects other than hard registers
2052 we need to copy it. */
2053 if (CALL_INSN_FUNCTION_USAGE (temp))
2054 CALL_INSN_FUNCTION_USAGE (i1)
2055 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2057 else
2058 i1 = loop_insn_hoist (loop, body);
2059 if (first == 0)
2060 first = i1;
2061 if (temp == fn_address_insn)
2062 fn_address_insn = i1;
2063 REG_NOTES (i1) = REG_NOTES (temp);
2064 REG_NOTES (temp) = NULL;
2065 delete_insn (temp);
2067 if (new_start == 0)
2068 new_start = first;
2070 if (m->savemode != VOIDmode)
2072 /* P sets REG to zero; but we should clear only
2073 the bits that are not covered by the mode
2074 m->savemode. */
2075 rtx reg = m->set_dest;
2076 rtx sequence;
2077 rtx tem;
2079 start_sequence ();
2080 tem = expand_simple_binop
2081 (GET_MODE (reg), AND, reg,
2082 GEN_INT ((((HOST_WIDE_INT) 1
2083 << GET_MODE_BITSIZE (m->savemode)))
2084 - 1),
2085 reg, 1, OPTAB_LIB_WIDEN);
2086 if (tem == 0)
2087 abort ();
2088 if (tem != reg)
2089 emit_move_insn (reg, tem);
2090 sequence = get_insns ();
2091 end_sequence ();
2092 i1 = loop_insn_hoist (loop, sequence);
2094 else if (GET_CODE (p) == CALL_INSN)
2096 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2097 /* Because the USAGE information potentially
2098 contains objects other than hard registers
2099 we need to copy it. */
2100 if (CALL_INSN_FUNCTION_USAGE (p))
2101 CALL_INSN_FUNCTION_USAGE (i1)
2102 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2104 else if (count == m->consec && m->move_insn_first)
2106 rtx seq;
2107 /* The SET_SRC might not be invariant, so we must
2108 use the REG_EQUAL note. */
2109 start_sequence ();
2110 emit_move_insn (m->set_dest, m->set_src);
2111 seq = get_insns ();
2112 end_sequence ();
2114 add_label_notes (m->set_src, seq);
2116 i1 = loop_insn_hoist (loop, seq);
2117 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2118 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2119 : REG_EQUAL, m->set_src);
2121 else if (m->insert_temp)
2123 rtx *reg_map2 = (rtx *) xcalloc (REGNO (newreg),
2124 sizeof(rtx));
2125 reg_map2 [m->regno] = newreg;
2127 i1 = loop_insn_hoist (loop, copy_rtx (PATTERN (p)));
2128 replace_regs (i1, reg_map2, REGNO (newreg), 1);
2129 free (reg_map2);
2131 else
2132 i1 = loop_insn_hoist (loop, PATTERN (p));
2134 if (REG_NOTES (i1) == 0)
2136 REG_NOTES (i1) = REG_NOTES (p);
2137 REG_NOTES (p) = NULL;
2139 /* If there is a REG_EQUAL note present whose value
2140 is not loop invariant, then delete it, since it
2141 may cause problems with later optimization passes.
2142 It is possible for cse to create such notes
2143 like this as a result of record_jump_cond. */
2145 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2146 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2147 remove_note (i1, temp);
2150 if (new_start == 0)
2151 new_start = i1;
2153 if (loop_dump_stream)
2154 fprintf (loop_dump_stream, " moved to %d",
2155 INSN_UID (i1));
2157 /* If library call, now fix the REG_NOTES that contain
2158 insn pointers, namely REG_LIBCALL on FIRST
2159 and REG_RETVAL on I1. */
2160 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2162 XEXP (temp, 0) = first;
2163 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2164 XEXP (temp, 0) = i1;
2167 temp = p;
2168 delete_insn (p);
2169 p = NEXT_INSN (p);
2171 /* simplify_giv_expr expects that it can walk the insns
2172 at m->insn forwards and see this old sequence we are
2173 tossing here. delete_insn does preserve the next
2174 pointers, but when we skip over a NOTE we must fix
2175 it up. Otherwise that code walks into the non-deleted
2176 insn stream. */
2177 while (p && GET_CODE (p) == NOTE)
2178 p = NEXT_INSN (temp) = NEXT_INSN (p);
2180 if (m->insert_temp)
2182 rtx seq;
2183 /* Replace the original insn with a move from
2184 our newly created temp. */
2185 start_sequence ();
2186 emit_move_insn (m->set_dest, newreg);
2187 seq = get_insns ();
2188 end_sequence ();
2189 emit_insn_before (seq, p);
2193 /* The more regs we move, the less we like moving them. */
2194 threshold -= 3;
2197 m->done = 1;
2199 if (!m->insert_temp)
2201 /* Any other movable that loads the same register
2202 MUST be moved. */
2203 already_moved[regno] = 1;
2205 /* This reg has been moved out of one loop. */
2206 regs->array[regno].moved_once = 1;
2208 /* The reg set here is now invariant. */
2209 if (! m->partial)
2211 int i;
2212 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2213 regs->array[regno+i].set_in_loop = 0;
2216 /* Change the length-of-life info for the register
2217 to say it lives at least the full length of this loop.
2218 This will help guide optimizations in outer loops. */
2220 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2221 /* This is the old insn before all the moved insns.
2222 We can't use the moved insn because it is out of range
2223 in uid_luid. Only the old insns have luids. */
2224 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2225 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2226 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2229 /* Combine with this moved insn any other matching movables. */
2231 if (! m->partial)
2232 for (m1 = movables->head; m1; m1 = m1->next)
2233 if (m1->match == m)
2235 rtx temp;
2237 /* Schedule the reg loaded by M1
2238 for replacement so that shares the reg of M.
2239 If the modes differ (only possible in restricted
2240 circumstances, make a SUBREG.
2242 Note this assumes that the target dependent files
2243 treat REG and SUBREG equally, including within
2244 GO_IF_LEGITIMATE_ADDRESS and in all the
2245 predicates since we never verify that replacing the
2246 original register with a SUBREG results in a
2247 recognizable insn. */
2248 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2249 reg_map[m1->regno] = m->set_dest;
2250 else
2251 reg_map[m1->regno]
2252 = gen_lowpart_common (GET_MODE (m1->set_dest),
2253 m->set_dest);
2255 /* Get rid of the matching insn
2256 and prevent further processing of it. */
2257 m1->done = 1;
2259 /* if library call, delete all insns. */
2260 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2261 NULL_RTX)))
2262 delete_insn_chain (XEXP (temp, 0), m1->insn);
2263 else
2264 delete_insn (m1->insn);
2266 /* Any other movable that loads the same register
2267 MUST be moved. */
2268 already_moved[m1->regno] = 1;
2270 /* The reg merged here is now invariant,
2271 if the reg it matches is invariant. */
2272 if (! m->partial)
2274 int i;
2275 for (i = 0;
2276 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2277 i++)
2278 regs->array[m1->regno+i].set_in_loop = 0;
2282 else if (loop_dump_stream)
2283 fprintf (loop_dump_stream, "not desirable");
2285 else if (loop_dump_stream && !m->match)
2286 fprintf (loop_dump_stream, "not safe");
2288 if (loop_dump_stream)
2289 fprintf (loop_dump_stream, "\n");
2292 if (new_start == 0)
2293 new_start = loop_start;
2295 /* Go through all the instructions in the loop, making
2296 all the register substitutions scheduled in REG_MAP. */
2297 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2298 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2299 || GET_CODE (p) == CALL_INSN)
2301 replace_regs (PATTERN (p), reg_map, nregs, 0);
2302 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2303 INSN_CODE (p) = -1;
2306 /* Clean up. */
2307 free (reg_map);
2308 free (already_moved);
2312 static void
2313 loop_movables_add (struct loop_movables *movables, struct movable *m)
2315 if (movables->head == 0)
2316 movables->head = m;
2317 else
2318 movables->last->next = m;
2319 movables->last = m;
2323 static void
2324 loop_movables_free (struct loop_movables *movables)
2326 struct movable *m;
2327 struct movable *m_next;
2329 for (m = movables->head; m; m = m_next)
2331 m_next = m->next;
2332 free (m);
2336 #if 0
2337 /* Scan X and replace the address of any MEM in it with ADDR.
2338 REG is the address that MEM should have before the replacement. */
2340 static void
2341 replace_call_address (rtx x, rtx reg, rtx addr)
2343 enum rtx_code code;
2344 int i;
2345 const char *fmt;
2347 if (x == 0)
2348 return;
2349 code = GET_CODE (x);
2350 switch (code)
2352 case PC:
2353 case CC0:
2354 case CONST_INT:
2355 case CONST_DOUBLE:
2356 case CONST:
2357 case SYMBOL_REF:
2358 case LABEL_REF:
2359 case REG:
2360 return;
2362 case SET:
2363 /* Short cut for very common case. */
2364 replace_call_address (XEXP (x, 1), reg, addr);
2365 return;
2367 case CALL:
2368 /* Short cut for very common case. */
2369 replace_call_address (XEXP (x, 0), reg, addr);
2370 return;
2372 case MEM:
2373 /* If this MEM uses a reg other than the one we expected,
2374 something is wrong. */
2375 if (XEXP (x, 0) != reg)
2376 abort ();
2377 XEXP (x, 0) = addr;
2378 return;
2380 default:
2381 break;
2384 fmt = GET_RTX_FORMAT (code);
2385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2387 if (fmt[i] == 'e')
2388 replace_call_address (XEXP (x, i), reg, addr);
2389 else if (fmt[i] == 'E')
2391 int j;
2392 for (j = 0; j < XVECLEN (x, i); j++)
2393 replace_call_address (XVECEXP (x, i, j), reg, addr);
2397 #endif
2399 /* Return the number of memory refs to addresses that vary
2400 in the rtx X. */
2402 static int
2403 count_nonfixed_reads (const struct loop *loop, rtx x)
2405 enum rtx_code code;
2406 int i;
2407 const char *fmt;
2408 int value;
2410 if (x == 0)
2411 return 0;
2413 code = GET_CODE (x);
2414 switch (code)
2416 case PC:
2417 case CC0:
2418 case CONST_INT:
2419 case CONST_DOUBLE:
2420 case CONST:
2421 case SYMBOL_REF:
2422 case LABEL_REF:
2423 case REG:
2424 return 0;
2426 case MEM:
2427 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2428 + count_nonfixed_reads (loop, XEXP (x, 0)));
2430 default:
2431 break;
2434 value = 0;
2435 fmt = GET_RTX_FORMAT (code);
2436 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2438 if (fmt[i] == 'e')
2439 value += count_nonfixed_reads (loop, XEXP (x, i));
2440 if (fmt[i] == 'E')
2442 int j;
2443 for (j = 0; j < XVECLEN (x, i); j++)
2444 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2447 return value;
2450 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2451 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2452 `unknown_address_altered', `unknown_constant_address_altered', and
2453 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2454 list `store_mems' in LOOP. */
2456 static void
2457 prescan_loop (struct loop *loop)
2459 int level = 1;
2460 rtx insn;
2461 struct loop_info *loop_info = LOOP_INFO (loop);
2462 rtx start = loop->start;
2463 rtx end = loop->end;
2464 /* The label after END. Jumping here is just like falling off the
2465 end of the loop. We use next_nonnote_insn instead of next_label
2466 as a hedge against the (pathological) case where some actual insn
2467 might end up between the two. */
2468 rtx exit_target = next_nonnote_insn (end);
2470 loop_info->has_indirect_jump = indirect_jump_in_function;
2471 loop_info->pre_header_has_call = 0;
2472 loop_info->has_call = 0;
2473 loop_info->has_nonconst_call = 0;
2474 loop_info->has_prefetch = 0;
2475 loop_info->has_volatile = 0;
2476 loop_info->has_tablejump = 0;
2477 loop_info->has_multiple_exit_targets = 0;
2478 loop->level = 1;
2480 loop_info->unknown_address_altered = 0;
2481 loop_info->unknown_constant_address_altered = 0;
2482 loop_info->store_mems = NULL_RTX;
2483 loop_info->first_loop_store_insn = NULL_RTX;
2484 loop_info->mems_idx = 0;
2485 loop_info->num_mem_sets = 0;
2486 /* If loop opts run twice, this was set on 1st pass for 2nd. */
2487 loop_info->preconditioned = NOTE_PRECONDITIONED (end);
2489 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2490 insn = PREV_INSN (insn))
2492 if (GET_CODE (insn) == CALL_INSN)
2494 loop_info->pre_header_has_call = 1;
2495 break;
2499 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2500 insn = NEXT_INSN (insn))
2502 switch (GET_CODE (insn))
2504 case NOTE:
2505 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2507 ++level;
2508 /* Count number of loops contained in this one. */
2509 loop->level++;
2511 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2512 --level;
2513 break;
2515 case CALL_INSN:
2516 if (! CONST_OR_PURE_CALL_P (insn))
2518 loop_info->unknown_address_altered = 1;
2519 loop_info->has_nonconst_call = 1;
2521 else if (pure_call_p (insn))
2522 loop_info->has_nonconst_call = 1;
2523 loop_info->has_call = 1;
2524 if (can_throw_internal (insn))
2525 loop_info->has_multiple_exit_targets = 1;
2527 /* Calls initializing constant objects have CLOBBER of MEM /u in the
2528 attached FUNCTION_USAGE expression list, not accounted for by the
2529 code above. We should note these to avoid missing dependencies in
2530 later references. */
2532 rtx fusage_entry;
2534 for (fusage_entry = CALL_INSN_FUNCTION_USAGE (insn);
2535 fusage_entry; fusage_entry = XEXP (fusage_entry, 1))
2537 rtx fusage = XEXP (fusage_entry, 0);
2539 if (GET_CODE (fusage) == CLOBBER
2540 && GET_CODE (XEXP (fusage, 0)) == MEM
2541 && RTX_UNCHANGING_P (XEXP (fusage, 0)))
2543 note_stores (fusage, note_addr_stored, loop_info);
2544 if (! loop_info->first_loop_store_insn
2545 && loop_info->store_mems)
2546 loop_info->first_loop_store_insn = insn;
2550 break;
2552 case JUMP_INSN:
2553 if (! loop_info->has_multiple_exit_targets)
2555 rtx set = pc_set (insn);
2557 if (set)
2559 rtx src = SET_SRC (set);
2560 rtx label1, label2;
2562 if (GET_CODE (src) == IF_THEN_ELSE)
2564 label1 = XEXP (src, 1);
2565 label2 = XEXP (src, 2);
2567 else
2569 label1 = src;
2570 label2 = NULL_RTX;
2575 if (label1 && label1 != pc_rtx)
2577 if (GET_CODE (label1) != LABEL_REF)
2579 /* Something tricky. */
2580 loop_info->has_multiple_exit_targets = 1;
2581 break;
2583 else if (XEXP (label1, 0) != exit_target
2584 && LABEL_OUTSIDE_LOOP_P (label1))
2586 /* A jump outside the current loop. */
2587 loop_info->has_multiple_exit_targets = 1;
2588 break;
2592 label1 = label2;
2593 label2 = NULL_RTX;
2595 while (label1);
2597 else
2599 /* A return, or something tricky. */
2600 loop_info->has_multiple_exit_targets = 1;
2603 /* FALLTHRU */
2605 case INSN:
2606 if (volatile_refs_p (PATTERN (insn)))
2607 loop_info->has_volatile = 1;
2609 if (GET_CODE (insn) == JUMP_INSN
2610 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2611 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2612 loop_info->has_tablejump = 1;
2614 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2615 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2616 loop_info->first_loop_store_insn = insn;
2618 if (flag_non_call_exceptions && can_throw_internal (insn))
2619 loop_info->has_multiple_exit_targets = 1;
2620 break;
2622 default:
2623 break;
2627 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2628 if (/* An exception thrown by a called function might land us
2629 anywhere. */
2630 ! loop_info->has_nonconst_call
2631 /* We don't want loads for MEMs moved to a location before the
2632 one at which their stack memory becomes allocated. (Note
2633 that this is not a problem for malloc, etc., since those
2634 require actual function calls. */
2635 && ! current_function_calls_alloca
2636 /* There are ways to leave the loop other than falling off the
2637 end. */
2638 && ! loop_info->has_multiple_exit_targets)
2639 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2640 insn = NEXT_INSN (insn))
2641 for_each_rtx (&insn, insert_loop_mem, loop_info);
2643 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2644 that loop_invariant_p and load_mems can use true_dependence
2645 to determine what is really clobbered. */
2646 if (loop_info->unknown_address_altered)
2648 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2650 loop_info->store_mems
2651 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2653 if (loop_info->unknown_constant_address_altered)
2655 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2657 RTX_UNCHANGING_P (mem) = 1;
2658 loop_info->store_mems
2659 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2663 /* Invalidate all loops containing LABEL. */
2665 static void
2666 invalidate_loops_containing_label (rtx label)
2668 struct loop *loop;
2669 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
2670 loop->invalid = 1;
2673 /* Scan the function looking for loops. Record the start and end of each loop.
2674 Also mark as invalid loops any loops that contain a setjmp or are branched
2675 to from outside the loop. */
2677 static void
2678 find_and_verify_loops (rtx f, struct loops *loops)
2680 rtx insn;
2681 rtx label;
2682 int num_loops;
2683 struct loop *current_loop;
2684 struct loop *next_loop;
2685 struct loop *loop;
2687 num_loops = loops->num;
2689 compute_luids (f, NULL_RTX, 0);
2691 /* If there are jumps to undefined labels,
2692 treat them as jumps out of any/all loops.
2693 This also avoids writing past end of tables when there are no loops. */
2694 uid_loop[0] = NULL;
2696 /* Find boundaries of loops, mark which loops are contained within
2697 loops, and invalidate loops that have setjmp. */
2699 num_loops = 0;
2700 current_loop = NULL;
2701 for (insn = f; insn; insn = NEXT_INSN (insn))
2703 if (GET_CODE (insn) == NOTE)
2704 switch (NOTE_LINE_NUMBER (insn))
2706 case NOTE_INSN_LOOP_BEG:
2707 next_loop = loops->array + num_loops;
2708 next_loop->num = num_loops;
2709 num_loops++;
2710 next_loop->start = insn;
2711 next_loop->outer = current_loop;
2712 current_loop = next_loop;
2713 break;
2715 case NOTE_INSN_LOOP_CONT:
2716 current_loop->cont = insn;
2717 break;
2719 case NOTE_INSN_LOOP_VTOP:
2720 current_loop->vtop = insn;
2721 break;
2723 case NOTE_INSN_LOOP_END:
2724 if (! current_loop)
2725 abort ();
2727 current_loop->end = insn;
2728 current_loop = current_loop->outer;
2729 break;
2731 default:
2732 break;
2735 if (GET_CODE (insn) == CALL_INSN
2736 && find_reg_note (insn, REG_SETJMP, NULL))
2738 /* In this case, we must invalidate our current loop and any
2739 enclosing loop. */
2740 for (loop = current_loop; loop; loop = loop->outer)
2742 loop->invalid = 1;
2743 if (loop_dump_stream)
2744 fprintf (loop_dump_stream,
2745 "\nLoop at %d ignored due to setjmp.\n",
2746 INSN_UID (loop->start));
2750 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2751 enclosing loop, but this doesn't matter. */
2752 uid_loop[INSN_UID (insn)] = current_loop;
2755 /* Any loop containing a label used in an initializer must be invalidated,
2756 because it can be jumped into from anywhere. */
2757 for (label = forced_labels; label; label = XEXP (label, 1))
2758 invalidate_loops_containing_label (XEXP (label, 0));
2760 /* Any loop containing a label used for an exception handler must be
2761 invalidated, because it can be jumped into from anywhere. */
2762 for_each_eh_label (invalidate_loops_containing_label);
2764 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2765 loop that it is not contained within, that loop is marked invalid.
2766 If any INSN or CALL_INSN uses a label's address, then the loop containing
2767 that label is marked invalid, because it could be jumped into from
2768 anywhere.
2770 Also look for blocks of code ending in an unconditional branch that
2771 exits the loop. If such a block is surrounded by a conditional
2772 branch around the block, move the block elsewhere (see below) and
2773 invert the jump to point to the code block. This may eliminate a
2774 label in our loop and will simplify processing by both us and a
2775 possible second cse pass. */
2777 for (insn = f; insn; insn = NEXT_INSN (insn))
2778 if (INSN_P (insn))
2780 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2782 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2784 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2785 if (note)
2786 invalidate_loops_containing_label (XEXP (note, 0));
2789 if (GET_CODE (insn) != JUMP_INSN)
2790 continue;
2792 mark_loop_jump (PATTERN (insn), this_loop);
2794 /* See if this is an unconditional branch outside the loop. */
2795 if (this_loop
2796 && (GET_CODE (PATTERN (insn)) == RETURN
2797 || (any_uncondjump_p (insn)
2798 && onlyjump_p (insn)
2799 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2800 != this_loop)))
2801 && get_max_uid () < max_uid_for_loop)
2803 rtx p;
2804 rtx our_next = next_real_insn (insn);
2805 rtx last_insn_to_move = NEXT_INSN (insn);
2806 struct loop *dest_loop;
2807 struct loop *outer_loop = NULL;
2809 /* Go backwards until we reach the start of the loop, a label,
2810 or a JUMP_INSN. */
2811 for (p = PREV_INSN (insn);
2812 GET_CODE (p) != CODE_LABEL
2813 && ! (GET_CODE (p) == NOTE
2814 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2815 && GET_CODE (p) != JUMP_INSN;
2816 p = PREV_INSN (p))
2819 /* Check for the case where we have a jump to an inner nested
2820 loop, and do not perform the optimization in that case. */
2822 if (JUMP_LABEL (insn))
2824 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2825 if (dest_loop)
2827 for (outer_loop = dest_loop; outer_loop;
2828 outer_loop = outer_loop->outer)
2829 if (outer_loop == this_loop)
2830 break;
2834 /* Make sure that the target of P is within the current loop. */
2836 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2837 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2838 outer_loop = this_loop;
2840 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2841 we have a block of code to try to move.
2843 We look backward and then forward from the target of INSN
2844 to find a BARRIER at the same loop depth as the target.
2845 If we find such a BARRIER, we make a new label for the start
2846 of the block, invert the jump in P and point it to that label,
2847 and move the block of code to the spot we found. */
2849 if (! outer_loop
2850 && GET_CODE (p) == JUMP_INSN
2851 && JUMP_LABEL (p) != 0
2852 /* Just ignore jumps to labels that were never emitted.
2853 These always indicate compilation errors. */
2854 && INSN_UID (JUMP_LABEL (p)) != 0
2855 && any_condjump_p (p) && onlyjump_p (p)
2856 && next_real_insn (JUMP_LABEL (p)) == our_next
2857 /* If it's not safe to move the sequence, then we
2858 mustn't try. */
2859 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2860 &last_insn_to_move))
2862 rtx target
2863 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2864 struct loop *target_loop = uid_loop[INSN_UID (target)];
2865 rtx loc, loc2;
2866 rtx tmp;
2868 /* Search for possible garbage past the conditional jumps
2869 and look for the last barrier. */
2870 for (tmp = last_insn_to_move;
2871 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2872 if (GET_CODE (tmp) == BARRIER)
2873 last_insn_to_move = tmp;
2875 for (loc = target; loc; loc = PREV_INSN (loc))
2876 if (GET_CODE (loc) == BARRIER
2877 /* Don't move things inside a tablejump. */
2878 && ((loc2 = next_nonnote_insn (loc)) == 0
2879 || GET_CODE (loc2) != CODE_LABEL
2880 || (loc2 = next_nonnote_insn (loc2)) == 0
2881 || GET_CODE (loc2) != JUMP_INSN
2882 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2883 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2884 && uid_loop[INSN_UID (loc)] == target_loop)
2885 break;
2887 if (loc == 0)
2888 for (loc = target; loc; loc = NEXT_INSN (loc))
2889 if (GET_CODE (loc) == BARRIER
2890 /* Don't move things inside a tablejump. */
2891 && ((loc2 = next_nonnote_insn (loc)) == 0
2892 || GET_CODE (loc2) != CODE_LABEL
2893 || (loc2 = next_nonnote_insn (loc2)) == 0
2894 || GET_CODE (loc2) != JUMP_INSN
2895 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2896 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2897 && uid_loop[INSN_UID (loc)] == target_loop)
2898 break;
2900 if (loc)
2902 rtx cond_label = JUMP_LABEL (p);
2903 rtx new_label = get_label_after (p);
2905 /* Ensure our label doesn't go away. */
2906 LABEL_NUSES (cond_label)++;
2908 /* Verify that uid_loop is large enough and that
2909 we can invert P. */
2910 if (invert_jump (p, new_label, 1))
2912 rtx q, r;
2914 /* If no suitable BARRIER was found, create a suitable
2915 one before TARGET. Since TARGET is a fall through
2916 path, we'll need to insert a jump around our block
2917 and add a BARRIER before TARGET.
2919 This creates an extra unconditional jump outside
2920 the loop. However, the benefits of removing rarely
2921 executed instructions from inside the loop usually
2922 outweighs the cost of the extra unconditional jump
2923 outside the loop. */
2924 if (loc == 0)
2926 rtx temp;
2928 temp = gen_jump (JUMP_LABEL (insn));
2929 temp = emit_jump_insn_before (temp, target);
2930 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2931 LABEL_NUSES (JUMP_LABEL (insn))++;
2932 loc = emit_barrier_before (target);
2935 /* Include the BARRIER after INSN and copy the
2936 block after LOC. */
2937 if (squeeze_notes (&new_label, &last_insn_to_move))
2938 abort ();
2939 reorder_insns (new_label, last_insn_to_move, loc);
2941 /* All those insns are now in TARGET_LOOP. */
2942 for (q = new_label;
2943 q != NEXT_INSN (last_insn_to_move);
2944 q = NEXT_INSN (q))
2945 uid_loop[INSN_UID (q)] = target_loop;
2947 /* The label jumped to by INSN is no longer a loop
2948 exit. Unless INSN does not have a label (e.g.,
2949 it is a RETURN insn), search loop->exit_labels
2950 to find its label_ref, and remove it. Also turn
2951 off LABEL_OUTSIDE_LOOP_P bit. */
2952 if (JUMP_LABEL (insn))
2954 for (q = 0, r = this_loop->exit_labels;
2956 q = r, r = LABEL_NEXTREF (r))
2957 if (XEXP (r, 0) == JUMP_LABEL (insn))
2959 LABEL_OUTSIDE_LOOP_P (r) = 0;
2960 if (q)
2961 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2962 else
2963 this_loop->exit_labels = LABEL_NEXTREF (r);
2964 break;
2967 for (loop = this_loop; loop && loop != target_loop;
2968 loop = loop->outer)
2969 loop->exit_count--;
2971 /* If we didn't find it, then something is
2972 wrong. */
2973 if (! r)
2974 abort ();
2977 /* P is now a jump outside the loop, so it must be put
2978 in loop->exit_labels, and marked as such.
2979 The easiest way to do this is to just call
2980 mark_loop_jump again for P. */
2981 mark_loop_jump (PATTERN (p), this_loop);
2983 /* If INSN now jumps to the insn after it,
2984 delete INSN. */
2985 if (JUMP_LABEL (insn) != 0
2986 && (next_real_insn (JUMP_LABEL (insn))
2987 == next_real_insn (insn)))
2988 delete_related_insns (insn);
2991 /* Continue the loop after where the conditional
2992 branch used to jump, since the only branch insn
2993 in the block (if it still remains) is an inter-loop
2994 branch and hence needs no processing. */
2995 insn = NEXT_INSN (cond_label);
2997 if (--LABEL_NUSES (cond_label) == 0)
2998 delete_related_insns (cond_label);
3000 /* This loop will be continued with NEXT_INSN (insn). */
3001 insn = PREV_INSN (insn);
3008 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3009 loops it is contained in, mark the target loop invalid.
3011 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3013 static void
3014 mark_loop_jump (rtx x, struct loop *loop)
3016 struct loop *dest_loop;
3017 struct loop *outer_loop;
3018 int i;
3020 switch (GET_CODE (x))
3022 case PC:
3023 case USE:
3024 case CLOBBER:
3025 case REG:
3026 case MEM:
3027 case CONST_INT:
3028 case CONST_DOUBLE:
3029 case RETURN:
3030 return;
3032 case CONST:
3033 /* There could be a label reference in here. */
3034 mark_loop_jump (XEXP (x, 0), loop);
3035 return;
3037 case PLUS:
3038 case MINUS:
3039 case MULT:
3040 mark_loop_jump (XEXP (x, 0), loop);
3041 mark_loop_jump (XEXP (x, 1), loop);
3042 return;
3044 case LO_SUM:
3045 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3046 mark_loop_jump (XEXP (x, 1), loop);
3047 return;
3049 case SIGN_EXTEND:
3050 case ZERO_EXTEND:
3051 mark_loop_jump (XEXP (x, 0), loop);
3052 return;
3054 case LABEL_REF:
3055 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3057 /* Link together all labels that branch outside the loop. This
3058 is used by final_[bg]iv_value and the loop unrolling code. Also
3059 mark this LABEL_REF so we know that this branch should predict
3060 false. */
3062 /* A check to make sure the label is not in an inner nested loop,
3063 since this does not count as a loop exit. */
3064 if (dest_loop)
3066 for (outer_loop = dest_loop; outer_loop;
3067 outer_loop = outer_loop->outer)
3068 if (outer_loop == loop)
3069 break;
3071 else
3072 outer_loop = NULL;
3074 if (loop && ! outer_loop)
3076 LABEL_OUTSIDE_LOOP_P (x) = 1;
3077 LABEL_NEXTREF (x) = loop->exit_labels;
3078 loop->exit_labels = x;
3080 for (outer_loop = loop;
3081 outer_loop && outer_loop != dest_loop;
3082 outer_loop = outer_loop->outer)
3083 outer_loop->exit_count++;
3086 /* If this is inside a loop, but not in the current loop or one enclosed
3087 by it, it invalidates at least one loop. */
3089 if (! dest_loop)
3090 return;
3092 /* We must invalidate every nested loop containing the target of this
3093 label, except those that also contain the jump insn. */
3095 for (; dest_loop; dest_loop = dest_loop->outer)
3097 /* Stop when we reach a loop that also contains the jump insn. */
3098 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3099 if (dest_loop == outer_loop)
3100 return;
3102 /* If we get here, we know we need to invalidate a loop. */
3103 if (loop_dump_stream && ! dest_loop->invalid)
3104 fprintf (loop_dump_stream,
3105 "\nLoop at %d ignored due to multiple entry points.\n",
3106 INSN_UID (dest_loop->start));
3108 dest_loop->invalid = 1;
3110 return;
3112 case SET:
3113 /* If this is not setting pc, ignore. */
3114 if (SET_DEST (x) == pc_rtx)
3115 mark_loop_jump (SET_SRC (x), loop);
3116 return;
3118 case IF_THEN_ELSE:
3119 mark_loop_jump (XEXP (x, 1), loop);
3120 mark_loop_jump (XEXP (x, 2), loop);
3121 return;
3123 case PARALLEL:
3124 case ADDR_VEC:
3125 for (i = 0; i < XVECLEN (x, 0); i++)
3126 mark_loop_jump (XVECEXP (x, 0, i), loop);
3127 return;
3129 case ADDR_DIFF_VEC:
3130 for (i = 0; i < XVECLEN (x, 1); i++)
3131 mark_loop_jump (XVECEXP (x, 1, i), loop);
3132 return;
3134 default:
3135 /* Strictly speaking this is not a jump into the loop, only a possible
3136 jump out of the loop. However, we have no way to link the destination
3137 of this jump onto the list of exit labels. To be safe we mark this
3138 loop and any containing loops as invalid. */
3139 if (loop)
3141 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3143 if (loop_dump_stream && ! outer_loop->invalid)
3144 fprintf (loop_dump_stream,
3145 "\nLoop at %d ignored due to unknown exit jump.\n",
3146 INSN_UID (outer_loop->start));
3147 outer_loop->invalid = 1;
3150 return;
3154 /* Return nonzero if there is a label in the range from
3155 insn INSN to and including the insn whose luid is END
3156 INSN must have an assigned luid (i.e., it must not have
3157 been previously created by loop.c). */
3159 static int
3160 labels_in_range_p (rtx insn, int end)
3162 while (insn && INSN_LUID (insn) <= end)
3164 if (GET_CODE (insn) == CODE_LABEL)
3165 return 1;
3166 insn = NEXT_INSN (insn);
3169 return 0;
3172 /* Record that a memory reference X is being set. */
3174 static void
3175 note_addr_stored (rtx x, rtx y ATTRIBUTE_UNUSED,
3176 void *data ATTRIBUTE_UNUSED)
3178 struct loop_info *loop_info = data;
3180 if (x == 0 || GET_CODE (x) != MEM)
3181 return;
3183 /* Count number of memory writes.
3184 This affects heuristics in strength_reduce. */
3185 loop_info->num_mem_sets++;
3187 /* BLKmode MEM means all memory is clobbered. */
3188 if (GET_MODE (x) == BLKmode)
3190 if (RTX_UNCHANGING_P (x))
3191 loop_info->unknown_constant_address_altered = 1;
3192 else
3193 loop_info->unknown_address_altered = 1;
3195 return;
3198 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3199 loop_info->store_mems);
3202 /* X is a value modified by an INSN that references a biv inside a loop
3203 exit test (ie, X is somehow related to the value of the biv). If X
3204 is a pseudo that is used more than once, then the biv is (effectively)
3205 used more than once. DATA is a pointer to a loop_regs structure. */
3207 static void
3208 note_set_pseudo_multiple_uses (rtx x, rtx y ATTRIBUTE_UNUSED, void *data)
3210 struct loop_regs *regs = (struct loop_regs *) data;
3212 if (x == 0)
3213 return;
3215 while (GET_CODE (x) == STRICT_LOW_PART
3216 || GET_CODE (x) == SIGN_EXTRACT
3217 || GET_CODE (x) == ZERO_EXTRACT
3218 || GET_CODE (x) == SUBREG)
3219 x = XEXP (x, 0);
3221 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3222 return;
3224 /* If we do not have usage information, or if we know the register
3225 is used more than once, note that fact for check_dbra_loop. */
3226 if (REGNO (x) >= max_reg_before_loop
3227 || ! regs->array[REGNO (x)].single_usage
3228 || regs->array[REGNO (x)].single_usage == const0_rtx)
3229 regs->multiple_uses = 1;
3232 /* Return nonzero if the rtx X is invariant over the current loop.
3234 The value is 2 if we refer to something only conditionally invariant.
3236 A memory ref is invariant if it is not volatile and does not conflict
3237 with anything stored in `loop_info->store_mems'. */
3240 loop_invariant_p (const struct loop *loop, rtx x)
3242 struct loop_info *loop_info = LOOP_INFO (loop);
3243 struct loop_regs *regs = LOOP_REGS (loop);
3244 int i;
3245 enum rtx_code code;
3246 const char *fmt;
3247 int conditional = 0;
3248 rtx mem_list_entry;
3250 if (x == 0)
3251 return 1;
3252 code = GET_CODE (x);
3253 switch (code)
3255 case CONST_INT:
3256 case CONST_DOUBLE:
3257 case SYMBOL_REF:
3258 case CONST:
3259 return 1;
3261 case LABEL_REF:
3262 /* A LABEL_REF is normally invariant, however, if we are unrolling
3263 loops, and this label is inside the loop, then it isn't invariant.
3264 This is because each unrolled copy of the loop body will have
3265 a copy of this label. If this was invariant, then an insn loading
3266 the address of this label into a register might get moved outside
3267 the loop, and then each loop body would end up using the same label.
3269 We don't know the loop bounds here though, so just fail for all
3270 labels. */
3271 if (flag_old_unroll_loops)
3272 return 0;
3273 else
3274 return 1;
3276 case PC:
3277 case CC0:
3278 case UNSPEC_VOLATILE:
3279 return 0;
3281 case REG:
3282 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3283 since the reg might be set by initialization within the loop. */
3285 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3286 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3287 && ! current_function_has_nonlocal_goto)
3288 return 1;
3290 if (LOOP_INFO (loop)->has_call
3291 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3292 return 0;
3294 /* Out-of-range regs can occur when we are called from unrolling.
3295 These have always been created by the unroller and are set in
3296 the loop, hence are never invariant. */
3298 if (REGNO (x) >= (unsigned) regs->num)
3299 return 0;
3301 if (regs->array[REGNO (x)].set_in_loop < 0)
3302 return 2;
3304 return regs->array[REGNO (x)].set_in_loop == 0;
3306 case MEM:
3307 /* Volatile memory references must be rejected. Do this before
3308 checking for read-only items, so that volatile read-only items
3309 will be rejected also. */
3310 if (MEM_VOLATILE_P (x))
3311 return 0;
3313 /* See if there is any dependence between a store and this load. */
3314 mem_list_entry = loop_info->store_mems;
3315 while (mem_list_entry)
3317 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3318 x, rtx_varies_p))
3319 return 0;
3321 mem_list_entry = XEXP (mem_list_entry, 1);
3324 /* It's not invalidated by a store in memory
3325 but we must still verify the address is invariant. */
3326 break;
3328 case ASM_OPERANDS:
3329 /* Don't mess with insns declared volatile. */
3330 if (MEM_VOLATILE_P (x))
3331 return 0;
3332 break;
3334 default:
3335 break;
3338 fmt = GET_RTX_FORMAT (code);
3339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3341 if (fmt[i] == 'e')
3343 int tem = loop_invariant_p (loop, XEXP (x, i));
3344 if (tem == 0)
3345 return 0;
3346 if (tem == 2)
3347 conditional = 1;
3349 else if (fmt[i] == 'E')
3351 int j;
3352 for (j = 0; j < XVECLEN (x, i); j++)
3354 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3355 if (tem == 0)
3356 return 0;
3357 if (tem == 2)
3358 conditional = 1;
3364 return 1 + conditional;
3367 /* Return nonzero if all the insns in the loop that set REG
3368 are INSN and the immediately following insns,
3369 and if each of those insns sets REG in an invariant way
3370 (not counting uses of REG in them).
3372 The value is 2 if some of these insns are only conditionally invariant.
3374 We assume that INSN itself is the first set of REG
3375 and that its source is invariant. */
3377 static int
3378 consec_sets_invariant_p (const struct loop *loop, rtx reg, int n_sets,
3379 rtx insn)
3381 struct loop_regs *regs = LOOP_REGS (loop);
3382 rtx p = insn;
3383 unsigned int regno = REGNO (reg);
3384 rtx temp;
3385 /* Number of sets we have to insist on finding after INSN. */
3386 int count = n_sets - 1;
3387 int old = regs->array[regno].set_in_loop;
3388 int value = 0;
3389 int this;
3391 /* If N_SETS hit the limit, we can't rely on its value. */
3392 if (n_sets == 127)
3393 return 0;
3395 regs->array[regno].set_in_loop = 0;
3397 while (count > 0)
3399 enum rtx_code code;
3400 rtx set;
3402 p = NEXT_INSN (p);
3403 code = GET_CODE (p);
3405 /* If library call, skip to end of it. */
3406 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3407 p = XEXP (temp, 0);
3409 this = 0;
3410 if (code == INSN
3411 && (set = single_set (p))
3412 && GET_CODE (SET_DEST (set)) == REG
3413 && REGNO (SET_DEST (set)) == regno)
3415 this = loop_invariant_p (loop, SET_SRC (set));
3416 if (this != 0)
3417 value |= this;
3418 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3420 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3421 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3422 notes are OK. */
3423 this = (CONSTANT_P (XEXP (temp, 0))
3424 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3425 && loop_invariant_p (loop, XEXP (temp, 0))));
3426 if (this != 0)
3427 value |= this;
3430 if (this != 0)
3431 count--;
3432 else if (code != NOTE)
3434 regs->array[regno].set_in_loop = old;
3435 return 0;
3439 regs->array[regno].set_in_loop = old;
3440 /* If loop_invariant_p ever returned 2, we return 2. */
3441 return 1 + (value & 2);
3444 #if 0
3445 /* I don't think this condition is sufficient to allow INSN
3446 to be moved, so we no longer test it. */
3448 /* Return 1 if all insns in the basic block of INSN and following INSN
3449 that set REG are invariant according to TABLE. */
3451 static int
3452 all_sets_invariant_p (rtx reg, rtx insn, short *table)
3454 rtx p = insn;
3455 int regno = REGNO (reg);
3457 while (1)
3459 enum rtx_code code;
3460 p = NEXT_INSN (p);
3461 code = GET_CODE (p);
3462 if (code == CODE_LABEL || code == JUMP_INSN)
3463 return 1;
3464 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3465 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3466 && REGNO (SET_DEST (PATTERN (p))) == regno)
3468 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3469 return 0;
3473 #endif /* 0 */
3475 /* Look at all uses (not sets) of registers in X. For each, if it is
3476 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3477 a different insn, set USAGE[REGNO] to const0_rtx. */
3479 static void
3480 find_single_use_in_loop (struct loop_regs *regs, rtx insn, rtx x)
3482 enum rtx_code code = GET_CODE (x);
3483 const char *fmt = GET_RTX_FORMAT (code);
3484 int i, j;
3486 if (code == REG)
3487 regs->array[REGNO (x)].single_usage
3488 = (regs->array[REGNO (x)].single_usage != 0
3489 && regs->array[REGNO (x)].single_usage != insn)
3490 ? const0_rtx : insn;
3492 else if (code == SET)
3494 /* Don't count SET_DEST if it is a REG; otherwise count things
3495 in SET_DEST because if a register is partially modified, it won't
3496 show up as a potential movable so we don't care how USAGE is set
3497 for it. */
3498 if (GET_CODE (SET_DEST (x)) != REG)
3499 find_single_use_in_loop (regs, insn, SET_DEST (x));
3500 find_single_use_in_loop (regs, insn, SET_SRC (x));
3502 else
3503 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3505 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3506 find_single_use_in_loop (regs, insn, XEXP (x, i));
3507 else if (fmt[i] == 'E')
3508 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3509 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3513 /* Count and record any set in X which is contained in INSN. Update
3514 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3515 in X. */
3517 static void
3518 count_one_set (struct loop_regs *regs, rtx insn, rtx x, rtx *last_set)
3520 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3521 /* Don't move a reg that has an explicit clobber.
3522 It's not worth the pain to try to do it correctly. */
3523 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3525 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3527 rtx dest = SET_DEST (x);
3528 while (GET_CODE (dest) == SUBREG
3529 || GET_CODE (dest) == ZERO_EXTRACT
3530 || GET_CODE (dest) == SIGN_EXTRACT
3531 || GET_CODE (dest) == STRICT_LOW_PART)
3532 dest = XEXP (dest, 0);
3533 if (GET_CODE (dest) == REG)
3535 int i;
3536 int regno = REGNO (dest);
3537 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3539 /* If this is the first setting of this reg
3540 in current basic block, and it was set before,
3541 it must be set in two basic blocks, so it cannot
3542 be moved out of the loop. */
3543 if (regs->array[regno].set_in_loop > 0
3544 && last_set[regno] == 0)
3545 regs->array[regno+i].may_not_optimize = 1;
3546 /* If this is not first setting in current basic block,
3547 see if reg was used in between previous one and this.
3548 If so, neither one can be moved. */
3549 if (last_set[regno] != 0
3550 && reg_used_between_p (dest, last_set[regno], insn))
3551 regs->array[regno+i].may_not_optimize = 1;
3552 if (regs->array[regno+i].set_in_loop < 127)
3553 ++regs->array[regno+i].set_in_loop;
3554 last_set[regno+i] = insn;
3560 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3561 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3562 contained in insn INSN is used by any insn that precedes INSN in
3563 cyclic order starting from the loop entry point.
3565 We don't want to use INSN_LUID here because if we restrict INSN to those
3566 that have a valid INSN_LUID, it means we cannot move an invariant out
3567 from an inner loop past two loops. */
3569 static int
3570 loop_reg_used_before_p (const struct loop *loop, rtx set, rtx insn)
3572 rtx reg = SET_DEST (set);
3573 rtx p;
3575 /* Scan forward checking for register usage. If we hit INSN, we
3576 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3577 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3579 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3580 return 1;
3582 if (p == loop->end)
3583 p = loop->start;
3586 return 0;
3590 /* Information we collect about arrays that we might want to prefetch. */
3591 struct prefetch_info
3593 struct iv_class *class; /* Class this prefetch is based on. */
3594 struct induction *giv; /* GIV this prefetch is based on. */
3595 rtx base_address; /* Start prefetching from this address plus
3596 index. */
3597 HOST_WIDE_INT index;
3598 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3599 iteration. */
3600 unsigned int bytes_accessed; /* Sum of sizes of all accesses to this
3601 prefetch area in one iteration. */
3602 unsigned int total_bytes; /* Total bytes loop will access in this block.
3603 This is set only for loops with known
3604 iteration counts and is 0xffffffff
3605 otherwise. */
3606 int prefetch_in_loop; /* Number of prefetch insns in loop. */
3607 int prefetch_before_loop; /* Number of prefetch insns before loop. */
3608 unsigned int write : 1; /* 1 for read/write prefetches. */
3611 /* Data used by check_store function. */
3612 struct check_store_data
3614 rtx mem_address;
3615 int mem_write;
3618 static void check_store (rtx, rtx, void *);
3619 static void emit_prefetch_instructions (struct loop *);
3620 static int rtx_equal_for_prefetch_p (rtx, rtx);
3622 /* Set mem_write when mem_address is found. Used as callback to
3623 note_stores. */
3624 static void
3625 check_store (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3627 struct check_store_data *d = (struct check_store_data *) data;
3629 if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3630 d->mem_write = 1;
3633 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3634 important to get some addresses combined. Later more sophisticated
3635 transformations can be added when necessary.
3637 ??? Same trick with swapping operand is done at several other places.
3638 It can be nice to develop some common way to handle this. */
3640 static int
3641 rtx_equal_for_prefetch_p (rtx x, rtx y)
3643 int i;
3644 int j;
3645 enum rtx_code code = GET_CODE (x);
3646 const char *fmt;
3648 if (x == y)
3649 return 1;
3650 if (code != GET_CODE (y))
3651 return 0;
3653 code = GET_CODE (x);
3655 if (GET_RTX_CLASS (code) == 'c')
3657 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3658 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3659 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
3660 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
3662 /* Compare the elements. If any pair of corresponding elements fails to
3663 match, return 0 for the whole thing. */
3665 fmt = GET_RTX_FORMAT (code);
3666 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3668 switch (fmt[i])
3670 case 'w':
3671 if (XWINT (x, i) != XWINT (y, i))
3672 return 0;
3673 break;
3675 case 'i':
3676 if (XINT (x, i) != XINT (y, i))
3677 return 0;
3678 break;
3680 case 'E':
3681 /* Two vectors must have the same length. */
3682 if (XVECLEN (x, i) != XVECLEN (y, i))
3683 return 0;
3685 /* And the corresponding elements must match. */
3686 for (j = 0; j < XVECLEN (x, i); j++)
3687 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
3688 XVECEXP (y, i, j)) == 0)
3689 return 0;
3690 break;
3692 case 'e':
3693 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
3694 return 0;
3695 break;
3697 case 's':
3698 if (strcmp (XSTR (x, i), XSTR (y, i)))
3699 return 0;
3700 break;
3702 case 'u':
3703 /* These are just backpointers, so they don't matter. */
3704 break;
3706 case '0':
3707 break;
3709 /* It is believed that rtx's at this level will never
3710 contain anything but integers and other rtx's,
3711 except for within LABEL_REFs and SYMBOL_REFs. */
3712 default:
3713 abort ();
3716 return 1;
3719 /* Remove constant addition value from the expression X (when present)
3720 and return it. */
3722 static HOST_WIDE_INT
3723 remove_constant_addition (rtx *x)
3725 HOST_WIDE_INT addval = 0;
3726 rtx exp = *x;
3728 /* Avoid clobbering a shared CONST expression. */
3729 if (GET_CODE (exp) == CONST)
3731 if (GET_CODE (XEXP (exp, 0)) == PLUS
3732 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
3733 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
3735 *x = XEXP (XEXP (exp, 0), 0);
3736 return INTVAL (XEXP (XEXP (exp, 0), 1));
3738 return 0;
3741 if (GET_CODE (exp) == CONST_INT)
3743 addval = INTVAL (exp);
3744 *x = const0_rtx;
3747 /* For plus expression recurse on ourself. */
3748 else if (GET_CODE (exp) == PLUS)
3750 addval += remove_constant_addition (&XEXP (exp, 0));
3751 addval += remove_constant_addition (&XEXP (exp, 1));
3753 /* In case our parameter was constant, remove extra zero from the
3754 expression. */
3755 if (XEXP (exp, 0) == const0_rtx)
3756 *x = XEXP (exp, 1);
3757 else if (XEXP (exp, 1) == const0_rtx)
3758 *x = XEXP (exp, 0);
3761 return addval;
3764 /* Attempt to identify accesses to arrays that are most likely to cause cache
3765 misses, and emit prefetch instructions a few prefetch blocks forward.
3767 To detect the arrays we use the GIV information that was collected by the
3768 strength reduction pass.
3770 The prefetch instructions are generated after the GIV information is done
3771 and before the strength reduction process. The new GIVs are injected into
3772 the strength reduction tables, so the prefetch addresses are optimized as
3773 well.
3775 GIVs are split into base address, stride, and constant addition values.
3776 GIVs with the same address, stride and close addition values are combined
3777 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3778 for write instructions can be used for the block we write to, on machines
3779 that support write prefetches.
3781 Several heuristics are used to determine when to prefetch. They are
3782 controlled by defined symbols that can be overridden for each target. */
3784 static void
3785 emit_prefetch_instructions (struct loop *loop)
3787 int num_prefetches = 0;
3788 int num_real_prefetches = 0;
3789 int num_real_write_prefetches = 0;
3790 int num_prefetches_before = 0;
3791 int num_write_prefetches_before = 0;
3792 int ahead = 0;
3793 int i;
3794 struct iv_class *bl;
3795 struct induction *iv;
3796 struct prefetch_info info[MAX_PREFETCHES];
3797 struct loop_ivs *ivs = LOOP_IVS (loop);
3799 if (!HAVE_prefetch)
3800 return;
3802 /* Consider only loops w/o calls. When a call is done, the loop is probably
3803 slow enough to read the memory. */
3804 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
3806 if (loop_dump_stream)
3807 fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
3809 return;
3812 /* Don't prefetch in loops known to have few iterations. */
3813 if (PREFETCH_NO_LOW_LOOPCNT
3814 && LOOP_INFO (loop)->n_iterations
3815 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
3817 if (loop_dump_stream)
3818 fprintf (loop_dump_stream,
3819 "Prefetch: ignoring loop: not enough iterations.\n");
3820 return;
3823 /* Search all induction variables and pick those interesting for the prefetch
3824 machinery. */
3825 for (bl = ivs->list; bl; bl = bl->next)
3827 struct induction *biv = bl->biv, *biv1;
3828 int basestride = 0;
3830 biv1 = biv;
3832 /* Expect all BIVs to be executed in each iteration. This makes our
3833 analysis more conservative. */
3834 while (biv1)
3836 /* Discard non-constant additions that we can't handle well yet, and
3837 BIVs that are executed multiple times; such BIVs ought to be
3838 handled in the nested loop. We accept not_every_iteration BIVs,
3839 since these only result in larger strides and make our
3840 heuristics more conservative. */
3841 if (GET_CODE (biv->add_val) != CONST_INT)
3843 if (loop_dump_stream)
3845 fprintf (loop_dump_stream,
3846 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3847 REGNO (biv->src_reg), INSN_UID (biv->insn));
3848 print_rtl (loop_dump_stream, biv->add_val);
3849 fprintf (loop_dump_stream, "\n");
3851 break;
3854 if (biv->maybe_multiple)
3856 if (loop_dump_stream)
3858 fprintf (loop_dump_stream,
3859 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3860 REGNO (biv->src_reg), INSN_UID (biv->insn));
3861 print_rtl (loop_dump_stream, biv->add_val);
3862 fprintf (loop_dump_stream, "\n");
3864 break;
3867 basestride += INTVAL (biv1->add_val);
3868 biv1 = biv1->next_iv;
3871 if (biv1 || !basestride)
3872 continue;
3874 for (iv = bl->giv; iv; iv = iv->next_iv)
3876 rtx address;
3877 rtx temp;
3878 HOST_WIDE_INT index = 0;
3879 int add = 1;
3880 HOST_WIDE_INT stride = 0;
3881 int stride_sign = 1;
3882 struct check_store_data d;
3883 const char *ignore_reason = NULL;
3884 int size = GET_MODE_SIZE (GET_MODE (iv));
3886 /* See whether an induction variable is interesting to us and if
3887 not, report the reason. */
3888 if (iv->giv_type != DEST_ADDR)
3889 ignore_reason = "giv is not a destination address";
3891 /* We are interested only in constant stride memory references
3892 in order to be able to compute density easily. */
3893 else if (GET_CODE (iv->mult_val) != CONST_INT)
3894 ignore_reason = "stride is not constant";
3896 else
3898 stride = INTVAL (iv->mult_val) * basestride;
3899 if (stride < 0)
3901 stride = -stride;
3902 stride_sign = -1;
3905 /* On some targets, reversed order prefetches are not
3906 worthwhile. */
3907 if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
3908 ignore_reason = "reversed order stride";
3910 /* Prefetch of accesses with an extreme stride might not be
3911 worthwhile, either. */
3912 else if (PREFETCH_NO_EXTREME_STRIDE
3913 && stride > PREFETCH_EXTREME_STRIDE)
3914 ignore_reason = "extreme stride";
3916 /* Ignore GIVs with varying add values; we can't predict the
3917 value for the next iteration. */
3918 else if (!loop_invariant_p (loop, iv->add_val))
3919 ignore_reason = "giv has varying add value";
3921 /* Ignore GIVs in the nested loops; they ought to have been
3922 handled already. */
3923 else if (iv->maybe_multiple)
3924 ignore_reason = "giv is in nested loop";
3927 if (ignore_reason != NULL)
3929 if (loop_dump_stream)
3930 fprintf (loop_dump_stream,
3931 "Prefetch: ignoring giv at %d: %s.\n",
3932 INSN_UID (iv->insn), ignore_reason);
3933 continue;
3936 /* Determine the pointer to the basic array we are examining. It is
3937 the sum of the BIV's initial value and the GIV's add_val. */
3938 address = copy_rtx (iv->add_val);
3939 temp = copy_rtx (bl->initial_value);
3941 address = simplify_gen_binary (PLUS, Pmode, temp, address);
3942 index = remove_constant_addition (&address);
3944 d.mem_write = 0;
3945 d.mem_address = *iv->location;
3947 /* When the GIV is not always executed, we might be better off by
3948 not dirtying the cache pages. */
3949 if (PREFETCH_CONDITIONAL || iv->always_executed)
3950 note_stores (PATTERN (iv->insn), check_store, &d);
3951 else
3953 if (loop_dump_stream)
3954 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
3955 INSN_UID (iv->insn), "in conditional code.");
3956 continue;
3959 /* Attempt to find another prefetch to the same array and see if we
3960 can merge this one. */
3961 for (i = 0; i < num_prefetches; i++)
3962 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
3963 && stride == info[i].stride)
3965 /* In case both access same array (same location
3966 just with small difference in constant indexes), merge
3967 the prefetches. Just do the later and the earlier will
3968 get prefetched from previous iteration.
3969 The artificial threshold should not be too small,
3970 but also not bigger than small portion of memory usually
3971 traversed by single loop. */
3972 if (index >= info[i].index
3973 && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
3975 info[i].write |= d.mem_write;
3976 info[i].bytes_accessed += size;
3977 info[i].index = index;
3978 info[i].giv = iv;
3979 info[i].class = bl;
3980 info[num_prefetches].base_address = address;
3981 add = 0;
3982 break;
3985 if (index < info[i].index
3986 && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
3988 info[i].write |= d.mem_write;
3989 info[i].bytes_accessed += size;
3990 add = 0;
3991 break;
3995 /* Merging failed. */
3996 if (add)
3998 info[num_prefetches].giv = iv;
3999 info[num_prefetches].class = bl;
4000 info[num_prefetches].index = index;
4001 info[num_prefetches].stride = stride;
4002 info[num_prefetches].base_address = address;
4003 info[num_prefetches].write = d.mem_write;
4004 info[num_prefetches].bytes_accessed = size;
4005 num_prefetches++;
4006 if (num_prefetches >= MAX_PREFETCHES)
4008 if (loop_dump_stream)
4009 fprintf (loop_dump_stream,
4010 "Maximal number of prefetches exceeded.\n");
4011 return;
4017 for (i = 0; i < num_prefetches; i++)
4019 int density;
4021 /* Attempt to calculate the total number of bytes fetched by all
4022 iterations of the loop. Avoid overflow. */
4023 if (LOOP_INFO (loop)->n_iterations
4024 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
4025 >= LOOP_INFO (loop)->n_iterations))
4026 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
4027 else
4028 info[i].total_bytes = 0xffffffff;
4030 density = info[i].bytes_accessed * 100 / info[i].stride;
4032 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4033 if (PREFETCH_ONLY_DENSE_MEM)
4034 if (density * 256 > PREFETCH_DENSE_MEM * 100
4035 && (info[i].total_bytes / PREFETCH_BLOCK
4036 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
4038 info[i].prefetch_before_loop = 1;
4039 info[i].prefetch_in_loop
4040 = (info[i].total_bytes / PREFETCH_BLOCK
4041 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
4043 else
4045 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
4046 if (loop_dump_stream)
4047 fprintf (loop_dump_stream,
4048 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4049 INSN_UID (info[i].giv->insn), density);
4051 else
4052 info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
4054 /* Find how many prefetch instructions we'll use within the loop. */
4055 if (info[i].prefetch_in_loop != 0)
4057 info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
4058 / PREFETCH_BLOCK);
4059 num_real_prefetches += info[i].prefetch_in_loop;
4060 if (info[i].write)
4061 num_real_write_prefetches += info[i].prefetch_in_loop;
4065 /* Determine how many iterations ahead to prefetch within the loop, based
4066 on how many prefetches we currently expect to do within the loop. */
4067 if (num_real_prefetches != 0)
4069 if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
4071 if (loop_dump_stream)
4072 fprintf (loop_dump_stream,
4073 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4074 SIMULTANEOUS_PREFETCHES, num_real_prefetches);
4075 num_real_prefetches = 0, num_real_write_prefetches = 0;
4078 /* We'll also use AHEAD to determine how many prefetch instructions to
4079 emit before a loop, so don't leave it zero. */
4080 if (ahead == 0)
4081 ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
4083 for (i = 0; i < num_prefetches; i++)
4085 /* Update if we've decided not to prefetch anything within the loop. */
4086 if (num_real_prefetches == 0)
4087 info[i].prefetch_in_loop = 0;
4089 /* Find how many prefetch instructions we'll use before the loop. */
4090 if (info[i].prefetch_before_loop != 0)
4092 int n = info[i].total_bytes / PREFETCH_BLOCK;
4093 if (n > ahead)
4094 n = ahead;
4095 info[i].prefetch_before_loop = n;
4096 num_prefetches_before += n;
4097 if (info[i].write)
4098 num_write_prefetches_before += n;
4101 if (loop_dump_stream)
4103 if (info[i].prefetch_in_loop == 0
4104 && info[i].prefetch_before_loop == 0)
4105 continue;
4106 fprintf (loop_dump_stream, "Prefetch insn: %d",
4107 INSN_UID (info[i].giv->insn));
4108 fprintf (loop_dump_stream,
4109 "; in loop: %d; before: %d; %s\n",
4110 info[i].prefetch_in_loop,
4111 info[i].prefetch_before_loop,
4112 info[i].write ? "read/write" : "read only");
4113 fprintf (loop_dump_stream,
4114 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4115 (int) (info[i].bytes_accessed * 100 / info[i].stride),
4116 info[i].bytes_accessed, info[i].total_bytes);
4117 fprintf (loop_dump_stream, " index: " HOST_WIDE_INT_PRINT_DEC
4118 "; stride: " HOST_WIDE_INT_PRINT_DEC "; address: ",
4119 info[i].index, info[i].stride);
4120 print_rtl (loop_dump_stream, info[i].base_address);
4121 fprintf (loop_dump_stream, "\n");
4125 if (num_real_prefetches + num_prefetches_before > 0)
4127 /* Record that this loop uses prefetch instructions. */
4128 LOOP_INFO (loop)->has_prefetch = 1;
4130 if (loop_dump_stream)
4132 fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
4133 num_real_prefetches, num_real_write_prefetches);
4134 fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
4135 num_prefetches_before, num_write_prefetches_before);
4139 for (i = 0; i < num_prefetches; i++)
4141 int y;
4143 for (y = 0; y < info[i].prefetch_in_loop; y++)
4145 rtx loc = copy_rtx (*info[i].giv->location);
4146 rtx insn;
4147 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4148 rtx before_insn = info[i].giv->insn;
4149 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4150 rtx seq;
4152 /* We can save some effort by offsetting the address on
4153 architectures with offsettable memory references. */
4154 if (offsettable_address_p (0, VOIDmode, loc))
4155 loc = plus_constant (loc, bytes_ahead);
4156 else
4158 rtx reg = gen_reg_rtx (Pmode);
4159 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4160 GEN_INT (bytes_ahead), reg,
4161 0, before_insn);
4162 loc = reg;
4165 start_sequence ();
4166 /* Make sure the address operand is valid for prefetch. */
4167 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4168 (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4169 loc = force_reg (Pmode, loc);
4170 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4171 GEN_INT (3)));
4172 seq = get_insns ();
4173 end_sequence ();
4174 emit_insn_before (seq, before_insn);
4176 /* Check all insns emitted and record the new GIV
4177 information. */
4178 insn = NEXT_INSN (prev_insn);
4179 while (insn != before_insn)
4181 insn = check_insn_for_givs (loop, insn,
4182 info[i].giv->always_executed,
4183 info[i].giv->maybe_multiple);
4184 insn = NEXT_INSN (insn);
4188 if (PREFETCH_BEFORE_LOOP)
4190 /* Emit insns before the loop to fetch the first cache lines or,
4191 if we're not prefetching within the loop, everything we expect
4192 to need. */
4193 for (y = 0; y < info[i].prefetch_before_loop; y++)
4195 rtx reg = gen_reg_rtx (Pmode);
4196 rtx loop_start = loop->start;
4197 rtx init_val = info[i].class->initial_value;
4198 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4199 info[i].giv->add_val,
4200 GEN_INT (y * PREFETCH_BLOCK));
4202 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4203 non-constant INIT_VAL to have the same mode as REG, which
4204 in this case we know to be Pmode. */
4205 if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
4207 rtx seq;
4209 start_sequence ();
4210 init_val = convert_to_mode (Pmode, init_val, 0);
4211 seq = get_insns ();
4212 end_sequence ();
4213 loop_insn_emit_before (loop, 0, loop_start, seq);
4215 loop_iv_add_mult_emit_before (loop, init_val,
4216 info[i].giv->mult_val,
4217 add_val, reg, 0, loop_start);
4218 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4219 GEN_INT (3)),
4220 loop_start);
4225 return;
4228 /* A "basic induction variable" or biv is a pseudo reg that is set
4229 (within this loop) only by incrementing or decrementing it. */
4230 /* A "general induction variable" or giv is a pseudo reg whose
4231 value is a linear function of a biv. */
4233 /* Bivs are recognized by `basic_induction_var';
4234 Givs by `general_induction_var'. */
4236 /* Communication with routines called via `note_stores'. */
4238 static rtx note_insn;
4240 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4242 static rtx addr_placeholder;
4244 /* ??? Unfinished optimizations, and possible future optimizations,
4245 for the strength reduction code. */
4247 /* ??? The interaction of biv elimination, and recognition of 'constant'
4248 bivs, may cause problems. */
4250 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4251 performance problems.
4253 Perhaps don't eliminate things that can be combined with an addressing
4254 mode. Find all givs that have the same biv, mult_val, and add_val;
4255 then for each giv, check to see if its only use dies in a following
4256 memory address. If so, generate a new memory address and check to see
4257 if it is valid. If it is valid, then store the modified memory address,
4258 otherwise, mark the giv as not done so that it will get its own iv. */
4260 /* ??? Could try to optimize branches when it is known that a biv is always
4261 positive. */
4263 /* ??? When replace a biv in a compare insn, we should replace with closest
4264 giv so that an optimized branch can still be recognized by the combiner,
4265 e.g. the VAX acb insn. */
4267 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4268 was rerun in loop_optimize whenever a register was added or moved.
4269 Also, some of the optimizations could be a little less conservative. */
4271 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4272 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4273 callback.
4275 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4276 least once for every loop iteration except for the last one.
4278 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4279 loop iteration.
4281 void
4282 for_each_insn_in_loop (struct loop *loop, loop_insn_callback fncall)
4284 int not_every_iteration = 0;
4285 int maybe_multiple = 0;
4286 int past_loop_latch = 0;
4287 int loop_depth = 0;
4288 rtx p;
4290 /* If loop_scan_start points to the loop exit test, we have to be wary of
4291 subversive use of gotos inside expression statements. */
4292 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4293 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4295 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4296 for (p = next_insn_in_loop (loop, loop->scan_start);
4297 p != NULL_RTX;
4298 p = next_insn_in_loop (loop, p))
4300 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4302 /* Past CODE_LABEL, we get to insns that may be executed multiple
4303 times. The only way we can be sure that they can't is if every
4304 jump insn between here and the end of the loop either
4305 returns, exits the loop, is a jump to a location that is still
4306 behind the label, or is a jump to the loop start. */
4308 if (GET_CODE (p) == CODE_LABEL)
4310 rtx insn = p;
4312 maybe_multiple = 0;
4314 while (1)
4316 insn = NEXT_INSN (insn);
4317 if (insn == loop->scan_start)
4318 break;
4319 if (insn == loop->end)
4321 if (loop->top != 0)
4322 insn = loop->top;
4323 else
4324 break;
4325 if (insn == loop->scan_start)
4326 break;
4329 if (GET_CODE (insn) == JUMP_INSN
4330 && GET_CODE (PATTERN (insn)) != RETURN
4331 && (!any_condjump_p (insn)
4332 || (JUMP_LABEL (insn) != 0
4333 && JUMP_LABEL (insn) != loop->scan_start
4334 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4336 maybe_multiple = 1;
4337 break;
4342 /* Past a jump, we get to insns for which we can't count
4343 on whether they will be executed during each iteration. */
4344 /* This code appears twice in strength_reduce. There is also similar
4345 code in scan_loop. */
4346 if (GET_CODE (p) == JUMP_INSN
4347 /* If we enter the loop in the middle, and scan around to the
4348 beginning, don't set not_every_iteration for that.
4349 This can be any kind of jump, since we want to know if insns
4350 will be executed if the loop is executed. */
4351 && !(JUMP_LABEL (p) == loop->top
4352 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4353 && any_uncondjump_p (p))
4354 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
4356 rtx label = 0;
4358 /* If this is a jump outside the loop, then it also doesn't
4359 matter. Check to see if the target of this branch is on the
4360 loop->exits_labels list. */
4362 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4363 if (XEXP (label, 0) == JUMP_LABEL (p))
4364 break;
4366 if (!label)
4367 not_every_iteration = 1;
4370 else if (GET_CODE (p) == NOTE)
4372 /* At the virtual top of a converted loop, insns are again known to
4373 be executed each iteration: logically, the loop begins here
4374 even though the exit code has been duplicated.
4376 Insns are also again known to be executed each iteration at
4377 the LOOP_CONT note. */
4378 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4379 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4380 && loop_depth == 0)
4381 not_every_iteration = 0;
4382 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4383 loop_depth++;
4384 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4385 loop_depth--;
4388 /* Note if we pass a loop latch. If we do, then we can not clear
4389 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4390 a loop since a jump before the last CODE_LABEL may have started
4391 a new loop iteration.
4393 Note that LOOP_TOP is only set for rotated loops and we need
4394 this check for all loops, so compare against the CODE_LABEL
4395 which immediately follows LOOP_START. */
4396 if (GET_CODE (p) == JUMP_INSN
4397 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4398 past_loop_latch = 1;
4400 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4401 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4402 or not an insn is known to be executed each iteration of the
4403 loop, whether or not any iterations are known to occur.
4405 Therefore, if we have just passed a label and have no more labels
4406 between here and the test insn of the loop, and we have not passed
4407 a jump to the top of the loop, then we know these insns will be
4408 executed each iteration. */
4410 if (not_every_iteration
4411 && !past_loop_latch
4412 && GET_CODE (p) == CODE_LABEL
4413 && no_labels_between_p (p, loop->end)
4414 && loop_insn_first_p (p, loop->cont))
4415 not_every_iteration = 0;
4419 static void
4420 loop_bivs_find (struct loop *loop)
4422 struct loop_regs *regs = LOOP_REGS (loop);
4423 struct loop_ivs *ivs = LOOP_IVS (loop);
4424 /* Temporary list pointers for traversing ivs->list. */
4425 struct iv_class *bl, **backbl;
4427 ivs->list = 0;
4429 for_each_insn_in_loop (loop, check_insn_for_bivs);
4431 /* Scan ivs->list to remove all regs that proved not to be bivs.
4432 Make a sanity check against regs->n_times_set. */
4433 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4435 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4436 /* Above happens if register modified by subreg, etc. */
4437 /* Make sure it is not recognized as a basic induction var: */
4438 || regs->array[bl->regno].n_times_set != bl->biv_count
4439 /* If never incremented, it is invariant that we decided not to
4440 move. So leave it alone. */
4441 || ! bl->incremented)
4443 if (loop_dump_stream)
4444 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4445 bl->regno,
4446 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4447 ? "not induction variable"
4448 : (! bl->incremented ? "never incremented"
4449 : "count error")));
4451 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4452 *backbl = bl->next;
4454 else
4456 backbl = &bl->next;
4458 if (loop_dump_stream)
4459 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4465 /* Determine how BIVS are initialized by looking through pre-header
4466 extended basic block. */
4467 static void
4468 loop_bivs_init_find (struct loop *loop)
4470 struct loop_ivs *ivs = LOOP_IVS (loop);
4471 /* Temporary list pointers for traversing ivs->list. */
4472 struct iv_class *bl;
4473 int call_seen;
4474 rtx p;
4476 /* Find initial value for each biv by searching backwards from loop_start,
4477 halting at first label. Also record any test condition. */
4479 call_seen = 0;
4480 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
4482 rtx test;
4484 note_insn = p;
4486 if (GET_CODE (p) == CALL_INSN)
4487 call_seen = 1;
4489 if (INSN_P (p))
4490 note_stores (PATTERN (p), record_initial, ivs);
4492 /* Record any test of a biv that branches around the loop if no store
4493 between it and the start of loop. We only care about tests with
4494 constants and registers and only certain of those. */
4495 if (GET_CODE (p) == JUMP_INSN
4496 && JUMP_LABEL (p) != 0
4497 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4498 && (test = get_condition_for_loop (loop, p)) != 0
4499 && GET_CODE (XEXP (test, 0)) == REG
4500 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4501 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4502 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4503 && bl->init_insn == 0)
4505 /* If an NE test, we have an initial value! */
4506 if (GET_CODE (test) == NE)
4508 bl->init_insn = p;
4509 bl->init_set = gen_rtx_SET (VOIDmode,
4510 XEXP (test, 0), XEXP (test, 1));
4512 else
4513 bl->initial_test = test;
4519 /* Look at the each biv and see if we can say anything better about its
4520 initial value from any initializing insns set up above. (This is done
4521 in two passes to avoid missing SETs in a PARALLEL.) */
4522 static void
4523 loop_bivs_check (struct loop *loop)
4525 struct loop_ivs *ivs = LOOP_IVS (loop);
4526 /* Temporary list pointers for traversing ivs->list. */
4527 struct iv_class *bl;
4528 struct iv_class **backbl;
4530 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4532 rtx src;
4533 rtx note;
4535 if (! bl->init_insn)
4536 continue;
4538 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4539 is a constant, use the value of that. */
4540 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4541 && CONSTANT_P (XEXP (note, 0)))
4542 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4543 && CONSTANT_P (XEXP (note, 0))))
4544 src = XEXP (note, 0);
4545 else
4546 src = SET_SRC (bl->init_set);
4548 if (loop_dump_stream)
4549 fprintf (loop_dump_stream,
4550 "Biv %d: initialized at insn %d: initial value ",
4551 bl->regno, INSN_UID (bl->init_insn));
4553 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4554 || GET_MODE (src) == VOIDmode)
4555 && valid_initial_value_p (src, bl->init_insn,
4556 LOOP_INFO (loop)->pre_header_has_call,
4557 loop->start))
4559 bl->initial_value = src;
4561 if (loop_dump_stream)
4563 print_simple_rtl (loop_dump_stream, src);
4564 fputc ('\n', loop_dump_stream);
4567 /* If we can't make it a giv,
4568 let biv keep initial value of "itself". */
4569 else if (loop_dump_stream)
4570 fprintf (loop_dump_stream, "is complex\n");
4575 /* Search the loop for general induction variables. */
4577 static void
4578 loop_givs_find (struct loop* loop)
4580 for_each_insn_in_loop (loop, check_insn_for_givs);
4584 /* For each giv for which we still don't know whether or not it is
4585 replaceable, check to see if it is replaceable because its final value
4586 can be calculated. */
4588 static void
4589 loop_givs_check (struct loop *loop)
4591 struct loop_ivs *ivs = LOOP_IVS (loop);
4592 struct iv_class *bl;
4594 for (bl = ivs->list; bl; bl = bl->next)
4596 struct induction *v;
4598 for (v = bl->giv; v; v = v->next_iv)
4599 if (! v->replaceable && ! v->not_replaceable)
4600 check_final_value (loop, v);
4605 /* Return nonzero if it is possible to eliminate the biv BL provided
4606 all givs are reduced. This is possible if either the reg is not
4607 used outside the loop, or we can compute what its final value will
4608 be. */
4610 static int
4611 loop_biv_eliminable_p (struct loop *loop, struct iv_class *bl,
4612 int threshold, int insn_count)
4614 /* For architectures with a decrement_and_branch_until_zero insn,
4615 don't do this if we put a REG_NONNEG note on the endtest for this
4616 biv. */
4618 #ifdef HAVE_decrement_and_branch_until_zero
4619 if (bl->nonneg)
4621 if (loop_dump_stream)
4622 fprintf (loop_dump_stream,
4623 "Cannot eliminate nonneg biv %d.\n", bl->regno);
4624 return 0;
4626 #endif
4628 /* Check that biv is used outside loop or if it has a final value.
4629 Compare against bl->init_insn rather than loop->start. We aren't
4630 concerned with any uses of the biv between init_insn and
4631 loop->start since these won't be affected by the value of the biv
4632 elsewhere in the function, so long as init_insn doesn't use the
4633 biv itself. */
4635 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
4636 && bl->init_insn
4637 && INSN_UID (bl->init_insn) < max_uid_for_loop
4638 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
4639 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4640 || (bl->final_value = final_biv_value (loop, bl)))
4641 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
4643 if (loop_dump_stream)
4645 fprintf (loop_dump_stream,
4646 "Cannot eliminate biv %d.\n",
4647 bl->regno);
4648 fprintf (loop_dump_stream,
4649 "First use: insn %d, last use: insn %d.\n",
4650 REGNO_FIRST_UID (bl->regno),
4651 REGNO_LAST_UID (bl->regno));
4653 return 0;
4657 /* Reduce each giv of BL that we have decided to reduce. */
4659 static void
4660 loop_givs_reduce (struct loop *loop, struct iv_class *bl)
4662 struct induction *v;
4664 for (v = bl->giv; v; v = v->next_iv)
4666 struct induction *tv;
4667 if (! v->ignore && v->same == 0)
4669 int auto_inc_opt = 0;
4671 /* If the code for derived givs immediately below has already
4672 allocated a new_reg, we must keep it. */
4673 if (! v->new_reg)
4674 v->new_reg = gen_reg_rtx (v->mode);
4676 #ifdef AUTO_INC_DEC
4677 /* If the target has auto-increment addressing modes, and
4678 this is an address giv, then try to put the increment
4679 immediately after its use, so that flow can create an
4680 auto-increment addressing mode. */
4681 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4682 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4683 /* We don't handle reversed biv's because bl->biv->insn
4684 does not have a valid INSN_LUID. */
4685 && ! bl->reversed
4686 && v->always_executed && ! v->maybe_multiple
4687 && INSN_UID (v->insn) < max_uid_for_loop)
4689 /* If other giv's have been combined with this one, then
4690 this will work only if all uses of the other giv's occur
4691 before this giv's insn. This is difficult to check.
4693 We simplify this by looking for the common case where
4694 there is one DEST_REG giv, and this giv's insn is the
4695 last use of the dest_reg of that DEST_REG giv. If the
4696 increment occurs after the address giv, then we can
4697 perform the optimization. (Otherwise, the increment
4698 would have to go before other_giv, and we would not be
4699 able to combine it with the address giv to get an
4700 auto-inc address.) */
4701 if (v->combined_with)
4703 struct induction *other_giv = 0;
4705 for (tv = bl->giv; tv; tv = tv->next_iv)
4706 if (tv->same == v)
4708 if (other_giv)
4709 break;
4710 else
4711 other_giv = tv;
4713 if (! tv && other_giv
4714 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4715 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4716 == INSN_UID (v->insn))
4717 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4718 auto_inc_opt = 1;
4720 /* Check for case where increment is before the address
4721 giv. Do this test in "loop order". */
4722 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4723 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4724 || (INSN_LUID (bl->biv->insn)
4725 > INSN_LUID (loop->scan_start))))
4726 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4727 && (INSN_LUID (loop->scan_start)
4728 < INSN_LUID (bl->biv->insn))))
4729 auto_inc_opt = -1;
4730 else
4731 auto_inc_opt = 1;
4733 #ifdef HAVE_cc0
4735 rtx prev;
4737 /* We can't put an insn immediately after one setting
4738 cc0, or immediately before one using cc0. */
4739 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4740 || (auto_inc_opt == -1
4741 && (prev = prev_nonnote_insn (v->insn)) != 0
4742 && INSN_P (prev)
4743 && sets_cc0_p (PATTERN (prev))))
4744 auto_inc_opt = 0;
4746 #endif
4748 if (auto_inc_opt)
4749 v->auto_inc_opt = 1;
4751 #endif
4753 /* For each place where the biv is incremented, add an insn
4754 to increment the new, reduced reg for the giv. */
4755 for (tv = bl->biv; tv; tv = tv->next_iv)
4757 rtx insert_before;
4759 /* Skip if location is the same as a previous one. */
4760 if (tv->same)
4761 continue;
4762 if (! auto_inc_opt)
4763 insert_before = NEXT_INSN (tv->insn);
4764 else if (auto_inc_opt == 1)
4765 insert_before = NEXT_INSN (v->insn);
4766 else
4767 insert_before = v->insn;
4769 if (tv->mult_val == const1_rtx)
4770 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4771 v->new_reg, v->new_reg,
4772 0, insert_before);
4773 else /* tv->mult_val == const0_rtx */
4774 /* A multiply is acceptable here
4775 since this is presumed to be seldom executed. */
4776 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4777 v->add_val, v->new_reg,
4778 0, insert_before);
4781 /* Add code at loop start to initialize giv's reduced reg. */
4783 loop_iv_add_mult_hoist (loop,
4784 extend_value_for_giv (v, bl->initial_value),
4785 v->mult_val, v->add_val, v->new_reg);
4791 /* Check for givs whose first use is their definition and whose
4792 last use is the definition of another giv. If so, it is likely
4793 dead and should not be used to derive another giv nor to
4794 eliminate a biv. */
4796 static void
4797 loop_givs_dead_check (struct loop *loop ATTRIBUTE_UNUSED, struct iv_class *bl)
4799 struct induction *v;
4801 for (v = bl->giv; v; v = v->next_iv)
4803 if (v->ignore
4804 || (v->same && v->same->ignore))
4805 continue;
4807 if (v->giv_type == DEST_REG
4808 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4810 struct induction *v1;
4812 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4813 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4814 v->maybe_dead = 1;
4820 static void
4821 loop_givs_rescan (struct loop *loop, struct iv_class *bl, rtx *reg_map)
4823 struct induction *v;
4825 for (v = bl->giv; v; v = v->next_iv)
4827 if (v->same && v->same->ignore)
4828 v->ignore = 1;
4830 if (v->ignore)
4831 continue;
4833 /* Update expression if this was combined, in case other giv was
4834 replaced. */
4835 if (v->same)
4836 v->new_reg = replace_rtx (v->new_reg,
4837 v->same->dest_reg, v->same->new_reg);
4839 /* See if this register is known to be a pointer to something. If
4840 so, see if we can find the alignment. First see if there is a
4841 destination register that is a pointer. If so, this shares the
4842 alignment too. Next see if we can deduce anything from the
4843 computational information. If not, and this is a DEST_ADDR
4844 giv, at least we know that it's a pointer, though we don't know
4845 the alignment. */
4846 if (GET_CODE (v->new_reg) == REG
4847 && v->giv_type == DEST_REG
4848 && REG_POINTER (v->dest_reg))
4849 mark_reg_pointer (v->new_reg,
4850 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4851 else if (GET_CODE (v->new_reg) == REG
4852 && REG_POINTER (v->src_reg))
4854 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4856 if (align == 0
4857 || GET_CODE (v->add_val) != CONST_INT
4858 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4859 align = 0;
4861 mark_reg_pointer (v->new_reg, align);
4863 else if (GET_CODE (v->new_reg) == REG
4864 && GET_CODE (v->add_val) == REG
4865 && REG_POINTER (v->add_val))
4867 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4869 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4870 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4871 align = 0;
4873 mark_reg_pointer (v->new_reg, align);
4875 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4876 mark_reg_pointer (v->new_reg, 0);
4878 if (v->giv_type == DEST_ADDR)
4879 /* Store reduced reg as the address in the memref where we found
4880 this giv. */
4881 validate_change (v->insn, v->location, v->new_reg, 0);
4882 else if (v->replaceable)
4884 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4886 else
4888 rtx original_insn = v->insn;
4889 rtx note;
4891 /* Not replaceable; emit an insn to set the original giv reg from
4892 the reduced giv, same as above. */
4893 v->insn = loop_insn_emit_after (loop, 0, original_insn,
4894 gen_move_insn (v->dest_reg,
4895 v->new_reg));
4897 /* The original insn may have a REG_EQUAL note. This note is
4898 now incorrect and may result in invalid substitutions later.
4899 The original insn is dead, but may be part of a libcall
4900 sequence, which doesn't seem worth the bother of handling. */
4901 note = find_reg_note (original_insn, REG_EQUAL, NULL_RTX);
4902 if (note)
4903 remove_note (original_insn, note);
4906 /* When a loop is reversed, givs which depend on the reversed
4907 biv, and which are live outside the loop, must be set to their
4908 correct final value. This insn is only needed if the giv is
4909 not replaceable. The correct final value is the same as the
4910 value that the giv starts the reversed loop with. */
4911 if (bl->reversed && ! v->replaceable)
4912 loop_iv_add_mult_sink (loop,
4913 extend_value_for_giv (v, bl->initial_value),
4914 v->mult_val, v->add_val, v->dest_reg);
4915 else if (v->final_value)
4916 loop_insn_sink_or_swim (loop,
4917 gen_load_of_final_value (v->dest_reg,
4918 v->final_value));
4920 if (loop_dump_stream)
4922 fprintf (loop_dump_stream, "giv at %d reduced to ",
4923 INSN_UID (v->insn));
4924 print_simple_rtl (loop_dump_stream, v->new_reg);
4925 fprintf (loop_dump_stream, "\n");
4931 static int
4932 loop_giv_reduce_benefit (struct loop *loop ATTRIBUTE_UNUSED,
4933 struct iv_class *bl, struct induction *v,
4934 rtx test_reg)
4936 int add_cost;
4937 int benefit;
4939 benefit = v->benefit;
4940 PUT_MODE (test_reg, v->mode);
4941 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4942 test_reg, test_reg);
4944 /* Reduce benefit if not replaceable, since we will insert a
4945 move-insn to replace the insn that calculates this giv. Don't do
4946 this unless the giv is a user variable, since it will often be
4947 marked non-replaceable because of the duplication of the exit
4948 code outside the loop. In such a case, the copies we insert are
4949 dead and will be deleted. So they don't have a cost. Similar
4950 situations exist. */
4951 /* ??? The new final_[bg]iv_value code does a much better job of
4952 finding replaceable giv's, and hence this code may no longer be
4953 necessary. */
4954 if (! v->replaceable && ! bl->eliminable
4955 && REG_USERVAR_P (v->dest_reg))
4956 benefit -= copy_cost;
4958 /* Decrease the benefit to count the add-insns that we will insert
4959 to increment the reduced reg for the giv. ??? This can
4960 overestimate the run-time cost of the additional insns, e.g. if
4961 there are multiple basic blocks that increment the biv, but only
4962 one of these blocks is executed during each iteration. There is
4963 no good way to detect cases like this with the current structure
4964 of the loop optimizer. This code is more accurate for
4965 determining code size than run-time benefits. */
4966 benefit -= add_cost * bl->biv_count;
4968 /* Decide whether to strength-reduce this giv or to leave the code
4969 unchanged (recompute it from the biv each time it is used). This
4970 decision can be made independently for each giv. */
4972 #ifdef AUTO_INC_DEC
4973 /* Attempt to guess whether autoincrement will handle some of the
4974 new add insns; if so, increase BENEFIT (undo the subtraction of
4975 add_cost that was done above). */
4976 if (v->giv_type == DEST_ADDR
4977 /* Increasing the benefit is risky, since this is only a guess.
4978 Avoid increasing register pressure in cases where there would
4979 be no other benefit from reducing this giv. */
4980 && benefit > 0
4981 && GET_CODE (v->mult_val) == CONST_INT)
4983 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4985 if (HAVE_POST_INCREMENT
4986 && INTVAL (v->mult_val) == size)
4987 benefit += add_cost * bl->biv_count;
4988 else if (HAVE_PRE_INCREMENT
4989 && INTVAL (v->mult_val) == size)
4990 benefit += add_cost * bl->biv_count;
4991 else if (HAVE_POST_DECREMENT
4992 && -INTVAL (v->mult_val) == size)
4993 benefit += add_cost * bl->biv_count;
4994 else if (HAVE_PRE_DECREMENT
4995 && -INTVAL (v->mult_val) == size)
4996 benefit += add_cost * bl->biv_count;
4998 #endif
5000 return benefit;
5004 /* Free IV structures for LOOP. */
5006 static void
5007 loop_ivs_free (struct loop *loop)
5009 struct loop_ivs *ivs = LOOP_IVS (loop);
5010 struct iv_class *iv = ivs->list;
5012 free (ivs->regs);
5014 while (iv)
5016 struct iv_class *next = iv->next;
5017 struct induction *induction;
5018 struct induction *next_induction;
5020 for (induction = iv->biv; induction; induction = next_induction)
5022 next_induction = induction->next_iv;
5023 free (induction);
5025 for (induction = iv->giv; induction; induction = next_induction)
5027 next_induction = induction->next_iv;
5028 free (induction);
5031 free (iv);
5032 iv = next;
5037 /* Perform strength reduction and induction variable elimination.
5039 Pseudo registers created during this function will be beyond the
5040 last valid index in several tables including
5041 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5042 problem here, because the added registers cannot be givs outside of
5043 their loop, and hence will never be reconsidered. But scan_loop
5044 must check regnos to make sure they are in bounds. */
5046 static void
5047 strength_reduce (struct loop *loop, int flags)
5049 struct loop_info *loop_info = LOOP_INFO (loop);
5050 struct loop_regs *regs = LOOP_REGS (loop);
5051 struct loop_ivs *ivs = LOOP_IVS (loop);
5052 rtx p;
5053 /* Temporary list pointer for traversing ivs->list. */
5054 struct iv_class *bl;
5055 /* Ratio of extra register life span we can justify
5056 for saving an instruction. More if loop doesn't call subroutines
5057 since in that case saving an insn makes more difference
5058 and more registers are available. */
5059 /* ??? could set this to last value of threshold in move_movables */
5060 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
5061 /* Map of pseudo-register replacements. */
5062 rtx *reg_map = NULL;
5063 int reg_map_size;
5064 int unrolled_insn_copies = 0;
5065 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
5066 int insn_count = count_insns_in_loop (loop);
5068 addr_placeholder = gen_reg_rtx (Pmode);
5070 ivs->n_regs = max_reg_before_loop;
5071 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
5073 /* Find all BIVs in loop. */
5074 loop_bivs_find (loop);
5076 /* Exit if there are no bivs. */
5077 if (! ivs->list)
5079 /* Can still unroll the loop anyways, but indicate that there is no
5080 strength reduction info available. */
5081 if (flags & LOOP_UNROLL)
5082 unroll_loop (loop, insn_count, 0);
5084 loop_ivs_free (loop);
5085 return;
5088 /* Determine how BIVS are initialized by looking through pre-header
5089 extended basic block. */
5090 loop_bivs_init_find (loop);
5092 /* Look at the each biv and see if we can say anything better about its
5093 initial value from any initializing insns set up above. */
5094 loop_bivs_check (loop);
5096 /* Search the loop for general induction variables. */
5097 loop_givs_find (loop);
5099 /* Try to calculate and save the number of loop iterations. This is
5100 set to zero if the actual number can not be calculated. This must
5101 be called after all giv's have been identified, since otherwise it may
5102 fail if the iteration variable is a giv. */
5103 loop_iterations (loop);
5105 #ifdef HAVE_prefetch
5106 if (flags & LOOP_PREFETCH)
5107 emit_prefetch_instructions (loop);
5108 #endif
5110 /* Now for each giv for which we still don't know whether or not it is
5111 replaceable, check to see if it is replaceable because its final value
5112 can be calculated. This must be done after loop_iterations is called,
5113 so that final_giv_value will work correctly. */
5114 loop_givs_check (loop);
5116 /* Try to prove that the loop counter variable (if any) is always
5117 nonnegative; if so, record that fact with a REG_NONNEG note
5118 so that "decrement and branch until zero" insn can be used. */
5119 check_dbra_loop (loop, insn_count);
5121 /* Create reg_map to hold substitutions for replaceable giv regs.
5122 Some givs might have been made from biv increments, so look at
5123 ivs->reg_iv_type for a suitable size. */
5124 reg_map_size = ivs->n_regs;
5125 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
5127 /* Examine each iv class for feasibility of strength reduction/induction
5128 variable elimination. */
5130 for (bl = ivs->list; bl; bl = bl->next)
5132 struct induction *v;
5133 int benefit;
5135 /* Test whether it will be possible to eliminate this biv
5136 provided all givs are reduced. */
5137 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
5139 /* This will be true at the end, if all givs which depend on this
5140 biv have been strength reduced.
5141 We can't (currently) eliminate the biv unless this is so. */
5142 bl->all_reduced = 1;
5144 /* Check each extension dependent giv in this class to see if its
5145 root biv is safe from wrapping in the interior mode. */
5146 check_ext_dependent_givs (bl, loop_info);
5148 /* Combine all giv's for this iv_class. */
5149 combine_givs (regs, bl);
5151 for (v = bl->giv; v; v = v->next_iv)
5153 struct induction *tv;
5155 if (v->ignore || v->same)
5156 continue;
5158 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
5160 /* If an insn is not to be strength reduced, then set its ignore
5161 flag, and clear bl->all_reduced. */
5163 /* A giv that depends on a reversed biv must be reduced if it is
5164 used after the loop exit, otherwise, it would have the wrong
5165 value after the loop exit. To make it simple, just reduce all
5166 of such giv's whether or not we know they are used after the loop
5167 exit. */
5169 if (! flag_reduce_all_givs
5170 && v->lifetime * threshold * benefit < insn_count
5171 && ! bl->reversed)
5173 if (loop_dump_stream)
5174 fprintf (loop_dump_stream,
5175 "giv of insn %d not worth while, %d vs %d.\n",
5176 INSN_UID (v->insn),
5177 v->lifetime * threshold * benefit, insn_count);
5178 v->ignore = 1;
5179 bl->all_reduced = 0;
5181 else
5183 /* Check that we can increment the reduced giv without a
5184 multiply insn. If not, reject it. */
5186 for (tv = bl->biv; tv; tv = tv->next_iv)
5187 if (tv->mult_val == const1_rtx
5188 && ! product_cheap_p (tv->add_val, v->mult_val))
5190 if (loop_dump_stream)
5191 fprintf (loop_dump_stream,
5192 "giv of insn %d: would need a multiply.\n",
5193 INSN_UID (v->insn));
5194 v->ignore = 1;
5195 bl->all_reduced = 0;
5196 break;
5201 /* Check for givs whose first use is their definition and whose
5202 last use is the definition of another giv. If so, it is likely
5203 dead and should not be used to derive another giv nor to
5204 eliminate a biv. */
5205 loop_givs_dead_check (loop, bl);
5207 /* Reduce each giv that we decided to reduce. */
5208 loop_givs_reduce (loop, bl);
5210 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5211 as not reduced.
5213 For each giv register that can be reduced now: if replaceable,
5214 substitute reduced reg wherever the old giv occurs;
5215 else add new move insn "giv_reg = reduced_reg". */
5216 loop_givs_rescan (loop, bl, reg_map);
5218 /* All the givs based on the biv bl have been reduced if they
5219 merit it. */
5221 /* For each giv not marked as maybe dead that has been combined with a
5222 second giv, clear any "maybe dead" mark on that second giv.
5223 v->new_reg will either be or refer to the register of the giv it
5224 combined with.
5226 Doing this clearing avoids problems in biv elimination where
5227 a giv's new_reg is a complex value that can't be put in the
5228 insn but the giv combined with (with a reg as new_reg) is
5229 marked maybe_dead. Since the register will be used in either
5230 case, we'd prefer it be used from the simpler giv. */
5232 for (v = bl->giv; v; v = v->next_iv)
5233 if (! v->maybe_dead && v->same)
5234 v->same->maybe_dead = 0;
5236 /* Try to eliminate the biv, if it is a candidate.
5237 This won't work if ! bl->all_reduced,
5238 since the givs we planned to use might not have been reduced.
5240 We have to be careful that we didn't initially think we could
5241 eliminate this biv because of a giv that we now think may be
5242 dead and shouldn't be used as a biv replacement.
5244 Also, there is the possibility that we may have a giv that looks
5245 like it can be used to eliminate a biv, but the resulting insn
5246 isn't valid. This can happen, for example, on the 88k, where a
5247 JUMP_INSN can compare a register only with zero. Attempts to
5248 replace it with a compare with a constant will fail.
5250 Note that in cases where this call fails, we may have replaced some
5251 of the occurrences of the biv with a giv, but no harm was done in
5252 doing so in the rare cases where it can occur. */
5254 if (bl->all_reduced == 1 && bl->eliminable
5255 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5257 /* ?? If we created a new test to bypass the loop entirely,
5258 or otherwise drop straight in, based on this test, then
5259 we might want to rewrite it also. This way some later
5260 pass has more hope of removing the initialization of this
5261 biv entirely. */
5263 /* If final_value != 0, then the biv may be used after loop end
5264 and we must emit an insn to set it just in case.
5266 Reversed bivs already have an insn after the loop setting their
5267 value, so we don't need another one. We can't calculate the
5268 proper final value for such a biv here anyways. */
5269 if (bl->final_value && ! bl->reversed)
5270 loop_insn_sink_or_swim (loop,
5271 gen_load_of_final_value (bl->biv->dest_reg,
5272 bl->final_value));
5274 if (loop_dump_stream)
5275 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5276 bl->regno);
5278 /* See above note wrt final_value. But since we couldn't eliminate
5279 the biv, we must set the value after the loop instead of before. */
5280 else if (bl->final_value && ! bl->reversed)
5281 loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
5282 bl->final_value));
5285 /* Go through all the instructions in the loop, making all the
5286 register substitutions scheduled in REG_MAP. */
5288 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
5289 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5290 || GET_CODE (p) == CALL_INSN)
5292 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5293 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5294 INSN_CODE (p) = -1;
5297 if (loop_info->n_iterations > 0)
5299 /* When we completely unroll a loop we will likely not need the increment
5300 of the loop BIV and we will not need the conditional branch at the
5301 end of the loop. */
5302 unrolled_insn_copies = insn_count - 2;
5304 #ifdef HAVE_cc0
5305 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5306 need the comparison before the conditional branch at the end of the
5307 loop. */
5308 unrolled_insn_copies -= 1;
5309 #endif
5311 /* We'll need one copy for each loop iteration. */
5312 unrolled_insn_copies *= loop_info->n_iterations;
5314 /* A little slop to account for the ability to remove initialization
5315 code, better CSE, and other secondary benefits of completely
5316 unrolling some loops. */
5317 unrolled_insn_copies -= 1;
5319 /* Clamp the value. */
5320 if (unrolled_insn_copies < 0)
5321 unrolled_insn_copies = 0;
5324 /* Unroll loops from within strength reduction so that we can use the
5325 induction variable information that strength_reduce has already
5326 collected. Always unroll loops that would be as small or smaller
5327 unrolled than when rolled. */
5328 if ((flags & LOOP_UNROLL)
5329 || ((flags & LOOP_AUTO_UNROLL)
5330 && loop_info->n_iterations > 0
5331 && unrolled_insn_copies <= insn_count))
5332 unroll_loop (loop, insn_count, 1);
5334 #ifdef HAVE_doloop_end
5335 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
5336 doloop_optimize (loop);
5337 #endif /* HAVE_doloop_end */
5339 /* In case number of iterations is known, drop branch prediction note
5340 in the branch. Do that only in second loop pass, as loop unrolling
5341 may change the number of iterations performed. */
5342 if (flags & LOOP_BCT)
5344 unsigned HOST_WIDE_INT n
5345 = loop_info->n_iterations / loop_info->unroll_number;
5346 if (n > 1)
5347 predict_insn (prev_nonnote_insn (loop->end), PRED_LOOP_ITERATIONS,
5348 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
5351 if (loop_dump_stream)
5352 fprintf (loop_dump_stream, "\n");
5354 loop_ivs_free (loop);
5355 if (reg_map)
5356 free (reg_map);
5359 /*Record all basic induction variables calculated in the insn. */
5360 static rtx
5361 check_insn_for_bivs (struct loop *loop, rtx p, int not_every_iteration,
5362 int maybe_multiple)
5364 struct loop_ivs *ivs = LOOP_IVS (loop);
5365 rtx set;
5366 rtx dest_reg;
5367 rtx inc_val;
5368 rtx mult_val;
5369 rtx *location;
5371 if (GET_CODE (p) == INSN
5372 && (set = single_set (p))
5373 && GET_CODE (SET_DEST (set)) == REG)
5375 dest_reg = SET_DEST (set);
5376 if (REGNO (dest_reg) < max_reg_before_loop
5377 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5378 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5380 if (basic_induction_var (loop, SET_SRC (set),
5381 GET_MODE (SET_SRC (set)),
5382 dest_reg, p, &inc_val, &mult_val,
5383 &location))
5385 /* It is a possible basic induction variable.
5386 Create and initialize an induction structure for it. */
5388 struct induction *v
5389 = (struct induction *) xmalloc (sizeof (struct induction));
5391 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
5392 not_every_iteration, maybe_multiple);
5393 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
5395 else if (REGNO (dest_reg) < ivs->n_regs)
5396 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5399 return p;
5402 /* Record all givs calculated in the insn.
5403 A register is a giv if: it is only set once, it is a function of a
5404 biv and a constant (or invariant), and it is not a biv. */
5405 static rtx
5406 check_insn_for_givs (struct loop *loop, rtx p, int not_every_iteration,
5407 int maybe_multiple)
5409 struct loop_regs *regs = LOOP_REGS (loop);
5411 rtx set;
5412 /* Look for a general induction variable in a register. */
5413 if (GET_CODE (p) == INSN
5414 && (set = single_set (p))
5415 && GET_CODE (SET_DEST (set)) == REG
5416 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
5418 rtx src_reg;
5419 rtx dest_reg;
5420 rtx add_val;
5421 rtx mult_val;
5422 rtx ext_val;
5423 int benefit;
5424 rtx regnote = 0;
5425 rtx last_consec_insn;
5427 dest_reg = SET_DEST (set);
5428 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5429 return p;
5431 if (/* SET_SRC is a giv. */
5432 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5433 &mult_val, &ext_val, 0, &benefit, VOIDmode)
5434 /* Equivalent expression is a giv. */
5435 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5436 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5437 &add_val, &mult_val, &ext_val, 0,
5438 &benefit, VOIDmode)))
5439 /* Don't try to handle any regs made by loop optimization.
5440 We have nothing on them in regno_first_uid, etc. */
5441 && REGNO (dest_reg) < max_reg_before_loop
5442 /* Don't recognize a BASIC_INDUCT_VAR here. */
5443 && dest_reg != src_reg
5444 /* This must be the only place where the register is set. */
5445 && (regs->array[REGNO (dest_reg)].n_times_set == 1
5446 /* or all sets must be consecutive and make a giv. */
5447 || (benefit = consec_sets_giv (loop, benefit, p,
5448 src_reg, dest_reg,
5449 &add_val, &mult_val, &ext_val,
5450 &last_consec_insn))))
5452 struct induction *v
5453 = (struct induction *) xmalloc (sizeof (struct induction));
5455 /* If this is a library call, increase benefit. */
5456 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5457 benefit += libcall_benefit (p);
5459 /* Skip the consecutive insns, if there are any. */
5460 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
5461 p = last_consec_insn;
5463 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5464 ext_val, benefit, DEST_REG, not_every_iteration,
5465 maybe_multiple, (rtx*) 0);
5470 /* Look for givs which are memory addresses. */
5471 if (GET_CODE (p) == INSN)
5472 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5473 maybe_multiple);
5475 /* Update the status of whether giv can derive other givs. This can
5476 change when we pass a label or an insn that updates a biv. */
5477 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5478 || GET_CODE (p) == CODE_LABEL)
5479 update_giv_derive (loop, p);
5480 return p;
5483 /* Return 1 if X is a valid source for an initial value (or as value being
5484 compared against in an initial test).
5486 X must be either a register or constant and must not be clobbered between
5487 the current insn and the start of the loop.
5489 INSN is the insn containing X. */
5491 static int
5492 valid_initial_value_p (rtx x, rtx insn, int call_seen, rtx loop_start)
5494 if (CONSTANT_P (x))
5495 return 1;
5497 /* Only consider pseudos we know about initialized in insns whose luids
5498 we know. */
5499 if (GET_CODE (x) != REG
5500 || REGNO (x) >= max_reg_before_loop)
5501 return 0;
5503 /* Don't use call-clobbered registers across a call which clobbers it. On
5504 some machines, don't use any hard registers at all. */
5505 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5506 && (SMALL_REGISTER_CLASSES
5507 || (call_used_regs[REGNO (x)] && call_seen)))
5508 return 0;
5510 /* Don't use registers that have been clobbered before the start of the
5511 loop. */
5512 if (reg_set_between_p (x, insn, loop_start))
5513 return 0;
5515 return 1;
5518 /* Scan X for memory refs and check each memory address
5519 as a possible giv. INSN is the insn whose pattern X comes from.
5520 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5521 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5522 more than once in each loop iteration. */
5524 static void
5525 find_mem_givs (const struct loop *loop, rtx x, rtx insn,
5526 int not_every_iteration, int maybe_multiple)
5528 int i, j;
5529 enum rtx_code code;
5530 const char *fmt;
5532 if (x == 0)
5533 return;
5535 code = GET_CODE (x);
5536 switch (code)
5538 case REG:
5539 case CONST_INT:
5540 case CONST:
5541 case CONST_DOUBLE:
5542 case SYMBOL_REF:
5543 case LABEL_REF:
5544 case PC:
5545 case CC0:
5546 case ADDR_VEC:
5547 case ADDR_DIFF_VEC:
5548 case USE:
5549 case CLOBBER:
5550 return;
5552 case MEM:
5554 rtx src_reg;
5555 rtx add_val;
5556 rtx mult_val;
5557 rtx ext_val;
5558 int benefit;
5560 /* This code used to disable creating GIVs with mult_val == 1 and
5561 add_val == 0. However, this leads to lost optimizations when
5562 it comes time to combine a set of related DEST_ADDR GIVs, since
5563 this one would not be seen. */
5565 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5566 &mult_val, &ext_val, 1, &benefit,
5567 GET_MODE (x)))
5569 /* Found one; record it. */
5570 struct induction *v
5571 = (struct induction *) xmalloc (sizeof (struct induction));
5573 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5574 add_val, ext_val, benefit, DEST_ADDR,
5575 not_every_iteration, maybe_multiple, &XEXP (x, 0));
5577 v->mem = x;
5580 return;
5582 default:
5583 break;
5586 /* Recursively scan the subexpressions for other mem refs. */
5588 fmt = GET_RTX_FORMAT (code);
5589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5590 if (fmt[i] == 'e')
5591 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5592 maybe_multiple);
5593 else if (fmt[i] == 'E')
5594 for (j = 0; j < XVECLEN (x, i); j++)
5595 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5596 maybe_multiple);
5599 /* Fill in the data about one biv update.
5600 V is the `struct induction' in which we record the biv. (It is
5601 allocated by the caller, with alloca.)
5602 INSN is the insn that sets it.
5603 DEST_REG is the biv's reg.
5605 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5606 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5607 being set to INC_VAL.
5609 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5610 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5611 can be executed more than once per iteration. If MAYBE_MULTIPLE
5612 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5613 executed exactly once per iteration. */
5615 static void
5616 record_biv (struct loop *loop, struct induction *v, rtx insn, rtx dest_reg,
5617 rtx inc_val, rtx mult_val, rtx *location,
5618 int not_every_iteration, int maybe_multiple)
5620 struct loop_ivs *ivs = LOOP_IVS (loop);
5621 struct iv_class *bl;
5623 v->insn = insn;
5624 v->src_reg = dest_reg;
5625 v->dest_reg = dest_reg;
5626 v->mult_val = mult_val;
5627 v->add_val = inc_val;
5628 v->ext_dependent = NULL_RTX;
5629 v->location = location;
5630 v->mode = GET_MODE (dest_reg);
5631 v->always_computable = ! not_every_iteration;
5632 v->always_executed = ! not_every_iteration;
5633 v->maybe_multiple = maybe_multiple;
5634 v->same = 0;
5636 /* Add this to the reg's iv_class, creating a class
5637 if this is the first incrementation of the reg. */
5639 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
5640 if (bl == 0)
5642 /* Create and initialize new iv_class. */
5644 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
5646 bl->regno = REGNO (dest_reg);
5647 bl->biv = 0;
5648 bl->giv = 0;
5649 bl->biv_count = 0;
5650 bl->giv_count = 0;
5652 /* Set initial value to the reg itself. */
5653 bl->initial_value = dest_reg;
5654 bl->final_value = 0;
5655 /* We haven't seen the initializing insn yet */
5656 bl->init_insn = 0;
5657 bl->init_set = 0;
5658 bl->initial_test = 0;
5659 bl->incremented = 0;
5660 bl->eliminable = 0;
5661 bl->nonneg = 0;
5662 bl->reversed = 0;
5663 bl->total_benefit = 0;
5665 /* Add this class to ivs->list. */
5666 bl->next = ivs->list;
5667 ivs->list = bl;
5669 /* Put it in the array of biv register classes. */
5670 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
5672 else
5674 /* Check if location is the same as a previous one. */
5675 struct induction *induction;
5676 for (induction = bl->biv; induction; induction = induction->next_iv)
5677 if (location == induction->location)
5679 v->same = induction;
5680 break;
5684 /* Update IV_CLASS entry for this biv. */
5685 v->next_iv = bl->biv;
5686 bl->biv = v;
5687 bl->biv_count++;
5688 if (mult_val == const1_rtx)
5689 bl->incremented = 1;
5691 if (loop_dump_stream)
5692 loop_biv_dump (v, loop_dump_stream, 0);
5695 /* Fill in the data about one giv.
5696 V is the `struct induction' in which we record the giv. (It is
5697 allocated by the caller, with alloca.)
5698 INSN is the insn that sets it.
5699 BENEFIT estimates the savings from deleting this insn.
5700 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5701 into a register or is used as a memory address.
5703 SRC_REG is the biv reg which the giv is computed from.
5704 DEST_REG is the giv's reg (if the giv is stored in a reg).
5705 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5706 LOCATION points to the place where this giv's value appears in INSN. */
5708 static void
5709 record_giv (const struct loop *loop, struct induction *v, rtx insn,
5710 rtx src_reg, rtx dest_reg, rtx mult_val, rtx add_val,
5711 rtx ext_val, int benefit, enum g_types type,
5712 int not_every_iteration, int maybe_multiple, rtx *location)
5714 struct loop_ivs *ivs = LOOP_IVS (loop);
5715 struct induction *b;
5716 struct iv_class *bl;
5717 rtx set = single_set (insn);
5718 rtx temp;
5720 /* Attempt to prove constantness of the values. Don't let simplify_rtx
5721 undo the MULT canonicalization that we performed earlier. */
5722 temp = simplify_rtx (add_val);
5723 if (temp
5724 && ! (GET_CODE (add_val) == MULT
5725 && GET_CODE (temp) == ASHIFT))
5726 add_val = temp;
5728 v->insn = insn;
5729 v->src_reg = src_reg;
5730 v->giv_type = type;
5731 v->dest_reg = dest_reg;
5732 v->mult_val = mult_val;
5733 v->add_val = add_val;
5734 v->ext_dependent = ext_val;
5735 v->benefit = benefit;
5736 v->location = location;
5737 v->cant_derive = 0;
5738 v->combined_with = 0;
5739 v->maybe_multiple = maybe_multiple;
5740 v->maybe_dead = 0;
5741 v->derive_adjustment = 0;
5742 v->same = 0;
5743 v->ignore = 0;
5744 v->new_reg = 0;
5745 v->final_value = 0;
5746 v->same_insn = 0;
5747 v->auto_inc_opt = 0;
5748 v->unrolled = 0;
5749 v->shared = 0;
5751 /* The v->always_computable field is used in update_giv_derive, to
5752 determine whether a giv can be used to derive another giv. For a
5753 DEST_REG giv, INSN computes a new value for the giv, so its value
5754 isn't computable if INSN insn't executed every iteration.
5755 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5756 it does not compute a new value. Hence the value is always computable
5757 regardless of whether INSN is executed each iteration. */
5759 if (type == DEST_ADDR)
5760 v->always_computable = 1;
5761 else
5762 v->always_computable = ! not_every_iteration;
5764 v->always_executed = ! not_every_iteration;
5766 if (type == DEST_ADDR)
5768 v->mode = GET_MODE (*location);
5769 v->lifetime = 1;
5771 else /* type == DEST_REG */
5773 v->mode = GET_MODE (SET_DEST (set));
5775 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
5777 /* If the lifetime is zero, it means that this register is
5778 really a dead store. So mark this as a giv that can be
5779 ignored. This will not prevent the biv from being eliminated. */
5780 if (v->lifetime == 0)
5781 v->ignore = 1;
5783 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
5784 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
5787 /* Add the giv to the class of givs computed from one biv. */
5789 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
5790 if (bl)
5792 v->next_iv = bl->giv;
5793 bl->giv = v;
5794 /* Don't count DEST_ADDR. This is supposed to count the number of
5795 insns that calculate givs. */
5796 if (type == DEST_REG)
5797 bl->giv_count++;
5798 bl->total_benefit += benefit;
5800 else
5801 /* Fatal error, biv missing for this giv? */
5802 abort ();
5804 if (type == DEST_ADDR)
5806 v->replaceable = 1;
5807 v->not_replaceable = 0;
5809 else
5811 /* The giv can be replaced outright by the reduced register only if all
5812 of the following conditions are true:
5813 - the insn that sets the giv is always executed on any iteration
5814 on which the giv is used at all
5815 (there are two ways to deduce this:
5816 either the insn is executed on every iteration,
5817 or all uses follow that insn in the same basic block),
5818 - the giv is not used outside the loop
5819 - no assignments to the biv occur during the giv's lifetime. */
5821 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5822 /* Previous line always fails if INSN was moved by loop opt. */
5823 && REGNO_LAST_LUID (REGNO (dest_reg))
5824 < INSN_LUID (loop->end)
5825 && (! not_every_iteration
5826 || last_use_this_basic_block (dest_reg, insn)))
5828 /* Now check that there are no assignments to the biv within the
5829 giv's lifetime. This requires two separate checks. */
5831 /* Check each biv update, and fail if any are between the first
5832 and last use of the giv.
5834 If this loop contains an inner loop that was unrolled, then
5835 the insn modifying the biv may have been emitted by the loop
5836 unrolling code, and hence does not have a valid luid. Just
5837 mark the biv as not replaceable in this case. It is not very
5838 useful as a biv, because it is used in two different loops.
5839 It is very unlikely that we would be able to optimize the giv
5840 using this biv anyways. */
5842 v->replaceable = 1;
5843 v->not_replaceable = 0;
5844 for (b = bl->biv; b; b = b->next_iv)
5846 if (INSN_UID (b->insn) >= max_uid_for_loop
5847 || ((INSN_LUID (b->insn)
5848 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5849 && (INSN_LUID (b->insn)
5850 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5852 v->replaceable = 0;
5853 v->not_replaceable = 1;
5854 break;
5858 /* If there are any backwards branches that go from after the
5859 biv update to before it, then this giv is not replaceable. */
5860 if (v->replaceable)
5861 for (b = bl->biv; b; b = b->next_iv)
5862 if (back_branch_in_range_p (loop, b->insn))
5864 v->replaceable = 0;
5865 v->not_replaceable = 1;
5866 break;
5869 else
5871 /* May still be replaceable, we don't have enough info here to
5872 decide. */
5873 v->replaceable = 0;
5874 v->not_replaceable = 0;
5878 /* Record whether the add_val contains a const_int, for later use by
5879 combine_givs. */
5881 rtx tem = add_val;
5883 v->no_const_addval = 1;
5884 if (tem == const0_rtx)
5886 else if (CONSTANT_P (add_val))
5887 v->no_const_addval = 0;
5888 if (GET_CODE (tem) == PLUS)
5890 while (1)
5892 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5893 tem = XEXP (tem, 0);
5894 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5895 tem = XEXP (tem, 1);
5896 else
5897 break;
5899 if (CONSTANT_P (XEXP (tem, 1)))
5900 v->no_const_addval = 0;
5904 if (loop_dump_stream)
5905 loop_giv_dump (v, loop_dump_stream, 0);
5908 /* All this does is determine whether a giv can be made replaceable because
5909 its final value can be calculated. This code can not be part of record_giv
5910 above, because final_giv_value requires that the number of loop iterations
5911 be known, and that can not be accurately calculated until after all givs
5912 have been identified. */
5914 static void
5915 check_final_value (const struct loop *loop, struct induction *v)
5917 rtx final_value = 0;
5919 /* DEST_ADDR givs will never reach here, because they are always marked
5920 replaceable above in record_giv. */
5922 /* The giv can be replaced outright by the reduced register only if all
5923 of the following conditions are true:
5924 - the insn that sets the giv is always executed on any iteration
5925 on which the giv is used at all
5926 (there are two ways to deduce this:
5927 either the insn is executed on every iteration,
5928 or all uses follow that insn in the same basic block),
5929 - its final value can be calculated (this condition is different
5930 than the one above in record_giv)
5931 - it's not used before the it's set
5932 - no assignments to the biv occur during the giv's lifetime. */
5934 #if 0
5935 /* This is only called now when replaceable is known to be false. */
5936 /* Clear replaceable, so that it won't confuse final_giv_value. */
5937 v->replaceable = 0;
5938 #endif
5940 if ((final_value = final_giv_value (loop, v))
5941 && (v->always_executed
5942 || last_use_this_basic_block (v->dest_reg, v->insn)))
5944 int biv_increment_seen = 0, before_giv_insn = 0;
5945 rtx p = v->insn;
5946 rtx last_giv_use;
5948 v->replaceable = 1;
5949 v->not_replaceable = 0;
5951 /* When trying to determine whether or not a biv increment occurs
5952 during the lifetime of the giv, we can ignore uses of the variable
5953 outside the loop because final_value is true. Hence we can not
5954 use regno_last_uid and regno_first_uid as above in record_giv. */
5956 /* Search the loop to determine whether any assignments to the
5957 biv occur during the giv's lifetime. Start with the insn
5958 that sets the giv, and search around the loop until we come
5959 back to that insn again.
5961 Also fail if there is a jump within the giv's lifetime that jumps
5962 to somewhere outside the lifetime but still within the loop. This
5963 catches spaghetti code where the execution order is not linear, and
5964 hence the above test fails. Here we assume that the giv lifetime
5965 does not extend from one iteration of the loop to the next, so as
5966 to make the test easier. Since the lifetime isn't known yet,
5967 this requires two loops. See also record_giv above. */
5969 last_giv_use = v->insn;
5971 while (1)
5973 p = NEXT_INSN (p);
5974 if (p == loop->end)
5976 before_giv_insn = 1;
5977 p = NEXT_INSN (loop->start);
5979 if (p == v->insn)
5980 break;
5982 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5983 || GET_CODE (p) == CALL_INSN)
5985 /* It is possible for the BIV increment to use the GIV if we
5986 have a cycle. Thus we must be sure to check each insn for
5987 both BIV and GIV uses, and we must check for BIV uses
5988 first. */
5990 if (! biv_increment_seen
5991 && reg_set_p (v->src_reg, PATTERN (p)))
5992 biv_increment_seen = 1;
5994 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5996 if (biv_increment_seen || before_giv_insn)
5998 v->replaceable = 0;
5999 v->not_replaceable = 1;
6000 break;
6002 last_giv_use = p;
6007 /* Now that the lifetime of the giv is known, check for branches
6008 from within the lifetime to outside the lifetime if it is still
6009 replaceable. */
6011 if (v->replaceable)
6013 p = v->insn;
6014 while (1)
6016 p = NEXT_INSN (p);
6017 if (p == loop->end)
6018 p = NEXT_INSN (loop->start);
6019 if (p == last_giv_use)
6020 break;
6022 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
6023 && LABEL_NAME (JUMP_LABEL (p))
6024 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
6025 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
6026 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
6027 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
6029 v->replaceable = 0;
6030 v->not_replaceable = 1;
6032 if (loop_dump_stream)
6033 fprintf (loop_dump_stream,
6034 "Found branch outside giv lifetime.\n");
6036 break;
6041 /* If it is replaceable, then save the final value. */
6042 if (v->replaceable)
6043 v->final_value = final_value;
6046 if (loop_dump_stream && v->replaceable)
6047 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
6048 INSN_UID (v->insn), REGNO (v->dest_reg));
6051 /* Update the status of whether a giv can derive other givs.
6053 We need to do something special if there is or may be an update to the biv
6054 between the time the giv is defined and the time it is used to derive
6055 another giv.
6057 In addition, a giv that is only conditionally set is not allowed to
6058 derive another giv once a label has been passed.
6060 The cases we look at are when a label or an update to a biv is passed. */
6062 static void
6063 update_giv_derive (const struct loop *loop, rtx p)
6065 struct loop_ivs *ivs = LOOP_IVS (loop);
6066 struct iv_class *bl;
6067 struct induction *biv, *giv;
6068 rtx tem;
6069 int dummy;
6071 /* Search all IV classes, then all bivs, and finally all givs.
6073 There are three cases we are concerned with. First we have the situation
6074 of a giv that is only updated conditionally. In that case, it may not
6075 derive any givs after a label is passed.
6077 The second case is when a biv update occurs, or may occur, after the
6078 definition of a giv. For certain biv updates (see below) that are
6079 known to occur between the giv definition and use, we can adjust the
6080 giv definition. For others, or when the biv update is conditional,
6081 we must prevent the giv from deriving any other givs. There are two
6082 sub-cases within this case.
6084 If this is a label, we are concerned with any biv update that is done
6085 conditionally, since it may be done after the giv is defined followed by
6086 a branch here (actually, we need to pass both a jump and a label, but
6087 this extra tracking doesn't seem worth it).
6089 If this is a jump, we are concerned about any biv update that may be
6090 executed multiple times. We are actually only concerned about
6091 backward jumps, but it is probably not worth performing the test
6092 on the jump again here.
6094 If this is a biv update, we must adjust the giv status to show that a
6095 subsequent biv update was performed. If this adjustment cannot be done,
6096 the giv cannot derive further givs. */
6098 for (bl = ivs->list; bl; bl = bl->next)
6099 for (biv = bl->biv; biv; biv = biv->next_iv)
6100 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
6101 || biv->insn == p)
6103 for (giv = bl->giv; giv; giv = giv->next_iv)
6105 /* If cant_derive is already true, there is no point in
6106 checking all of these conditions again. */
6107 if (giv->cant_derive)
6108 continue;
6110 /* If this giv is conditionally set and we have passed a label,
6111 it cannot derive anything. */
6112 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
6113 giv->cant_derive = 1;
6115 /* Skip givs that have mult_val == 0, since
6116 they are really invariants. Also skip those that are
6117 replaceable, since we know their lifetime doesn't contain
6118 any biv update. */
6119 else if (giv->mult_val == const0_rtx || giv->replaceable)
6120 continue;
6122 /* The only way we can allow this giv to derive another
6123 is if this is a biv increment and we can form the product
6124 of biv->add_val and giv->mult_val. In this case, we will
6125 be able to compute a compensation. */
6126 else if (biv->insn == p)
6128 rtx ext_val_dummy;
6130 tem = 0;
6131 if (biv->mult_val == const1_rtx)
6132 tem = simplify_giv_expr (loop,
6133 gen_rtx_MULT (giv->mode,
6134 biv->add_val,
6135 giv->mult_val),
6136 &ext_val_dummy, &dummy);
6138 if (tem && giv->derive_adjustment)
6139 tem = simplify_giv_expr
6140 (loop,
6141 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
6142 &ext_val_dummy, &dummy);
6144 if (tem)
6145 giv->derive_adjustment = tem;
6146 else
6147 giv->cant_derive = 1;
6149 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6150 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6151 giv->cant_derive = 1;
6156 /* Check whether an insn is an increment legitimate for a basic induction var.
6157 X is the source of insn P, or a part of it.
6158 MODE is the mode in which X should be interpreted.
6160 DEST_REG is the putative biv, also the destination of the insn.
6161 We accept patterns of these forms:
6162 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6163 REG = INVARIANT + REG
6165 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6166 store the additive term into *INC_VAL, and store the place where
6167 we found the additive term into *LOCATION.
6169 If X is an assignment of an invariant into DEST_REG, we set
6170 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6172 We also want to detect a BIV when it corresponds to a variable
6173 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6174 of the variable may be a PLUS that adds a SUBREG of that variable to
6175 an invariant and then sign- or zero-extends the result of the PLUS
6176 into the variable.
6178 Most GIVs in such cases will be in the promoted mode, since that is the
6179 probably the natural computation mode (and almost certainly the mode
6180 used for addresses) on the machine. So we view the pseudo-reg containing
6181 the variable as the BIV, as if it were simply incremented.
6183 Note that treating the entire pseudo as a BIV will result in making
6184 simple increments to any GIVs based on it. However, if the variable
6185 overflows in its declared mode but not its promoted mode, the result will
6186 be incorrect. This is acceptable if the variable is signed, since
6187 overflows in such cases are undefined, but not if it is unsigned, since
6188 those overflows are defined. So we only check for SIGN_EXTEND and
6189 not ZERO_EXTEND.
6191 If we cannot find a biv, we return 0. */
6193 static int
6194 basic_induction_var (const struct loop *loop, rtx x, enum machine_mode mode,
6195 rtx dest_reg, rtx p, rtx *inc_val, rtx *mult_val,
6196 rtx **location)
6198 enum rtx_code code;
6199 rtx *argp, arg;
6200 rtx insn, set = 0;
6202 code = GET_CODE (x);
6203 *location = NULL;
6204 switch (code)
6206 case PLUS:
6207 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6208 || (GET_CODE (XEXP (x, 0)) == SUBREG
6209 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6210 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6212 argp = &XEXP (x, 1);
6214 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6215 || (GET_CODE (XEXP (x, 1)) == SUBREG
6216 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6217 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6219 argp = &XEXP (x, 0);
6221 else
6222 return 0;
6224 arg = *argp;
6225 if (loop_invariant_p (loop, arg) != 1)
6226 return 0;
6228 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6229 *mult_val = const1_rtx;
6230 *location = argp;
6231 return 1;
6233 case SUBREG:
6234 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6235 handle addition of promoted variables.
6236 ??? The comment at the start of this function is wrong: promoted
6237 variable increments don't look like it says they do. */
6238 return basic_induction_var (loop, SUBREG_REG (x),
6239 GET_MODE (SUBREG_REG (x)),
6240 dest_reg, p, inc_val, mult_val, location);
6242 case REG:
6243 /* If this register is assigned in a previous insn, look at its
6244 source, but don't go outside the loop or past a label. */
6246 /* If this sets a register to itself, we would repeat any previous
6247 biv increment if we applied this strategy blindly. */
6248 if (rtx_equal_p (dest_reg, x))
6249 return 0;
6251 insn = p;
6252 while (1)
6254 rtx dest;
6257 insn = PREV_INSN (insn);
6259 while (insn && GET_CODE (insn) == NOTE
6260 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6262 if (!insn)
6263 break;
6264 set = single_set (insn);
6265 if (set == 0)
6266 break;
6267 dest = SET_DEST (set);
6268 if (dest == x
6269 || (GET_CODE (dest) == SUBREG
6270 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
6271 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
6272 && SUBREG_REG (dest) == x))
6273 return basic_induction_var (loop, SET_SRC (set),
6274 (GET_MODE (SET_SRC (set)) == VOIDmode
6275 ? GET_MODE (x)
6276 : GET_MODE (SET_SRC (set))),
6277 dest_reg, insn,
6278 inc_val, mult_val, location);
6280 while (GET_CODE (dest) == SIGN_EXTRACT
6281 || GET_CODE (dest) == ZERO_EXTRACT
6282 || GET_CODE (dest) == SUBREG
6283 || GET_CODE (dest) == STRICT_LOW_PART)
6284 dest = XEXP (dest, 0);
6285 if (dest == x)
6286 break;
6288 /* Fall through. */
6290 /* Can accept constant setting of biv only when inside inner most loop.
6291 Otherwise, a biv of an inner loop may be incorrectly recognized
6292 as a biv of the outer loop,
6293 causing code to be moved INTO the inner loop. */
6294 case MEM:
6295 if (loop_invariant_p (loop, x) != 1)
6296 return 0;
6297 case CONST_INT:
6298 case SYMBOL_REF:
6299 case CONST:
6300 /* convert_modes aborts if we try to convert to or from CCmode, so just
6301 exclude that case. It is very unlikely that a condition code value
6302 would be a useful iterator anyways. convert_modes aborts if we try to
6303 convert a float mode to non-float or vice versa too. */
6304 if (loop->level == 1
6305 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
6306 && GET_MODE_CLASS (mode) != MODE_CC)
6308 /* Possible bug here? Perhaps we don't know the mode of X. */
6309 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6310 *mult_val = const0_rtx;
6311 return 1;
6313 else
6314 return 0;
6316 case SIGN_EXTEND:
6317 /* Ignore this BIV if signed arithmetic overflow is defined. */
6318 if (flag_wrapv)
6319 return 0;
6320 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6321 dest_reg, p, inc_val, mult_val, location);
6323 case ASHIFTRT:
6324 /* Similar, since this can be a sign extension. */
6325 for (insn = PREV_INSN (p);
6326 (insn && GET_CODE (insn) == NOTE
6327 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6328 insn = PREV_INSN (insn))
6331 if (insn)
6332 set = single_set (insn);
6334 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6335 && set && SET_DEST (set) == XEXP (x, 0)
6336 && GET_CODE (XEXP (x, 1)) == CONST_INT
6337 && INTVAL (XEXP (x, 1)) >= 0
6338 && GET_CODE (SET_SRC (set)) == ASHIFT
6339 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6340 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6341 GET_MODE (XEXP (x, 0)),
6342 dest_reg, insn, inc_val, mult_val,
6343 location);
6344 return 0;
6346 default:
6347 return 0;
6351 /* A general induction variable (giv) is any quantity that is a linear
6352 function of a basic induction variable,
6353 i.e. giv = biv * mult_val + add_val.
6354 The coefficients can be any loop invariant quantity.
6355 A giv need not be computed directly from the biv;
6356 it can be computed by way of other givs. */
6358 /* Determine whether X computes a giv.
6359 If it does, return a nonzero value
6360 which is the benefit from eliminating the computation of X;
6361 set *SRC_REG to the register of the biv that it is computed from;
6362 set *ADD_VAL and *MULT_VAL to the coefficients,
6363 such that the value of X is biv * mult + add; */
6365 static int
6366 general_induction_var (const struct loop *loop, rtx x, rtx *src_reg,
6367 rtx *add_val, rtx *mult_val, rtx *ext_val,
6368 int is_addr, int *pbenefit,
6369 enum machine_mode addr_mode)
6371 struct loop_ivs *ivs = LOOP_IVS (loop);
6372 rtx orig_x = x;
6374 /* If this is an invariant, forget it, it isn't a giv. */
6375 if (loop_invariant_p (loop, x) == 1)
6376 return 0;
6378 *pbenefit = 0;
6379 *ext_val = NULL_RTX;
6380 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
6381 if (x == 0)
6382 return 0;
6384 switch (GET_CODE (x))
6386 case USE:
6387 case CONST_INT:
6388 /* Since this is now an invariant and wasn't before, it must be a giv
6389 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6390 with. */
6391 *src_reg = ivs->list->biv->dest_reg;
6392 *mult_val = const0_rtx;
6393 *add_val = x;
6394 break;
6396 case REG:
6397 /* This is equivalent to a BIV. */
6398 *src_reg = x;
6399 *mult_val = const1_rtx;
6400 *add_val = const0_rtx;
6401 break;
6403 case PLUS:
6404 /* Either (plus (biv) (invar)) or
6405 (plus (mult (biv) (invar_1)) (invar_2)). */
6406 if (GET_CODE (XEXP (x, 0)) == MULT)
6408 *src_reg = XEXP (XEXP (x, 0), 0);
6409 *mult_val = XEXP (XEXP (x, 0), 1);
6411 else
6413 *src_reg = XEXP (x, 0);
6414 *mult_val = const1_rtx;
6416 *add_val = XEXP (x, 1);
6417 break;
6419 case MULT:
6420 /* ADD_VAL is zero. */
6421 *src_reg = XEXP (x, 0);
6422 *mult_val = XEXP (x, 1);
6423 *add_val = const0_rtx;
6424 break;
6426 default:
6427 abort ();
6430 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6431 unless they are CONST_INT). */
6432 if (GET_CODE (*add_val) == USE)
6433 *add_val = XEXP (*add_val, 0);
6434 if (GET_CODE (*mult_val) == USE)
6435 *mult_val = XEXP (*mult_val, 0);
6437 if (is_addr)
6438 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6439 else
6440 *pbenefit += rtx_cost (orig_x, SET);
6442 /* Always return true if this is a giv so it will be detected as such,
6443 even if the benefit is zero or negative. This allows elimination
6444 of bivs that might otherwise not be eliminated. */
6445 return 1;
6448 /* Given an expression, X, try to form it as a linear function of a biv.
6449 We will canonicalize it to be of the form
6450 (plus (mult (BIV) (invar_1))
6451 (invar_2))
6452 with possible degeneracies.
6454 The invariant expressions must each be of a form that can be used as a
6455 machine operand. We surround then with a USE rtx (a hack, but localized
6456 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6457 routine; it is the caller's responsibility to strip them.
6459 If no such canonicalization is possible (i.e., two biv's are used or an
6460 expression that is neither invariant nor a biv or giv), this routine
6461 returns 0.
6463 For a nonzero return, the result will have a code of CONST_INT, USE,
6464 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6466 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6468 static rtx sge_plus (enum machine_mode, rtx, rtx);
6469 static rtx sge_plus_constant (rtx, rtx);
6471 static rtx
6472 simplify_giv_expr (const struct loop *loop, rtx x, rtx *ext_val, int *benefit)
6474 struct loop_ivs *ivs = LOOP_IVS (loop);
6475 struct loop_regs *regs = LOOP_REGS (loop);
6476 enum machine_mode mode = GET_MODE (x);
6477 rtx arg0, arg1;
6478 rtx tem;
6480 /* If this is not an integer mode, or if we cannot do arithmetic in this
6481 mode, this can't be a giv. */
6482 if (mode != VOIDmode
6483 && (GET_MODE_CLASS (mode) != MODE_INT
6484 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6485 return NULL_RTX;
6487 switch (GET_CODE (x))
6489 case PLUS:
6490 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6491 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6492 if (arg0 == 0 || arg1 == 0)
6493 return NULL_RTX;
6495 /* Put constant last, CONST_INT last if both constant. */
6496 if ((GET_CODE (arg0) == USE
6497 || GET_CODE (arg0) == CONST_INT)
6498 && ! ((GET_CODE (arg0) == USE
6499 && GET_CODE (arg1) == USE)
6500 || GET_CODE (arg1) == CONST_INT))
6501 tem = arg0, arg0 = arg1, arg1 = tem;
6503 /* Handle addition of zero, then addition of an invariant. */
6504 if (arg1 == const0_rtx)
6505 return arg0;
6506 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6507 switch (GET_CODE (arg0))
6509 case CONST_INT:
6510 case USE:
6511 /* Adding two invariants must result in an invariant, so enclose
6512 addition operation inside a USE and return it. */
6513 if (GET_CODE (arg0) == USE)
6514 arg0 = XEXP (arg0, 0);
6515 if (GET_CODE (arg1) == USE)
6516 arg1 = XEXP (arg1, 0);
6518 if (GET_CODE (arg0) == CONST_INT)
6519 tem = arg0, arg0 = arg1, arg1 = tem;
6520 if (GET_CODE (arg1) == CONST_INT)
6521 tem = sge_plus_constant (arg0, arg1);
6522 else
6523 tem = sge_plus (mode, arg0, arg1);
6525 if (GET_CODE (tem) != CONST_INT)
6526 tem = gen_rtx_USE (mode, tem);
6527 return tem;
6529 case REG:
6530 case MULT:
6531 /* biv + invar or mult + invar. Return sum. */
6532 return gen_rtx_PLUS (mode, arg0, arg1);
6534 case PLUS:
6535 /* (a + invar_1) + invar_2. Associate. */
6536 return
6537 simplify_giv_expr (loop,
6538 gen_rtx_PLUS (mode,
6539 XEXP (arg0, 0),
6540 gen_rtx_PLUS (mode,
6541 XEXP (arg0, 1),
6542 arg1)),
6543 ext_val, benefit);
6545 default:
6546 abort ();
6549 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6550 MULT to reduce cases. */
6551 if (GET_CODE (arg0) == REG)
6552 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6553 if (GET_CODE (arg1) == REG)
6554 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6556 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6557 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6558 Recurse to associate the second PLUS. */
6559 if (GET_CODE (arg1) == MULT)
6560 tem = arg0, arg0 = arg1, arg1 = tem;
6562 if (GET_CODE (arg1) == PLUS)
6563 return
6564 simplify_giv_expr (loop,
6565 gen_rtx_PLUS (mode,
6566 gen_rtx_PLUS (mode, arg0,
6567 XEXP (arg1, 0)),
6568 XEXP (arg1, 1)),
6569 ext_val, benefit);
6571 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6572 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6573 return NULL_RTX;
6575 if (!rtx_equal_p (arg0, arg1))
6576 return NULL_RTX;
6578 return simplify_giv_expr (loop,
6579 gen_rtx_MULT (mode,
6580 XEXP (arg0, 0),
6581 gen_rtx_PLUS (mode,
6582 XEXP (arg0, 1),
6583 XEXP (arg1, 1))),
6584 ext_val, benefit);
6586 case MINUS:
6587 /* Handle "a - b" as "a + b * (-1)". */
6588 return simplify_giv_expr (loop,
6589 gen_rtx_PLUS (mode,
6590 XEXP (x, 0),
6591 gen_rtx_MULT (mode,
6592 XEXP (x, 1),
6593 constm1_rtx)),
6594 ext_val, benefit);
6596 case MULT:
6597 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6598 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6599 if (arg0 == 0 || arg1 == 0)
6600 return NULL_RTX;
6602 /* Put constant last, CONST_INT last if both constant. */
6603 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6604 && GET_CODE (arg1) != CONST_INT)
6605 tem = arg0, arg0 = arg1, arg1 = tem;
6607 /* If second argument is not now constant, not giv. */
6608 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6609 return NULL_RTX;
6611 /* Handle multiply by 0 or 1. */
6612 if (arg1 == const0_rtx)
6613 return const0_rtx;
6615 else if (arg1 == const1_rtx)
6616 return arg0;
6618 switch (GET_CODE (arg0))
6620 case REG:
6621 /* biv * invar. Done. */
6622 return gen_rtx_MULT (mode, arg0, arg1);
6624 case CONST_INT:
6625 /* Product of two constants. */
6626 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6628 case USE:
6629 /* invar * invar is a giv, but attempt to simplify it somehow. */
6630 if (GET_CODE (arg1) != CONST_INT)
6631 return NULL_RTX;
6633 arg0 = XEXP (arg0, 0);
6634 if (GET_CODE (arg0) == MULT)
6636 /* (invar_0 * invar_1) * invar_2. Associate. */
6637 return simplify_giv_expr (loop,
6638 gen_rtx_MULT (mode,
6639 XEXP (arg0, 0),
6640 gen_rtx_MULT (mode,
6641 XEXP (arg0,
6643 arg1)),
6644 ext_val, benefit);
6646 /* Propagate the MULT expressions to the intermost nodes. */
6647 else if (GET_CODE (arg0) == PLUS)
6649 /* (invar_0 + invar_1) * invar_2. Distribute. */
6650 return simplify_giv_expr (loop,
6651 gen_rtx_PLUS (mode,
6652 gen_rtx_MULT (mode,
6653 XEXP (arg0,
6655 arg1),
6656 gen_rtx_MULT (mode,
6657 XEXP (arg0,
6659 arg1)),
6660 ext_val, benefit);
6662 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6664 case MULT:
6665 /* (a * invar_1) * invar_2. Associate. */
6666 return simplify_giv_expr (loop,
6667 gen_rtx_MULT (mode,
6668 XEXP (arg0, 0),
6669 gen_rtx_MULT (mode,
6670 XEXP (arg0, 1),
6671 arg1)),
6672 ext_val, benefit);
6674 case PLUS:
6675 /* (a + invar_1) * invar_2. Distribute. */
6676 return simplify_giv_expr (loop,
6677 gen_rtx_PLUS (mode,
6678 gen_rtx_MULT (mode,
6679 XEXP (arg0, 0),
6680 arg1),
6681 gen_rtx_MULT (mode,
6682 XEXP (arg0, 1),
6683 arg1)),
6684 ext_val, benefit);
6686 default:
6687 abort ();
6690 case ASHIFT:
6691 /* Shift by constant is multiply by power of two. */
6692 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6693 return 0;
6695 return
6696 simplify_giv_expr (loop,
6697 gen_rtx_MULT (mode,
6698 XEXP (x, 0),
6699 GEN_INT ((HOST_WIDE_INT) 1
6700 << INTVAL (XEXP (x, 1)))),
6701 ext_val, benefit);
6703 case NEG:
6704 /* "-a" is "a * (-1)" */
6705 return simplify_giv_expr (loop,
6706 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6707 ext_val, benefit);
6709 case NOT:
6710 /* "~a" is "-a - 1". Silly, but easy. */
6711 return simplify_giv_expr (loop,
6712 gen_rtx_MINUS (mode,
6713 gen_rtx_NEG (mode, XEXP (x, 0)),
6714 const1_rtx),
6715 ext_val, benefit);
6717 case USE:
6718 /* Already in proper form for invariant. */
6719 return x;
6721 case SIGN_EXTEND:
6722 case ZERO_EXTEND:
6723 case TRUNCATE:
6724 /* Conditionally recognize extensions of simple IVs. After we've
6725 computed loop traversal counts and verified the range of the
6726 source IV, we'll reevaluate this as a GIV. */
6727 if (*ext_val == NULL_RTX)
6729 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6730 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
6732 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
6733 return arg0;
6736 goto do_default;
6738 case REG:
6739 /* If this is a new register, we can't deal with it. */
6740 if (REGNO (x) >= max_reg_before_loop)
6741 return 0;
6743 /* Check for biv or giv. */
6744 switch (REG_IV_TYPE (ivs, REGNO (x)))
6746 case BASIC_INDUCT:
6747 return x;
6748 case GENERAL_INDUCT:
6750 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
6752 /* Form expression from giv and add benefit. Ensure this giv
6753 can derive another and subtract any needed adjustment if so. */
6755 /* Increasing the benefit here is risky. The only case in which it
6756 is arguably correct is if this is the only use of V. In other
6757 cases, this will artificially inflate the benefit of the current
6758 giv, and lead to suboptimal code. Thus, it is disabled, since
6759 potentially not reducing an only marginally beneficial giv is
6760 less harmful than reducing many givs that are not really
6761 beneficial. */
6763 rtx single_use = regs->array[REGNO (x)].single_usage;
6764 if (single_use && single_use != const0_rtx)
6765 *benefit += v->benefit;
6768 if (v->cant_derive)
6769 return 0;
6771 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6772 v->src_reg, v->mult_val),
6773 v->add_val);
6775 if (v->derive_adjustment)
6776 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6777 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
6778 if (*ext_val)
6780 if (!v->ext_dependent)
6781 return arg0;
6783 else
6785 *ext_val = v->ext_dependent;
6786 return arg0;
6788 return 0;
6791 default:
6792 do_default:
6793 /* If it isn't an induction variable, and it is invariant, we
6794 may be able to simplify things further by looking through
6795 the bits we just moved outside the loop. */
6796 if (loop_invariant_p (loop, x) == 1)
6798 struct movable *m;
6799 struct loop_movables *movables = LOOP_MOVABLES (loop);
6801 for (m = movables->head; m; m = m->next)
6802 if (rtx_equal_p (x, m->set_dest))
6804 /* Ok, we found a match. Substitute and simplify. */
6806 /* If we match another movable, we must use that, as
6807 this one is going away. */
6808 if (m->match)
6809 return simplify_giv_expr (loop, m->match->set_dest,
6810 ext_val, benefit);
6812 /* If consec is nonzero, this is a member of a group of
6813 instructions that were moved together. We handle this
6814 case only to the point of seeking to the last insn and
6815 looking for a REG_EQUAL. Fail if we don't find one. */
6816 if (m->consec != 0)
6818 int i = m->consec;
6819 tem = m->insn;
6822 tem = NEXT_INSN (tem);
6824 while (--i > 0);
6826 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6827 if (tem)
6828 tem = XEXP (tem, 0);
6830 else
6832 tem = single_set (m->insn);
6833 if (tem)
6834 tem = SET_SRC (tem);
6837 if (tem)
6839 /* What we are most interested in is pointer
6840 arithmetic on invariants -- only take
6841 patterns we may be able to do something with. */
6842 if (GET_CODE (tem) == PLUS
6843 || GET_CODE (tem) == MULT
6844 || GET_CODE (tem) == ASHIFT
6845 || GET_CODE (tem) == CONST_INT
6846 || GET_CODE (tem) == SYMBOL_REF)
6848 tem = simplify_giv_expr (loop, tem, ext_val,
6849 benefit);
6850 if (tem)
6851 return tem;
6853 else if (GET_CODE (tem) == CONST
6854 && GET_CODE (XEXP (tem, 0)) == PLUS
6855 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6856 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6858 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6859 ext_val, benefit);
6860 if (tem)
6861 return tem;
6864 break;
6867 break;
6870 /* Fall through to general case. */
6871 default:
6872 /* If invariant, return as USE (unless CONST_INT).
6873 Otherwise, not giv. */
6874 if (GET_CODE (x) == USE)
6875 x = XEXP (x, 0);
6877 if (loop_invariant_p (loop, x) == 1)
6879 if (GET_CODE (x) == CONST_INT)
6880 return x;
6881 if (GET_CODE (x) == CONST
6882 && GET_CODE (XEXP (x, 0)) == PLUS
6883 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6884 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6885 x = XEXP (x, 0);
6886 return gen_rtx_USE (mode, x);
6888 else
6889 return 0;
6893 /* This routine folds invariants such that there is only ever one
6894 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6896 static rtx
6897 sge_plus_constant (rtx x, rtx c)
6899 if (GET_CODE (x) == CONST_INT)
6900 return GEN_INT (INTVAL (x) + INTVAL (c));
6901 else if (GET_CODE (x) != PLUS)
6902 return gen_rtx_PLUS (GET_MODE (x), x, c);
6903 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6905 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6906 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6908 else if (GET_CODE (XEXP (x, 0)) == PLUS
6909 || GET_CODE (XEXP (x, 1)) != PLUS)
6911 return gen_rtx_PLUS (GET_MODE (x),
6912 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6914 else
6916 return gen_rtx_PLUS (GET_MODE (x),
6917 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6921 static rtx
6922 sge_plus (enum machine_mode mode, rtx x, rtx y)
6924 while (GET_CODE (y) == PLUS)
6926 rtx a = XEXP (y, 0);
6927 if (GET_CODE (a) == CONST_INT)
6928 x = sge_plus_constant (x, a);
6929 else
6930 x = gen_rtx_PLUS (mode, x, a);
6931 y = XEXP (y, 1);
6933 if (GET_CODE (y) == CONST_INT)
6934 x = sge_plus_constant (x, y);
6935 else
6936 x = gen_rtx_PLUS (mode, x, y);
6937 return x;
6940 /* Help detect a giv that is calculated by several consecutive insns;
6941 for example,
6942 giv = biv * M
6943 giv = giv + A
6944 The caller has already identified the first insn P as having a giv as dest;
6945 we check that all other insns that set the same register follow
6946 immediately after P, that they alter nothing else,
6947 and that the result of the last is still a giv.
6949 The value is 0 if the reg set in P is not really a giv.
6950 Otherwise, the value is the amount gained by eliminating
6951 all the consecutive insns that compute the value.
6953 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6954 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6956 The coefficients of the ultimate giv value are stored in
6957 *MULT_VAL and *ADD_VAL. */
6959 static int
6960 consec_sets_giv (const struct loop *loop, int first_benefit, rtx p,
6961 rtx src_reg, rtx dest_reg, rtx *add_val, rtx *mult_val,
6962 rtx *ext_val, rtx *last_consec_insn)
6964 struct loop_ivs *ivs = LOOP_IVS (loop);
6965 struct loop_regs *regs = LOOP_REGS (loop);
6966 int count;
6967 enum rtx_code code;
6968 int benefit;
6969 rtx temp;
6970 rtx set;
6972 /* Indicate that this is a giv so that we can update the value produced in
6973 each insn of the multi-insn sequence.
6975 This induction structure will be used only by the call to
6976 general_induction_var below, so we can allocate it on our stack.
6977 If this is a giv, our caller will replace the induct var entry with
6978 a new induction structure. */
6979 struct induction *v;
6981 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
6982 return 0;
6984 v = (struct induction *) alloca (sizeof (struct induction));
6985 v->src_reg = src_reg;
6986 v->mult_val = *mult_val;
6987 v->add_val = *add_val;
6988 v->benefit = first_benefit;
6989 v->cant_derive = 0;
6990 v->derive_adjustment = 0;
6991 v->ext_dependent = NULL_RTX;
6993 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
6994 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
6996 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
6998 while (count > 0)
7000 p = NEXT_INSN (p);
7001 code = GET_CODE (p);
7003 /* If libcall, skip to end of call sequence. */
7004 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
7005 p = XEXP (temp, 0);
7007 if (code == INSN
7008 && (set = single_set (p))
7009 && GET_CODE (SET_DEST (set)) == REG
7010 && SET_DEST (set) == dest_reg
7011 && (general_induction_var (loop, SET_SRC (set), &src_reg,
7012 add_val, mult_val, ext_val, 0,
7013 &benefit, VOIDmode)
7014 /* Giv created by equivalent expression. */
7015 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
7016 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
7017 add_val, mult_val, ext_val, 0,
7018 &benefit, VOIDmode)))
7019 && src_reg == v->src_reg)
7021 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
7022 benefit += libcall_benefit (p);
7024 count--;
7025 v->mult_val = *mult_val;
7026 v->add_val = *add_val;
7027 v->benefit += benefit;
7029 else if (code != NOTE)
7031 /* Allow insns that set something other than this giv to a
7032 constant. Such insns are needed on machines which cannot
7033 include long constants and should not disqualify a giv. */
7034 if (code == INSN
7035 && (set = single_set (p))
7036 && SET_DEST (set) != dest_reg
7037 && CONSTANT_P (SET_SRC (set)))
7038 continue;
7040 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7041 return 0;
7045 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7046 *last_consec_insn = p;
7047 return v->benefit;
7050 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7051 represented by G1. If no such expression can be found, or it is clear that
7052 it cannot possibly be a valid address, 0 is returned.
7054 To perform the computation, we note that
7055 G1 = x * v + a and
7056 G2 = y * v + b
7057 where `v' is the biv.
7059 So G2 = (y/b) * G1 + (b - a*y/x).
7061 Note that MULT = y/x.
7063 Update: A and B are now allowed to be additive expressions such that
7064 B contains all variables in A. That is, computing B-A will not require
7065 subtracting variables. */
7067 static rtx
7068 express_from_1 (rtx a, rtx b, rtx mult)
7070 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7072 if (mult == const0_rtx)
7073 return b;
7075 /* If MULT is not 1, we cannot handle A with non-constants, since we
7076 would then be required to subtract multiples of the registers in A.
7077 This is theoretically possible, and may even apply to some Fortran
7078 constructs, but it is a lot of work and we do not attempt it here. */
7080 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
7081 return NULL_RTX;
7083 /* In general these structures are sorted top to bottom (down the PLUS
7084 chain), but not left to right across the PLUS. If B is a higher
7085 order giv than A, we can strip one level and recurse. If A is higher
7086 order, we'll eventually bail out, but won't know that until the end.
7087 If they are the same, we'll strip one level around this loop. */
7089 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
7091 rtx ra, rb, oa, ob, tmp;
7093 ra = XEXP (a, 0), oa = XEXP (a, 1);
7094 if (GET_CODE (ra) == PLUS)
7095 tmp = ra, ra = oa, oa = tmp;
7097 rb = XEXP (b, 0), ob = XEXP (b, 1);
7098 if (GET_CODE (rb) == PLUS)
7099 tmp = rb, rb = ob, ob = tmp;
7101 if (rtx_equal_p (ra, rb))
7102 /* We matched: remove one reg completely. */
7103 a = oa, b = ob;
7104 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
7105 /* An alternate match. */
7106 a = oa, b = rb;
7107 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
7108 /* An alternate match. */
7109 a = ra, b = ob;
7110 else
7112 /* Indicates an extra register in B. Strip one level from B and
7113 recurse, hoping B was the higher order expression. */
7114 ob = express_from_1 (a, ob, mult);
7115 if (ob == NULL_RTX)
7116 return NULL_RTX;
7117 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
7121 /* Here we are at the last level of A, go through the cases hoping to
7122 get rid of everything but a constant. */
7124 if (GET_CODE (a) == PLUS)
7126 rtx ra, oa;
7128 ra = XEXP (a, 0), oa = XEXP (a, 1);
7129 if (rtx_equal_p (oa, b))
7130 oa = ra;
7131 else if (!rtx_equal_p (ra, b))
7132 return NULL_RTX;
7134 if (GET_CODE (oa) != CONST_INT)
7135 return NULL_RTX;
7137 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
7139 else if (GET_CODE (a) == CONST_INT)
7141 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
7143 else if (CONSTANT_P (a))
7145 enum machine_mode mode_a = GET_MODE (a);
7146 enum machine_mode mode_b = GET_MODE (b);
7147 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
7148 return simplify_gen_binary (MINUS, mode, b, a);
7150 else if (GET_CODE (b) == PLUS)
7152 if (rtx_equal_p (a, XEXP (b, 0)))
7153 return XEXP (b, 1);
7154 else if (rtx_equal_p (a, XEXP (b, 1)))
7155 return XEXP (b, 0);
7156 else
7157 return NULL_RTX;
7159 else if (rtx_equal_p (a, b))
7160 return const0_rtx;
7162 return NULL_RTX;
7166 express_from (struct induction *g1, struct induction *g2)
7168 rtx mult, add;
7170 /* The value that G1 will be multiplied by must be a constant integer. Also,
7171 the only chance we have of getting a valid address is if b*c/a (see above
7172 for notation) is also an integer. */
7173 if (GET_CODE (g1->mult_val) == CONST_INT
7174 && GET_CODE (g2->mult_val) == CONST_INT)
7176 if (g1->mult_val == const0_rtx
7177 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
7178 return NULL_RTX;
7179 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
7181 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
7182 mult = const1_rtx;
7183 else
7185 /* ??? Find out if the one is a multiple of the other? */
7186 return NULL_RTX;
7189 add = express_from_1 (g1->add_val, g2->add_val, mult);
7190 if (add == NULL_RTX)
7192 /* Failed. If we've got a multiplication factor between G1 and G2,
7193 scale G1's addend and try again. */
7194 if (INTVAL (mult) > 1)
7196 rtx g1_add_val = g1->add_val;
7197 if (GET_CODE (g1_add_val) == MULT
7198 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7200 HOST_WIDE_INT m;
7201 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7202 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7203 XEXP (g1_add_val, 0), GEN_INT (m));
7205 else
7207 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7208 mult);
7211 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7214 if (add == NULL_RTX)
7215 return NULL_RTX;
7217 /* Form simplified final result. */
7218 if (mult == const0_rtx)
7219 return add;
7220 else if (mult == const1_rtx)
7221 mult = g1->dest_reg;
7222 else
7223 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7225 if (add == const0_rtx)
7226 return mult;
7227 else
7229 if (GET_CODE (add) == PLUS
7230 && CONSTANT_P (XEXP (add, 1)))
7232 rtx tem = XEXP (add, 1);
7233 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7234 add = tem;
7237 return gen_rtx_PLUS (g2->mode, mult, add);
7241 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7242 represented by G1. This indicates that G2 should be combined with G1 and
7243 that G2 can use (either directly or via an address expression) a register
7244 used to represent G1. */
7246 static rtx
7247 combine_givs_p (struct induction *g1, struct induction *g2)
7249 rtx comb, ret;
7251 /* With the introduction of ext dependent givs, we must care for modes.
7252 G2 must not use a wider mode than G1. */
7253 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
7254 return NULL_RTX;
7256 ret = comb = express_from (g1, g2);
7257 if (comb == NULL_RTX)
7258 return NULL_RTX;
7259 if (g1->mode != g2->mode)
7260 ret = gen_lowpart (g2->mode, comb);
7262 /* If these givs are identical, they can be combined. We use the results
7263 of express_from because the addends are not in a canonical form, so
7264 rtx_equal_p is a weaker test. */
7265 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7266 combination to be the other way round. */
7267 if (comb == g1->dest_reg
7268 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7270 return ret;
7273 /* If G2 can be expressed as a function of G1 and that function is valid
7274 as an address and no more expensive than using a register for G2,
7275 the expression of G2 in terms of G1 can be used. */
7276 if (ret != NULL_RTX
7277 && g2->giv_type == DEST_ADDR
7278 && memory_address_p (GET_MODE (g2->mem), ret))
7279 return ret;
7281 return NULL_RTX;
7284 /* Check each extension dependent giv in this class to see if its
7285 root biv is safe from wrapping in the interior mode, which would
7286 make the giv illegal. */
7288 static void
7289 check_ext_dependent_givs (struct iv_class *bl, struct loop_info *loop_info)
7291 int ze_ok = 0, se_ok = 0, info_ok = 0;
7292 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
7293 HOST_WIDE_INT start_val;
7294 unsigned HOST_WIDE_INT u_end_val = 0;
7295 unsigned HOST_WIDE_INT u_start_val = 0;
7296 rtx incr = pc_rtx;
7297 struct induction *v;
7299 /* Make sure the iteration data is available. We must have
7300 constants in order to be certain of no overflow. */
7301 /* ??? An unknown iteration count with an increment of +-1
7302 combined with friendly exit tests of against an invariant
7303 value is also amenable to optimization. Not implemented. */
7304 if (loop_info->n_iterations > 0
7305 && bl->initial_value
7306 && GET_CODE (bl->initial_value) == CONST_INT
7307 && (incr = biv_total_increment (bl))
7308 && GET_CODE (incr) == CONST_INT
7309 /* Make sure the host can represent the arithmetic. */
7310 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
7312 unsigned HOST_WIDE_INT abs_incr, total_incr;
7313 HOST_WIDE_INT s_end_val;
7314 int neg_incr;
7316 info_ok = 1;
7317 start_val = INTVAL (bl->initial_value);
7318 u_start_val = start_val;
7320 neg_incr = 0, abs_incr = INTVAL (incr);
7321 if (INTVAL (incr) < 0)
7322 neg_incr = 1, abs_incr = -abs_incr;
7323 total_incr = abs_incr * loop_info->n_iterations;
7325 /* Check for host arithmetic overflow. */
7326 if (total_incr / loop_info->n_iterations == abs_incr)
7328 unsigned HOST_WIDE_INT u_max;
7329 HOST_WIDE_INT s_max;
7331 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
7332 s_end_val = u_end_val;
7333 u_max = GET_MODE_MASK (biv_mode);
7334 s_max = u_max >> 1;
7336 /* Check zero extension of biv ok. */
7337 if (start_val >= 0
7338 /* Check for host arithmetic overflow. */
7339 && (neg_incr
7340 ? u_end_val < u_start_val
7341 : u_end_val > u_start_val)
7342 /* Check for target arithmetic overflow. */
7343 && (neg_incr
7344 ? 1 /* taken care of with host overflow */
7345 : u_end_val <= u_max))
7347 ze_ok = 1;
7350 /* Check sign extension of biv ok. */
7351 /* ??? While it is true that overflow with signed and pointer
7352 arithmetic is undefined, I fear too many programmers don't
7353 keep this fact in mind -- myself included on occasion.
7354 So leave alone with the signed overflow optimizations. */
7355 if (start_val >= -s_max - 1
7356 /* Check for host arithmetic overflow. */
7357 && (neg_incr
7358 ? s_end_val < start_val
7359 : s_end_val > start_val)
7360 /* Check for target arithmetic overflow. */
7361 && (neg_incr
7362 ? s_end_val >= -s_max - 1
7363 : s_end_val <= s_max))
7365 se_ok = 1;
7370 /* Invalidate givs that fail the tests. */
7371 for (v = bl->giv; v; v = v->next_iv)
7372 if (v->ext_dependent)
7374 enum rtx_code code = GET_CODE (v->ext_dependent);
7375 int ok = 0;
7377 switch (code)
7379 case SIGN_EXTEND:
7380 ok = se_ok;
7381 break;
7382 case ZERO_EXTEND:
7383 ok = ze_ok;
7384 break;
7386 case TRUNCATE:
7387 /* We don't know whether this value is being used as either
7388 signed or unsigned, so to safely truncate we must satisfy
7389 both. The initial check here verifies the BIV itself;
7390 once that is successful we may check its range wrt the
7391 derived GIV. */
7392 if (se_ok && ze_ok)
7394 enum machine_mode outer_mode = GET_MODE (v->ext_dependent);
7395 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
7397 /* We know from the above that both endpoints are nonnegative,
7398 and that there is no wrapping. Verify that both endpoints
7399 are within the (signed) range of the outer mode. */
7400 if (u_start_val <= max && u_end_val <= max)
7401 ok = 1;
7403 break;
7405 default:
7406 abort ();
7409 if (ok)
7411 if (loop_dump_stream)
7413 fprintf (loop_dump_stream,
7414 "Verified ext dependent giv at %d of reg %d\n",
7415 INSN_UID (v->insn), bl->regno);
7418 else
7420 if (loop_dump_stream)
7422 const char *why;
7424 if (info_ok)
7425 why = "biv iteration values overflowed";
7426 else
7428 if (incr == pc_rtx)
7429 incr = biv_total_increment (bl);
7430 if (incr == const1_rtx)
7431 why = "biv iteration info incomplete; incr by 1";
7432 else
7433 why = "biv iteration info incomplete";
7436 fprintf (loop_dump_stream,
7437 "Failed ext dependent giv at %d, %s\n",
7438 INSN_UID (v->insn), why);
7440 v->ignore = 1;
7441 bl->all_reduced = 0;
7446 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7449 extend_value_for_giv (struct induction *v, rtx value)
7451 rtx ext_dep = v->ext_dependent;
7453 if (! ext_dep)
7454 return value;
7456 /* Recall that check_ext_dependent_givs verified that the known bounds
7457 of a biv did not overflow or wrap with respect to the extension for
7458 the giv. Therefore, constants need no additional adjustment. */
7459 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
7460 return value;
7462 /* Otherwise, we must adjust the value to compensate for the
7463 differing modes of the biv and the giv. */
7464 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
7467 struct combine_givs_stats
7469 int giv_number;
7470 int total_benefit;
7473 static int
7474 cmp_combine_givs_stats (const void *xp, const void *yp)
7476 const struct combine_givs_stats * const x =
7477 (const struct combine_givs_stats *) xp;
7478 const struct combine_givs_stats * const y =
7479 (const struct combine_givs_stats *) yp;
7480 int d;
7481 d = y->total_benefit - x->total_benefit;
7482 /* Stabilize the sort. */
7483 if (!d)
7484 d = x->giv_number - y->giv_number;
7485 return d;
7488 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7489 any other. If so, point SAME to the giv combined with and set NEW_REG to
7490 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7491 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7493 static void
7494 combine_givs (struct loop_regs *regs, struct iv_class *bl)
7496 /* Additional benefit to add for being combined multiple times. */
7497 const int extra_benefit = 3;
7499 struct induction *g1, *g2, **giv_array;
7500 int i, j, k, giv_count;
7501 struct combine_givs_stats *stats;
7502 rtx *can_combine;
7504 /* Count givs, because bl->giv_count is incorrect here. */
7505 giv_count = 0;
7506 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7507 if (!g1->ignore)
7508 giv_count++;
7510 giv_array
7511 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7512 i = 0;
7513 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7514 if (!g1->ignore)
7515 giv_array[i++] = g1;
7517 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7518 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
7520 for (i = 0; i < giv_count; i++)
7522 int this_benefit;
7523 rtx single_use;
7525 g1 = giv_array[i];
7526 stats[i].giv_number = i;
7528 /* If a DEST_REG GIV is used only once, do not allow it to combine
7529 with anything, for in doing so we will gain nothing that cannot
7530 be had by simply letting the GIV with which we would have combined
7531 to be reduced on its own. The losage shows up in particular with
7532 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7533 be seen elsewhere as well. */
7534 if (g1->giv_type == DEST_REG
7535 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
7536 && single_use != const0_rtx)
7537 continue;
7539 this_benefit = g1->benefit;
7540 /* Add an additional weight for zero addends. */
7541 if (g1->no_const_addval)
7542 this_benefit += 1;
7544 for (j = 0; j < giv_count; j++)
7546 rtx this_combine;
7548 g2 = giv_array[j];
7549 if (g1 != g2
7550 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7552 can_combine[i * giv_count + j] = this_combine;
7553 this_benefit += g2->benefit + extra_benefit;
7556 stats[i].total_benefit = this_benefit;
7559 /* Iterate, combining until we can't. */
7560 restart:
7561 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
7563 if (loop_dump_stream)
7565 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7566 for (k = 0; k < giv_count; k++)
7568 g1 = giv_array[stats[k].giv_number];
7569 if (!g1->combined_with && !g1->same)
7570 fprintf (loop_dump_stream, " {%d, %d}",
7571 INSN_UID (giv_array[stats[k].giv_number]->insn),
7572 stats[k].total_benefit);
7574 putc ('\n', loop_dump_stream);
7577 for (k = 0; k < giv_count; k++)
7579 int g1_add_benefit = 0;
7581 i = stats[k].giv_number;
7582 g1 = giv_array[i];
7584 /* If it has already been combined, skip. */
7585 if (g1->combined_with || g1->same)
7586 continue;
7588 for (j = 0; j < giv_count; j++)
7590 g2 = giv_array[j];
7591 if (g1 != g2 && can_combine[i * giv_count + j]
7592 /* If it has already been combined, skip. */
7593 && ! g2->same && ! g2->combined_with)
7595 int l;
7597 g2->new_reg = can_combine[i * giv_count + j];
7598 g2->same = g1;
7599 /* For destination, we now may replace by mem expression instead
7600 of register. This changes the costs considerably, so add the
7601 compensation. */
7602 if (g2->giv_type == DEST_ADDR)
7603 g2->benefit = (g2->benefit + reg_address_cost
7604 - address_cost (g2->new_reg,
7605 GET_MODE (g2->mem)));
7606 g1->combined_with++;
7607 g1->lifetime += g2->lifetime;
7609 g1_add_benefit += g2->benefit;
7611 /* ??? The new final_[bg]iv_value code does a much better job
7612 of finding replaceable giv's, and hence this code may no
7613 longer be necessary. */
7614 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7615 g1_add_benefit -= copy_cost;
7617 /* To help optimize the next set of combinations, remove
7618 this giv from the benefits of other potential mates. */
7619 for (l = 0; l < giv_count; ++l)
7621 int m = stats[l].giv_number;
7622 if (can_combine[m * giv_count + j])
7623 stats[l].total_benefit -= g2->benefit + extra_benefit;
7626 if (loop_dump_stream)
7627 fprintf (loop_dump_stream,
7628 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7629 INSN_UID (g2->insn), INSN_UID (g1->insn),
7630 g1->benefit, g1_add_benefit, g1->lifetime);
7634 /* To help optimize the next set of combinations, remove
7635 this giv from the benefits of other potential mates. */
7636 if (g1->combined_with)
7638 for (j = 0; j < giv_count; ++j)
7640 int m = stats[j].giv_number;
7641 if (can_combine[m * giv_count + i])
7642 stats[j].total_benefit -= g1->benefit + extra_benefit;
7645 g1->benefit += g1_add_benefit;
7647 /* We've finished with this giv, and everything it touched.
7648 Restart the combination so that proper weights for the
7649 rest of the givs are properly taken into account. */
7650 /* ??? Ideally we would compact the arrays at this point, so
7651 as to not cover old ground. But sanely compacting
7652 can_combine is tricky. */
7653 goto restart;
7657 /* Clean up. */
7658 free (stats);
7659 free (can_combine);
7662 /* Generate sequence for REG = B * M + A. B is the initial value of
7663 the basic induction variable, M a multiplicative constant, A an
7664 additive constant and REG the destination register. */
7666 static rtx
7667 gen_add_mult (rtx b, rtx m, rtx a, rtx reg)
7669 rtx seq;
7670 rtx result;
7672 start_sequence ();
7673 /* Use unsigned arithmetic. */
7674 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7675 if (reg != result)
7676 emit_move_insn (reg, result);
7677 seq = get_insns ();
7678 end_sequence ();
7680 return seq;
7684 /* Update registers created in insn sequence SEQ. */
7686 static void
7687 loop_regs_update (const struct loop *loop ATTRIBUTE_UNUSED, rtx seq)
7689 rtx insn;
7691 /* Update register info for alias analysis. */
7693 if (seq == NULL_RTX)
7694 return;
7696 if (INSN_P (seq))
7698 insn = seq;
7699 while (insn != NULL_RTX)
7701 rtx set = single_set (insn);
7703 if (set && GET_CODE (SET_DEST (set)) == REG)
7704 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7706 insn = NEXT_INSN (insn);
7709 else if (GET_CODE (seq) == SET
7710 && GET_CODE (SET_DEST (seq)) == REG)
7711 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7715 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
7716 is the initial value of the basic induction variable, M a
7717 multiplicative constant, A an additive constant and REG the
7718 destination register. */
7720 void
7721 loop_iv_add_mult_emit_before (const struct loop *loop, rtx b, rtx m, rtx a,
7722 rtx reg, basic_block before_bb, rtx before_insn)
7724 rtx seq;
7726 if (! before_insn)
7728 loop_iv_add_mult_hoist (loop, b, m, a, reg);
7729 return;
7732 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7733 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7735 /* Increase the lifetime of any invariants moved further in code. */
7736 update_reg_last_use (a, before_insn);
7737 update_reg_last_use (b, before_insn);
7738 update_reg_last_use (m, before_insn);
7740 loop_insn_emit_before (loop, before_bb, before_insn, seq);
7742 /* It is possible that the expansion created lots of new registers.
7743 Iterate over the sequence we just created and record them all. */
7744 loop_regs_update (loop, seq);
7748 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
7749 initial value of the basic induction variable, M a multiplicative
7750 constant, A an additive constant and REG the destination
7751 register. */
7753 void
7754 loop_iv_add_mult_sink (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
7756 rtx seq;
7758 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7759 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7761 /* Increase the lifetime of any invariants moved further in code.
7762 ???? Is this really necessary? */
7763 update_reg_last_use (a, loop->sink);
7764 update_reg_last_use (b, loop->sink);
7765 update_reg_last_use (m, loop->sink);
7767 loop_insn_sink (loop, seq);
7769 /* It is possible that the expansion created lots of new registers.
7770 Iterate over the sequence we just created and record them all. */
7771 loop_regs_update (loop, seq);
7775 /* Emit insns after loop to set REG = B * M + A. B is the initial
7776 value of the basic induction variable, M a multiplicative constant,
7777 A an additive constant and REG the destination register. */
7779 void
7780 loop_iv_add_mult_hoist (const struct loop *loop, rtx b, rtx m, rtx a, rtx reg)
7782 rtx seq;
7784 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7785 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7787 loop_insn_hoist (loop, seq);
7789 /* It is possible that the expansion created lots of new registers.
7790 Iterate over the sequence we just created and record them all. */
7791 loop_regs_update (loop, seq);
7796 /* Similar to gen_add_mult, but compute cost rather than generating
7797 sequence. */
7799 static int
7800 iv_add_mult_cost (rtx b, rtx m, rtx a, rtx reg)
7802 int cost = 0;
7803 rtx last, result;
7805 start_sequence ();
7806 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7807 if (reg != result)
7808 emit_move_insn (reg, result);
7809 last = get_last_insn ();
7810 while (last)
7812 rtx t = single_set (last);
7813 if (t)
7814 cost += rtx_cost (SET_SRC (t), SET);
7815 last = PREV_INSN (last);
7817 end_sequence ();
7818 return cost;
7821 /* Test whether A * B can be computed without
7822 an actual multiply insn. Value is 1 if so.
7824 ??? This function stinks because it generates a ton of wasted RTL
7825 ??? and as a result fragments GC memory to no end. There are other
7826 ??? places in the compiler which are invoked a lot and do the same
7827 ??? thing, generate wasted RTL just to see if something is possible. */
7829 static int
7830 product_cheap_p (rtx a, rtx b)
7832 rtx tmp;
7833 int win, n_insns;
7835 /* If only one is constant, make it B. */
7836 if (GET_CODE (a) == CONST_INT)
7837 tmp = a, a = b, b = tmp;
7839 /* If first constant, both constant, so don't need multiply. */
7840 if (GET_CODE (a) == CONST_INT)
7841 return 1;
7843 /* If second not constant, neither is constant, so would need multiply. */
7844 if (GET_CODE (b) != CONST_INT)
7845 return 0;
7847 /* One operand is constant, so might not need multiply insn. Generate the
7848 code for the multiply and see if a call or multiply, or long sequence
7849 of insns is generated. */
7851 start_sequence ();
7852 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7853 tmp = get_insns ();
7854 end_sequence ();
7856 win = 1;
7857 if (INSN_P (tmp))
7859 n_insns = 0;
7860 while (tmp != NULL_RTX)
7862 rtx next = NEXT_INSN (tmp);
7864 if (++n_insns > 3
7865 || GET_CODE (tmp) != INSN
7866 || (GET_CODE (PATTERN (tmp)) == SET
7867 && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
7868 || (GET_CODE (PATTERN (tmp)) == PARALLEL
7869 && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
7870 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
7872 win = 0;
7873 break;
7876 tmp = next;
7879 else if (GET_CODE (tmp) == SET
7880 && GET_CODE (SET_SRC (tmp)) == MULT)
7881 win = 0;
7882 else if (GET_CODE (tmp) == PARALLEL
7883 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7884 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7885 win = 0;
7887 return win;
7890 /* Check to see if loop can be terminated by a "decrement and branch until
7891 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7892 Also try reversing an increment loop to a decrement loop
7893 to see if the optimization can be performed.
7894 Value is nonzero if optimization was performed. */
7896 /* This is useful even if the architecture doesn't have such an insn,
7897 because it might change a loops which increments from 0 to n to a loop
7898 which decrements from n to 0. A loop that decrements to zero is usually
7899 faster than one that increments from zero. */
7901 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7902 such as approx_final_value, biv_total_increment, loop_iterations, and
7903 final_[bg]iv_value. */
7905 static int
7906 check_dbra_loop (struct loop *loop, int insn_count)
7908 struct loop_info *loop_info = LOOP_INFO (loop);
7909 struct loop_regs *regs = LOOP_REGS (loop);
7910 struct loop_ivs *ivs = LOOP_IVS (loop);
7911 struct iv_class *bl;
7912 rtx reg;
7913 rtx jump_label;
7914 rtx final_value;
7915 rtx start_value;
7916 rtx new_add_val;
7917 rtx comparison;
7918 rtx before_comparison;
7919 rtx p;
7920 rtx jump;
7921 rtx first_compare;
7922 int compare_and_branch;
7923 rtx loop_start = loop->start;
7924 rtx loop_end = loop->end;
7926 /* If last insn is a conditional branch, and the insn before tests a
7927 register value, try to optimize it. Otherwise, we can't do anything. */
7929 jump = PREV_INSN (loop_end);
7930 comparison = get_condition_for_loop (loop, jump);
7931 if (comparison == 0)
7932 return 0;
7933 if (!onlyjump_p (jump))
7934 return 0;
7936 /* Try to compute whether the compare/branch at the loop end is one or
7937 two instructions. */
7938 get_condition (jump, &first_compare);
7939 if (first_compare == jump)
7940 compare_and_branch = 1;
7941 else if (first_compare == prev_nonnote_insn (jump))
7942 compare_and_branch = 2;
7943 else
7944 return 0;
7947 /* If more than one condition is present to control the loop, then
7948 do not proceed, as this function does not know how to rewrite
7949 loop tests with more than one condition.
7951 Look backwards from the first insn in the last comparison
7952 sequence and see if we've got another comparison sequence. */
7954 rtx jump1;
7955 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
7956 if (GET_CODE (jump1) == JUMP_INSN)
7957 return 0;
7960 /* Check all of the bivs to see if the compare uses one of them.
7961 Skip biv's set more than once because we can't guarantee that
7962 it will be zero on the last iteration. Also skip if the biv is
7963 used between its update and the test insn. */
7965 for (bl = ivs->list; bl; bl = bl->next)
7967 if (bl->biv_count == 1
7968 && ! bl->biv->maybe_multiple
7969 && bl->biv->dest_reg == XEXP (comparison, 0)
7970 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7971 first_compare))
7972 break;
7975 if (! bl)
7976 return 0;
7978 /* Look for the case where the basic induction variable is always
7979 nonnegative, and equals zero on the last iteration.
7980 In this case, add a reg_note REG_NONNEG, which allows the
7981 m68k DBRA instruction to be used. */
7983 if (((GET_CODE (comparison) == GT
7984 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7985 && INTVAL (XEXP (comparison, 1)) == -1)
7986 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7987 && GET_CODE (bl->biv->add_val) == CONST_INT
7988 && INTVAL (bl->biv->add_val) < 0)
7990 /* Initial value must be greater than 0,
7991 init_val % -dec_value == 0 to ensure that it equals zero on
7992 the last iteration */
7994 if (GET_CODE (bl->initial_value) == CONST_INT
7995 && INTVAL (bl->initial_value) > 0
7996 && (INTVAL (bl->initial_value)
7997 % (-INTVAL (bl->biv->add_val))) == 0)
7999 /* register always nonnegative, add REG_NOTE to branch */
8000 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8001 REG_NOTES (jump)
8002 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8003 REG_NOTES (jump));
8004 bl->nonneg = 1;
8006 return 1;
8009 /* If the decrement is 1 and the value was tested as >= 0 before
8010 the loop, then we can safely optimize. */
8011 for (p = loop_start; p; p = PREV_INSN (p))
8013 if (GET_CODE (p) == CODE_LABEL)
8014 break;
8015 if (GET_CODE (p) != JUMP_INSN)
8016 continue;
8018 before_comparison = get_condition_for_loop (loop, p);
8019 if (before_comparison
8020 && XEXP (before_comparison, 0) == bl->biv->dest_reg
8021 && GET_CODE (before_comparison) == LT
8022 && XEXP (before_comparison, 1) == const0_rtx
8023 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
8024 && INTVAL (bl->biv->add_val) == -1)
8026 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8027 REG_NOTES (jump)
8028 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8029 REG_NOTES (jump));
8030 bl->nonneg = 1;
8032 return 1;
8036 else if (GET_CODE (bl->biv->add_val) == CONST_INT
8037 && INTVAL (bl->biv->add_val) > 0)
8039 /* Try to change inc to dec, so can apply above optimization. */
8040 /* Can do this if:
8041 all registers modified are induction variables or invariant,
8042 all memory references have non-overlapping addresses
8043 (obviously true if only one write)
8044 allow 2 insns for the compare/jump at the end of the loop. */
8045 /* Also, we must avoid any instructions which use both the reversed
8046 biv and another biv. Such instructions will fail if the loop is
8047 reversed. We meet this condition by requiring that either
8048 no_use_except_counting is true, or else that there is only
8049 one biv. */
8050 int num_nonfixed_reads = 0;
8051 /* 1 if the iteration var is used only to count iterations. */
8052 int no_use_except_counting = 0;
8053 /* 1 if the loop has no memory store, or it has a single memory store
8054 which is reversible. */
8055 int reversible_mem_store = 1;
8057 if (bl->giv_count == 0
8058 && !loop->exit_count
8059 && !loop_info->has_multiple_exit_targets)
8061 rtx bivreg = regno_reg_rtx[bl->regno];
8062 struct iv_class *blt;
8064 /* If there are no givs for this biv, and the only exit is the
8065 fall through at the end of the loop, then
8066 see if perhaps there are no uses except to count. */
8067 no_use_except_counting = 1;
8068 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8069 if (INSN_P (p))
8071 rtx set = single_set (p);
8073 if (set && GET_CODE (SET_DEST (set)) == REG
8074 && REGNO (SET_DEST (set)) == bl->regno)
8075 /* An insn that sets the biv is okay. */
8077 else if (!reg_mentioned_p (bivreg, PATTERN (p)))
8078 /* An insn that doesn't mention the biv is okay. */
8080 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8081 || p == prev_nonnote_insn (loop_end))
8083 /* If either of these insns uses the biv and sets a pseudo
8084 that has more than one usage, then the biv has uses
8085 other than counting since it's used to derive a value
8086 that is used more than one time. */
8087 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8088 regs);
8089 if (regs->multiple_uses)
8091 no_use_except_counting = 0;
8092 break;
8095 else
8097 no_use_except_counting = 0;
8098 break;
8102 /* A biv has uses besides counting if it is used to set
8103 another biv. */
8104 for (blt = ivs->list; blt; blt = blt->next)
8105 if (blt->init_set
8106 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
8108 no_use_except_counting = 0;
8109 break;
8113 if (no_use_except_counting)
8114 /* No need to worry about MEMs. */
8116 else if (loop_info->num_mem_sets <= 1)
8118 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8119 if (INSN_P (p))
8120 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8122 /* If the loop has a single store, and the destination address is
8123 invariant, then we can't reverse the loop, because this address
8124 might then have the wrong value at loop exit.
8125 This would work if the source was invariant also, however, in that
8126 case, the insn should have been moved out of the loop. */
8128 if (loop_info->num_mem_sets == 1)
8130 struct induction *v;
8132 /* If we could prove that each of the memory locations
8133 written to was different, then we could reverse the
8134 store -- but we don't presently have any way of
8135 knowing that. */
8136 reversible_mem_store = 0;
8138 /* If the store depends on a register that is set after the
8139 store, it depends on the initial value, and is thus not
8140 reversible. */
8141 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8143 if (v->giv_type == DEST_REG
8144 && reg_mentioned_p (v->dest_reg,
8145 PATTERN (loop_info->first_loop_store_insn))
8146 && loop_insn_first_p (loop_info->first_loop_store_insn,
8147 v->insn))
8148 reversible_mem_store = 0;
8152 else
8153 return 0;
8155 /* This code only acts for innermost loops. Also it simplifies
8156 the memory address check by only reversing loops with
8157 zero or one memory access.
8158 Two memory accesses could involve parts of the same array,
8159 and that can't be reversed.
8160 If the biv is used only for counting, than we don't need to worry
8161 about all these things. */
8163 if ((num_nonfixed_reads <= 1
8164 && ! loop_info->has_nonconst_call
8165 && ! loop_info->has_prefetch
8166 && ! loop_info->has_volatile
8167 && reversible_mem_store
8168 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
8169 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
8170 && (bl == ivs->list && bl->next == 0))
8171 || (no_use_except_counting && ! loop_info->has_prefetch))
8173 rtx tem;
8175 /* Loop can be reversed. */
8176 if (loop_dump_stream)
8177 fprintf (loop_dump_stream, "Can reverse loop\n");
8179 /* Now check other conditions:
8181 The increment must be a constant, as must the initial value,
8182 and the comparison code must be LT.
8184 This test can probably be improved since +/- 1 in the constant
8185 can be obtained by changing LT to LE and vice versa; this is
8186 confusing. */
8188 if (comparison
8189 /* for constants, LE gets turned into LT */
8190 && (GET_CODE (comparison) == LT
8191 || (GET_CODE (comparison) == LE
8192 && no_use_except_counting)))
8194 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8195 rtx initial_value, comparison_value;
8196 int nonneg = 0;
8197 enum rtx_code cmp_code;
8198 int comparison_const_width;
8199 unsigned HOST_WIDE_INT comparison_sign_mask;
8201 add_val = INTVAL (bl->biv->add_val);
8202 comparison_value = XEXP (comparison, 1);
8203 if (GET_MODE (comparison_value) == VOIDmode)
8204 comparison_const_width
8205 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8206 else
8207 comparison_const_width
8208 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8209 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8210 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8211 comparison_sign_mask
8212 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
8214 /* If the comparison value is not a loop invariant, then we
8215 can not reverse this loop.
8217 ??? If the insns which initialize the comparison value as
8218 a whole compute an invariant result, then we could move
8219 them out of the loop and proceed with loop reversal. */
8220 if (! loop_invariant_p (loop, comparison_value))
8221 return 0;
8223 if (GET_CODE (comparison_value) == CONST_INT)
8224 comparison_val = INTVAL (comparison_value);
8225 initial_value = bl->initial_value;
8227 /* Normalize the initial value if it is an integer and
8228 has no other use except as a counter. This will allow
8229 a few more loops to be reversed. */
8230 if (no_use_except_counting
8231 && GET_CODE (comparison_value) == CONST_INT
8232 && GET_CODE (initial_value) == CONST_INT)
8234 comparison_val = comparison_val - INTVAL (bl->initial_value);
8235 /* The code below requires comparison_val to be a multiple
8236 of add_val in order to do the loop reversal, so
8237 round up comparison_val to a multiple of add_val.
8238 Since comparison_value is constant, we know that the
8239 current comparison code is LT. */
8240 comparison_val = comparison_val + add_val - 1;
8241 comparison_val
8242 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8243 /* We postpone overflow checks for COMPARISON_VAL here;
8244 even if there is an overflow, we might still be able to
8245 reverse the loop, if converting the loop exit test to
8246 NE is possible. */
8247 initial_value = const0_rtx;
8250 /* First check if we can do a vanilla loop reversal. */
8251 if (initial_value == const0_rtx
8252 /* If we have a decrement_and_branch_on_count,
8253 prefer the NE test, since this will allow that
8254 instruction to be generated. Note that we must
8255 use a vanilla loop reversal if the biv is used to
8256 calculate a giv or has a non-counting use. */
8257 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8258 && defined (HAVE_decrement_and_branch_on_count)
8259 && (! (add_val == 1 && loop->vtop
8260 && (bl->biv_count == 0
8261 || no_use_except_counting)))
8262 #endif
8263 && GET_CODE (comparison_value) == CONST_INT
8264 /* Now do postponed overflow checks on COMPARISON_VAL. */
8265 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8266 & comparison_sign_mask))
8268 /* Register will always be nonnegative, with value
8269 0 on last iteration */
8270 add_adjust = add_val;
8271 nonneg = 1;
8272 cmp_code = GE;
8274 else if (add_val == 1 && loop->vtop
8275 && (bl->biv_count == 0
8276 || no_use_except_counting))
8278 add_adjust = 0;
8279 cmp_code = NE;
8281 else
8282 return 0;
8284 if (GET_CODE (comparison) == LE)
8285 add_adjust -= add_val;
8287 /* If the initial value is not zero, or if the comparison
8288 value is not an exact multiple of the increment, then we
8289 can not reverse this loop. */
8290 if (initial_value == const0_rtx
8291 && GET_CODE (comparison_value) == CONST_INT)
8293 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8294 return 0;
8296 else
8298 if (! no_use_except_counting || add_val != 1)
8299 return 0;
8302 final_value = comparison_value;
8304 /* Reset these in case we normalized the initial value
8305 and comparison value above. */
8306 if (GET_CODE (comparison_value) == CONST_INT
8307 && GET_CODE (initial_value) == CONST_INT)
8309 comparison_value = GEN_INT (comparison_val);
8310 final_value
8311 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8313 bl->initial_value = initial_value;
8315 /* Save some info needed to produce the new insns. */
8316 reg = bl->biv->dest_reg;
8317 jump_label = condjump_label (PREV_INSN (loop_end));
8318 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
8320 /* Set start_value; if this is not a CONST_INT, we need
8321 to generate a SUB.
8322 Initialize biv to start_value before loop start.
8323 The old initializing insn will be deleted as a
8324 dead store by flow.c. */
8325 if (initial_value == const0_rtx
8326 && GET_CODE (comparison_value) == CONST_INT)
8328 start_value = GEN_INT (comparison_val - add_adjust);
8329 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
8331 else if (GET_CODE (initial_value) == CONST_INT)
8333 enum machine_mode mode = GET_MODE (reg);
8334 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8335 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
8337 if (add_insn == 0)
8338 return 0;
8340 start_value
8341 = gen_rtx_PLUS (mode, comparison_value, offset);
8342 loop_insn_hoist (loop, add_insn);
8343 if (GET_CODE (comparison) == LE)
8344 final_value = gen_rtx_PLUS (mode, comparison_value,
8345 GEN_INT (add_val));
8347 else if (! add_adjust)
8349 enum machine_mode mode = GET_MODE (reg);
8350 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
8351 initial_value);
8353 if (sub_insn == 0)
8354 return 0;
8355 start_value
8356 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8357 loop_insn_hoist (loop, sub_insn);
8359 else
8360 /* We could handle the other cases too, but it'll be
8361 better to have a testcase first. */
8362 return 0;
8364 /* We may not have a single insn which can increment a reg, so
8365 create a sequence to hold all the insns from expand_inc. */
8366 start_sequence ();
8367 expand_inc (reg, new_add_val);
8368 tem = get_insns ();
8369 end_sequence ();
8371 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
8372 delete_insn (bl->biv->insn);
8374 /* Update biv info to reflect its new status. */
8375 bl->biv->insn = p;
8376 bl->initial_value = start_value;
8377 bl->biv->add_val = new_add_val;
8379 /* Update loop info. */
8380 loop_info->initial_value = reg;
8381 loop_info->initial_equiv_value = reg;
8382 loop_info->final_value = const0_rtx;
8383 loop_info->final_equiv_value = const0_rtx;
8384 loop_info->comparison_value = const0_rtx;
8385 loop_info->comparison_code = cmp_code;
8386 loop_info->increment = new_add_val;
8388 /* Inc LABEL_NUSES so that delete_insn will
8389 not delete the label. */
8390 LABEL_NUSES (XEXP (jump_label, 0))++;
8392 /* Emit an insn after the end of the loop to set the biv's
8393 proper exit value if it is used anywhere outside the loop. */
8394 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8395 || ! bl->init_insn
8396 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8397 loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
8399 /* Delete compare/branch at end of loop. */
8400 delete_related_insns (PREV_INSN (loop_end));
8401 if (compare_and_branch == 2)
8402 delete_related_insns (first_compare);
8404 /* Add new compare/branch insn at end of loop. */
8405 start_sequence ();
8406 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8407 GET_MODE (reg), 0,
8408 XEXP (jump_label, 0));
8409 tem = get_insns ();
8410 end_sequence ();
8411 emit_jump_insn_before (tem, loop_end);
8413 for (tem = PREV_INSN (loop_end);
8414 tem && GET_CODE (tem) != JUMP_INSN;
8415 tem = PREV_INSN (tem))
8418 if (tem)
8419 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8421 if (nonneg)
8423 if (tem)
8425 /* Increment of LABEL_NUSES done above. */
8426 /* Register is now always nonnegative,
8427 so add REG_NONNEG note to the branch. */
8428 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
8429 REG_NOTES (tem));
8431 bl->nonneg = 1;
8434 /* No insn may reference both the reversed and another biv or it
8435 will fail (see comment near the top of the loop reversal
8436 code).
8437 Earlier on, we have verified that the biv has no use except
8438 counting, or it is the only biv in this function.
8439 However, the code that computes no_use_except_counting does
8440 not verify reg notes. It's possible to have an insn that
8441 references another biv, and has a REG_EQUAL note with an
8442 expression based on the reversed biv. To avoid this case,
8443 remove all REG_EQUAL notes based on the reversed biv
8444 here. */
8445 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8446 if (INSN_P (p))
8448 rtx *pnote;
8449 rtx set = single_set (p);
8450 /* If this is a set of a GIV based on the reversed biv, any
8451 REG_EQUAL notes should still be correct. */
8452 if (! set
8453 || GET_CODE (SET_DEST (set)) != REG
8454 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
8455 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
8456 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8457 for (pnote = &REG_NOTES (p); *pnote;)
8459 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8460 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8461 XEXP (*pnote, 0)))
8462 *pnote = XEXP (*pnote, 1);
8463 else
8464 pnote = &XEXP (*pnote, 1);
8468 /* Mark that this biv has been reversed. Each giv which depends
8469 on this biv, and which is also live past the end of the loop
8470 will have to be fixed up. */
8472 bl->reversed = 1;
8474 if (loop_dump_stream)
8476 fprintf (loop_dump_stream, "Reversed loop");
8477 if (bl->nonneg)
8478 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8479 else
8480 fprintf (loop_dump_stream, "\n");
8483 return 1;
8488 return 0;
8491 /* Verify whether the biv BL appears to be eliminable,
8492 based on the insns in the loop that refer to it.
8494 If ELIMINATE_P is nonzero, actually do the elimination.
8496 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8497 determine whether invariant insns should be placed inside or at the
8498 start of the loop. */
8500 static int
8501 maybe_eliminate_biv (const struct loop *loop, struct iv_class *bl,
8502 int eliminate_p, int threshold, int insn_count)
8504 struct loop_ivs *ivs = LOOP_IVS (loop);
8505 rtx reg = bl->biv->dest_reg;
8506 rtx p;
8508 /* Scan all insns in the loop, stopping if we find one that uses the
8509 biv in a way that we cannot eliminate. */
8511 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
8513 enum rtx_code code = GET_CODE (p);
8514 basic_block where_bb = 0;
8515 rtx where_insn = threshold >= insn_count ? 0 : p;
8516 rtx note;
8518 /* If this is a libcall that sets a giv, skip ahead to its end. */
8519 if (GET_RTX_CLASS (code) == 'i')
8521 note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8523 if (note)
8525 rtx last = XEXP (note, 0);
8526 rtx set = single_set (last);
8528 if (set && GET_CODE (SET_DEST (set)) == REG)
8530 unsigned int regno = REGNO (SET_DEST (set));
8532 if (regno < ivs->n_regs
8533 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
8534 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
8535 p = last;
8540 /* Closely examine the insn if the biv is mentioned. */
8541 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8542 && reg_mentioned_p (reg, PATTERN (p))
8543 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8544 eliminate_p, where_bb, where_insn))
8546 if (loop_dump_stream)
8547 fprintf (loop_dump_stream,
8548 "Cannot eliminate biv %d: biv used in insn %d.\n",
8549 bl->regno, INSN_UID (p));
8550 break;
8553 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
8554 if (eliminate_p
8555 && (note = find_reg_note (p, REG_EQUAL, NULL_RTX)) != NULL_RTX
8556 && reg_mentioned_p (reg, XEXP (note, 0)))
8557 remove_note (p, note);
8560 if (p == loop->end)
8562 if (loop_dump_stream)
8563 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8564 bl->regno, eliminate_p ? "was" : "can be");
8565 return 1;
8568 return 0;
8571 /* INSN and REFERENCE are instructions in the same insn chain.
8572 Return nonzero if INSN is first. */
8575 loop_insn_first_p (rtx insn, rtx reference)
8577 rtx p, q;
8579 for (p = insn, q = reference;;)
8581 /* Start with test for not first so that INSN == REFERENCE yields not
8582 first. */
8583 if (q == insn || ! p)
8584 return 0;
8585 if (p == reference || ! q)
8586 return 1;
8588 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8589 previous insn, hence the <= comparison below does not work if
8590 P is a note. */
8591 if (INSN_UID (p) < max_uid_for_loop
8592 && INSN_UID (q) < max_uid_for_loop
8593 && GET_CODE (p) != NOTE)
8594 return INSN_LUID (p) <= INSN_LUID (q);
8596 if (INSN_UID (p) >= max_uid_for_loop
8597 || GET_CODE (p) == NOTE)
8598 p = NEXT_INSN (p);
8599 if (INSN_UID (q) >= max_uid_for_loop)
8600 q = NEXT_INSN (q);
8604 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
8605 the offset that we have to take into account due to auto-increment /
8606 div derivation is zero. */
8607 static int
8608 biv_elimination_giv_has_0_offset (struct induction *biv,
8609 struct induction *giv, rtx insn)
8611 /* If the giv V had the auto-inc address optimization applied
8612 to it, and INSN occurs between the giv insn and the biv
8613 insn, then we'd have to adjust the value used here.
8614 This is rare, so we don't bother to make this possible. */
8615 if (giv->auto_inc_opt
8616 && ((loop_insn_first_p (giv->insn, insn)
8617 && loop_insn_first_p (insn, biv->insn))
8618 || (loop_insn_first_p (biv->insn, insn)
8619 && loop_insn_first_p (insn, giv->insn))))
8620 return 0;
8622 return 1;
8625 /* If BL appears in X (part of the pattern of INSN), see if we can
8626 eliminate its use. If so, return 1. If not, return 0.
8628 If BIV does not appear in X, return 1.
8630 If ELIMINATE_P is nonzero, actually do the elimination.
8631 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8632 Depending on how many items have been moved out of the loop, it
8633 will either be before INSN (when WHERE_INSN is nonzero) or at the
8634 start of the loop (when WHERE_INSN is zero). */
8636 static int
8637 maybe_eliminate_biv_1 (const struct loop *loop, rtx x, rtx insn,
8638 struct iv_class *bl, int eliminate_p,
8639 basic_block where_bb, rtx where_insn)
8641 enum rtx_code code = GET_CODE (x);
8642 rtx reg = bl->biv->dest_reg;
8643 enum machine_mode mode = GET_MODE (reg);
8644 struct induction *v;
8645 rtx arg, tem;
8646 #ifdef HAVE_cc0
8647 rtx new;
8648 #endif
8649 int arg_operand;
8650 const char *fmt;
8651 int i, j;
8653 switch (code)
8655 case REG:
8656 /* If we haven't already been able to do something with this BIV,
8657 we can't eliminate it. */
8658 if (x == reg)
8659 return 0;
8660 return 1;
8662 case SET:
8663 /* If this sets the BIV, it is not a problem. */
8664 if (SET_DEST (x) == reg)
8665 return 1;
8667 /* If this is an insn that defines a giv, it is also ok because
8668 it will go away when the giv is reduced. */
8669 for (v = bl->giv; v; v = v->next_iv)
8670 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8671 return 1;
8673 #ifdef HAVE_cc0
8674 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8676 /* Can replace with any giv that was reduced and
8677 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8678 Require a constant for MULT_VAL, so we know it's nonzero.
8679 ??? We disable this optimization to avoid potential
8680 overflows. */
8682 for (v = bl->giv; v; v = v->next_iv)
8683 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8684 && v->add_val == const0_rtx
8685 && ! v->ignore && ! v->maybe_dead && v->always_computable
8686 && v->mode == mode
8687 && 0)
8689 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8690 continue;
8692 if (! eliminate_p)
8693 return 1;
8695 /* If the giv has the opposite direction of change,
8696 then reverse the comparison. */
8697 if (INTVAL (v->mult_val) < 0)
8698 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8699 const0_rtx, v->new_reg);
8700 else
8701 new = v->new_reg;
8703 /* We can probably test that giv's reduced reg. */
8704 if (validate_change (insn, &SET_SRC (x), new, 0))
8705 return 1;
8708 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8709 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8710 Require a constant for MULT_VAL, so we know it's nonzero.
8711 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8712 overflow problem. */
8714 for (v = bl->giv; v; v = v->next_iv)
8715 if (GET_CODE (v->mult_val) == CONST_INT
8716 && v->mult_val != const0_rtx
8717 && ! v->ignore && ! v->maybe_dead && v->always_computable
8718 && v->mode == mode
8719 && (GET_CODE (v->add_val) == SYMBOL_REF
8720 || GET_CODE (v->add_val) == LABEL_REF
8721 || GET_CODE (v->add_val) == CONST
8722 || (GET_CODE (v->add_val) == REG
8723 && REG_POINTER (v->add_val))))
8725 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8726 continue;
8728 if (! eliminate_p)
8729 return 1;
8731 /* If the giv has the opposite direction of change,
8732 then reverse the comparison. */
8733 if (INTVAL (v->mult_val) < 0)
8734 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8735 v->new_reg);
8736 else
8737 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8738 copy_rtx (v->add_val));
8740 /* Replace biv with the giv's reduced register. */
8741 update_reg_last_use (v->add_val, insn);
8742 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8743 return 1;
8745 /* Insn doesn't support that constant or invariant. Copy it
8746 into a register (it will be a loop invariant.) */
8747 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8749 loop_insn_emit_before (loop, 0, where_insn,
8750 gen_move_insn (tem,
8751 copy_rtx (v->add_val)));
8753 /* Substitute the new register for its invariant value in
8754 the compare expression. */
8755 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8756 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8757 return 1;
8760 #endif
8761 break;
8763 case COMPARE:
8764 case EQ: case NE:
8765 case GT: case GE: case GTU: case GEU:
8766 case LT: case LE: case LTU: case LEU:
8767 /* See if either argument is the biv. */
8768 if (XEXP (x, 0) == reg)
8769 arg = XEXP (x, 1), arg_operand = 1;
8770 else if (XEXP (x, 1) == reg)
8771 arg = XEXP (x, 0), arg_operand = 0;
8772 else
8773 break;
8775 if (CONSTANT_P (arg))
8777 /* First try to replace with any giv that has constant positive
8778 mult_val and constant add_val. We might be able to support
8779 negative mult_val, but it seems complex to do it in general. */
8781 for (v = bl->giv; v; v = v->next_iv)
8782 if (GET_CODE (v->mult_val) == CONST_INT
8783 && INTVAL (v->mult_val) > 0
8784 && (GET_CODE (v->add_val) == SYMBOL_REF
8785 || GET_CODE (v->add_val) == LABEL_REF
8786 || GET_CODE (v->add_val) == CONST
8787 || (GET_CODE (v->add_val) == REG
8788 && REG_POINTER (v->add_val)))
8789 && ! v->ignore && ! v->maybe_dead && v->always_computable
8790 && v->mode == mode)
8792 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8793 continue;
8795 /* Don't eliminate if the linear combination that makes up
8796 the giv overflows when it is applied to ARG. */
8797 if (GET_CODE (arg) == CONST_INT)
8799 rtx add_val;
8801 if (GET_CODE (v->add_val) == CONST_INT)
8802 add_val = v->add_val;
8803 else
8804 add_val = const0_rtx;
8806 if (const_mult_add_overflow_p (arg, v->mult_val,
8807 add_val, mode, 1))
8808 continue;
8811 if (! eliminate_p)
8812 return 1;
8814 /* Replace biv with the giv's reduced reg. */
8815 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8817 /* If all constants are actually constant integers and
8818 the derived constant can be directly placed in the COMPARE,
8819 do so. */
8820 if (GET_CODE (arg) == CONST_INT
8821 && GET_CODE (v->add_val) == CONST_INT)
8823 tem = expand_mult_add (arg, NULL_RTX, v->mult_val,
8824 v->add_val, mode, 1);
8826 else
8828 /* Otherwise, load it into a register. */
8829 tem = gen_reg_rtx (mode);
8830 loop_iv_add_mult_emit_before (loop, arg,
8831 v->mult_val, v->add_val,
8832 tem, where_bb, where_insn);
8835 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8837 if (apply_change_group ())
8838 return 1;
8841 /* Look for giv with positive constant mult_val and nonconst add_val.
8842 Insert insns to calculate new compare value.
8843 ??? Turn this off due to possible overflow. */
8845 for (v = bl->giv; v; v = v->next_iv)
8846 if (GET_CODE (v->mult_val) == CONST_INT
8847 && INTVAL (v->mult_val) > 0
8848 && ! v->ignore && ! v->maybe_dead && v->always_computable
8849 && v->mode == mode
8850 && 0)
8852 rtx tem;
8854 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8855 continue;
8857 if (! eliminate_p)
8858 return 1;
8860 tem = gen_reg_rtx (mode);
8862 /* Replace biv with giv's reduced register. */
8863 validate_change (insn, &XEXP (x, 1 - arg_operand),
8864 v->new_reg, 1);
8866 /* Compute value to compare against. */
8867 loop_iv_add_mult_emit_before (loop, arg,
8868 v->mult_val, v->add_val,
8869 tem, where_bb, where_insn);
8870 /* Use it in this insn. */
8871 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8872 if (apply_change_group ())
8873 return 1;
8876 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8878 if (loop_invariant_p (loop, arg) == 1)
8880 /* Look for giv with constant positive mult_val and nonconst
8881 add_val. Insert insns to compute new compare value.
8882 ??? Turn this off due to possible overflow. */
8884 for (v = bl->giv; v; v = v->next_iv)
8885 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8886 && ! v->ignore && ! v->maybe_dead && v->always_computable
8887 && v->mode == mode
8888 && 0)
8890 rtx tem;
8892 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8893 continue;
8895 if (! eliminate_p)
8896 return 1;
8898 tem = gen_reg_rtx (mode);
8900 /* Replace biv with giv's reduced register. */
8901 validate_change (insn, &XEXP (x, 1 - arg_operand),
8902 v->new_reg, 1);
8904 /* Compute value to compare against. */
8905 loop_iv_add_mult_emit_before (loop, arg,
8906 v->mult_val, v->add_val,
8907 tem, where_bb, where_insn);
8908 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8909 if (apply_change_group ())
8910 return 1;
8914 /* This code has problems. Basically, you can't know when
8915 seeing if we will eliminate BL, whether a particular giv
8916 of ARG will be reduced. If it isn't going to be reduced,
8917 we can't eliminate BL. We can try forcing it to be reduced,
8918 but that can generate poor code.
8920 The problem is that the benefit of reducing TV, below should
8921 be increased if BL can actually be eliminated, but this means
8922 we might have to do a topological sort of the order in which
8923 we try to process biv. It doesn't seem worthwhile to do
8924 this sort of thing now. */
8926 #if 0
8927 /* Otherwise the reg compared with had better be a biv. */
8928 if (GET_CODE (arg) != REG
8929 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
8930 return 0;
8932 /* Look for a pair of givs, one for each biv,
8933 with identical coefficients. */
8934 for (v = bl->giv; v; v = v->next_iv)
8936 struct induction *tv;
8938 if (v->ignore || v->maybe_dead || v->mode != mode)
8939 continue;
8941 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
8942 tv = tv->next_iv)
8943 if (! tv->ignore && ! tv->maybe_dead
8944 && rtx_equal_p (tv->mult_val, v->mult_val)
8945 && rtx_equal_p (tv->add_val, v->add_val)
8946 && tv->mode == mode)
8948 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8949 continue;
8951 if (! eliminate_p)
8952 return 1;
8954 /* Replace biv with its giv's reduced reg. */
8955 XEXP (x, 1 - arg_operand) = v->new_reg;
8956 /* Replace other operand with the other giv's
8957 reduced reg. */
8958 XEXP (x, arg_operand) = tv->new_reg;
8959 return 1;
8962 #endif
8965 /* If we get here, the biv can't be eliminated. */
8966 return 0;
8968 case MEM:
8969 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8970 biv is used in it, since it will be replaced. */
8971 for (v = bl->giv; v; v = v->next_iv)
8972 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8973 return 1;
8974 break;
8976 default:
8977 break;
8980 /* See if any subexpression fails elimination. */
8981 fmt = GET_RTX_FORMAT (code);
8982 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8984 switch (fmt[i])
8986 case 'e':
8987 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8988 eliminate_p, where_bb, where_insn))
8989 return 0;
8990 break;
8992 case 'E':
8993 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8994 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8995 eliminate_p, where_bb, where_insn))
8996 return 0;
8997 break;
9001 return 1;
9004 /* Return nonzero if the last use of REG
9005 is in an insn following INSN in the same basic block. */
9007 static int
9008 last_use_this_basic_block (rtx reg, rtx insn)
9010 rtx n;
9011 for (n = insn;
9012 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
9013 n = NEXT_INSN (n))
9015 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
9016 return 1;
9018 return 0;
9021 /* Called via `note_stores' to record the initial value of a biv. Here we
9022 just record the location of the set and process it later. */
9024 static void
9025 record_initial (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
9027 struct loop_ivs *ivs = (struct loop_ivs *) data;
9028 struct iv_class *bl;
9030 if (GET_CODE (dest) != REG
9031 || REGNO (dest) >= ivs->n_regs
9032 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
9033 return;
9035 bl = REG_IV_CLASS (ivs, REGNO (dest));
9037 /* If this is the first set found, record it. */
9038 if (bl->init_insn == 0)
9040 bl->init_insn = note_insn;
9041 bl->init_set = set;
9045 /* If any of the registers in X are "old" and currently have a last use earlier
9046 than INSN, update them to have a last use of INSN. Their actual last use
9047 will be the previous insn but it will not have a valid uid_luid so we can't
9048 use it. X must be a source expression only. */
9050 static void
9051 update_reg_last_use (rtx x, rtx insn)
9053 /* Check for the case where INSN does not have a valid luid. In this case,
9054 there is no need to modify the regno_last_uid, as this can only happen
9055 when code is inserted after the loop_end to set a pseudo's final value,
9056 and hence this insn will never be the last use of x.
9057 ???? This comment is not correct. See for example loop_givs_reduce.
9058 This may insert an insn before another new insn. */
9059 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
9060 && INSN_UID (insn) < max_uid_for_loop
9061 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
9063 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
9065 else
9067 int i, j;
9068 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9069 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
9071 if (fmt[i] == 'e')
9072 update_reg_last_use (XEXP (x, i), insn);
9073 else if (fmt[i] == 'E')
9074 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9075 update_reg_last_use (XVECEXP (x, i, j), insn);
9080 /* Given an insn INSN and condition COND, return the condition in a
9081 canonical form to simplify testing by callers. Specifically:
9083 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9084 (2) Both operands will be machine operands; (cc0) will have been replaced.
9085 (3) If an operand is a constant, it will be the second operand.
9086 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9087 for GE, GEU, and LEU.
9089 If the condition cannot be understood, or is an inequality floating-point
9090 comparison which needs to be reversed, 0 will be returned.
9092 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
9094 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9095 insn used in locating the condition was found. If a replacement test
9096 of the condition is desired, it should be placed in front of that
9097 insn and we will be sure that the inputs are still valid.
9099 If WANT_REG is nonzero, we wish the condition to be relative to that
9100 register, if possible. Therefore, do not canonicalize the condition
9101 further. */
9104 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
9105 rtx want_reg)
9107 enum rtx_code code;
9108 rtx prev = insn;
9109 rtx set;
9110 rtx tem;
9111 rtx op0, op1;
9112 int reverse_code = 0;
9113 enum machine_mode mode;
9115 code = GET_CODE (cond);
9116 mode = GET_MODE (cond);
9117 op0 = XEXP (cond, 0);
9118 op1 = XEXP (cond, 1);
9120 if (reverse)
9121 code = reversed_comparison_code (cond, insn);
9122 if (code == UNKNOWN)
9123 return 0;
9125 if (earliest)
9126 *earliest = insn;
9128 /* If we are comparing a register with zero, see if the register is set
9129 in the previous insn to a COMPARE or a comparison operation. Perform
9130 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9131 in cse.c */
9133 while (GET_RTX_CLASS (code) == '<'
9134 && op1 == CONST0_RTX (GET_MODE (op0))
9135 && op0 != want_reg)
9137 /* Set nonzero when we find something of interest. */
9138 rtx x = 0;
9140 #ifdef HAVE_cc0
9141 /* If comparison with cc0, import actual comparison from compare
9142 insn. */
9143 if (op0 == cc0_rtx)
9145 if ((prev = prev_nonnote_insn (prev)) == 0
9146 || GET_CODE (prev) != INSN
9147 || (set = single_set (prev)) == 0
9148 || SET_DEST (set) != cc0_rtx)
9149 return 0;
9151 op0 = SET_SRC (set);
9152 op1 = CONST0_RTX (GET_MODE (op0));
9153 if (earliest)
9154 *earliest = prev;
9156 #endif
9158 /* If this is a COMPARE, pick up the two things being compared. */
9159 if (GET_CODE (op0) == COMPARE)
9161 op1 = XEXP (op0, 1);
9162 op0 = XEXP (op0, 0);
9163 continue;
9165 else if (GET_CODE (op0) != REG)
9166 break;
9168 /* Go back to the previous insn. Stop if it is not an INSN. We also
9169 stop if it isn't a single set or if it has a REG_INC note because
9170 we don't want to bother dealing with it. */
9172 if ((prev = prev_nonnote_insn (prev)) == 0
9173 || GET_CODE (prev) != INSN
9174 || FIND_REG_INC_NOTE (prev, NULL_RTX))
9175 break;
9177 set = set_of (op0, prev);
9179 if (set
9180 && (GET_CODE (set) != SET
9181 || !rtx_equal_p (SET_DEST (set), op0)))
9182 break;
9184 /* If this is setting OP0, get what it sets it to if it looks
9185 relevant. */
9186 if (set)
9188 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
9189 #ifdef FLOAT_STORE_FLAG_VALUE
9190 REAL_VALUE_TYPE fsfv;
9191 #endif
9193 /* ??? We may not combine comparisons done in a CCmode with
9194 comparisons not done in a CCmode. This is to aid targets
9195 like Alpha that have an IEEE compliant EQ instruction, and
9196 a non-IEEE compliant BEQ instruction. The use of CCmode is
9197 actually artificial, simply to prevent the combination, but
9198 should not affect other platforms.
9200 However, we must allow VOIDmode comparisons to match either
9201 CCmode or non-CCmode comparison, because some ports have
9202 modeless comparisons inside branch patterns.
9204 ??? This mode check should perhaps look more like the mode check
9205 in simplify_comparison in combine. */
9207 if ((GET_CODE (SET_SRC (set)) == COMPARE
9208 || (((code == NE
9209 || (code == LT
9210 && GET_MODE_CLASS (inner_mode) == MODE_INT
9211 && (GET_MODE_BITSIZE (inner_mode)
9212 <= HOST_BITS_PER_WIDE_INT)
9213 && (STORE_FLAG_VALUE
9214 & ((HOST_WIDE_INT) 1
9215 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9216 #ifdef FLOAT_STORE_FLAG_VALUE
9217 || (code == LT
9218 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9219 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9220 REAL_VALUE_NEGATIVE (fsfv)))
9221 #endif
9223 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9224 && (((GET_MODE_CLASS (mode) == MODE_CC)
9225 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9226 || mode == VOIDmode || inner_mode == VOIDmode))
9227 x = SET_SRC (set);
9228 else if (((code == EQ
9229 || (code == GE
9230 && (GET_MODE_BITSIZE (inner_mode)
9231 <= HOST_BITS_PER_WIDE_INT)
9232 && GET_MODE_CLASS (inner_mode) == MODE_INT
9233 && (STORE_FLAG_VALUE
9234 & ((HOST_WIDE_INT) 1
9235 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9236 #ifdef FLOAT_STORE_FLAG_VALUE
9237 || (code == GE
9238 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9239 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9240 REAL_VALUE_NEGATIVE (fsfv)))
9241 #endif
9243 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9244 && (((GET_MODE_CLASS (mode) == MODE_CC)
9245 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9246 || mode == VOIDmode || inner_mode == VOIDmode))
9249 reverse_code = 1;
9250 x = SET_SRC (set);
9252 else
9253 break;
9256 else if (reg_set_p (op0, prev))
9257 /* If this sets OP0, but not directly, we have to give up. */
9258 break;
9260 if (x)
9262 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9263 code = GET_CODE (x);
9264 if (reverse_code)
9266 code = reversed_comparison_code (x, prev);
9267 if (code == UNKNOWN)
9268 return 0;
9269 reverse_code = 0;
9272 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9273 if (earliest)
9274 *earliest = prev;
9278 /* If constant is first, put it last. */
9279 if (CONSTANT_P (op0))
9280 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9282 /* If OP0 is the result of a comparison, we weren't able to find what
9283 was really being compared, so fail. */
9284 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9285 return 0;
9287 /* Canonicalize any ordered comparison with integers involving equality
9288 if we can do computations in the relevant mode and we do not
9289 overflow. */
9291 if (GET_CODE (op1) == CONST_INT
9292 && GET_MODE (op0) != VOIDmode
9293 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9295 HOST_WIDE_INT const_val = INTVAL (op1);
9296 unsigned HOST_WIDE_INT uconst_val = const_val;
9297 unsigned HOST_WIDE_INT max_val
9298 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9300 switch (code)
9302 case LE:
9303 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9304 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
9305 break;
9307 /* When cross-compiling, const_val might be sign-extended from
9308 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9309 case GE:
9310 if ((HOST_WIDE_INT) (const_val & max_val)
9311 != (((HOST_WIDE_INT) 1
9312 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9313 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
9314 break;
9316 case LEU:
9317 if (uconst_val < max_val)
9318 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
9319 break;
9321 case GEU:
9322 if (uconst_val != 0)
9323 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
9324 break;
9326 default:
9327 break;
9331 /* Never return CC0; return zero instead. */
9332 if (CC0_P (op0))
9333 return 0;
9335 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9338 /* Given a jump insn JUMP, return the condition that will cause it to branch
9339 to its JUMP_LABEL. If the condition cannot be understood, or is an
9340 inequality floating-point comparison which needs to be reversed, 0 will
9341 be returned.
9343 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9344 insn used in locating the condition was found. If a replacement test
9345 of the condition is desired, it should be placed in front of that
9346 insn and we will be sure that the inputs are still valid. */
9349 get_condition (rtx jump, rtx *earliest)
9351 rtx cond;
9352 int reverse;
9353 rtx set;
9355 /* If this is not a standard conditional jump, we can't parse it. */
9356 if (GET_CODE (jump) != JUMP_INSN
9357 || ! any_condjump_p (jump))
9358 return 0;
9359 set = pc_set (jump);
9361 cond = XEXP (SET_SRC (set), 0);
9363 /* If this branches to JUMP_LABEL when the condition is false, reverse
9364 the condition. */
9365 reverse
9366 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9367 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9369 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9372 /* Similar to above routine, except that we also put an invariant last
9373 unless both operands are invariants. */
9376 get_condition_for_loop (const struct loop *loop, rtx x)
9378 rtx comparison = get_condition (x, (rtx*) 0);
9380 if (comparison == 0
9381 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9382 || loop_invariant_p (loop, XEXP (comparison, 1)))
9383 return comparison;
9385 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9386 XEXP (comparison, 1), XEXP (comparison, 0));
9389 /* Scan the function and determine whether it has indirect (computed) jumps.
9391 This is taken mostly from flow.c; similar code exists elsewhere
9392 in the compiler. It may be useful to put this into rtlanal.c. */
9393 static int
9394 indirect_jump_in_function_p (rtx start)
9396 rtx insn;
9398 for (insn = start; insn; insn = NEXT_INSN (insn))
9399 if (computed_jump_p (insn))
9400 return 1;
9402 return 0;
9405 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9406 documentation for LOOP_MEMS for the definition of `appropriate'.
9407 This function is called from prescan_loop via for_each_rtx. */
9409 static int
9410 insert_loop_mem (rtx *mem, void *data ATTRIBUTE_UNUSED)
9412 struct loop_info *loop_info = data;
9413 int i;
9414 rtx m = *mem;
9416 if (m == NULL_RTX)
9417 return 0;
9419 switch (GET_CODE (m))
9421 case MEM:
9422 break;
9424 case CLOBBER:
9425 /* We're not interested in MEMs that are only clobbered. */
9426 return -1;
9428 case CONST_DOUBLE:
9429 /* We're not interested in the MEM associated with a
9430 CONST_DOUBLE, so there's no need to traverse into this. */
9431 return -1;
9433 case EXPR_LIST:
9434 /* We're not interested in any MEMs that only appear in notes. */
9435 return -1;
9437 default:
9438 /* This is not a MEM. */
9439 return 0;
9442 /* See if we've already seen this MEM. */
9443 for (i = 0; i < loop_info->mems_idx; ++i)
9444 if (rtx_equal_p (m, loop_info->mems[i].mem))
9446 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
9447 /* The modes of the two memory accesses are different. If
9448 this happens, something tricky is going on, and we just
9449 don't optimize accesses to this MEM. */
9450 loop_info->mems[i].optimize = 0;
9452 return 0;
9455 /* Resize the array, if necessary. */
9456 if (loop_info->mems_idx == loop_info->mems_allocated)
9458 if (loop_info->mems_allocated != 0)
9459 loop_info->mems_allocated *= 2;
9460 else
9461 loop_info->mems_allocated = 32;
9463 loop_info->mems = (loop_mem_info *)
9464 xrealloc (loop_info->mems,
9465 loop_info->mems_allocated * sizeof (loop_mem_info));
9468 /* Actually insert the MEM. */
9469 loop_info->mems[loop_info->mems_idx].mem = m;
9470 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9471 because we can't put it in a register. We still store it in the
9472 table, though, so that if we see the same address later, but in a
9473 non-BLK mode, we'll not think we can optimize it at that point. */
9474 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
9475 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
9476 ++loop_info->mems_idx;
9478 return 0;
9482 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9484 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9485 register that is modified by an insn between FROM and TO. If the
9486 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9487 more, stop incrementing it, to avoid overflow.
9489 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9490 register I is used, if it is only used once. Otherwise, it is set
9491 to 0 (for no uses) or const0_rtx for more than one use. This
9492 parameter may be zero, in which case this processing is not done.
9494 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9495 optimize register I. */
9497 static void
9498 loop_regs_scan (const struct loop *loop, int extra_size)
9500 struct loop_regs *regs = LOOP_REGS (loop);
9501 int old_nregs;
9502 /* last_set[n] is nonzero iff reg n has been set in the current
9503 basic block. In that case, it is the insn that last set reg n. */
9504 rtx *last_set;
9505 rtx insn;
9506 int i;
9508 old_nregs = regs->num;
9509 regs->num = max_reg_num ();
9511 /* Grow the regs array if not allocated or too small. */
9512 if (regs->num >= regs->size)
9514 regs->size = regs->num + extra_size;
9516 regs->array = (struct loop_reg *)
9517 xrealloc (regs->array, regs->size * sizeof (*regs->array));
9519 /* Zero the new elements. */
9520 memset (regs->array + old_nregs, 0,
9521 (regs->size - old_nregs) * sizeof (*regs->array));
9524 /* Clear previously scanned fields but do not clear n_times_set. */
9525 for (i = 0; i < old_nregs; i++)
9527 regs->array[i].set_in_loop = 0;
9528 regs->array[i].may_not_optimize = 0;
9529 regs->array[i].single_usage = NULL_RTX;
9532 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
9534 /* Scan the loop, recording register usage. */
9535 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9536 insn = NEXT_INSN (insn))
9538 if (INSN_P (insn))
9540 /* Record registers that have exactly one use. */
9541 find_single_use_in_loop (regs, insn, PATTERN (insn));
9543 /* Include uses in REG_EQUAL notes. */
9544 if (REG_NOTES (insn))
9545 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
9547 if (GET_CODE (PATTERN (insn)) == SET
9548 || GET_CODE (PATTERN (insn)) == CLOBBER)
9549 count_one_set (regs, insn, PATTERN (insn), last_set);
9550 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9552 int i;
9553 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9554 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
9555 last_set);
9559 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
9560 memset (last_set, 0, regs->num * sizeof (rtx));
9562 /* Invalidate all registers used for function argument passing.
9563 We check rtx_varies_p for the same reason as below, to allow
9564 optimizing PIC calculations. */
9565 if (GET_CODE (insn) == CALL_INSN)
9567 rtx link;
9568 for (link = CALL_INSN_FUNCTION_USAGE (insn);
9569 link;
9570 link = XEXP (link, 1))
9572 rtx op, reg;
9574 if (GET_CODE (op = XEXP (link, 0)) == USE
9575 && GET_CODE (reg = XEXP (op, 0)) == REG
9576 && rtx_varies_p (reg, 1))
9577 regs->array[REGNO (reg)].may_not_optimize = 1;
9582 /* Invalidate all hard registers clobbered by calls. With one exception:
9583 a call-clobbered PIC register is still function-invariant for our
9584 purposes, since we can hoist any PIC calculations out of the loop.
9585 Thus the call to rtx_varies_p. */
9586 if (LOOP_INFO (loop)->has_call)
9587 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9588 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
9589 && rtx_varies_p (regno_reg_rtx[i], 1))
9591 regs->array[i].may_not_optimize = 1;
9592 regs->array[i].set_in_loop = 1;
9595 #ifdef AVOID_CCMODE_COPIES
9596 /* Don't try to move insns which set CC registers if we should not
9597 create CCmode register copies. */
9598 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9599 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9600 regs->array[i].may_not_optimize = 1;
9601 #endif
9603 /* Set regs->array[I].n_times_set for the new registers. */
9604 for (i = old_nregs; i < regs->num; i++)
9605 regs->array[i].n_times_set = regs->array[i].set_in_loop;
9607 free (last_set);
9610 /* Returns the number of real INSNs in the LOOP. */
9612 static int
9613 count_insns_in_loop (const struct loop *loop)
9615 int count = 0;
9616 rtx insn;
9618 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9619 insn = NEXT_INSN (insn))
9620 if (INSN_P (insn))
9621 ++count;
9623 return count;
9626 /* Move MEMs into registers for the duration of the loop. */
9628 static void
9629 load_mems (const struct loop *loop)
9631 struct loop_info *loop_info = LOOP_INFO (loop);
9632 struct loop_regs *regs = LOOP_REGS (loop);
9633 int maybe_never = 0;
9634 int i;
9635 rtx p, prev_ebb_head;
9636 rtx label = NULL_RTX;
9637 rtx end_label;
9638 /* Nonzero if the next instruction may never be executed. */
9639 int next_maybe_never = 0;
9640 unsigned int last_max_reg = max_reg_num ();
9642 if (loop_info->mems_idx == 0)
9643 return;
9645 /* We cannot use next_label here because it skips over normal insns. */
9646 end_label = next_nonnote_insn (loop->end);
9647 if (end_label && GET_CODE (end_label) != CODE_LABEL)
9648 end_label = NULL_RTX;
9650 /* Check to see if it's possible that some instructions in the loop are
9651 never executed. Also check if there is a goto out of the loop other
9652 than right after the end of the loop. */
9653 for (p = next_insn_in_loop (loop, loop->scan_start);
9654 p != NULL_RTX;
9655 p = next_insn_in_loop (loop, p))
9657 if (GET_CODE (p) == CODE_LABEL)
9658 maybe_never = 1;
9659 else if (GET_CODE (p) == JUMP_INSN
9660 /* If we enter the loop in the middle, and scan
9661 around to the beginning, don't set maybe_never
9662 for that. This must be an unconditional jump,
9663 otherwise the code at the top of the loop might
9664 never be executed. Unconditional jumps are
9665 followed a by barrier then loop end. */
9666 && ! (GET_CODE (p) == JUMP_INSN
9667 && JUMP_LABEL (p) == loop->top
9668 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9669 && any_uncondjump_p (p)))
9671 /* If this is a jump outside of the loop but not right
9672 after the end of the loop, we would have to emit new fixup
9673 sequences for each such label. */
9674 if (/* If we can't tell where control might go when this
9675 JUMP_INSN is executed, we must be conservative. */
9676 !JUMP_LABEL (p)
9677 || (JUMP_LABEL (p) != end_label
9678 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
9679 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
9680 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
9681 return;
9683 if (!any_condjump_p (p))
9684 /* Something complicated. */
9685 maybe_never = 1;
9686 else
9687 /* If there are any more instructions in the loop, they
9688 might not be reached. */
9689 next_maybe_never = 1;
9691 else if (next_maybe_never)
9692 maybe_never = 1;
9695 /* Find start of the extended basic block that enters the loop. */
9696 for (p = loop->start;
9697 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9698 p = PREV_INSN (p))
9700 prev_ebb_head = p;
9702 cselib_init ();
9704 /* Build table of mems that get set to constant values before the
9705 loop. */
9706 for (; p != loop->start; p = NEXT_INSN (p))
9707 cselib_process_insn (p);
9709 /* Actually move the MEMs. */
9710 for (i = 0; i < loop_info->mems_idx; ++i)
9712 regset_head load_copies;
9713 regset_head store_copies;
9714 int written = 0;
9715 rtx reg;
9716 rtx mem = loop_info->mems[i].mem;
9717 rtx mem_list_entry;
9719 if (MEM_VOLATILE_P (mem)
9720 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9721 /* There's no telling whether or not MEM is modified. */
9722 loop_info->mems[i].optimize = 0;
9724 /* Go through the MEMs written to in the loop to see if this
9725 one is aliased by one of them. */
9726 mem_list_entry = loop_info->store_mems;
9727 while (mem_list_entry)
9729 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9730 written = 1;
9731 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9732 mem, rtx_varies_p))
9734 /* MEM is indeed aliased by this store. */
9735 loop_info->mems[i].optimize = 0;
9736 break;
9738 mem_list_entry = XEXP (mem_list_entry, 1);
9741 if (flag_float_store && written
9742 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9743 loop_info->mems[i].optimize = 0;
9745 /* If this MEM is written to, we must be sure that there
9746 are no reads from another MEM that aliases this one. */
9747 if (loop_info->mems[i].optimize && written)
9749 int j;
9751 for (j = 0; j < loop_info->mems_idx; ++j)
9753 if (j == i)
9754 continue;
9755 else if (true_dependence (mem,
9756 VOIDmode,
9757 loop_info->mems[j].mem,
9758 rtx_varies_p))
9760 /* It's not safe to hoist loop_info->mems[i] out of
9761 the loop because writes to it might not be
9762 seen by reads from loop_info->mems[j]. */
9763 loop_info->mems[i].optimize = 0;
9764 break;
9769 if (maybe_never && may_trap_p (mem))
9770 /* We can't access the MEM outside the loop; it might
9771 cause a trap that wouldn't have happened otherwise. */
9772 loop_info->mems[i].optimize = 0;
9774 if (!loop_info->mems[i].optimize)
9775 /* We thought we were going to lift this MEM out of the
9776 loop, but later discovered that we could not. */
9777 continue;
9779 INIT_REG_SET (&load_copies);
9780 INIT_REG_SET (&store_copies);
9782 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9783 order to keep scan_loop from moving stores to this MEM
9784 out of the loop just because this REG is neither a
9785 user-variable nor used in the loop test. */
9786 reg = gen_reg_rtx (GET_MODE (mem));
9787 REG_USERVAR_P (reg) = 1;
9788 loop_info->mems[i].reg = reg;
9790 /* Now, replace all references to the MEM with the
9791 corresponding pseudos. */
9792 maybe_never = 0;
9793 for (p = next_insn_in_loop (loop, loop->scan_start);
9794 p != NULL_RTX;
9795 p = next_insn_in_loop (loop, p))
9797 if (INSN_P (p))
9799 rtx set;
9801 set = single_set (p);
9803 /* See if this copies the mem into a register that isn't
9804 modified afterwards. We'll try to do copy propagation
9805 a little further on. */
9806 if (set
9807 /* @@@ This test is _way_ too conservative. */
9808 && ! maybe_never
9809 && GET_CODE (SET_DEST (set)) == REG
9810 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9811 && REGNO (SET_DEST (set)) < last_max_reg
9812 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9813 && rtx_equal_p (SET_SRC (set), mem))
9814 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9816 /* See if this copies the mem from a register that isn't
9817 modified afterwards. We'll try to remove the
9818 redundant copy later on by doing a little register
9819 renaming and copy propagation. This will help
9820 to untangle things for the BIV detection code. */
9821 if (set
9822 && ! maybe_never
9823 && GET_CODE (SET_SRC (set)) == REG
9824 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9825 && REGNO (SET_SRC (set)) < last_max_reg
9826 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9827 && rtx_equal_p (SET_DEST (set), mem))
9828 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9830 /* If this is a call which uses / clobbers this memory
9831 location, we must not change the interface here. */
9832 if (GET_CODE (p) == CALL_INSN
9833 && reg_mentioned_p (loop_info->mems[i].mem,
9834 CALL_INSN_FUNCTION_USAGE (p)))
9836 cancel_changes (0);
9837 loop_info->mems[i].optimize = 0;
9838 break;
9840 else
9841 /* Replace the memory reference with the shadow register. */
9842 replace_loop_mems (p, loop_info->mems[i].mem,
9843 loop_info->mems[i].reg, written);
9846 if (GET_CODE (p) == CODE_LABEL
9847 || GET_CODE (p) == JUMP_INSN)
9848 maybe_never = 1;
9851 if (! loop_info->mems[i].optimize)
9852 ; /* We found we couldn't do the replacement, so do nothing. */
9853 else if (! apply_change_group ())
9854 /* We couldn't replace all occurrences of the MEM. */
9855 loop_info->mems[i].optimize = 0;
9856 else
9858 /* Load the memory immediately before LOOP->START, which is
9859 the NOTE_LOOP_BEG. */
9860 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9861 rtx set;
9862 rtx best = mem;
9863 int j;
9864 struct elt_loc_list *const_equiv = 0;
9866 if (e)
9868 struct elt_loc_list *equiv;
9869 struct elt_loc_list *best_equiv = 0;
9870 for (equiv = e->locs; equiv; equiv = equiv->next)
9872 if (CONSTANT_P (equiv->loc))
9873 const_equiv = equiv;
9874 else if (GET_CODE (equiv->loc) == REG
9875 /* Extending hard register lifetimes causes crash
9876 on SRC targets. Doing so on non-SRC is
9877 probably also not good idea, since we most
9878 probably have pseudoregister equivalence as
9879 well. */
9880 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9881 best_equiv = equiv;
9883 /* Use the constant equivalence if that is cheap enough. */
9884 if (! best_equiv)
9885 best_equiv = const_equiv;
9886 else if (const_equiv
9887 && (rtx_cost (const_equiv->loc, SET)
9888 <= rtx_cost (best_equiv->loc, SET)))
9890 best_equiv = const_equiv;
9891 const_equiv = 0;
9894 /* If best_equiv is nonzero, we know that MEM is set to a
9895 constant or register before the loop. We will use this
9896 knowledge to initialize the shadow register with that
9897 constant or reg rather than by loading from MEM. */
9898 if (best_equiv)
9899 best = copy_rtx (best_equiv->loc);
9902 set = gen_move_insn (reg, best);
9903 set = loop_insn_hoist (loop, set);
9904 if (REG_P (best))
9906 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
9907 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
9909 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
9910 break;
9914 if (const_equiv)
9915 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
9917 if (written)
9919 if (label == NULL_RTX)
9921 label = gen_label_rtx ();
9922 emit_label_after (label, loop->end);
9925 /* Store the memory immediately after END, which is
9926 the NOTE_LOOP_END. */
9927 set = gen_move_insn (copy_rtx (mem), reg);
9928 loop_insn_emit_after (loop, 0, label, set);
9931 if (loop_dump_stream)
9933 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9934 REGNO (reg), (written ? "r/w" : "r/o"));
9935 print_rtl (loop_dump_stream, mem);
9936 fputc ('\n', loop_dump_stream);
9939 /* Attempt a bit of copy propagation. This helps untangle the
9940 data flow, and enables {basic,general}_induction_var to find
9941 more bivs/givs. */
9942 EXECUTE_IF_SET_IN_REG_SET
9943 (&load_copies, FIRST_PSEUDO_REGISTER, j,
9945 try_copy_prop (loop, reg, j);
9947 CLEAR_REG_SET (&load_copies);
9949 EXECUTE_IF_SET_IN_REG_SET
9950 (&store_copies, FIRST_PSEUDO_REGISTER, j,
9952 try_swap_copy_prop (loop, reg, j);
9954 CLEAR_REG_SET (&store_copies);
9958 if (label != NULL_RTX && end_label != NULL_RTX)
9960 /* Now, we need to replace all references to the previous exit
9961 label with the new one. */
9962 replace_label_data rr;
9963 rr.r1 = end_label;
9964 rr.r2 = label;
9965 rr.update_label_nuses = true;
9967 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9969 for_each_rtx (&p, replace_label, &rr);
9973 cselib_finish ();
9976 /* For communication between note_reg_stored and its caller. */
9977 struct note_reg_stored_arg
9979 int set_seen;
9980 rtx reg;
9983 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9984 is equal to ARG. */
9985 static void
9986 note_reg_stored (rtx x, rtx setter ATTRIBUTE_UNUSED, void *arg)
9988 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
9989 if (t->reg == x)
9990 t->set_seen = 1;
9993 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9994 There must be exactly one insn that sets this pseudo; it will be
9995 deleted if all replacements succeed and we can prove that the register
9996 is not used after the loop. */
9998 static void
9999 try_copy_prop (const struct loop *loop, rtx replacement, unsigned int regno)
10001 /* This is the reg that we are copying from. */
10002 rtx reg_rtx = regno_reg_rtx[regno];
10003 rtx init_insn = 0;
10004 rtx insn;
10005 /* These help keep track of whether we replaced all uses of the reg. */
10006 int replaced_last = 0;
10007 int store_is_first = 0;
10009 for (insn = next_insn_in_loop (loop, loop->scan_start);
10010 insn != NULL_RTX;
10011 insn = next_insn_in_loop (loop, insn))
10013 rtx set;
10015 /* Only substitute within one extended basic block from the initializing
10016 insn. */
10017 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10018 break;
10020 if (! INSN_P (insn))
10021 continue;
10023 /* Is this the initializing insn? */
10024 set = single_set (insn);
10025 if (set
10026 && GET_CODE (SET_DEST (set)) == REG
10027 && REGNO (SET_DEST (set)) == regno)
10029 if (init_insn)
10030 abort ();
10032 init_insn = insn;
10033 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10034 store_is_first = 1;
10037 /* Only substitute after seeing the initializing insn. */
10038 if (init_insn && insn != init_insn)
10040 struct note_reg_stored_arg arg;
10042 replace_loop_regs (insn, reg_rtx, replacement);
10043 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10044 replaced_last = 1;
10046 /* Stop replacing when REPLACEMENT is modified. */
10047 arg.reg = replacement;
10048 arg.set_seen = 0;
10049 note_stores (PATTERN (insn), note_reg_stored, &arg);
10050 if (arg.set_seen)
10052 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
10054 /* It is possible that we've turned previously valid REG_EQUAL to
10055 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10056 REPLACEMENT is modified, we get different meaning. */
10057 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
10058 remove_note (insn, note);
10059 break;
10063 if (! init_insn)
10064 abort ();
10065 if (apply_change_group ())
10067 if (loop_dump_stream)
10068 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10069 if (store_is_first && replaced_last)
10071 rtx first;
10072 rtx retval_note;
10074 /* Assume we're just deleting INIT_INSN. */
10075 first = init_insn;
10076 /* Look for REG_RETVAL note. If we're deleting the end of
10077 the libcall sequence, the whole sequence can go. */
10078 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
10079 /* If we found a REG_RETVAL note, find the first instruction
10080 in the sequence. */
10081 if (retval_note)
10082 first = XEXP (retval_note, 0);
10084 /* Delete the instructions. */
10085 loop_delete_insns (first, init_insn);
10087 if (loop_dump_stream)
10088 fprintf (loop_dump_stream, ".\n");
10092 /* Replace all the instructions from FIRST up to and including LAST
10093 with NOTE_INSN_DELETED notes. */
10095 static void
10096 loop_delete_insns (rtx first, rtx last)
10098 while (1)
10100 if (loop_dump_stream)
10101 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10102 INSN_UID (first));
10103 delete_insn (first);
10105 /* If this was the LAST instructions we're supposed to delete,
10106 we're done. */
10107 if (first == last)
10108 break;
10110 first = NEXT_INSN (first);
10114 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10115 loop LOOP if the order of the sets of these registers can be
10116 swapped. There must be exactly one insn within the loop that sets
10117 this pseudo followed immediately by a move insn that sets
10118 REPLACEMENT with REGNO. */
10119 static void
10120 try_swap_copy_prop (const struct loop *loop, rtx replacement,
10121 unsigned int regno)
10123 rtx insn;
10124 rtx set = NULL_RTX;
10125 unsigned int new_regno;
10127 new_regno = REGNO (replacement);
10129 for (insn = next_insn_in_loop (loop, loop->scan_start);
10130 insn != NULL_RTX;
10131 insn = next_insn_in_loop (loop, insn))
10133 /* Search for the insn that copies REGNO to NEW_REGNO? */
10134 if (INSN_P (insn)
10135 && (set = single_set (insn))
10136 && GET_CODE (SET_DEST (set)) == REG
10137 && REGNO (SET_DEST (set)) == new_regno
10138 && GET_CODE (SET_SRC (set)) == REG
10139 && REGNO (SET_SRC (set)) == regno)
10140 break;
10143 if (insn != NULL_RTX)
10145 rtx prev_insn;
10146 rtx prev_set;
10148 /* Some DEF-USE info would come in handy here to make this
10149 function more general. For now, just check the previous insn
10150 which is the most likely candidate for setting REGNO. */
10152 prev_insn = PREV_INSN (insn);
10154 if (INSN_P (insn)
10155 && (prev_set = single_set (prev_insn))
10156 && GET_CODE (SET_DEST (prev_set)) == REG
10157 && REGNO (SET_DEST (prev_set)) == regno)
10159 /* We have:
10160 (set (reg regno) (expr))
10161 (set (reg new_regno) (reg regno))
10163 so try converting this to:
10164 (set (reg new_regno) (expr))
10165 (set (reg regno) (reg new_regno))
10167 The former construct is often generated when a global
10168 variable used for an induction variable is shadowed by a
10169 register (NEW_REGNO). The latter construct improves the
10170 chances of GIV replacement and BIV elimination. */
10172 validate_change (prev_insn, &SET_DEST (prev_set),
10173 replacement, 1);
10174 validate_change (insn, &SET_DEST (set),
10175 SET_SRC (set), 1);
10176 validate_change (insn, &SET_SRC (set),
10177 replacement, 1);
10179 if (apply_change_group ())
10181 if (loop_dump_stream)
10182 fprintf (loop_dump_stream,
10183 " Swapped set of reg %d at %d with reg %d at %d.\n",
10184 regno, INSN_UID (insn),
10185 new_regno, INSN_UID (prev_insn));
10187 /* Update first use of REGNO. */
10188 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
10189 REGNO_FIRST_UID (regno) = INSN_UID (insn);
10191 /* Now perform copy propagation to hopefully
10192 remove all uses of REGNO within the loop. */
10193 try_copy_prop (loop, replacement, regno);
10199 /* Worker function for find_mem_in_note, called via for_each_rtx. */
10201 static int
10202 find_mem_in_note_1 (rtx *x, void *data)
10204 if (*x != NULL_RTX && GET_CODE (*x) == MEM)
10206 rtx *res = (rtx *) data;
10207 *res = *x;
10208 return 1;
10210 return 0;
10213 /* Returns the first MEM found in NOTE by depth-first search. */
10215 static rtx
10216 find_mem_in_note (rtx note)
10218 if (note && for_each_rtx (&note, find_mem_in_note_1, &note))
10219 return note;
10220 return NULL_RTX;
10223 /* Replace MEM with its associated pseudo register. This function is
10224 called from load_mems via for_each_rtx. DATA is actually a pointer
10225 to a structure describing the instruction currently being scanned
10226 and the MEM we are currently replacing. */
10228 static int
10229 replace_loop_mem (rtx *mem, void *data)
10231 loop_replace_args *args = (loop_replace_args *) data;
10232 rtx m = *mem;
10234 if (m == NULL_RTX)
10235 return 0;
10237 switch (GET_CODE (m))
10239 case MEM:
10240 break;
10242 case CONST_DOUBLE:
10243 /* We're not interested in the MEM associated with a
10244 CONST_DOUBLE, so there's no need to traverse into one. */
10245 return -1;
10247 default:
10248 /* This is not a MEM. */
10249 return 0;
10252 if (!rtx_equal_p (args->match, m))
10253 /* This is not the MEM we are currently replacing. */
10254 return 0;
10256 /* Actually replace the MEM. */
10257 validate_change (args->insn, mem, args->replacement, 1);
10259 return 0;
10262 static void
10263 replace_loop_mems (rtx insn, rtx mem, rtx reg, int written)
10265 loop_replace_args args;
10267 args.insn = insn;
10268 args.match = mem;
10269 args.replacement = reg;
10271 for_each_rtx (&insn, replace_loop_mem, &args);
10273 /* If we hoist a mem write out of the loop, then REG_EQUAL
10274 notes referring to the mem are no longer valid. */
10275 if (written)
10277 rtx note, sub;
10278 rtx *link;
10280 for (link = &REG_NOTES (insn); (note = *link); link = &XEXP (note, 1))
10282 if (REG_NOTE_KIND (note) == REG_EQUAL
10283 && (sub = find_mem_in_note (note))
10284 && true_dependence (mem, VOIDmode, sub, rtx_varies_p))
10286 /* Remove the note. */
10287 validate_change (NULL_RTX, link, XEXP (note, 1), 1);
10288 break;
10294 /* Replace one register with another. Called through for_each_rtx; PX points
10295 to the rtx being scanned. DATA is actually a pointer to
10296 a structure of arguments. */
10298 static int
10299 replace_loop_reg (rtx *px, void *data)
10301 rtx x = *px;
10302 loop_replace_args *args = (loop_replace_args *) data;
10304 if (x == NULL_RTX)
10305 return 0;
10307 if (x == args->match)
10308 validate_change (args->insn, px, args->replacement, 1);
10310 return 0;
10313 static void
10314 replace_loop_regs (rtx insn, rtx reg, rtx replacement)
10316 loop_replace_args args;
10318 args.insn = insn;
10319 args.match = reg;
10320 args.replacement = replacement;
10322 for_each_rtx (&insn, replace_loop_reg, &args);
10325 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10326 (ignored in the interim). */
10328 static rtx
10329 loop_insn_emit_after (const struct loop *loop ATTRIBUTE_UNUSED,
10330 basic_block where_bb ATTRIBUTE_UNUSED, rtx where_insn,
10331 rtx pattern)
10333 return emit_insn_after (pattern, where_insn);
10337 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
10338 in basic block WHERE_BB (ignored in the interim) within the loop
10339 otherwise hoist PATTERN into the loop pre-header. */
10342 loop_insn_emit_before (const struct loop *loop,
10343 basic_block where_bb ATTRIBUTE_UNUSED,
10344 rtx where_insn, rtx pattern)
10346 if (! where_insn)
10347 return loop_insn_hoist (loop, pattern);
10348 return emit_insn_before (pattern, where_insn);
10352 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10353 WHERE_BB (ignored in the interim) within the loop. */
10355 static rtx
10356 loop_call_insn_emit_before (const struct loop *loop ATTRIBUTE_UNUSED,
10357 basic_block where_bb ATTRIBUTE_UNUSED,
10358 rtx where_insn, rtx pattern)
10360 return emit_call_insn_before (pattern, where_insn);
10364 /* Hoist insn for PATTERN into the loop pre-header. */
10367 loop_insn_hoist (const struct loop *loop, rtx pattern)
10369 return loop_insn_emit_before (loop, 0, loop->start, pattern);
10373 /* Hoist call insn for PATTERN into the loop pre-header. */
10375 static rtx
10376 loop_call_insn_hoist (const struct loop *loop, rtx pattern)
10378 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
10382 /* Sink insn for PATTERN after the loop end. */
10385 loop_insn_sink (const struct loop *loop, rtx pattern)
10387 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
10390 /* bl->final_value can be either general_operand or PLUS of general_operand
10391 and constant. Emit sequence of instructions to load it into REG. */
10392 static rtx
10393 gen_load_of_final_value (rtx reg, rtx final_value)
10395 rtx seq;
10396 start_sequence ();
10397 final_value = force_operand (final_value, reg);
10398 if (final_value != reg)
10399 emit_move_insn (reg, final_value);
10400 seq = get_insns ();
10401 end_sequence ();
10402 return seq;
10405 /* If the loop has multiple exits, emit insn for PATTERN before the
10406 loop to ensure that it will always be executed no matter how the
10407 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10408 since this is slightly more efficient. */
10410 static rtx
10411 loop_insn_sink_or_swim (const struct loop *loop, rtx pattern)
10413 if (loop->exit_count)
10414 return loop_insn_hoist (loop, pattern);
10415 else
10416 return loop_insn_sink (loop, pattern);
10419 static void
10420 loop_ivs_dump (const struct loop *loop, FILE *file, int verbose)
10422 struct iv_class *bl;
10423 int iv_num = 0;
10425 if (! loop || ! file)
10426 return;
10428 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10429 iv_num++;
10431 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
10433 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10435 loop_iv_class_dump (bl, file, verbose);
10436 fputc ('\n', file);
10441 static void
10442 loop_iv_class_dump (const struct iv_class *bl, FILE *file,
10443 int verbose ATTRIBUTE_UNUSED)
10445 struct induction *v;
10446 rtx incr;
10447 int i;
10449 if (! bl || ! file)
10450 return;
10452 fprintf (file, "IV class for reg %d, benefit %d\n",
10453 bl->regno, bl->total_benefit);
10455 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
10456 if (bl->initial_value)
10458 fprintf (file, ", init val: ");
10459 print_simple_rtl (file, bl->initial_value);
10461 if (bl->initial_test)
10463 fprintf (file, ", init test: ");
10464 print_simple_rtl (file, bl->initial_test);
10466 fputc ('\n', file);
10468 if (bl->final_value)
10470 fprintf (file, " Final val: ");
10471 print_simple_rtl (file, bl->final_value);
10472 fputc ('\n', file);
10475 if ((incr = biv_total_increment (bl)))
10477 fprintf (file, " Total increment: ");
10478 print_simple_rtl (file, incr);
10479 fputc ('\n', file);
10482 /* List the increments. */
10483 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
10485 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
10486 print_simple_rtl (file, v->add_val);
10487 fputc ('\n', file);
10490 /* List the givs. */
10491 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
10493 fprintf (file, " Giv%d: insn %d, benefit %d, ",
10494 i, INSN_UID (v->insn), v->benefit);
10495 if (v->giv_type == DEST_ADDR)
10496 print_simple_rtl (file, v->mem);
10497 else
10498 print_simple_rtl (file, single_set (v->insn));
10499 fputc ('\n', file);
10504 static void
10505 loop_biv_dump (const struct induction *v, FILE *file, int verbose)
10507 if (! v || ! file)
10508 return;
10510 fprintf (file,
10511 "Biv %d: insn %d",
10512 REGNO (v->dest_reg), INSN_UID (v->insn));
10513 fprintf (file, " const ");
10514 print_simple_rtl (file, v->add_val);
10516 if (verbose && v->final_value)
10518 fputc ('\n', file);
10519 fprintf (file, " final ");
10520 print_simple_rtl (file, v->final_value);
10523 fputc ('\n', file);
10527 static void
10528 loop_giv_dump (const struct induction *v, FILE *file, int verbose)
10530 if (! v || ! file)
10531 return;
10533 if (v->giv_type == DEST_REG)
10534 fprintf (file, "Giv %d: insn %d",
10535 REGNO (v->dest_reg), INSN_UID (v->insn));
10536 else
10537 fprintf (file, "Dest address: insn %d",
10538 INSN_UID (v->insn));
10540 fprintf (file, " src reg %d benefit %d",
10541 REGNO (v->src_reg), v->benefit);
10542 fprintf (file, " lifetime %d",
10543 v->lifetime);
10545 if (v->replaceable)
10546 fprintf (file, " replaceable");
10548 if (v->no_const_addval)
10549 fprintf (file, " ncav");
10551 if (v->ext_dependent)
10553 switch (GET_CODE (v->ext_dependent))
10555 case SIGN_EXTEND:
10556 fprintf (file, " ext se");
10557 break;
10558 case ZERO_EXTEND:
10559 fprintf (file, " ext ze");
10560 break;
10561 case TRUNCATE:
10562 fprintf (file, " ext tr");
10563 break;
10564 default:
10565 abort ();
10569 fputc ('\n', file);
10570 fprintf (file, " mult ");
10571 print_simple_rtl (file, v->mult_val);
10573 fputc ('\n', file);
10574 fprintf (file, " add ");
10575 print_simple_rtl (file, v->add_val);
10577 if (verbose && v->final_value)
10579 fputc ('\n', file);
10580 fprintf (file, " final ");
10581 print_simple_rtl (file, v->final_value);
10584 fputc ('\n', file);
10588 void
10589 debug_ivs (const struct loop *loop)
10591 loop_ivs_dump (loop, stderr, 1);
10595 void
10596 debug_iv_class (const struct iv_class *bl)
10598 loop_iv_class_dump (bl, stderr, 1);
10602 void
10603 debug_biv (const struct induction *v)
10605 loop_biv_dump (v, stderr, 1);
10609 void
10610 debug_giv (const struct induction *v)
10612 loop_giv_dump (v, stderr, 1);
10616 #define LOOP_BLOCK_NUM_1(INSN) \
10617 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10619 /* The notes do not have an assigned block, so look at the next insn. */
10620 #define LOOP_BLOCK_NUM(INSN) \
10621 ((INSN) ? (GET_CODE (INSN) == NOTE \
10622 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10623 : LOOP_BLOCK_NUM_1 (INSN)) \
10624 : -1)
10626 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10628 static void
10629 loop_dump_aux (const struct loop *loop, FILE *file,
10630 int verbose ATTRIBUTE_UNUSED)
10632 rtx label;
10634 if (! loop || ! file)
10635 return;
10637 /* Print diagnostics to compare our concept of a loop with
10638 what the loop notes say. */
10639 if (! PREV_INSN (loop->first->head)
10640 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
10641 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
10642 != NOTE_INSN_LOOP_BEG)
10643 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10644 INSN_UID (PREV_INSN (loop->first->head)));
10645 if (! NEXT_INSN (loop->last->end)
10646 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
10647 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
10648 != NOTE_INSN_LOOP_END)
10649 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
10650 INSN_UID (NEXT_INSN (loop->last->end)));
10652 if (loop->start)
10654 fprintf (file,
10655 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10656 LOOP_BLOCK_NUM (loop->start),
10657 LOOP_INSN_UID (loop->start),
10658 LOOP_BLOCK_NUM (loop->cont),
10659 LOOP_INSN_UID (loop->cont),
10660 LOOP_BLOCK_NUM (loop->cont),
10661 LOOP_INSN_UID (loop->cont),
10662 LOOP_BLOCK_NUM (loop->vtop),
10663 LOOP_INSN_UID (loop->vtop),
10664 LOOP_BLOCK_NUM (loop->end),
10665 LOOP_INSN_UID (loop->end));
10666 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
10667 LOOP_BLOCK_NUM (loop->top),
10668 LOOP_INSN_UID (loop->top),
10669 LOOP_BLOCK_NUM (loop->scan_start),
10670 LOOP_INSN_UID (loop->scan_start));
10671 fprintf (file, ";; exit_count %d", loop->exit_count);
10672 if (loop->exit_count)
10674 fputs (", labels:", file);
10675 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
10677 fprintf (file, " %d ",
10678 LOOP_INSN_UID (XEXP (label, 0)));
10681 fputs ("\n", file);
10683 /* This can happen when a marked loop appears as two nested loops,
10684 say from while (a || b) {}. The inner loop won't match
10685 the loop markers but the outer one will. */
10686 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
10687 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10691 /* Call this function from the debugger to dump LOOP. */
10693 void
10694 debug_loop (const struct loop *loop)
10696 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
10699 /* Call this function from the debugger to dump LOOPS. */
10701 void
10702 debug_loops (const struct loops *loops)
10704 flow_loops_dump (loops, stderr, loop_dump_aux, 1);