Fixed rare threading problem
[official-gcc.git] / gcc / genrecog.c
blob9723126b274f4fdaf03233bb05acdc8eeec2c8d7
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
73 struct decision_head
75 struct decision *first;
76 struct decision *last;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
83 struct decision_test
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
94 DT_accept_op, DT_accept_insn
95 } type;
97 union
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
102 struct
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
115 struct {
116 int code_number; /* Insn number matched. */
117 int lineno; /* Line number of the insn. */
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
123 /* Data structure for decision tree for recognizing legitimate insns. */
125 struct decision
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
133 const char *position; /* String denoting position in pattern. */
135 struct decision_test *tests; /* The tests for this node. */
137 int number; /* Node number, used for labels */
138 int subroutine_number; /* Number of subroutine this node starts */
139 int need_label; /* Label needs to be output. */
142 #define SUBROUTINE_THRESHOLD 100
144 static int next_subroutine_number;
146 /* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
150 enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
154 #define IS_SPLIT(X) ((X) != RECOG)
156 /* Next available node number for tree nodes. */
158 static int next_number;
160 /* Next number to use as an insn_code. */
162 static int next_insn_code;
164 /* Similar, but counts all expressions in the MD file; used for
165 error messages. */
167 static int next_index;
169 /* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
172 static int max_depth;
174 /* The line number of the start of the pattern currently being processed. */
175 static int pattern_lineno;
177 /* Count of errors. */
178 static int error_count;
180 /* This table contains a list of the rtl codes that can possibly match a
181 predicate defined in recog.c. The function `maybe_both_true' uses it to
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
186 static const struct pred_table
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
190 } preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
193 #ifdef PREDICATE_CODES
194 PREDICATE_CODES
195 #endif
196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
215 UNLT, LTGT}}
218 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220 static const char *const special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
227 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229 static struct decision *new_decision
230 (const char *, struct decision_head *);
231 static struct decision_test *new_decision_test
232 (enum decision_type, struct decision_test ***);
233 static rtx find_operand
234 (rtx, int);
235 static rtx find_matching_operand
236 (rtx, int);
237 static void validate_pattern
238 (rtx, rtx, rtx, int);
239 static struct decision *add_to_sequence
240 (rtx, struct decision_head *, const char *, enum routine_type, int);
242 static int maybe_both_true_2
243 (struct decision_test *, struct decision_test *);
244 static int maybe_both_true_1
245 (struct decision_test *, struct decision_test *);
246 static int maybe_both_true
247 (struct decision *, struct decision *, int);
249 static int nodes_identical_1
250 (struct decision_test *, struct decision_test *);
251 static int nodes_identical
252 (struct decision *, struct decision *);
253 static void merge_accept_insn
254 (struct decision *, struct decision *);
255 static void merge_trees
256 (struct decision_head *, struct decision_head *);
258 static void factor_tests
259 (struct decision_head *);
260 static void simplify_tests
261 (struct decision_head *);
262 static int break_out_subroutines
263 (struct decision_head *, int);
264 static void find_afterward
265 (struct decision_head *, struct decision *);
267 static void change_state
268 (const char *, const char *, struct decision *, const char *);
269 static void print_code
270 (enum rtx_code);
271 static void write_afterward
272 (struct decision *, struct decision *, const char *);
273 static struct decision *write_switch
274 (struct decision *, int);
275 static void write_cond
276 (struct decision_test *, int, enum routine_type);
277 static void write_action
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
280 static int is_unconditional
281 (struct decision_test *, enum routine_type);
282 static int write_node
283 (struct decision *, int, enum routine_type);
284 static void write_tree_1
285 (struct decision_head *, int, enum routine_type);
286 static void write_tree
287 (struct decision_head *, const char *, enum routine_type, int);
288 static void write_subroutine
289 (struct decision_head *, enum routine_type);
290 static void write_subroutines
291 (struct decision_head *, enum routine_type);
292 static void write_header
293 (void);
295 static struct decision_head make_insn_sequence
296 (rtx, enum routine_type);
297 static void process_tree
298 (struct decision_head *, enum routine_type);
300 static void record_insn_name
301 (int, const char *);
303 static void debug_decision_0
304 (struct decision *, int, int);
305 static void debug_decision_1
306 (struct decision *, int);
307 static void debug_decision_2
308 (struct decision_test *);
309 extern void debug_decision
310 (struct decision *);
311 extern void debug_decision_list
312 (struct decision *);
314 /* Create a new node in sequence after LAST. */
316 static struct decision *
317 new_decision (const char *position, struct decision_head *last)
319 struct decision *new
320 = (struct decision *) xmalloc (sizeof (struct decision));
322 memset (new, 0, sizeof (*new));
323 new->success = *last;
324 new->position = xstrdup (position);
325 new->number = next_number++;
327 last->first = last->last = new;
328 return new;
331 /* Create a new test and link it in at PLACE. */
333 static struct decision_test *
334 new_decision_test (enum decision_type type, struct decision_test ***pplace)
336 struct decision_test **place = *pplace;
337 struct decision_test *test;
339 test = (struct decision_test *) xmalloc (sizeof (*test));
340 test->next = *place;
341 test->type = type;
342 *place = test;
344 place = &test->next;
345 *pplace = place;
347 return test;
350 /* Search for and return operand N. */
352 static rtx
353 find_operand (rtx pattern, int n)
355 const char *fmt;
356 RTX_CODE code;
357 int i, j, len;
358 rtx r;
360 code = GET_CODE (pattern);
361 if ((code == MATCH_SCRATCH
362 || code == MATCH_INSN
363 || code == MATCH_OPERAND
364 || code == MATCH_OPERATOR
365 || code == MATCH_PARALLEL)
366 && XINT (pattern, 0) == n)
367 return pattern;
369 fmt = GET_RTX_FORMAT (code);
370 len = GET_RTX_LENGTH (code);
371 for (i = 0; i < len; i++)
373 switch (fmt[i])
375 case 'e': case 'u':
376 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
377 return r;
378 break;
380 case 'V':
381 if (! XVEC (pattern, i))
382 break;
383 /* FALLTHRU */
385 case 'E':
386 for (j = 0; j < XVECLEN (pattern, i); j++)
387 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
388 return r;
389 break;
391 case 'i': case 'w': case '0': case 's':
392 break;
394 default:
395 abort ();
399 return NULL;
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
405 static rtx
406 find_matching_operand (rtx pattern, int n)
408 const char *fmt;
409 RTX_CODE code;
410 int i, j, len;
411 rtx r;
413 code = GET_CODE (pattern);
414 if (code == MATCH_OPERAND
415 && (XSTR (pattern, 2)[0] == '0' + n
416 || (XSTR (pattern, 2)[0] == '%'
417 && XSTR (pattern, 2)[1] == '0' + n)))
418 return pattern;
420 fmt = GET_RTX_FORMAT (code);
421 len = GET_RTX_LENGTH (code);
422 for (i = 0; i < len; i++)
424 switch (fmt[i])
426 case 'e': case 'u':
427 if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 return r;
429 break;
431 case 'V':
432 if (! XVEC (pattern, i))
433 break;
434 /* FALLTHRU */
436 case 'E':
437 for (j = 0; j < XVECLEN (pattern, i); j++)
438 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 return r;
440 break;
442 case 'i': case 'w': case '0': case 's':
443 break;
445 default:
446 abort ();
450 return NULL;
454 /* Check for various errors in patterns. SET is nonnull for a destination,
455 and is the complete set pattern. SET_CODE is '=' for normal sets, and
456 '+' within a context that requires in-out constraints. */
458 static void
459 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
461 const char *fmt;
462 RTX_CODE code;
463 size_t i, len;
464 int j;
466 code = GET_CODE (pattern);
467 switch (code)
469 case MATCH_SCRATCH:
470 return;
472 case MATCH_INSN:
473 case MATCH_OPERAND:
474 case MATCH_OPERATOR:
476 const char *pred_name = XSTR (pattern, 1);
477 int allows_non_lvalue = 1, allows_non_const = 1;
478 int special_mode_pred = 0;
479 const char *c_test;
481 if (GET_CODE (insn) == DEFINE_INSN)
482 c_test = XSTR (insn, 2);
483 else
484 c_test = XSTR (insn, 1);
486 if (pred_name[0] != 0)
488 for (i = 0; i < NUM_KNOWN_PREDS; i++)
489 if (! strcmp (preds[i].name, pred_name))
490 break;
492 if (i < NUM_KNOWN_PREDS)
494 int j;
496 allows_non_lvalue = allows_non_const = 0;
497 for (j = 0; preds[i].codes[j] != 0; j++)
499 RTX_CODE c = preds[i].codes[j];
500 if (c != LABEL_REF
501 && c != SYMBOL_REF
502 && c != CONST_INT
503 && c != CONST_DOUBLE
504 && c != CONST
505 && c != HIGH
506 && c != CONSTANT_P_RTX)
507 allows_non_const = 1;
509 if (c != REG
510 && c != SUBREG
511 && c != MEM
512 && c != ADDRESSOF
513 && c != CONCAT
514 && c != PARALLEL
515 && c != STRICT_LOW_PART)
516 allows_non_lvalue = 1;
519 else
521 #ifdef PREDICATE_CODES
522 /* If the port has a list of the predicates it uses but
523 omits one, warn. */
524 message_with_line (pattern_lineno,
525 "warning: `%s' not in PREDICATE_CODES",
526 pred_name);
527 #endif
530 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
531 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
533 special_mode_pred = 1;
534 break;
538 if (code == MATCH_OPERAND)
540 const char constraints0 = XSTR (pattern, 2)[0];
542 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
543 don't use the MATCH_OPERAND constraint, only the predicate.
544 This is confusing to folks doing new ports, so help them
545 not make the mistake. */
546 if (GET_CODE (insn) == DEFINE_EXPAND
547 || GET_CODE (insn) == DEFINE_SPLIT
548 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
550 if (constraints0)
551 message_with_line (pattern_lineno,
552 "warning: constraints not supported in %s",
553 rtx_name[GET_CODE (insn)]);
556 /* A MATCH_OPERAND that is a SET should have an output reload. */
557 else if (set && constraints0)
559 if (set_code == '+')
561 if (constraints0 == '+')
563 /* If we've only got an output reload for this operand,
564 we'd better have a matching input operand. */
565 else if (constraints0 == '='
566 && find_matching_operand (insn, XINT (pattern, 0)))
568 else
570 message_with_line (pattern_lineno,
571 "operand %d missing in-out reload",
572 XINT (pattern, 0));
573 error_count++;
576 else if (constraints0 != '=' && constraints0 != '+')
578 message_with_line (pattern_lineno,
579 "operand %d missing output reload",
580 XINT (pattern, 0));
581 error_count++;
586 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
587 while not likely to occur at runtime, results in less efficient
588 code from insn-recog.c. */
589 if (set
590 && pred_name[0] != '\0'
591 && allows_non_lvalue)
593 message_with_line (pattern_lineno,
594 "warning: destination operand %d allows non-lvalue",
595 XINT (pattern, 0));
598 /* A modeless MATCH_OPERAND can be handy when we can
599 check for multiple modes in the c_test. In most other cases,
600 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
601 and PEEP2 can FAIL within the output pattern. Exclude
602 address_operand, since its mode is related to the mode of
603 the memory not the operand. Exclude the SET_DEST of a call
604 instruction, as that is a common idiom. */
606 if (GET_MODE (pattern) == VOIDmode
607 && code == MATCH_OPERAND
608 && GET_CODE (insn) == DEFINE_INSN
609 && allows_non_const
610 && ! special_mode_pred
611 && pred_name[0] != '\0'
612 && strcmp (pred_name, "address_operand") != 0
613 && strstr (c_test, "operands") == NULL
614 && ! (set
615 && GET_CODE (set) == SET
616 && GET_CODE (SET_SRC (set)) == CALL))
618 message_with_line (pattern_lineno,
619 "warning: operand %d missing mode?",
620 XINT (pattern, 0));
622 return;
625 case SET:
627 enum machine_mode dmode, smode;
628 rtx dest, src;
630 dest = SET_DEST (pattern);
631 src = SET_SRC (pattern);
633 /* STRICT_LOW_PART is a wrapper. Its argument is the real
634 destination, and it's mode should match the source. */
635 if (GET_CODE (dest) == STRICT_LOW_PART)
636 dest = XEXP (dest, 0);
638 /* Find the referant for a DUP. */
640 if (GET_CODE (dest) == MATCH_DUP
641 || GET_CODE (dest) == MATCH_OP_DUP
642 || GET_CODE (dest) == MATCH_PAR_DUP)
643 dest = find_operand (insn, XINT (dest, 0));
645 if (GET_CODE (src) == MATCH_DUP
646 || GET_CODE (src) == MATCH_OP_DUP
647 || GET_CODE (src) == MATCH_PAR_DUP)
648 src = find_operand (insn, XINT (src, 0));
650 dmode = GET_MODE (dest);
651 smode = GET_MODE (src);
653 /* The mode of an ADDRESS_OPERAND is the mode of the memory
654 reference, not the mode of the address. */
655 if (GET_CODE (src) == MATCH_OPERAND
656 && ! strcmp (XSTR (src, 1), "address_operand"))
659 /* The operands of a SET must have the same mode unless one
660 is VOIDmode. */
661 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
663 message_with_line (pattern_lineno,
664 "mode mismatch in set: %smode vs %smode",
665 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
666 error_count++;
669 /* If only one of the operands is VOIDmode, and PC or CC0 is
670 not involved, it's probably a mistake. */
671 else if (dmode != smode
672 && GET_CODE (dest) != PC
673 && GET_CODE (dest) != CC0
674 && GET_CODE (src) != PC
675 && GET_CODE (src) != CC0
676 && GET_CODE (src) != CONST_INT)
678 const char *which;
679 which = (dmode == VOIDmode ? "destination" : "source");
680 message_with_line (pattern_lineno,
681 "warning: %s missing a mode?", which);
684 if (dest != SET_DEST (pattern))
685 validate_pattern (dest, insn, pattern, '=');
686 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
687 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
688 return;
691 case CLOBBER:
692 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
693 return;
695 case ZERO_EXTRACT:
696 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
697 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
698 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
699 return;
701 case STRICT_LOW_PART:
702 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
703 return;
705 case LABEL_REF:
706 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
708 message_with_line (pattern_lineno,
709 "operand to label_ref %smode not VOIDmode",
710 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
711 error_count++;
713 break;
715 default:
716 break;
719 fmt = GET_RTX_FORMAT (code);
720 len = GET_RTX_LENGTH (code);
721 for (i = 0; i < len; i++)
723 switch (fmt[i])
725 case 'e': case 'u':
726 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
727 break;
729 case 'E':
730 for (j = 0; j < XVECLEN (pattern, i); j++)
731 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
732 break;
734 case 'i': case 'w': case '0': case 's':
735 break;
737 default:
738 abort ();
743 /* Create a chain of nodes to verify that an rtl expression matches
744 PATTERN.
746 LAST is a pointer to the listhead in the previous node in the chain (or
747 in the calling function, for the first node).
749 POSITION is the string representing the current position in the insn.
751 INSN_TYPE is the type of insn for which we are emitting code.
753 A pointer to the final node in the chain is returned. */
755 static struct decision *
756 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
757 enum routine_type insn_type, int top)
759 RTX_CODE code;
760 struct decision *this, *sub;
761 struct decision_test *test;
762 struct decision_test **place;
763 char *subpos;
764 size_t i;
765 const char *fmt;
766 int depth = strlen (position);
767 int len;
768 enum machine_mode mode;
770 if (depth > max_depth)
771 max_depth = depth;
773 subpos = (char *) xmalloc (depth + 2);
774 strcpy (subpos, position);
775 subpos[depth + 1] = 0;
777 sub = this = new_decision (position, last);
778 place = &this->tests;
780 restart:
781 mode = GET_MODE (pattern);
782 code = GET_CODE (pattern);
784 switch (code)
786 case PARALLEL:
787 /* Toplevel peephole pattern. */
788 if (insn_type == PEEPHOLE2 && top)
790 /* We don't need the node we just created -- unlink it. */
791 last->first = last->last = NULL;
793 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
795 /* Which insn we're looking at is represented by A-Z. We don't
796 ever use 'A', however; it is always implied. */
798 subpos[depth] = (i > 0 ? 'A' + i : 0);
799 sub = add_to_sequence (XVECEXP (pattern, 0, i),
800 last, subpos, insn_type, 0);
801 last = &sub->success;
803 goto ret;
806 /* Else nothing special. */
807 break;
809 case MATCH_PARALLEL:
810 /* The explicit patterns within a match_parallel enforce a minimum
811 length on the vector. The match_parallel predicate may allow
812 for more elements. We do need to check for this minimum here
813 or the code generated to match the internals may reference data
814 beyond the end of the vector. */
815 test = new_decision_test (DT_veclen_ge, &place);
816 test->u.veclen = XVECLEN (pattern, 2);
817 /* FALLTHRU */
819 case MATCH_OPERAND:
820 case MATCH_SCRATCH:
821 case MATCH_OPERATOR:
822 case MATCH_INSN:
824 const char *pred_name;
825 RTX_CODE was_code = code;
826 int allows_const_int = 1;
828 if (code == MATCH_SCRATCH)
830 pred_name = "scratch_operand";
831 code = UNKNOWN;
833 else
835 pred_name = XSTR (pattern, 1);
836 if (code == MATCH_PARALLEL)
837 code = PARALLEL;
838 else
839 code = UNKNOWN;
842 if (pred_name[0] != 0)
844 test = new_decision_test (DT_pred, &place);
845 test->u.pred.name = pred_name;
846 test->u.pred.mode = mode;
848 /* See if we know about this predicate and save its number.
849 If we do, and it only accepts one code, note that fact.
851 If we know that the predicate does not allow CONST_INT,
852 we know that the only way the predicate can match is if
853 the modes match (here we use the kludge of relying on the
854 fact that "address_operand" accepts CONST_INT; otherwise,
855 it would have to be a special case), so we can test the
856 mode (but we need not). This fact should considerably
857 simplify the generated code. */
859 for (i = 0; i < NUM_KNOWN_PREDS; i++)
860 if (! strcmp (preds[i].name, pred_name))
861 break;
863 if (i < NUM_KNOWN_PREDS)
865 int j;
867 test->u.pred.index = i;
869 if (preds[i].codes[1] == 0 && code == UNKNOWN)
870 code = preds[i].codes[0];
872 allows_const_int = 0;
873 for (j = 0; preds[i].codes[j] != 0; j++)
874 if (preds[i].codes[j] == CONST_INT)
876 allows_const_int = 1;
877 break;
880 else
881 test->u.pred.index = -1;
884 /* Can't enforce a mode if we allow const_int. */
885 if (allows_const_int)
886 mode = VOIDmode;
888 /* Accept the operand, ie. record it in `operands'. */
889 test = new_decision_test (DT_accept_op, &place);
890 test->u.opno = XINT (pattern, 0);
892 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
894 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
895 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
897 subpos[depth] = i + base;
898 sub = add_to_sequence (XVECEXP (pattern, 2, i),
899 &sub->success, subpos, insn_type, 0);
902 goto fini;
905 case MATCH_OP_DUP:
906 code = UNKNOWN;
908 test = new_decision_test (DT_dup, &place);
909 test->u.dup = XINT (pattern, 0);
911 test = new_decision_test (DT_accept_op, &place);
912 test->u.opno = XINT (pattern, 0);
914 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
916 subpos[depth] = i + '0';
917 sub = add_to_sequence (XVECEXP (pattern, 1, i),
918 &sub->success, subpos, insn_type, 0);
920 goto fini;
922 case MATCH_DUP:
923 case MATCH_PAR_DUP:
924 code = UNKNOWN;
926 test = new_decision_test (DT_dup, &place);
927 test->u.dup = XINT (pattern, 0);
928 goto fini;
930 case ADDRESS:
931 pattern = XEXP (pattern, 0);
932 goto restart;
934 default:
935 break;
938 fmt = GET_RTX_FORMAT (code);
939 len = GET_RTX_LENGTH (code);
941 /* Do tests against the current node first. */
942 for (i = 0; i < (size_t) len; i++)
944 if (fmt[i] == 'i')
946 if (i == 0)
948 test = new_decision_test (DT_elt_zero_int, &place);
949 test->u.intval = XINT (pattern, i);
951 else if (i == 1)
953 test = new_decision_test (DT_elt_one_int, &place);
954 test->u.intval = XINT (pattern, i);
956 else
957 abort ();
959 else if (fmt[i] == 'w')
961 /* If this value actually fits in an int, we can use a switch
962 statement here, so indicate that. */
963 enum decision_type type
964 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
965 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
967 if (i != 0)
968 abort ();
970 test = new_decision_test (type, &place);
971 test->u.intval = XWINT (pattern, i);
973 else if (fmt[i] == 'E')
975 if (i != 0)
976 abort ();
978 test = new_decision_test (DT_veclen, &place);
979 test->u.veclen = XVECLEN (pattern, i);
983 /* Now test our sub-patterns. */
984 for (i = 0; i < (size_t) len; i++)
986 switch (fmt[i])
988 case 'e': case 'u':
989 subpos[depth] = '0' + i;
990 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
991 subpos, insn_type, 0);
992 break;
994 case 'E':
996 int j;
997 for (j = 0; j < XVECLEN (pattern, i); j++)
999 subpos[depth] = 'a' + j;
1000 sub = add_to_sequence (XVECEXP (pattern, i, j),
1001 &sub->success, subpos, insn_type, 0);
1003 break;
1006 case 'i': case 'w':
1007 /* Handled above. */
1008 break;
1009 case '0':
1010 break;
1012 default:
1013 abort ();
1017 fini:
1018 /* Insert nodes testing mode and code, if they're still relevant,
1019 before any of the nodes we may have added above. */
1020 if (code != UNKNOWN)
1022 place = &this->tests;
1023 test = new_decision_test (DT_code, &place);
1024 test->u.code = code;
1027 if (mode != VOIDmode)
1029 place = &this->tests;
1030 test = new_decision_test (DT_mode, &place);
1031 test->u.mode = mode;
1034 /* If we didn't insert any tests or accept nodes, hork. */
1035 if (this->tests == NULL)
1036 abort ();
1038 ret:
1039 free (subpos);
1040 return sub;
1043 /* A subroutine of maybe_both_true; examines only one test.
1044 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1046 static int
1047 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1049 if (d1->type == d2->type)
1051 switch (d1->type)
1053 case DT_mode:
1054 return d1->u.mode == d2->u.mode;
1056 case DT_code:
1057 return d1->u.code == d2->u.code;
1059 case DT_veclen:
1060 return d1->u.veclen == d2->u.veclen;
1062 case DT_elt_zero_int:
1063 case DT_elt_one_int:
1064 case DT_elt_zero_wide:
1065 case DT_elt_zero_wide_safe:
1066 return d1->u.intval == d2->u.intval;
1068 default:
1069 break;
1073 /* If either has a predicate that we know something about, set
1074 things up so that D1 is the one that always has a known
1075 predicate. Then see if they have any codes in common. */
1077 if (d1->type == DT_pred || d2->type == DT_pred)
1079 if (d2->type == DT_pred)
1081 struct decision_test *tmp;
1082 tmp = d1, d1 = d2, d2 = tmp;
1085 /* If D2 tests a mode, see if it matches D1. */
1086 if (d1->u.pred.mode != VOIDmode)
1088 if (d2->type == DT_mode)
1090 if (d1->u.pred.mode != d2->u.mode
1091 /* The mode of an address_operand predicate is the
1092 mode of the memory, not the operand. It can only
1093 be used for testing the predicate, so we must
1094 ignore it here. */
1095 && strcmp (d1->u.pred.name, "address_operand") != 0)
1096 return 0;
1098 /* Don't check two predicate modes here, because if both predicates
1099 accept CONST_INT, then both can still be true even if the modes
1100 are different. If they don't accept CONST_INT, there will be a
1101 separate DT_mode that will make maybe_both_true_1 return 0. */
1104 if (d1->u.pred.index >= 0)
1106 /* If D2 tests a code, see if it is in the list of valid
1107 codes for D1's predicate. */
1108 if (d2->type == DT_code)
1110 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1111 while (*c != 0)
1113 if (*c == d2->u.code)
1114 break;
1115 ++c;
1117 if (*c == 0)
1118 return 0;
1121 /* Otherwise see if the predicates have any codes in common. */
1122 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1124 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1125 int common = 0;
1127 while (*c1 != 0 && !common)
1129 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1130 while (*c2 != 0 && !common)
1132 common = (*c1 == *c2);
1133 ++c2;
1135 ++c1;
1138 if (!common)
1139 return 0;
1144 /* Tests vs veclen may be known when strict equality is involved. */
1145 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1146 return d1->u.veclen >= d2->u.veclen;
1147 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1148 return d2->u.veclen >= d1->u.veclen;
1150 return -1;
1153 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1154 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1156 static int
1157 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1159 struct decision_test *t1, *t2;
1161 /* A match_operand with no predicate can match anything. Recognize
1162 this by the existence of a lone DT_accept_op test. */
1163 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1164 return 1;
1166 /* Eliminate pairs of tests while they can exactly match. */
1167 while (d1 && d2 && d1->type == d2->type)
1169 if (maybe_both_true_2 (d1, d2) == 0)
1170 return 0;
1171 d1 = d1->next, d2 = d2->next;
1174 /* After that, consider all pairs. */
1175 for (t1 = d1; t1 ; t1 = t1->next)
1176 for (t2 = d2; t2 ; t2 = t2->next)
1177 if (maybe_both_true_2 (t1, t2) == 0)
1178 return 0;
1180 return -1;
1183 /* Return 0 if we can prove that there is no RTL that can match both
1184 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1185 can match both or just that we couldn't prove there wasn't such an RTL).
1187 TOPLEVEL is nonzero if we are to only look at the top level and not
1188 recursively descend. */
1190 static int
1191 maybe_both_true (struct decision *d1, struct decision *d2,
1192 int toplevel)
1194 struct decision *p1, *p2;
1195 int cmp;
1197 /* Don't compare strings on the different positions in insn. Doing so
1198 is incorrect and results in false matches from constructs like
1200 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1201 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1203 [(set (match_operand:HI "register_operand" "r")
1204 (match_operand:HI "register_operand" "r"))]
1206 If we are presented with such, we are recursing through the remainder
1207 of a node's success nodes (from the loop at the end of this function).
1208 Skip forward until we come to a position that matches.
1210 Due to the way position strings are constructed, we know that iterating
1211 forward from the lexically lower position (e.g. "00") will run into
1212 the lexically higher position (e.g. "1") and not the other way around.
1213 This saves a bit of effort. */
1215 cmp = strcmp (d1->position, d2->position);
1216 if (cmp != 0)
1218 if (toplevel)
1219 abort ();
1221 /* If the d2->position was lexically lower, swap. */
1222 if (cmp > 0)
1223 p1 = d1, d1 = d2, d2 = p1;
1225 if (d1->success.first == 0)
1226 return 1;
1227 for (p1 = d1->success.first; p1; p1 = p1->next)
1228 if (maybe_both_true (p1, d2, 0))
1229 return 1;
1231 return 0;
1234 /* Test the current level. */
1235 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1236 if (cmp >= 0)
1237 return cmp;
1239 /* We can't prove that D1 and D2 cannot both be true. If we are only
1240 to check the top level, return 1. Otherwise, see if we can prove
1241 that all choices in both successors are mutually exclusive. If
1242 either does not have any successors, we can't prove they can't both
1243 be true. */
1245 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1246 return 1;
1248 for (p1 = d1->success.first; p1; p1 = p1->next)
1249 for (p2 = d2->success.first; p2; p2 = p2->next)
1250 if (maybe_both_true (p1, p2, 0))
1251 return 1;
1253 return 0;
1256 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1258 static int
1259 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1261 switch (d1->type)
1263 case DT_mode:
1264 return d1->u.mode == d2->u.mode;
1266 case DT_code:
1267 return d1->u.code == d2->u.code;
1269 case DT_pred:
1270 return (d1->u.pred.mode == d2->u.pred.mode
1271 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1273 case DT_c_test:
1274 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1276 case DT_veclen:
1277 case DT_veclen_ge:
1278 return d1->u.veclen == d2->u.veclen;
1280 case DT_dup:
1281 return d1->u.dup == d2->u.dup;
1283 case DT_elt_zero_int:
1284 case DT_elt_one_int:
1285 case DT_elt_zero_wide:
1286 case DT_elt_zero_wide_safe:
1287 return d1->u.intval == d2->u.intval;
1289 case DT_accept_op:
1290 return d1->u.opno == d2->u.opno;
1292 case DT_accept_insn:
1293 /* Differences will be handled in merge_accept_insn. */
1294 return 1;
1296 default:
1297 abort ();
1301 /* True iff the two nodes are identical (on one level only). Due
1302 to the way these lists are constructed, we shouldn't have to
1303 consider different orderings on the tests. */
1305 static int
1306 nodes_identical (struct decision *d1, struct decision *d2)
1308 struct decision_test *t1, *t2;
1310 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1312 if (t1->type != t2->type)
1313 return 0;
1314 if (! nodes_identical_1 (t1, t2))
1315 return 0;
1318 /* For success, they should now both be null. */
1319 if (t1 != t2)
1320 return 0;
1322 /* Check that their subnodes are at the same position, as any one set
1323 of sibling decisions must be at the same position. Allowing this
1324 requires complications to find_afterward and when change_state is
1325 invoked. */
1326 if (d1->success.first
1327 && d2->success.first
1328 && strcmp (d1->success.first->position, d2->success.first->position))
1329 return 0;
1331 return 1;
1334 /* A subroutine of merge_trees; given two nodes that have been declared
1335 identical, cope with two insn accept states. If they differ in the
1336 number of clobbers, then the conflict was created by make_insn_sequence
1337 and we can drop the with-clobbers version on the floor. If both
1338 nodes have no additional clobbers, we have found an ambiguity in the
1339 source machine description. */
1341 static void
1342 merge_accept_insn (struct decision *oldd, struct decision *addd)
1344 struct decision_test *old, *add;
1346 for (old = oldd->tests; old; old = old->next)
1347 if (old->type == DT_accept_insn)
1348 break;
1349 if (old == NULL)
1350 return;
1352 for (add = addd->tests; add; add = add->next)
1353 if (add->type == DT_accept_insn)
1354 break;
1355 if (add == NULL)
1356 return;
1358 /* If one node is for a normal insn and the second is for the base
1359 insn with clobbers stripped off, the second node should be ignored. */
1361 if (old->u.insn.num_clobbers_to_add == 0
1362 && add->u.insn.num_clobbers_to_add > 0)
1364 /* Nothing to do here. */
1366 else if (old->u.insn.num_clobbers_to_add > 0
1367 && add->u.insn.num_clobbers_to_add == 0)
1369 /* In this case, replace OLD with ADD. */
1370 old->u.insn = add->u.insn;
1372 else
1374 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1375 get_insn_name (add->u.insn.code_number),
1376 get_insn_name (old->u.insn.code_number));
1377 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1378 get_insn_name (old->u.insn.code_number));
1379 error_count++;
1383 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1385 static void
1386 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1388 struct decision *next, *add;
1390 if (addh->first == 0)
1391 return;
1392 if (oldh->first == 0)
1394 *oldh = *addh;
1395 return;
1398 /* Trying to merge bits at different positions isn't possible. */
1399 if (strcmp (oldh->first->position, addh->first->position))
1400 abort ();
1402 for (add = addh->first; add ; add = next)
1404 struct decision *old, *insert_before = NULL;
1406 next = add->next;
1408 /* The semantics of pattern matching state that the tests are
1409 done in the order given in the MD file so that if an insn
1410 matches two patterns, the first one will be used. However,
1411 in practice, most, if not all, patterns are unambiguous so
1412 that their order is independent. In that case, we can merge
1413 identical tests and group all similar modes and codes together.
1415 Scan starting from the end of OLDH until we reach a point
1416 where we reach the head of the list or where we pass a
1417 pattern that could also be true if NEW is true. If we find
1418 an identical pattern, we can merge them. Also, record the
1419 last node that tests the same code and mode and the last one
1420 that tests just the same mode.
1422 If we have no match, place NEW after the closest match we found. */
1424 for (old = oldh->last; old; old = old->prev)
1426 if (nodes_identical (old, add))
1428 merge_accept_insn (old, add);
1429 merge_trees (&old->success, &add->success);
1430 goto merged_nodes;
1433 if (maybe_both_true (old, add, 0))
1434 break;
1436 /* Insert the nodes in DT test type order, which is roughly
1437 how expensive/important the test is. Given that the tests
1438 are also ordered within the list, examining the first is
1439 sufficient. */
1440 if ((int) add->tests->type < (int) old->tests->type)
1441 insert_before = old;
1444 if (insert_before == NULL)
1446 add->next = NULL;
1447 add->prev = oldh->last;
1448 oldh->last->next = add;
1449 oldh->last = add;
1451 else
1453 if ((add->prev = insert_before->prev) != NULL)
1454 add->prev->next = add;
1455 else
1456 oldh->first = add;
1457 add->next = insert_before;
1458 insert_before->prev = add;
1461 merged_nodes:;
1465 /* Walk the tree looking for sub-nodes that perform common tests.
1466 Factor out the common test into a new node. This enables us
1467 (depending on the test type) to emit switch statements later. */
1469 static void
1470 factor_tests (struct decision_head *head)
1472 struct decision *first, *next;
1474 for (first = head->first; first && first->next; first = next)
1476 enum decision_type type;
1477 struct decision *new, *old_last;
1479 type = first->tests->type;
1480 next = first->next;
1482 /* Want at least two compatible sequential nodes. */
1483 if (next->tests->type != type)
1484 continue;
1486 /* Don't want all node types, just those we can turn into
1487 switch statements. */
1488 if (type != DT_mode
1489 && type != DT_code
1490 && type != DT_veclen
1491 && type != DT_elt_zero_int
1492 && type != DT_elt_one_int
1493 && type != DT_elt_zero_wide_safe)
1494 continue;
1496 /* If we'd been performing more than one test, create a new node
1497 below our first test. */
1498 if (first->tests->next != NULL)
1500 new = new_decision (first->position, &first->success);
1501 new->tests = first->tests->next;
1502 first->tests->next = NULL;
1505 /* Crop the node tree off after our first test. */
1506 first->next = NULL;
1507 old_last = head->last;
1508 head->last = first;
1510 /* For each compatible test, adjust to perform only one test in
1511 the top level node, then merge the node back into the tree. */
1514 struct decision_head h;
1516 if (next->tests->next != NULL)
1518 new = new_decision (next->position, &next->success);
1519 new->tests = next->tests->next;
1520 next->tests->next = NULL;
1522 new = next;
1523 next = next->next;
1524 new->next = NULL;
1525 h.first = h.last = new;
1527 merge_trees (head, &h);
1529 while (next && next->tests->type == type);
1531 /* After we run out of compatible tests, graft the remaining nodes
1532 back onto the tree. */
1533 if (next)
1535 next->prev = head->last;
1536 head->last->next = next;
1537 head->last = old_last;
1541 /* Recurse. */
1542 for (first = head->first; first; first = first->next)
1543 factor_tests (&first->success);
1546 /* After factoring, try to simplify the tests on any one node.
1547 Tests that are useful for switch statements are recognizable
1548 by having only a single test on a node -- we'll be manipulating
1549 nodes with multiple tests:
1551 If we have mode tests or code tests that are redundant with
1552 predicates, remove them. */
1554 static void
1555 simplify_tests (struct decision_head *head)
1557 struct decision *tree;
1559 for (tree = head->first; tree; tree = tree->next)
1561 struct decision_test *a, *b;
1563 a = tree->tests;
1564 b = a->next;
1565 if (b == NULL)
1566 continue;
1568 /* Find a predicate node. */
1569 while (b && b->type != DT_pred)
1570 b = b->next;
1571 if (b)
1573 /* Due to how these tests are constructed, we don't even need
1574 to check that the mode and code are compatible -- they were
1575 generated from the predicate in the first place. */
1576 while (a->type == DT_mode || a->type == DT_code)
1577 a = a->next;
1578 tree->tests = a;
1582 /* Recurse. */
1583 for (tree = head->first; tree; tree = tree->next)
1584 simplify_tests (&tree->success);
1587 /* Count the number of subnodes of HEAD. If the number is high enough,
1588 make the first node in HEAD start a separate subroutine in the C code
1589 that is generated. */
1591 static int
1592 break_out_subroutines (struct decision_head *head, int initial)
1594 int size = 0;
1595 struct decision *sub;
1597 for (sub = head->first; sub; sub = sub->next)
1598 size += 1 + break_out_subroutines (&sub->success, 0);
1600 if (size > SUBROUTINE_THRESHOLD && ! initial)
1602 head->first->subroutine_number = ++next_subroutine_number;
1603 size = 1;
1605 return size;
1608 /* For each node p, find the next alternative that might be true
1609 when p is true. */
1611 static void
1612 find_afterward (struct decision_head *head, struct decision *real_afterward)
1614 struct decision *p, *q, *afterward;
1616 /* We can't propagate alternatives across subroutine boundaries.
1617 This is not incorrect, merely a minor optimization loss. */
1619 p = head->first;
1620 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1622 for ( ; p ; p = p->next)
1624 /* Find the next node that might be true if this one fails. */
1625 for (q = p->next; q ; q = q->next)
1626 if (maybe_both_true (p, q, 1))
1627 break;
1629 /* If we reached the end of the list without finding one,
1630 use the incoming afterward position. */
1631 if (!q)
1632 q = afterward;
1633 p->afterward = q;
1634 if (q)
1635 q->need_label = 1;
1638 /* Recurse. */
1639 for (p = head->first; p ; p = p->next)
1640 if (p->success.first)
1641 find_afterward (&p->success, p->afterward);
1643 /* When we are generating a subroutine, record the real afterward
1644 position in the first node where write_tree can find it, and we
1645 can do the right thing at the subroutine call site. */
1646 p = head->first;
1647 if (p->subroutine_number > 0)
1648 p->afterward = real_afterward;
1651 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1652 actions are necessary to move to NEWPOS. If we fail to move to the
1653 new state, branch to node AFTERWARD if nonzero, otherwise return.
1655 Failure to move to the new state can only occur if we are trying to
1656 match multiple insns and we try to step past the end of the stream. */
1658 static void
1659 change_state (const char *oldpos, const char *newpos,
1660 struct decision *afterward, const char *indent)
1662 int odepth = strlen (oldpos);
1663 int ndepth = strlen (newpos);
1664 int depth;
1665 int old_has_insn, new_has_insn;
1667 /* Pop up as many levels as necessary. */
1668 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1669 continue;
1671 /* Hunt for the last [A-Z] in both strings. */
1672 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1673 if (ISUPPER (oldpos[old_has_insn]))
1674 break;
1675 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1676 if (ISUPPER (newpos[new_has_insn]))
1677 break;
1679 /* Go down to desired level. */
1680 while (depth < ndepth)
1682 /* It's a different insn from the first one. */
1683 if (ISUPPER (newpos[depth]))
1685 /* We can only fail if we're moving down the tree. */
1686 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1688 printf ("%stem = peep2_next_insn (%d);\n",
1689 indent, newpos[depth] - 'A');
1691 else
1693 printf ("%stem = peep2_next_insn (%d);\n",
1694 indent, newpos[depth] - 'A');
1695 printf ("%sif (tem == NULL_RTX)\n", indent);
1696 if (afterward)
1697 printf ("%s goto L%d;\n", indent, afterward->number);
1698 else
1699 printf ("%s goto ret0;\n", indent);
1701 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1703 else if (ISLOWER (newpos[depth]))
1704 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1705 indent, depth + 1, depth, newpos[depth] - 'a');
1706 else
1707 printf ("%sx%d = XEXP (x%d, %c);\n",
1708 indent, depth + 1, depth, newpos[depth]);
1709 ++depth;
1713 /* Print the enumerator constant for CODE -- the upcase version of
1714 the name. */
1716 static void
1717 print_code (enum rtx_code code)
1719 const char *p;
1720 for (p = GET_RTX_NAME (code); *p; p++)
1721 putchar (TOUPPER (*p));
1724 /* Emit code to cross an afterward link -- change state and branch. */
1726 static void
1727 write_afterward (struct decision *start, struct decision *afterward,
1728 const char *indent)
1730 if (!afterward || start->subroutine_number > 0)
1731 printf("%sgoto ret0;\n", indent);
1732 else
1734 change_state (start->position, afterward->position, NULL, indent);
1735 printf ("%sgoto L%d;\n", indent, afterward->number);
1739 /* Emit a switch statement, if possible, for an initial sequence of
1740 nodes at START. Return the first node yet untested. */
1742 static struct decision *
1743 write_switch (struct decision *start, int depth)
1745 struct decision *p = start;
1746 enum decision_type type = p->tests->type;
1747 struct decision *needs_label = NULL;
1749 /* If we have two or more nodes in sequence that test the same one
1750 thing, we may be able to use a switch statement. */
1752 if (!p->next
1753 || p->tests->next
1754 || p->next->tests->type != type
1755 || p->next->tests->next
1756 || nodes_identical_1 (p->tests, p->next->tests))
1757 return p;
1759 /* DT_code is special in that we can do interesting things with
1760 known predicates at the same time. */
1761 if (type == DT_code)
1763 char codemap[NUM_RTX_CODE];
1764 struct decision *ret;
1765 RTX_CODE code;
1767 memset (codemap, 0, sizeof(codemap));
1769 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1770 code = p->tests->u.code;
1773 if (p != start && p->need_label && needs_label == NULL)
1774 needs_label = p;
1776 printf (" case ");
1777 print_code (code);
1778 printf (":\n goto L%d;\n", p->success.first->number);
1779 p->success.first->need_label = 1;
1781 codemap[code] = 1;
1782 p = p->next;
1784 while (p
1785 && ! p->tests->next
1786 && p->tests->type == DT_code
1787 && ! codemap[code = p->tests->u.code]);
1789 /* If P is testing a predicate that we know about and we haven't
1790 seen any of the codes that are valid for the predicate, we can
1791 write a series of "case" statement, one for each possible code.
1792 Since we are already in a switch, these redundant tests are very
1793 cheap and will reduce the number of predicates called. */
1795 /* Note that while we write out cases for these predicates here,
1796 we don't actually write the test here, as it gets kinda messy.
1797 It is trivial to leave this to later by telling our caller that
1798 we only processed the CODE tests. */
1799 if (needs_label != NULL)
1800 ret = needs_label;
1801 else
1802 ret = p;
1804 while (p && p->tests->type == DT_pred
1805 && p->tests->u.pred.index >= 0)
1807 const RTX_CODE *c;
1809 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1810 if (codemap[(int) *c] != 0)
1811 goto pred_done;
1813 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1815 printf (" case ");
1816 print_code (*c);
1817 printf (":\n");
1818 codemap[(int) *c] = 1;
1821 printf (" goto L%d;\n", p->number);
1822 p->need_label = 1;
1823 p = p->next;
1826 pred_done:
1827 /* Make the default case skip the predicates we managed to match. */
1829 printf (" default:\n");
1830 if (p != ret)
1832 if (p)
1834 printf (" goto L%d;\n", p->number);
1835 p->need_label = 1;
1837 else
1838 write_afterward (start, start->afterward, " ");
1840 else
1841 printf (" break;\n");
1842 printf (" }\n");
1844 return ret;
1846 else if (type == DT_mode
1847 || type == DT_veclen
1848 || type == DT_elt_zero_int
1849 || type == DT_elt_one_int
1850 || type == DT_elt_zero_wide_safe)
1852 const char *indent = "";
1854 /* We cast switch parameter to integer, so we must ensure that the value
1855 fits. */
1856 if (type == DT_elt_zero_wide_safe)
1858 indent = " ";
1859 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1861 printf ("%s switch (", indent);
1862 switch (type)
1864 case DT_mode:
1865 printf ("GET_MODE (x%d)", depth);
1866 break;
1867 case DT_veclen:
1868 printf ("XVECLEN (x%d, 0)", depth);
1869 break;
1870 case DT_elt_zero_int:
1871 printf ("XINT (x%d, 0)", depth);
1872 break;
1873 case DT_elt_one_int:
1874 printf ("XINT (x%d, 1)", depth);
1875 break;
1876 case DT_elt_zero_wide_safe:
1877 /* Convert result of XWINT to int for portability since some C
1878 compilers won't do it and some will. */
1879 printf ("(int) XWINT (x%d, 0)", depth);
1880 break;
1881 default:
1882 abort ();
1884 printf (")\n%s {\n", indent);
1888 /* Merge trees will not unify identical nodes if their
1889 sub-nodes are at different levels. Thus we must check
1890 for duplicate cases. */
1891 struct decision *q;
1892 for (q = start; q != p; q = q->next)
1893 if (nodes_identical_1 (p->tests, q->tests))
1894 goto case_done;
1896 if (p != start && p->need_label && needs_label == NULL)
1897 needs_label = p;
1899 printf ("%s case ", indent);
1900 switch (type)
1902 case DT_mode:
1903 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1904 break;
1905 case DT_veclen:
1906 printf ("%d", p->tests->u.veclen);
1907 break;
1908 case DT_elt_zero_int:
1909 case DT_elt_one_int:
1910 case DT_elt_zero_wide:
1911 case DT_elt_zero_wide_safe:
1912 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
1913 break;
1914 default:
1915 abort ();
1917 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1918 p->success.first->need_label = 1;
1920 p = p->next;
1922 while (p && p->tests->type == type && !p->tests->next);
1924 case_done:
1925 printf ("%s default:\n%s break;\n%s }\n",
1926 indent, indent, indent);
1928 return needs_label != NULL ? needs_label : p;
1930 else
1932 /* None of the other tests are amenable. */
1933 return p;
1937 /* Emit code for one test. */
1939 static void
1940 write_cond (struct decision_test *p, int depth,
1941 enum routine_type subroutine_type)
1943 switch (p->type)
1945 case DT_mode:
1946 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1947 break;
1949 case DT_code:
1950 printf ("GET_CODE (x%d) == ", depth);
1951 print_code (p->u.code);
1952 break;
1954 case DT_veclen:
1955 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1956 break;
1958 case DT_elt_zero_int:
1959 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1960 break;
1962 case DT_elt_one_int:
1963 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1964 break;
1966 case DT_elt_zero_wide:
1967 case DT_elt_zero_wide_safe:
1968 printf ("XWINT (x%d, 0) == ", depth);
1969 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
1970 break;
1972 case DT_veclen_ge:
1973 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1974 break;
1976 case DT_dup:
1977 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1978 break;
1980 case DT_pred:
1981 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1982 GET_MODE_NAME (p->u.pred.mode));
1983 break;
1985 case DT_c_test:
1986 printf ("(%s)", p->u.c_test);
1987 break;
1989 case DT_accept_insn:
1990 switch (subroutine_type)
1992 case RECOG:
1993 if (p->u.insn.num_clobbers_to_add == 0)
1994 abort ();
1995 printf ("pnum_clobbers != NULL");
1996 break;
1998 default:
1999 abort ();
2001 break;
2003 default:
2004 abort ();
2008 /* Emit code for one action. The previous tests have succeeded;
2009 TEST is the last of the chain. In the normal case we simply
2010 perform a state change. For the `accept' tests we must do more work. */
2012 static void
2013 write_action (struct decision *p, struct decision_test *test,
2014 int depth, int uncond, struct decision *success,
2015 enum routine_type subroutine_type)
2017 const char *indent;
2018 int want_close = 0;
2020 if (uncond)
2021 indent = " ";
2022 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2024 fputs (" {\n", stdout);
2025 indent = " ";
2026 want_close = 1;
2028 else
2029 indent = " ";
2031 if (test->type == DT_accept_op)
2033 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2035 /* Only allow DT_accept_insn to follow. */
2036 if (test->next)
2038 test = test->next;
2039 if (test->type != DT_accept_insn)
2040 abort ();
2044 /* Sanity check that we're now at the end of the list of tests. */
2045 if (test->next)
2046 abort ();
2048 if (test->type == DT_accept_insn)
2050 switch (subroutine_type)
2052 case RECOG:
2053 if (test->u.insn.num_clobbers_to_add != 0)
2054 printf ("%s*pnum_clobbers = %d;\n",
2055 indent, test->u.insn.num_clobbers_to_add);
2056 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2057 break;
2059 case SPLIT:
2060 printf ("%sreturn gen_split_%d (operands);\n",
2061 indent, test->u.insn.code_number);
2062 break;
2064 case PEEPHOLE2:
2066 int match_len = 0, i;
2068 for (i = strlen (p->position) - 1; i >= 0; --i)
2069 if (ISUPPER (p->position[i]))
2071 match_len = p->position[i] - 'A';
2072 break;
2074 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2075 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2076 indent, test->u.insn.code_number);
2077 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2079 break;
2081 default:
2082 abort ();
2085 else
2087 printf("%sgoto L%d;\n", indent, success->number);
2088 success->need_label = 1;
2091 if (want_close)
2092 fputs (" }\n", stdout);
2095 /* Return 1 if the test is always true and has no fallthru path. Return -1
2096 if the test does have a fallthru path, but requires that the condition be
2097 terminated. Otherwise return 0 for a normal test. */
2098 /* ??? is_unconditional is a stupid name for a tri-state function. */
2100 static int
2101 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2103 if (t->type == DT_accept_op)
2104 return 1;
2106 if (t->type == DT_accept_insn)
2108 switch (subroutine_type)
2110 case RECOG:
2111 return (t->u.insn.num_clobbers_to_add == 0);
2112 case SPLIT:
2113 return 1;
2114 case PEEPHOLE2:
2115 return -1;
2116 default:
2117 abort ();
2121 return 0;
2124 /* Emit code for one node -- the conditional and the accompanying action.
2125 Return true if there is no fallthru path. */
2127 static int
2128 write_node (struct decision *p, int depth,
2129 enum routine_type subroutine_type)
2131 struct decision_test *test, *last_test;
2132 int uncond;
2134 last_test = test = p->tests;
2135 uncond = is_unconditional (test, subroutine_type);
2136 if (uncond == 0)
2138 printf (" if (");
2139 write_cond (test, depth, subroutine_type);
2141 while ((test = test->next) != NULL)
2143 int uncond2;
2145 last_test = test;
2146 uncond2 = is_unconditional (test, subroutine_type);
2147 if (uncond2 != 0)
2148 break;
2150 printf ("\n && ");
2151 write_cond (test, depth, subroutine_type);
2154 printf (")\n");
2157 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2159 return uncond > 0;
2162 /* Emit code for all of the sibling nodes of HEAD. */
2164 static void
2165 write_tree_1 (struct decision_head *head, int depth,
2166 enum routine_type subroutine_type)
2168 struct decision *p, *next;
2169 int uncond = 0;
2171 for (p = head->first; p ; p = next)
2173 /* The label for the first element was printed in write_tree. */
2174 if (p != head->first && p->need_label)
2175 OUTPUT_LABEL (" ", p->number);
2177 /* Attempt to write a switch statement for a whole sequence. */
2178 next = write_switch (p, depth);
2179 if (p != next)
2180 uncond = 0;
2181 else
2183 /* Failed -- fall back and write one node. */
2184 uncond = write_node (p, depth, subroutine_type);
2185 next = p->next;
2189 /* Finished with this chain. Close a fallthru path by branching
2190 to the afterward node. */
2191 if (! uncond)
2192 write_afterward (head->last, head->last->afterward, " ");
2195 /* Write out the decision tree starting at HEAD. PREVPOS is the
2196 position at the node that branched to this node. */
2198 static void
2199 write_tree (struct decision_head *head, const char *prevpos,
2200 enum routine_type type, int initial)
2202 struct decision *p = head->first;
2204 putchar ('\n');
2205 if (p->need_label)
2206 OUTPUT_LABEL (" ", p->number);
2208 if (! initial && p->subroutine_number > 0)
2210 static const char * const name_prefix[] = {
2211 "recog", "split", "peephole2"
2214 static const char * const call_suffix[] = {
2215 ", pnum_clobbers", "", ", _pmatch_len"
2218 /* This node has been broken out into a separate subroutine.
2219 Call it, test the result, and branch accordingly. */
2221 if (p->afterward)
2223 printf (" tem = %s_%d (x0, insn%s);\n",
2224 name_prefix[type], p->subroutine_number, call_suffix[type]);
2225 if (IS_SPLIT (type))
2226 printf (" if (tem != 0)\n return tem;\n");
2227 else
2228 printf (" if (tem >= 0)\n return tem;\n");
2230 change_state (p->position, p->afterward->position, NULL, " ");
2231 printf (" goto L%d;\n", p->afterward->number);
2233 else
2235 printf (" return %s_%d (x0, insn%s);\n",
2236 name_prefix[type], p->subroutine_number, call_suffix[type]);
2239 else
2241 int depth = strlen (p->position);
2243 change_state (prevpos, p->position, head->last->afterward, " ");
2244 write_tree_1 (head, depth, type);
2246 for (p = head->first; p; p = p->next)
2247 if (p->success.first)
2248 write_tree (&p->success, p->position, type, 0);
2252 /* Write out a subroutine of type TYPE to do comparisons starting at
2253 node TREE. */
2255 static void
2256 write_subroutine (struct decision_head *head, enum routine_type type)
2258 int subfunction = head->first ? head->first->subroutine_number : 0;
2259 const char *s_or_e;
2260 char extension[32];
2261 int i;
2263 s_or_e = subfunction ? "static " : "";
2265 if (subfunction)
2266 sprintf (extension, "_%d", subfunction);
2267 else if (type == RECOG)
2268 extension[0] = '\0';
2269 else
2270 strcpy (extension, "_insns");
2272 switch (type)
2274 case RECOG:
2275 printf ("%sint\n\
2276 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2277 break;
2278 case SPLIT:
2279 printf ("%srtx\n\
2280 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2281 s_or_e, extension);
2282 break;
2283 case PEEPHOLE2:
2284 printf ("%srtx\n\
2285 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2286 s_or_e, extension);
2287 break;
2290 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2291 for (i = 1; i <= max_depth; i++)
2292 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2294 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2296 if (!subfunction)
2297 printf (" recog_data.insn = NULL_RTX;\n");
2299 if (head->first)
2300 write_tree (head, "", type, 1);
2301 else
2302 printf (" goto ret0;\n");
2304 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2307 /* In break_out_subroutines, we discovered the boundaries for the
2308 subroutines, but did not write them out. Do so now. */
2310 static void
2311 write_subroutines (struct decision_head *head, enum routine_type type)
2313 struct decision *p;
2315 for (p = head->first; p ; p = p->next)
2316 if (p->success.first)
2317 write_subroutines (&p->success, type);
2319 if (head->first->subroutine_number > 0)
2320 write_subroutine (head, type);
2323 /* Begin the output file. */
2325 static void
2326 write_header (void)
2328 puts ("\
2329 /* Generated automatically by the program `genrecog' from the target\n\
2330 machine description file. */\n\
2332 #include \"config.h\"\n\
2333 #include \"system.h\"\n\
2334 #include \"coretypes.h\"\n\
2335 #include \"tm.h\"\n\
2336 #include \"rtl.h\"\n\
2337 #include \"tm_p.h\"\n\
2338 #include \"function.h\"\n\
2339 #include \"insn-config.h\"\n\
2340 #include \"recog.h\"\n\
2341 #include \"real.h\"\n\
2342 #include \"output.h\"\n\
2343 #include \"flags.h\"\n\
2344 #include \"hard-reg-set.h\"\n\
2345 #include \"resource.h\"\n\
2346 #include \"toplev.h\"\n\
2347 #include \"reload.h\"\n\
2348 \n");
2350 puts ("\n\
2351 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2352 X0 is a valid instruction.\n\
2354 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2355 returns a nonnegative number which is the insn code number for the\n\
2356 pattern that matched. This is the same as the order in the machine\n\
2357 description of the entry that matched. This number can be used as an\n\
2358 index into `insn_data' and other tables.\n");
2359 puts ("\
2360 The third argument to recog is an optional pointer to an int. If\n\
2361 present, recog will accept a pattern if it matches except for missing\n\
2362 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2363 the optional pointer will be set to the number of CLOBBERs that need\n\
2364 to be added (it should be initialized to zero by the caller). If it");
2365 puts ("\
2366 is set nonzero, the caller should allocate a PARALLEL of the\n\
2367 appropriate size, copy the initial entries, and call add_clobbers\n\
2368 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2371 puts ("\n\
2372 The function split_insns returns 0 if the rtl could not\n\
2373 be split or the split rtl as an INSN list if it can be.\n\
2375 The function peephole2_insns returns 0 if the rtl could not\n\
2376 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2377 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2378 */\n\n");
2382 /* Construct and return a sequence of decisions
2383 that will recognize INSN.
2385 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2387 static struct decision_head
2388 make_insn_sequence (rtx insn, enum routine_type type)
2390 rtx x;
2391 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2392 int truth = maybe_eval_c_test (c_test);
2393 struct decision *last;
2394 struct decision_test *test, **place;
2395 struct decision_head head;
2396 char c_test_pos[2];
2398 /* We should never see an insn whose C test is false at compile time. */
2399 if (truth == 0)
2400 abort ();
2402 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2404 c_test_pos[0] = '\0';
2405 if (type == PEEPHOLE2)
2407 int i, j;
2409 /* peephole2 gets special treatment:
2410 - X always gets an outer parallel even if it's only one entry
2411 - we remove all traces of outer-level match_scratch and match_dup
2412 expressions here. */
2413 x = rtx_alloc (PARALLEL);
2414 PUT_MODE (x, VOIDmode);
2415 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2416 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2418 rtx tmp = XVECEXP (insn, 0, i);
2419 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2421 XVECEXP (x, 0, j) = tmp;
2422 j++;
2425 XVECLEN (x, 0) = j;
2427 c_test_pos[0] = 'A' + j - 1;
2428 c_test_pos[1] = '\0';
2430 else if (XVECLEN (insn, type == RECOG) == 1)
2431 x = XVECEXP (insn, type == RECOG, 0);
2432 else
2434 x = rtx_alloc (PARALLEL);
2435 XVEC (x, 0) = XVEC (insn, type == RECOG);
2436 PUT_MODE (x, VOIDmode);
2439 validate_pattern (x, insn, NULL_RTX, 0);
2441 memset(&head, 0, sizeof(head));
2442 last = add_to_sequence (x, &head, "", type, 1);
2444 /* Find the end of the test chain on the last node. */
2445 for (test = last->tests; test->next; test = test->next)
2446 continue;
2447 place = &test->next;
2449 /* Skip the C test if it's known to be true at compile time. */
2450 if (truth == -1)
2452 /* Need a new node if we have another test to add. */
2453 if (test->type == DT_accept_op)
2455 last = new_decision (c_test_pos, &last->success);
2456 place = &last->tests;
2458 test = new_decision_test (DT_c_test, &place);
2459 test->u.c_test = c_test;
2462 test = new_decision_test (DT_accept_insn, &place);
2463 test->u.insn.code_number = next_insn_code;
2464 test->u.insn.lineno = pattern_lineno;
2465 test->u.insn.num_clobbers_to_add = 0;
2467 switch (type)
2469 case RECOG:
2470 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2471 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2472 If so, set up to recognize the pattern without these CLOBBERs. */
2474 if (GET_CODE (x) == PARALLEL)
2476 int i;
2478 /* Find the last non-clobber in the parallel. */
2479 for (i = XVECLEN (x, 0); i > 0; i--)
2481 rtx y = XVECEXP (x, 0, i - 1);
2482 if (GET_CODE (y) != CLOBBER
2483 || (GET_CODE (XEXP (y, 0)) != REG
2484 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2485 break;
2488 if (i != XVECLEN (x, 0))
2490 rtx new;
2491 struct decision_head clobber_head;
2493 /* Build a similar insn without the clobbers. */
2494 if (i == 1)
2495 new = XVECEXP (x, 0, 0);
2496 else
2498 int j;
2500 new = rtx_alloc (PARALLEL);
2501 XVEC (new, 0) = rtvec_alloc (i);
2502 for (j = i - 1; j >= 0; j--)
2503 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2506 /* Recognize it. */
2507 memset (&clobber_head, 0, sizeof(clobber_head));
2508 last = add_to_sequence (new, &clobber_head, "", type, 1);
2510 /* Find the end of the test chain on the last node. */
2511 for (test = last->tests; test->next; test = test->next)
2512 continue;
2514 /* We definitely have a new test to add -- create a new
2515 node if needed. */
2516 place = &test->next;
2517 if (test->type == DT_accept_op)
2519 last = new_decision ("", &last->success);
2520 place = &last->tests;
2523 /* Skip the C test if it's known to be true at compile
2524 time. */
2525 if (truth == -1)
2527 test = new_decision_test (DT_c_test, &place);
2528 test->u.c_test = c_test;
2531 test = new_decision_test (DT_accept_insn, &place);
2532 test->u.insn.code_number = next_insn_code;
2533 test->u.insn.lineno = pattern_lineno;
2534 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2536 merge_trees (&head, &clobber_head);
2539 break;
2541 case SPLIT:
2542 /* Define the subroutine we will call below and emit in genemit. */
2543 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2544 break;
2546 case PEEPHOLE2:
2547 /* Define the subroutine we will call below and emit in genemit. */
2548 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2549 next_insn_code);
2550 break;
2553 return head;
2556 static void
2557 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2559 if (head->first == NULL)
2561 /* We can elide peephole2_insns, but not recog or split_insns. */
2562 if (subroutine_type == PEEPHOLE2)
2563 return;
2565 else
2567 factor_tests (head);
2569 next_subroutine_number = 0;
2570 break_out_subroutines (head, 1);
2571 find_afterward (head, NULL);
2573 /* We run this after find_afterward, because find_afterward needs
2574 the redundant DT_mode tests on predicates to determine whether
2575 two tests can both be true or not. */
2576 simplify_tests(head);
2578 write_subroutines (head, subroutine_type);
2581 write_subroutine (head, subroutine_type);
2584 extern int main (int, char **);
2587 main (int argc, char **argv)
2589 rtx desc;
2590 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2592 progname = "genrecog";
2594 memset (&recog_tree, 0, sizeof recog_tree);
2595 memset (&split_tree, 0, sizeof split_tree);
2596 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2598 if (argc <= 1)
2599 fatal ("no input file name");
2601 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2602 return (FATAL_EXIT_CODE);
2604 next_insn_code = 0;
2605 next_index = 0;
2607 write_header ();
2609 /* Read the machine description. */
2611 while (1)
2613 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2614 if (desc == NULL)
2615 break;
2617 if (GET_CODE (desc) == DEFINE_INSN)
2619 h = make_insn_sequence (desc, RECOG);
2620 merge_trees (&recog_tree, &h);
2622 else if (GET_CODE (desc) == DEFINE_SPLIT)
2624 h = make_insn_sequence (desc, SPLIT);
2625 merge_trees (&split_tree, &h);
2627 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2629 h = make_insn_sequence (desc, PEEPHOLE2);
2630 merge_trees (&peephole2_tree, &h);
2633 next_index++;
2636 if (error_count)
2637 return FATAL_EXIT_CODE;
2639 puts ("\n\n");
2641 process_tree (&recog_tree, RECOG);
2642 process_tree (&split_tree, SPLIT);
2643 process_tree (&peephole2_tree, PEEPHOLE2);
2645 fflush (stdout);
2646 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2649 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2650 const char *
2651 get_insn_name (int code)
2653 if (code < insn_name_ptr_size)
2654 return insn_name_ptr[code];
2655 else
2656 return NULL;
2659 static void
2660 record_insn_name (int code, const char *name)
2662 static const char *last_real_name = "insn";
2663 static int last_real_code = 0;
2664 char *new;
2666 if (insn_name_ptr_size <= code)
2668 int new_size;
2669 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2670 insn_name_ptr =
2671 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2672 memset (insn_name_ptr + insn_name_ptr_size, 0,
2673 sizeof(char *) * (new_size - insn_name_ptr_size));
2674 insn_name_ptr_size = new_size;
2677 if (!name || name[0] == '\0')
2679 new = xmalloc (strlen (last_real_name) + 10);
2680 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2682 else
2684 last_real_name = new = xstrdup (name);
2685 last_real_code = code;
2688 insn_name_ptr[code] = new;
2691 static void
2692 debug_decision_2 (struct decision_test *test)
2694 switch (test->type)
2696 case DT_mode:
2697 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2698 break;
2699 case DT_code:
2700 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2701 break;
2702 case DT_veclen:
2703 fprintf (stderr, "veclen=%d", test->u.veclen);
2704 break;
2705 case DT_elt_zero_int:
2706 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2707 break;
2708 case DT_elt_one_int:
2709 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2710 break;
2711 case DT_elt_zero_wide:
2712 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2713 break;
2714 case DT_elt_zero_wide_safe:
2715 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2716 break;
2717 case DT_veclen_ge:
2718 fprintf (stderr, "veclen>=%d", test->u.veclen);
2719 break;
2720 case DT_dup:
2721 fprintf (stderr, "dup=%d", test->u.dup);
2722 break;
2723 case DT_pred:
2724 fprintf (stderr, "pred=(%s,%s)",
2725 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2726 break;
2727 case DT_c_test:
2729 char sub[16+4];
2730 strncpy (sub, test->u.c_test, sizeof(sub));
2731 memcpy (sub+16, "...", 4);
2732 fprintf (stderr, "c_test=\"%s\"", sub);
2734 break;
2735 case DT_accept_op:
2736 fprintf (stderr, "A_op=%d", test->u.opno);
2737 break;
2738 case DT_accept_insn:
2739 fprintf (stderr, "A_insn=(%d,%d)",
2740 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2741 break;
2743 default:
2744 abort ();
2748 static void
2749 debug_decision_1 (struct decision *d, int indent)
2751 int i;
2752 struct decision_test *test;
2754 if (d == NULL)
2756 for (i = 0; i < indent; ++i)
2757 putc (' ', stderr);
2758 fputs ("(nil)\n", stderr);
2759 return;
2762 for (i = 0; i < indent; ++i)
2763 putc (' ', stderr);
2765 putc ('{', stderr);
2766 test = d->tests;
2767 if (test)
2769 debug_decision_2 (test);
2770 while ((test = test->next) != NULL)
2772 fputs (" + ", stderr);
2773 debug_decision_2 (test);
2776 fprintf (stderr, "} %d n %d a %d\n", d->number,
2777 (d->next ? d->next->number : -1),
2778 (d->afterward ? d->afterward->number : -1));
2781 static void
2782 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2784 struct decision *n;
2785 int i;
2787 if (maxdepth < 0)
2788 return;
2789 if (d == NULL)
2791 for (i = 0; i < indent; ++i)
2792 putc (' ', stderr);
2793 fputs ("(nil)\n", stderr);
2794 return;
2797 debug_decision_1 (d, indent);
2798 for (n = d->success.first; n ; n = n->next)
2799 debug_decision_0 (n, indent + 2, maxdepth - 1);
2802 void
2803 debug_decision (struct decision *d)
2805 debug_decision_0 (d, 0, 1000000);
2808 void
2809 debug_decision_list (struct decision *d)
2811 while (d)
2813 debug_decision_0 (d, 0, 0);
2814 d = d->next;