1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
156 #include "coretypes.h"
161 #include "function.h"
162 #include "insn-config.h"
164 #include "hard-reg-set.h"
169 #include "basic-block.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
180 static GTY(()) varray_type stack_regs_mentioned_data
;
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top
; /* index to top stack element */
198 HARD_REG_SET reg_set
; /* set of live registers */
199 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in
; /* Input stack configuration. */
208 struct stack_def stack_out
; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
210 int done
; /* True if block already converted. */
211 int predecessors
; /* Number of predecessors that needs
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
224 /* The block we're currently working on. */
225 static basic_block current_block
;
227 /* This is the register file for all register after conversion. */
229 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
237 /* Forward declarations */
239 static int stack_regs_mentioned_p
PARAMS ((rtx pat
));
240 static void straighten_stack
PARAMS ((rtx
, stack
));
241 static void pop_stack
PARAMS ((stack
, int));
242 static rtx
*get_true_reg
PARAMS ((rtx
*));
244 static int check_asm_stack_operands
PARAMS ((rtx
));
245 static int get_asm_operand_n_inputs
PARAMS ((rtx
));
246 static rtx stack_result
PARAMS ((tree
));
247 static void replace_reg
PARAMS ((rtx
*, int));
248 static void remove_regno_note
PARAMS ((rtx
, enum reg_note
,
250 static int get_hard_regnum
PARAMS ((stack
, rtx
));
251 static rtx emit_pop_insn
PARAMS ((rtx
, stack
, rtx
,
253 static void emit_swap_insn
PARAMS ((rtx
, stack
, rtx
));
254 static void move_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
255 static int swap_rtx_condition_1
PARAMS ((rtx
));
256 static int swap_rtx_condition
PARAMS ((rtx
));
257 static void compare_for_stack_reg
PARAMS ((rtx
, stack
, rtx
));
258 static void subst_stack_regs_pat
PARAMS ((rtx
, stack
, rtx
));
259 static void subst_asm_stack_regs
PARAMS ((rtx
, stack
));
260 static void subst_stack_regs
PARAMS ((rtx
, stack
));
261 static void change_stack
PARAMS ((rtx
, stack
, stack
,
263 static int convert_regs_entry
PARAMS ((void));
264 static void convert_regs_exit
PARAMS ((void));
265 static int convert_regs_1
PARAMS ((FILE *, basic_block
));
266 static int convert_regs_2
PARAMS ((FILE *, basic_block
));
267 static int convert_regs
PARAMS ((FILE *));
268 static void print_stack
PARAMS ((FILE *, stack
));
269 static rtx next_flags_user
PARAMS ((rtx
));
270 static void record_label_references
PARAMS ((rtx
, rtx
));
271 static bool compensate_edge
PARAMS ((edge
, FILE *));
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
276 stack_regs_mentioned_p (pat
)
282 if (STACK_REG_P (pat
))
285 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
286 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
292 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
293 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
296 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306 stack_regs_mentioned (insn
)
309 unsigned int uid
, max
;
312 if (! INSN_P (insn
) || !stack_regs_mentioned_data
)
315 uid
= INSN_UID (insn
);
316 max
= VARRAY_SIZE (stack_regs_mentioned_data
);
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max
= uid
+ uid
/ 20;
322 VARRAY_GROW (stack_regs_mentioned_data
, max
);
325 test
= VARRAY_CHAR (stack_regs_mentioned_data
, uid
);
328 /* This insn has yet to be examined. Do so now. */
329 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
330 VARRAY_CHAR (stack_regs_mentioned_data
, uid
) = test
;
336 static rtx ix86_flags_rtx
;
339 next_flags_user (insn
)
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn
!= current_block
->end
)
347 insn
= NEXT_INSN (insn
);
349 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
352 if (GET_CODE (insn
) == CALL_INSN
)
358 /* Reorganize the stack into ascending numbers,
362 straighten_stack (insn
, regstack
)
366 struct stack_def temp_stack
;
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
372 Similarly if the stack is empty. */
373 if (regstack
->top
<= 0)
376 COPY_HARD_REG_SET (temp_stack
.reg_set
, regstack
->reg_set
);
378 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
379 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
381 change_stack (insn
, regstack
, &temp_stack
, EMIT_AFTER
);
384 /* Pop a register from the stack. */
387 pop_stack (regstack
, regno
)
391 int top
= regstack
->top
;
393 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
395 /* If regno was not at the top of stack then adjust stack. */
396 if (regstack
->reg
[top
] != regno
)
399 for (i
= regstack
->top
; i
>= 0; i
--)
400 if (regstack
->reg
[i
] == regno
)
403 for (j
= i
; j
< top
; j
++)
404 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
410 /* Convert register usage from "flat" register file usage to a "stack
411 register file. FIRST is the first insn in the function, FILE is the
414 Construct a CFG and run life analysis. Then convert each insn one
415 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
416 code duplication created when the converter inserts pop insns on
420 reg_to_stack (first
, file
)
428 /* Clean up previous run. */
429 stack_regs_mentioned_data
= 0;
431 /* See if there is something to do. Flow analysis is quite
432 expensive so we might save some compilation time. */
433 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
434 if (regs_ever_live
[i
])
436 if (i
> LAST_STACK_REG
)
439 /* Ok, floating point instructions exist. If not optimizing,
440 build the CFG and run life analysis.
441 Also need to rebuild life when superblock scheduling is done
442 as it don't update liveness yet. */
444 || (flag_sched2_use_superblocks
445 && flag_schedule_insns_after_reload
))
447 count_or_remove_death_notes (NULL
, 1);
448 life_analysis (first
, file
, PROP_DEATH_NOTES
);
450 mark_dfs_back_edges ();
452 /* Set up block info for each basic block. */
453 alloc_aux_for_blocks (sizeof (struct block_info_def
));
454 FOR_EACH_BB_REVERSE (bb
)
457 for (e
= bb
->pred
; e
; e
=e
->pred_next
)
458 if (!(e
->flags
& EDGE_DFS_BACK
)
459 && e
->src
!= ENTRY_BLOCK_PTR
)
460 BLOCK_INFO (bb
)->predecessors
++;
463 /* Create the replacement registers up front. */
464 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
466 enum machine_mode mode
;
467 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
469 mode
= GET_MODE_WIDER_MODE (mode
))
470 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
471 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
473 mode
= GET_MODE_WIDER_MODE (mode
))
474 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
477 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
479 /* A QNaN for initializing uninitialized variables.
481 ??? We can't load from constant memory in PIC mode, because
482 we're inserting these instructions before the prologue and
483 the PIC register hasn't been set up. In that case, fall back
484 on zero, which we can get from `ldz'. */
487 nan
= CONST0_RTX (SFmode
);
490 nan
= gen_lowpart (SFmode
, GEN_INT (0x7fc00000));
491 nan
= force_const_mem (SFmode
, nan
);
494 /* Allocate a cache for stack_regs_mentioned. */
495 max_uid
= get_max_uid ();
496 VARRAY_CHAR_INIT (stack_regs_mentioned_data
, max_uid
+ 1,
497 "stack_regs_mentioned cache");
501 free_aux_for_blocks ();
505 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
506 label's chain of references, and note which insn contains each
510 record_label_references (insn
, pat
)
513 enum rtx_code code
= GET_CODE (pat
);
517 if (code
== LABEL_REF
)
519 rtx label
= XEXP (pat
, 0);
522 if (GET_CODE (label
) != CODE_LABEL
)
525 /* If this is an undefined label, LABEL_REFS (label) contains
527 if (INSN_UID (label
) == 0)
530 /* Don't make a duplicate in the code_label's chain. */
532 for (ref
= LABEL_REFS (label
);
534 ref
= LABEL_NEXTREF (ref
))
535 if (CONTAINING_INSN (ref
) == insn
)
538 CONTAINING_INSN (pat
) = insn
;
539 LABEL_NEXTREF (pat
) = LABEL_REFS (label
);
540 LABEL_REFS (label
) = pat
;
545 fmt
= GET_RTX_FORMAT (code
);
546 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
549 record_label_references (insn
, XEXP (pat
, i
));
553 for (j
= 0; j
< XVECLEN (pat
, i
); j
++)
554 record_label_references (insn
, XVECEXP (pat
, i
, j
));
559 /* Return a pointer to the REG expression within PAT. If PAT is not a
560 REG, possible enclosed by a conversion rtx, return the inner part of
561 PAT that stopped the search. */
568 switch (GET_CODE (*pat
))
571 /* Eliminate FP subregister accesses in favor of the
572 actual FP register in use. */
575 if (FP_REG_P (subreg
= SUBREG_REG (*pat
)))
577 int regno_off
= subreg_regno_offset (REGNO (subreg
),
581 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
590 pat
= & XEXP (*pat
, 0);
594 /* There are many rules that an asm statement for stack-like regs must
595 follow. Those rules are explained at the top of this file: the rule
596 numbers below refer to that explanation. */
599 check_asm_stack_operands (insn
)
604 int malformed_asm
= 0;
605 rtx body
= PATTERN (insn
);
607 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
608 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
611 rtx
*clobber_reg
= 0;
612 int n_inputs
, n_outputs
;
614 /* Find out what the constraints require. If no constraint
615 alternative matches, this asm is malformed. */
617 constrain_operands (1);
618 alt
= which_alternative
;
620 preprocess_constraints ();
622 n_inputs
= get_asm_operand_n_inputs (body
);
623 n_outputs
= recog_data
.n_operands
- n_inputs
;
628 /* Avoid further trouble with this insn. */
629 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
633 /* Strip SUBREGs here to make the following code simpler. */
634 for (i
= 0; i
< recog_data
.n_operands
; i
++)
635 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
636 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
637 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
639 /* Set up CLOBBER_REG. */
643 if (GET_CODE (body
) == PARALLEL
)
645 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
647 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
648 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
650 rtx clobber
= XVECEXP (body
, 0, i
);
651 rtx reg
= XEXP (clobber
, 0);
653 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
654 reg
= SUBREG_REG (reg
);
656 if (STACK_REG_P (reg
))
658 clobber_reg
[n_clobbers
] = reg
;
664 /* Enforce rule #4: Output operands must specifically indicate which
665 reg an output appears in after an asm. "=f" is not allowed: the
666 operand constraints must select a class with a single reg.
668 Also enforce rule #5: Output operands must start at the top of
669 the reg-stack: output operands may not "skip" a reg. */
671 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
672 for (i
= 0; i
< n_outputs
; i
++)
673 if (STACK_REG_P (recog_data
.operand
[i
]))
675 if (reg_class_size
[(int) recog_op_alt
[i
][alt
].class] != 1)
677 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
684 for (j
= 0; j
< n_clobbers
; j
++)
685 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
687 error_for_asm (insn
, "output constraint %d cannot be specified together with \"%s\" clobber",
688 i
, reg_names
[REGNO (clobber_reg
[j
])]);
693 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
698 /* Search for first non-popped reg. */
699 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
700 if (! reg_used_as_output
[i
])
703 /* If there are any other popped regs, that's an error. */
704 for (; i
< LAST_STACK_REG
+ 1; i
++)
705 if (reg_used_as_output
[i
])
708 if (i
!= LAST_STACK_REG
+ 1)
710 error_for_asm (insn
, "output regs must be grouped at top of stack");
714 /* Enforce rule #2: All implicitly popped input regs must be closer
715 to the top of the reg-stack than any input that is not implicitly
718 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
719 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
720 if (STACK_REG_P (recog_data
.operand
[i
]))
722 /* An input reg is implicitly popped if it is tied to an
723 output, or if there is a CLOBBER for it. */
726 for (j
= 0; j
< n_clobbers
; j
++)
727 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
730 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
731 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
734 /* Search for first non-popped reg. */
735 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
736 if (! implicitly_dies
[i
])
739 /* If there are any other popped regs, that's an error. */
740 for (; i
< LAST_STACK_REG
+ 1; i
++)
741 if (implicitly_dies
[i
])
744 if (i
!= LAST_STACK_REG
+ 1)
747 "implicitly popped regs must be grouped at top of stack");
751 /* Enforce rule #3: If any input operand uses the "f" constraint, all
752 output constraints must use the "&" earlyclobber.
754 ??? Detect this more deterministically by having constrain_asm_operands
755 record any earlyclobber. */
757 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
758 if (recog_op_alt
[i
][alt
].matches
== -1)
762 for (j
= 0; j
< n_outputs
; j
++)
763 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
766 "output operand %d must use `&' constraint", j
);
773 /* Avoid further trouble with this insn. */
774 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
781 /* Calculate the number of inputs and outputs in BODY, an
782 asm_operands. N_OPERANDS is the total number of operands, and
783 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
787 get_asm_operand_n_inputs (body
)
790 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
791 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
));
793 else if (GET_CODE (body
) == ASM_OPERANDS
)
794 return ASM_OPERANDS_INPUT_LENGTH (body
);
796 else if (GET_CODE (body
) == PARALLEL
797 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
798 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)));
800 else if (GET_CODE (body
) == PARALLEL
801 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
802 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
807 /* If current function returns its result in an fp stack register,
808 return the REG. Otherwise, return 0. */
816 /* If the value is supposed to be returned in memory, then clearly
817 it is not returned in a stack register. */
818 if (aggregate_value_p (DECL_RESULT (decl
)))
821 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
824 #ifdef FUNCTION_OUTGOING_VALUE
826 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
828 result
= FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl
)), decl
);
832 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
837 * This section deals with stack register substitution, and forms the second
841 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
842 the desired hard REGNO. */
845 replace_reg (reg
, regno
)
849 if (regno
< FIRST_STACK_REG
|| regno
> LAST_STACK_REG
850 || ! STACK_REG_P (*reg
))
853 switch (GET_MODE_CLASS (GET_MODE (*reg
)))
857 case MODE_COMPLEX_FLOAT
:;
860 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
863 /* Remove a note of type NOTE, which must be found, for register
864 number REGNO from INSN. Remove only one such note. */
867 remove_regno_note (insn
, note
, regno
)
872 rtx
*note_link
, this;
874 note_link
= ®_NOTES (insn
);
875 for (this = *note_link
; this; this = XEXP (this, 1))
876 if (REG_NOTE_KIND (this) == note
877 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno
)
879 *note_link
= XEXP (this, 1);
883 note_link
= &XEXP (this, 1);
888 /* Find the hard register number of virtual register REG in REGSTACK.
889 The hard register number is relative to the top of the stack. -1 is
890 returned if the register is not found. */
893 get_hard_regnum (regstack
, reg
)
899 if (! STACK_REG_P (reg
))
902 for (i
= regstack
->top
; i
>= 0; i
--)
903 if (regstack
->reg
[i
] == REGNO (reg
))
906 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
909 /* Emit an insn to pop virtual register REG before or after INSN.
910 REGSTACK is the stack state after INSN and is updated to reflect this
911 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
912 is represented as a SET whose destination is the register to be popped
913 and source is the top of stack. A death note for the top of stack
914 cases the movdf pattern to pop. */
917 emit_pop_insn (insn
, regstack
, reg
, where
)
921 enum emit_where where
;
923 rtx pop_insn
, pop_rtx
;
926 /* For complex types take care to pop both halves. These may survive in
927 CLOBBER and USE expressions. */
928 if (COMPLEX_MODE_P (GET_MODE (reg
)))
930 rtx reg1
= FP_MODE_REG (REGNO (reg
), DFmode
);
931 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, DFmode
);
934 if (get_hard_regnum (regstack
, reg1
) >= 0)
935 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
936 if (get_hard_regnum (regstack
, reg2
) >= 0)
937 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
943 hard_regno
= get_hard_regnum (regstack
, reg
);
945 if (hard_regno
< FIRST_STACK_REG
)
948 pop_rtx
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (hard_regno
, DFmode
),
949 FP_MODE_REG (FIRST_STACK_REG
, DFmode
));
951 if (where
== EMIT_AFTER
)
952 pop_insn
= emit_insn_after (pop_rtx
, insn
);
954 pop_insn
= emit_insn_before (pop_rtx
, insn
);
957 = gen_rtx_EXPR_LIST (REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, DFmode
),
958 REG_NOTES (pop_insn
));
960 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
961 = regstack
->reg
[regstack
->top
];
963 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
968 /* Emit an insn before or after INSN to swap virtual register REG with
969 the top of stack. REGSTACK is the stack state before the swap, and
970 is updated to reflect the swap. A swap insn is represented as a
971 PARALLEL of two patterns: each pattern moves one reg to the other.
973 If REG is already at the top of the stack, no insn is emitted. */
976 emit_swap_insn (insn
, regstack
, reg
)
983 int tmp
, other_reg
; /* swap regno temps */
984 rtx i1
; /* the stack-reg insn prior to INSN */
985 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
987 hard_regno
= get_hard_regnum (regstack
, reg
);
989 if (hard_regno
< FIRST_STACK_REG
)
991 if (hard_regno
== FIRST_STACK_REG
)
994 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
996 tmp
= regstack
->reg
[other_reg
];
997 regstack
->reg
[other_reg
] = regstack
->reg
[regstack
->top
];
998 regstack
->reg
[regstack
->top
] = tmp
;
1000 /* Find the previous insn involving stack regs, but don't pass a
1003 if (current_block
&& insn
!= current_block
->head
)
1005 rtx tmp
= PREV_INSN (insn
);
1006 rtx limit
= PREV_INSN (current_block
->head
);
1007 while (tmp
!= limit
)
1009 if (GET_CODE (tmp
) == CODE_LABEL
1010 || GET_CODE (tmp
) == CALL_INSN
1011 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
1012 || (GET_CODE (tmp
) == INSN
1013 && stack_regs_mentioned (tmp
)))
1018 tmp
= PREV_INSN (tmp
);
1023 && (i1set
= single_set (i1
)) != NULL_RTX
)
1025 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
1026 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
1028 /* If the previous register stack push was from the reg we are to
1029 swap with, omit the swap. */
1031 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == FIRST_STACK_REG
1032 && GET_CODE (i1src
) == REG
1033 && REGNO (i1src
) == (unsigned) hard_regno
- 1
1034 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1037 /* If the previous insn wrote to the reg we are to swap with,
1040 if (GET_CODE (i1dest
) == REG
&& REGNO (i1dest
) == (unsigned) hard_regno
1041 && GET_CODE (i1src
) == REG
&& REGNO (i1src
) == FIRST_STACK_REG
1042 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
1046 swap_rtx
= gen_swapxf (FP_MODE_REG (hard_regno
, XFmode
),
1047 FP_MODE_REG (FIRST_STACK_REG
, XFmode
));
1050 emit_insn_after (swap_rtx
, i1
);
1051 else if (current_block
)
1052 emit_insn_before (swap_rtx
, current_block
->head
);
1054 emit_insn_before (swap_rtx
, insn
);
1057 /* Handle a move to or from a stack register in PAT, which is in INSN.
1058 REGSTACK is the current stack. */
1061 move_for_stack_reg (insn
, regstack
, pat
)
1066 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
1067 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
1071 src
= *psrc
; dest
= *pdest
;
1073 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
1075 /* Write from one stack reg to another. If SRC dies here, then
1076 just change the register mapping and delete the insn. */
1078 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1083 /* If this is a no-op move, there must not be a REG_DEAD note. */
1084 if (REGNO (src
) == REGNO (dest
))
1087 for (i
= regstack
->top
; i
>= 0; i
--)
1088 if (regstack
->reg
[i
] == REGNO (src
))
1091 /* The source must be live, and the dest must be dead. */
1092 if (i
< 0 || get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1095 /* It is possible that the dest is unused after this insn.
1096 If so, just pop the src. */
1098 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1100 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
1106 regstack
->reg
[i
] = REGNO (dest
);
1108 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1109 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1116 /* The source reg does not die. */
1118 /* If this appears to be a no-op move, delete it, or else it
1119 will confuse the machine description output patterns. But if
1120 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1121 for REG_UNUSED will not work for deleted insns. */
1123 if (REGNO (src
) == REGNO (dest
))
1125 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1126 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1132 /* The destination ought to be dead. */
1133 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1136 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1138 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1139 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1140 replace_reg (pdest
, FIRST_STACK_REG
);
1142 else if (STACK_REG_P (src
))
1144 /* Save from a stack reg to MEM, or possibly integer reg. Since
1145 only top of stack may be saved, emit an exchange first if
1148 emit_swap_insn (insn
, regstack
, src
);
1150 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1153 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1155 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1157 else if ((GET_MODE (src
) == XFmode
|| GET_MODE (src
) == TFmode
)
1158 && regstack
->top
< REG_STACK_SIZE
- 1)
1160 /* A 387 cannot write an XFmode value to a MEM without
1161 clobbering the source reg. The output code can handle
1162 this by reading back the value from the MEM.
1163 But it is more efficient to use a temp register if one is
1164 available. Push the source value here if the register
1165 stack is not full, and then write the value to memory via
1167 rtx push_rtx
, push_insn
;
1168 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1170 if (GET_MODE (src
) == TFmode
)
1171 push_rtx
= gen_movtf (top_stack_reg
, top_stack_reg
);
1173 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1174 push_insn
= emit_insn_before (push_rtx
, insn
);
1175 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_DEAD
, top_stack_reg
,
1179 replace_reg (psrc
, FIRST_STACK_REG
);
1181 else if (STACK_REG_P (dest
))
1183 /* Load from MEM, or possibly integer REG or constant, into the
1184 stack regs. The actual target is always the top of the
1185 stack. The stack mapping is changed to reflect that DEST is
1186 now at top of stack. */
1188 /* The destination ought to be dead. */
1189 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1192 if (regstack
->top
>= REG_STACK_SIZE
)
1195 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1196 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1197 replace_reg (pdest
, FIRST_STACK_REG
);
1203 /* Swap the condition on a branch, if there is one. Return true if we
1204 found a condition to swap. False if the condition was not used as
1208 swap_rtx_condition_1 (pat
)
1214 if (GET_RTX_CLASS (GET_CODE (pat
)) == '<')
1216 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1221 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1222 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1228 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1229 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1231 else if (fmt
[i
] == 'e')
1232 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1240 swap_rtx_condition (insn
)
1243 rtx pat
= PATTERN (insn
);
1245 /* We're looking for a single set to cc0 or an HImode temporary. */
1247 if (GET_CODE (pat
) == SET
1248 && GET_CODE (SET_DEST (pat
)) == REG
1249 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1251 insn
= next_flags_user (insn
);
1252 if (insn
== NULL_RTX
)
1254 pat
= PATTERN (insn
);
1257 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1258 not doing anything with the cc value right now. We may be able to
1259 search for one though. */
1261 if (GET_CODE (pat
) == SET
1262 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1263 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1265 rtx dest
= SET_DEST (pat
);
1267 /* Search forward looking for the first use of this value.
1268 Stop at block boundaries. */
1269 while (insn
!= current_block
->end
)
1271 insn
= NEXT_INSN (insn
);
1272 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1274 if (GET_CODE (insn
) == CALL_INSN
)
1278 /* So we've found the insn using this value. If it is anything
1279 other than sahf, aka unspec 10, or the value does not die
1280 (meaning we'd have to search further), then we must give up. */
1281 pat
= PATTERN (insn
);
1282 if (GET_CODE (pat
) != SET
1283 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1284 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1285 || ! dead_or_set_p (insn
, dest
))
1288 /* Now we are prepared to handle this as a normal cc0 setter. */
1289 insn
= next_flags_user (insn
);
1290 if (insn
== NULL_RTX
)
1292 pat
= PATTERN (insn
);
1295 if (swap_rtx_condition_1 (pat
))
1298 INSN_CODE (insn
) = -1;
1299 if (recog_memoized (insn
) == -1)
1301 /* In case the flags don't die here, recurse to try fix
1302 following user too. */
1303 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1305 insn
= next_flags_user (insn
);
1306 if (!insn
|| !swap_rtx_condition (insn
))
1311 swap_rtx_condition_1 (pat
);
1319 /* Handle a comparison. Special care needs to be taken to avoid
1320 causing comparisons that a 387 cannot do correctly, such as EQ.
1322 Also, a pop insn may need to be emitted. The 387 does have an
1323 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1324 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1328 compare_for_stack_reg (insn
, regstack
, pat_src
)
1334 rtx src1_note
, src2_note
;
1337 src1
= get_true_reg (&XEXP (pat_src
, 0));
1338 src2
= get_true_reg (&XEXP (pat_src
, 1));
1339 flags_user
= next_flags_user (insn
);
1341 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1342 registers that die in this insn - move those to stack top first. */
1343 if ((! STACK_REG_P (*src1
)
1344 || (STACK_REG_P (*src2
)
1345 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1346 && swap_rtx_condition (insn
))
1349 temp
= XEXP (pat_src
, 0);
1350 XEXP (pat_src
, 0) = XEXP (pat_src
, 1);
1351 XEXP (pat_src
, 1) = temp
;
1353 src1
= get_true_reg (&XEXP (pat_src
, 0));
1354 src2
= get_true_reg (&XEXP (pat_src
, 1));
1356 INSN_CODE (insn
) = -1;
1359 /* We will fix any death note later. */
1361 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1363 if (STACK_REG_P (*src2
))
1364 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1366 src2_note
= NULL_RTX
;
1368 emit_swap_insn (insn
, regstack
, *src1
);
1370 replace_reg (src1
, FIRST_STACK_REG
);
1372 if (STACK_REG_P (*src2
))
1373 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1377 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1378 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1381 /* If the second operand dies, handle that. But if the operands are
1382 the same stack register, don't bother, because only one death is
1383 needed, and it was just handled. */
1386 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1387 && REGNO (*src1
) == REGNO (*src2
)))
1389 /* As a special case, two regs may die in this insn if src2 is
1390 next to top of stack and the top of stack also dies. Since
1391 we have already popped src1, "next to top of stack" is really
1392 at top (FIRST_STACK_REG) now. */
1394 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1397 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1398 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1402 /* The 386 can only represent death of the first operand in
1403 the case handled above. In all other cases, emit a separate
1404 pop and remove the death note from here. */
1406 /* link_cc0_insns (insn); */
1408 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1410 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1416 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1417 is the current register layout. */
1420 subst_stack_regs_pat (insn
, regstack
, pat
)
1427 switch (GET_CODE (pat
))
1430 /* Deaths in USE insns can happen in non optimizing compilation.
1431 Handle them by popping the dying register. */
1432 src
= get_true_reg (&XEXP (pat
, 0));
1433 if (STACK_REG_P (*src
)
1434 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1436 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1439 /* ??? Uninitialized USE should not happen. */
1440 else if (get_hard_regnum (regstack
, *src
) == -1)
1448 dest
= get_true_reg (&XEXP (pat
, 0));
1449 if (STACK_REG_P (*dest
))
1451 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1453 if (pat
!= PATTERN (insn
))
1455 /* The fix_truncdi_1 pattern wants to be able to allocate
1456 it's own scratch register. It does this by clobbering
1457 an fp reg so that it is assured of an empty reg-stack
1458 register. If the register is live, kill it now.
1459 Remove the DEAD/UNUSED note so we don't try to kill it
1463 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1466 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1470 remove_note (insn
, note
);
1471 replace_reg (dest
, LAST_STACK_REG
);
1475 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1476 indicates an uninitialized value. Because reload removed
1477 all other clobbers, this must be due to a function
1478 returning without a value. Load up a NaN. */
1481 && get_hard_regnum (regstack
, *dest
) == -1)
1483 pat
= gen_rtx_SET (VOIDmode
,
1484 FP_MODE_REG (REGNO (*dest
), SFmode
),
1486 PATTERN (insn
) = pat
;
1487 move_for_stack_reg (insn
, regstack
, pat
);
1489 if (! note
&& COMPLEX_MODE_P (GET_MODE (*dest
))
1490 && get_hard_regnum (regstack
, FP_MODE_REG (REGNO (*dest
), DFmode
)) == -1)
1492 pat
= gen_rtx_SET (VOIDmode
,
1493 FP_MODE_REG (REGNO (*dest
) + 1, SFmode
),
1495 PATTERN (insn
) = pat
;
1496 move_for_stack_reg (insn
, regstack
, pat
);
1505 rtx
*src1
= (rtx
*) 0, *src2
;
1506 rtx src1_note
, src2_note
;
1509 dest
= get_true_reg (&SET_DEST (pat
));
1510 src
= get_true_reg (&SET_SRC (pat
));
1511 pat_src
= SET_SRC (pat
);
1513 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1514 if (STACK_REG_P (*src
)
1515 || (STACK_REG_P (*dest
)
1516 && (GET_CODE (*src
) == REG
|| GET_CODE (*src
) == MEM
1517 || GET_CODE (*src
) == CONST_DOUBLE
)))
1519 move_for_stack_reg (insn
, regstack
, pat
);
1523 switch (GET_CODE (pat_src
))
1526 compare_for_stack_reg (insn
, regstack
, pat_src
);
1532 for (count
= HARD_REGNO_NREGS (REGNO (*dest
), GET_MODE (*dest
));
1535 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1536 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1539 replace_reg (dest
, FIRST_STACK_REG
);
1543 /* This is a `tstM2' case. */
1544 if (*dest
!= cc0_rtx
)
1550 case FLOAT_TRUNCATE
:
1554 /* These insns only operate on the top of the stack. DEST might
1555 be cc0_rtx if we're processing a tstM pattern. Also, it's
1556 possible that the tstM case results in a REG_DEAD note on the
1560 src1
= get_true_reg (&XEXP (pat_src
, 0));
1562 emit_swap_insn (insn
, regstack
, *src1
);
1564 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1566 if (STACK_REG_P (*dest
))
1567 replace_reg (dest
, FIRST_STACK_REG
);
1571 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1573 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1576 replace_reg (src1
, FIRST_STACK_REG
);
1581 /* On i386, reversed forms of subM3 and divM3 exist for
1582 MODE_FLOAT, so the same code that works for addM3 and mulM3
1586 /* These insns can accept the top of stack as a destination
1587 from a stack reg or mem, or can use the top of stack as a
1588 source and some other stack register (possibly top of stack)
1589 as a destination. */
1591 src1
= get_true_reg (&XEXP (pat_src
, 0));
1592 src2
= get_true_reg (&XEXP (pat_src
, 1));
1594 /* We will fix any death note later. */
1596 if (STACK_REG_P (*src1
))
1597 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1599 src1_note
= NULL_RTX
;
1600 if (STACK_REG_P (*src2
))
1601 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1603 src2_note
= NULL_RTX
;
1605 /* If either operand is not a stack register, then the dest
1606 must be top of stack. */
1608 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1609 emit_swap_insn (insn
, regstack
, *dest
);
1612 /* Both operands are REG. If neither operand is already
1613 at the top of stack, choose to make the one that is the dest
1614 the new top of stack. */
1616 int src1_hard_regnum
, src2_hard_regnum
;
1618 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1619 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1620 if (src1_hard_regnum
== -1 || src2_hard_regnum
== -1)
1623 if (src1_hard_regnum
!= FIRST_STACK_REG
1624 && src2_hard_regnum
!= FIRST_STACK_REG
)
1625 emit_swap_insn (insn
, regstack
, *dest
);
1628 if (STACK_REG_P (*src1
))
1629 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1630 if (STACK_REG_P (*src2
))
1631 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1635 rtx src1_reg
= XEXP (src1_note
, 0);
1637 /* If the register that dies is at the top of stack, then
1638 the destination is somewhere else - merely substitute it.
1639 But if the reg that dies is not at top of stack, then
1640 move the top of stack to the dead reg, as though we had
1641 done the insn and then a store-with-pop. */
1643 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1645 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1646 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1650 int regno
= get_hard_regnum (regstack
, src1_reg
);
1652 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1653 replace_reg (dest
, regno
);
1655 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1656 = regstack
->reg
[regstack
->top
];
1659 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1660 REGNO (XEXP (src1_note
, 0)));
1661 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1666 rtx src2_reg
= XEXP (src2_note
, 0);
1667 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1669 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1670 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1674 int regno
= get_hard_regnum (regstack
, src2_reg
);
1676 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1677 replace_reg (dest
, regno
);
1679 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1680 = regstack
->reg
[regstack
->top
];
1683 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1684 REGNO (XEXP (src2_note
, 0)));
1685 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1690 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1691 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1694 /* Keep operand 1 matching with destination. */
1695 if (GET_RTX_CLASS (GET_CODE (pat_src
)) == 'c'
1696 && REG_P (*src1
) && REG_P (*src2
)
1697 && REGNO (*src1
) != REGNO (*dest
))
1699 int tmp
= REGNO (*src1
);
1700 replace_reg (src1
, REGNO (*src2
));
1701 replace_reg (src2
, tmp
);
1706 switch (XINT (pat_src
, 1))
1710 /* These insns only operate on the top of the stack. */
1712 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1714 emit_swap_insn (insn
, regstack
, *src1
);
1716 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1718 if (STACK_REG_P (*dest
))
1719 replace_reg (dest
, FIRST_STACK_REG
);
1723 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1725 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1728 replace_reg (src1
, FIRST_STACK_REG
);
1732 /* These insns operate on the top two stack slots. */
1734 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1735 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1737 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1738 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1741 struct stack_def temp_stack
;
1742 int regno
, j
, k
, temp
;
1744 temp_stack
= *regstack
;
1746 /* Place operand 1 at the top of stack. */
1747 regno
= get_hard_regnum (&temp_stack
, *src1
);
1750 if (regno
!= FIRST_STACK_REG
)
1752 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1755 temp
= temp_stack
.reg
[k
];
1756 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
1757 temp_stack
.reg
[j
] = temp
;
1760 /* Place operand 2 next on the stack. */
1761 regno
= get_hard_regnum (&temp_stack
, *src2
);
1764 if (regno
!= FIRST_STACK_REG
+ 1)
1766 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1767 j
= temp_stack
.top
- 1;
1769 temp
= temp_stack
.reg
[k
];
1770 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
1771 temp_stack
.reg
[j
] = temp
;
1774 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
1777 replace_reg (src1
, FIRST_STACK_REG
);
1778 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1781 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1783 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1785 /* Pop both input operands from the stack. */
1786 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1787 regstack
->reg
[regstack
->top
]);
1788 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1789 regstack
->reg
[regstack
->top
- 1]);
1792 /* Push the result back onto the stack. */
1793 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1794 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1795 replace_reg (dest
, FIRST_STACK_REG
);
1799 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1800 The combination matches the PPRO fcomi instruction. */
1802 pat_src
= XVECEXP (pat_src
, 0, 0);
1803 if (GET_CODE (pat_src
) != UNSPEC
1804 || XINT (pat_src
, 1) != UNSPEC_FNSTSW
)
1809 /* Combined fcomp+fnstsw generated for doing well with
1810 CSE. When optimizing this would have been broken
1813 pat_src
= XVECEXP (pat_src
, 0, 0);
1814 if (GET_CODE (pat_src
) != COMPARE
)
1817 compare_for_stack_reg (insn
, regstack
, pat_src
);
1826 /* This insn requires the top of stack to be the destination. */
1828 src1
= get_true_reg (&XEXP (pat_src
, 1));
1829 src2
= get_true_reg (&XEXP (pat_src
, 2));
1831 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1832 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1834 /* If the comparison operator is an FP comparison operator,
1835 it is handled correctly by compare_for_stack_reg () who
1836 will move the destination to the top of stack. But if the
1837 comparison operator is not an FP comparison operator, we
1838 have to handle it here. */
1839 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
1840 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
1842 /* In case one of operands is the top of stack and the operands
1843 dies, it is safe to make it the destination operand by
1844 reversing the direction of cmove and avoid fxch. */
1845 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
1847 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
1850 int idx1
= (get_hard_regnum (regstack
, *src1
)
1852 int idx2
= (get_hard_regnum (regstack
, *src2
)
1855 /* Make reg-stack believe that the operands are already
1856 swapped on the stack */
1857 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
1858 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
1860 /* Reverse condition to compensate the operand swap.
1861 i386 do have comparison always reversible. */
1862 PUT_CODE (XEXP (pat_src
, 0),
1863 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
1866 emit_swap_insn (insn
, regstack
, *dest
);
1874 src_note
[1] = src1_note
;
1875 src_note
[2] = src2_note
;
1877 if (STACK_REG_P (*src1
))
1878 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1879 if (STACK_REG_P (*src2
))
1880 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1882 for (i
= 1; i
<= 2; i
++)
1885 int regno
= REGNO (XEXP (src_note
[i
], 0));
1887 /* If the register that dies is not at the top of
1888 stack, then move the top of stack to the dead reg */
1889 if (regno
!= regstack
->reg
[regstack
->top
])
1891 remove_regno_note (insn
, REG_DEAD
, regno
);
1892 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
1896 /* Top of stack never dies, as it is the
1902 /* Make dest the top of stack. Add dest to regstack if
1904 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
1905 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1906 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1907 replace_reg (dest
, FIRST_STACK_REG
);
1921 /* Substitute hard regnums for any stack regs in INSN, which has
1922 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1923 before the insn, and is updated with changes made here.
1925 There are several requirements and assumptions about the use of
1926 stack-like regs in asm statements. These rules are enforced by
1927 record_asm_stack_regs; see comments there for details. Any
1928 asm_operands left in the RTL at this point may be assume to meet the
1929 requirements, since record_asm_stack_regs removes any problem asm. */
1932 subst_asm_stack_regs (insn
, regstack
)
1936 rtx body
= PATTERN (insn
);
1939 rtx
*note_reg
; /* Array of note contents */
1940 rtx
**note_loc
; /* Address of REG field of each note */
1941 enum reg_note
*note_kind
; /* The type of each note */
1943 rtx
*clobber_reg
= 0;
1944 rtx
**clobber_loc
= 0;
1946 struct stack_def temp_stack
;
1951 int n_inputs
, n_outputs
;
1953 if (! check_asm_stack_operands (insn
))
1956 /* Find out what the constraints required. If no constraint
1957 alternative matches, that is a compiler bug: we should have caught
1958 such an insn in check_asm_stack_operands. */
1959 extract_insn (insn
);
1960 constrain_operands (1);
1961 alt
= which_alternative
;
1963 preprocess_constraints ();
1965 n_inputs
= get_asm_operand_n_inputs (body
);
1966 n_outputs
= recog_data
.n_operands
- n_inputs
;
1971 /* Strip SUBREGs here to make the following code simpler. */
1972 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1973 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
1974 && GET_CODE (SUBREG_REG (recog_data
.operand
[i
])) == REG
)
1976 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
1977 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1980 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1982 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1985 note_reg
= (rtx
*) alloca (i
* sizeof (rtx
));
1986 note_loc
= (rtx
**) alloca (i
* sizeof (rtx
*));
1987 note_kind
= (enum reg_note
*) alloca (i
* sizeof (enum reg_note
));
1990 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1992 rtx reg
= XEXP (note
, 0);
1993 rtx
*loc
= & XEXP (note
, 0);
1995 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
1997 loc
= & SUBREG_REG (reg
);
1998 reg
= SUBREG_REG (reg
);
2001 if (STACK_REG_P (reg
)
2002 && (REG_NOTE_KIND (note
) == REG_DEAD
2003 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2005 note_reg
[n_notes
] = reg
;
2006 note_loc
[n_notes
] = loc
;
2007 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2012 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2016 if (GET_CODE (body
) == PARALLEL
)
2018 clobber_reg
= (rtx
*) alloca (XVECLEN (body
, 0) * sizeof (rtx
));
2019 clobber_loc
= (rtx
**) alloca (XVECLEN (body
, 0) * sizeof (rtx
*));
2021 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2022 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2024 rtx clobber
= XVECEXP (body
, 0, i
);
2025 rtx reg
= XEXP (clobber
, 0);
2026 rtx
*loc
= & XEXP (clobber
, 0);
2028 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SUBREG_REG (reg
)) == REG
)
2030 loc
= & SUBREG_REG (reg
);
2031 reg
= SUBREG_REG (reg
);
2034 if (STACK_REG_P (reg
))
2036 clobber_reg
[n_clobbers
] = reg
;
2037 clobber_loc
[n_clobbers
] = loc
;
2043 temp_stack
= *regstack
;
2045 /* Put the input regs into the desired place in TEMP_STACK. */
2047 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2048 if (STACK_REG_P (recog_data
.operand
[i
])
2049 && reg_class_subset_p (recog_op_alt
[i
][alt
].class,
2051 && recog_op_alt
[i
][alt
].class != FLOAT_REGS
)
2053 /* If an operand needs to be in a particular reg in
2054 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2055 these constraints are for single register classes, and
2056 reload guaranteed that operand[i] is already in that class,
2057 we can just use REGNO (recog_data.operand[i]) to know which
2058 actual reg this operand needs to be in. */
2060 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2065 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2067 /* recog_data.operand[i] is not in the right place. Find
2068 it and swap it with whatever is already in I's place.
2069 K is where recog_data.operand[i] is now. J is where it
2073 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2075 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2077 temp
= temp_stack
.reg
[k
];
2078 temp_stack
.reg
[k
] = temp_stack
.reg
[j
];
2079 temp_stack
.reg
[j
] = temp
;
2083 /* Emit insns before INSN to make sure the reg-stack is in the right
2086 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2088 /* Make the needed input register substitutions. Do death notes and
2089 clobbers too, because these are for inputs, not outputs. */
2091 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2092 if (STACK_REG_P (recog_data
.operand
[i
]))
2094 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2099 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2102 for (i
= 0; i
< n_notes
; i
++)
2103 if (note_kind
[i
] == REG_DEAD
)
2105 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2110 replace_reg (note_loc
[i
], regnum
);
2113 for (i
= 0; i
< n_clobbers
; i
++)
2115 /* It's OK for a CLOBBER to reference a reg that is not live.
2116 Don't try to replace it in that case. */
2117 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2121 /* Sigh - clobbers always have QImode. But replace_reg knows
2122 that these regs can't be MODE_INT and will abort. Just put
2123 the right reg there without calling replace_reg. */
2125 *clobber_loc
[i
] = FP_MODE_REG (regnum
, DFmode
);
2129 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2131 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2132 if (STACK_REG_P (recog_data
.operand
[i
]))
2134 /* An input reg is implicitly popped if it is tied to an
2135 output, or if there is a CLOBBER for it. */
2138 for (j
= 0; j
< n_clobbers
; j
++)
2139 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2142 if (j
< n_clobbers
|| recog_op_alt
[i
][alt
].matches
>= 0)
2144 /* recog_data.operand[i] might not be at the top of stack.
2145 But that's OK, because all we need to do is pop the
2146 right number of regs off of the top of the reg-stack.
2147 record_asm_stack_regs guaranteed that all implicitly
2148 popped regs were grouped at the top of the reg-stack. */
2150 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2151 regstack
->reg
[regstack
->top
]);
2156 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2157 Note that there isn't any need to substitute register numbers.
2158 ??? Explain why this is true. */
2160 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2162 /* See if there is an output for this hard reg. */
2165 for (j
= 0; j
< n_outputs
; j
++)
2166 if (STACK_REG_P (recog_data
.operand
[j
])
2167 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2169 regstack
->reg
[++regstack
->top
] = i
;
2170 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2175 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2176 input that the asm didn't implicitly pop. If the asm didn't
2177 implicitly pop an input reg, that reg will still be live.
2179 Note that we can't use find_regno_note here: the register numbers
2180 in the death notes have already been substituted. */
2182 for (i
= 0; i
< n_outputs
; i
++)
2183 if (STACK_REG_P (recog_data
.operand
[i
]))
2187 for (j
= 0; j
< n_notes
; j
++)
2188 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2189 && note_kind
[j
] == REG_UNUSED
)
2191 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2197 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2198 if (STACK_REG_P (recog_data
.operand
[i
]))
2202 for (j
= 0; j
< n_notes
; j
++)
2203 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2204 && note_kind
[j
] == REG_DEAD
2205 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2206 REGNO (recog_data
.operand
[i
])))
2208 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2215 /* Substitute stack hard reg numbers for stack virtual registers in
2216 INSN. Non-stack register numbers are not changed. REGSTACK is the
2217 current stack content. Insns may be emitted as needed to arrange the
2218 stack for the 387 based on the contents of the insn. */
2221 subst_stack_regs (insn
, regstack
)
2225 rtx
*note_link
, note
;
2228 if (GET_CODE (insn
) == CALL_INSN
)
2230 int top
= regstack
->top
;
2232 /* If there are any floating point parameters to be passed in
2233 registers for this call, make sure they are in the right
2238 straighten_stack (PREV_INSN (insn
), regstack
);
2240 /* Now mark the arguments as dead after the call. */
2242 while (regstack
->top
>= 0)
2244 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2250 /* Do the actual substitution if any stack regs are mentioned.
2251 Since we only record whether entire insn mentions stack regs, and
2252 subst_stack_regs_pat only works for patterns that contain stack regs,
2253 we must check each pattern in a parallel here. A call_value_pop could
2256 if (stack_regs_mentioned (insn
))
2258 int n_operands
= asm_noperands (PATTERN (insn
));
2259 if (n_operands
>= 0)
2261 /* This insn is an `asm' with operands. Decode the operands,
2262 decide how many are inputs, and do register substitution.
2263 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2265 subst_asm_stack_regs (insn
, regstack
);
2269 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2270 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2272 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2273 subst_stack_regs_pat (insn
, regstack
,
2274 XVECEXP (PATTERN (insn
), 0, i
));
2277 subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2280 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2281 REG_UNUSED will already have been dealt with, so just return. */
2283 if (GET_CODE (insn
) == NOTE
|| INSN_DELETED_P (insn
))
2286 /* If there is a REG_UNUSED note on a stack register on this insn,
2287 the indicated reg must be popped. The REG_UNUSED note is removed,
2288 since the form of the newly emitted pop insn references the reg,
2289 making it no longer `unset'. */
2291 note_link
= ®_NOTES (insn
);
2292 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2293 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2295 *note_link
= XEXP (note
, 1);
2296 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2299 note_link
= &XEXP (note
, 1);
2302 /* Change the organization of the stack so that it fits a new basic
2303 block. Some registers might have to be popped, but there can never be
2304 a register live in the new block that is not now live.
2306 Insert any needed insns before or after INSN, as indicated by
2307 WHERE. OLD is the original stack layout, and NEW is the desired
2308 form. OLD is updated to reflect the code emitted, ie, it will be
2309 the same as NEW upon return.
2311 This function will not preserve block_end[]. But that information
2312 is no longer needed once this has executed. */
2315 change_stack (insn
, old
, new, where
)
2319 enum emit_where where
;
2324 /* We will be inserting new insns "backwards". If we are to insert
2325 after INSN, find the next insn, and insert before it. */
2327 if (where
== EMIT_AFTER
)
2329 if (current_block
&& current_block
->end
== insn
)
2331 insn
= NEXT_INSN (insn
);
2334 /* Pop any registers that are not needed in the new block. */
2336 for (reg
= old
->top
; reg
>= 0; reg
--)
2337 if (! TEST_HARD_REG_BIT (new->reg_set
, old
->reg
[reg
]))
2338 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[reg
], DFmode
),
2343 /* If the new block has never been processed, then it can inherit
2344 the old stack order. */
2346 new->top
= old
->top
;
2347 memcpy (new->reg
, old
->reg
, sizeof (new->reg
));
2351 /* This block has been entered before, and we must match the
2352 previously selected stack order. */
2354 /* By now, the only difference should be the order of the stack,
2355 not their depth or liveliness. */
2357 GO_IF_HARD_REG_EQUAL (old
->reg_set
, new->reg_set
, win
);
2360 if (old
->top
!= new->top
)
2363 /* If the stack is not empty (new->top != -1), loop here emitting
2364 swaps until the stack is correct.
2366 The worst case number of swaps emitted is N + 2, where N is the
2367 depth of the stack. In some cases, the reg at the top of
2368 stack may be correct, but swapped anyway in order to fix
2369 other regs. But since we never swap any other reg away from
2370 its correct slot, this algorithm will converge. */
2375 /* Swap the reg at top of stack into the position it is
2376 supposed to be in, until the correct top of stack appears. */
2378 while (old
->reg
[old
->top
] != new->reg
[new->top
])
2380 for (reg
= new->top
; reg
>= 0; reg
--)
2381 if (new->reg
[reg
] == old
->reg
[old
->top
])
2387 emit_swap_insn (insn
, old
,
2388 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2391 /* See if any regs remain incorrect. If so, bring an
2392 incorrect reg to the top of stack, and let the while loop
2395 for (reg
= new->top
; reg
>= 0; reg
--)
2396 if (new->reg
[reg
] != old
->reg
[reg
])
2398 emit_swap_insn (insn
, old
,
2399 FP_MODE_REG (old
->reg
[reg
], DFmode
));
2404 /* At this point there must be no differences. */
2406 for (reg
= old
->top
; reg
>= 0; reg
--)
2407 if (old
->reg
[reg
] != new->reg
[reg
])
2412 current_block
->end
= PREV_INSN (insn
);
2415 /* Print stack configuration. */
2418 print_stack (file
, s
)
2426 fprintf (file
, "uninitialized\n");
2427 else if (s
->top
== -1)
2428 fprintf (file
, "empty\n");
2433 for (i
= 0; i
<= s
->top
; ++i
)
2434 fprintf (file
, "%d ", s
->reg
[i
]);
2435 fputs ("]\n", file
);
2439 /* This function was doing life analysis. We now let the regular live
2440 code do it's job, so we only need to check some extra invariants
2441 that reg-stack expects. Primary among these being that all registers
2442 are initialized before use.
2444 The function returns true when code was emitted to CFG edges and
2445 commit_edge_insertions needs to be called. */
2448 convert_regs_entry ()
2454 FOR_EACH_BB_REVERSE (block
)
2456 block_info bi
= BLOCK_INFO (block
);
2459 /* Set current register status at last instruction `uninitialized'. */
2460 bi
->stack_in
.top
= -2;
2462 /* Copy live_at_end and live_at_start into temporaries. */
2463 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
2465 if (REGNO_REG_SET_P (block
->global_live_at_end
, reg
))
2466 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
2467 if (REGNO_REG_SET_P (block
->global_live_at_start
, reg
))
2468 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
2472 /* Load something into each stack register live at function entry.
2473 Such live registers can be caused by uninitialized variables or
2474 functions not returning values on all paths. In order to keep
2475 the push/pop code happy, and to not scrog the register stack, we
2476 must put something in these registers. Use a QNaN.
2478 Note that we are inserting converted code here. This code is
2479 never seen by the convert_regs pass. */
2481 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2483 basic_block block
= e
->dest
;
2484 block_info bi
= BLOCK_INFO (block
);
2487 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2488 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2492 bi
->stack_in
.reg
[++top
] = reg
;
2494 init
= gen_rtx_SET (VOIDmode
,
2495 FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2497 insert_insn_on_edge (init
, e
);
2501 bi
->stack_in
.top
= top
;
2507 /* Construct the desired stack for function exit. This will either
2508 be `empty', or the function return value at top-of-stack. */
2511 convert_regs_exit ()
2513 int value_reg_low
, value_reg_high
;
2517 retvalue
= stack_result (current_function_decl
);
2518 value_reg_low
= value_reg_high
= -1;
2521 value_reg_low
= REGNO (retvalue
);
2522 value_reg_high
= value_reg_low
2523 + HARD_REGNO_NREGS (value_reg_low
, GET_MODE (retvalue
)) - 1;
2526 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR
)->stack_in
;
2527 if (value_reg_low
== -1)
2528 output_stack
->top
= -1;
2533 output_stack
->top
= value_reg_high
- value_reg_low
;
2534 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2536 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2537 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2542 /* Adjust the stack of this block on exit to match the stack of the
2543 target block, or copy stack info into the stack of the successor
2544 of the successor hasn't been processed yet. */
2546 compensate_edge (e
, file
)
2550 basic_block block
= e
->src
, target
= e
->dest
;
2551 block_info bi
= BLOCK_INFO (block
);
2552 struct stack_def regstack
, tmpstack
;
2553 stack target_stack
= &BLOCK_INFO (target
)->stack_in
;
2556 current_block
= block
;
2557 regstack
= bi
->stack_out
;
2559 fprintf (file
, "Edge %d->%d: ", block
->index
, target
->index
);
2561 if (target_stack
->top
== -2)
2563 /* The target block hasn't had a stack order selected.
2564 We need merely ensure that no pops are needed. */
2565 for (reg
= regstack
.top
; reg
>= 0; --reg
)
2566 if (!TEST_HARD_REG_BIT (target_stack
->reg_set
, regstack
.reg
[reg
]))
2572 fprintf (file
, "new block; copying stack position\n");
2574 /* change_stack kills values in regstack. */
2575 tmpstack
= regstack
;
2577 change_stack (block
->end
, &tmpstack
, target_stack
, EMIT_AFTER
);
2582 fprintf (file
, "new block; pops needed\n");
2586 if (target_stack
->top
== regstack
.top
)
2588 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2589 if (target_stack
->reg
[reg
] != regstack
.reg
[reg
])
2595 fprintf (file
, "no changes needed\n");
2602 fprintf (file
, "correcting stack to ");
2603 print_stack (file
, target_stack
);
2607 /* Care for non-call EH edges specially. The normal return path have
2608 values in registers. These will be popped en masse by the unwind
2610 if ((e
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
)) == EDGE_EH
)
2611 target_stack
->top
= -1;
2613 /* Other calls may appear to have values live in st(0), but the
2614 abnormal return path will not have actually loaded the values. */
2615 else if (e
->flags
& EDGE_ABNORMAL_CALL
)
2617 /* Assert that the lifetimes are as we expect -- one value
2618 live at st(0) on the end of the source block, and no
2619 values live at the beginning of the destination block. */
2622 CLEAR_HARD_REG_SET (tmp
);
2623 GO_IF_HARD_REG_EQUAL (target_stack
->reg_set
, tmp
, eh1
);
2627 /* We are sure that there is st(0) live, otherwise we won't compensate.
2628 For complex return values, we may have st(1) live as well. */
2629 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
);
2630 if (TEST_HARD_REG_BIT (regstack
.reg_set
, FIRST_STACK_REG
+ 1))
2631 SET_HARD_REG_BIT (tmp
, FIRST_STACK_REG
+ 1);
2632 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, tmp
, eh2
);
2636 target_stack
->top
= -1;
2639 /* It is better to output directly to the end of the block
2640 instead of to the edge, because emit_swap can do minimal
2641 insn scheduling. We can do this when there is only one
2642 edge out, and it is not abnormal. */
2643 else if (block
->succ
->succ_next
== NULL
&& !(e
->flags
& EDGE_ABNORMAL
))
2645 /* change_stack kills values in regstack. */
2646 tmpstack
= regstack
;
2648 change_stack (block
->end
, &tmpstack
, target_stack
,
2649 (GET_CODE (block
->end
) == JUMP_INSN
2650 ? EMIT_BEFORE
: EMIT_AFTER
));
2656 /* We don't support abnormal edges. Global takes care to
2657 avoid any live register across them, so we should never
2658 have to insert instructions on such edges. */
2659 if (e
->flags
& EDGE_ABNORMAL
)
2662 current_block
= NULL
;
2665 /* ??? change_stack needs some point to emit insns after. */
2666 after
= emit_note (NULL
, NOTE_INSN_DELETED
);
2668 tmpstack
= regstack
;
2669 change_stack (after
, &tmpstack
, target_stack
, EMIT_BEFORE
);
2674 insert_insn_on_edge (seq
, e
);
2680 /* Convert stack register references in one block. */
2683 convert_regs_1 (file
, block
)
2687 struct stack_def regstack
;
2688 block_info bi
= BLOCK_INFO (block
);
2691 edge e
, beste
= NULL
;
2695 /* Find the edge we will copy stack from. It should be the most frequent
2696 one as it will get cheapest after compensation code is generated,
2697 if multiple such exists, take one with largest count, prefer critical
2698 one (as splitting critical edges is more expensive), or one with lowest
2699 index, to avoid random changes with different orders of the edges. */
2700 for (e
= block
->pred
; e
; e
= e
->pred_next
)
2702 if (e
->flags
& EDGE_DFS_BACK
)
2706 else if (EDGE_FREQUENCY (beste
) < EDGE_FREQUENCY (e
))
2708 else if (EDGE_FREQUENCY (beste
) > EDGE_FREQUENCY (e
))
2710 else if (beste
->count
< e
->count
)
2712 else if (beste
->count
> e
->count
)
2714 else if ((EDGE_CRITICAL_P (e
) != 0)
2715 != (EDGE_CRITICAL_P (beste
) != 0))
2717 if (EDGE_CRITICAL_P (e
))
2720 else if (e
->src
->index
< beste
->src
->index
)
2724 /* Entry block does have stack already initialized. */
2725 if (bi
->stack_in
.top
== -2)
2726 inserted
|= compensate_edge (beste
, file
);
2730 current_block
= block
;
2734 fprintf (file
, "\nBasic block %d\nInput stack: ", block
->index
);
2735 print_stack (file
, &bi
->stack_in
);
2738 /* Process all insns in this block. Keep track of NEXT so that we
2739 don't process insns emitted while substituting in INSN. */
2741 regstack
= bi
->stack_in
;
2745 next
= NEXT_INSN (insn
);
2747 /* Ensure we have not missed a block boundary. */
2750 if (insn
== block
->end
)
2753 /* Don't bother processing unless there is a stack reg
2754 mentioned or if it's a CALL_INSN. */
2755 if (stack_regs_mentioned (insn
)
2756 || GET_CODE (insn
) == CALL_INSN
)
2760 fprintf (file
, " insn %d input stack: ",
2762 print_stack (file
, ®stack
);
2764 subst_stack_regs (insn
, ®stack
);
2771 fprintf (file
, "Expected live registers [");
2772 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2773 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
2774 fprintf (file
, " %d", reg
);
2775 fprintf (file
, " ]\nOutput stack: ");
2776 print_stack (file
, ®stack
);
2780 if (GET_CODE (insn
) == JUMP_INSN
)
2781 insn
= PREV_INSN (insn
);
2783 /* If the function is declared to return a value, but it returns one
2784 in only some cases, some registers might come live here. Emit
2785 necessary moves for them. */
2787 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
2789 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
2790 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
2796 fprintf (file
, "Emitting insn initializing reg %d\n",
2800 set
= gen_rtx_SET (VOIDmode
, FP_MODE_REG (reg
, SFmode
),
2802 insn
= emit_insn_after (set
, insn
);
2803 subst_stack_regs (insn
, ®stack
);
2807 /* Something failed if the stack lives don't match. */
2808 GO_IF_HARD_REG_EQUAL (regstack
.reg_set
, bi
->out_reg_set
, win
);
2811 bi
->stack_out
= regstack
;
2813 /* Compensate the back edges, as those wasn't visited yet. */
2814 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2816 if (e
->flags
& EDGE_DFS_BACK
2817 || (e
->dest
== EXIT_BLOCK_PTR
))
2819 if (!BLOCK_INFO (e
->dest
)->done
2820 && e
->dest
!= block
)
2822 inserted
|= compensate_edge (e
, file
);
2825 for (e
= block
->pred
; e
; e
= e
->pred_next
)
2827 if (e
!= beste
&& !(e
->flags
& EDGE_DFS_BACK
)
2828 && e
->src
!= ENTRY_BLOCK_PTR
)
2830 if (!BLOCK_INFO (e
->src
)->done
)
2832 inserted
|= compensate_edge (e
, file
);
2839 /* Convert registers in all blocks reachable from BLOCK. */
2842 convert_regs_2 (file
, block
)
2846 basic_block
*stack
, *sp
;
2849 stack
= (basic_block
*) xmalloc (sizeof (*stack
) * n_basic_blocks
);
2860 inserted
|= convert_regs_1 (file
, block
);
2861 BLOCK_INFO (block
)->done
= 1;
2863 for (e
= block
->succ
; e
; e
= e
->succ_next
)
2864 if (! (e
->flags
& EDGE_DFS_BACK
))
2866 BLOCK_INFO (e
->dest
)->predecessors
--;
2867 if (!BLOCK_INFO (e
->dest
)->predecessors
)
2871 while (sp
!= stack
);
2876 /* Traverse all basic blocks in a function, converting the register
2877 references in each insn from the "flat" register file that gcc uses,
2878 to the stack-like registers the 387 uses. */
2888 /* Initialize uninitialized registers on function entry. */
2889 inserted
= convert_regs_entry ();
2891 /* Construct the desired stack for function exit. */
2892 convert_regs_exit ();
2893 BLOCK_INFO (EXIT_BLOCK_PTR
)->done
= 1;
2895 /* ??? Future: process inner loops first, and give them arbitrary
2896 initial stacks which emit_swap_insn can modify. This ought to
2897 prevent double fxch that aften appears at the head of a loop. */
2899 /* Process all blocks reachable from all entry points. */
2900 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
2901 inserted
|= convert_regs_2 (file
, e
->dest
);
2903 /* ??? Process all unreachable blocks. Though there's no excuse
2904 for keeping these even when not optimizing. */
2907 block_info bi
= BLOCK_INFO (b
);
2913 /* Create an arbitrary input stack. */
2914 bi
->stack_in
.top
= -1;
2915 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2916 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2917 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
2919 inserted
|= convert_regs_2 (file
, b
);
2922 clear_aux_for_blocks ();
2924 fixup_abnormal_edges ();
2926 commit_edge_insertions ();
2933 #endif /* STACK_REGS */
2935 #include "gt-reg-stack.h"