1 /* Output Dwarf format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 Notes on the GNU Implementation of DWARF Debugging Information
26 --------------------------------------------------------------
27 Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28 ------------------------------------------------------------
30 This file describes special and unique aspects of the GNU implementation of
31 the DWARF Version 1 debugging information language, as provided in the GNU
32 version 2.x compiler(s).
34 For general information about the DWARF debugging information language,
35 you should obtain the DWARF version 1.1 specification document (and perhaps
36 also the DWARF version 2 draft specification document) developed by the
37 (now defunct) UNIX International Programming Languages Special Interest Group.
39 To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40 specification, visit the web page for the DWARF Version 2 committee, at
42 http://www.eagercon.com/dwarf/dwarf2std.htm
44 The generation of DWARF debugging information by the GNU version 2.x C
45 compiler has now been tested rather extensively for m88k, i386, i860, and
46 SPARC targets. The DWARF output of the GNU C compiler appears to inter-
47 operate well with the standard SVR4 SDB debugger on these kinds of target
48 systems (but of course, there are no guarantees).
50 DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51 C++ users should definitely use DWARF 2 instead.
53 Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54 addition of full support for GNU FORTRAN. (This should, in theory, be a
55 lot simpler to add than adding support for g++... but we'll see.)
57 Many features of the DWARF version 2 specification have been adapted to
58 (and used in) the GNU implementation of DWARF (version 1). In most of
59 these cases, a DWARF version 2 approach is used in place of (or in addition
60 to) DWARF version 1 stuff simply because it is apparent that DWARF version
61 1 is not sufficiently expressive to provide the kinds of information which
62 may be necessary to support really robust debugging. In all of these cases
63 however, the use of DWARF version 2 features should not interfere in any
64 way with the interoperability (of GNU compilers) with generally available
65 "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
67 The DWARF generation enhancement for the GNU compiler(s) was initially
68 donated to the Free Software Foundation by Network Computing Devices.
69 (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70 been largely supported (i.e. funded) by Intel Corporation. (Thanks Intel!)
72 If you have questions or comments about the DWARF generation feature, please
73 send mail to me <rfg@netcom.com>. I will be happy to investigate any bugs
74 reported and I may even provide fixes (but of course, I can make no promises).
76 The DWARF debugging information produced by GCC may deviate in a few minor
77 (but perhaps significant) respects from the DWARF debugging information
78 currently produced by other C compilers. A serious attempt has been made
79 however to conform to the published specifications, to existing practice,
80 and to generally accepted norms in the GNU implementation of DWARF.
82 ** IMPORTANT NOTE ** ** IMPORTANT NOTE ** ** IMPORTANT NOTE **
84 Under normal circumstances, the DWARF information generated by the GNU
85 compilers (in an assembly language file) is essentially impossible for
86 a human being to read. This fact can make it very difficult to debug
87 certain DWARF-related problems. In order to overcome this difficulty,
88 a feature has been added to dwarfout.c (enabled by the -dA
89 option) which causes additional comments to be placed into the assembly
90 language output file, out to the right-hand side of most bits of DWARF
91 material. The comments indicate (far more clearly that the obscure
92 DWARF hex codes do) what is actually being encoded in DWARF. Thus, the
93 -dA option can be highly useful for those who must study the
94 DWARF output from the GNU compilers in detail.
98 (Footnote: Within this file, the term `Debugging Information Entry' will
99 be abbreviated as `DIE'.)
102 Release Notes (aka known bugs)
103 -------------------------------
105 In one very obscure case involving dynamically sized arrays, the DWARF
106 "location information" for such an array may make it appear that the
107 array has been totally optimized out of existence, when in fact it
108 *must* actually exist. (This only happens when you are using *both* -g
109 *and* -O.) This is due to aggressive dead store elimination in the
110 compiler, and to the fact that the DECL_RTL expressions associated with
111 variables are not always updated to correctly reflect the effects of
112 GCC's aggressive dead store elimination.
114 -------------------------------
116 When attempting to set a breakpoint at the "start" of a function compiled
117 with -g1, the debugger currently has no way of knowing exactly where the
118 end of the prologue code for the function is. Thus, for most targets,
119 all the debugger can do is to set the breakpoint at the AT_low_pc address
120 for the function. But if you stop there and then try to look at one or
121 more of the formal parameter values, they may not have been "homed" yet,
122 so you may get inaccurate answers (or perhaps even addressing errors).
124 Some people may consider this simply a non-feature, but I consider it a
125 bug, and I hope to provide some GNU-specific attributes (on function
126 DIEs) which will specify the address of the end of the prologue and the
127 address of the beginning of the epilogue in a future release.
129 -------------------------------
131 It is believed at this time that old bugs relating to the AT_bit_offset
132 values for bit-fields have been fixed.
134 There may still be some very obscure bugs relating to the DWARF description
135 of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136 where the alignment of type `long long' data objects is different from
137 (and less than) the size of a type `long long' data object.
139 Please report any problems with the DWARF description of bit-fields as you
140 would any other GCC bug. (Procedures for bug reporting are given in the
141 GNU C compiler manual.)
143 --------------------------------
145 At this time, GCC does not know how to handle the GNU C "nested functions"
146 extension. (See the GCC manual for more info on this extension to ANSI C.)
148 --------------------------------
150 The GNU compilers now represent inline functions (and inlined instances
151 thereof) in exactly the manner described by the current DWARF version 2
152 (draft) specification. The version 1 specification for handling inline
153 functions (and inlined instances) was known to be brain-damaged (by the
154 PLSIG) when the version 1 spec was finalized, but it was simply too late
155 in the cycle to get it removed before the version 1 spec was formally
156 released to the public (by UI).
158 --------------------------------
160 At this time, GCC does not generate the kind of really precise information
161 about the exact declared types of entities with signed integral types which
162 is required by the current DWARF draft specification.
164 Specifically, the current DWARF draft specification seems to require that
165 the type of a non-unsigned integral bit-field member of a struct or union
166 type be represented as either a "signed" type or as a "plain" type,
167 depending upon the exact set of keywords that were used in the
168 type specification for the given bit-field member. It was felt (by the
169 UI/PLSIG) that this distinction between "plain" and "signed" integral types
170 could have some significance (in the case of bit-fields) because ANSI C
171 does not constrain the signedness of a plain bit-field, whereas it does
172 constrain the signedness of an explicitly "signed" bit-field. For this
173 reason, the current DWARF specification calls for compilers to produce
174 type information (for *all* integral typed entities... not just bit-fields)
175 which explicitly indicates the signedness of the relevant type to be
176 "signed" or "plain" or "unsigned".
178 Unfortunately, the GNU DWARF implementation is currently incapable of making
181 --------------------------------
184 Known Interoperability Problems
185 -------------------------------
187 Although the GNU implementation of DWARF conforms (for the most part) with
188 the current UI/PLSIG DWARF version 1 specification (with many compatible
189 version 2 features added in as "vendor specific extensions" just for good
190 measure) there are a few known cases where GCC's DWARF output can cause
191 some confusion for "classic" (pre version 1) DWARF consumers such as the
192 System V Release 4 SDB debugger. These cases are described in this section.
194 --------------------------------
196 The DWARF version 1 specification includes the fundamental type codes
197 FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198 Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199 data types) the only one of these fundamental type codes which GCC ever
200 generates is FT_ext_prec_float. This fundamental type code is generated
201 by GCC for the `long double' data type. Unfortunately, due to an apparent
202 bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203 attempt is made to print a variable, parameter, or field whose type was
204 given in terms of FT_ext_prec_float.
206 (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207 codes mentioned here. This will fact will cause additional problems when
208 there is a GNU FORTRAN front-end.)
210 --------------------------------
212 In general, it appears that SVR4 SDB is not able to effectively ignore
213 fundamental type codes in the "implementation defined" range. This can
214 cause problems when a program being debugged uses the `long long' data
215 type (or the signed or unsigned varieties thereof) because these types
216 are not defined by ANSI C, and thus, GCC must use its own private fundamental
217 type codes (from the implementation-defined range) to represent these types.
219 --------------------------------
222 General GNU DWARF extensions
223 ----------------------------
225 In the current DWARF version 1 specification, no mechanism is specified by
226 which accurate information about executable code from include files can be
227 properly (and fully) described. (The DWARF version 2 specification *does*
228 specify such a mechanism, but it is about 10 times more complicated than
229 it needs to be so I'm not terribly anxious to try to implement it right
232 In the GNU implementation of DWARF version 1, a fully downward-compatible
233 extension has been implemented which permits the GNU compilers to specify
234 which executable lines come from which files. This extension places
235 additional information (about source file names) in GNU-specific sections
236 (which should be totally ignored by all non-GNU DWARF consumers) so that
237 this extended information can be provided (to GNU DWARF consumers) in a way
238 which is totally transparent (and invisible) to non-GNU DWARF consumers
239 (e.g. the SVR4 SDB debugger). The additional information is placed *only*
240 in specialized GNU-specific sections, where it should never even be seen
241 by non-GNU DWARF consumers.
243 To understand this GNU DWARF extension, imagine that the sequence of entries
244 in the .lines section is broken up into several subsections. Each contiguous
245 sequence of .line entries which relates to a sequence of lines (or statements)
246 from one particular file (either a `base' file or an `include' file) could
247 be called a `line entries chunk' (LEC).
249 For each LEC there is one entry in the .debug_srcinfo section.
251 Each normal entry in the .debug_srcinfo section consists of two 4-byte
252 words of data as follows:
254 (1) The starting address (relative to the entire .line section)
255 of the first .line entry in the relevant LEC.
257 (2) The starting address (relative to the entire .debug_sfnames
258 section) of a NUL terminated string representing the
259 relevant filename. (This filename name be either a
260 relative or an absolute filename, depending upon how the
261 given source file was located during compilation.)
263 Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264 and it also points you to the first .line entry that was generated as a result
265 of having compiled a given source line from the given source file.
267 Each subsequent .line entry should also be assumed to have been produced
268 as a result of compiling yet more lines from the same file. The end of
269 any given LEC is easily found by looking at the first 4-byte pointer in
270 the *next* .debug_srcinfo entry. That next .debug_srcinfo entry points
271 to a new and different LEC, so the preceding LEC (implicitly) must have
272 ended with the last .line section entry which occurs at the 2 1/2 words
273 just before the address given in the first pointer of the new .debug_srcinfo
276 The following picture may help to clarify this feature. Let's assume that
277 `LE' stands for `.line entry'. Also, assume that `* 'stands for a pointer.
280 .line section .debug_srcinfo section .debug_sfnames section
281 ----------------------------------------------------------------
283 LE <---------------------- *
284 LE * -----------------> "foobar.c" <---
287 LE <---------------------- * |
288 LE * -----------------> "foobar.h" <| |
291 LE <---------------------- * | |
292 LE * -----------------> "inner.h" | |
294 LE <---------------------- * | |
295 LE * ------------------------------- |
300 LE <---------------------- * |
301 LE * -----------------------------------
306 In effect, each entry in the .debug_srcinfo section points to *both* a
307 filename (in the .debug_sfnames section) and to the start of a block of
308 consecutive LEs (in the .line section).
310 Note that just like in the .line section, there are specialized first and
311 last entries in the .debug_srcinfo section for each object file. These
312 special first and last entries for the .debug_srcinfo section are very
313 different from the normal .debug_srcinfo section entries. They provide
314 additional information which may be helpful to a debugger when it is
315 interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
318 The first entry in the .debug_srcinfo section for each compilation unit
319 consists of five 4-byte words of data. The contents of these five words
320 should be interpreted (by debuggers) as follows:
322 (1) The starting address (relative to the entire .line section)
323 of the .line section for this compilation unit.
325 (2) The starting address (relative to the entire .debug_sfnames
326 section) of the .debug_sfnames section for this compilation
329 (3) The starting address (in the execution virtual address space)
330 of the .text section for this compilation unit.
332 (4) The ending address plus one (in the execution virtual address
333 space) of the .text section for this compilation unit.
335 (5) The date/time (in seconds since midnight 1/1/70) at which the
336 compilation of this compilation unit occurred. This value
337 should be interpreted as an unsigned quantity because gcc
338 might be configured to generate a default value of 0xffffffff
339 in this field (in cases where it is desired to have object
340 files created at different times from identical source files
341 be byte-for-byte identical). By default, these timestamps
342 are *not* generated by dwarfout.c (so that object files
343 compiled at different times will be byte-for-byte identical).
344 If you wish to enable this "timestamp" feature however, you
345 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 in your target configuration file and then rebuild the GNU
349 Note that the first string placed into the .debug_sfnames section for each
350 compilation unit is the name of the directory in which compilation occurred.
351 This string ends with a `/' (to help indicate that it is the pathname of a
352 directory). Thus, the second word of each specialized initial .debug_srcinfo
353 entry for each compilation unit may be used as a pointer to the (string)
354 name of the compilation directory, and that string may in turn be used to
355 "absolutize" any relative pathnames which may appear later on in the
356 .debug_sfnames section entries for the same compilation unit.
358 The fifth and last word of each specialized starting entry for a compilation
359 unit in the .debug_srcinfo section may (depending upon your configuration)
360 indicate the date/time of compilation, and this may be used (by a debugger)
361 to determine if any of the source files which contributed code to this
362 compilation unit are newer than the object code for the compilation unit
363 itself. If so, the debugger may wish to print an "out-of-date" warning
364 about the compilation unit.
366 The .debug_srcinfo section associated with each compilation will also have
367 a specialized terminating entry. This terminating .debug_srcinfo section
368 entry will consist of the following two 4-byte words of data:
370 (1) The offset, measured from the start of the .line section to
371 the beginning of the terminating entry for the .line section.
373 (2) A word containing the value 0xffffffff.
375 --------------------------------
377 In the current DWARF version 1 specification, no mechanism is specified by
378 which information about macro definitions and un-definitions may be provided
379 to the DWARF consumer.
381 The DWARF version 2 (draft) specification does specify such a mechanism.
382 That specification was based on the GNU ("vendor specific extension")
383 which provided some support for macro definitions and un-definitions,
384 but the "official" DWARF version 2 (draft) specification mechanism for
385 handling macros and the GNU implementation have diverged somewhat. I
386 plan to update the GNU implementation to conform to the "official"
387 DWARF version 2 (draft) specification as soon as I get time to do that.
389 Note that in the GNU implementation, additional information about macro
390 definitions and un-definitions is *only* provided when the -g3 level of
391 debug-info production is selected. (The default level is -g2 and the
392 plain old -g option is considered to be identical to -g2.)
394 GCC records information about macro definitions and undefinitions primarily
395 in a section called the .debug_macinfo section. Normal entries in the
396 .debug_macinfo section consist of the following three parts:
398 (1) A special "type" byte.
400 (2) A 3-byte line-number/filename-offset field.
402 (3) A NUL terminated string.
404 The interpretation of the second and third parts is dependent upon the
405 value of the leading (type) byte.
407 The type byte may have one of four values depending upon the type of the
408 .debug_macinfo entry which follows. The 1-byte MACINFO type codes presently
409 used, and their meanings are as follows:
411 MACINFO_start A base file or an include file starts here.
412 MACINFO_resume The current base or include file ends here.
413 MACINFO_define A #define directive occurs here.
414 MACINFO_undef A #undef directive occur here.
416 (Note that the MACINFO_... codes mentioned here are simply symbolic names
417 for constants which are defined in the GNU dwarf.h file.)
419 For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420 contains the number of the source line (relative to the start of the current
421 base source file or the current include files) when the #define or #undef
422 directive appears. For a MACINFO_define entry, the following string field
423 contains the name of the macro which is defined, followed by its definition.
424 Note that the definition is always separated from the name of the macro
425 by at least one whitespace character. For a MACINFO_undef entry, the
426 string which follows the 3-byte line number field contains just the name
427 of the macro which is being undef'ed.
429 For a MACINFO_start entry, the 3-byte field following the type byte contains
430 the offset, relative to the start of the .debug_sfnames section for the
431 current compilation unit, of a string which names the new source file which
432 is beginning its inclusion at this point. Following that 3-byte field,
433 each MACINFO_start entry always contains a zero length NUL terminated
436 For a MACINFO_resume entry, the 3-byte field following the type byte contains
437 the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438 current file (whose inclusion ends here) was initiated. Following that
439 3-byte field, each MACINFO_resume entry always contains a zero length NUL
442 Each set of .debug_macinfo entries for each compilation unit is terminated
443 by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444 by a single NUL byte.
446 --------------------------------
448 In the current DWARF draft specification, no provision is made for providing
449 a separate level of (limited) debugging information necessary to support
450 tracebacks (only) through fully-debugged code (e.g. code in system libraries).
452 A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453 This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454 version 1 specification for two reasons. First, it was felt (by the PLSIG)
455 that the issues involved in supporting a "traceback only" subset of DWARF
456 were not well understood. Second, and perhaps more importantly, the PLSIG
457 is already having enough trouble agreeing on what it means to be "conforming"
458 to the DWARF specification, and it was felt that trying to specify multiple
459 different *levels* of conformance would only complicate our discussions of
460 this already divisive issue. Nonetheless, the GNU implementation of DWARF
461 provides an abbreviated "traceback only" level of debug-info production for
462 use with fully-debugged "system library" code. This level should only be
463 used for fully debugged system library code, and even then, it should only
464 be used where there is a very strong need to conserve disk space. This
465 abbreviated level of debug-info production can be used by specifying the
466 -g1 option on the compilation command line.
468 --------------------------------
470 As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471 version 2 (draft) approach for inline functions (and inlined instances
472 thereof). This is used in preference to the version 1 approach because
473 (quite simply) the version 1 approach is highly brain-damaged and probably
476 --------------------------------
479 GNU DWARF Representation of GNU C Extensions to ANSI C
480 ------------------------------------------------------
482 The file dwarfout.c has been designed and implemented so as to provide
483 some reasonable DWARF representation for each and every declarative
484 construct which is accepted by the GNU C compiler. Since the GNU C
485 compiler accepts a superset of ANSI C, this means that there are some
486 cases in which the DWARF information produced by GCC must take some
487 liberties in improvising DWARF representations for declarations which
488 are only valid in (extended) GNU C.
490 In particular, GNU C provides at least three significant extensions to
491 ANSI C when it comes to declarations. These are (1) inline functions,
492 and (2) dynamic arrays, and (3) incomplete enum types. (See the GCC
493 manual for more information on these GNU extensions to ANSI C.) When
494 used, these GNU C extensions are represented (in the generated DWARF
495 output of GCC) in the most natural and intuitively obvious ways.
497 In the case of inline functions, the DWARF representation is exactly as
498 called for in the DWARF version 2 (draft) specification for an identical
499 function written in C++; i.e. we "reuse" the representation of inline
500 functions which has been defined for C++ to support this GNU C extension.
502 In the case of dynamic arrays, we use the most obvious representational
503 mechanism available; i.e. an array type in which the upper bound of
504 some dimension (usually the first and only dimension) is a variable
505 rather than a constant. (See the DWARF version 1 specification for more
508 In the case of incomplete enum types, such types are represented simply
509 as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510 attributes or AT_element_list attributes.
512 --------------------------------
518 The codes, formats, and other paraphernalia necessary to provide proper
519 support for symbolic debugging for the C++ language are still being worked
520 on by the UI/PLSIG. The vast majority of the additions to DWARF which will
521 be needed to completely support C++ have already been hashed out and agreed
522 upon, but a few small issues (e.g. anonymous unions, access declarations)
523 are still being discussed. Also, we in the PLSIG are still discussing
524 whether or not we need to do anything special for C++ templates. (At this
525 time it is not yet clear whether we even need to do anything special for
528 With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529 complete and sufficient set of codes and rules for adequately representing
530 all of FORTRAN 77, and most of Fortran 90 in DWARF. While some support for
531 this has been implemented in dwarfout.c, further implementation and testing
534 GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535 issue until there are GNU front-ends for these other languages.
537 As currently defined, DWARF only describes a (binary) language which can
538 be used to communicate symbolic debugging information from a compiler
539 through an assembler and a linker, to a debugger. There is no clear
540 specification of what processing should be (or must be) done by the
541 assembler and/or the linker. Fortunately, the role of the assembler
542 is easily inferred (by anyone knowledgeable about assemblers) just by
543 looking at examples of assembly-level DWARF code. Sadly though, the
544 allowable (or required) processing steps performed by a linker are
545 harder to infer and (perhaps) even harder to agree upon. There are
546 several forms of very useful `post-processing' steps which intelligent
547 linkers *could* (in theory) perform on object files containing DWARF,
548 but any and all such link-time transformations are currently both disallowed
551 In particular, possible link-time transformations of DWARF code which could
552 provide significant benefits include (but are not limited to):
554 Commonization of duplicate DIEs obtained from multiple input
557 Cross-compilation type checking based upon DWARF type information
558 for objects and functions.
560 Other possible `compacting' transformations designed to save disk
561 space and to reduce linker & debugger I/O activity.
567 #include "coretypes.h"
570 #ifdef DWARF_DEBUGGING_INFO
574 #include "function.h"
576 #include "hard-reg-set.h"
577 #include "insn-config.h"
580 #include "dwarf2asm.h"
585 #include "langhooks.h"
587 /* NOTE: In the comments in this file, many references are made to
588 so called "Debugging Information Entries". For the sake of brevity,
589 this term is abbreviated to `DIE' throughout the remainder of this
592 /* Note that the implementation of C++ support herein is (as yet) unfinished.
593 If you want to try to complete it, more power to you. */
595 /* How to start an assembler comment. */
596 #ifndef ASM_COMMENT_START
597 #define ASM_COMMENT_START ";#"
600 /* How to print out a register name. */
602 #define PRINT_REG(RTX, CODE, FILE) \
603 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
606 /* Define a macro which returns nonzero for any tagged type which is
607 used (directly or indirectly) in the specification of either some
608 function's return type or some formal parameter of some function.
609 We use this macro when we are operating in "terse" mode to help us
610 know what tagged types have to be represented in Dwarf (even in
611 terse mode) and which ones don't.
613 A flag bit with this meaning really should be a part of the normal
614 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
615 for these nodes. For now, we have to just fake it. It it safe for
616 us to simply return zero for all complete tagged types (which will
617 get forced out anyway if they were used in the specification of some
618 formal or return type) and nonzero for all incomplete tagged types.
621 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
623 /* Define a macro which returns nonzero for a TYPE_DECL which was
624 implicitly generated for a tagged type.
626 Note that unlike the gcc front end (which generates a NULL named
627 TYPE_DECL node for each complete tagged type, each array type, and
628 each function type node created) the g++ front end generates a
629 _named_ TYPE_DECL node for each tagged type node created.
630 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
631 generate a DW_TAG_typedef DIE for them. */
632 #define TYPE_DECL_IS_STUB(decl) \
633 (DECL_NAME (decl) == NULL \
634 || (DECL_ARTIFICIAL (decl) \
635 && is_tagged_type (TREE_TYPE (decl)) \
636 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
638 /* Maximum size (in bytes) of an artificially generated label. */
640 #define MAX_ARTIFICIAL_LABEL_BYTES 30
642 /* Structure to keep track of source filenames. */
644 struct filename_entry
{
649 typedef struct filename_entry filename_entry
;
651 /* Pointer to an array of elements, each one having the structure above. */
653 static filename_entry
*filename_table
;
655 /* Total number of entries in the table (i.e. array) pointed to by
656 `filename_table'. This is the *total* and includes both used and
659 static unsigned ft_entries_allocated
;
661 /* Number of entries in the filename_table which are actually in use. */
663 static unsigned ft_entries
;
665 /* Size (in elements) of increments by which we may expand the filename
666 table. Actually, a single hunk of space of this size should be enough
667 for most typical programs. */
669 #define FT_ENTRIES_INCREMENT 64
671 /* Local pointer to the name of the main input file. Initialized in
674 static const char *primary_filename
;
676 /* Counter to generate unique names for DIEs. */
678 static unsigned next_unused_dienum
= 1;
680 /* Number of the DIE which is currently being generated. */
682 static unsigned current_dienum
;
684 /* Number to use for the special "pubname" label on the next DIE which
685 represents a function or data object defined in this compilation
686 unit which has "extern" linkage. */
688 static int next_pubname_number
= 0;
690 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
692 /* Pointer to a dynamically allocated list of pre-reserved and still
693 pending sibling DIE numbers. Note that this list will grow as needed. */
695 static unsigned *pending_sibling_stack
;
697 /* Counter to keep track of the number of pre-reserved and still pending
698 sibling DIE numbers. */
700 static unsigned pending_siblings
;
702 /* The currently allocated size of the above list (expressed in number of
705 static unsigned pending_siblings_allocated
;
707 /* Size (in elements) of increments by which we may expand the pending
708 sibling stack. Actually, a single hunk of space of this size should
709 be enough for most typical programs. */
711 #define PENDING_SIBLINGS_INCREMENT 64
713 /* Nonzero if we are performing our file-scope finalization pass and if
714 we should force out Dwarf descriptions of any and all file-scope
715 tagged types which are still incomplete types. */
717 static int finalizing
= 0;
719 /* A pointer to the base of a list of pending types which we haven't
720 generated DIEs for yet, but which we will have to come back to
723 static tree
*pending_types_list
;
725 /* Number of elements currently allocated for the pending_types_list. */
727 static unsigned pending_types_allocated
;
729 /* Number of elements of pending_types_list currently in use. */
731 static unsigned pending_types
;
733 /* Size (in elements) of increments by which we may expand the pending
734 types list. Actually, a single hunk of space of this size should
735 be enough for most typical programs. */
737 #define PENDING_TYPES_INCREMENT 64
739 /* A pointer to the base of a list of incomplete types which might be
740 completed at some later time. */
742 static tree
*incomplete_types_list
;
744 /* Number of elements currently allocated for the incomplete_types_list. */
745 static unsigned incomplete_types_allocated
;
747 /* Number of elements of incomplete_types_list currently in use. */
748 static unsigned incomplete_types
;
750 /* Size (in elements) of increments by which we may expand the incomplete
751 types list. Actually, a single hunk of space of this size should
752 be enough for most typical programs. */
753 #define INCOMPLETE_TYPES_INCREMENT 64
755 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
756 This is used in a hack to help us get the DIEs describing types of
757 formal parameters to come *after* all of the DIEs describing the formal
758 parameters themselves. That's necessary in order to be compatible
759 with what the brain-damaged svr4 SDB debugger requires. */
761 static tree fake_containing_scope
;
763 /* A pointer to the ..._DECL node which we have most recently been working
764 on. We keep this around just in case something about it looks screwy
765 and we want to tell the user what the source coordinates for the actual
768 static tree dwarf_last_decl
;
770 /* A flag indicating that we are emitting the member declarations of a
771 class, so member functions and variables should not be entirely emitted.
772 This is a kludge to avoid passing a second argument to output_*_die. */
776 /* Forward declarations for functions defined in this file. */
778 static void dwarfout_init
PARAMS ((const char *));
779 static void dwarfout_finish
PARAMS ((const char *));
780 static void dwarfout_define
PARAMS ((unsigned int, const char *));
781 static void dwarfout_undef
PARAMS ((unsigned int, const char *));
782 static void dwarfout_start_source_file
PARAMS ((unsigned, const char *));
783 static void dwarfout_start_source_file_check
PARAMS ((unsigned, const char *));
784 static void dwarfout_end_source_file
PARAMS ((unsigned));
785 static void dwarfout_end_source_file_check
PARAMS ((unsigned));
786 static void dwarfout_begin_block
PARAMS ((unsigned, unsigned));
787 static void dwarfout_end_block
PARAMS ((unsigned, unsigned));
788 static void dwarfout_end_epilogue
PARAMS ((unsigned int, const char *));
789 static void dwarfout_source_line
PARAMS ((unsigned int, const char *));
790 static void dwarfout_end_prologue
PARAMS ((unsigned int, const char *));
791 static void dwarfout_end_function
PARAMS ((unsigned int));
792 static void dwarfout_function_decl
PARAMS ((tree
));
793 static void dwarfout_global_decl
PARAMS ((tree
));
794 static void dwarfout_deferred_inline_function
PARAMS ((tree
));
795 static void dwarfout_file_scope_decl
PARAMS ((tree
, int));
796 static const char *dwarf_tag_name
PARAMS ((unsigned));
797 static const char *dwarf_attr_name
PARAMS ((unsigned));
798 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
799 static const char *dwarf_typemod_name
PARAMS ((unsigned));
800 static const char *dwarf_fmt_byte_name
PARAMS ((unsigned));
801 static const char *dwarf_fund_type_name
PARAMS ((unsigned));
802 static tree decl_ultimate_origin
PARAMS ((tree
));
803 static tree block_ultimate_origin
PARAMS ((tree
));
804 static tree decl_class_context
PARAMS ((tree
));
806 static void output_unsigned_leb128
PARAMS ((unsigned long));
807 static void output_signed_leb128
PARAMS ((long));
809 static int fundamental_type_code
PARAMS ((tree
));
810 static tree root_type_1
PARAMS ((tree
, int));
811 static tree root_type
PARAMS ((tree
));
812 static void write_modifier_bytes_1
PARAMS ((tree
, int, int, int));
813 static void write_modifier_bytes
PARAMS ((tree
, int, int));
814 static inline int type_is_fundamental
PARAMS ((tree
));
815 static void equate_decl_number_to_die_number
PARAMS ((tree
));
816 static inline void equate_type_number_to_die_number
PARAMS ((tree
));
817 static void output_reg_number
PARAMS ((rtx
));
818 static void output_mem_loc_descriptor
PARAMS ((rtx
));
819 static void output_loc_descriptor
PARAMS ((rtx
));
820 static void output_bound_representation
PARAMS ((tree
, unsigned, int));
821 static void output_enumeral_list
PARAMS ((tree
));
822 static inline HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
823 static inline tree field_type
PARAMS ((tree
));
824 static inline unsigned int simple_type_align_in_bits
PARAMS ((tree
));
825 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
826 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
827 static inline void sibling_attribute
PARAMS ((void));
828 static void location_attribute
PARAMS ((rtx
));
829 static void data_member_location_attribute
PARAMS ((tree
));
830 static void const_value_attribute
PARAMS ((rtx
));
831 static void location_or_const_value_attribute
PARAMS ((tree
));
832 static inline void name_attribute
PARAMS ((const char *));
833 static inline void fund_type_attribute
PARAMS ((unsigned));
834 static void mod_fund_type_attribute
PARAMS ((tree
, int, int));
835 static inline void user_def_type_attribute
PARAMS ((tree
));
836 static void mod_u_d_type_attribute
PARAMS ((tree
, int, int));
837 #ifdef USE_ORDERING_ATTRIBUTE
838 static inline void ordering_attribute
PARAMS ((unsigned));
839 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
840 static void subscript_data_attribute
PARAMS ((tree
));
841 static void byte_size_attribute
PARAMS ((tree
));
842 static inline void bit_offset_attribute
PARAMS ((tree
));
843 static inline void bit_size_attribute
PARAMS ((tree
));
844 static inline void element_list_attribute
PARAMS ((tree
));
845 static inline void stmt_list_attribute
PARAMS ((const char *));
846 static inline void low_pc_attribute
PARAMS ((const char *));
847 static inline void high_pc_attribute
PARAMS ((const char *));
848 static inline void body_begin_attribute
PARAMS ((const char *));
849 static inline void body_end_attribute
PARAMS ((const char *));
850 static inline void language_attribute
PARAMS ((unsigned));
851 static inline void member_attribute
PARAMS ((tree
));
853 static inline void string_length_attribute
PARAMS ((tree
));
855 static inline void comp_dir_attribute
PARAMS ((const char *));
856 static inline void sf_names_attribute
PARAMS ((const char *));
857 static inline void src_info_attribute
PARAMS ((const char *));
858 static inline void mac_info_attribute
PARAMS ((const char *));
859 static inline void prototyped_attribute
PARAMS ((tree
));
860 static inline void producer_attribute
PARAMS ((const char *));
861 static inline void inline_attribute
PARAMS ((tree
));
862 static inline void containing_type_attribute
PARAMS ((tree
));
863 static inline void abstract_origin_attribute
PARAMS ((tree
));
864 #ifdef DWARF_DECL_COORDINATES
865 static inline void src_coords_attribute
PARAMS ((unsigned, unsigned));
866 #endif /* defined(DWARF_DECL_COORDINATES) */
867 static inline void pure_or_virtual_attribute
PARAMS ((tree
));
868 static void name_and_src_coords_attributes
PARAMS ((tree
));
869 static void type_attribute
PARAMS ((tree
, int, int));
870 static const char *type_tag
PARAMS ((tree
));
871 static inline void dienum_push
PARAMS ((void));
872 static inline void dienum_pop
PARAMS ((void));
873 static inline tree member_declared_type
PARAMS ((tree
));
874 static const char *function_start_label
PARAMS ((tree
));
875 static void output_array_type_die
PARAMS ((void *));
876 static void output_set_type_die
PARAMS ((void *));
878 static void output_entry_point_die
PARAMS ((void *));
880 static void output_inlined_enumeration_type_die
PARAMS ((void *));
881 static void output_inlined_structure_type_die
PARAMS ((void *));
882 static void output_inlined_union_type_die
PARAMS ((void *));
883 static void output_enumeration_type_die
PARAMS ((void *));
884 static void output_formal_parameter_die
PARAMS ((void *));
885 static void output_global_subroutine_die
PARAMS ((void *));
886 static void output_global_variable_die
PARAMS ((void *));
887 static void output_label_die
PARAMS ((void *));
888 static void output_lexical_block_die
PARAMS ((void *));
889 static void output_inlined_subroutine_die
PARAMS ((void *));
890 static void output_local_variable_die
PARAMS ((void *));
891 static void output_member_die
PARAMS ((void *));
893 static void output_pointer_type_die
PARAMS ((void *));
894 static void output_reference_type_die
PARAMS ((void *));
896 static void output_ptr_to_mbr_type_die
PARAMS ((void *));
897 static void output_compile_unit_die
PARAMS ((void *));
898 static void output_string_type_die
PARAMS ((void *));
899 static void output_inheritance_die
PARAMS ((void *));
900 static void output_structure_type_die
PARAMS ((void *));
901 static void output_local_subroutine_die
PARAMS ((void *));
902 static void output_subroutine_type_die
PARAMS ((void *));
903 static void output_typedef_die
PARAMS ((void *));
904 static void output_union_type_die
PARAMS ((void *));
905 static void output_unspecified_parameters_die
PARAMS ((void *));
906 static void output_padded_null_die
PARAMS ((void *));
907 static void output_die
PARAMS ((void (*)(void *), void *));
908 static void end_sibling_chain
PARAMS ((void));
909 static void output_formal_types
PARAMS ((tree
));
910 static void pend_type
PARAMS ((tree
));
911 static int type_ok_for_scope
PARAMS ((tree
, tree
));
912 static void output_pending_types_for_scope
PARAMS ((tree
));
913 static void output_type
PARAMS ((tree
, tree
));
914 static void output_tagged_type_instantiation
PARAMS ((tree
));
915 static void output_block
PARAMS ((tree
, int));
916 static void output_decls_for_scope
PARAMS ((tree
, int));
917 static void output_decl
PARAMS ((tree
, tree
));
918 static void shuffle_filename_entry
PARAMS ((filename_entry
*));
919 static void generate_new_sfname_entry
PARAMS ((void));
920 static unsigned lookup_filename
PARAMS ((const char *));
921 static void generate_srcinfo_entry
PARAMS ((unsigned, unsigned));
922 static void generate_macinfo_entry
PARAMS ((unsigned int, rtx
,
924 static int is_pseudo_reg
PARAMS ((rtx
));
925 static tree type_main_variant
PARAMS ((tree
));
926 static int is_tagged_type
PARAMS ((tree
));
927 static int is_redundant_typedef
PARAMS ((tree
));
928 static void add_incomplete_type
PARAMS ((tree
));
929 static void retry_incomplete_types
PARAMS ((void));
931 /* Definitions of defaults for assembler-dependent names of various
932 pseudo-ops and section names.
934 Theses may be overridden in your tm.h file (if necessary) for your
935 particular assembler. The default values provided here correspond to
936 what is expected by "standard" AT&T System V.4 assemblers. */
939 #define FILE_ASM_OP "\t.file\t"
942 #define SET_ASM_OP "\t.set\t"
945 /* Pseudo-ops for pushing the current section onto the section stack (and
946 simultaneously changing to a new section) and for poping back to the
947 section we were in immediately before this one. Note that most svr4
948 assemblers only maintain a one level stack... you can push all the
949 sections you want, but you can only pop out one level. (The sparc
950 svr4 assembler is an exception to this general rule.) That's
951 OK because we only use at most one level of the section stack herein. */
953 #ifndef PUSHSECTION_ASM_OP
954 #define PUSHSECTION_ASM_OP "\t.section\t"
956 #ifndef POPSECTION_ASM_OP
957 #define POPSECTION_ASM_OP "\t.previous"
960 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
961 to print the PUSHSECTION_ASM_OP and the section name. The default here
962 works for almost all svr4 assemblers, except for the sparc, where the
963 section name must be enclosed in double quotes. (See sparcv4.h.) */
965 #ifndef PUSHSECTION_FORMAT
966 #define PUSHSECTION_FORMAT "%s%s\n"
969 #ifndef DEBUG_SECTION
970 #define DEBUG_SECTION ".debug"
973 #define LINE_SECTION ".line"
975 #ifndef DEBUG_SFNAMES_SECTION
976 #define DEBUG_SFNAMES_SECTION ".debug_sfnames"
978 #ifndef DEBUG_SRCINFO_SECTION
979 #define DEBUG_SRCINFO_SECTION ".debug_srcinfo"
981 #ifndef DEBUG_MACINFO_SECTION
982 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
984 #ifndef DEBUG_PUBNAMES_SECTION
985 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
987 #ifndef DEBUG_ARANGES_SECTION
988 #define DEBUG_ARANGES_SECTION ".debug_aranges"
990 #ifndef TEXT_SECTION_NAME
991 #define TEXT_SECTION_NAME ".text"
993 #ifndef DATA_SECTION_NAME
994 #define DATA_SECTION_NAME ".data"
996 #ifndef DATA1_SECTION_NAME
997 #define DATA1_SECTION_NAME ".data1"
999 #ifndef RODATA_SECTION_NAME
1000 #define RODATA_SECTION_NAME ".rodata"
1002 #ifndef RODATA1_SECTION_NAME
1003 #define RODATA1_SECTION_NAME ".rodata1"
1005 #ifndef BSS_SECTION_NAME
1006 #define BSS_SECTION_NAME ".bss"
1009 /* Definitions of defaults for formats and names of various special
1010 (artificial) labels which may be generated within this file (when
1011 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1013 If necessary, these may be overridden from within your tm.h file,
1014 but typically, you should never need to override these.
1016 These labels have been hacked (temporarily) so that they all begin with
1017 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1018 stock m88k/svr4 assembler, both of which need to see .L at the start of
1019 a label in order to prevent that label from going into the linker symbol
1020 table). When I get time, I'll have to fix this the right way so that we
1021 will use ASM_GENERATE_INTERNAL_LABEL and (*targetm.asm_out.internal_label) herein,
1022 but that will require a rather massive set of changes. For the moment,
1023 the following definitions out to produce the right results for all svr4
1024 and svr3 assemblers. -- rfg
1027 #ifndef TEXT_BEGIN_LABEL
1028 #define TEXT_BEGIN_LABEL "*.L_text_b"
1030 #ifndef TEXT_END_LABEL
1031 #define TEXT_END_LABEL "*.L_text_e"
1034 #ifndef DATA_BEGIN_LABEL
1035 #define DATA_BEGIN_LABEL "*.L_data_b"
1037 #ifndef DATA_END_LABEL
1038 #define DATA_END_LABEL "*.L_data_e"
1041 #ifndef DATA1_BEGIN_LABEL
1042 #define DATA1_BEGIN_LABEL "*.L_data1_b"
1044 #ifndef DATA1_END_LABEL
1045 #define DATA1_END_LABEL "*.L_data1_e"
1048 #ifndef RODATA_BEGIN_LABEL
1049 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
1051 #ifndef RODATA_END_LABEL
1052 #define RODATA_END_LABEL "*.L_rodata_e"
1055 #ifndef RODATA1_BEGIN_LABEL
1056 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
1058 #ifndef RODATA1_END_LABEL
1059 #define RODATA1_END_LABEL "*.L_rodata1_e"
1062 #ifndef BSS_BEGIN_LABEL
1063 #define BSS_BEGIN_LABEL "*.L_bss_b"
1065 #ifndef BSS_END_LABEL
1066 #define BSS_END_LABEL "*.L_bss_e"
1069 #ifndef LINE_BEGIN_LABEL
1070 #define LINE_BEGIN_LABEL "*.L_line_b"
1072 #ifndef LINE_LAST_ENTRY_LABEL
1073 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
1075 #ifndef LINE_END_LABEL
1076 #define LINE_END_LABEL "*.L_line_e"
1079 #ifndef DEBUG_BEGIN_LABEL
1080 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
1082 #ifndef SFNAMES_BEGIN_LABEL
1083 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
1085 #ifndef SRCINFO_BEGIN_LABEL
1086 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
1088 #ifndef MACINFO_BEGIN_LABEL
1089 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
1092 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1093 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1095 #ifndef DEBUG_ARANGES_END_LABEL
1096 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1099 #ifndef DIE_BEGIN_LABEL_FMT
1100 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
1102 #ifndef DIE_END_LABEL_FMT
1103 #define DIE_END_LABEL_FMT "*.L_D%u_e"
1105 #ifndef PUB_DIE_LABEL_FMT
1106 #define PUB_DIE_LABEL_FMT "*.L_P%u"
1108 #ifndef BLOCK_BEGIN_LABEL_FMT
1109 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
1111 #ifndef BLOCK_END_LABEL_FMT
1112 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
1114 #ifndef SS_BEGIN_LABEL_FMT
1115 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
1117 #ifndef SS_END_LABEL_FMT
1118 #define SS_END_LABEL_FMT "*.L_s%u_e"
1120 #ifndef EE_BEGIN_LABEL_FMT
1121 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
1123 #ifndef EE_END_LABEL_FMT
1124 #define EE_END_LABEL_FMT "*.L_e%u_e"
1126 #ifndef MT_BEGIN_LABEL_FMT
1127 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
1129 #ifndef MT_END_LABEL_FMT
1130 #define MT_END_LABEL_FMT "*.L_t%u_e"
1132 #ifndef LOC_BEGIN_LABEL_FMT
1133 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
1135 #ifndef LOC_END_LABEL_FMT
1136 #define LOC_END_LABEL_FMT "*.L_l%u_e"
1138 #ifndef BOUND_BEGIN_LABEL_FMT
1139 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
1141 #ifndef BOUND_END_LABEL_FMT
1142 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
1144 #ifndef BODY_BEGIN_LABEL_FMT
1145 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
1147 #ifndef BODY_END_LABEL_FMT
1148 #define BODY_END_LABEL_FMT "*.L_b%u_e"
1150 #ifndef FUNC_END_LABEL_FMT
1151 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
1153 #ifndef TYPE_NAME_FMT
1154 #define TYPE_NAME_FMT "*.L_T%u"
1156 #ifndef DECL_NAME_FMT
1157 #define DECL_NAME_FMT "*.L_E%u"
1159 #ifndef LINE_CODE_LABEL_FMT
1160 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
1162 #ifndef SFNAMES_ENTRY_LABEL_FMT
1163 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
1165 #ifndef LINE_ENTRY_LABEL_FMT
1166 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
1169 /* Definitions of defaults for various types of primitive assembly language
1172 If necessary, these may be overridden from within your tm.h file,
1173 but typically, you shouldn't need to override these. */
1175 #ifndef ASM_OUTPUT_PUSH_SECTION
1176 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1177 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1180 #ifndef ASM_OUTPUT_POP_SECTION
1181 #define ASM_OUTPUT_POP_SECTION(FILE) \
1182 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1185 #ifndef ASM_OUTPUT_DWARF_DELTA2
1186 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
1187 dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1190 #ifndef ASM_OUTPUT_DWARF_DELTA4
1191 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
1192 dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1195 #ifndef ASM_OUTPUT_DWARF_TAG
1196 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
1197 dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1200 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1201 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
1202 dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1205 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1206 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
1207 dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1210 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1211 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
1212 dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1215 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1216 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
1217 dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1220 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1221 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
1222 dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1225 #ifndef ASM_OUTPUT_DWARF_ADDR
1226 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
1227 dw2_asm_output_addr (4, LABEL, NULL)
1230 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1231 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
1232 dw2_asm_output_addr_rtx (4, RTX, NULL)
1235 #ifndef ASM_OUTPUT_DWARF_REF
1236 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
1237 dw2_asm_output_addr (4, LABEL, NULL)
1240 #ifndef ASM_OUTPUT_DWARF_DATA1
1241 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1242 dw2_asm_output_data (1, VALUE, NULL)
1245 #ifndef ASM_OUTPUT_DWARF_DATA2
1246 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1247 dw2_asm_output_data (2, VALUE, NULL)
1250 #ifndef ASM_OUTPUT_DWARF_DATA4
1251 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1252 dw2_asm_output_data (4, VALUE, NULL)
1255 #ifndef ASM_OUTPUT_DWARF_DATA8
1256 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
1257 dw2_asm_output_data (8, VALUE, NULL)
1260 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1261 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1262 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1263 defined, we call it, then issue the line feed. If not, we supply a
1264 default definition of calling ASM_OUTPUT_ASCII */
1266 #ifndef ASM_OUTPUT_DWARF_STRING
1267 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1268 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1270 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1271 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1275 /* The debug hooks structure. */
1276 const struct gcc_debug_hooks dwarf_debug_hooks
=
1282 dwarfout_start_source_file_check
,
1283 dwarfout_end_source_file_check
,
1284 dwarfout_begin_block
,
1286 debug_true_tree
, /* ignore_block */
1287 dwarfout_source_line
, /* source_line */
1288 dwarfout_source_line
, /* begin_prologue */
1289 dwarfout_end_prologue
,
1290 dwarfout_end_epilogue
,
1291 debug_nothing_tree
, /* begin_function */
1292 dwarfout_end_function
,
1293 dwarfout_function_decl
,
1294 dwarfout_global_decl
,
1295 dwarfout_deferred_inline_function
,
1296 debug_nothing_tree
, /* outlining_inline_function */
1297 debug_nothing_rtx
, /* label */
1298 debug_nothing_int
/* handle_pch */
1301 /************************ general utility functions **************************/
1307 return (((GET_CODE (rtl
) == REG
) && (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
))
1308 || ((GET_CODE (rtl
) == SUBREG
)
1309 && (REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
)));
1313 type_main_variant (type
)
1316 type
= TYPE_MAIN_VARIANT (type
);
1318 /* There really should be only one main variant among any group of variants
1319 of a given type (and all of the MAIN_VARIANT values for all members of
1320 the group should point to that one type) but sometimes the C front-end
1321 messes this up for array types, so we work around that bug here. */
1323 if (TREE_CODE (type
) == ARRAY_TYPE
)
1325 while (type
!= TYPE_MAIN_VARIANT (type
))
1326 type
= TYPE_MAIN_VARIANT (type
);
1332 /* Return nonzero if the given type node represents a tagged type. */
1335 is_tagged_type (type
)
1338 enum tree_code code
= TREE_CODE (type
);
1340 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
1341 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
1345 dwarf_tag_name (tag
)
1350 case TAG_padding
: return "TAG_padding";
1351 case TAG_array_type
: return "TAG_array_type";
1352 case TAG_class_type
: return "TAG_class_type";
1353 case TAG_entry_point
: return "TAG_entry_point";
1354 case TAG_enumeration_type
: return "TAG_enumeration_type";
1355 case TAG_formal_parameter
: return "TAG_formal_parameter";
1356 case TAG_global_subroutine
: return "TAG_global_subroutine";
1357 case TAG_global_variable
: return "TAG_global_variable";
1358 case TAG_label
: return "TAG_label";
1359 case TAG_lexical_block
: return "TAG_lexical_block";
1360 case TAG_local_variable
: return "TAG_local_variable";
1361 case TAG_member
: return "TAG_member";
1362 case TAG_pointer_type
: return "TAG_pointer_type";
1363 case TAG_reference_type
: return "TAG_reference_type";
1364 case TAG_compile_unit
: return "TAG_compile_unit";
1365 case TAG_string_type
: return "TAG_string_type";
1366 case TAG_structure_type
: return "TAG_structure_type";
1367 case TAG_subroutine
: return "TAG_subroutine";
1368 case TAG_subroutine_type
: return "TAG_subroutine_type";
1369 case TAG_typedef
: return "TAG_typedef";
1370 case TAG_union_type
: return "TAG_union_type";
1371 case TAG_unspecified_parameters
: return "TAG_unspecified_parameters";
1372 case TAG_variant
: return "TAG_variant";
1373 case TAG_common_block
: return "TAG_common_block";
1374 case TAG_common_inclusion
: return "TAG_common_inclusion";
1375 case TAG_inheritance
: return "TAG_inheritance";
1376 case TAG_inlined_subroutine
: return "TAG_inlined_subroutine";
1377 case TAG_module
: return "TAG_module";
1378 case TAG_ptr_to_member_type
: return "TAG_ptr_to_member_type";
1379 case TAG_set_type
: return "TAG_set_type";
1380 case TAG_subrange_type
: return "TAG_subrange_type";
1381 case TAG_with_stmt
: return "TAG_with_stmt";
1383 /* GNU extensions. */
1385 case TAG_format_label
: return "TAG_format_label";
1386 case TAG_namelist
: return "TAG_namelist";
1387 case TAG_function_template
: return "TAG_function_template";
1388 case TAG_class_template
: return "TAG_class_template";
1390 default: return "TAG_<unknown>";
1395 dwarf_attr_name (attr
)
1400 case AT_sibling
: return "AT_sibling";
1401 case AT_location
: return "AT_location";
1402 case AT_name
: return "AT_name";
1403 case AT_fund_type
: return "AT_fund_type";
1404 case AT_mod_fund_type
: return "AT_mod_fund_type";
1405 case AT_user_def_type
: return "AT_user_def_type";
1406 case AT_mod_u_d_type
: return "AT_mod_u_d_type";
1407 case AT_ordering
: return "AT_ordering";
1408 case AT_subscr_data
: return "AT_subscr_data";
1409 case AT_byte_size
: return "AT_byte_size";
1410 case AT_bit_offset
: return "AT_bit_offset";
1411 case AT_bit_size
: return "AT_bit_size";
1412 case AT_element_list
: return "AT_element_list";
1413 case AT_stmt_list
: return "AT_stmt_list";
1414 case AT_low_pc
: return "AT_low_pc";
1415 case AT_high_pc
: return "AT_high_pc";
1416 case AT_language
: return "AT_language";
1417 case AT_member
: return "AT_member";
1418 case AT_discr
: return "AT_discr";
1419 case AT_discr_value
: return "AT_discr_value";
1420 case AT_string_length
: return "AT_string_length";
1421 case AT_common_reference
: return "AT_common_reference";
1422 case AT_comp_dir
: return "AT_comp_dir";
1423 case AT_const_value_string
: return "AT_const_value_string";
1424 case AT_const_value_data2
: return "AT_const_value_data2";
1425 case AT_const_value_data4
: return "AT_const_value_data4";
1426 case AT_const_value_data8
: return "AT_const_value_data8";
1427 case AT_const_value_block2
: return "AT_const_value_block2";
1428 case AT_const_value_block4
: return "AT_const_value_block4";
1429 case AT_containing_type
: return "AT_containing_type";
1430 case AT_default_value_addr
: return "AT_default_value_addr";
1431 case AT_default_value_data2
: return "AT_default_value_data2";
1432 case AT_default_value_data4
: return "AT_default_value_data4";
1433 case AT_default_value_data8
: return "AT_default_value_data8";
1434 case AT_default_value_string
: return "AT_default_value_string";
1435 case AT_friends
: return "AT_friends";
1436 case AT_inline
: return "AT_inline";
1437 case AT_is_optional
: return "AT_is_optional";
1438 case AT_lower_bound_ref
: return "AT_lower_bound_ref";
1439 case AT_lower_bound_data2
: return "AT_lower_bound_data2";
1440 case AT_lower_bound_data4
: return "AT_lower_bound_data4";
1441 case AT_lower_bound_data8
: return "AT_lower_bound_data8";
1442 case AT_private
: return "AT_private";
1443 case AT_producer
: return "AT_producer";
1444 case AT_program
: return "AT_program";
1445 case AT_protected
: return "AT_protected";
1446 case AT_prototyped
: return "AT_prototyped";
1447 case AT_public
: return "AT_public";
1448 case AT_pure_virtual
: return "AT_pure_virtual";
1449 case AT_return_addr
: return "AT_return_addr";
1450 case AT_abstract_origin
: return "AT_abstract_origin";
1451 case AT_start_scope
: return "AT_start_scope";
1452 case AT_stride_size
: return "AT_stride_size";
1453 case AT_upper_bound_ref
: return "AT_upper_bound_ref";
1454 case AT_upper_bound_data2
: return "AT_upper_bound_data2";
1455 case AT_upper_bound_data4
: return "AT_upper_bound_data4";
1456 case AT_upper_bound_data8
: return "AT_upper_bound_data8";
1457 case AT_virtual
: return "AT_virtual";
1459 /* GNU extensions */
1461 case AT_sf_names
: return "AT_sf_names";
1462 case AT_src_info
: return "AT_src_info";
1463 case AT_mac_info
: return "AT_mac_info";
1464 case AT_src_coords
: return "AT_src_coords";
1465 case AT_body_begin
: return "AT_body_begin";
1466 case AT_body_end
: return "AT_body_end";
1468 default: return "AT_<unknown>";
1473 dwarf_stack_op_name (op
)
1478 case OP_REG
: return "OP_REG";
1479 case OP_BASEREG
: return "OP_BASEREG";
1480 case OP_ADDR
: return "OP_ADDR";
1481 case OP_CONST
: return "OP_CONST";
1482 case OP_DEREF2
: return "OP_DEREF2";
1483 case OP_DEREF4
: return "OP_DEREF4";
1484 case OP_ADD
: return "OP_ADD";
1485 default: return "OP_<unknown>";
1490 dwarf_typemod_name (mod
)
1495 case MOD_pointer_to
: return "MOD_pointer_to";
1496 case MOD_reference_to
: return "MOD_reference_to";
1497 case MOD_const
: return "MOD_const";
1498 case MOD_volatile
: return "MOD_volatile";
1499 default: return "MOD_<unknown>";
1504 dwarf_fmt_byte_name (fmt
)
1509 case FMT_FT_C_C
: return "FMT_FT_C_C";
1510 case FMT_FT_C_X
: return "FMT_FT_C_X";
1511 case FMT_FT_X_C
: return "FMT_FT_X_C";
1512 case FMT_FT_X_X
: return "FMT_FT_X_X";
1513 case FMT_UT_C_C
: return "FMT_UT_C_C";
1514 case FMT_UT_C_X
: return "FMT_UT_C_X";
1515 case FMT_UT_X_C
: return "FMT_UT_X_C";
1516 case FMT_UT_X_X
: return "FMT_UT_X_X";
1517 case FMT_ET
: return "FMT_ET";
1518 default: return "FMT_<unknown>";
1523 dwarf_fund_type_name (ft
)
1528 case FT_char
: return "FT_char";
1529 case FT_signed_char
: return "FT_signed_char";
1530 case FT_unsigned_char
: return "FT_unsigned_char";
1531 case FT_short
: return "FT_short";
1532 case FT_signed_short
: return "FT_signed_short";
1533 case FT_unsigned_short
: return "FT_unsigned_short";
1534 case FT_integer
: return "FT_integer";
1535 case FT_signed_integer
: return "FT_signed_integer";
1536 case FT_unsigned_integer
: return "FT_unsigned_integer";
1537 case FT_long
: return "FT_long";
1538 case FT_signed_long
: return "FT_signed_long";
1539 case FT_unsigned_long
: return "FT_unsigned_long";
1540 case FT_pointer
: return "FT_pointer";
1541 case FT_float
: return "FT_float";
1542 case FT_dbl_prec_float
: return "FT_dbl_prec_float";
1543 case FT_ext_prec_float
: return "FT_ext_prec_float";
1544 case FT_complex
: return "FT_complex";
1545 case FT_dbl_prec_complex
: return "FT_dbl_prec_complex";
1546 case FT_void
: return "FT_void";
1547 case FT_boolean
: return "FT_boolean";
1548 case FT_ext_prec_complex
: return "FT_ext_prec_complex";
1549 case FT_label
: return "FT_label";
1551 /* GNU extensions. */
1553 case FT_long_long
: return "FT_long_long";
1554 case FT_signed_long_long
: return "FT_signed_long_long";
1555 case FT_unsigned_long_long
: return "FT_unsigned_long_long";
1557 case FT_int8
: return "FT_int8";
1558 case FT_signed_int8
: return "FT_signed_int8";
1559 case FT_unsigned_int8
: return "FT_unsigned_int8";
1560 case FT_int16
: return "FT_int16";
1561 case FT_signed_int16
: return "FT_signed_int16";
1562 case FT_unsigned_int16
: return "FT_unsigned_int16";
1563 case FT_int32
: return "FT_int32";
1564 case FT_signed_int32
: return "FT_signed_int32";
1565 case FT_unsigned_int32
: return "FT_unsigned_int32";
1566 case FT_int64
: return "FT_int64";
1567 case FT_signed_int64
: return "FT_signed_int64";
1568 case FT_unsigned_int64
: return "FT_unsigned_int64";
1569 case FT_int128
: return "FT_int128";
1570 case FT_signed_int128
: return "FT_signed_int128";
1571 case FT_unsigned_int128
: return "FT_unsigned_int128";
1573 case FT_real32
: return "FT_real32";
1574 case FT_real64
: return "FT_real64";
1575 case FT_real96
: return "FT_real96";
1576 case FT_real128
: return "FT_real128";
1578 default: return "FT_<unknown>";
1582 /* Determine the "ultimate origin" of a decl. The decl may be an
1583 inlined instance of an inlined instance of a decl which is local
1584 to an inline function, so we have to trace all of the way back
1585 through the origin chain to find out what sort of node actually
1586 served as the original seed for the given block. */
1589 decl_ultimate_origin (decl
)
1592 #ifdef ENABLE_CHECKING
1593 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
1594 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1595 most distant ancestor, this should never happen. */
1599 return DECL_ABSTRACT_ORIGIN (decl
);
1602 /* Determine the "ultimate origin" of a block. The block may be an
1603 inlined instance of an inlined instance of a block which is local
1604 to an inline function, so we have to trace all of the way back
1605 through the origin chain to find out what sort of node actually
1606 served as the original seed for the given block. */
1609 block_ultimate_origin (block
)
1612 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
1614 if (immediate_origin
== NULL
)
1619 tree lookahead
= immediate_origin
;
1623 ret_val
= lookahead
;
1624 lookahead
= (TREE_CODE (ret_val
) == BLOCK
)
1625 ? BLOCK_ABSTRACT_ORIGIN (ret_val
)
1628 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
1633 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1634 of a virtual function may refer to a base class, so we check the 'this'
1638 decl_class_context (decl
)
1641 tree context
= NULL_TREE
;
1642 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
1643 context
= DECL_CONTEXT (decl
);
1645 context
= TYPE_MAIN_VARIANT
1646 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
1648 if (context
&& !TYPE_P (context
))
1649 context
= NULL_TREE
;
1656 output_unsigned_leb128 (value
)
1657 unsigned long value
;
1659 unsigned long orig_value
= value
;
1663 unsigned byte
= (value
& 0x7f);
1666 if (value
!= 0) /* more bytes to follow */
1668 dw2_asm_output_data (1, byte
, "\t%s ULEB128 number - value = %lu",
1675 output_signed_leb128 (value
)
1678 long orig_value
= value
;
1679 int negative
= (value
< 0);
1684 unsigned byte
= (value
& 0x7f);
1688 value
|= 0xfe000000; /* manually sign extend */
1689 if (((value
== 0) && ((byte
& 0x40) == 0))
1690 || ((value
== -1) && ((byte
& 0x40) == 1)))
1697 dw2_asm_output_data (1, byte
, "\t%s SLEB128 number - value = %ld",
1704 /**************** utility functions for attribute functions ******************/
1706 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1707 type code for the given type.
1709 This routine must only be called for GCC type nodes that correspond to
1710 Dwarf fundamental types.
1712 The current Dwarf draft specification calls for Dwarf fundamental types
1713 to accurately reflect the fact that a given type was either a "plain"
1714 integral type or an explicitly "signed" integral type. Unfortunately,
1715 we can't always do this, because GCC may already have thrown away the
1716 information about the precise way in which the type was originally
1719 typedef signed int my_type;
1721 struct s { my_type f; };
1723 Since we may be stuck here without enough information to do exactly
1724 what is called for in the Dwarf draft specification, we do the best
1725 that we can under the circumstances and always use the "plain" integral
1726 fundamental type codes for int, short, and long types. That's probably
1727 good enough. The additional accuracy called for in the current DWARF
1728 draft specification is probably never even useful in practice. */
1731 fundamental_type_code (type
)
1734 if (TREE_CODE (type
) == ERROR_MARK
)
1737 switch (TREE_CODE (type
))
1746 /* Carefully distinguish all the standard types of C,
1747 without messing up if the language is not C.
1748 Note that we check only for the names that contain spaces;
1749 other names might occur by coincidence in other languages. */
1750 if (TYPE_NAME (type
) != 0
1751 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1752 && DECL_NAME (TYPE_NAME (type
)) != 0
1753 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1755 const char *const name
=
1756 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1758 if (!strcmp (name
, "unsigned char"))
1759 return FT_unsigned_char
;
1760 if (!strcmp (name
, "signed char"))
1761 return FT_signed_char
;
1762 if (!strcmp (name
, "unsigned int"))
1763 return FT_unsigned_integer
;
1764 if (!strcmp (name
, "short int"))
1766 if (!strcmp (name
, "short unsigned int"))
1767 return FT_unsigned_short
;
1768 if (!strcmp (name
, "long int"))
1770 if (!strcmp (name
, "long unsigned int"))
1771 return FT_unsigned_long
;
1772 if (!strcmp (name
, "long long int"))
1773 return FT_long_long
; /* Not grok'ed by svr4 SDB */
1774 if (!strcmp (name
, "long long unsigned int"))
1775 return FT_unsigned_long_long
; /* Not grok'ed by svr4 SDB */
1778 /* Most integer types will be sorted out above, however, for the
1779 sake of special `array index' integer types, the following code
1780 is also provided. */
1782 if (TYPE_PRECISION (type
) == INT_TYPE_SIZE
)
1783 return (TREE_UNSIGNED (type
) ? FT_unsigned_integer
: FT_integer
);
1785 if (TYPE_PRECISION (type
) == LONG_TYPE_SIZE
)
1786 return (TREE_UNSIGNED (type
) ? FT_unsigned_long
: FT_long
);
1788 if (TYPE_PRECISION (type
) == LONG_LONG_TYPE_SIZE
)
1789 return (TREE_UNSIGNED (type
) ? FT_unsigned_long_long
: FT_long_long
);
1791 if (TYPE_PRECISION (type
) == SHORT_TYPE_SIZE
)
1792 return (TREE_UNSIGNED (type
) ? FT_unsigned_short
: FT_short
);
1794 if (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
)
1795 return (TREE_UNSIGNED (type
) ? FT_unsigned_char
: FT_char
);
1797 if (TYPE_MODE (type
) == TImode
)
1798 return (TREE_UNSIGNED (type
) ? FT_unsigned_int128
: FT_int128
);
1800 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1801 if (TYPE_PRECISION (type
) == 1)
1807 /* Carefully distinguish all the standard types of C,
1808 without messing up if the language is not C. */
1809 if (TYPE_NAME (type
) != 0
1810 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1811 && DECL_NAME (TYPE_NAME (type
)) != 0
1812 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1814 const char *const name
=
1815 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1817 /* Note that here we can run afoul of a serious bug in "classic"
1818 svr4 SDB debuggers. They don't seem to understand the
1819 FT_ext_prec_float type (even though they should). */
1821 if (!strcmp (name
, "long double"))
1822 return FT_ext_prec_float
;
1825 if (TYPE_PRECISION (type
) == DOUBLE_TYPE_SIZE
)
1827 /* On the SH, when compiling with -m3e or -m4-single-only, both
1828 float and double are 32 bits. But since the debugger doesn't
1829 know about the subtarget, it always thinks double is 64 bits.
1830 So we have to tell the debugger that the type is float to
1831 make the output of the 'print' command etc. readable. */
1832 if (DOUBLE_TYPE_SIZE
== FLOAT_TYPE_SIZE
&& FLOAT_TYPE_SIZE
== 32)
1834 return FT_dbl_prec_float
;
1836 if (TYPE_PRECISION (type
) == FLOAT_TYPE_SIZE
)
1839 /* Note that here we can run afoul of a serious bug in "classic"
1840 svr4 SDB debuggers. They don't seem to understand the
1841 FT_ext_prec_float type (even though they should). */
1843 if (TYPE_PRECISION (type
) == LONG_DOUBLE_TYPE_SIZE
)
1844 return FT_ext_prec_float
;
1848 return FT_complex
; /* GNU FORTRAN COMPLEX type. */
1851 return FT_char
; /* GNU Pascal CHAR type. Not used in C. */
1854 return FT_boolean
; /* GNU FORTRAN BOOLEAN type. */
1857 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1862 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1863 the Dwarf "root" type for the given input type. The Dwarf "root" type
1864 of a given type is generally the same as the given type, except that if
1865 the given type is a pointer or reference type, then the root type of
1866 the given type is the root type of the "basis" type for the pointer or
1867 reference type. (This definition of the "root" type is recursive.)
1868 Also, the root type of a `const' qualified type or a `volatile'
1869 qualified type is the root type of the given type without the
1873 root_type_1 (type
, count
)
1877 /* Give up after searching 1000 levels, in case this is a recursive
1878 pointer type. Such types are possible in Ada, but it is not possible
1879 to represent them in DWARF1 debug info. */
1881 return error_mark_node
;
1883 switch (TREE_CODE (type
))
1886 return error_mark_node
;
1889 case REFERENCE_TYPE
:
1890 return root_type_1 (TREE_TYPE (type
), count
+1);
1901 type
= root_type_1 (type
, 0);
1902 if (type
!= error_mark_node
)
1903 type
= type_main_variant (type
);
1907 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1908 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1911 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, count
)
1917 if (TREE_CODE (type
) == ERROR_MARK
)
1920 /* Give up after searching 1000 levels, in case this is a recursive
1921 pointer type. Such types are possible in Ada, but it is not possible
1922 to represent them in DWARF1 debug info. */
1926 if (TYPE_READONLY (type
) || decl_const
)
1927 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_const
);
1928 if (TYPE_VOLATILE (type
) || decl_volatile
)
1929 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_volatile
);
1930 switch (TREE_CODE (type
))
1933 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_pointer_to
);
1934 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1937 case REFERENCE_TYPE
:
1938 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_reference_to
);
1939 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1949 write_modifier_bytes (type
, decl_const
, decl_volatile
)
1954 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, 0);
1957 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
1958 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1961 type_is_fundamental (type
)
1964 switch (TREE_CODE (type
))
1979 case QUAL_UNION_TYPE
:
1984 case REFERENCE_TYPE
:
1997 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1998 equate directive which will associate a symbolic name with the current DIE.
2000 The name used is an artificial label generated from the DECL_UID number
2001 associated with the given decl node. The name it gets equated to is the
2002 symbolic label that we (previously) output at the start of the DIE that
2003 we are currently generating.
2005 Calling this function while generating some "decl related" form of DIE
2006 makes it possible to later refer to the DIE which represents the given
2007 decl simply by re-generating the symbolic name from the ..._DECL node's
2011 equate_decl_number_to_die_number (decl
)
2014 /* In the case where we are generating a DIE for some ..._DECL node
2015 which represents either some inline function declaration or some
2016 entity declared within an inline function declaration/definition,
2017 setup a symbolic name for the current DIE so that we have a name
2018 for this DIE that we can easily refer to later on within
2019 AT_abstract_origin attributes. */
2021 char decl_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2022 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2024 sprintf (decl_label
, DECL_NAME_FMT
, DECL_UID (decl
));
2025 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
2026 ASM_OUTPUT_DEF (asm_out_file
, decl_label
, die_label
);
2029 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2030 equate directive which will associate a symbolic name with the current DIE.
2032 The name used is an artificial label generated from the TYPE_UID number
2033 associated with the given type node. The name it gets equated to is the
2034 symbolic label that we (previously) output at the start of the DIE that
2035 we are currently generating.
2037 Calling this function while generating some "type related" form of DIE
2038 makes it easy to later refer to the DIE which represents the given type
2039 simply by re-generating the alternative name from the ..._TYPE node's
2043 equate_type_number_to_die_number (type
)
2046 char type_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2047 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2049 /* We are generating a DIE to represent the main variant of this type
2050 (i.e the type without any const or volatile qualifiers) so in order
2051 to get the equate to come out right, we need to get the main variant
2054 type
= type_main_variant (type
);
2056 sprintf (type_label
, TYPE_NAME_FMT
, TYPE_UID (type
));
2057 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
2058 ASM_OUTPUT_DEF (asm_out_file
, type_label
, die_label
);
2062 output_reg_number (rtl
)
2065 unsigned regno
= REGNO (rtl
);
2067 if (regno
>= DWARF_FRAME_REGISTERS
)
2069 warning_with_decl (dwarf_last_decl
,
2070 "internal regno botch: `%s' has regno = %d\n",
2074 dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno
)));
2077 fprintf (asm_out_file
, "\t%s ", ASM_COMMENT_START
);
2078 PRINT_REG (rtl
, 0, asm_out_file
);
2080 fputc ('\n', asm_out_file
);
2083 /* The following routine is a nice and simple transducer. It converts the
2084 RTL for a variable or parameter (resident in memory) into an equivalent
2085 Dwarf representation of a mechanism for getting the address of that same
2086 variable onto the top of a hypothetical "address evaluation" stack.
2088 When creating memory location descriptors, we are effectively trans-
2089 forming the RTL for a memory-resident object into its Dwarf postfix
2090 expression equivalent. This routine just recursively descends an
2091 RTL tree, turning it into Dwarf postfix code as it goes. */
2094 output_mem_loc_descriptor (rtl
)
2097 /* Note that for a dynamically sized array, the location we will
2098 generate a description of here will be the lowest numbered location
2099 which is actually within the array. That's *not* necessarily the
2100 same as the zeroth element of the array. */
2102 rtl
= (*targetm
.delegitimize_address
) (rtl
);
2104 switch (GET_CODE (rtl
))
2108 /* The case of a subreg may arise when we have a local (register)
2109 variable or a formal (register) parameter which doesn't quite
2110 fill up an entire register. For now, just assume that it is
2111 legitimate to make the Dwarf info refer to the whole register
2112 which contains the given subreg. */
2114 rtl
= SUBREG_REG (rtl
);
2119 /* Whenever a register number forms a part of the description of
2120 the method for calculating the (dynamic) address of a memory
2121 resident object, DWARF rules require the register number to
2122 be referred to as a "base register". This distinction is not
2123 based in any way upon what category of register the hardware
2124 believes the given register belongs to. This is strictly
2125 DWARF terminology we're dealing with here.
2127 Note that in cases where the location of a memory-resident data
2128 object could be expressed as:
2130 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2132 the actual DWARF location descriptor that we generate may just
2133 be OP_BASEREG (basereg). This may look deceptively like the
2134 object in question was allocated to a register (rather than
2135 in memory) so DWARF consumers need to be aware of the subtle
2136 distinction between OP_REG and OP_BASEREG. */
2138 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_BASEREG
);
2139 output_reg_number (rtl
);
2143 output_mem_loc_descriptor (XEXP (rtl
, 0));
2144 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_DEREF4
);
2149 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADDR
);
2150 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
2154 output_mem_loc_descriptor (XEXP (rtl
, 0));
2155 output_mem_loc_descriptor (XEXP (rtl
, 1));
2156 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
2160 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
2161 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, INTVAL (rtl
));
2165 /* If a pseudo-reg is optimized away, it is possible for it to
2166 be replaced with a MEM containing a multiply. Use a GNU extension
2168 output_mem_loc_descriptor (XEXP (rtl
, 0));
2169 output_mem_loc_descriptor (XEXP (rtl
, 1));
2170 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_MULT
);
2178 /* Output a proper Dwarf location descriptor for a variable or parameter
2179 which is either allocated in a register or in a memory location. For
2180 a register, we just generate an OP_REG and the register number. For a
2181 memory location we provide a Dwarf postfix expression describing how to
2182 generate the (dynamic) address of the object onto the address stack. */
2185 output_loc_descriptor (rtl
)
2188 switch (GET_CODE (rtl
))
2192 /* The case of a subreg may arise when we have a local (register)
2193 variable or a formal (register) parameter which doesn't quite
2194 fill up an entire register. For now, just assume that it is
2195 legitimate to make the Dwarf info refer to the whole register
2196 which contains the given subreg. */
2198 rtl
= SUBREG_REG (rtl
);
2202 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_REG
);
2203 output_reg_number (rtl
);
2207 output_mem_loc_descriptor (XEXP (rtl
, 0));
2211 abort (); /* Should never happen */
2215 /* Given a tree node describing an array bound (either lower or upper)
2216 output a representation for that bound. */
2219 output_bound_representation (bound
, dim_num
, u_or_l
)
2221 unsigned dim_num
; /* For multi-dimensional arrays. */
2222 char u_or_l
; /* Designates upper or lower bound. */
2224 switch (TREE_CODE (bound
))
2230 /* All fixed-bounds are represented by INTEGER_CST nodes. */
2233 if (host_integerp (bound
, 0))
2234 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, tree_low_cst (bound
, 0));
2239 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2240 SAVE_EXPR nodes, in which case we can do something, or as
2241 an expression, which we cannot represent. */
2243 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2244 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2246 sprintf (begin_label
, BOUND_BEGIN_LABEL_FMT
,
2247 current_dienum
, dim_num
, u_or_l
);
2249 sprintf (end_label
, BOUND_END_LABEL_FMT
,
2250 current_dienum
, dim_num
, u_or_l
);
2252 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2253 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2255 /* If optimization is turned on, the SAVE_EXPRs that describe
2256 how to access the upper bound values are essentially bogus.
2257 They only describe (at best) how to get at these values at
2258 the points in the generated code right after they have just
2259 been computed. Worse yet, in the typical case, the upper
2260 bound values will not even *be* computed in the optimized
2261 code, so these SAVE_EXPRs are entirely bogus.
2263 In order to compensate for this fact, we check here to see
2264 if optimization is enabled, and if so, we effectively create
2265 an empty location description for the (unknown and unknowable)
2268 This should not cause too much trouble for existing (stupid?)
2269 debuggers because they have to deal with empty upper bounds
2270 location descriptions anyway in order to be able to deal with
2271 incomplete array types.
2273 Of course an intelligent debugger (GDB?) should be able to
2274 comprehend that a missing upper bound specification in a
2275 array type used for a storage class `auto' local array variable
2276 indicates that the upper bound is both unknown (at compile-
2277 time) and unknowable (at run-time) due to optimization. */
2281 while (TREE_CODE (bound
) == NOP_EXPR
2282 || TREE_CODE (bound
) == CONVERT_EXPR
)
2283 bound
= TREE_OPERAND (bound
, 0);
2285 if (TREE_CODE (bound
) == SAVE_EXPR
2286 && SAVE_EXPR_RTL (bound
))
2287 output_loc_descriptor
2288 (eliminate_regs (SAVE_EXPR_RTL (bound
), 0, NULL_RTX
));
2291 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2298 /* Recursive function to output a sequence of value/name pairs for
2299 enumeration constants in reversed order. This is called from
2300 enumeration_type_die. */
2303 output_enumeral_list (link
)
2308 output_enumeral_list (TREE_CHAIN (link
));
2310 if (host_integerp (TREE_VALUE (link
), 0))
2311 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
2312 tree_low_cst (TREE_VALUE (link
), 0));
2314 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
2315 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
2319 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2320 which is not less than the value itself. */
2322 static inline HOST_WIDE_INT
2323 ceiling (value
, boundary
)
2324 HOST_WIDE_INT value
;
2325 unsigned int boundary
;
2327 return (((value
+ boundary
- 1) / boundary
) * boundary
);
2330 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2331 pointer to the declared type for the relevant field variable, or return
2332 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
2340 if (TREE_CODE (decl
) == ERROR_MARK
)
2341 return integer_type_node
;
2343 type
= DECL_BIT_FIELD_TYPE (decl
);
2345 type
= TREE_TYPE (decl
);
2349 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2350 node, return the alignment in bits for the type, or else return
2351 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
2353 static inline unsigned int
2354 simple_type_align_in_bits (type
)
2357 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
2360 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2361 node, return the size in bits for the type if it is a constant, or
2362 else return the alignment for the type if the type's size is not
2363 constant, or else return BITS_PER_WORD if the type actually turns out
2364 to be an ERROR_MARK node. */
2366 static inline unsigned HOST_WIDE_INT
2367 simple_type_size_in_bits (type
)
2370 tree type_size_tree
;
2372 if (TREE_CODE (type
) == ERROR_MARK
)
2373 return BITS_PER_WORD
;
2374 type_size_tree
= TYPE_SIZE (type
);
2376 if (type_size_tree
== NULL_TREE
)
2378 if (! host_integerp (type_size_tree
, 1))
2379 return TYPE_ALIGN (type
);
2380 return tree_low_cst (type_size_tree
, 1);
2383 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2384 return the byte offset of the lowest addressed byte of the "containing
2385 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2386 mine what that offset is, either because the argument turns out to be a
2387 pointer to an ERROR_MARK node, or because the offset is actually variable.
2388 (We can't handle the latter case just yet.) */
2390 static HOST_WIDE_INT
2391 field_byte_offset (decl
)
2394 unsigned int type_align_in_bytes
;
2395 unsigned int type_align_in_bits
;
2396 unsigned HOST_WIDE_INT type_size_in_bits
;
2397 HOST_WIDE_INT object_offset_in_align_units
;
2398 HOST_WIDE_INT object_offset_in_bits
;
2399 HOST_WIDE_INT object_offset_in_bytes
;
2401 tree field_size_tree
;
2402 HOST_WIDE_INT bitpos_int
;
2403 HOST_WIDE_INT deepest_bitpos
;
2404 unsigned HOST_WIDE_INT field_size_in_bits
;
2406 if (TREE_CODE (decl
) == ERROR_MARK
)
2409 if (TREE_CODE (decl
) != FIELD_DECL
)
2412 type
= field_type (decl
);
2413 field_size_tree
= DECL_SIZE (decl
);
2415 /* The size could be unspecified if there was an error, or for
2416 a flexible array member. */
2417 if (! field_size_tree
)
2418 field_size_tree
= bitsize_zero_node
;
2420 /* We cannot yet cope with fields whose positions or sizes are variable,
2421 so for now, when we see such things, we simply return 0. Someday,
2422 we may be able to handle such cases, but it will be damn difficult. */
2424 if (! host_integerp (bit_position (decl
), 0)
2425 || ! host_integerp (field_size_tree
, 1))
2428 bitpos_int
= int_bit_position (decl
);
2429 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
2431 type_size_in_bits
= simple_type_size_in_bits (type
);
2432 type_align_in_bits
= simple_type_align_in_bits (type
);
2433 type_align_in_bytes
= type_align_in_bits
/ BITS_PER_UNIT
;
2435 /* Note that the GCC front-end doesn't make any attempt to keep track
2436 of the starting bit offset (relative to the start of the containing
2437 structure type) of the hypothetical "containing object" for a bit-
2438 field. Thus, when computing the byte offset value for the start of
2439 the "containing object" of a bit-field, we must deduce this infor-
2442 This can be rather tricky to do in some cases. For example, handling
2443 the following structure type definition when compiling for an i386/i486
2444 target (which only aligns long long's to 32-bit boundaries) can be very
2449 long long field2:31;
2452 Fortunately, there is a simple rule-of-thumb which can be used in such
2453 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2454 the structure shown above. It decides to do this based upon one simple
2455 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2456 taining object" for each bit-field at the first (i.e. lowest addressed)
2457 legitimate alignment boundary (based upon the required minimum alignment
2458 for the declared type of the field) which it can possibly use, subject
2459 to the condition that there is still enough available space remaining
2460 in the containing object (when allocated at the selected point) to
2461 fully accommodate all of the bits of the bit-field itself.
2463 This simple rule makes it obvious why GCC allocates 8 bytes for each
2464 object of the structure type shown above. When looking for a place to
2465 allocate the "containing object" for `field2', the compiler simply tries
2466 to allocate a 64-bit "containing object" at each successive 32-bit
2467 boundary (starting at zero) until it finds a place to allocate that 64-
2468 bit field such that at least 31 contiguous (and previously unallocated)
2469 bits remain within that selected 64 bit field. (As it turns out, for
2470 the example above, the compiler finds that it is OK to allocate the
2471 "containing object" 64-bit field at bit-offset zero within the
2474 Here we attempt to work backwards from the limited set of facts we're
2475 given, and we try to deduce from those facts, where GCC must have
2476 believed that the containing object started (within the structure type).
2478 The value we deduce is then used (by the callers of this routine) to
2479 generate AT_location and AT_bit_offset attributes for fields (both
2480 bit-fields and, in the case of AT_location, regular fields as well). */
2482 /* Figure out the bit-distance from the start of the structure to the
2483 "deepest" bit of the bit-field. */
2484 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
2486 /* This is the tricky part. Use some fancy footwork to deduce where the
2487 lowest addressed bit of the containing object must be. */
2488 object_offset_in_bits
2489 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2491 /* Compute the offset of the containing object in "alignment units". */
2492 object_offset_in_align_units
= object_offset_in_bits
/ type_align_in_bits
;
2494 /* Compute the offset of the containing object in bytes. */
2495 object_offset_in_bytes
= object_offset_in_align_units
* type_align_in_bytes
;
2497 /* The above code assumes that the field does not cross an alignment
2498 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2499 or if the structure is packed. If this happens, then we get an object
2500 which starts after the bitfield, which means that the bit offset is
2501 negative. Gdb fails when given negative bit offsets. We avoid this
2502 by recomputing using the first bit of the bitfield. This will give
2503 us an object which does not completely contain the bitfield, but it
2504 will be aligned, and it will contain the first bit of the bitfield.
2506 However, only do this for a BYTES_BIG_ENDIAN target. For a
2507 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2508 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2509 then we end up computing the object byte offset for the wrong word of the
2510 desired bitfield, which in turn causes the field offset to be negative
2511 in bit_offset_attribute. */
2512 if (BYTES_BIG_ENDIAN
2513 && object_offset_in_bits
> bitpos_int
)
2515 deepest_bitpos
= bitpos_int
+ 1;
2516 object_offset_in_bits
2517 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2518 object_offset_in_align_units
= (object_offset_in_bits
2519 / type_align_in_bits
);
2520 object_offset_in_bytes
= (object_offset_in_align_units
2521 * type_align_in_bytes
);
2524 return object_offset_in_bytes
;
2527 /****************************** attributes *********************************/
2529 /* The following routines are responsible for writing out the various types
2530 of Dwarf attributes (and any following data bytes associated with them).
2531 These routines are listed in order based on the numerical codes of their
2532 associated attributes. */
2534 /* Generate an AT_sibling attribute. */
2537 sibling_attribute ()
2539 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2541 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sibling
);
2542 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
2543 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2546 /* Output the form of location attributes suitable for whole variables and
2547 whole parameters. Note that the location attributes for struct fields
2548 are generated by the routine `data_member_location_attribute' below. */
2551 location_attribute (rtl
)
2554 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2555 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2557 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2558 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2559 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2560 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2561 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2563 /* Handle a special case. If we are about to output a location descriptor
2564 for a variable or parameter which has been optimized out of existence,
2565 don't do that. Instead we output a zero-length location descriptor
2566 value as part of the location attribute.
2568 A variable which has been optimized out of existence will have a
2569 DECL_RTL value which denotes a pseudo-reg.
2571 Currently, in some rare cases, variables can have DECL_RTL values
2572 which look like (MEM (REG pseudo-reg#)). These cases are due to
2573 bugs elsewhere in the compiler. We treat such cases
2574 as if the variable(s) in question had been optimized out of existence.
2576 Note that in all cases where we wish to express the fact that a
2577 variable has been optimized out of existence, we do not simply
2578 suppress the generation of the entire location attribute because
2579 the absence of a location attribute in certain kinds of DIEs is
2580 used to indicate something else entirely... i.e. that the DIE
2581 represents an object declaration, but not a definition. So saith
2585 if (! is_pseudo_reg (rtl
)
2586 && (GET_CODE (rtl
) != MEM
|| ! is_pseudo_reg (XEXP (rtl
, 0))))
2587 output_loc_descriptor (rtl
);
2589 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2592 /* Output the specialized form of location attribute used for data members
2593 of struct and union types.
2595 In the special case of a FIELD_DECL node which represents a bit-field,
2596 the "offset" part of this special location descriptor must indicate the
2597 distance in bytes from the lowest-addressed byte of the containing
2598 struct or union type to the lowest-addressed byte of the "containing
2599 object" for the bit-field. (See the `field_byte_offset' function above.)
2601 For any given bit-field, the "containing object" is a hypothetical
2602 object (of some integral or enum type) within which the given bit-field
2603 lives. The type of this hypothetical "containing object" is always the
2604 same as the declared type of the individual bit-field itself (for GCC
2605 anyway... the DWARF spec doesn't actually mandate this).
2607 Note that it is the size (in bytes) of the hypothetical "containing
2608 object" which will be given in the AT_byte_size attribute for this
2609 bit-field. (See the `byte_size_attribute' function below.) It is
2610 also used when calculating the value of the AT_bit_offset attribute.
2611 (See the `bit_offset_attribute' function below.) */
2614 data_member_location_attribute (t
)
2617 unsigned object_offset_in_bytes
;
2618 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2619 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2621 if (TREE_CODE (t
) == TREE_VEC
)
2622 object_offset_in_bytes
= tree_low_cst (BINFO_OFFSET (t
), 0);
2624 object_offset_in_bytes
= field_byte_offset (t
);
2626 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2627 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2628 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2629 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2630 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2631 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
2632 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, object_offset_in_bytes
);
2633 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
2634 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2637 /* Output an AT_const_value attribute for a variable or a parameter which
2638 does not have a "location" either in memory or in a register. These
2639 things can arise in GNU C when a constant is passed as an actual
2640 parameter to an inlined function. They can also arise in C++ where
2641 declared constants do not necessarily get memory "homes". */
2644 const_value_attribute (rtl
)
2647 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2648 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2650 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_const_value_block4
);
2651 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2652 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2653 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
2654 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2656 switch (GET_CODE (rtl
))
2659 /* Note that a CONST_INT rtx could represent either an integer or
2660 a floating-point constant. A CONST_INT is used whenever the
2661 constant will fit into a single word. In all such cases, the
2662 original mode of the constant value is wiped out, and the
2663 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2664 precise mode information for these constants, we always just
2665 output them using 4 bytes. */
2667 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, (unsigned) INTVAL (rtl
));
2671 /* Note that a CONST_DOUBLE rtx could represent either an integer
2672 or a floating-point constant. A CONST_DOUBLE is used whenever
2673 the constant requires more than one word in order to be adequately
2674 represented. In all such cases, the original mode of the constant
2675 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2676 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2678 ASM_OUTPUT_DWARF_DATA8 (asm_out_file
,
2679 (unsigned int) CONST_DOUBLE_HIGH (rtl
),
2680 (unsigned int) CONST_DOUBLE_LOW (rtl
));
2684 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, XSTR (rtl
, 0));
2690 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
2694 /* In cases where an inlined instance of an inline function is passed
2695 the address of an `auto' variable (which is local to the caller)
2696 we can get a situation where the DECL_RTL of the artificial
2697 local variable (for the inlining) which acts as a stand-in for
2698 the corresponding formal parameter (of the inline function)
2699 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2700 This is not exactly a compile-time constant expression, but it
2701 isn't the address of the (artificial) local variable either.
2702 Rather, it represents the *value* which the artificial local
2703 variable always has during its lifetime. We currently have no
2704 way to represent such quasi-constant values in Dwarf, so for now
2705 we just punt and generate an AT_const_value attribute with form
2706 FORM_BLOCK4 and a length of zero. */
2710 abort (); /* No other kinds of rtx should be possible here. */
2713 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2716 /* Generate *either* an AT_location attribute or else an AT_const_value
2717 data attribute for a variable or a parameter. We generate the
2718 AT_const_value attribute only in those cases where the given
2719 variable or parameter does not have a true "location" either in
2720 memory or in a register. This can happen (for example) when a
2721 constant is passed as an actual argument in a call to an inline
2722 function. (It's possible that these things can crop up in other
2723 ways also.) Note that one type of constant value which can be
2724 passed into an inlined function is a constant pointer. This can
2725 happen for example if an actual argument in an inlined function
2726 call evaluates to a compile-time constant address. */
2729 location_or_const_value_attribute (decl
)
2734 if (TREE_CODE (decl
) == ERROR_MARK
)
2737 if ((TREE_CODE (decl
) != VAR_DECL
) && (TREE_CODE (decl
) != PARM_DECL
))
2739 /* Should never happen. */
2744 /* Here we have to decide where we are going to say the parameter "lives"
2745 (as far as the debugger is concerned). We only have a couple of choices.
2746 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2747 normally indicates where the parameter lives during most of the activa-
2748 tion of the function. If optimization is enabled however, this could
2749 be either NULL or else a pseudo-reg. Both of those cases indicate that
2750 the parameter doesn't really live anywhere (as far as the code generation
2751 parts of GCC are concerned) during most of the function's activation.
2752 That will happen (for example) if the parameter is never referenced
2753 within the function.
2755 We could just generate a location descriptor here for all non-NULL
2756 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2757 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2758 cases where DECL_RTL is NULL or is a pseudo-reg.
2760 Note however that we can only get away with using DECL_INCOMING_RTL as
2761 a backup substitute for DECL_RTL in certain limited cases. In cases
2762 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2763 we can be sure that the parameter was passed using the same type as it
2764 is declared to have within the function, and that its DECL_INCOMING_RTL
2765 points us to a place where a value of that type is passed. In cases
2766 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2767 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2768 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2769 points us to a value of some type which is *different* from the type
2770 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2771 to generate a location attribute in such cases, the debugger would
2772 end up (for example) trying to fetch a `float' from a place which
2773 actually contains the first part of a `double'. That would lead to
2774 really incorrect and confusing output at debug-time, and we don't
2775 want that now do we?
2777 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2778 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2779 couple of cute exceptions however. On little-endian machines we can
2780 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2781 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2782 an integral type which is smaller than TREE_TYPE(decl). These cases
2783 arise when (on a little-endian machine) a non-prototyped function has
2784 a parameter declared to be of type `short' or `char'. In such cases,
2785 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2786 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2787 passed `int' value. If the debugger then uses that address to fetch a
2788 `short' or a `char' (on a little-endian machine) the result will be the
2789 correct data, so we allow for such exceptional cases below.
2791 Note that our goal here is to describe the place where the given formal
2792 parameter lives during most of the function's activation (i.e. between
2793 the end of the prologue and the start of the epilogue). We'll do that
2794 as best as we can. Note however that if the given formal parameter is
2795 modified sometime during the execution of the function, then a stack
2796 backtrace (at debug-time) will show the function as having been called
2797 with the *new* value rather than the value which was originally passed
2798 in. This happens rarely enough that it is not a major problem, but it
2799 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2800 may generate two additional attributes for any given TAG_formal_parameter
2801 DIE which will describe the "passed type" and the "passed location" for
2802 the given formal parameter in addition to the attributes we now generate
2803 to indicate the "declared type" and the "active location" for each
2804 parameter. This additional set of attributes could be used by debuggers
2805 for stack backtraces.
2807 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2808 can be NULL also. This happens (for example) for inlined-instances of
2809 inline function formal parameters which are never referenced. This really
2810 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2811 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2812 these values for inlined instances of inline function parameters, so
2813 when we see such cases, we are just out-of-luck for the time
2814 being (until integrate.c gets fixed).
2817 /* Use DECL_RTL as the "location" unless we find something better. */
2818 rtl
= DECL_RTL (decl
);
2820 if (TREE_CODE (decl
) == PARM_DECL
)
2821 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
2823 /* This decl represents a formal parameter which was optimized out. */
2824 tree declared_type
= type_main_variant (TREE_TYPE (decl
));
2825 tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
2827 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2828 *all* cases where (rtl == NULL_RTX) just below. */
2830 if (declared_type
== passed_type
)
2831 rtl
= DECL_INCOMING_RTL (decl
);
2832 else if (! BYTES_BIG_ENDIAN
)
2833 if (TREE_CODE (declared_type
) == INTEGER_TYPE
)
2835 if (TYPE_SIZE (declared_type
) <= TYPE_SIZE (passed_type
))
2836 rtl
= DECL_INCOMING_RTL (decl
);
2839 if (rtl
== NULL_RTX
)
2842 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
2843 #ifdef LEAF_REG_REMAP
2844 if (current_function_uses_only_leaf_regs
)
2845 leaf_renumber_regs_insn (rtl
);
2848 switch (GET_CODE (rtl
))
2851 /* The address of a variable that was optimized away; don't emit
2861 case PLUS
: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2862 const_value_attribute (rtl
);
2868 location_attribute (rtl
);
2872 /* ??? CONCAT is used for complex variables, which may have the real
2873 part stored in one place and the imag part stored somewhere else.
2874 DWARF1 has no way to describe a variable that lives in two different
2875 places, so we just describe where the first part lives, and hope that
2876 the second part is stored after it. */
2877 location_attribute (XEXP (rtl
, 0));
2881 abort (); /* Should never happen. */
2885 /* Generate an AT_name attribute given some string value to be included as
2886 the value of the attribute. */
2889 name_attribute (name_string
)
2890 const char *name_string
;
2892 if (name_string
&& *name_string
)
2894 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_name
);
2895 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, name_string
);
2900 fund_type_attribute (ft_code
)
2903 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_fund_type
);
2904 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, ft_code
);
2908 mod_fund_type_attribute (type
, decl_const
, decl_volatile
)
2913 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2914 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2916 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_fund_type
);
2917 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2918 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2919 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2920 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2921 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2922 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
2923 fundamental_type_code (root_type (type
)));
2924 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2928 user_def_type_attribute (type
)
2931 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2933 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_user_def_type
);
2934 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (type
));
2935 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2939 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
)
2944 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2945 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2946 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2948 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_u_d_type
);
2949 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2950 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2951 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2952 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2953 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2954 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (root_type (type
)));
2955 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2956 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2959 #ifdef USE_ORDERING_ATTRIBUTE
2961 ordering_attribute (ordering
)
2964 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_ordering
);
2965 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, ordering
);
2967 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2969 /* Note that the block of subscript information for an array type also
2970 includes information about the element type of type given array type. */
2973 subscript_data_attribute (type
)
2976 unsigned dimension_number
;
2977 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2978 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2980 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_subscr_data
);
2981 sprintf (begin_label
, SS_BEGIN_LABEL_FMT
, current_dienum
);
2982 sprintf (end_label
, SS_END_LABEL_FMT
, current_dienum
);
2983 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2984 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2986 /* The GNU compilers represent multidimensional array types as sequences
2987 of one dimensional array types whose element types are themselves array
2988 types. Here we squish that down, so that each multidimensional array
2989 type gets only one array_type DIE in the Dwarf debugging info. The
2990 draft Dwarf specification say that we are allowed to do this kind
2991 of compression in C (because there is no difference between an
2992 array or arrays and a multidimensional array in C) but for other
2993 source languages (e.g. Ada) we probably shouldn't do this. */
2995 for (dimension_number
= 0;
2996 TREE_CODE (type
) == ARRAY_TYPE
;
2997 type
= TREE_TYPE (type
), dimension_number
++)
2999 tree domain
= TYPE_DOMAIN (type
);
3001 /* Arrays come in three flavors. Unspecified bounds, fixed
3002 bounds, and (in GNU C only) variable bounds. Handle all
3003 three forms here. */
3007 /* We have an array type with specified bounds. */
3009 tree lower
= TYPE_MIN_VALUE (domain
);
3010 tree upper
= TYPE_MAX_VALUE (domain
);
3012 /* Handle only fundamental types as index types for now. */
3013 if (! type_is_fundamental (domain
))
3016 /* Output the representation format byte for this dimension. */
3017 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
,
3018 FMT_CODE (1, TREE_CODE (lower
) == INTEGER_CST
,
3019 upper
&& TREE_CODE (upper
) == INTEGER_CST
));
3021 /* Output the index type for this dimension. */
3022 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
3023 fundamental_type_code (domain
));
3025 /* Output the representation for the lower bound. */
3026 output_bound_representation (lower
, dimension_number
, 'l');
3028 /* Output the representation for the upper bound. */
3030 output_bound_representation (upper
, dimension_number
, 'u');
3032 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
3036 /* We have an array type with an unspecified length. For C and
3037 C++ we can assume that this really means that (a) the index
3038 type is an integral type, and (b) the lower bound is zero.
3039 Note that Dwarf defines the representation of an unspecified
3040 (upper) bound as being a zero-length location description. */
3042 /* Output the array-bounds format byte. */
3044 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_FT_C_X
);
3046 /* Output the (assumed) index type. */
3048 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, FT_integer
);
3050 /* Output the (assumed) lower bound (constant) value. */
3052 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
3054 /* Output the (empty) location description for the upper bound. */
3056 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
3060 /* Output the prefix byte that says that the element type is coming up. */
3062 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_ET
);
3064 /* Output a representation of the type of the elements of this array type. */
3066 type_attribute (type
, 0, 0);
3068 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3072 byte_size_attribute (tree_node
)
3077 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_byte_size
);
3078 switch (TREE_CODE (tree_node
))
3087 case QUAL_UNION_TYPE
:
3089 size
= int_size_in_bytes (tree_node
);
3093 /* For a data member of a struct or union, the AT_byte_size is
3094 generally given as the number of bytes normally allocated for
3095 an object of the *declared* type of the member itself. This
3096 is true even for bit-fields. */
3097 size
= simple_type_size_in_bits (field_type (tree_node
))
3105 /* Note that `size' might be -1 when we get to this point. If it
3106 is, that indicates that the byte size of the entity in question
3107 is variable. We have no good way of expressing this fact in Dwarf
3108 at the present time, so just let the -1 pass on through. */
3110 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, size
);
3113 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3114 which specifies the distance in bits from the highest order bit of the
3115 "containing object" for the bit-field to the highest order bit of the
3118 For any given bit-field, the "containing object" is a hypothetical
3119 object (of some integral or enum type) within which the given bit-field
3120 lives. The type of this hypothetical "containing object" is always the
3121 same as the declared type of the individual bit-field itself.
3123 The determination of the exact location of the "containing object" for
3124 a bit-field is rather complicated. It's handled by the `field_byte_offset'
3127 Note that it is the size (in bytes) of the hypothetical "containing
3128 object" which will be given in the AT_byte_size attribute for this
3129 bit-field. (See `byte_size_attribute' above.) */
3132 bit_offset_attribute (decl
)
3135 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
3136 tree type
= DECL_BIT_FIELD_TYPE (decl
);
3137 HOST_WIDE_INT bitpos_int
;
3138 HOST_WIDE_INT highest_order_object_bit_offset
;
3139 HOST_WIDE_INT highest_order_field_bit_offset
;
3140 HOST_WIDE_INT bit_offset
;
3142 /* Must be a bit field. */
3144 || TREE_CODE (decl
) != FIELD_DECL
)
3147 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3148 if we encounter such things, just return without generating any
3149 attribute whatsoever. */
3151 if (! host_integerp (bit_position (decl
), 0)
3152 || ! host_integerp (DECL_SIZE (decl
), 1))
3155 bitpos_int
= int_bit_position (decl
);
3157 /* Note that the bit offset is always the distance (in bits) from the
3158 highest-order bit of the "containing object" to the highest-order
3159 bit of the bit-field itself. Since the "high-order end" of any
3160 object or field is different on big-endian and little-endian machines,
3161 the computation below must take account of these differences. */
3163 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
3164 highest_order_field_bit_offset
= bitpos_int
;
3166 if (! BYTES_BIG_ENDIAN
)
3168 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 1);
3169 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
3174 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
3175 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
3177 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_offset
);
3178 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, bit_offset
);
3181 /* For a FIELD_DECL node which represents a bit field, output an attribute
3182 which specifies the length in bits of the given field. */
3185 bit_size_attribute (decl
)
3188 /* Must be a field and a bit field. */
3189 if (TREE_CODE (decl
) != FIELD_DECL
3190 || ! DECL_BIT_FIELD_TYPE (decl
))
3193 if (host_integerp (DECL_SIZE (decl
), 1))
3195 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_size
);
3196 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
3197 tree_low_cst (DECL_SIZE (decl
), 1));
3201 /* The following routine outputs the `element_list' attribute for enumeration
3202 type DIEs. The element_lits attribute includes the names and values of
3203 all of the enumeration constants associated with the given enumeration
3207 element_list_attribute (element
)
3210 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3211 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3213 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_element_list
);
3214 sprintf (begin_label
, EE_BEGIN_LABEL_FMT
, current_dienum
);
3215 sprintf (end_label
, EE_END_LABEL_FMT
, current_dienum
);
3216 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
3217 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3219 /* Here we output a list of value/name pairs for each enumeration constant
3220 defined for this enumeration type (as required), but we do it in REVERSE
3221 order. The order is the one required by the draft #5 Dwarf specification
3222 published by the UI/PLSIG. */
3224 output_enumeral_list (element
); /* Recursively output the whole list. */
3226 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3229 /* Generate an AT_stmt_list attribute. These are normally present only in
3230 DIEs with a TAG_compile_unit tag. */
3233 stmt_list_attribute (label
)
3236 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_stmt_list
);
3237 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3238 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
3241 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3242 for a subroutine DIE. */
3245 low_pc_attribute (asm_low_label
)
3246 const char *asm_low_label
;
3248 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_low_pc
);
3249 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_low_label
);
3252 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3256 high_pc_attribute (asm_high_label
)
3257 const char *asm_high_label
;
3259 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_high_pc
);
3260 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_high_label
);
3263 /* Generate an AT_body_begin attribute for a subroutine DIE. */
3266 body_begin_attribute (asm_begin_label
)
3267 const char *asm_begin_label
;
3269 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_begin
);
3270 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_begin_label
);
3273 /* Generate an AT_body_end attribute for a subroutine DIE. */
3276 body_end_attribute (asm_end_label
)
3277 const char *asm_end_label
;
3279 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_end
);
3280 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_end_label
);
3283 /* Generate an AT_language attribute given a LANG value. These attributes
3284 are used only within TAG_compile_unit DIEs. */
3287 language_attribute (language_code
)
3288 unsigned language_code
;
3290 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_language
);
3291 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, language_code
);
3295 member_attribute (context
)
3298 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3300 /* Generate this attribute only for members in C++. */
3302 if (context
!= NULL
&& is_tagged_type (context
))
3304 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_member
);
3305 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (context
));
3306 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3311 #ifndef SL_BEGIN_LABEL_FMT
3312 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
3314 #ifndef SL_END_LABEL_FMT
3315 #define SL_END_LABEL_FMT "*.L_sl%u_e"
3319 string_length_attribute (upper_bound
)
3322 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3323 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3325 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_string_length
);
3326 sprintf (begin_label
, SL_BEGIN_LABEL_FMT
, current_dienum
);
3327 sprintf (end_label
, SL_END_LABEL_FMT
, current_dienum
);
3328 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
3329 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3330 output_bound_representation (upper_bound
, 0, 'u');
3331 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3336 comp_dir_attribute (dirname
)
3337 const char *dirname
;
3339 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_comp_dir
);
3340 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
3344 sf_names_attribute (sf_names_start_label
)
3345 const char *sf_names_start_label
;
3347 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sf_names
);
3348 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3349 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, sf_names_start_label
);
3353 src_info_attribute (src_info_start_label
)
3354 const char *src_info_start_label
;
3356 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_info
);
3357 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3358 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, src_info_start_label
);
3362 mac_info_attribute (mac_info_start_label
)
3363 const char *mac_info_start_label
;
3365 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mac_info
);
3366 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
3367 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, mac_info_start_label
);
3371 prototyped_attribute (func_type
)
3374 if ((strcmp (lang_hooks
.name
, "GNU C") == 0)
3375 && (TYPE_ARG_TYPES (func_type
) != NULL
))
3377 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_prototyped
);
3378 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3383 producer_attribute (producer
)
3384 const char *producer
;
3386 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_producer
);
3387 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, producer
);
3391 inline_attribute (decl
)
3394 if (DECL_INLINE (decl
))
3396 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_inline
);
3397 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3402 containing_type_attribute (containing_type
)
3403 tree containing_type
;
3405 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3407 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_containing_type
);
3408 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (containing_type
));
3409 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3413 abstract_origin_attribute (origin
)
3416 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3418 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_abstract_origin
);
3419 switch (TREE_CODE_CLASS (TREE_CODE (origin
)))
3422 sprintf (label
, DECL_NAME_FMT
, DECL_UID (origin
));
3426 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (origin
));
3430 abort (); /* Should never happen. */
3433 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
3436 #ifdef DWARF_DECL_COORDINATES
3438 src_coords_attribute (src_fileno
, src_lineno
)
3439 unsigned src_fileno
;
3440 unsigned src_lineno
;
3442 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_coords
);
3443 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_fileno
);
3444 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_lineno
);
3446 #endif /* defined(DWARF_DECL_COORDINATES) */
3449 pure_or_virtual_attribute (func_decl
)
3452 if (DECL_VIRTUAL_P (func_decl
))
3454 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3455 if (DECL_ABSTRACT_VIRTUAL_P (func_decl
))
3456 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_pure_virtual
);
3459 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
3460 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3464 /************************* end of attributes *****************************/
3466 /********************* utility routines for DIEs *************************/
3468 /* Output an AT_name attribute and an AT_src_coords attribute for the
3469 given decl, but only if it actually has a name. */
3472 name_and_src_coords_attributes (decl
)
3475 tree decl_name
= DECL_NAME (decl
);
3477 if (decl_name
&& IDENTIFIER_POINTER (decl_name
))
3479 name_attribute (IDENTIFIER_POINTER (decl_name
));
3480 #ifdef DWARF_DECL_COORDINATES
3482 register unsigned file_index
;
3484 /* This is annoying, but we have to pop out of the .debug section
3485 for a moment while we call `lookup_filename' because calling it
3486 may cause a temporary switch into the .debug_sfnames section and
3487 most svr4 assemblers are not smart enough to be able to nest
3488 section switches to any depth greater than one. Note that we
3489 also can't skirt this issue by delaying all output to the
3490 .debug_sfnames section unit the end of compilation because that
3491 would cause us to have inter-section forward references and
3492 Fred Fish sez that m68k/svr4 assemblers botch those. */
3494 ASM_OUTPUT_POP_SECTION (asm_out_file
);
3495 file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
3496 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
3498 src_coords_attribute (file_index
, DECL_SOURCE_LINE (decl
));
3500 #endif /* defined(DWARF_DECL_COORDINATES) */
3504 /* Many forms of DIEs contain a "type description" part. The following
3505 routine writes out these "type descriptor" parts. */
3508 type_attribute (type
, decl_const
, decl_volatile
)
3513 enum tree_code code
= TREE_CODE (type
);
3514 int root_type_modified
;
3516 if (code
== ERROR_MARK
)
3519 /* Handle a special case. For functions whose return type is void,
3520 we generate *no* type attribute. (Note that no object may have
3521 type `void', so this only applies to function return types. */
3523 if (code
== VOID_TYPE
)
3526 /* If this is a subtype, find the underlying type. Eventually,
3527 this should write out the appropriate subtype info. */
3528 while ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
3529 && TREE_TYPE (type
) != 0)
3530 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
3532 root_type_modified
= (code
== POINTER_TYPE
|| code
== REFERENCE_TYPE
3533 || decl_const
|| decl_volatile
3534 || TYPE_READONLY (type
) || TYPE_VOLATILE (type
));
3536 if (type_is_fundamental (root_type (type
)))
3538 if (root_type_modified
)
3539 mod_fund_type_attribute (type
, decl_const
, decl_volatile
);
3541 fund_type_attribute (fundamental_type_code (type
));
3545 if (root_type_modified
)
3546 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
);
3548 /* We have to get the type_main_variant here (and pass that to the
3549 `user_def_type_attribute' routine) because the ..._TYPE node we
3550 have might simply be a *copy* of some original type node (where
3551 the copy was created to help us keep track of typedef names)
3552 and that copy might have a different TYPE_UID from the original
3553 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3554 is labeling a given type DIE for future reference, it always and
3555 only creates labels for DIEs representing *main variants*, and it
3556 never even knows about non-main-variants.) */
3557 user_def_type_attribute (type_main_variant (type
));
3561 /* Given a tree pointer to a struct, class, union, or enum type node, return
3562 a pointer to the (string) tag name for the given type, or zero if the
3563 type was declared without a tag. */
3569 const char *name
= 0;
3571 if (TYPE_NAME (type
) != 0)
3575 /* Find the IDENTIFIER_NODE for the type name. */
3576 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
3577 t
= TYPE_NAME (type
);
3579 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3580 a TYPE_DECL node, regardless of whether or not a `typedef' was
3582 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
3583 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
3584 t
= DECL_NAME (TYPE_NAME (type
));
3586 /* Now get the name as a string, or invent one. */
3588 name
= IDENTIFIER_POINTER (t
);
3591 return (name
== 0 || *name
== '\0') ? 0 : name
;
3597 /* Start by checking if the pending_sibling_stack needs to be expanded.
3598 If necessary, expand it. */
3600 if (pending_siblings
== pending_siblings_allocated
)
3602 pending_siblings_allocated
+= PENDING_SIBLINGS_INCREMENT
;
3603 pending_sibling_stack
3604 = (unsigned *) xrealloc (pending_sibling_stack
,
3605 pending_siblings_allocated
* sizeof(unsigned));
3609 NEXT_DIE_NUM
= next_unused_dienum
++;
3612 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3622 member_declared_type (member
)
3625 return (DECL_BIT_FIELD_TYPE (member
))
3626 ? DECL_BIT_FIELD_TYPE (member
)
3627 : TREE_TYPE (member
);
3630 /* Get the function's label, as described by its RTL.
3631 This may be different from the DECL_NAME name used
3632 in the source file. */
3635 function_start_label (decl
)
3641 x
= DECL_RTL (decl
);
3642 if (GET_CODE (x
) != MEM
)
3645 if (GET_CODE (x
) != SYMBOL_REF
)
3647 fnname
= XSTR (x
, 0);
3652 /******************************* DIEs ************************************/
3654 /* Output routines for individual types of DIEs. */
3656 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3659 output_array_type_die (arg
)
3664 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_array_type
);
3665 sibling_attribute ();
3666 equate_type_number_to_die_number (type
);
3667 member_attribute (TYPE_CONTEXT (type
));
3669 /* I believe that we can default the array ordering. SDB will probably
3670 do the right things even if AT_ordering is not present. It's not
3671 even an issue until we start to get into multidimensional arrays
3672 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3673 dimensional arrays, then we'll have to put the AT_ordering attribute
3674 back in. (But if and when we find out that we need to put these in,
3675 we will only do so for multidimensional arrays. After all, we don't
3676 want to waste space in the .debug section now do we?) */
3678 #ifdef USE_ORDERING_ATTRIBUTE
3679 ordering_attribute (ORD_row_major
);
3680 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3682 subscript_data_attribute (type
);
3686 output_set_type_die (arg
)
3691 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_set_type
);
3692 sibling_attribute ();
3693 equate_type_number_to_die_number (type
);
3694 member_attribute (TYPE_CONTEXT (type
));
3695 type_attribute (TREE_TYPE (type
), 0, 0);
3699 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3702 output_entry_point_die (arg
)
3706 tree origin
= decl_ultimate_origin (decl
);
3708 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_entry_point
);
3709 sibling_attribute ();
3712 abstract_origin_attribute (origin
);
3715 name_and_src_coords_attributes (decl
);
3716 member_attribute (DECL_CONTEXT (decl
));
3717 type_attribute (TREE_TYPE (TREE_TYPE (decl
)), 0, 0);
3719 if (DECL_ABSTRACT (decl
))
3720 equate_decl_number_to_die_number (decl
);
3722 low_pc_attribute (function_start_label (decl
));
3726 /* Output a DIE to represent an inlined instance of an enumeration type. */
3729 output_inlined_enumeration_type_die (arg
)
3734 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3735 sibling_attribute ();
3736 if (!TREE_ASM_WRITTEN (type
))
3738 abstract_origin_attribute (type
);
3741 /* Output a DIE to represent an inlined instance of a structure type. */
3744 output_inlined_structure_type_die (arg
)
3749 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
3750 sibling_attribute ();
3751 if (!TREE_ASM_WRITTEN (type
))
3753 abstract_origin_attribute (type
);
3756 /* Output a DIE to represent an inlined instance of a union type. */
3759 output_inlined_union_type_die (arg
)
3764 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
3765 sibling_attribute ();
3766 if (!TREE_ASM_WRITTEN (type
))
3768 abstract_origin_attribute (type
);
3771 /* Output a DIE to represent an enumeration type. Note that these DIEs
3772 include all of the information about the enumeration values also.
3773 This information is encoded into the element_list attribute. */
3776 output_enumeration_type_die (arg
)
3781 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3782 sibling_attribute ();
3783 equate_type_number_to_die_number (type
);
3784 name_attribute (type_tag (type
));
3785 member_attribute (TYPE_CONTEXT (type
));
3787 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3788 given enum type is incomplete, do not generate the AT_byte_size
3789 attribute or the AT_element_list attribute. */
3791 if (COMPLETE_TYPE_P (type
))
3793 byte_size_attribute (type
);
3794 element_list_attribute (TYPE_FIELDS (type
));
3798 /* Output a DIE to represent either a real live formal parameter decl or
3799 to represent just the type of some formal parameter position in some
3802 Note that this routine is a bit unusual because its argument may be
3803 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3804 represents an inlining of some PARM_DECL) or else some sort of a
3805 ..._TYPE node. If it's the former then this function is being called
3806 to output a DIE to represent a formal parameter object (or some inlining
3807 thereof). If it's the latter, then this function is only being called
3808 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3809 formal argument type of some subprogram type. */
3812 output_formal_parameter_die (arg
)
3817 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_formal_parameter
);
3818 sibling_attribute ();
3820 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
3822 case 'd': /* We were called with some kind of a ..._DECL node. */
3824 register tree origin
= decl_ultimate_origin (node
);
3827 abstract_origin_attribute (origin
);
3830 name_and_src_coords_attributes (node
);
3831 type_attribute (TREE_TYPE (node
),
3832 TREE_READONLY (node
), TREE_THIS_VOLATILE (node
));
3834 if (DECL_ABSTRACT (node
))
3835 equate_decl_number_to_die_number (node
);
3837 location_or_const_value_attribute (node
);
3841 case 't': /* We were called with some kind of a ..._TYPE node. */
3842 type_attribute (node
, 0, 0);
3846 abort (); /* Should never happen. */
3850 /* Output a DIE to represent a declared function (either file-scope
3851 or block-local) which has "external linkage" (according to ANSI-C). */
3854 output_global_subroutine_die (arg
)
3858 tree origin
= decl_ultimate_origin (decl
);
3860 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_subroutine
);
3861 sibling_attribute ();
3864 abstract_origin_attribute (origin
);
3867 tree type
= TREE_TYPE (decl
);
3869 name_and_src_coords_attributes (decl
);
3870 inline_attribute (decl
);
3871 prototyped_attribute (type
);
3872 member_attribute (DECL_CONTEXT (decl
));
3873 type_attribute (TREE_TYPE (type
), 0, 0);
3874 pure_or_virtual_attribute (decl
);
3876 if (DECL_ABSTRACT (decl
))
3877 equate_decl_number_to_die_number (decl
);
3880 if (! DECL_EXTERNAL (decl
) && ! in_class
3881 && decl
== current_function_decl
)
3883 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3885 low_pc_attribute (function_start_label (decl
));
3886 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
3887 high_pc_attribute (label
);
3888 if (use_gnu_debug_info_extensions
)
3890 sprintf (label
, BODY_BEGIN_LABEL_FMT
,
3891 current_function_funcdef_no
);
3892 body_begin_attribute (label
);
3893 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
3894 body_end_attribute (label
);
3900 /* Output a DIE to represent a declared data object (either file-scope
3901 or block-local) which has "external linkage" (according to ANSI-C). */
3904 output_global_variable_die (arg
)
3908 tree origin
= decl_ultimate_origin (decl
);
3910 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_variable
);
3911 sibling_attribute ();
3913 abstract_origin_attribute (origin
);
3916 name_and_src_coords_attributes (decl
);
3917 member_attribute (DECL_CONTEXT (decl
));
3918 type_attribute (TREE_TYPE (decl
),
3919 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3921 if (DECL_ABSTRACT (decl
))
3922 equate_decl_number_to_die_number (decl
);
3925 if (! DECL_EXTERNAL (decl
) && ! in_class
3926 && current_function_decl
== decl_function_context (decl
))
3927 location_or_const_value_attribute (decl
);
3932 output_label_die (arg
)
3936 tree origin
= decl_ultimate_origin (decl
);
3938 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_label
);
3939 sibling_attribute ();
3941 abstract_origin_attribute (origin
);
3943 name_and_src_coords_attributes (decl
);
3944 if (DECL_ABSTRACT (decl
))
3945 equate_decl_number_to_die_number (decl
);
3948 rtx insn
= DECL_RTL (decl
);
3950 /* Deleted labels are programmer specified labels which have been
3951 eliminated because of various optimizations. We still emit them
3952 here so that it is possible to put breakpoints on them. */
3953 if (GET_CODE (insn
) == CODE_LABEL
3954 || ((GET_CODE (insn
) == NOTE
3955 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
3957 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3959 /* When optimization is enabled (via -O) some parts of the compiler
3960 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3961 represent source-level labels which were explicitly declared by
3962 the user. This really shouldn't be happening though, so catch
3963 it if it ever does happen. */
3965 if (INSN_DELETED_P (insn
))
3966 abort (); /* Should never happen. */
3968 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
3969 low_pc_attribute (label
);
3975 output_lexical_block_die (arg
)
3980 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_lexical_block
);
3981 sibling_attribute ();
3983 if (! BLOCK_ABSTRACT (stmt
))
3985 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3986 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3988 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3989 low_pc_attribute (begin_label
);
3990 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3991 high_pc_attribute (end_label
);
3996 output_inlined_subroutine_die (arg
)
4001 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inlined_subroutine
);
4002 sibling_attribute ();
4004 abstract_origin_attribute (block_ultimate_origin (stmt
));
4005 if (! BLOCK_ABSTRACT (stmt
))
4007 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4008 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4010 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
4011 low_pc_attribute (begin_label
);
4012 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
4013 high_pc_attribute (end_label
);
4017 /* Output a DIE to represent a declared data object (either file-scope
4018 or block-local) which has "internal linkage" (according to ANSI-C). */
4021 output_local_variable_die (arg
)
4025 tree origin
= decl_ultimate_origin (decl
);
4027 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_local_variable
);
4028 sibling_attribute ();
4030 abstract_origin_attribute (origin
);
4033 name_and_src_coords_attributes (decl
);
4034 member_attribute (DECL_CONTEXT (decl
));
4035 type_attribute (TREE_TYPE (decl
),
4036 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4038 if (DECL_ABSTRACT (decl
))
4039 equate_decl_number_to_die_number (decl
);
4041 location_or_const_value_attribute (decl
);
4045 output_member_die (arg
)
4050 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_member
);
4051 sibling_attribute ();
4052 name_and_src_coords_attributes (decl
);
4053 member_attribute (DECL_CONTEXT (decl
));
4054 type_attribute (member_declared_type (decl
),
4055 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4056 if (DECL_BIT_FIELD_TYPE (decl
)) /* If this is a bit field... */
4058 byte_size_attribute (decl
);
4059 bit_size_attribute (decl
);
4060 bit_offset_attribute (decl
);
4062 data_member_location_attribute (decl
);
4066 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
4067 modified types instead.
4069 We keep this code here just in case these types of DIEs may be
4070 needed to represent certain things in other languages (e.g. Pascal)
4074 output_pointer_type_die (arg
)
4079 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_pointer_type
);
4080 sibling_attribute ();
4081 equate_type_number_to_die_number (type
);
4082 member_attribute (TYPE_CONTEXT (type
));
4083 type_attribute (TREE_TYPE (type
), 0, 0);
4087 output_reference_type_die (arg
)
4092 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_reference_type
);
4093 sibling_attribute ();
4094 equate_type_number_to_die_number (type
);
4095 member_attribute (TYPE_CONTEXT (type
));
4096 type_attribute (TREE_TYPE (type
), 0, 0);
4101 output_ptr_to_mbr_type_die (arg
)
4106 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_ptr_to_member_type
);
4107 sibling_attribute ();
4108 equate_type_number_to_die_number (type
);
4109 member_attribute (TYPE_CONTEXT (type
));
4110 containing_type_attribute (TYPE_OFFSET_BASETYPE (type
));
4111 type_attribute (TREE_TYPE (type
), 0, 0);
4115 output_compile_unit_die (arg
)
4118 const char *main_input_filename
= arg
;
4119 const char *language_string
= lang_hooks
.name
;
4121 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_compile_unit
);
4122 sibling_attribute ();
4124 name_attribute (main_input_filename
);
4129 sprintf (producer
, "%s %s", language_string
, version_string
);
4130 producer_attribute (producer
);
4133 if (strcmp (language_string
, "GNU C++") == 0)
4134 language_attribute (LANG_C_PLUS_PLUS
);
4135 else if (strcmp (language_string
, "GNU Ada") == 0)
4136 language_attribute (LANG_ADA83
);
4137 else if (strcmp (language_string
, "GNU F77") == 0)
4138 language_attribute (LANG_FORTRAN77
);
4139 else if (strcmp (language_string
, "GNU Pascal") == 0)
4140 language_attribute (LANG_PASCAL83
);
4141 else if (strcmp (language_string
, "GNU Java") == 0)
4142 language_attribute (LANG_JAVA
);
4144 language_attribute (LANG_C89
);
4145 low_pc_attribute (TEXT_BEGIN_LABEL
);
4146 high_pc_attribute (TEXT_END_LABEL
);
4147 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
4148 stmt_list_attribute (LINE_BEGIN_LABEL
);
4151 const char *wd
= getpwd ();
4153 comp_dir_attribute (wd
);
4156 if (debug_info_level
>= DINFO_LEVEL_NORMAL
&& use_gnu_debug_info_extensions
)
4158 sf_names_attribute (SFNAMES_BEGIN_LABEL
);
4159 src_info_attribute (SRCINFO_BEGIN_LABEL
);
4160 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
4161 mac_info_attribute (MACINFO_BEGIN_LABEL
);
4166 output_string_type_die (arg
)
4171 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_string_type
);
4172 sibling_attribute ();
4173 equate_type_number_to_die_number (type
);
4174 member_attribute (TYPE_CONTEXT (type
));
4175 /* this is a fixed length string */
4176 byte_size_attribute (type
);
4180 output_inheritance_die (arg
)
4183 tree binfo
= ((tree
*)arg
)[0];
4184 tree access
= ((tree
*)arg
)[1];
4186 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inheritance
);
4187 sibling_attribute ();
4188 type_attribute (BINFO_TYPE (binfo
), 0, 0);
4189 data_member_location_attribute (binfo
);
4190 if (TREE_VIA_VIRTUAL (binfo
))
4192 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
4193 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4195 if (access
== access_public_node
)
4197 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_public
);
4198 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4200 else if (access
== access_protected_node
)
4202 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_protected
);
4203 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
4208 output_structure_type_die (arg
)
4213 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
4214 sibling_attribute ();
4215 equate_type_number_to_die_number (type
);
4216 name_attribute (type_tag (type
));
4217 member_attribute (TYPE_CONTEXT (type
));
4219 /* If this type has been completed, then give it a byte_size attribute
4220 and prepare to give a list of members. Otherwise, don't do either of
4221 these things. In the latter case, we will not be generating a list
4222 of members (since we don't have any idea what they might be for an
4223 incomplete type). */
4225 if (COMPLETE_TYPE_P (type
))
4228 byte_size_attribute (type
);
4232 /* Output a DIE to represent a declared function (either file-scope
4233 or block-local) which has "internal linkage" (according to ANSI-C). */
4236 output_local_subroutine_die (arg
)
4240 tree origin
= decl_ultimate_origin (decl
);
4242 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine
);
4243 sibling_attribute ();
4246 abstract_origin_attribute (origin
);
4249 tree type
= TREE_TYPE (decl
);
4251 name_and_src_coords_attributes (decl
);
4252 inline_attribute (decl
);
4253 prototyped_attribute (type
);
4254 member_attribute (DECL_CONTEXT (decl
));
4255 type_attribute (TREE_TYPE (type
), 0, 0);
4256 pure_or_virtual_attribute (decl
);
4258 if (DECL_ABSTRACT (decl
))
4259 equate_decl_number_to_die_number (decl
);
4262 /* Avoid getting screwed up in cases where a function was declared
4263 static but where no definition was ever given for it. */
4265 if (TREE_ASM_WRITTEN (decl
))
4267 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4268 low_pc_attribute (function_start_label (decl
));
4269 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
4270 high_pc_attribute (label
);
4271 if (use_gnu_debug_info_extensions
)
4273 sprintf (label
, BODY_BEGIN_LABEL_FMT
,
4274 current_function_funcdef_no
);
4275 body_begin_attribute (label
);
4276 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
4277 body_end_attribute (label
);
4284 output_subroutine_type_die (arg
)
4288 tree return_type
= TREE_TYPE (type
);
4290 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine_type
);
4291 sibling_attribute ();
4293 equate_type_number_to_die_number (type
);
4294 prototyped_attribute (type
);
4295 member_attribute (TYPE_CONTEXT (type
));
4296 type_attribute (return_type
, 0, 0);
4300 output_typedef_die (arg
)
4304 tree origin
= decl_ultimate_origin (decl
);
4306 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_typedef
);
4307 sibling_attribute ();
4309 abstract_origin_attribute (origin
);
4312 name_and_src_coords_attributes (decl
);
4313 member_attribute (DECL_CONTEXT (decl
));
4314 type_attribute (TREE_TYPE (decl
),
4315 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
4317 if (DECL_ABSTRACT (decl
))
4318 equate_decl_number_to_die_number (decl
);
4322 output_union_type_die (arg
)
4327 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
4328 sibling_attribute ();
4329 equate_type_number_to_die_number (type
);
4330 name_attribute (type_tag (type
));
4331 member_attribute (TYPE_CONTEXT (type
));
4333 /* If this type has been completed, then give it a byte_size attribute
4334 and prepare to give a list of members. Otherwise, don't do either of
4335 these things. In the latter case, we will not be generating a list
4336 of members (since we don't have any idea what they might be for an
4337 incomplete type). */
4339 if (COMPLETE_TYPE_P (type
))
4342 byte_size_attribute (type
);
4346 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4347 at the end of an (ANSI prototyped) formal parameters list. */
4350 output_unspecified_parameters_die (arg
)
4353 tree decl_or_type
= arg
;
4355 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_unspecified_parameters
);
4356 sibling_attribute ();
4358 /* This kludge is here only for the sake of being compatible with what
4359 the USL CI5 C compiler does. The specification of Dwarf Version 1
4360 doesn't say that TAG_unspecified_parameters DIEs should contain any
4361 attributes other than the AT_sibling attribute, but they are certainly
4362 allowed to contain additional attributes, and the CI5 compiler
4363 generates AT_name, AT_fund_type, and AT_location attributes within
4364 TAG_unspecified_parameters DIEs which appear in the child lists for
4365 DIEs representing function definitions, so we do likewise here. */
4367 if (TREE_CODE (decl_or_type
) == FUNCTION_DECL
&& DECL_INITIAL (decl_or_type
))
4369 name_attribute ("...");
4370 fund_type_attribute (FT_pointer
);
4371 /* location_attribute (?); */
4376 output_padded_null_die (arg
)
4377 void *arg ATTRIBUTE_UNUSED
;
4379 ASM_OUTPUT_ALIGN (asm_out_file
, 2); /* 2**2 == 4 */
4382 /*************************** end of DIEs *********************************/
4384 /* Generate some type of DIE. This routine generates the generic outer
4385 wrapper stuff which goes around all types of DIE's (regardless of their
4386 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
4387 DIE-length word, followed by the guts of the DIE itself. After the guts
4388 of the DIE, there must always be a terminator label for the DIE. */
4391 output_die (die_specific_output_function
, param
)
4392 void (*die_specific_output_function
) PARAMS ((void *));
4395 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4396 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4398 current_dienum
= NEXT_DIE_NUM
;
4399 NEXT_DIE_NUM
= next_unused_dienum
;
4401 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
4402 sprintf (end_label
, DIE_END_LABEL_FMT
, current_dienum
);
4404 /* Write a label which will act as the name for the start of this DIE. */
4406 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
4408 /* Write the DIE-length word. */
4410 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
4412 /* Fill in the guts of the DIE. */
4414 next_unused_dienum
++;
4415 die_specific_output_function (param
);
4417 /* Write a label which will act as the name for the end of this DIE. */
4419 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
4423 end_sibling_chain ()
4425 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4427 current_dienum
= NEXT_DIE_NUM
;
4428 NEXT_DIE_NUM
= next_unused_dienum
;
4430 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
4432 /* Write a label which will act as the name for the start of this DIE. */
4434 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
4436 /* Write the DIE-length word. */
4438 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 4);
4443 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4444 TAG_unspecified_parameters DIE) to represent the types of the formal
4445 parameters as specified in some function type specification (except
4446 for those which appear as part of a function *definition*).
4448 Note that we must be careful here to output all of the parameter
4449 DIEs *before* we output any DIEs needed to represent the types of
4450 the formal parameters. This keeps svr4 SDB happy because it
4451 (incorrectly) thinks that the first non-parameter DIE it sees ends
4452 the formal parameter list. */
4455 output_formal_types (function_or_method_type
)
4456 tree function_or_method_type
;
4459 tree formal_type
= NULL
;
4460 tree first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
4462 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4463 get bogus recursion when outputting tagged types local to a
4464 function declaration. */
4465 int save_asm_written
= TREE_ASM_WRITTEN (function_or_method_type
);
4466 TREE_ASM_WRITTEN (function_or_method_type
) = 1;
4468 /* In the case where we are generating a formal types list for a C++
4469 non-static member function type, skip over the first thing on the
4470 TYPE_ARG_TYPES list because it only represents the type of the
4471 hidden `this pointer'. The debugger should be able to figure
4472 out (without being explicitly told) that this non-static member
4473 function type takes a `this pointer' and should be able to figure
4474 what the type of that hidden parameter is from the AT_member
4475 attribute of the parent TAG_subroutine_type DIE. */
4477 if (TREE_CODE (function_or_method_type
) == METHOD_TYPE
)
4478 first_parm_type
= TREE_CHAIN (first_parm_type
);
4480 /* Make our first pass over the list of formal parameter types and output
4481 a TAG_formal_parameter DIE for each one. */
4483 for (link
= first_parm_type
; link
; link
= TREE_CHAIN (link
))
4485 formal_type
= TREE_VALUE (link
);
4486 if (formal_type
== void_type_node
)
4489 /* Output a (nameless) DIE to represent the formal parameter itself. */
4491 output_die (output_formal_parameter_die
, formal_type
);
4494 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4495 DIE to the end of the parameter list. */
4497 if (formal_type
!= void_type_node
)
4498 output_die (output_unspecified_parameters_die
, function_or_method_type
);
4500 /* Make our second (and final) pass over the list of formal parameter types
4501 and output DIEs to represent those types (as necessary). */
4503 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
4505 link
= TREE_CHAIN (link
))
4507 formal_type
= TREE_VALUE (link
);
4508 if (formal_type
== void_type_node
)
4511 output_type (formal_type
, function_or_method_type
);
4514 TREE_ASM_WRITTEN (function_or_method_type
) = save_asm_written
;
4517 /* Remember a type in the pending_types_list. */
4523 if (pending_types
== pending_types_allocated
)
4525 pending_types_allocated
+= PENDING_TYPES_INCREMENT
;
4527 = (tree
*) xrealloc (pending_types_list
,
4528 sizeof (tree
) * pending_types_allocated
);
4530 pending_types_list
[pending_types
++] = type
;
4532 /* Mark the pending type as having been output already (even though
4533 it hasn't been). This prevents the type from being added to the
4534 pending_types_list more than once. */
4536 TREE_ASM_WRITTEN (type
) = 1;
4539 /* Return nonzero if it is legitimate to output DIEs to represent a
4540 given type while we are generating the list of child DIEs for some
4541 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4543 See the comments within the function for a description of when it is
4544 considered legitimate to output DIEs for various kinds of types.
4546 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4547 or it may point to a BLOCK node (for types local to a block), or to a
4548 FUNCTION_DECL node (for types local to the heading of some function
4549 definition), or to a FUNCTION_TYPE node (for types local to the
4550 prototyped parameter list of a function type specification), or to a
4551 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4552 (in the case of C++ nested types).
4554 The `scope' parameter should likewise be NULL or should point to a
4555 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4556 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4558 This function is used only for deciding when to "pend" and when to
4559 "un-pend" types to/from the pending_types_list.
4561 Note that we sometimes make use of this "type pending" feature in a
4562 rather twisted way to temporarily delay the production of DIEs for the
4563 types of formal parameters. (We do this just to make svr4 SDB happy.)
4564 It order to delay the production of DIEs representing types of formal
4565 parameters, callers of this function supply `fake_containing_scope' as
4566 the `scope' parameter to this function. Given that fake_containing_scope
4567 is a tagged type which is *not* the containing scope for *any* other type,
4568 the desired effect is achieved, i.e. output of DIEs representing types
4569 is temporarily suspended, and any type DIEs which would have otherwise
4570 been output are instead placed onto the pending_types_list. Later on,
4571 we force these (temporarily pended) types to be output simply by calling
4572 `output_pending_types_for_scope' with an actual argument equal to the
4573 true scope of the types we temporarily pended. */
4576 type_ok_for_scope (type
, scope
)
4580 /* Tagged types (i.e. struct, union, and enum types) must always be
4581 output only in the scopes where they actually belong (or else the
4582 scoping of their own tag names and the scoping of their member
4583 names will be incorrect). Non-tagged-types on the other hand can
4584 generally be output anywhere, except that svr4 SDB really doesn't
4585 want to see them nested within struct or union types, so here we
4586 say it is always OK to immediately output any such a (non-tagged)
4587 type, so long as we are not within such a context. Note that the
4588 only kinds of non-tagged types which we will be dealing with here
4589 (for C and C++ anyway) will be array types and function types. */
4591 return is_tagged_type (type
)
4592 ? (TYPE_CONTEXT (type
) == scope
4593 /* Ignore namespaces for the moment. */
4594 || (scope
== NULL_TREE
4595 && TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4596 || (scope
== NULL_TREE
&& is_tagged_type (TYPE_CONTEXT (type
))
4597 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type
))))
4598 : (scope
== NULL_TREE
|| ! is_tagged_type (scope
));
4601 /* Output any pending types (from the pending_types list) which we can output
4602 now (taking into account the scope that we are working on now).
4604 For each type output, remove the given type from the pending_types_list
4605 *before* we try to output it.
4607 Note that we have to process the list in beginning-to-end order,
4608 because the call made here to output_type may cause yet more types
4609 to be added to the end of the list, and we may have to output some
4613 output_pending_types_for_scope (containing_scope
)
4614 tree containing_scope
;
4618 for (i
= 0; i
< pending_types
; )
4620 tree type
= pending_types_list
[i
];
4622 if (type_ok_for_scope (type
, containing_scope
))
4628 limit
= &pending_types_list
[pending_types
];
4629 for (mover
= &pending_types_list
[i
]; mover
< limit
; mover
++)
4630 *mover
= *(mover
+1);
4632 /* Un-mark the type as having been output already (because it
4633 hasn't been, really). Then call output_type to generate a
4634 Dwarf representation of it. */
4636 TREE_ASM_WRITTEN (type
) = 0;
4637 output_type (type
, containing_scope
);
4639 /* Don't increment the loop counter in this case because we
4640 have shifted all of the subsequent pending types down one
4641 element in the pending_types_list array. */
4648 /* Remember a type in the incomplete_types_list. */
4651 add_incomplete_type (type
)
4654 if (incomplete_types
== incomplete_types_allocated
)
4656 incomplete_types_allocated
+= INCOMPLETE_TYPES_INCREMENT
;
4657 incomplete_types_list
4658 = (tree
*) xrealloc (incomplete_types_list
,
4659 sizeof (tree
) * incomplete_types_allocated
);
4662 incomplete_types_list
[incomplete_types
++] = type
;
4665 /* Walk through the list of incomplete types again, trying once more to
4666 emit full debugging info for them. */
4669 retry_incomplete_types ()
4674 while (incomplete_types
)
4677 type
= incomplete_types_list
[incomplete_types
];
4678 output_type (type
, NULL_TREE
);
4683 output_type (type
, containing_scope
)
4685 tree containing_scope
;
4687 if (type
== 0 || type
== error_mark_node
)
4690 /* We are going to output a DIE to represent the unqualified version of
4691 this type (i.e. without any const or volatile qualifiers) so get
4692 the main variant (i.e. the unqualified version) of this type now. */
4694 type
= type_main_variant (type
);
4696 if (TREE_ASM_WRITTEN (type
))
4698 if (finalizing
&& AGGREGATE_TYPE_P (type
))
4702 /* Some of our nested types might not have been defined when we
4703 were written out before; force them out now. */
4705 for (member
= TYPE_FIELDS (type
); member
;
4706 member
= TREE_CHAIN (member
))
4707 if (TREE_CODE (member
) == TYPE_DECL
4708 && ! TREE_ASM_WRITTEN (TREE_TYPE (member
)))
4709 output_type (TREE_TYPE (member
), containing_scope
);
4714 /* If this is a nested type whose containing class hasn't been
4715 written out yet, writing it out will cover this one, too. */
4717 if (TYPE_CONTEXT (type
)
4718 && TYPE_P (TYPE_CONTEXT (type
))
4719 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
4721 output_type (TYPE_CONTEXT (type
), containing_scope
);
4725 /* Don't generate any DIEs for this type now unless it is OK to do so
4726 (based upon what `type_ok_for_scope' tells us). */
4728 if (! type_ok_for_scope (type
, containing_scope
))
4734 switch (TREE_CODE (type
))
4740 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type
), containing_scope
);
4744 case REFERENCE_TYPE
:
4745 /* Prevent infinite recursion in cases where this is a recursive
4746 type. Recursive types are possible in Ada. */
4747 TREE_ASM_WRITTEN (type
) = 1;
4748 /* For these types, all that is required is that we output a DIE
4749 (or a set of DIEs) to represent the "basis" type. */
4750 output_type (TREE_TYPE (type
), containing_scope
);
4754 /* This code is used for C++ pointer-to-data-member types. */
4755 /* Output a description of the relevant class type. */
4756 output_type (TYPE_OFFSET_BASETYPE (type
), containing_scope
);
4757 /* Output a description of the type of the object pointed to. */
4758 output_type (TREE_TYPE (type
), containing_scope
);
4759 /* Now output a DIE to represent this pointer-to-data-member type
4761 output_die (output_ptr_to_mbr_type_die
, type
);
4765 output_type (TYPE_DOMAIN (type
), containing_scope
);
4766 output_die (output_set_type_die
, type
);
4770 output_type (TREE_TYPE (type
), containing_scope
);
4771 abort (); /* No way to represent these in Dwarf yet! */
4775 /* Force out return type (in case it wasn't forced out already). */
4776 output_type (TREE_TYPE (type
), containing_scope
);
4777 output_die (output_subroutine_type_die
, type
);
4778 output_formal_types (type
);
4779 end_sibling_chain ();
4783 /* Force out return type (in case it wasn't forced out already). */
4784 output_type (TREE_TYPE (type
), containing_scope
);
4785 output_die (output_subroutine_type_die
, type
);
4786 output_formal_types (type
);
4787 end_sibling_chain ();
4791 if (TYPE_STRING_FLAG (type
) && TREE_CODE(TREE_TYPE(type
)) == CHAR_TYPE
)
4793 output_type (TREE_TYPE (type
), containing_scope
);
4794 output_die (output_string_type_die
, type
);
4800 element_type
= TREE_TYPE (type
);
4801 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
4802 element_type
= TREE_TYPE (element_type
);
4804 output_type (element_type
, containing_scope
);
4805 output_die (output_array_type_die
, type
);
4812 case QUAL_UNION_TYPE
:
4814 /* For a non-file-scope tagged type, we can always go ahead and
4815 output a Dwarf description of this type right now, even if
4816 the type in question is still incomplete, because if this
4817 local type *was* ever completed anywhere within its scope,
4818 that complete definition would already have been attached to
4819 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4820 node by the time we reach this point. That's true because of the
4821 way the front-end does its processing of file-scope declarations (of
4822 functions and class types) within which other types might be
4823 nested. The C and C++ front-ends always gobble up such "local
4824 scope" things en-mass before they try to output *any* debugging
4825 information for any of the stuff contained inside them and thus,
4826 we get the benefit here of what is (in effect) a pre-resolution
4827 of forward references to tagged types in local scopes.
4829 Note however that for file-scope tagged types we cannot assume
4830 that such pre-resolution of forward references has taken place.
4831 A given file-scope tagged type may appear to be incomplete when
4832 we reach this point, but it may yet be given a full definition
4833 (at file-scope) later on during compilation. In order to avoid
4834 generating a premature (and possibly incorrect) set of Dwarf
4835 DIEs for such (as yet incomplete) file-scope tagged types, we
4836 generate nothing at all for as-yet incomplete file-scope tagged
4837 types here unless we are making our special "finalization" pass
4838 for file-scope things at the very end of compilation. At that
4839 time, we will certainly know as much about each file-scope tagged
4840 type as we are ever going to know, so at that point in time, we
4841 can safely generate correct Dwarf descriptions for these file-
4842 scope tagged types. */
4844 if (!COMPLETE_TYPE_P (type
)
4845 && (TYPE_CONTEXT (type
) == NULL
4846 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
4847 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4850 /* We don't need to do this for function-local types. */
4851 if (! decl_function_context (TYPE_STUB_DECL (type
)))
4852 add_incomplete_type (type
);
4853 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4856 /* Prevent infinite recursion in cases where the type of some
4857 member of this type is expressed in terms of this type itself. */
4859 TREE_ASM_WRITTEN (type
) = 1;
4861 /* Output a DIE to represent the tagged type itself. */
4863 switch (TREE_CODE (type
))
4866 output_die (output_enumeration_type_die
, type
);
4867 return; /* a special case -- nothing left to do so just return */
4870 output_die (output_structure_type_die
, type
);
4874 case QUAL_UNION_TYPE
:
4875 output_die (output_union_type_die
, type
);
4879 abort (); /* Should never happen. */
4882 /* If this is not an incomplete type, output descriptions of
4883 each of its members.
4885 Note that as we output the DIEs necessary to represent the
4886 members of this record or union type, we will also be trying
4887 to output DIEs to represent the *types* of those members.
4888 However the `output_type' function (above) will specifically
4889 avoid generating type DIEs for member types *within* the list
4890 of member DIEs for this (containing) type except for those
4891 types (of members) which are explicitly marked as also being
4892 members of this (containing) type themselves. The g++ front-
4893 end can force any given type to be treated as a member of some
4894 other (containing) type by setting the TYPE_CONTEXT of the
4895 given (member) type to point to the TREE node representing the
4896 appropriate (containing) type.
4899 if (COMPLETE_TYPE_P (type
))
4901 tree binfo
= TYPE_BINFO (type
);
4903 /* First output info about the base classes. */
4906 tree bases
= BINFO_BASETYPES (binfo
);
4907 tree accesses
= BINFO_BASEACCESSES (binfo
);
4908 register int n_bases
= BINFO_N_BASETYPES (binfo
);
4911 for (i
= 0; i
< n_bases
; i
++)
4915 arg
[0] = TREE_VEC_ELT (bases
, i
);
4916 arg
[1] = (accesses
? TREE_VEC_ELT (accesses
, i
)
4917 : access_public_node
);
4918 output_type (BINFO_TYPE (binfo
), containing_scope
);
4919 output_die (output_inheritance_die
, arg
);
4928 /* Now output info about the data members and type members. */
4930 for (normal_member
= TYPE_FIELDS (type
);
4932 normal_member
= TREE_CHAIN (normal_member
))
4933 output_decl (normal_member
, type
);
4939 /* Now output info about the function members (if any). */
4941 for (func_member
= TYPE_METHODS (type
);
4943 func_member
= TREE_CHAIN (func_member
))
4945 /* Don't include clones in the member list. */
4946 if (DECL_ABSTRACT_ORIGIN (func_member
))
4949 output_decl (func_member
, type
);
4955 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4956 scopes (at least in C++) so we must now output any nested
4957 pending types which are local just to this type. */
4959 output_pending_types_for_scope (type
);
4961 end_sibling_chain (); /* Terminate member chain. */
4972 break; /* No DIEs needed for fundamental types. */
4974 case LANG_TYPE
: /* No Dwarf representation currently defined. */
4981 TREE_ASM_WRITTEN (type
) = 1;
4985 output_tagged_type_instantiation (type
)
4988 if (type
== 0 || type
== error_mark_node
)
4991 /* We are going to output a DIE to represent the unqualified version of
4992 this type (i.e. without any const or volatile qualifiers) so make
4993 sure that we have the main variant (i.e. the unqualified version) of
4996 if (type
!= type_main_variant (type
))
4999 if (!TREE_ASM_WRITTEN (type
))
5002 switch (TREE_CODE (type
))
5008 output_die (output_inlined_enumeration_type_die
, type
);
5012 output_die (output_inlined_structure_type_die
, type
);
5016 case QUAL_UNION_TYPE
:
5017 output_die (output_inlined_union_type_die
, type
);
5021 abort (); /* Should never happen. */
5025 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5026 the things which are local to the given block. */
5029 output_block (stmt
, depth
)
5033 int must_output_die
= 0;
5035 enum tree_code origin_code
;
5037 /* Ignore blocks never really used to make RTL. */
5039 if (! stmt
|| ! TREE_USED (stmt
)
5040 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
5043 /* Determine the "ultimate origin" of this block. This block may be an
5044 inlined instance of an inlined instance of inline function, so we
5045 have to trace all of the way back through the origin chain to find
5046 out what sort of node actually served as the original seed for the
5047 creation of the current block. */
5049 origin
= block_ultimate_origin (stmt
);
5050 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
5052 /* Determine if we need to output any Dwarf DIEs at all to represent this
5055 if (origin_code
== FUNCTION_DECL
)
5056 /* The outer scopes for inlinings *must* always be represented. We
5057 generate TAG_inlined_subroutine DIEs for them. (See below.) */
5058 must_output_die
= 1;
5061 /* In the case where the current block represents an inlining of the
5062 "body block" of an inline function, we must *NOT* output any DIE
5063 for this block because we have already output a DIE to represent
5064 the whole inlined function scope and the "body block" of any
5065 function doesn't really represent a different scope according to
5066 ANSI C rules. So we check here to make sure that this block does
5067 not represent a "body block inlining" before trying to set the
5068 `must_output_die' flag. */
5070 if (! is_body_block (origin
? origin
: stmt
))
5072 /* Determine if this block directly contains any "significant"
5073 local declarations which we will need to output DIEs for. */
5075 if (debug_info_level
> DINFO_LEVEL_TERSE
)
5076 /* We are not in terse mode so *any* local declaration counts
5077 as being a "significant" one. */
5078 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
5083 /* We are in terse mode, so only local (nested) function
5084 definitions count as "significant" local declarations. */
5086 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
5087 if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_INITIAL (decl
))
5089 must_output_die
= 1;
5096 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5097 DIE for any block which contains no significant local declarations
5098 at all. Rather, in such cases we just call `output_decls_for_scope'
5099 so that any needed Dwarf info for any sub-blocks will get properly
5100 generated. Note that in terse mode, our definition of what constitutes
5101 a "significant" local declaration gets restricted to include only
5102 inlined function instances and local (nested) function definitions. */
5104 if (origin_code
== FUNCTION_DECL
&& BLOCK_ABSTRACT (stmt
))
5105 /* We don't care about an abstract inlined subroutine. */;
5106 else if (must_output_die
)
5108 output_die ((origin_code
== FUNCTION_DECL
)
5109 ? output_inlined_subroutine_die
5110 : output_lexical_block_die
,
5112 output_decls_for_scope (stmt
, depth
);
5113 end_sibling_chain ();
5116 output_decls_for_scope (stmt
, depth
);
5119 /* Output all of the decls declared within a given scope (also called
5120 a `binding contour') and (recursively) all of it's sub-blocks. */
5123 output_decls_for_scope (stmt
, depth
)
5127 /* Ignore blocks never really used to make RTL. */
5129 if (! stmt
|| ! TREE_USED (stmt
))
5132 /* Output the DIEs to represent all of the data objects, functions,
5133 typedefs, and tagged types declared directly within this block
5134 but not within any nested sub-blocks. */
5139 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
5140 output_decl (decl
, stmt
);
5143 output_pending_types_for_scope (stmt
);
5145 /* Output the DIEs to represent all sub-blocks (and the items declared
5146 therein) of this block. */
5151 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
5153 subblocks
= BLOCK_CHAIN (subblocks
))
5154 output_block (subblocks
, depth
+ 1);
5158 /* Is this a typedef we can avoid emitting? */
5161 is_redundant_typedef (decl
)
5164 if (TYPE_DECL_IS_STUB (decl
))
5166 if (DECL_ARTIFICIAL (decl
)
5167 && DECL_CONTEXT (decl
)
5168 && is_tagged_type (DECL_CONTEXT (decl
))
5169 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
5170 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
5171 /* Also ignore the artificial member typedef for the class name. */
5176 /* Output Dwarf .debug information for a decl described by DECL. */
5179 output_decl (decl
, containing_scope
)
5181 tree containing_scope
;
5183 /* Make a note of the decl node we are going to be working on. We may
5184 need to give the user the source coordinates of where it appeared in
5185 case we notice (later on) that something about it looks screwy. */
5187 dwarf_last_decl
= decl
;
5189 if (TREE_CODE (decl
) == ERROR_MARK
)
5192 /* If a structure is declared within an initialization, e.g. as the
5193 operand of a sizeof, then it will not have a name. We don't want
5194 to output a DIE for it, as the tree nodes are in the temporary obstack */
5196 if ((TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
5197 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
5198 && ((DECL_NAME (decl
) == 0 && TYPE_NAME (TREE_TYPE (decl
)) == 0)
5199 || (TYPE_FIELDS (TREE_TYPE (decl
))
5200 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl
))) == ERROR_MARK
))))
5203 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5205 if (DECL_IGNORED_P (decl
))
5208 switch (TREE_CODE (decl
))
5211 /* The individual enumerators of an enum type get output when we
5212 output the Dwarf representation of the relevant enum type itself. */
5216 /* If we are in terse mode, don't output any DIEs to represent
5217 mere function declarations. Also, if we are conforming
5218 to the DWARF version 1 specification, don't output DIEs for
5219 mere function declarations. */
5221 if (DECL_INITIAL (decl
) == NULL_TREE
)
5222 #if (DWARF_VERSION > 1)
5223 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5227 /* Before we describe the FUNCTION_DECL itself, make sure that we
5228 have described its return type. */
5230 output_type (TREE_TYPE (TREE_TYPE (decl
)), containing_scope
);
5233 /* And its containing type. */
5234 register tree origin
= decl_class_context (decl
);
5236 output_type (origin
, containing_scope
);
5239 /* If we're emitting an out-of-line copy of an inline function,
5240 set up to refer to the abstract instance emitted from
5241 dwarfout_deferred_inline_function. */
5242 if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
5243 && ! (containing_scope
&& TYPE_P (containing_scope
)))
5244 set_decl_origin_self (decl
);
5246 /* If the following DIE will represent a function definition for a
5247 function with "extern" linkage, output a special "pubnames" DIE
5248 label just ahead of the actual DIE. A reference to this label
5249 was already generated in the .debug_pubnames section sub-entry
5250 for this function definition. */
5252 if (TREE_PUBLIC (decl
))
5254 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5256 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
5257 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5260 /* Now output a DIE to represent the function itself. */
5262 output_die (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
)
5263 ? output_global_subroutine_die
5264 : output_local_subroutine_die
,
5267 /* Now output descriptions of the arguments for this function.
5268 This gets (unnecessarily?) complex because of the fact that
5269 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5270 cases where there was a trailing `...' at the end of the formal
5271 parameter list. In order to find out if there was a trailing
5272 ellipsis or not, we must instead look at the type associated
5273 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
5274 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5275 ends with a void_type_node then there should *not* be an ellipsis
5278 /* In the case where we are describing a mere function declaration, all
5279 we need to do here (and all we *can* do here) is to describe
5280 the *types* of its formal parameters. */
5282 if (decl
!= current_function_decl
|| in_class
)
5283 output_formal_types (TREE_TYPE (decl
));
5286 /* Generate DIEs to represent all known formal parameters */
5288 tree arg_decls
= DECL_ARGUMENTS (decl
);
5291 /* WARNING! Kludge zone ahead! Here we have a special
5292 hack for svr4 SDB compatibility. Instead of passing the
5293 current FUNCTION_DECL node as the second parameter (i.e.
5294 the `containing_scope' parameter) to `output_decl' (as
5295 we ought to) we instead pass a pointer to our own private
5296 fake_containing_scope node. That node is a RECORD_TYPE
5297 node which NO OTHER TYPE may ever actually be a member of.
5299 This pointer will ultimately get passed into `output_type'
5300 as its `containing_scope' parameter. `Output_type' will
5301 then perform its part in the hack... i.e. it will pend
5302 the type of the formal parameter onto the pending_types
5303 list. Later on, when we are done generating the whole
5304 sequence of formal parameter DIEs for this function
5305 definition, we will un-pend all previously pended types
5306 of formal parameters for this function definition.
5308 This whole kludge prevents any type DIEs from being
5309 mixed in with the formal parameter DIEs. That's good
5310 because svr4 SDB believes that the list of formal
5311 parameter DIEs for a function ends wherever the first
5312 non-formal-parameter DIE appears. Thus, we have to
5313 keep the formal parameter DIEs segregated. They must
5314 all appear (consecutively) at the start of the list of
5315 children for the DIE representing the function definition.
5316 Then (and only then) may we output any additional DIEs
5317 needed to represent the types of these formal parameters.
5321 When generating DIEs, generate the unspecified_parameters
5322 DIE instead if we come across the arg "__builtin_va_alist"
5325 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
5326 if (TREE_CODE (parm
) == PARM_DECL
)
5328 if (DECL_NAME(parm
) &&
5329 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm
)),
5330 "__builtin_va_alist") )
5331 output_die (output_unspecified_parameters_die
, decl
);
5333 output_decl (parm
, fake_containing_scope
);
5337 Now that we have finished generating all of the DIEs to
5338 represent the formal parameters themselves, force out
5339 any DIEs needed to represent their types. We do this
5340 simply by un-pending all previously pended types which
5341 can legitimately go into the chain of children DIEs for
5342 the current FUNCTION_DECL.
5345 output_pending_types_for_scope (decl
);
5348 Decide whether we need an unspecified_parameters DIE at the end.
5349 There are 2 more cases to do this for:
5350 1) the ansi ... declaration - this is detectable when the end
5351 of the arg list is not a void_type_node
5352 2) an unprototyped function declaration (not a definition). This
5353 just means that we have no info about the parameters at all.
5357 tree fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
5361 /* this is the prototyped case, check for ... */
5362 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
5363 output_die (output_unspecified_parameters_die
, decl
);
5367 /* this is unprototyped, check for undefined (just declaration) */
5368 if (!DECL_INITIAL (decl
))
5369 output_die (output_unspecified_parameters_die
, decl
);
5373 /* Output Dwarf info for all of the stuff within the body of the
5374 function (if it has one - it may be just a declaration). */
5377 tree outer_scope
= DECL_INITIAL (decl
);
5379 if (outer_scope
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
5381 /* Note that here, `outer_scope' is a pointer to the outermost
5382 BLOCK node created to represent a function.
5383 This outermost BLOCK actually represents the outermost
5384 binding contour for the function, i.e. the contour in which
5385 the function's formal parameters and labels get declared.
5387 Curiously, it appears that the front end doesn't actually
5388 put the PARM_DECL nodes for the current function onto the
5389 BLOCK_VARS list for this outer scope. (They are strung
5390 off of the DECL_ARGUMENTS list for the function instead.)
5391 The BLOCK_VARS list for the `outer_scope' does provide us
5392 with a list of the LABEL_DECL nodes for the function however,
5393 and we output DWARF info for those here.
5395 Just within the `outer_scope' there will be a BLOCK node
5396 representing the function's outermost pair of curly braces,
5397 and any blocks used for the base and member initializers of
5398 a C++ constructor function. */
5400 output_decls_for_scope (outer_scope
, 0);
5402 /* Finally, force out any pending types which are local to the
5403 outermost block of this function definition. These will
5404 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5407 output_pending_types_for_scope (decl
);
5412 /* Generate a terminator for the list of stuff `owned' by this
5415 end_sibling_chain ();
5420 /* If we are in terse mode, don't generate any DIEs to represent
5421 any actual typedefs. Note that even when we are in terse mode,
5422 we must still output DIEs to represent those tagged types which
5423 are used (directly or indirectly) in the specification of either
5424 a return type or a formal parameter type of some function. */
5426 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5427 if (! TYPE_DECL_IS_STUB (decl
)
5428 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)) && ! in_class
))
5431 /* In the special case of a TYPE_DECL node representing
5432 the declaration of some type tag, if the given TYPE_DECL is
5433 marked as having been instantiated from some other (original)
5434 TYPE_DECL node (e.g. one which was generated within the original
5435 definition of an inline function) we have to generate a special
5436 (abbreviated) TAG_structure_type, TAG_union_type, or
5437 TAG_enumeration-type DIE here. */
5439 if (TYPE_DECL_IS_STUB (decl
) && DECL_ABSTRACT_ORIGIN (decl
))
5441 output_tagged_type_instantiation (TREE_TYPE (decl
));
5445 output_type (TREE_TYPE (decl
), containing_scope
);
5447 if (! is_redundant_typedef (decl
))
5448 /* Output a DIE to represent the typedef itself. */
5449 output_die (output_typedef_die
, decl
);
5453 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5454 output_die (output_label_die
, decl
);
5458 /* If we are conforming to the DWARF version 1 specification, don't
5459 generated any DIEs to represent mere external object declarations. */
5461 #if (DWARF_VERSION <= 1)
5462 if (DECL_EXTERNAL (decl
) && ! TREE_PUBLIC (decl
))
5466 /* If we are in terse mode, don't generate any DIEs to represent
5467 any variable declarations or definitions. */
5469 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5472 /* Output any DIEs that are needed to specify the type of this data
5475 output_type (TREE_TYPE (decl
), containing_scope
);
5478 /* And its containing type. */
5479 register tree origin
= decl_class_context (decl
);
5481 output_type (origin
, containing_scope
);
5484 /* If the following DIE will represent a data object definition for a
5485 data object with "extern" linkage, output a special "pubnames" DIE
5486 label just ahead of the actual DIE. A reference to this label
5487 was already generated in the .debug_pubnames section sub-entry
5488 for this data object definition. */
5490 if (TREE_PUBLIC (decl
) && ! DECL_ABSTRACT (decl
))
5492 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5494 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
5495 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5498 /* Now output the DIE to represent the data object itself. This gets
5499 complicated because of the possibility that the VAR_DECL really
5500 represents an inlined instance of a formal parameter for an inline
5504 void (*func
) PARAMS ((void *));
5505 register tree origin
= decl_ultimate_origin (decl
);
5507 if (origin
!= NULL
&& TREE_CODE (origin
) == PARM_DECL
)
5508 func
= output_formal_parameter_die
;
5511 if (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
))
5512 func
= output_global_variable_die
;
5514 func
= output_local_variable_die
;
5516 output_die (func
, decl
);
5521 /* Ignore the nameless fields that are used to skip bits. */
5522 if (DECL_NAME (decl
) != 0)
5524 output_type (member_declared_type (decl
), containing_scope
);
5525 output_die (output_member_die
, decl
);
5530 /* Force out the type of this formal, if it was not forced out yet.
5531 Note that here we can run afoul of a bug in "classic" svr4 SDB.
5532 It should be able to grok the presence of type DIEs within a list
5533 of TAG_formal_parameter DIEs, but it doesn't. */
5535 output_type (TREE_TYPE (decl
), containing_scope
);
5536 output_die (output_formal_parameter_die
, decl
);
5539 case NAMESPACE_DECL
:
5540 /* Ignore for now. */
5548 /* Output debug information for a function. */
5550 dwarfout_function_decl (decl
)
5553 dwarfout_file_scope_decl (decl
, 0);
5556 /* Debug information for a global DECL. Called from toplev.c after
5557 compilation proper has finished. */
5559 dwarfout_global_decl (decl
)
5562 /* Output DWARF information for file-scope tentative data object
5563 declarations, file-scope (extern) function declarations (which
5564 had no corresponding body) and file-scope tagged type
5565 declarations and definitions which have not yet been forced out. */
5567 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
5568 dwarfout_file_scope_decl (decl
, 1);
5571 /* DECL is an inline function, whose body is present, but which is not
5572 being output at this point. (We're putting that off until we need
5575 dwarfout_deferred_inline_function (decl
)
5578 /* Generate the DWARF info for the "abstract" instance of a function
5579 which we may later generate inlined and/or out-of-line instances
5581 if ((DECL_INLINE (decl
) || DECL_ABSTRACT (decl
))
5582 && ! DECL_ABSTRACT_ORIGIN (decl
))
5584 /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5585 DWARF code expects it to be set in this case. Intuitively,
5586 DECL is the function we just finished defining, so setting
5587 CURRENT_FUNCTION_DECL is sensible. */
5588 tree saved_cfd
= current_function_decl
;
5589 int was_abstract
= DECL_ABSTRACT (decl
);
5590 current_function_decl
= decl
;
5592 /* Let the DWARF code do its work. */
5593 set_decl_abstract_flags (decl
, 1);
5594 dwarfout_file_scope_decl (decl
, 0);
5596 set_decl_abstract_flags (decl
, 0);
5598 /* Reset CURRENT_FUNCTION_DECL. */
5599 current_function_decl
= saved_cfd
;
5604 dwarfout_file_scope_decl (decl
, set_finalizing
)
5608 if (TREE_CODE (decl
) == ERROR_MARK
)
5611 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5613 if (DECL_IGNORED_P (decl
))
5616 switch (TREE_CODE (decl
))
5620 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5621 a builtin function. Explicit programmer-supplied declarations of
5622 these same functions should NOT be ignored however. */
5624 if (DECL_EXTERNAL (decl
) && DECL_FUNCTION_CODE (decl
))
5627 /* What we would really like to do here is to filter out all mere
5628 file-scope declarations of file-scope functions which are never
5629 referenced later within this translation unit (and keep all of
5630 ones that *are* referenced later on) but we aren't clairvoyant,
5631 so we have no idea which functions will be referenced in the
5632 future (i.e. later on within the current translation unit).
5633 So here we just ignore all file-scope function declarations
5634 which are not also definitions. If and when the debugger needs
5635 to know something about these functions, it will have to hunt
5636 around and find the DWARF information associated with the
5637 *definition* of the function.
5639 Note that we can't just check `DECL_EXTERNAL' to find out which
5640 FUNCTION_DECL nodes represent definitions and which ones represent
5641 mere declarations. We have to check `DECL_INITIAL' instead. That's
5642 because the C front-end supports some weird semantics for "extern
5643 inline" function definitions. These can get inlined within the
5644 current translation unit (an thus, we need to generate DWARF info
5645 for their abstract instances so that the DWARF info for the
5646 concrete inlined instances can have something to refer to) but
5647 the compiler never generates any out-of-lines instances of such
5648 things (despite the fact that they *are* definitions). The
5649 important point is that the C front-end marks these "extern inline"
5650 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5653 Note that the C++ front-end also plays some similar games for inline
5654 function definitions appearing within include files which also
5655 contain `#pragma interface' pragmas. */
5657 if (DECL_INITIAL (decl
) == NULL_TREE
)
5660 if (TREE_PUBLIC (decl
)
5661 && ! DECL_EXTERNAL (decl
)
5662 && ! DECL_ABSTRACT (decl
))
5664 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5666 /* Output a .debug_pubnames entry for a public function
5667 defined in this compilation unit. */
5669 fputc ('\n', asm_out_file
);
5670 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
5671 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5672 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5673 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5674 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5675 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5682 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5683 object declaration and if the declaration was never even
5684 referenced from within this entire compilation unit. We
5685 suppress these DIEs in order to save space in the .debug section
5686 (by eliminating entries which are probably useless). Note that
5687 we must not suppress block-local extern declarations (whether
5688 used or not) because that would screw-up the debugger's name
5689 lookup mechanism and cause it to miss things which really ought
5690 to be in scope at a given point. */
5692 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
5695 if (TREE_PUBLIC (decl
)
5696 && ! DECL_EXTERNAL (decl
)
5697 && GET_CODE (DECL_RTL (decl
)) == MEM
5698 && ! DECL_ABSTRACT (decl
))
5700 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5702 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5704 /* Output a .debug_pubnames entry for a public variable
5705 defined in this compilation unit. */
5707 fputc ('\n', asm_out_file
);
5708 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
5709 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5710 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5711 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5712 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5713 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5716 if (DECL_INITIAL (decl
) == NULL
)
5718 /* Output a .debug_aranges entry for a public variable
5719 which is tentatively defined in this compilation unit. */
5721 fputc ('\n', asm_out_file
);
5722 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
5723 ASM_OUTPUT_DWARF_ADDR (asm_out_file
,
5724 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
5725 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
5726 (unsigned) int_size_in_bytes (TREE_TYPE (decl
)));
5727 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5731 /* If we are in terse mode, don't generate any DIEs to represent
5732 any variable declarations or definitions. */
5734 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5740 /* Don't bother trying to generate any DIEs to represent any of the
5741 normal built-in types for the language we are compiling, except
5742 in cases where the types in question are *not* DWARF fundamental
5743 types. We make an exception in the case of non-fundamental types
5744 for the sake of Objective-C (and perhaps C++) because the GNU
5745 front-ends for these languages may in fact create certain "built-in"
5746 types which are (for example) RECORD_TYPEs. In such cases, we
5747 really need to output these (non-fundamental) types because other
5748 DIEs may contain references to them. */
5750 /* Also ignore language dependent types here, because they are probably
5751 also built-in types. If we didn't ignore them, then we would get
5752 references to undefined labels because output_type doesn't support
5753 them. So, for now, we need to ignore them to avoid assembler
5756 /* ??? This code is different than the equivalent code in dwarf2out.c.
5757 The dwarf2out.c code is probably more correct. */
5759 if (DECL_SOURCE_LINE (decl
) == 0
5760 && (type_is_fundamental (TREE_TYPE (decl
))
5761 || TREE_CODE (TREE_TYPE (decl
)) == LANG_TYPE
))
5764 /* If we are in terse mode, don't generate any DIEs to represent
5765 any actual typedefs. Note that even when we are in terse mode,
5766 we must still output DIEs to represent those tagged types which
5767 are used (directly or indirectly) in the specification of either
5768 a return type or a formal parameter type of some function. */
5770 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5771 if (! TYPE_DECL_IS_STUB (decl
)
5772 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)))
5781 fputc ('\n', asm_out_file
);
5782 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
5783 finalizing
= set_finalizing
;
5784 output_decl (decl
, NULL_TREE
);
5786 /* NOTE: The call above to `output_decl' may have caused one or more
5787 file-scope named types (i.e. tagged types) to be placed onto the
5788 pending_types_list. We have to get those types off of that list
5789 at some point, and this is the perfect time to do it. If we didn't
5790 take them off now, they might still be on the list when cc1 finally
5791 exits. That might be OK if it weren't for the fact that when we put
5792 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5793 for these types, and that causes them never to be output unless
5794 `output_pending_types_for_scope' takes them off of the list and un-sets
5795 their TREE_ASM_WRITTEN flags. */
5797 output_pending_types_for_scope (NULL_TREE
);
5799 /* The above call should have totally emptied the pending_types_list
5800 if this is not a nested function or class. If this is a nested type,
5801 then the remaining pending_types will be emitted when the containing type
5804 if (! DECL_CONTEXT (decl
))
5806 if (pending_types
!= 0)
5810 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5813 /* Output a marker (i.e. a label) for the beginning of the generated code
5814 for a lexical block. */
5817 dwarfout_begin_block (line
, blocknum
)
5818 unsigned int line ATTRIBUTE_UNUSED
;
5819 unsigned int blocknum
;
5821 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5823 function_section (current_function_decl
);
5824 sprintf (label
, BLOCK_BEGIN_LABEL_FMT
, blocknum
);
5825 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5828 /* Output a marker (i.e. a label) for the end of the generated code
5829 for a lexical block. */
5832 dwarfout_end_block (line
, blocknum
)
5833 unsigned int line ATTRIBUTE_UNUSED
;
5834 unsigned int blocknum
;
5836 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5838 function_section (current_function_decl
);
5839 sprintf (label
, BLOCK_END_LABEL_FMT
, blocknum
);
5840 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5843 /* Output a marker (i.e. a label) for the point in the generated code where
5844 the real body of the function begins (after parameters have been moved
5845 to their home locations). */
5848 dwarfout_end_prologue (line
, file
)
5849 unsigned int line ATTRIBUTE_UNUSED
;
5850 const char *file ATTRIBUTE_UNUSED
;
5852 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5854 if (! use_gnu_debug_info_extensions
)
5857 function_section (current_function_decl
);
5858 sprintf (label
, BODY_BEGIN_LABEL_FMT
, current_function_funcdef_no
);
5859 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5862 /* Output a marker (i.e. a label) for the point in the generated code where
5863 the real body of the function ends (just before the epilogue code). */
5866 dwarfout_end_function (line
)
5867 unsigned int line ATTRIBUTE_UNUSED
;
5869 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5871 if (! use_gnu_debug_info_extensions
)
5873 function_section (current_function_decl
);
5874 sprintf (label
, BODY_END_LABEL_FMT
, current_function_funcdef_no
);
5875 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5878 /* Output a marker (i.e. a label) for the absolute end of the generated code
5879 for a function definition. This gets called *after* the epilogue code
5880 has been generated. */
5883 dwarfout_end_epilogue (line
, file
)
5884 unsigned int line ATTRIBUTE_UNUSED
;
5885 const char *file ATTRIBUTE_UNUSED
;
5887 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5889 /* Output a label to mark the endpoint of the code generated for this
5892 sprintf (label
, FUNC_END_LABEL_FMT
, current_function_funcdef_no
);
5893 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5897 shuffle_filename_entry (new_zeroth
)
5898 filename_entry
*new_zeroth
;
5900 filename_entry temp_entry
;
5901 filename_entry
*limit_p
;
5902 filename_entry
*move_p
;
5904 if (new_zeroth
== &filename_table
[0])
5907 temp_entry
= *new_zeroth
;
5909 /* Shift entries up in the table to make room at [0]. */
5911 limit_p
= &filename_table
[0];
5912 for (move_p
= new_zeroth
; move_p
> limit_p
; move_p
--)
5913 *move_p
= *(move_p
-1);
5915 /* Install the found entry at [0]. */
5917 filename_table
[0] = temp_entry
;
5920 /* Create a new (string) entry for the .debug_sfnames section. */
5923 generate_new_sfname_entry ()
5925 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5927 fputc ('\n', asm_out_file
);
5928 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SFNAMES_SECTION
);
5929 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, filename_table
[0].number
);
5930 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5931 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5932 filename_table
[0].name
5933 ? filename_table
[0].name
5935 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5938 /* Lookup a filename (in the list of filenames that we know about here in
5939 dwarfout.c) and return its "index". The index of each (known) filename
5940 is just a unique number which is associated with only that one filename.
5941 We need such numbers for the sake of generating labels (in the
5942 .debug_sfnames section) and references to those unique labels (in the
5943 .debug_srcinfo and .debug_macinfo sections).
5945 If the filename given as an argument is not found in our current list,
5946 add it to the list and assign it the next available unique index number.
5948 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5949 one), we shuffle the filename found (or added) up to the zeroth entry of
5950 our list of filenames (which is always searched linearly). We do this so
5951 as to optimize the most common case for these filename lookups within
5952 dwarfout.c. The most common case by far is the case where we call
5953 lookup_filename to lookup the very same filename that we did a lookup
5954 on the last time we called lookup_filename. We make sure that this
5955 common case is fast because such cases will constitute 99.9% of the
5956 lookups we ever do (in practice).
5958 If we add a new filename entry to our table, we go ahead and generate
5959 the corresponding entry in the .debug_sfnames section right away.
5960 Doing so allows us to avoid tickling an assembler bug (present in some
5961 m68k assemblers) which yields assembly-time errors in cases where the
5962 difference of two label addresses is taken and where the two labels
5963 are in a section *other* than the one where the difference is being
5964 calculated, and where at least one of the two symbol references is a
5965 forward reference. (This bug could be tickled by our .debug_srcinfo
5966 entries if we don't output their corresponding .debug_sfnames entries
5970 lookup_filename (file_name
)
5971 const char *file_name
;
5973 filename_entry
*search_p
;
5974 filename_entry
*limit_p
= &filename_table
[ft_entries
];
5976 for (search_p
= filename_table
; search_p
< limit_p
; search_p
++)
5977 if (!strcmp (file_name
, search_p
->name
))
5979 /* When we get here, we have found the filename that we were
5980 looking for in the filename_table. Now we want to make sure
5981 that it gets moved to the zero'th entry in the table (if it
5982 is not already there) so that subsequent attempts to find the
5983 same filename will find it as quickly as possible. */
5985 shuffle_filename_entry (search_p
);
5986 return filename_table
[0].number
;
5989 /* We come here whenever we have a new filename which is not registered
5990 in the current table. Here we add it to the table. */
5992 /* Prepare to add a new table entry by making sure there is enough space
5993 in the table to do so. If not, expand the current table. */
5995 if (ft_entries
== ft_entries_allocated
)
5997 ft_entries_allocated
+= FT_ENTRIES_INCREMENT
;
5999 = (filename_entry
*)
6000 xrealloc (filename_table
,
6001 ft_entries_allocated
* sizeof (filename_entry
));
6004 /* Initially, add the new entry at the end of the filename table. */
6006 filename_table
[ft_entries
].number
= ft_entries
;
6007 filename_table
[ft_entries
].name
= xstrdup (file_name
);
6009 /* Shuffle the new entry into filename_table[0]. */
6011 shuffle_filename_entry (&filename_table
[ft_entries
]);
6013 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6014 generate_new_sfname_entry ();
6017 return filename_table
[0].number
;
6021 generate_srcinfo_entry (line_entry_num
, files_entry_num
)
6022 unsigned line_entry_num
;
6023 unsigned files_entry_num
;
6025 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6027 fputc ('\n', asm_out_file
);
6028 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6029 sprintf (label
, LINE_ENTRY_LABEL_FMT
, line_entry_num
);
6030 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, LINE_BEGIN_LABEL
);
6031 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, files_entry_num
);
6032 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, SFNAMES_BEGIN_LABEL
);
6033 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6037 dwarfout_source_line (line
, filename
)
6039 const char *filename
;
6041 if (debug_info_level
>= DINFO_LEVEL_NORMAL
6042 /* We can't emit line number info for functions in separate sections,
6043 because the assembler can't subtract labels in different sections. */
6044 && DECL_SECTION_NAME (current_function_decl
) == NULL_TREE
)
6046 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6047 static unsigned last_line_entry_num
= 0;
6048 static unsigned prev_file_entry_num
= (unsigned) -1;
6049 unsigned this_file_entry_num
;
6051 function_section (current_function_decl
);
6052 sprintf (label
, LINE_CODE_LABEL_FMT
, ++last_line_entry_num
);
6053 ASM_OUTPUT_LABEL (asm_out_file
, label
);
6055 fputc ('\n', asm_out_file
);
6057 if (use_gnu_debug_info_extensions
)
6058 this_file_entry_num
= lookup_filename (filename
);
6060 this_file_entry_num
= (unsigned) -1;
6062 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6063 if (this_file_entry_num
!= prev_file_entry_num
)
6065 char line_entry_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6067 sprintf (line_entry_label
, LINE_ENTRY_LABEL_FMT
, last_line_entry_num
);
6068 ASM_OUTPUT_LABEL (asm_out_file
, line_entry_label
);
6072 const char *tail
= strrchr (filename
, '/');
6078 dw2_asm_output_data (4, line
, "%s:%u", filename
, line
);
6079 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
6080 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, TEXT_BEGIN_LABEL
);
6081 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6083 if (this_file_entry_num
!= prev_file_entry_num
)
6084 generate_srcinfo_entry (last_line_entry_num
, this_file_entry_num
);
6085 prev_file_entry_num
= this_file_entry_num
;
6089 /* Generate an entry in the .debug_macinfo section. */
6092 generate_macinfo_entry (type
, offset
, string
)
6097 if (! use_gnu_debug_info_extensions
)
6100 fputc ('\n', asm_out_file
);
6101 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6102 assemble_integer (gen_rtx_PLUS (SImode
, GEN_INT (type
<< 24), offset
),
6103 4, BITS_PER_UNIT
, 1);
6104 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, string
);
6105 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6108 /* Wrapper for toplev.c callback to check debug info level. */
6110 dwarfout_start_source_file_check (line
, filename
)
6112 const char *filename
;
6114 if (debug_info_level
== DINFO_LEVEL_VERBOSE
)
6115 dwarfout_start_source_file (line
, filename
);
6119 dwarfout_start_source_file (line
, filename
)
6120 unsigned int line ATTRIBUTE_UNUSED
;
6121 const char *filename
;
6123 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6124 const char *label1
, *label2
;
6126 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, lookup_filename (filename
));
6127 label1
= (*label
== '*') + label
;
6128 label2
= (*SFNAMES_BEGIN_LABEL
== '*') + SFNAMES_BEGIN_LABEL
;
6129 generate_macinfo_entry (MACINFO_start
,
6130 gen_rtx_MINUS (Pmode
,
6131 gen_rtx_SYMBOL_REF (Pmode
, label1
),
6132 gen_rtx_SYMBOL_REF (Pmode
, label2
)),
6136 /* Wrapper for toplev.c callback to check debug info level. */
6138 dwarfout_end_source_file_check (lineno
)
6141 if (debug_info_level
== DINFO_LEVEL_VERBOSE
)
6142 dwarfout_end_source_file (lineno
);
6146 dwarfout_end_source_file (lineno
)
6149 generate_macinfo_entry (MACINFO_resume
, GEN_INT (lineno
), "");
6152 /* Called from check_newline in c-parse.y. The `buffer' parameter
6153 contains the tail part of the directive line, i.e. the part which
6154 is past the initial whitespace, #, whitespace, directive-name,
6158 dwarfout_define (lineno
, buffer
)
6162 static int initialized
= 0;
6166 dwarfout_start_source_file (0, primary_filename
);
6169 generate_macinfo_entry (MACINFO_define
, GEN_INT (lineno
), buffer
);
6172 /* Called from check_newline in c-parse.y. The `buffer' parameter
6173 contains the tail part of the directive line, i.e. the part which
6174 is past the initial whitespace, #, whitespace, directive-name,
6178 dwarfout_undef (lineno
, buffer
)
6182 generate_macinfo_entry (MACINFO_undef
, GEN_INT (lineno
), buffer
);
6185 /* Set up for Dwarf output at the start of compilation. */
6188 dwarfout_init (main_input_filename
)
6189 const char *main_input_filename
;
6191 warning ("support for the DWARF1 debugging format is deprecated");
6193 /* Remember the name of the primary input file. */
6195 primary_filename
= main_input_filename
;
6197 /* Allocate the initial hunk of the pending_sibling_stack. */
6199 pending_sibling_stack
6201 xmalloc (PENDING_SIBLINGS_INCREMENT
* sizeof (unsigned));
6202 pending_siblings_allocated
= PENDING_SIBLINGS_INCREMENT
;
6203 pending_siblings
= 1;
6205 /* Allocate the initial hunk of the filename_table. */
6208 = (filename_entry
*)
6209 xmalloc (FT_ENTRIES_INCREMENT
* sizeof (filename_entry
));
6210 ft_entries_allocated
= FT_ENTRIES_INCREMENT
;
6213 /* Allocate the initial hunk of the pending_types_list. */
6216 = (tree
*) xmalloc (PENDING_TYPES_INCREMENT
* sizeof (tree
));
6217 pending_types_allocated
= PENDING_TYPES_INCREMENT
;
6220 /* Create an artificial RECORD_TYPE node which we can use in our hack
6221 to get the DIEs representing types of formal parameters to come out
6222 only *after* the DIEs for the formal parameters themselves. */
6224 fake_containing_scope
= make_node (RECORD_TYPE
);
6226 /* Output a starting label for the .text section. */
6228 fputc ('\n', asm_out_file
);
6229 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION_NAME
);
6230 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_BEGIN_LABEL
);
6231 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6233 /* Output a starting label for the .data section. */
6235 fputc ('\n', asm_out_file
);
6236 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION_NAME
);
6237 ASM_OUTPUT_LABEL (asm_out_file
, DATA_BEGIN_LABEL
);
6238 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6240 #if 0 /* GNU C doesn't currently use .data1. */
6241 /* Output a starting label for the .data1 section. */
6243 fputc ('\n', asm_out_file
);
6244 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION_NAME
);
6245 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_BEGIN_LABEL
);
6246 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6249 /* Output a starting label for the .rodata section. */
6251 fputc ('\n', asm_out_file
);
6252 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION_NAME
);
6253 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_BEGIN_LABEL
);
6254 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6256 #if 0 /* GNU C doesn't currently use .rodata1. */
6257 /* Output a starting label for the .rodata1 section. */
6259 fputc ('\n', asm_out_file
);
6260 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION_NAME
);
6261 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_BEGIN_LABEL
);
6262 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6265 /* Output a starting label for the .bss section. */
6267 fputc ('\n', asm_out_file
);
6268 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION_NAME
);
6269 ASM_OUTPUT_LABEL (asm_out_file
, BSS_BEGIN_LABEL
);
6270 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6272 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6274 if (use_gnu_debug_info_extensions
)
6276 /* Output a starting label and an initial (compilation directory)
6277 entry for the .debug_sfnames section. The starting label will be
6278 referenced by the initial entry in the .debug_srcinfo section. */
6280 fputc ('\n', asm_out_file
);
6281 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SFNAMES_SECTION
);
6282 ASM_OUTPUT_LABEL (asm_out_file
, SFNAMES_BEGIN_LABEL
);
6284 const char *pwd
= getpwd ();
6288 fatal_error ("can't get current directory: %m");
6290 dirname
= concat (pwd
, "/", NULL
);
6291 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
6294 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6297 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
6298 && use_gnu_debug_info_extensions
)
6300 /* Output a starting label for the .debug_macinfo section. This
6301 label will be referenced by the AT_mac_info attribute in the
6302 TAG_compile_unit DIE. */
6304 fputc ('\n', asm_out_file
);
6305 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6306 ASM_OUTPUT_LABEL (asm_out_file
, MACINFO_BEGIN_LABEL
);
6307 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6310 /* Generate the initial entry for the .line section. */
6312 fputc ('\n', asm_out_file
);
6313 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6314 ASM_OUTPUT_LABEL (asm_out_file
, LINE_BEGIN_LABEL
);
6315 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, LINE_END_LABEL
, LINE_BEGIN_LABEL
);
6316 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6317 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6319 if (use_gnu_debug_info_extensions
)
6321 /* Generate the initial entry for the .debug_srcinfo section. */
6323 fputc ('\n', asm_out_file
);
6324 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6325 ASM_OUTPUT_LABEL (asm_out_file
, SRCINFO_BEGIN_LABEL
);
6326 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, LINE_BEGIN_LABEL
);
6327 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, SFNAMES_BEGIN_LABEL
);
6328 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6329 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_END_LABEL
);
6330 #ifdef DWARF_TIMESTAMPS
6331 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, time (NULL
));
6333 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
6335 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6338 /* Generate the initial entry for the .debug_pubnames section. */
6340 fputc ('\n', asm_out_file
);
6341 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
6342 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
6343 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6345 /* Generate the initial entry for the .debug_aranges section. */
6347 fputc ('\n', asm_out_file
);
6348 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
6349 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
6350 DEBUG_ARANGES_END_LABEL
,
6351 DEBUG_ARANGES_BEGIN_LABEL
);
6352 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_BEGIN_LABEL
);
6353 ASM_OUTPUT_DWARF_DATA1 (asm_out_file
, 1);
6354 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
6355 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6358 /* Setup first DIE number == 1. */
6359 NEXT_DIE_NUM
= next_unused_dienum
++;
6361 /* Generate the initial DIE for the .debug section. Note that the
6362 (string) value given in the AT_name attribute of the TAG_compile_unit
6363 DIE will (typically) be a relative pathname and that this pathname
6364 should be taken as being relative to the directory from which the
6365 compiler was invoked when the given (base) source file was compiled. */
6367 fputc ('\n', asm_out_file
);
6368 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
6369 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_BEGIN_LABEL
);
6370 output_die (output_compile_unit_die
, (void *) main_input_filename
);
6371 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6373 fputc ('\n', asm_out_file
);
6376 /* Output stuff that dwarf requires at the end of every file. */
6379 dwarfout_finish (main_input_filename
)
6380 const char *main_input_filename ATTRIBUTE_UNUSED
;
6382 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
6384 fputc ('\n', asm_out_file
);
6385 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
6386 retry_incomplete_types ();
6387 fputc ('\n', asm_out_file
);
6389 /* Mark the end of the chain of siblings which represent all file-scope
6390 declarations in this compilation unit. */
6392 /* The (null) DIE which represents the terminator for the (sibling linked)
6393 list of file-scope items is *special*. Normally, we would just call
6394 end_sibling_chain at this point in order to output a word with the
6395 value `4' and that word would act as the terminator for the list of
6396 DIEs describing file-scope items. Unfortunately, if we were to simply
6397 do that, the label that would follow this DIE in the .debug section
6398 (i.e. `..D2') would *not* be properly aligned (as it must be on some
6399 machines) to a 4 byte boundary.
6401 In order to force the label `..D2' to get aligned to a 4 byte boundary,
6402 the trick used is to insert extra (otherwise useless) padding bytes
6403 into the (null) DIE that we know must precede the ..D2 label in the
6404 .debug section. The amount of padding required can be anywhere between
6405 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
6406 with the padding) would normally contain the value 4, but now it will
6407 also have to include the padding bytes, so it will instead have some
6408 value in the range 4..7.
6410 Fortunately, the rules of Dwarf say that any DIE whose length word
6411 contains *any* value less than 8 should be treated as a null DIE, so
6412 this trick works out nicely. Clever, eh? Don't give me any credit
6413 (or blame). I didn't think of this scheme. I just conformed to it.
6416 output_die (output_padded_null_die
, (void *) 0);
6419 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
6420 ASM_OUTPUT_LABEL (asm_out_file
, label
); /* should be ..D2 */
6421 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6423 /* Output a terminator label for the .text section. */
6425 fputc ('\n', asm_out_file
);
6426 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION_NAME
);
6427 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_END_LABEL
);
6428 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6430 /* Output a terminator label for the .data section. */
6432 fputc ('\n', asm_out_file
);
6433 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION_NAME
);
6434 ASM_OUTPUT_LABEL (asm_out_file
, DATA_END_LABEL
);
6435 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6437 #if 0 /* GNU C doesn't currently use .data1. */
6438 /* Output a terminator label for the .data1 section. */
6440 fputc ('\n', asm_out_file
);
6441 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION_NAME
);
6442 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_END_LABEL
);
6443 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6446 /* Output a terminator label for the .rodata section. */
6448 fputc ('\n', asm_out_file
);
6449 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION_NAME
);
6450 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_END_LABEL
);
6451 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6453 #if 0 /* GNU C doesn't currently use .rodata1. */
6454 /* Output a terminator label for the .rodata1 section. */
6456 fputc ('\n', asm_out_file
);
6457 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION_NAME
);
6458 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_END_LABEL
);
6459 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6462 /* Output a terminator label for the .bss section. */
6464 fputc ('\n', asm_out_file
);
6465 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION_NAME
);
6466 ASM_OUTPUT_LABEL (asm_out_file
, BSS_END_LABEL
);
6467 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6469 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
6471 /* Output a terminating entry for the .line section. */
6473 fputc ('\n', asm_out_file
);
6474 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
6475 ASM_OUTPUT_LABEL (asm_out_file
, LINE_LAST_ENTRY_LABEL
);
6476 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6477 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
6478 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
6479 ASM_OUTPUT_LABEL (asm_out_file
, LINE_END_LABEL
);
6480 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6482 if (use_gnu_debug_info_extensions
)
6484 /* Output a terminating entry for the .debug_srcinfo section. */
6486 fputc ('\n', asm_out_file
);
6487 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SRCINFO_SECTION
);
6488 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
6489 LINE_LAST_ENTRY_LABEL
, LINE_BEGIN_LABEL
);
6490 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
6491 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6494 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
6496 /* Output terminating entries for the .debug_macinfo section. */
6498 dwarfout_end_source_file (0);
6500 fputc ('\n', asm_out_file
);
6501 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_MACINFO_SECTION
);
6502 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6503 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
6504 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6507 /* Generate the terminating entry for the .debug_pubnames section. */
6509 fputc ('\n', asm_out_file
);
6510 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_PUBNAMES_SECTION
);
6511 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6512 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
6513 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6515 /* Generate the terminating entries for the .debug_aranges section.
6517 Note that we want to do this only *after* we have output the end
6518 labels (for the various program sections) which we are going to
6519 refer to here. This allows us to work around a bug in the m68k
6520 svr4 assembler. That assembler gives bogus assembly-time errors
6521 if (within any given section) you try to take the difference of
6522 two relocatable symbols, both of which are located within some
6523 other section, and if one (or both?) of the symbols involved is
6524 being forward-referenced. By generating the .debug_aranges
6525 entries at this late point in the assembly output, we skirt the
6526 issue simply by avoiding forward-references.
6529 fputc ('\n', asm_out_file
);
6530 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_ARANGES_SECTION
);
6532 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
6533 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
6535 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA_BEGIN_LABEL
);
6536 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA_END_LABEL
, DATA_BEGIN_LABEL
);
6538 #if 0 /* GNU C doesn't currently use .data1. */
6539 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA1_BEGIN_LABEL
);
6540 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA1_END_LABEL
,
6544 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA_BEGIN_LABEL
);
6545 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA_END_LABEL
,
6546 RODATA_BEGIN_LABEL
);
6548 #if 0 /* GNU C doesn't currently use .rodata1. */
6549 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA1_BEGIN_LABEL
);
6550 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA1_END_LABEL
,
6551 RODATA1_BEGIN_LABEL
);
6554 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, BSS_BEGIN_LABEL
);
6555 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, BSS_END_LABEL
, BSS_BEGIN_LABEL
);
6557 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6558 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
6560 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_END_LABEL
);
6561 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6564 /* There should not be any pending types left at the end. We need
6565 this now because it may not have been checked on the last call to
6566 dwarfout_file_scope_decl. */
6567 if (pending_types
!= 0)
6571 #endif /* DWARF_DEBUGGING_INFO */