* Makefile.am (nat_source_files): Remove
[official-gcc.git] / gcc / ra-colorize.c
blob359dfd86126524477b5a9632ca1d6488f00dc8ef
1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
15 details.
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "df.h"
32 #include "output.h"
33 #include "ra.h"
35 /* This file is part of the graph coloring register allocator.
36 It contains the graph colorizer. Given an interference graph
37 as set up in ra-build.c the toplevel function in this file
38 (ra_colorize_graph) colorizes the graph, leaving a list
39 of colored, coalesced and spilled nodes.
41 The algorithm used is a merge of George & Appels iterative coalescing
42 and optimistic coalescing, switchable at runtime. The current default
43 is "optimistic coalescing +", which is based on the normal Briggs/Cooper
44 framework. We can also use biased coloring. Most of the structure
45 here follows the different papers.
47 Additionally there is a custom step to locally improve the overall
48 spill cost of the colored graph (recolor_spills). */
50 static void push_list PARAMS ((struct dlist *, struct dlist **));
51 static void push_list_end PARAMS ((struct dlist *, struct dlist **));
52 static void free_dlist PARAMS ((struct dlist **));
53 static void put_web_at_end PARAMS ((struct web *, enum node_type));
54 static void put_move PARAMS ((struct move *, enum move_type));
55 static void build_worklists PARAMS ((struct df *));
56 static void enable_move PARAMS ((struct web *));
57 static void decrement_degree PARAMS ((struct web *, int));
58 static void simplify PARAMS ((void));
59 static void remove_move_1 PARAMS ((struct web *, struct move *));
60 static void remove_move PARAMS ((struct web *, struct move *));
61 static void add_worklist PARAMS ((struct web *));
62 static int ok PARAMS ((struct web *, struct web *));
63 static int conservative PARAMS ((struct web *, struct web *));
64 static inline unsigned int simplify_p PARAMS ((enum node_type));
65 static void combine PARAMS ((struct web *, struct web *));
66 static void coalesce PARAMS ((void));
67 static void freeze_moves PARAMS ((struct web *));
68 static void freeze PARAMS ((void));
69 static void select_spill PARAMS ((void));
70 static int color_usable_p PARAMS ((int, HARD_REG_SET, HARD_REG_SET,
71 enum machine_mode));
72 int get_free_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, enum machine_mode));
73 static int get_biased_reg PARAMS ((HARD_REG_SET, HARD_REG_SET, HARD_REG_SET,
74 HARD_REG_SET, enum machine_mode));
75 static int count_long_blocks PARAMS ((HARD_REG_SET, int));
76 static char * hardregset_to_string PARAMS ((HARD_REG_SET));
77 static void calculate_dont_begin PARAMS ((struct web *, HARD_REG_SET *));
78 static void colorize_one_web PARAMS ((struct web *, int));
79 static void assign_colors PARAMS ((void));
80 static void try_recolor_web PARAMS ((struct web *));
81 static void insert_coalesced_conflicts PARAMS ((void));
82 static int comp_webs_maxcost PARAMS ((const void *, const void *));
83 static void recolor_spills PARAMS ((void));
84 static void check_colors PARAMS ((void));
85 static void restore_conflicts_from_coalesce PARAMS ((struct web *));
86 static void break_coalesced_spills PARAMS ((void));
87 static void unalias_web PARAMS ((struct web *));
88 static void break_aliases_to_web PARAMS ((struct web *));
89 static void break_precolored_alias PARAMS ((struct web *));
90 static void init_web_pairs PARAMS ((void));
91 static void add_web_pair_cost PARAMS ((struct web *, struct web *,
92 unsigned HOST_WIDE_INT, unsigned int));
93 static int comp_web_pairs PARAMS ((const void *, const void *));
94 static void sort_and_combine_web_pairs PARAMS ((int));
95 static void aggressive_coalesce PARAMS ((void));
96 static void extended_coalesce_2 PARAMS ((void));
97 static void check_uncoalesced_moves PARAMS ((void));
99 static struct dlist *mv_worklist, *mv_coalesced, *mv_constrained;
100 static struct dlist *mv_frozen, *mv_active;
102 /* Push a node onto the front of the list. */
104 static void
105 push_list (x, list)
106 struct dlist *x;
107 struct dlist **list;
109 if (x->next || x->prev)
110 abort ();
111 x->next = *list;
112 if (*list)
113 (*list)->prev = x;
114 *list = x;
117 static void
118 push_list_end (x, list)
119 struct dlist *x;
120 struct dlist **list;
122 if (x->prev || x->next)
123 abort ();
124 if (!*list)
126 *list = x;
127 return;
129 while ((*list)->next)
130 list = &((*list)->next);
131 x->prev = *list;
132 (*list)->next = x;
135 /* Remove a node from the list. */
137 void
138 remove_list (x, list)
139 struct dlist *x;
140 struct dlist **list;
142 struct dlist *y = x->prev;
143 if (y)
144 y->next = x->next;
145 else
146 *list = x->next;
147 y = x->next;
148 if (y)
149 y->prev = x->prev;
150 x->next = x->prev = NULL;
153 /* Pop the front of the list. */
155 struct dlist *
156 pop_list (list)
157 struct dlist **list;
159 struct dlist *r = *list;
160 if (r)
161 remove_list (r, list);
162 return r;
165 /* Free the given double linked list. */
167 static void
168 free_dlist (list)
169 struct dlist **list;
171 *list = NULL;
174 /* The web WEB should get the given new TYPE. Put it onto the
175 appropriate list.
176 Inline, because it's called with constant TYPE every time. */
178 inline void
179 put_web (web, type)
180 struct web *web;
181 enum node_type type;
183 switch (type)
185 case INITIAL:
186 case FREE:
187 case FREEZE:
188 case SPILL:
189 case SPILLED:
190 case COALESCED:
191 case COLORED:
192 case SELECT:
193 push_list (web->dlink, &WEBS(type));
194 break;
195 case PRECOLORED:
196 push_list (web->dlink, &WEBS(INITIAL));
197 break;
198 case SIMPLIFY:
199 if (web->spill_temp)
200 push_list (web->dlink, &WEBS(type = SIMPLIFY_SPILL));
201 else if (web->add_hardregs)
202 push_list (web->dlink, &WEBS(type = SIMPLIFY_FAT));
203 else
204 push_list (web->dlink, &WEBS(SIMPLIFY));
205 break;
206 default:
207 abort ();
209 web->type = type;
212 /* After we are done with the whole pass of coloring/spilling,
213 we reset the lists of webs, in preparation of the next pass.
214 The spilled webs become free, colored webs go to the initial list,
215 coalesced webs become free or initial, according to what type of web
216 they are coalesced to. */
218 void
219 reset_lists ()
221 struct dlist *d;
222 unsigned int i;
223 if (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_SPILL) || WEBS(SIMPLIFY_FAT)
224 || WEBS(FREEZE) || WEBS(SPILL) || WEBS(SELECT))
225 abort ();
227 while ((d = pop_list (&WEBS(COALESCED))) != NULL)
229 struct web *web = DLIST_WEB (d);
230 struct web *aweb = alias (web);
231 /* Note, how alias() becomes invalid through the two put_web()'s
232 below. It might set the type of a web to FREE (from COALESCED),
233 which itself is a target of aliasing (i.e. in the middle of
234 an alias chain). We can handle this by checking also for
235 type == FREE. Note nevertheless, that alias() is invalid
236 henceforth. */
237 if (aweb->type == SPILLED || aweb->type == FREE)
238 put_web (web, FREE);
239 else
240 put_web (web, INITIAL);
242 while ((d = pop_list (&WEBS(SPILLED))) != NULL)
243 put_web (DLIST_WEB (d), FREE);
244 while ((d = pop_list (&WEBS(COLORED))) != NULL)
245 put_web (DLIST_WEB (d), INITIAL);
247 /* All free webs have no conflicts anymore. */
248 for (d = WEBS(FREE); d; d = d->next)
250 struct web *web = DLIST_WEB (d);
251 BITMAP_XFREE (web->useless_conflicts);
252 web->useless_conflicts = NULL;
255 /* Sanity check, that we only have free, initial or precolored webs. */
256 for (i = 0; i < num_webs; i++)
258 struct web *web = ID2WEB (i);
259 if (web->type != INITIAL && web->type != FREE && web->type != PRECOLORED)
260 abort ();
262 free_dlist (&mv_worklist);
263 free_dlist (&mv_coalesced);
264 free_dlist (&mv_constrained);
265 free_dlist (&mv_frozen);
266 free_dlist (&mv_active);
269 /* Similar to put_web(), but add the web to the end of the appropriate
270 list. Additionally TYPE may not be SIMPLIFY. */
272 static void
273 put_web_at_end (web, type)
274 struct web *web;
275 enum node_type type;
277 if (type == PRECOLORED)
278 type = INITIAL;
279 else if (type == SIMPLIFY)
280 abort ();
281 push_list_end (web->dlink, &WEBS(type));
282 web->type = type;
285 /* Unlink WEB from the list it's currently on (which corresponds to
286 its current type). */
288 void
289 remove_web_from_list (web)
290 struct web *web;
292 if (web->type == PRECOLORED)
293 remove_list (web->dlink, &WEBS(INITIAL));
294 else
295 remove_list (web->dlink, &WEBS(web->type));
298 /* Give MOVE the TYPE, and link it into the correct list. */
300 static inline void
301 put_move (move, type)
302 struct move *move;
303 enum move_type type;
305 switch (type)
307 case WORKLIST:
308 push_list (move->dlink, &mv_worklist);
309 break;
310 case MV_COALESCED:
311 push_list (move->dlink, &mv_coalesced);
312 break;
313 case CONSTRAINED:
314 push_list (move->dlink, &mv_constrained);
315 break;
316 case FROZEN:
317 push_list (move->dlink, &mv_frozen);
318 break;
319 case ACTIVE:
320 push_list (move->dlink, &mv_active);
321 break;
322 default:
323 abort ();
325 move->type = type;
328 /* Build the worklists we are going to process. */
330 static void
331 build_worklists (df)
332 struct df *df ATTRIBUTE_UNUSED;
334 struct dlist *d, *d_next;
335 struct move_list *ml;
337 /* If we are not the first pass, put all stackwebs (which are still
338 backed by a new pseudo, but conceptually can stand for a stackslot,
339 i.e. it doesn't really matter if they get a color or not), on
340 the SELECT stack first, those with lowest cost first. This way
341 they will be colored last, so do not constrain the coloring of the
342 normal webs. But still those with the highest count are colored
343 before, i.e. get a color more probable. The use of stackregs is
344 a pure optimization, and all would work, if we used real stackslots
345 from the begin. */
346 if (ra_pass > 1)
348 unsigned int i, num, max_num;
349 struct web **order2web;
350 max_num = num_webs - num_subwebs;
351 order2web = (struct web **) xmalloc (max_num * sizeof (order2web[0]));
352 for (i = 0, num = 0; i < max_num; i++)
353 if (id2web[i]->regno >= max_normal_pseudo)
354 order2web[num++] = id2web[i];
355 if (num)
357 qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
358 for (i = num - 1;; i--)
360 struct web *web = order2web[i];
361 struct conflict_link *wl;
362 remove_list (web->dlink, &WEBS(INITIAL));
363 put_web (web, SELECT);
364 for (wl = web->conflict_list; wl; wl = wl->next)
366 struct web *pweb = wl->t;
367 pweb->num_conflicts -= 1 + web->add_hardregs;
369 if (i == 0)
370 break;
373 free (order2web);
376 /* For all remaining initial webs, classify them. */
377 for (d = WEBS(INITIAL); d; d = d_next)
379 struct web *web = DLIST_WEB (d);
380 d_next = d->next;
381 if (web->type == PRECOLORED)
382 continue;
384 remove_list (d, &WEBS(INITIAL));
385 if (web->num_conflicts >= NUM_REGS (web))
386 put_web (web, SPILL);
387 else if (web->moves)
388 put_web (web, FREEZE);
389 else
390 put_web (web, SIMPLIFY);
393 /* And put all moves on the worklist for iterated coalescing.
394 Note, that if iterated coalescing is off, then wl_moves doesn't
395 contain any moves. */
396 for (ml = wl_moves; ml; ml = ml->next)
397 if (ml->move)
399 struct move *m = ml->move;
400 d = (struct dlist *) ra_calloc (sizeof (struct dlist));
401 DLIST_MOVE (d) = m;
402 m->dlink = d;
403 put_move (m, WORKLIST);
407 /* Enable the active moves, in which WEB takes part, to be processed. */
409 static void
410 enable_move (web)
411 struct web *web;
413 struct move_list *ml;
414 for (ml = web->moves; ml; ml = ml->next)
415 if (ml->move->type == ACTIVE)
417 remove_list (ml->move->dlink, &mv_active);
418 put_move (ml->move, WORKLIST);
422 /* Decrement the degree of node WEB by the amount DEC.
423 Possibly change the type of WEB, if the number of conflicts is
424 now smaller than its freedom. */
426 static void
427 decrement_degree (web, dec)
428 struct web *web;
429 int dec;
431 int before = web->num_conflicts;
432 web->num_conflicts -= dec;
433 if (web->num_conflicts < NUM_REGS (web) && before >= NUM_REGS (web))
435 struct conflict_link *a;
436 enable_move (web);
437 for (a = web->conflict_list; a; a = a->next)
439 struct web *aweb = a->t;
440 if (aweb->type != SELECT && aweb->type != COALESCED)
441 enable_move (aweb);
443 if (web->type != FREEZE)
445 remove_web_from_list (web);
446 if (web->moves)
447 put_web (web, FREEZE);
448 else
449 put_web (web, SIMPLIFY);
454 /* Repeatedly simplify the nodes on the simplify worklists. */
456 static void
457 simplify ()
459 struct dlist *d;
460 struct web *web;
461 struct conflict_link *wl;
462 while (1)
464 /* We try hard to color all the webs resulting from spills first.
465 Without that on register starved machines (x86 e.g) with some live
466 DImode pseudos, -fPIC, and an asm requiring %edx, it might be, that
467 we do rounds over rounds, because the conflict graph says, we can
468 simplify those short webs, but later due to irregularities we can't
469 color those pseudos. So we have to spill them, which in later rounds
470 leads to other spills. */
471 d = pop_list (&WEBS(SIMPLIFY));
472 if (!d)
473 d = pop_list (&WEBS(SIMPLIFY_FAT));
474 if (!d)
475 d = pop_list (&WEBS(SIMPLIFY_SPILL));
476 if (!d)
477 break;
478 web = DLIST_WEB (d);
479 ra_debug_msg (DUMP_PROCESS, " simplifying web %3d, conflicts = %d\n",
480 web->id, web->num_conflicts);
481 put_web (web, SELECT);
482 for (wl = web->conflict_list; wl; wl = wl->next)
484 struct web *pweb = wl->t;
485 if (pweb->type != SELECT && pweb->type != COALESCED)
487 decrement_degree (pweb, 1 + web->add_hardregs);
493 /* Helper function to remove a move from the movelist of the web. */
495 static void
496 remove_move_1 (web, move)
497 struct web *web;
498 struct move *move;
500 struct move_list *ml = web->moves;
501 if (!ml)
502 return;
503 if (ml->move == move)
505 web->moves = ml->next;
506 return;
508 for (; ml->next && ml->next->move != move; ml = ml->next) ;
509 if (!ml->next)
510 return;
511 ml->next = ml->next->next;
514 /* Remove a move from the movelist of the web. Actually this is just a
515 wrapper around remove_move_1(), making sure, the removed move really is
516 not in the list anymore. */
518 static void
519 remove_move (web, move)
520 struct web *web;
521 struct move *move;
523 struct move_list *ml;
524 remove_move_1 (web, move);
525 for (ml = web->moves; ml; ml = ml->next)
526 if (ml->move == move)
527 abort ();
530 /* Merge the moves for the two webs into the first web's movelist. */
532 void
533 merge_moves (u, v)
534 struct web *u, *v;
536 regset seen;
537 struct move_list *ml, *ml_next;
539 seen = BITMAP_XMALLOC ();
540 for (ml = u->moves; ml; ml = ml->next)
541 bitmap_set_bit (seen, INSN_UID (ml->move->insn));
542 for (ml = v->moves; ml; ml = ml_next)
544 ml_next = ml->next;
545 if (! bitmap_bit_p (seen, INSN_UID (ml->move->insn)))
547 ml->next = u->moves;
548 u->moves = ml;
551 BITMAP_XFREE (seen);
552 v->moves = NULL;
555 /* Add a web to the simplify worklist, from the freeze worklist. */
557 static void
558 add_worklist (web)
559 struct web *web;
561 if (web->type != PRECOLORED && !web->moves
562 && web->num_conflicts < NUM_REGS (web))
564 remove_list (web->dlink, &WEBS(FREEZE));
565 put_web (web, SIMPLIFY);
569 /* Precolored node coalescing heuristic. */
571 static int
572 ok (target, source)
573 struct web *target, *source;
575 struct conflict_link *wl;
576 int i;
577 int color = source->color;
578 int size;
580 /* Normally one would think, the next test wouldn't be needed.
581 We try to coalesce S and T, and S has already a color, and we checked
582 when processing the insns, that both have the same mode. So naively
583 we could conclude, that of course that mode was valid for this color.
584 Hah. But there is sparc. Before reload there are copy insns
585 (e.g. the ones copying arguments to locals) which happily refer to
586 colors in invalid modes. We can't coalesce those things. */
587 if (! HARD_REGNO_MODE_OK (source->color, GET_MODE (target->orig_x)))
588 return 0;
590 /* Sanity for funny modes. */
591 size = HARD_REGNO_NREGS (color, GET_MODE (target->orig_x));
592 if (!size)
593 return 0;
595 /* We can't coalesce target with a precolored register which isn't in
596 usable_regs. */
597 for (i = size; i--;)
598 if (TEST_HARD_REG_BIT (never_use_colors, color + i)
599 || !TEST_HARD_REG_BIT (target->usable_regs, color + i)
600 /* Before usually calling ok() at all, we already test, if the
601 candidates conflict in sup_igraph. But when wide webs are
602 coalesced to hardregs, we only test the hardweb coalesced into.
603 This is only the begin color. When actually coalescing both,
604 it will also take the following size colors, i.e. their webs.
605 We nowhere checked if the candidate possibly conflicts with
606 one of _those_, which is possible with partial conflicts,
607 so we simply do it here (this does one bit-test more than
608 necessary, the first color). Note, that if X is precolored
609 bit [X*num_webs + Y] can't be set (see add_conflict_edge()). */
610 || TEST_BIT (sup_igraph,
611 target->id * num_webs + hardreg2web[color + i]->id))
612 return 0;
614 for (wl = target->conflict_list; wl; wl = wl->next)
616 struct web *pweb = wl->t;
617 if (pweb->type == SELECT || pweb->type == COALESCED)
618 continue;
620 /* Coalescing target (T) and source (S) is o.k, if for
621 all conflicts C of T it is true, that:
622 1) C will be colored, or
623 2) C is a hardreg (precolored), or
624 3) C already conflicts with S too, or
625 4) a web which contains C conflicts already with S.
626 XXX: we handle here only the special case of 4), that C is
627 a subreg, and the containing thing is the reg itself, i.e.
628 we dont handle the situation, were T conflicts with
629 (subreg:SI x 1), and S conflicts with (subreg:DI x 0), which
630 would be allowed also, as the S-conflict overlaps
631 the T-conflict.
632 So, we first test the whole web for any of these conditions, and
633 continue with the next C, if 1, 2 or 3 is true. */
634 if (pweb->num_conflicts < NUM_REGS (pweb)
635 || pweb->type == PRECOLORED
636 || TEST_BIT (igraph, igraph_index (source->id, pweb->id)) )
637 continue;
639 /* This is reached, if not one of 1, 2 or 3 was true. In the case C has
640 no subwebs, 4 can't be true either, so we can't coalesce S and T. */
641 if (wl->sub == NULL)
642 return 0;
643 else
645 /* The main webs do _not_ conflict, only some parts of both. This
646 means, that 4 is possibly true, so we need to check this too.
647 For this we go thru all sub conflicts between T and C, and see if
648 the target part of C already conflicts with S. When this is not
649 the case we disallow coalescing. */
650 struct sub_conflict *sl;
651 for (sl = wl->sub; sl; sl = sl->next)
653 if (!TEST_BIT (igraph, igraph_index (source->id, sl->t->id)))
654 return 0;
658 return 1;
661 /* Non-precolored node coalescing heuristic. */
663 static int
664 conservative (target, source)
665 struct web *target, *source;
667 unsigned int k;
668 unsigned int loop;
669 regset seen;
670 struct conflict_link *wl;
671 unsigned int num_regs = NUM_REGS (target); /* XXX */
673 /* k counts the resulting conflict weight, if target and source
674 would be merged, and all low-degree neighbors would be
675 removed. */
676 k = 0 * MAX (target->add_hardregs, source->add_hardregs);
677 seen = BITMAP_XMALLOC ();
678 for (loop = 0; loop < 2; loop++)
679 for (wl = ((loop == 0) ? target : source)->conflict_list;
680 wl; wl = wl->next)
682 struct web *pweb = wl->t;
683 if (pweb->type != SELECT && pweb->type != COALESCED
684 && pweb->num_conflicts >= NUM_REGS (pweb)
685 && ! REGNO_REG_SET_P (seen, pweb->id))
687 SET_REGNO_REG_SET (seen, pweb->id);
688 k += 1 + pweb->add_hardregs;
691 BITMAP_XFREE (seen);
693 if (k >= num_regs)
694 return 0;
695 return 1;
698 /* If the web is coalesced, return it's alias. Otherwise, return what
699 was passed in. */
701 struct web *
702 alias (web)
703 struct web *web;
705 while (web->type == COALESCED)
706 web = web->alias;
707 return web;
710 /* Returns nonzero, if the TYPE belongs to one of those representing
711 SIMPLIFY types. */
713 static inline unsigned int
714 simplify_p (type)
715 enum node_type type;
717 return type == SIMPLIFY || type == SIMPLIFY_SPILL || type == SIMPLIFY_FAT;
720 /* Actually combine two webs, that can be coalesced. */
722 static void
723 combine (u, v)
724 struct web *u, *v;
726 int i;
727 struct conflict_link *wl;
728 if (u == v || v->type == COALESCED)
729 abort ();
730 if ((u->regno >= max_normal_pseudo) != (v->regno >= max_normal_pseudo))
731 abort ();
732 remove_web_from_list (v);
733 put_web (v, COALESCED);
734 v->alias = u;
735 u->is_coalesced = 1;
736 v->is_coalesced = 1;
737 u->num_aliased += 1 + v->num_aliased;
738 if (flag_ra_merge_spill_costs && u->type != PRECOLORED)
739 u->spill_cost += v->spill_cost;
740 /*u->spill_cost = MAX (u->spill_cost, v->spill_cost);*/
741 merge_moves (u, v);
742 /* combine add_hardregs's of U and V. */
744 for (wl = v->conflict_list; wl; wl = wl->next)
746 struct web *pweb = wl->t;
747 /* We don't strictly need to move conflicts between webs which are
748 already coalesced or selected, if we do iterated coalescing, or
749 better if we need not to be able to break aliases again.
750 I.e. normally we would use the condition
751 (pweb->type != SELECT && pweb->type != COALESCED).
752 But for now we simply merge all conflicts. It doesn't take that
753 much time. */
754 if (1)
756 struct web *web = u;
757 int nregs = 1 + v->add_hardregs;
758 if (u->type == PRECOLORED)
759 nregs = HARD_REGNO_NREGS (u->color, GET_MODE (v->orig_x));
761 /* For precolored U's we need to make conflicts between V's
762 neighbors and as many hardregs from U as V needed if it gets
763 color U. For now we approximate this by V->add_hardregs, which
764 could be too much in multi-length classes. We should really
765 count how many hardregs are needed for V with color U. When U
766 isn't precolored this loop breaks out after one iteration. */
767 for (i = 0; i < nregs; i++)
769 if (u->type == PRECOLORED)
770 web = hardreg2web[i + u->color];
771 if (wl->sub == NULL)
772 record_conflict (web, pweb);
773 else
775 struct sub_conflict *sl;
776 /* So, between V and PWEB there are sub_conflicts. We
777 need to relocate those conflicts to be between WEB (==
778 U when it wasn't precolored) and PWEB. In the case
779 only a part of V conflicted with (part of) PWEB we
780 nevertheless make the new conflict between the whole U
781 and the (part of) PWEB. Later we might try to find in
782 U the correct subpart corresponding (by size and
783 offset) to the part of V (sl->s) which was the source
784 of the conflict. */
785 for (sl = wl->sub; sl; sl = sl->next)
787 /* Beware: sl->s is no subweb of web (== U) but of V.
788 We try to search a corresponding subpart of U.
789 If we found none we let it conflict with the whole U.
790 Note that find_subweb() only looks for mode and
791 subreg_byte of the REG rtx but not for the pseudo
792 reg number (otherwise it would be guaranteed to
793 _not_ find any subpart). */
794 struct web *sweb = NULL;
795 if (SUBWEB_P (sl->s))
796 sweb = find_subweb (web, sl->s->orig_x);
797 if (!sweb)
798 sweb = web;
799 record_conflict (sweb, sl->t);
802 if (u->type != PRECOLORED)
803 break;
805 if (pweb->type != SELECT && pweb->type != COALESCED)
806 decrement_degree (pweb, 1 + v->add_hardregs);
810 /* Now merge the usable_regs together. */
811 /* XXX That merging might normally make it necessary to
812 adjust add_hardregs, which also means to adjust neighbors. This can
813 result in making some more webs trivially colorable, (or the opposite,
814 if this increases our add_hardregs). Because we intersect the
815 usable_regs it should only be possible to decrease add_hardregs. So a
816 conservative solution for now is to simply don't change it. */
817 u->use_my_regs = 1;
818 AND_HARD_REG_SET (u->usable_regs, v->usable_regs);
819 u->regclass = reg_class_subunion[u->regclass][v->regclass];
820 /* Count number of possible hardregs. This might make U a spillweb,
821 but that could also happen, if U and V together had too many
822 conflicts. */
823 u->num_freedom = hard_regs_count (u->usable_regs);
824 u->num_freedom -= u->add_hardregs;
825 /* The next would mean an invalid coalesced move (both webs have no
826 possible hardreg in common), so abort. */
827 if (!u->num_freedom)
828 abort();
830 if (u->num_conflicts >= NUM_REGS (u)
831 && (u->type == FREEZE || simplify_p (u->type)))
833 remove_web_from_list (u);
834 put_web (u, SPILL);
837 /* We want the most relaxed combination of spill_temp state.
838 I.e. if any was no spilltemp or a spilltemp2, the result is so too,
839 otherwise if any is short, the result is too. It remains, when both
840 are normal spilltemps. */
841 if (v->spill_temp == 0)
842 u->spill_temp = 0;
843 else if (v->spill_temp == 2 && u->spill_temp != 0)
844 u->spill_temp = 2;
845 else if (v->spill_temp == 3 && u->spill_temp == 1)
846 u->spill_temp = 3;
849 /* Attempt to coalesce the first thing on the move worklist.
850 This is used only for iterated coalescing. */
852 static void
853 coalesce ()
855 struct dlist *d = pop_list (&mv_worklist);
856 struct move *m = DLIST_MOVE (d);
857 struct web *source = alias (m->source_web);
858 struct web *target = alias (m->target_web);
860 if (target->type == PRECOLORED)
862 struct web *h = source;
863 source = target;
864 target = h;
866 if (source == target)
868 remove_move (source, m);
869 put_move (m, MV_COALESCED);
870 add_worklist (source);
872 else if (target->type == PRECOLORED
873 || TEST_BIT (sup_igraph, source->id * num_webs + target->id)
874 || TEST_BIT (sup_igraph, target->id * num_webs + source->id))
876 remove_move (source, m);
877 remove_move (target, m);
878 put_move (m, CONSTRAINED);
879 add_worklist (source);
880 add_worklist (target);
882 else if ((source->type == PRECOLORED && ok (target, source))
883 || (source->type != PRECOLORED
884 && conservative (target, source)))
886 remove_move (source, m);
887 remove_move (target, m);
888 put_move (m, MV_COALESCED);
889 combine (source, target);
890 add_worklist (source);
892 else
893 put_move (m, ACTIVE);
896 /* Freeze the moves associated with the web. Used for iterated coalescing. */
898 static void
899 freeze_moves (web)
900 struct web *web;
902 struct move_list *ml, *ml_next;
903 for (ml = web->moves; ml; ml = ml_next)
905 struct move *m = ml->move;
906 struct web *src, *dest;
907 ml_next = ml->next;
908 if (m->type == ACTIVE)
909 remove_list (m->dlink, &mv_active);
910 else
911 remove_list (m->dlink, &mv_worklist);
912 put_move (m, FROZEN);
913 remove_move (web, m);
914 src = alias (m->source_web);
915 dest = alias (m->target_web);
916 src = (src == web) ? dest : src;
917 remove_move (src, m);
918 /* XXX GA use the original v, instead of alias(v) */
919 if (!src->moves && src->num_conflicts < NUM_REGS (src))
921 remove_list (src->dlink, &WEBS(FREEZE));
922 put_web (src, SIMPLIFY);
927 /* Freeze the first thing on the freeze worklist (only for iterated
928 coalescing). */
930 static void
931 freeze ()
933 struct dlist *d = pop_list (&WEBS(FREEZE));
934 put_web (DLIST_WEB (d), SIMPLIFY);
935 freeze_moves (DLIST_WEB (d));
938 /* The current spill heuristic. Returns a number for a WEB.
939 Webs with higher numbers are selected later. */
941 static unsigned HOST_WIDE_INT (*spill_heuristic) PARAMS ((struct web *));
943 static unsigned HOST_WIDE_INT default_spill_heuristic PARAMS ((struct web *));
945 /* Our default heuristic is similar to spill_cost / num_conflicts.
946 Just scaled for integer arithmetic, and it favors coalesced webs,
947 and webs which span more insns with deaths. */
949 static unsigned HOST_WIDE_INT
950 default_spill_heuristic (web)
951 struct web *web;
953 unsigned HOST_WIDE_INT ret;
954 unsigned int divisor = 1;
955 /* Make coalesce targets cheaper to spill, because they will be broken
956 up again into smaller parts. */
957 if (flag_ra_break_aliases)
958 divisor += web->num_aliased;
959 divisor += web->num_conflicts;
960 ret = ((web->spill_cost << 8) + divisor - 1) / divisor;
961 /* It is better to spill webs that span more insns (deaths in our
962 case) than other webs with the otherwise same spill_cost. So make
963 them a little bit cheaper. Remember that spill_cost is unsigned. */
964 if (web->span_deaths < ret)
965 ret -= web->span_deaths;
966 return ret;
969 /* Select the cheapest spill to be potentially spilled (we don't
970 *actually* spill until we need to). */
972 static void
973 select_spill ()
975 unsigned HOST_WIDE_INT best = (unsigned HOST_WIDE_INT) -1;
976 struct dlist *bestd = NULL;
977 unsigned HOST_WIDE_INT best2 = (unsigned HOST_WIDE_INT) -1;
978 struct dlist *bestd2 = NULL;
979 struct dlist *d;
980 for (d = WEBS(SPILL); d; d = d->next)
982 struct web *w = DLIST_WEB (d);
983 unsigned HOST_WIDE_INT cost = spill_heuristic (w);
984 if ((!w->spill_temp) && cost < best)
986 best = cost;
987 bestd = d;
989 /* Specially marked spill temps can be spilled. Also coalesce
990 targets can. Eventually they will be broken up later in the
991 colorizing process, so if we have nothing better take that. */
992 else if ((w->spill_temp == 2 || w->is_coalesced) && cost < best2)
994 best2 = cost;
995 bestd2 = d;
998 if (!bestd)
1000 bestd = bestd2;
1001 best = best2;
1003 if (!bestd)
1004 abort ();
1006 /* Note the potential spill. */
1007 DLIST_WEB (bestd)->was_spilled = 1;
1008 remove_list (bestd, &WEBS(SPILL));
1009 put_web (DLIST_WEB (bestd), SIMPLIFY);
1010 freeze_moves (DLIST_WEB (bestd));
1011 ra_debug_msg (DUMP_PROCESS, " potential spill web %3d, conflicts = %d\n",
1012 DLIST_WEB (bestd)->id, DLIST_WEB (bestd)->num_conflicts);
1015 /* Given a set of forbidden colors to begin at, and a set of still
1016 free colors, and MODE, returns nonzero of color C is still usable. */
1018 static int
1019 color_usable_p (c, dont_begin_colors, free_colors, mode)
1020 int c;
1021 HARD_REG_SET dont_begin_colors, free_colors;
1022 enum machine_mode mode;
1024 if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
1025 && TEST_HARD_REG_BIT (free_colors, c)
1026 && HARD_REGNO_MODE_OK (c, mode))
1028 int i, size;
1029 size = HARD_REGNO_NREGS (c, mode);
1030 for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
1031 if (i == size)
1032 return 1;
1034 return 0;
1037 /* I don't want to clutter up the actual code with ifdef's. */
1038 #ifdef REG_ALLOC_ORDER
1039 #define INV_REG_ALLOC_ORDER(c) inv_reg_alloc_order[c]
1040 #else
1041 #define INV_REG_ALLOC_ORDER(c) c
1042 #endif
1044 /* Searches in FREE_COLORS for a block of hardregs of the right length
1045 for MODE, which doesn't begin at a hardreg mentioned in DONT_BEGIN_COLORS.
1046 If it needs more than one hardreg it prefers blocks beginning
1047 at an even hardreg, and only gives an odd begin reg if no other
1048 block could be found. */
1051 get_free_reg (dont_begin_colors, free_colors, mode)
1052 HARD_REG_SET dont_begin_colors, free_colors;
1053 enum machine_mode mode;
1055 int c;
1056 int last_resort_reg = -1;
1057 int pref_reg = -1;
1058 int pref_reg_order = INT_MAX;
1059 int last_resort_reg_order = INT_MAX;
1061 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1062 if (!TEST_HARD_REG_BIT (dont_begin_colors, c)
1063 && TEST_HARD_REG_BIT (free_colors, c)
1064 && HARD_REGNO_MODE_OK (c, mode))
1066 int i, size;
1067 size = HARD_REGNO_NREGS (c, mode);
1068 for (i = 1; i < size && TEST_HARD_REG_BIT (free_colors, c + i); i++);
1069 if (i != size)
1071 c += i;
1072 continue;
1074 if (i == size)
1076 if (size < 2 || (c & 1) == 0)
1078 if (INV_REG_ALLOC_ORDER (c) < pref_reg_order)
1080 pref_reg = c;
1081 pref_reg_order = INV_REG_ALLOC_ORDER (c);
1084 else if (INV_REG_ALLOC_ORDER (c) < last_resort_reg_order)
1086 last_resort_reg = c;
1087 last_resort_reg_order = INV_REG_ALLOC_ORDER (c);
1090 else
1091 c += i;
1093 return pref_reg >= 0 ? pref_reg : last_resort_reg;
1096 /* Similar to get_free_reg(), but first search in colors provided
1097 by BIAS _and_ PREFER_COLORS, then in BIAS alone, then in PREFER_COLORS
1098 alone, and only then for any free color. If flag_ra_biased is zero
1099 only do the last two steps. */
1101 static int
1102 get_biased_reg (dont_begin_colors, bias, prefer_colors, free_colors, mode)
1103 HARD_REG_SET dont_begin_colors, bias, prefer_colors, free_colors;
1104 enum machine_mode mode;
1106 int c = -1;
1107 HARD_REG_SET s;
1108 if (flag_ra_biased)
1110 COPY_HARD_REG_SET (s, dont_begin_colors);
1111 IOR_COMPL_HARD_REG_SET (s, bias);
1112 IOR_COMPL_HARD_REG_SET (s, prefer_colors);
1113 c = get_free_reg (s, free_colors, mode);
1114 if (c >= 0)
1115 return c;
1116 COPY_HARD_REG_SET (s, dont_begin_colors);
1117 IOR_COMPL_HARD_REG_SET (s, bias);
1118 c = get_free_reg (s, free_colors, mode);
1119 if (c >= 0)
1120 return c;
1122 COPY_HARD_REG_SET (s, dont_begin_colors);
1123 IOR_COMPL_HARD_REG_SET (s, prefer_colors);
1124 c = get_free_reg (s, free_colors, mode);
1125 if (c >= 0)
1126 return c;
1127 c = get_free_reg (dont_begin_colors, free_colors, mode);
1128 return c;
1131 /* Counts the number of non-overlapping bitblocks of length LEN
1132 in FREE_COLORS. */
1134 static int
1135 count_long_blocks (free_colors, len)
1136 HARD_REG_SET free_colors;
1137 int len;
1139 int i, j;
1140 int count = 0;
1141 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1143 if (!TEST_HARD_REG_BIT (free_colors, i))
1144 continue;
1145 for (j = 1; j < len; j++)
1146 if (!TEST_HARD_REG_BIT (free_colors, i + j))
1147 break;
1148 /* Bits [i .. i+j-1] are free. */
1149 if (j == len)
1150 count++;
1151 i += j - 1;
1153 return count;
1156 /* Given a hardreg set S, return a string representing it.
1157 Either as 0/1 string, or as hex value depending on the implementation
1158 of hardreg sets. Note that this string is statically allocated. */
1160 static char *
1161 hardregset_to_string (s)
1162 HARD_REG_SET s;
1164 static char string[/*FIRST_PSEUDO_REGISTER + 30*/1024];
1165 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDE_INT
1166 sprintf (string, HOST_WIDE_INT_PRINT_HEX, s);
1167 #else
1168 char *c = string;
1169 int i,j;
1170 c += sprintf (c, "{ ");
1171 for (i = 0;i < HARD_REG_SET_LONGS; i++)
1173 for (j = 0; j < HOST_BITS_PER_WIDE_INT; j++)
1174 c += sprintf (c, "%s", ( 1 << j) & s[i] ? "1" : "0");
1175 c += sprintf (c, "%s", i ? ", " : "");
1177 c += sprintf (c, " }");
1178 #endif
1179 return string;
1182 /* For WEB, look at its already colored neighbors, and calculate
1183 the set of hardregs which is not allowed as color for WEB. Place
1184 that set int *RESULT. Note that the set of forbidden begin colors
1185 is not the same as all colors taken up by neighbors. E.g. suppose
1186 two DImode webs, but only the lo-part from one conflicts with the
1187 hipart from the other, and suppose the other gets colors 2 and 3
1188 (it needs two SImode hardregs). Now the first can take also color
1189 1 or 2, although in those cases there's a partial overlap. Only
1190 3 can't be used as begin color. */
1192 static void
1193 calculate_dont_begin (web, result)
1194 struct web *web;
1195 HARD_REG_SET *result;
1197 struct conflict_link *wl;
1198 HARD_REG_SET dont_begin;
1199 /* The bits set in dont_begin correspond to the hardregs, at which
1200 WEB may not begin. This differs from the set of _all_ hardregs which
1201 are taken by WEB's conflicts in the presence of wide webs, where only
1202 some parts conflict with others. */
1203 CLEAR_HARD_REG_SET (dont_begin);
1204 for (wl = web->conflict_list; wl; wl = wl->next)
1206 struct web *w;
1207 struct web *ptarget = alias (wl->t);
1208 struct sub_conflict *sl = wl->sub;
1209 w = sl ? sl->t : wl->t;
1210 while (w)
1212 if (ptarget->type == COLORED || ptarget->type == PRECOLORED)
1214 struct web *source = (sl) ? sl->s : web;
1215 unsigned int tsize = HARD_REGNO_NREGS (ptarget->color,
1216 GET_MODE (w->orig_x));
1217 /* ssize is only a first guess for the size. */
1218 unsigned int ssize = HARD_REGNO_NREGS (ptarget->color, GET_MODE
1219 (source->orig_x));
1220 unsigned int tofs = 0;
1221 unsigned int sofs = 0;
1222 /* C1 and C2 can become negative, so unsigned
1223 would be wrong. */
1224 int c1, c2;
1226 if (SUBWEB_P (w)
1227 && GET_MODE_SIZE (GET_MODE (w->orig_x)) >= UNITS_PER_WORD)
1228 tofs = (SUBREG_BYTE (w->orig_x) / UNITS_PER_WORD);
1229 if (SUBWEB_P (source)
1230 && GET_MODE_SIZE (GET_MODE (source->orig_x))
1231 >= UNITS_PER_WORD)
1232 sofs = (SUBREG_BYTE (source->orig_x) / UNITS_PER_WORD);
1233 c1 = ptarget->color + tofs - sofs - ssize + 1;
1234 c2 = ptarget->color + tofs + tsize - 1 - sofs;
1235 if (c2 >= 0)
1237 if (c1 < 0)
1238 c1 = 0;
1239 /* Because ssize was only guessed above, which influenced our
1240 begin color (c1), we need adjustment, if for that color
1241 another size would be needed. This is done by moving
1242 c1 to a place, where the last of sources hardregs does not
1243 overlap the first of targets colors. */
1244 while (c1 + sofs
1245 + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
1246 < ptarget->color + tofs)
1247 c1++;
1248 while (c1 > 0 && c1 + sofs
1249 + HARD_REGNO_NREGS (c1, GET_MODE (source->orig_x)) - 1
1250 > ptarget->color + tofs)
1251 c1--;
1252 for (; c1 <= c2; c1++)
1253 SET_HARD_REG_BIT (dont_begin, c1);
1256 /* The next if() only gets true, if there was no wl->sub at all, in
1257 which case we are only making one go thru this loop with W being
1258 a whole web. */
1259 if (!sl)
1260 break;
1261 sl = sl->next;
1262 w = sl ? sl->t : NULL;
1265 COPY_HARD_REG_SET (*result, dont_begin);
1268 /* Try to assign a color to WEB. If HARD if nonzero, we try many
1269 tricks to get it one color, including respilling already colored
1270 neighbors.
1272 We also trie very hard, to not constrain the uncolored non-spill
1273 neighbors, which need more hardregs than we. Consider a situation, 2
1274 hardregs free for us (0 and 1), and one of our neighbors needs 2
1275 hardregs, and only conflicts with us. There are 3 hardregs at all. Now
1276 a simple minded method might choose 1 as color for us. Then our neighbor
1277 has two free colors (0 and 2) as it should, but they are not consecutive,
1278 so coloring it later would fail. This leads to nasty problems on
1279 register starved machines, so we try to avoid this. */
1281 static void
1282 colorize_one_web (web, hard)
1283 struct web *web;
1284 int hard;
1286 struct conflict_link *wl;
1287 HARD_REG_SET colors, dont_begin;
1288 int c = -1;
1289 int bestc = -1;
1290 int neighbor_needs= 0;
1291 struct web *fats_parent = NULL;
1292 int num_fat = 0;
1293 int long_blocks = 0;
1294 int best_long_blocks = -1;
1295 HARD_REG_SET fat_colors;
1296 HARD_REG_SET bias;
1298 CLEAR_HARD_REG_SET (fat_colors);
1300 if (web->regno >= max_normal_pseudo)
1301 hard = 0;
1303 /* First we want to know the colors at which we can't begin. */
1304 calculate_dont_begin (web, &dont_begin);
1305 CLEAR_HARD_REG_SET (bias);
1307 /* Now setup the set of colors used by our neighbors neighbors,
1308 and search the biggest noncolored neighbor. */
1309 neighbor_needs = web->add_hardregs + 1;
1310 for (wl = web->conflict_list; wl; wl = wl->next)
1312 struct web *w;
1313 struct web *ptarget = alias (wl->t);
1314 struct sub_conflict *sl = wl->sub;
1315 IOR_HARD_REG_SET (bias, ptarget->bias_colors);
1316 w = sl ? sl->t : wl->t;
1317 if (ptarget->type != COLORED && ptarget->type != PRECOLORED
1318 && !ptarget->was_spilled)
1319 while (w)
1321 if (find_web_for_subweb (w)->type != COALESCED
1322 && w->add_hardregs >= neighbor_needs)
1324 neighbor_needs = w->add_hardregs;
1325 fats_parent = ptarget;
1326 num_fat++;
1328 if (!sl)
1329 break;
1330 sl = sl->next;
1331 w = sl ? sl->t : NULL;
1335 ra_debug_msg (DUMP_COLORIZE, "colorize web %d [don't begin at %s]", web->id,
1336 hardregset_to_string (dont_begin));
1338 /* If there are some fat neighbors, remember their usable regs,
1339 and how many blocks are free in it for that neighbor. */
1340 if (num_fat)
1342 COPY_HARD_REG_SET (fat_colors, fats_parent->usable_regs);
1343 long_blocks = count_long_blocks (fat_colors, neighbor_needs + 1);
1346 /* We break out, if we found a color which doesn't constrain
1347 neighbors, or if we can't find any colors. */
1348 while (1)
1350 HARD_REG_SET call_clobbered;
1352 /* Here we choose a hard-reg for the current web. For non spill
1353 temporaries we first search in the hardregs for it's preferred
1354 class, then, if we found nothing appropriate, in those of the
1355 alternate class. For spill temporaries we only search in
1356 usable_regs of this web (which is probably larger than that of
1357 the preferred or alternate class). All searches first try to
1358 find a non-call-clobbered hard-reg.
1359 XXX this should be more finegraned... First look into preferred
1360 non-callclobbered hardregs, then _if_ the web crosses calls, in
1361 alternate non-cc hardregs, and only _then_ also in preferred cc
1362 hardregs (and alternate ones). Currently we don't track the number
1363 of calls crossed for webs. We should. */
1364 if (web->use_my_regs)
1366 COPY_HARD_REG_SET (colors, web->usable_regs);
1367 AND_HARD_REG_SET (colors,
1368 usable_regs[reg_preferred_class (web->regno)]);
1370 else
1371 COPY_HARD_REG_SET (colors,
1372 usable_regs[reg_preferred_class (web->regno)]);
1373 #ifdef CLASS_CANNOT_CHANGE_MODE
1374 if (web->mode_changed)
1375 AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
1376 (int) CLASS_CANNOT_CHANGE_MODE]);
1377 #endif
1378 COPY_HARD_REG_SET (call_clobbered, colors);
1379 AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
1381 /* If this web got a color in the last pass, try to give it the
1382 same color again. This will to much better colorization
1383 down the line, as we spilled for a certain coloring last time. */
1384 if (web->old_color)
1386 c = web->old_color - 1;
1387 if (!color_usable_p (c, dont_begin, colors,
1388 PSEUDO_REGNO_MODE (web->regno)))
1389 c = -1;
1391 else
1392 c = -1;
1393 if (c < 0)
1394 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1395 call_clobbered, PSEUDO_REGNO_MODE (web->regno));
1396 if (c < 0)
1397 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1398 colors, PSEUDO_REGNO_MODE (web->regno));
1400 if (c < 0)
1402 if (web->use_my_regs)
1403 IOR_HARD_REG_SET (colors, web->usable_regs);
1404 else
1405 IOR_HARD_REG_SET (colors, usable_regs
1406 [reg_alternate_class (web->regno)]);
1407 #ifdef CLASS_CANNOT_CHANGE_MODE
1408 if (web->mode_changed)
1409 AND_COMPL_HARD_REG_SET (colors, reg_class_contents[
1410 (int) CLASS_CANNOT_CHANGE_MODE]);
1411 #endif
1412 COPY_HARD_REG_SET (call_clobbered, colors);
1413 AND_HARD_REG_SET (call_clobbered, call_used_reg_set);
1415 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1416 call_clobbered, PSEUDO_REGNO_MODE (web->regno));
1417 if (c < 0)
1418 c = get_biased_reg (dont_begin, bias, web->prefer_colors,
1419 colors, PSEUDO_REGNO_MODE (web->regno));
1421 if (c < 0)
1422 break;
1423 if (bestc < 0)
1424 bestc = c;
1425 /* If one of the yet uncolored neighbors, which is not a potential
1426 spill needs a block of hardregs be sure, not to destroy such a block
1427 by coloring one reg in the middle. */
1428 if (num_fat)
1430 int i;
1431 int new_long;
1432 HARD_REG_SET colors1;
1433 COPY_HARD_REG_SET (colors1, fat_colors);
1434 for (i = 0; i < 1 + web->add_hardregs; i++)
1435 CLEAR_HARD_REG_BIT (colors1, c + i);
1436 new_long = count_long_blocks (colors1, neighbor_needs + 1);
1437 /* If we changed the number of long blocks, and it's now smaller
1438 than needed, we try to avoid this color. */
1439 if (long_blocks != new_long && new_long < num_fat)
1441 if (new_long > best_long_blocks)
1443 best_long_blocks = new_long;
1444 bestc = c;
1446 SET_HARD_REG_BIT (dont_begin, c);
1447 ra_debug_msg (DUMP_COLORIZE, " avoid %d", c);
1449 else
1450 /* We found a color which doesn't destroy a block. */
1451 break;
1453 /* If we havee no fat neighbors, the current color won't become
1454 "better", so we've found it. */
1455 else
1456 break;
1458 ra_debug_msg (DUMP_COLORIZE, " --> got %d", c < 0 ? bestc : c);
1459 if (bestc >= 0 && c < 0 && !web->was_spilled)
1461 /* This is a non-potential-spill web, which got a color, which did
1462 destroy a hardreg block for one of it's neighbors. We color
1463 this web anyway and hope for the best for the neighbor, if we are
1464 a spill temp. */
1465 if (1 || web->spill_temp)
1466 c = bestc;
1467 ra_debug_msg (DUMP_COLORIZE, " [constrains neighbors]");
1469 ra_debug_msg (DUMP_COLORIZE, "\n");
1471 if (c < 0)
1473 /* Guard against a simplified node being spilled. */
1474 /* Don't abort. This can happen, when e.g. enough registers
1475 are available in colors, but they are not consecutive. This is a
1476 very serious issue if this web is a short live one, because
1477 even if we spill this one here, the situation won't become better
1478 in the next iteration. It probably will have the same conflicts,
1479 those will have the same colors, and we would come here again, for
1480 all parts, in which this one gets splitted by the spill. This
1481 can result in endless iteration spilling the same register again and
1482 again. That's why we try to find a neighbor, which spans more
1483 instructions that ourself, and got a color, and try to spill _that_.
1485 if (DLIST_WEB (d)->was_spilled < 0)
1486 abort (); */
1487 if (hard && (!web->was_spilled || web->spill_temp))
1489 unsigned int loop;
1490 struct web *try = NULL;
1491 struct web *candidates[8];
1493 ra_debug_msg (DUMP_COLORIZE, " *** %d spilled, although %s ***\n",
1494 web->id, web->spill_temp ? "spilltemp" : "non-spill");
1495 /* We make multiple passes over our conflicts, first trying to
1496 spill those webs, which only got a color by chance, but
1497 were potential spill ones, and if that isn't enough, in a second
1498 pass also to spill normal colored webs. If we still didn't find
1499 a candidate, but we are a spill-temp, we make a third pass
1500 and include also webs, which were targets for coalescing, and
1501 spill those. */
1502 memset (candidates, 0, sizeof candidates);
1503 #define set_cand(i, w) \
1504 do { \
1505 if (!candidates[(i)] \
1506 || (candidates[(i)]->spill_cost < (w)->spill_cost)) \
1507 candidates[(i)] = (w); \
1508 } while (0)
1509 for (wl = web->conflict_list; wl; wl = wl->next)
1511 struct web *w = wl->t;
1512 struct web *aw = alias (w);
1513 /* If we are a spill-temp, we also look at webs coalesced
1514 to precolored ones. Otherwise we only look at webs which
1515 themselves were colored, or coalesced to one. */
1516 if (aw->type == PRECOLORED && w != aw && web->spill_temp
1517 && flag_ra_optimistic_coalescing)
1519 if (!w->spill_temp)
1520 set_cand (4, w);
1521 else if (web->spill_temp == 2
1522 && w->spill_temp == 2
1523 && w->spill_cost < web->spill_cost)
1524 set_cand (5, w);
1525 else if (web->spill_temp != 2
1526 && (w->spill_temp == 2
1527 || w->spill_cost < web->spill_cost))
1528 set_cand (6, w);
1529 continue;
1531 if (aw->type != COLORED)
1532 continue;
1533 if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
1534 && w->was_spilled)
1536 if (w->spill_cost < web->spill_cost)
1537 set_cand (0, w);
1538 else if (web->spill_temp)
1539 set_cand (1, w);
1541 if (w->type == COLORED && !w->spill_temp && !w->is_coalesced
1542 && !w->was_spilled)
1544 if (w->spill_cost < web->spill_cost)
1545 set_cand (2, w);
1546 else if (web->spill_temp && web->spill_temp != 2)
1547 set_cand (3, w);
1549 if (web->spill_temp)
1551 if (w->type == COLORED && w->spill_temp == 2
1552 && !w->is_coalesced
1553 && (w->spill_cost < web->spill_cost
1554 || web->spill_temp != 2))
1555 set_cand (4, w);
1556 if (!aw->spill_temp)
1557 set_cand (5, aw);
1558 if (aw->spill_temp == 2
1559 && (aw->spill_cost < web->spill_cost
1560 || web->spill_temp != 2))
1561 set_cand (6, aw);
1562 /* For boehm-gc/misc.c. If we are a difficult spilltemp,
1563 also coalesced neighbors are a chance, _even_ if they
1564 too are spilltemps. At least their coalescing can be
1565 broken up, which may be reset usable_regs, and makes
1566 it easier colorable. */
1567 if (web->spill_temp != 2 && aw->is_coalesced
1568 && flag_ra_optimistic_coalescing)
1569 set_cand (7, aw);
1572 for (loop = 0; try == NULL && loop < 8; loop++)
1573 if (candidates[loop])
1574 try = candidates[loop];
1575 #undef set_cand
1576 if (try)
1578 int old_c = try->color;
1579 if (try->type == COALESCED)
1581 if (alias (try)->type != PRECOLORED)
1582 abort ();
1583 ra_debug_msg (DUMP_COLORIZE, " breaking alias %d -> %d\n",
1584 try->id, alias (try)->id);
1585 break_precolored_alias (try);
1586 colorize_one_web (web, hard);
1588 else
1590 remove_list (try->dlink, &WEBS(COLORED));
1591 put_web (try, SPILLED);
1592 /* Now try to colorize us again. Can recursively make other
1593 webs also spill, until there are no more unspilled
1594 neighbors. */
1595 ra_debug_msg (DUMP_COLORIZE, " trying to spill %d\n", try->id);
1596 colorize_one_web (web, hard);
1597 if (web->type != COLORED)
1599 /* We tried recursively to spill all already colored
1600 neighbors, but we are still uncolorable. So it made
1601 no sense to spill those neighbors. Recolor them. */
1602 remove_list (try->dlink, &WEBS(SPILLED));
1603 put_web (try, COLORED);
1604 try->color = old_c;
1605 ra_debug_msg (DUMP_COLORIZE,
1606 " spilling %d was useless\n", try->id);
1608 else
1610 ra_debug_msg (DUMP_COLORIZE,
1611 " to spill %d was a good idea\n",
1612 try->id);
1613 remove_list (try->dlink, &WEBS(SPILLED));
1614 if (try->was_spilled)
1615 colorize_one_web (try, 0);
1616 else
1617 colorize_one_web (try, hard - 1);
1621 else
1622 /* No more chances to get a color, so give up hope and
1623 spill us. */
1624 put_web (web, SPILLED);
1626 else
1627 put_web (web, SPILLED);
1629 else
1631 put_web (web, COLORED);
1632 web->color = c;
1633 if (flag_ra_biased)
1635 int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
1636 for (wl = web->conflict_list; wl; wl = wl->next)
1638 struct web *ptarget = alias (wl->t);
1639 int i;
1640 for (i = 0; i < nregs; i++)
1641 SET_HARD_REG_BIT (ptarget->bias_colors, c + i);
1645 if (web->regno >= max_normal_pseudo && web->type == SPILLED)
1647 web->color = an_unusable_color;
1648 remove_list (web->dlink, &WEBS(SPILLED));
1649 put_web (web, COLORED);
1651 if (web->type == SPILLED && flag_ra_optimistic_coalescing
1652 && web->is_coalesced)
1654 ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
1655 restore_conflicts_from_coalesce (web);
1656 break_aliases_to_web (web);
1657 insert_coalesced_conflicts ();
1658 ra_debug_msg (DUMP_COLORIZE, "\n");
1659 remove_list (web->dlink, &WEBS(SPILLED));
1660 put_web (web, SELECT);
1661 web->color = -1;
1665 /* Assign the colors to all nodes on the select stack. And update the
1666 colors of coalesced webs. */
1668 static void
1669 assign_colors ()
1671 struct dlist *d;
1673 while (WEBS(SELECT))
1675 d = pop_list (&WEBS(SELECT));
1676 colorize_one_web (DLIST_WEB (d), 1);
1679 for (d = WEBS(COALESCED); d; d = d->next)
1681 struct web *a = alias (DLIST_WEB (d));
1682 DLIST_WEB (d)->color = a->color;
1686 /* WEB is a spilled web. Look if we can improve the cost of the graph,
1687 by coloring WEB, even if we then need to spill some of it's neighbors.
1688 For this we calculate the cost for each color C, that results when we
1689 _would_ give WEB color C (i.e. the cost of the then spilled neighbors).
1690 If the lowest cost among them is smaller than the spillcost of WEB, we
1691 do that recoloring, and instead spill the neighbors.
1693 This can sometime help, when due to irregularities in register file,
1694 and due to multi word pseudos, the colorization is suboptimal. But
1695 be aware, that currently this pass is quite slow. */
1697 static void
1698 try_recolor_web (web)
1699 struct web *web;
1701 struct conflict_link *wl;
1702 unsigned HOST_WIDE_INT *cost_neighbors;
1703 unsigned int *min_color;
1704 int newcol, c;
1705 HARD_REG_SET precolored_neighbors, spill_temps;
1706 HARD_REG_SET possible_begin, wide_seen;
1707 cost_neighbors = (unsigned HOST_WIDE_INT *)
1708 xcalloc (FIRST_PSEUDO_REGISTER, sizeof (cost_neighbors[0]));
1709 /* For each hard-regs count the number of preceding hardregs, which
1710 would overlap this color, if used in WEB's mode. */
1711 min_color = (unsigned int *) xcalloc (FIRST_PSEUDO_REGISTER, sizeof (int));
1712 CLEAR_HARD_REG_SET (possible_begin);
1713 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1715 int i, nregs;
1716 if (!HARD_REGNO_MODE_OK (c, GET_MODE (web->orig_x)))
1717 continue;
1718 nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
1719 for (i = 0; i < nregs; i++)
1720 if (!TEST_HARD_REG_BIT (web->usable_regs, c + i))
1721 break;
1722 if (i < nregs || nregs == 0)
1723 continue;
1724 SET_HARD_REG_BIT (possible_begin, c);
1725 for (; nregs--;)
1726 if (!min_color[c + nregs])
1727 min_color[c + nregs] = 1 + c;
1729 CLEAR_HARD_REG_SET (precolored_neighbors);
1730 CLEAR_HARD_REG_SET (spill_temps);
1731 CLEAR_HARD_REG_SET (wide_seen);
1732 for (wl = web->conflict_list; wl; wl = wl->next)
1734 HARD_REG_SET dont_begin;
1735 struct web *web2 = alias (wl->t);
1736 struct conflict_link *nn;
1737 int c1, c2;
1738 int wide_p = 0;
1739 if (wl->t->type == COALESCED || web2->type != COLORED)
1741 if (web2->type == PRECOLORED)
1743 c1 = min_color[web2->color];
1744 c1 = (c1 == 0) ? web2->color : (c1 - 1);
1745 c2 = web2->color;
1746 for (; c1 <= c2; c1++)
1747 SET_HARD_REG_BIT (precolored_neighbors, c1);
1749 continue;
1751 /* Mark colors for which some wide webs are involved. For
1752 those the independent sets are not simply one-node graphs, so
1753 they can't be recolored independ from their neighborhood. This
1754 means, that our cost calculation can be incorrect (assuming it
1755 can avoid spilling a web because it thinks some colors are available,
1756 although it's neighbors which itself need recoloring might take
1757 away exactly those colors). */
1758 if (web2->add_hardregs)
1759 wide_p = 1;
1760 for (nn = web2->conflict_list; nn && !wide_p; nn = nn->next)
1761 if (alias (nn->t)->add_hardregs)
1762 wide_p = 1;
1763 calculate_dont_begin (web2, &dont_begin);
1764 c1 = min_color[web2->color];
1765 /* Note that min_color[] contains 1-based values (zero means
1766 undef). */
1767 c1 = c1 == 0 ? web2->color : (c1 - 1);
1768 c2 = web2->color + HARD_REGNO_NREGS (web2->color, GET_MODE
1769 (web2->orig_x)) - 1;
1770 for (; c1 <= c2; c1++)
1771 if (TEST_HARD_REG_BIT (possible_begin, c1))
1773 int nregs;
1774 HARD_REG_SET colors;
1775 nregs = HARD_REGNO_NREGS (c1, GET_MODE (web->orig_x));
1776 COPY_HARD_REG_SET (colors, web2->usable_regs);
1777 for (; nregs--;)
1778 CLEAR_HARD_REG_BIT (colors, c1 + nregs);
1779 if (wide_p)
1780 SET_HARD_REG_BIT (wide_seen, c1);
1781 if (get_free_reg (dont_begin, colors,
1782 GET_MODE (web2->orig_x)) < 0)
1784 if (web2->spill_temp)
1785 SET_HARD_REG_BIT (spill_temps, c1);
1786 else
1787 cost_neighbors[c1] += web2->spill_cost;
1791 newcol = -1;
1792 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
1793 if (TEST_HARD_REG_BIT (possible_begin, c)
1794 && !TEST_HARD_REG_BIT (precolored_neighbors, c)
1795 && !TEST_HARD_REG_BIT (spill_temps, c)
1796 && (newcol == -1
1797 || cost_neighbors[c] < cost_neighbors[newcol]))
1798 newcol = c;
1799 if (newcol >= 0 && cost_neighbors[newcol] < web->spill_cost)
1801 int nregs = HARD_REGNO_NREGS (newcol, GET_MODE (web->orig_x));
1802 unsigned HOST_WIDE_INT cost = 0;
1803 int *old_colors;
1804 struct conflict_link *wl_next;
1805 ra_debug_msg (DUMP_COLORIZE, "try to set web %d to color %d\n", web->id,
1806 newcol);
1807 remove_list (web->dlink, &WEBS(SPILLED));
1808 put_web (web, COLORED);
1809 web->color = newcol;
1810 old_colors = (int *) xcalloc (num_webs, sizeof (int));
1811 for (wl = web->conflict_list; wl; wl = wl_next)
1813 struct web *web2 = alias (wl->t);
1814 /* If web2 is a coalesce-target, and will become spilled
1815 below in colorize_one_web(), and the current conflict wl
1816 between web and web2 was only the result of that coalescing
1817 this conflict will be deleted, making wl invalid. So save
1818 the next conflict right now. Note that if web2 has indeed
1819 such state, then wl->next can not be deleted in this
1820 iteration. */
1821 wl_next = wl->next;
1822 if (web2->type == COLORED)
1824 int nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE
1825 (web2->orig_x));
1826 if (web->color >= web2->color + nregs2
1827 || web2->color >= web->color + nregs)
1828 continue;
1829 old_colors[web2->id] = web2->color + 1;
1830 web2->color = -1;
1831 remove_list (web2->dlink, &WEBS(COLORED));
1832 web2->type = SELECT;
1833 /* Allow webs to be spilled. */
1834 if (web2->spill_temp == 0 || web2->spill_temp == 2)
1835 web2->was_spilled = 1;
1836 colorize_one_web (web2, 1);
1837 if (web2->type == SPILLED)
1838 cost += web2->spill_cost;
1841 /* The actual cost may be smaller than the guessed one, because
1842 partial conflicts could result in some conflicting webs getting
1843 a color, where we assumed it must be spilled. See the comment
1844 above what happens, when wide webs are involved, and why in that
1845 case there might actually be some webs spilled although thought to
1846 be colorable. */
1847 if (cost > cost_neighbors[newcol]
1848 && nregs == 1 && !TEST_HARD_REG_BIT (wide_seen, newcol))
1849 abort ();
1850 /* But if the new spill-cost is higher than our own, then really loose.
1851 Respill us and recolor neighbors as before. */
1852 if (cost > web->spill_cost)
1854 ra_debug_msg (DUMP_COLORIZE,
1855 "reset coloring of web %d, too expensive\n", web->id);
1856 remove_list (web->dlink, &WEBS(COLORED));
1857 web->color = -1;
1858 put_web (web, SPILLED);
1859 for (wl = web->conflict_list; wl; wl = wl->next)
1861 struct web *web2 = alias (wl->t);
1862 if (old_colors[web2->id])
1864 if (web2->type == SPILLED)
1866 remove_list (web2->dlink, &WEBS(SPILLED));
1867 web2->color = old_colors[web2->id] - 1;
1868 put_web (web2, COLORED);
1870 else if (web2->type == COLORED)
1871 web2->color = old_colors[web2->id] - 1;
1872 else if (web2->type == SELECT)
1873 /* This means, that WEB2 once was a part of a coalesced
1874 web, which got spilled in the above colorize_one_web()
1875 call, and whose parts then got splitted and put back
1876 onto the SELECT stack. As the cause for that splitting
1877 (the coloring of WEB) was worthless, we should again
1878 coalesce the parts, as they were before. For now we
1879 simply leave them SELECTed, for our caller to take
1880 care. */
1882 else
1883 abort ();
1887 free (old_colors);
1889 free (min_color);
1890 free (cost_neighbors);
1893 /* This ensures that all conflicts of coalesced webs are seen from
1894 the webs coalesced into. combine() only adds the conflicts which
1895 at the time of combining were not already SELECTed or COALESCED
1896 to not destroy num_conflicts. Here we add all remaining conflicts
1897 and thereby destroy num_conflicts. This should be used when num_conflicts
1898 isn't used anymore, e.g. on a completely colored graph. */
1900 static void
1901 insert_coalesced_conflicts ()
1903 struct dlist *d;
1904 for (d = WEBS(COALESCED); 0 && d; d = d->next)
1906 struct web *web = DLIST_WEB (d);
1907 struct web *aweb = alias (web);
1908 struct conflict_link *wl;
1909 for (wl = web->conflict_list; wl; wl = wl->next)
1911 struct web *tweb = aweb;
1912 int i;
1913 int nregs = 1 + web->add_hardregs;
1914 if (aweb->type == PRECOLORED)
1915 nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
1916 for (i = 0; i < nregs; i++)
1918 if (aweb->type == PRECOLORED)
1919 tweb = hardreg2web[i + aweb->color];
1920 /* There might be some conflict edges laying around
1921 where the usable_regs don't intersect. This can happen
1922 when first some webs were coalesced and conflicts
1923 propagated, then some combining narrowed usable_regs and
1924 further coalescing ignored those conflicts. Now there are
1925 some edges to COALESCED webs but not to it's alias.
1926 So abort only when they really should conflict. */
1927 if ((!(tweb->type == PRECOLORED
1928 || TEST_BIT (sup_igraph, tweb->id * num_webs + wl->t->id))
1929 || !(wl->t->type == PRECOLORED
1930 || TEST_BIT (sup_igraph,
1931 wl->t->id * num_webs + tweb->id)))
1932 && hard_regs_intersect_p (&tweb->usable_regs,
1933 &wl->t->usable_regs))
1934 abort ();
1935 /*if (wl->sub == NULL)
1936 record_conflict (tweb, wl->t);
1937 else
1939 struct sub_conflict *sl;
1940 for (sl = wl->sub; sl; sl = sl->next)
1941 record_conflict (tweb, sl->t);
1943 if (aweb->type != PRECOLORED)
1944 break;
1950 /* A function suitable to pass to qsort(). Compare the spill costs
1951 of webs W1 and W2. When used by qsort, this would order webs with
1952 largest cost first. */
1954 static int
1955 comp_webs_maxcost (w1, w2)
1956 const void *w1, *w2;
1958 struct web *web1 = *(struct web **)w1;
1959 struct web *web2 = *(struct web **)w2;
1960 if (web1->spill_cost > web2->spill_cost)
1961 return -1;
1962 else if (web1->spill_cost < web2->spill_cost)
1963 return 1;
1964 else
1965 return 0;
1968 /* This tries to recolor all spilled webs. See try_recolor_web()
1969 how this is done. This just calls it for each spilled web. */
1971 static void
1972 recolor_spills ()
1974 unsigned int i, num;
1975 struct web **order2web;
1976 num = num_webs - num_subwebs;
1977 order2web = (struct web **) xmalloc (num * sizeof (order2web[0]));
1978 for (i = 0; i < num; i++)
1980 order2web[i] = id2web[i];
1981 /* If we aren't breaking aliases, combine() wasn't merging the
1982 spill_costs. So do that here to have sane measures. */
1983 if (!flag_ra_merge_spill_costs && id2web[i]->type == COALESCED)
1984 alias (id2web[i])->spill_cost += id2web[i]->spill_cost;
1986 qsort (order2web, num, sizeof (order2web[0]), comp_webs_maxcost);
1987 insert_coalesced_conflicts ();
1988 dump_graph_cost (DUMP_COSTS, "before spill-recolor");
1989 for (i = 0; i < num; i++)
1991 struct web *web = order2web[i];
1992 if (web->type == SPILLED)
1993 try_recolor_web (web);
1995 /* It might have been decided in try_recolor_web() (in colorize_one_web())
1996 that a coalesced web should be spilled, so it was put on the
1997 select stack. Those webs need recoloring again, and all remaining
1998 coalesced webs might need their color updated, so simply call
1999 assign_colors() again. */
2000 assign_colors ();
2001 free (order2web);
2004 /* This checks the current color assignment for obvious errors,
2005 like two conflicting webs overlapping in colors, or the used colors
2006 not being in usable regs. */
2008 static void
2009 check_colors ()
2011 unsigned int i;
2012 for (i = 0; i < num_webs - num_subwebs; i++)
2014 struct web *web = id2web[i];
2015 struct web *aweb = alias (web);
2016 struct conflict_link *wl;
2017 int nregs, c;
2018 if (aweb->type == SPILLED || web->regno >= max_normal_pseudo)
2019 continue;
2020 else if (aweb->type == COLORED)
2021 nregs = HARD_REGNO_NREGS (aweb->color, GET_MODE (web->orig_x));
2022 else if (aweb->type == PRECOLORED)
2023 nregs = 1;
2024 else
2025 abort ();
2026 /* The color must be valid for the original usable_regs. */
2027 for (c = 0; c < nregs; c++)
2028 if (!TEST_HARD_REG_BIT (web->usable_regs, aweb->color + c))
2029 abort ();
2030 /* Search the original (pre-coalesce) conflict list. In the current
2031 one some imprecise conflicts may be noted (due to combine() or
2032 insert_coalesced_conflicts() relocating partial conflicts) making
2033 it look like some wide webs are in conflict and having the same
2034 color. */
2035 wl = (web->have_orig_conflicts ? web->orig_conflict_list
2036 : web->conflict_list);
2037 for (; wl; wl = wl->next)
2038 if (wl->t->regno >= max_normal_pseudo)
2039 continue;
2040 else if (!wl->sub)
2042 struct web *web2 = alias (wl->t);
2043 int nregs2;
2044 if (web2->type == COLORED)
2045 nregs2 = HARD_REGNO_NREGS (web2->color, GET_MODE (web2->orig_x));
2046 else if (web2->type == PRECOLORED)
2047 nregs2 = 1;
2048 else
2049 continue;
2050 if (aweb->color >= web2->color + nregs2
2051 || web2->color >= aweb->color + nregs)
2052 continue;
2053 abort ();
2055 else
2057 struct sub_conflict *sl;
2058 int scol = aweb->color;
2059 int tcol = alias (wl->t)->color;
2060 if (alias (wl->t)->type == SPILLED)
2061 continue;
2062 for (sl = wl->sub; sl; sl = sl->next)
2064 int ssize = HARD_REGNO_NREGS (scol, GET_MODE (sl->s->orig_x));
2065 int tsize = HARD_REGNO_NREGS (tcol, GET_MODE (sl->t->orig_x));
2066 int sofs = 0, tofs = 0;
2067 if (SUBWEB_P (sl->t)
2068 && GET_MODE_SIZE (GET_MODE (sl->t->orig_x)) >= UNITS_PER_WORD)
2069 tofs = (SUBREG_BYTE (sl->t->orig_x) / UNITS_PER_WORD);
2070 if (SUBWEB_P (sl->s)
2071 && GET_MODE_SIZE (GET_MODE (sl->s->orig_x))
2072 >= UNITS_PER_WORD)
2073 sofs = (SUBREG_BYTE (sl->s->orig_x) / UNITS_PER_WORD);
2074 if ((tcol + tofs >= scol + sofs + ssize)
2075 || (scol + sofs >= tcol + tofs + tsize))
2076 continue;
2077 abort ();
2083 /* WEB was a coalesced web. Make it unaliased again, and put it
2084 back onto SELECT stack. */
2086 static void
2087 unalias_web (web)
2088 struct web *web;
2090 web->alias = NULL;
2091 web->is_coalesced = 0;
2092 web->color = -1;
2093 /* Well, initially everything was spilled, so it isn't incorrect,
2094 that also the individual parts can be spilled.
2095 XXX this isn't entirely correct, as we also relaxed the
2096 spill_temp flag in combine(), which might have made components
2097 spill, although they were a short or spilltemp web. */
2098 web->was_spilled = 1;
2099 remove_list (web->dlink, &WEBS(COALESCED));
2100 /* Spilltemps must be colored right now (i.e. as early as possible),
2101 other webs can be deferred to the end (the code building the
2102 stack assumed that in this stage only one web was colored). */
2103 if (web->spill_temp && web->spill_temp != 2)
2104 put_web (web, SELECT);
2105 else
2106 put_web_at_end (web, SELECT);
2109 /* WEB is a _target_ for coalescing which got spilled.
2110 Break all aliases to WEB, and restore some of its member to the state
2111 they were before coalescing. Due to the suboptimal structure of
2112 the interference graph we need to go through all coalesced webs.
2113 Somewhen we'll change this to be more sane. */
2115 static void
2116 break_aliases_to_web (web)
2117 struct web *web;
2119 struct dlist *d, *d_next;
2120 if (web->type != SPILLED)
2121 abort ();
2122 for (d = WEBS(COALESCED); d; d = d_next)
2124 struct web *other = DLIST_WEB (d);
2125 d_next = d->next;
2126 /* Beware: Don't use alias() here. We really want to check only
2127 one level of aliasing, i.e. only break up webs directly
2128 aliased to WEB, not also those aliased through other webs. */
2129 if (other->alias == web)
2131 unalias_web (other);
2132 ra_debug_msg (DUMP_COLORIZE, " %d", other->id);
2135 web->spill_temp = web->orig_spill_temp;
2136 web->spill_cost = web->orig_spill_cost;
2137 /* Beware: The following possibly widens usable_regs again. While
2138 it was narrower there might have been some conflicts added which got
2139 ignored because of non-intersecting hardregsets. All those conflicts
2140 would now matter again. Fortunately we only add conflicts when
2141 coalescing, which is also the time of narrowing. And we remove all
2142 those added conflicts again now that we unalias this web.
2143 Therefore this is safe to do. */
2144 COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
2145 web->is_coalesced = 0;
2146 web->num_aliased = 0;
2147 web->was_spilled = 1;
2148 /* Reset is_coalesced flag for webs which itself are target of coalescing.
2149 It was cleared above if it was coalesced to WEB. */
2150 for (d = WEBS(COALESCED); d; d = d->next)
2151 DLIST_WEB (d)->alias->is_coalesced = 1;
2154 /* WEB is a web coalesced into a precolored one. Break that alias,
2155 making WEB SELECTed again. Also restores the conflicts which resulted
2156 from initially coalescing both. */
2158 static void
2159 break_precolored_alias (web)
2160 struct web *web;
2162 struct web *pre = web->alias;
2163 struct conflict_link *wl;
2164 unsigned int c = pre->color;
2165 unsigned int nregs = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
2166 if (pre->type != PRECOLORED)
2167 abort ();
2168 unalias_web (web);
2169 /* Now we need to look at each conflict X of WEB, if it conflicts
2170 with [PRE, PRE+nregs), and remove such conflicts, of X has not other
2171 conflicts, which are coalesced into those precolored webs. */
2172 for (wl = web->conflict_list; wl; wl = wl->next)
2174 struct web *x = wl->t;
2175 struct web *y;
2176 unsigned int i;
2177 struct conflict_link *wl2;
2178 struct conflict_link **pcl;
2179 HARD_REG_SET regs;
2180 if (!x->have_orig_conflicts)
2181 continue;
2182 /* First look at which colors can not go away, due to other coalesces
2183 still existing. */
2184 CLEAR_HARD_REG_SET (regs);
2185 for (i = 0; i < nregs; i++)
2186 SET_HARD_REG_BIT (regs, c + i);
2187 for (wl2 = x->conflict_list; wl2; wl2 = wl2->next)
2188 if (wl2->t->type == COALESCED && alias (wl2->t)->type == PRECOLORED)
2189 CLEAR_HARD_REG_BIT (regs, alias (wl2->t)->color);
2190 /* Now also remove the colors of those conflicts which already
2191 were there before coalescing at all. */
2192 for (wl2 = x->orig_conflict_list; wl2; wl2 = wl2->next)
2193 if (wl2->t->type == PRECOLORED)
2194 CLEAR_HARD_REG_BIT (regs, wl2->t->color);
2195 /* The colors now still set are those for which WEB was the last
2196 cause, i.e. those which can be removed. */
2197 y = NULL;
2198 for (i = 0; i < nregs; i++)
2199 if (TEST_HARD_REG_BIT (regs, c + i))
2201 struct web *sub;
2202 y = hardreg2web[c + i];
2203 RESET_BIT (sup_igraph, x->id * num_webs + y->id);
2204 RESET_BIT (sup_igraph, y->id * num_webs + x->id);
2205 RESET_BIT (igraph, igraph_index (x->id, y->id));
2206 for (sub = x->subreg_next; sub; sub = sub->subreg_next)
2207 RESET_BIT (igraph, igraph_index (sub->id, y->id));
2209 if (!y)
2210 continue;
2211 pcl = &(x->conflict_list);
2212 while (*pcl)
2214 struct web *y = (*pcl)->t;
2215 if (y->type != PRECOLORED || !TEST_HARD_REG_BIT (regs, y->color))
2216 pcl = &((*pcl)->next);
2217 else
2218 *pcl = (*pcl)->next;
2223 /* WEB is a spilled web which was target for coalescing.
2224 Delete all interference edges which were added due to that coalescing,
2225 and break up the coalescing. */
2227 static void
2228 restore_conflicts_from_coalesce (web)
2229 struct web *web;
2231 struct conflict_link **pcl;
2232 struct conflict_link *wl;
2233 pcl = &(web->conflict_list);
2234 /* No original conflict list means no conflict was added at all
2235 after building the graph. So neither we nor any neighbors have
2236 conflicts due to this coalescing. */
2237 if (!web->have_orig_conflicts)
2238 return;
2239 while (*pcl)
2241 struct web *other = (*pcl)->t;
2242 for (wl = web->orig_conflict_list; wl; wl = wl->next)
2243 if (wl->t == other)
2244 break;
2245 if (wl)
2247 /* We found this conflict also in the original list, so this
2248 was no new conflict. */
2249 pcl = &((*pcl)->next);
2251 else
2253 /* This is a new conflict, so delete it from us and
2254 the neighbor. */
2255 struct conflict_link **opcl;
2256 struct conflict_link *owl;
2257 struct sub_conflict *sl;
2258 wl = *pcl;
2259 *pcl = wl->next;
2260 if (!other->have_orig_conflicts && other->type != PRECOLORED)
2261 abort ();
2262 for (owl = other->orig_conflict_list; owl; owl = owl->next)
2263 if (owl->t == web)
2264 break;
2265 if (owl)
2266 abort ();
2267 opcl = &(other->conflict_list);
2268 while (*opcl)
2270 if ((*opcl)->t == web)
2272 owl = *opcl;
2273 *opcl = owl->next;
2274 break;
2276 else
2278 opcl = &((*opcl)->next);
2281 if (!owl && other->type != PRECOLORED)
2282 abort ();
2283 /* wl and owl contain the edge data to be deleted. */
2284 RESET_BIT (sup_igraph, web->id * num_webs + other->id);
2285 RESET_BIT (sup_igraph, other->id * num_webs + web->id);
2286 RESET_BIT (igraph, igraph_index (web->id, other->id));
2287 for (sl = wl->sub; sl; sl = sl->next)
2288 RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
2289 if (other->type != PRECOLORED)
2291 for (sl = owl->sub; sl; sl = sl->next)
2292 RESET_BIT (igraph, igraph_index (sl->s->id, sl->t->id));
2297 /* We must restore usable_regs because record_conflict will use it. */
2298 COPY_HARD_REG_SET (web->usable_regs, web->orig_usable_regs);
2299 /* We might have deleted some conflicts above, which really are still
2300 there (diamond pattern coalescing). This is because we don't reference
2301 count interference edges but some of them were the result of different
2302 coalesces. */
2303 for (wl = web->conflict_list; wl; wl = wl->next)
2304 if (wl->t->type == COALESCED)
2306 struct web *tweb;
2307 for (tweb = wl->t->alias; tweb; tweb = tweb->alias)
2309 if (wl->sub == NULL)
2310 record_conflict (web, tweb);
2311 else
2313 struct sub_conflict *sl;
2314 for (sl = wl->sub; sl; sl = sl->next)
2316 struct web *sweb = NULL;
2317 if (SUBWEB_P (sl->t))
2318 sweb = find_subweb (tweb, sl->t->orig_x);
2319 if (!sweb)
2320 sweb = tweb;
2321 record_conflict (sl->s, sweb);
2324 if (tweb->type != COALESCED)
2325 break;
2330 /* Repeatedly break aliases for spilled webs, which were target for
2331 coalescing, and recolorize the resulting parts. Do this as long as
2332 there are any spilled coalesce targets. */
2334 static void
2335 break_coalesced_spills ()
2337 int changed = 0;
2338 while (1)
2340 struct dlist *d;
2341 struct web *web;
2342 for (d = WEBS(SPILLED); d; d = d->next)
2343 if (DLIST_WEB (d)->is_coalesced)
2344 break;
2345 if (!d)
2346 break;
2347 changed = 1;
2348 web = DLIST_WEB (d);
2349 ra_debug_msg (DUMP_COLORIZE, "breaking aliases to web %d:", web->id);
2350 restore_conflicts_from_coalesce (web);
2351 break_aliases_to_web (web);
2352 /* WEB was a spilled web and isn't anymore. Everything coalesced
2353 to WEB is now SELECTed and might potentially get a color.
2354 If those other webs were itself targets of coalescing it might be
2355 that there are still some conflicts from aliased webs missing,
2356 because they were added in combine() right into the now
2357 SELECTed web. So we need to add those missing conflicts here. */
2358 insert_coalesced_conflicts ();
2359 ra_debug_msg (DUMP_COLORIZE, "\n");
2360 remove_list (d, &WEBS(SPILLED));
2361 put_web (web, SELECT);
2362 web->color = -1;
2363 while (WEBS(SELECT))
2365 d = pop_list (&WEBS(SELECT));
2366 colorize_one_web (DLIST_WEB (d), 1);
2369 if (changed)
2371 struct dlist *d;
2372 for (d = WEBS(COALESCED); d; d = d->next)
2374 struct web *a = alias (DLIST_WEB (d));
2375 DLIST_WEB (d)->color = a->color;
2378 dump_graph_cost (DUMP_COSTS, "after alias-breaking");
2381 /* A structure for fast hashing of a pair of webs.
2382 Used to cumulate savings (from removing copy insns) for coalesced webs.
2383 All the pairs are also put into a single linked list. */
2384 struct web_pair
2386 struct web_pair *next_hash;
2387 struct web_pair *next_list;
2388 struct web *smaller;
2389 struct web *larger;
2390 unsigned int conflicts;
2391 unsigned HOST_WIDE_INT cost;
2394 /* The actual hash table. */
2395 #define WEB_PAIR_HASH_SIZE 8192
2396 static struct web_pair *web_pair_hash[WEB_PAIR_HASH_SIZE];
2397 static struct web_pair *web_pair_list;
2398 static unsigned int num_web_pairs;
2400 /* Clear the hash table of web pairs. */
2402 static void
2403 init_web_pairs ()
2405 memset (web_pair_hash, 0, sizeof web_pair_hash);
2406 num_web_pairs = 0;
2407 web_pair_list = NULL;
2410 /* Given two webs connected by a move with cost COST which together
2411 have CONFLICTS conflicts, add that pair to the hash table, or if
2412 already in, cumulate the costs and conflict number. */
2414 static void
2415 add_web_pair_cost (web1, web2, cost, conflicts)
2416 struct web *web1, *web2;
2417 unsigned HOST_WIDE_INT cost;
2418 unsigned int conflicts;
2420 unsigned int hash;
2421 struct web_pair *p;
2422 if (web1->id > web2->id)
2424 struct web *h = web1;
2425 web1 = web2;
2426 web2 = h;
2428 hash = (web1->id * num_webs + web2->id) % WEB_PAIR_HASH_SIZE;
2429 for (p = web_pair_hash[hash]; p; p = p->next_hash)
2430 if (p->smaller == web1 && p->larger == web2)
2432 p->cost += cost;
2433 p->conflicts += conflicts;
2434 return;
2436 p = (struct web_pair *) ra_alloc (sizeof *p);
2437 p->next_hash = web_pair_hash[hash];
2438 p->next_list = web_pair_list;
2439 p->smaller = web1;
2440 p->larger = web2;
2441 p->conflicts = conflicts;
2442 p->cost = cost;
2443 web_pair_hash[hash] = p;
2444 web_pair_list = p;
2445 num_web_pairs++;
2448 /* Suitable to be passed to qsort(). Sort web pairs so, that those
2449 with more conflicts and higher cost (which actually is a saving
2450 when the moves are removed) come first. */
2452 static int
2453 comp_web_pairs (w1, w2)
2454 const void *w1, *w2;
2456 struct web_pair *p1 = *(struct web_pair **)w1;
2457 struct web_pair *p2 = *(struct web_pair **)w2;
2458 if (p1->conflicts > p2->conflicts)
2459 return -1;
2460 else if (p1->conflicts < p2->conflicts)
2461 return 1;
2462 else if (p1->cost > p2->cost)
2463 return -1;
2464 else if (p1->cost < p2->cost)
2465 return 1;
2466 else
2467 return 0;
2470 /* Given the list of web pairs, begin to combine them from the one
2471 with the most savings. */
2473 static void
2474 sort_and_combine_web_pairs (for_move)
2475 int for_move;
2477 unsigned int i;
2478 struct web_pair **sorted;
2479 struct web_pair *p;
2480 if (!num_web_pairs)
2481 return;
2482 sorted = (struct web_pair **) xmalloc (num_web_pairs * sizeof (sorted[0]));
2483 for (p = web_pair_list, i = 0; p; p = p->next_list)
2484 sorted[i++] = p;
2485 if (i != num_web_pairs)
2486 abort ();
2487 qsort (sorted, num_web_pairs, sizeof (sorted[0]), comp_web_pairs);
2489 /* After combining one pair, we actually should adjust the savings
2490 of the other pairs, if they are connected to one of the just coalesced
2491 pair. Later. */
2492 for (i = 0; i < num_web_pairs; i++)
2494 struct web *w1, *w2;
2495 p = sorted[i];
2496 w1 = alias (p->smaller);
2497 w2 = alias (p->larger);
2498 if (!for_move && (w1->type == PRECOLORED || w2->type == PRECOLORED))
2499 continue;
2500 else if (w2->type == PRECOLORED)
2502 struct web *h = w1;
2503 w1 = w2;
2504 w2 = h;
2506 if (w1 != w2
2507 && !TEST_BIT (sup_igraph, w1->id * num_webs + w2->id)
2508 && !TEST_BIT (sup_igraph, w2->id * num_webs + w1->id)
2509 && w2->type != PRECOLORED
2510 && hard_regs_intersect_p (&w1->usable_regs, &w2->usable_regs))
2512 if (w1->type != PRECOLORED
2513 || (w1->type == PRECOLORED && ok (w2, w1)))
2514 combine (w1, w2);
2515 else if (w1->type == PRECOLORED)
2516 SET_HARD_REG_BIT (w2->prefer_colors, w1->color);
2519 free (sorted);
2522 /* Greedily coalesce all moves possible. Begin with the web pair
2523 giving the most saving if coalesced. */
2525 static void
2526 aggressive_coalesce ()
2528 struct dlist *d;
2529 struct move *m;
2530 init_web_pairs ();
2531 while ((d = pop_list (&mv_worklist)) != NULL)
2532 if ((m = DLIST_MOVE (d)))
2534 struct web *s = alias (m->source_web);
2535 struct web *t = alias (m->target_web);
2536 if (t->type == PRECOLORED)
2538 struct web *h = s;
2539 s = t;
2540 t = h;
2542 if (s != t
2543 && t->type != PRECOLORED
2544 && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
2545 && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
2547 if ((s->type == PRECOLORED && ok (t, s))
2548 || s->type != PRECOLORED)
2550 put_move (m, MV_COALESCED);
2551 add_web_pair_cost (s, t, BLOCK_FOR_INSN (m->insn)->frequency,
2554 else if (s->type == PRECOLORED)
2555 /* It is !ok(t, s). But later when coloring the graph it might
2556 be possible to take that color. So we remember the preferred
2557 color to try that first. */
2559 put_move (m, CONSTRAINED);
2560 SET_HARD_REG_BIT (t->prefer_colors, s->color);
2563 else
2565 put_move (m, CONSTRAINED);
2568 sort_and_combine_web_pairs (1);
2571 /* This is the difference between optimistic coalescing and
2572 optimistic coalescing+. Extended coalesce tries to coalesce also
2573 non-conflicting nodes, not related by a move. The criteria here is,
2574 the one web must be a source, the other a destination of the same insn.
2575 This actually makes sense, as (because they are in the same insn) they
2576 share many of their neighbors, and if they are coalesced, reduce the
2577 number of conflicts of those neighbors by one. For this we sort the
2578 candidate pairs again according to savings (and this time also conflict
2579 number).
2581 This is also a comparatively slow operation, as we need to go through
2582 all insns, and for each insn, through all defs and uses. */
2584 static void
2585 extended_coalesce_2 ()
2587 rtx insn;
2588 struct ra_insn_info info;
2589 unsigned int n;
2590 init_web_pairs ();
2591 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2592 if (INSN_P (insn) && (info = insn_df[INSN_UID (insn)]).num_defs)
2593 for (n = 0; n < info.num_defs; n++)
2595 struct web *dest = def2web[DF_REF_ID (info.defs[n])];
2596 dest = alias (find_web_for_subweb (dest));
2597 if (dest->type != PRECOLORED && dest->regno < max_normal_pseudo)
2599 unsigned int n2;
2600 for (n2 = 0; n2 < info.num_uses; n2++)
2602 struct web *source = use2web[DF_REF_ID (info.uses[n2])];
2603 source = alias (find_web_for_subweb (source));
2604 if (source->type != PRECOLORED
2605 && source != dest
2606 && source->regno < max_normal_pseudo
2607 /* Coalesced webs end up using the same REG rtx in
2608 emit_colors(). So we can only coalesce something
2609 of equal modes. */
2610 && GET_MODE (source->orig_x) == GET_MODE (dest->orig_x)
2611 && !TEST_BIT (sup_igraph,
2612 dest->id * num_webs + source->id)
2613 && !TEST_BIT (sup_igraph,
2614 source->id * num_webs + dest->id)
2615 && hard_regs_intersect_p (&source->usable_regs,
2616 &dest->usable_regs))
2617 add_web_pair_cost (dest, source,
2618 BLOCK_FOR_INSN (insn)->frequency,
2619 dest->num_conflicts
2620 + source->num_conflicts);
2624 sort_and_combine_web_pairs (0);
2627 /* Check if we forgot to coalesce some moves. */
2629 static void
2630 check_uncoalesced_moves ()
2632 struct move_list *ml;
2633 struct move *m;
2634 for (ml = wl_moves; ml; ml = ml->next)
2635 if ((m = ml->move))
2637 struct web *s = alias (m->source_web);
2638 struct web *t = alias (m->target_web);
2639 if (t->type == PRECOLORED)
2641 struct web *h = s;
2642 s = t;
2643 t = h;
2645 if (s != t
2646 && m->type != CONSTRAINED
2647 /* Following can happen when a move was coalesced, but later
2648 broken up again. Then s!=t, but m is still MV_COALESCED. */
2649 && m->type != MV_COALESCED
2650 && t->type != PRECOLORED
2651 && ((s->type == PRECOLORED && ok (t, s))
2652 || s->type != PRECOLORED)
2653 && !TEST_BIT (sup_igraph, s->id * num_webs + t->id)
2654 && !TEST_BIT (sup_igraph, t->id * num_webs + s->id))
2655 abort ();
2659 /* The toplevel function in this file. Precondition is, that
2660 the interference graph is built completely by ra-build.c. This
2661 produces a list of spilled, colored and coalesced nodes. */
2663 void
2664 ra_colorize_graph (df)
2665 struct df *df;
2667 if (rtl_dump_file)
2668 dump_igraph (df);
2669 build_worklists (df);
2671 /* With optimistic coalescing we coalesce everything we can. */
2672 if (flag_ra_optimistic_coalescing)
2674 aggressive_coalesce ();
2675 extended_coalesce_2 ();
2678 /* Now build the select stack. */
2681 simplify ();
2682 if (mv_worklist)
2683 coalesce ();
2684 else if (WEBS(FREEZE))
2685 freeze ();
2686 else if (WEBS(SPILL))
2687 select_spill ();
2689 while (WEBS(SIMPLIFY) || WEBS(SIMPLIFY_FAT) || WEBS(SIMPLIFY_SPILL)
2690 || mv_worklist || WEBS(FREEZE) || WEBS(SPILL));
2691 if (flag_ra_optimistic_coalescing)
2692 check_uncoalesced_moves ();
2694 /* Actually colorize the webs from the select stack. */
2695 assign_colors ();
2696 check_colors ();
2697 dump_graph_cost (DUMP_COSTS, "initially");
2698 if (flag_ra_break_aliases)
2699 break_coalesced_spills ();
2700 check_colors ();
2702 /* And try to improve the cost by recoloring spilled webs. */
2703 recolor_spills ();
2704 dump_graph_cost (DUMP_COSTS, "after spill-recolor");
2705 check_colors ();
2708 /* Initialize this module. */
2710 void ra_colorize_init ()
2712 /* FIXME: Choose spill heuristic for platform if we have one */
2713 spill_heuristic = default_spill_heuristic;
2716 /* Free all memory. (Note that we don't need to free any per pass
2717 memory). */
2719 void
2720 ra_colorize_free_all ()
2722 struct dlist *d;
2723 while ((d = pop_list (&WEBS(FREE))) != NULL)
2724 put_web (DLIST_WEB (d), INITIAL);
2725 while ((d = pop_list (&WEBS(INITIAL))) != NULL)
2727 struct web *web =DLIST_WEB (d);
2728 struct web *wnext;
2729 web->orig_conflict_list = NULL;
2730 web->conflict_list = NULL;
2731 for (web = web->subreg_next; web; web = wnext)
2733 wnext = web->subreg_next;
2734 free (web);
2736 free (DLIST_WEB (d));
2741 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: