Daily bump.
[official-gcc.git] / gcc / tree-vectorizer.h
blob866d813a12c5df42b53e5f0770fdc76e9e8b471e
1 /* Vectorizer
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include "internal-fn.h"
30 #include "tree-ssa-operands.h"
32 /* Used for naming of new temporaries. */
33 enum vect_var_kind {
34 vect_simple_var,
35 vect_pointer_var,
36 vect_scalar_var,
37 vect_mask_var
40 /* Defines type of operation. */
41 enum operation_type {
42 unary_op = 1,
43 binary_op,
44 ternary_op
47 /* Define type of available alignment support. */
48 enum dr_alignment_support {
49 dr_unaligned_unsupported,
50 dr_unaligned_supported,
51 dr_explicit_realign,
52 dr_explicit_realign_optimized,
53 dr_aligned
56 /* Define type of def-use cross-iteration cycle. */
57 enum vect_def_type {
58 vect_uninitialized_def = 0,
59 vect_constant_def = 1,
60 vect_external_def,
61 vect_internal_def,
62 vect_induction_def,
63 vect_reduction_def,
64 vect_double_reduction_def,
65 vect_nested_cycle,
66 vect_unknown_def_type
69 /* Define type of reduction. */
70 enum vect_reduction_type {
71 TREE_CODE_REDUCTION,
72 COND_REDUCTION,
73 INTEGER_INDUC_COND_REDUCTION,
74 CONST_COND_REDUCTION,
76 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
77 to implement:
79 for (int i = 0; i < VF; ++i)
80 res = cond[i] ? val[i] : res; */
81 EXTRACT_LAST_REDUCTION,
83 /* Use a folding reduction within the loop to implement:
85 for (int i = 0; i < VF; ++i)
86 res = res OP val[i];
88 (with no reassocation). */
89 FOLD_LEFT_REDUCTION
92 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
93 || ((D) == vect_double_reduction_def) \
94 || ((D) == vect_nested_cycle))
96 /* Structure to encapsulate information about a group of like
97 instructions to be presented to the target cost model. */
98 struct stmt_info_for_cost {
99 int count;
100 enum vect_cost_for_stmt kind;
101 enum vect_cost_model_location where;
102 stmt_vec_info stmt_info;
103 tree vectype;
104 int misalign;
107 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
109 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
110 derived from that gives the maximum known alignment for that base. */
111 typedef hash_map<tree_operand_hash,
112 std::pair<stmt_vec_info, innermost_loop_behavior *> >
113 vec_base_alignments;
115 /************************************************************************
117 ************************************************************************/
118 typedef struct _slp_tree *slp_tree;
119 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
120 typedef vec<unsigned> load_permutation_t;
122 /* A computation tree of an SLP instance. Each node corresponds to a group of
123 stmts to be packed in a SIMD stmt. */
124 struct _slp_tree {
125 _slp_tree ();
126 ~_slp_tree ();
128 /* Nodes that contain def-stmts of this node statements operands. */
129 vec<slp_tree> children;
131 /* A group of scalar stmts to be vectorized together. */
132 vec<stmt_vec_info> stmts;
133 /* A group of scalar operands to be vectorized together. */
134 vec<tree> ops;
135 /* The representative that should be used for analysis and
136 code generation. */
137 stmt_vec_info representative;
139 /* Load permutation relative to the stores, NULL if there is no
140 permutation. */
141 load_permutation_t load_permutation;
142 /* Lane permutation of the operands scalar lanes encoded as pairs
143 of { operand number, lane number }. The number of elements
144 denotes the number of output lanes. */
145 lane_permutation_t lane_permutation;
147 tree vectype;
148 /* Vectorized stmt/s. */
149 vec<gimple *> vec_stmts;
150 vec<tree> vec_defs;
151 /* Number of vector stmts that are created to replace the group of scalar
152 stmts. It is calculated during the transformation phase as the number of
153 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
154 divided by vector size. */
155 unsigned int vec_stmts_size;
157 /* Reference count in the SLP graph. */
158 unsigned int refcnt;
159 /* The maximum number of vector elements for the subtree rooted
160 at this node. */
161 poly_uint64 max_nunits;
162 /* The DEF type of this node. */
163 enum vect_def_type def_type;
164 /* The number of scalar lanes produced by this node. */
165 unsigned int lanes;
166 /* The operation of this node. */
167 enum tree_code code;
169 int vertex;
171 /* If not NULL this is a cached failed SLP discovery attempt with
172 the lanes that failed during SLP discovery as 'false'. This is
173 a copy of the matches array. */
174 bool *failed;
176 /* Allocate from slp_tree_pool. */
177 static void *operator new (size_t);
179 /* Return memory to slp_tree_pool. */
180 static void operator delete (void *, size_t);
182 /* Linked list of nodes to release when we free the slp_tree_pool. */
183 slp_tree next_node;
184 slp_tree prev_node;
187 /* The enum describes the type of operations that an SLP instance
188 can perform. */
190 enum slp_instance_kind {
191 slp_inst_kind_store,
192 slp_inst_kind_reduc_group,
193 slp_inst_kind_reduc_chain,
194 slp_inst_kind_bb_reduc,
195 slp_inst_kind_ctor
198 /* SLP instance is a sequence of stmts in a loop that can be packed into
199 SIMD stmts. */
200 typedef class _slp_instance {
201 public:
202 /* The root of SLP tree. */
203 slp_tree root;
205 /* For vector constructors, the constructor stmt that the SLP tree is built
206 from, NULL otherwise. */
207 vec<stmt_vec_info> root_stmts;
209 /* The unrolling factor required to vectorized this SLP instance. */
210 poly_uint64 unrolling_factor;
212 /* The group of nodes that contain loads of this SLP instance. */
213 vec<slp_tree> loads;
215 /* The SLP node containing the reduction PHIs. */
216 slp_tree reduc_phis;
218 /* Vector cost of this entry to the SLP graph. */
219 stmt_vector_for_cost cost_vec;
221 /* If this instance is the main entry of a subgraph the set of
222 entries into the same subgraph, including itself. */
223 vec<_slp_instance *> subgraph_entries;
225 /* The type of operation the SLP instance is performing. */
226 slp_instance_kind kind;
228 dump_user_location_t location () const;
229 } *slp_instance;
232 /* Access Functions. */
233 #define SLP_INSTANCE_TREE(S) (S)->root
234 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
235 #define SLP_INSTANCE_LOADS(S) (S)->loads
236 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
237 #define SLP_INSTANCE_KIND(S) (S)->kind
239 #define SLP_TREE_CHILDREN(S) (S)->children
240 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
241 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
242 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
243 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
244 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
245 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
246 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
247 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
248 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
249 #define SLP_TREE_VECTYPE(S) (S)->vectype
250 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
251 #define SLP_TREE_LANES(S) (S)->lanes
252 #define SLP_TREE_CODE(S) (S)->code
254 /* Key for map that records association between
255 scalar conditions and corresponding loop mask, and
256 is populated by vect_record_loop_mask. */
258 struct scalar_cond_masked_key
260 scalar_cond_masked_key (tree t, unsigned ncopies_)
261 : ncopies (ncopies_)
263 get_cond_ops_from_tree (t);
266 void get_cond_ops_from_tree (tree);
268 unsigned ncopies;
269 tree_code code;
270 tree op0;
271 tree op1;
274 template<>
275 struct default_hash_traits<scalar_cond_masked_key>
277 typedef scalar_cond_masked_key compare_type;
278 typedef scalar_cond_masked_key value_type;
280 static inline hashval_t
281 hash (value_type v)
283 inchash::hash h;
284 h.add_int (v.code);
285 inchash::add_expr (v.op0, h, 0);
286 inchash::add_expr (v.op1, h, 0);
287 h.add_int (v.ncopies);
288 return h.end ();
291 static inline bool
292 equal (value_type existing, value_type candidate)
294 return (existing.ncopies == candidate.ncopies
295 && existing.code == candidate.code
296 && operand_equal_p (existing.op0, candidate.op0, 0)
297 && operand_equal_p (existing.op1, candidate.op1, 0));
300 static const bool empty_zero_p = true;
302 static inline void
303 mark_empty (value_type &v)
305 v.ncopies = 0;
308 static inline bool
309 is_empty (value_type v)
311 return v.ncopies == 0;
314 static inline void mark_deleted (value_type &) {}
316 static inline bool is_deleted (const value_type &)
318 return false;
321 static inline void remove (value_type &) {}
324 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
326 /* Describes two objects whose addresses must be unequal for the vectorized
327 loop to be valid. */
328 typedef std::pair<tree, tree> vec_object_pair;
330 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
331 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
332 class vec_lower_bound {
333 public:
334 vec_lower_bound () {}
335 vec_lower_bound (tree e, bool u, poly_uint64 m)
336 : expr (e), unsigned_p (u), min_value (m) {}
338 tree expr;
339 bool unsigned_p;
340 poly_uint64 min_value;
343 /* Vectorizer state shared between different analyses like vector sizes
344 of the same CFG region. */
345 class vec_info_shared {
346 public:
347 vec_info_shared();
348 ~vec_info_shared();
350 void save_datarefs();
351 void check_datarefs();
353 /* All data references. Freed by free_data_refs, so not an auto_vec. */
354 vec<data_reference_p> datarefs;
355 vec<data_reference> datarefs_copy;
357 /* The loop nest in which the data dependences are computed. */
358 auto_vec<loop_p> loop_nest;
360 /* All data dependences. Freed by free_dependence_relations, so not
361 an auto_vec. */
362 vec<ddr_p> ddrs;
365 /* Vectorizer state common between loop and basic-block vectorization. */
366 class vec_info {
367 public:
368 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
369 enum vec_kind { bb, loop };
371 vec_info (vec_kind, void *, vec_info_shared *);
372 ~vec_info ();
374 stmt_vec_info add_stmt (gimple *);
375 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
376 stmt_vec_info lookup_stmt (gimple *);
377 stmt_vec_info lookup_def (tree);
378 stmt_vec_info lookup_single_use (tree);
379 class dr_vec_info *lookup_dr (data_reference *);
380 void move_dr (stmt_vec_info, stmt_vec_info);
381 void remove_stmt (stmt_vec_info);
382 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
383 void insert_on_entry (stmt_vec_info, gimple *);
384 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
386 /* The type of vectorization. */
387 vec_kind kind;
389 /* Shared vectorizer state. */
390 vec_info_shared *shared;
392 /* The mapping of GIMPLE UID to stmt_vec_info. */
393 vec<stmt_vec_info> stmt_vec_infos;
394 /* Whether the above mapping is complete. */
395 bool stmt_vec_info_ro;
397 /* The SLP graph. */
398 auto_vec<slp_instance> slp_instances;
400 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
401 known alignment for that base. */
402 vec_base_alignments base_alignments;
404 /* All interleaving chains of stores, represented by the first
405 stmt in the chain. */
406 auto_vec<stmt_vec_info> grouped_stores;
408 /* Cost data used by the target cost model. */
409 void *target_cost_data;
411 /* The set of vector modes used in the vectorized region. */
412 mode_set used_vector_modes;
414 /* The argument we should pass to related_vector_mode when looking up
415 the vector mode for a scalar mode, or VOIDmode if we haven't yet
416 made any decisions about which vector modes to use. */
417 machine_mode vector_mode;
419 private:
420 stmt_vec_info new_stmt_vec_info (gimple *stmt);
421 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
422 void free_stmt_vec_infos ();
423 void free_stmt_vec_info (stmt_vec_info);
426 class _loop_vec_info;
427 class _bb_vec_info;
429 template<>
430 template<>
431 inline bool
432 is_a_helper <_loop_vec_info *>::test (vec_info *i)
434 return i->kind == vec_info::loop;
437 template<>
438 template<>
439 inline bool
440 is_a_helper <_bb_vec_info *>::test (vec_info *i)
442 return i->kind == vec_info::bb;
445 /* In general, we can divide the vector statements in a vectorized loop
446 into related groups ("rgroups") and say that for each rgroup there is
447 some nS such that the rgroup operates on nS values from one scalar
448 iteration followed by nS values from the next. That is, if VF is the
449 vectorization factor of the loop, the rgroup operates on a sequence:
451 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
453 where (i,j) represents a scalar value with index j in a scalar
454 iteration with index i.
456 [ We use the term "rgroup" to emphasise that this grouping isn't
457 necessarily the same as the grouping of statements used elsewhere.
458 For example, if we implement a group of scalar loads using gather
459 loads, we'll use a separate gather load for each scalar load, and
460 thus each gather load will belong to its own rgroup. ]
462 In general this sequence will occupy nV vectors concatenated
463 together. If these vectors have nL lanes each, the total number
464 of scalar values N is given by:
466 N = nS * VF = nV * nL
468 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
469 are compile-time constants but VF and nL can be variable (if the target
470 supports variable-length vectors).
472 In classical vectorization, each iteration of the vector loop would
473 handle exactly VF iterations of the original scalar loop. However,
474 in vector loops that are able to operate on partial vectors, a
475 particular iteration of the vector loop might handle fewer than VF
476 iterations of the scalar loop. The vector lanes that correspond to
477 iterations of the scalar loop are said to be "active" and the other
478 lanes are said to be "inactive".
480 In such vector loops, many rgroups need to be controlled to ensure
481 that they have no effect for the inactive lanes. Conceptually, each
482 such rgroup needs a sequence of booleans in the same order as above,
483 but with each (i,j) replaced by a boolean that indicates whether
484 iteration i is active. This sequence occupies nV vector controls
485 that again have nL lanes each. Thus the control sequence as a whole
486 consists of VF independent booleans that are each repeated nS times.
488 Taking mask-based approach as a partially-populated vectors example.
489 We make the simplifying assumption that if a sequence of nV masks is
490 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
491 VIEW_CONVERTing it. This holds for all current targets that support
492 fully-masked loops. For example, suppose the scalar loop is:
494 float *f;
495 double *d;
496 for (int i = 0; i < n; ++i)
498 f[i * 2 + 0] += 1.0f;
499 f[i * 2 + 1] += 2.0f;
500 d[i] += 3.0;
503 and suppose that vectors have 256 bits. The vectorized f accesses
504 will belong to one rgroup and the vectorized d access to another:
506 f rgroup: nS = 2, nV = 1, nL = 8
507 d rgroup: nS = 1, nV = 1, nL = 4
508 VF = 4
510 [ In this simple example the rgroups do correspond to the normal
511 SLP grouping scheme. ]
513 If only the first three lanes are active, the masks we need are:
515 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
516 d rgroup: 1 | 1 | 1 | 0
518 Here we can use a mask calculated for f's rgroup for d's, but not
519 vice versa.
521 Thus for each value of nV, it is enough to provide nV masks, with the
522 mask being calculated based on the highest nL (or, equivalently, based
523 on the highest nS) required by any rgroup with that nV. We therefore
524 represent the entire collection of masks as a two-level table, with the
525 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
526 the second being indexed by the mask index 0 <= i < nV. */
528 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
529 according to the description above. */
530 struct rgroup_controls {
531 /* The largest nS for all rgroups that use these controls. */
532 unsigned int max_nscalars_per_iter;
534 /* For the largest nS recorded above, the loop controls divide each scalar
535 into FACTOR equal-sized pieces. This is useful if we need to split
536 element-based accesses into byte-based accesses. */
537 unsigned int factor;
539 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
540 For mask-based controls, it is the type of the masks in CONTROLS.
541 For length-based controls, it can be any vector type that has the
542 specified number of elements; the type of the elements doesn't matter. */
543 tree type;
545 /* A vector of nV controls, in iteration order. */
546 vec<tree> controls;
549 typedef auto_vec<rgroup_controls> vec_loop_masks;
551 typedef auto_vec<rgroup_controls> vec_loop_lens;
553 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
555 /* Information about a reduction accumulator from the main loop that could
556 conceivably be reused as the input to a reduction in an epilogue loop. */
557 struct vect_reusable_accumulator {
558 /* The final value of the accumulator, which forms the input to the
559 reduction operation. */
560 tree reduc_input;
562 /* The stmt_vec_info that describes the reduction (i.e. the one for
563 which is_reduc_info is true). */
564 stmt_vec_info reduc_info;
567 /*-----------------------------------------------------------------*/
568 /* Info on vectorized loops. */
569 /*-----------------------------------------------------------------*/
570 typedef class _loop_vec_info : public vec_info {
571 public:
572 _loop_vec_info (class loop *, vec_info_shared *);
573 ~_loop_vec_info ();
575 /* The loop to which this info struct refers to. */
576 class loop *loop;
578 /* The loop basic blocks. */
579 basic_block *bbs;
581 /* Number of latch executions. */
582 tree num_itersm1;
583 /* Number of iterations. */
584 tree num_iters;
585 /* Number of iterations of the original loop. */
586 tree num_iters_unchanged;
587 /* Condition under which this loop is analyzed and versioned. */
588 tree num_iters_assumptions;
590 /* Threshold of number of iterations below which vectorization will not be
591 performed. It is calculated from MIN_PROFITABLE_ITERS and
592 param_min_vect_loop_bound. */
593 unsigned int th;
595 /* When applying loop versioning, the vector form should only be used
596 if the number of scalar iterations is >= this value, on top of all
597 the other requirements. Ignored when loop versioning is not being
598 used. */
599 poly_uint64 versioning_threshold;
601 /* Unrolling factor */
602 poly_uint64 vectorization_factor;
604 /* If this loop is an epilogue loop whose main loop can be skipped,
605 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
606 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
607 main loop and goes straight to this loop's preheader.
609 Both fields are null otherwise. */
610 edge main_loop_edge;
611 edge skip_main_loop_edge;
613 /* If this loop is an epilogue loop that might be skipped after executing
614 the main loop, this edge is the one that skips the epilogue. */
615 edge skip_this_loop_edge;
617 /* The vectorized form of a standard reduction replaces the original
618 scalar code's final result (a loop-closed SSA PHI) with the result
619 of a vector-to-scalar reduction operation. After vectorization,
620 this variable maps these vector-to-scalar results to information
621 about the reductions that generated them. */
622 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
624 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
625 if there is no particular limit. */
626 unsigned HOST_WIDE_INT max_vectorization_factor;
628 /* The masks that a fully-masked loop should use to avoid operating
629 on inactive scalars. */
630 vec_loop_masks masks;
632 /* The lengths that a loop with length should use to avoid operating
633 on inactive scalars. */
634 vec_loop_lens lens;
636 /* Set of scalar conditions that have loop mask applied. */
637 scalar_cond_masked_set_type scalar_cond_masked_set;
639 /* If we are using a loop mask to align memory addresses, this variable
640 contains the number of vector elements that we should skip in the
641 first iteration of the vector loop (i.e. the number of leading
642 elements that should be false in the first mask). */
643 tree mask_skip_niters;
645 /* The type that the loop control IV should be converted to before
646 testing which of the VF scalars are active and inactive.
647 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
648 tree rgroup_compare_type;
650 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
651 the loop should not be vectorized, if constant non-zero, simd_if_cond
652 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
653 should be versioned on that condition, using scalar loop if the condition
654 is false and vectorized loop otherwise. */
655 tree simd_if_cond;
657 /* The type that the vector loop control IV should have when
658 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
659 tree rgroup_iv_type;
661 /* Unknown DRs according to which loop was peeled. */
662 class dr_vec_info *unaligned_dr;
664 /* peeling_for_alignment indicates whether peeling for alignment will take
665 place, and what the peeling factor should be:
666 peeling_for_alignment = X means:
667 If X=0: Peeling for alignment will not be applied.
668 If X>0: Peel first X iterations.
669 If X=-1: Generate a runtime test to calculate the number of iterations
670 to be peeled, using the dataref recorded in the field
671 unaligned_dr. */
672 int peeling_for_alignment;
674 /* The mask used to check the alignment of pointers or arrays. */
675 int ptr_mask;
677 /* Data Dependence Relations defining address ranges that are candidates
678 for a run-time aliasing check. */
679 auto_vec<ddr_p> may_alias_ddrs;
681 /* Data Dependence Relations defining address ranges together with segment
682 lengths from which the run-time aliasing check is built. */
683 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
685 /* Check that the addresses of each pair of objects is unequal. */
686 auto_vec<vec_object_pair> check_unequal_addrs;
688 /* List of values that are required to be nonzero. This is used to check
689 whether things like "x[i * n] += 1;" are safe and eventually gets added
690 to the checks for lower bounds below. */
691 auto_vec<tree> check_nonzero;
693 /* List of values that need to be checked for a minimum value. */
694 auto_vec<vec_lower_bound> lower_bounds;
696 /* Statements in the loop that have data references that are candidates for a
697 runtime (loop versioning) misalignment check. */
698 auto_vec<stmt_vec_info> may_misalign_stmts;
700 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
701 auto_vec<stmt_vec_info> reductions;
703 /* All reduction chains in the loop, represented by the first
704 stmt in the chain. */
705 auto_vec<stmt_vec_info> reduction_chains;
707 /* Cost vector for a single scalar iteration. */
708 auto_vec<stmt_info_for_cost> scalar_cost_vec;
710 /* Map of IV base/step expressions to inserted name in the preheader. */
711 hash_map<tree_operand_hash, tree> *ivexpr_map;
713 /* Map of OpenMP "omp simd array" scan variables to corresponding
714 rhs of the store of the initializer. */
715 hash_map<tree, tree> *scan_map;
717 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
718 applied to the loop, i.e., no unrolling is needed, this is 1. */
719 poly_uint64 slp_unrolling_factor;
721 /* Cost of a single scalar iteration. */
722 int single_scalar_iteration_cost;
724 /* The cost of the vector prologue and epilogue, including peeled
725 iterations and set-up code. */
726 int vec_outside_cost;
728 /* The cost of the vector loop body. */
729 int vec_inside_cost;
731 /* The factor used to over weight those statements in an inner loop
732 relative to the loop being vectorized. */
733 unsigned int inner_loop_cost_factor;
735 /* Is the loop vectorizable? */
736 bool vectorizable;
738 /* Records whether we still have the option of vectorizing this loop
739 using partially-populated vectors; in other words, whether it is
740 still possible for one iteration of the vector loop to handle
741 fewer than VF scalars. */
742 bool can_use_partial_vectors_p;
744 /* True if we've decided to use partially-populated vectors, so that
745 the vector loop can handle fewer than VF scalars. */
746 bool using_partial_vectors_p;
748 /* True if we've decided to use partially-populated vectors for the
749 epilogue of loop. */
750 bool epil_using_partial_vectors_p;
752 /* When we have grouped data accesses with gaps, we may introduce invalid
753 memory accesses. We peel the last iteration of the loop to prevent
754 this. */
755 bool peeling_for_gaps;
757 /* When the number of iterations is not a multiple of the vector size
758 we need to peel off iterations at the end to form an epilogue loop. */
759 bool peeling_for_niter;
761 /* True if there are no loop carried data dependencies in the loop.
762 If loop->safelen <= 1, then this is always true, either the loop
763 didn't have any loop carried data dependencies, or the loop is being
764 vectorized guarded with some runtime alias checks, or couldn't
765 be vectorized at all, but then this field shouldn't be used.
766 For loop->safelen >= 2, the user has asserted that there are no
767 backward dependencies, but there still could be loop carried forward
768 dependencies in such loops. This flag will be false if normal
769 vectorizer data dependency analysis would fail or require versioning
770 for alias, but because of loop->safelen >= 2 it has been vectorized
771 even without versioning for alias. E.g. in:
772 #pragma omp simd
773 for (int i = 0; i < m; i++)
774 a[i] = a[i + k] * c;
775 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
776 DTRT even for k > 0 && k < m, but without safelen we would not
777 vectorize this, so this field would be false. */
778 bool no_data_dependencies;
780 /* Mark loops having masked stores. */
781 bool has_mask_store;
783 /* Queued scaling factor for the scalar loop. */
784 profile_probability scalar_loop_scaling;
786 /* If if-conversion versioned this loop before conversion, this is the
787 loop version without if-conversion. */
788 class loop *scalar_loop;
790 /* For loops being epilogues of already vectorized loops
791 this points to the original vectorized loop. Otherwise NULL. */
792 _loop_vec_info *orig_loop_info;
794 /* Used to store loop_vec_infos of epilogues of this loop during
795 analysis. */
796 vec<_loop_vec_info *> epilogue_vinfos;
798 } *loop_vec_info;
800 /* Access Functions. */
801 #define LOOP_VINFO_LOOP(L) (L)->loop
802 #define LOOP_VINFO_BBS(L) (L)->bbs
803 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
804 #define LOOP_VINFO_NITERS(L) (L)->num_iters
805 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
806 prologue peeling retain total unchanged scalar loop iterations for
807 cost model. */
808 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
809 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
810 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
811 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
812 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
813 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
814 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
815 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
816 (L)->epil_using_partial_vectors_p
817 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
818 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
819 #define LOOP_VINFO_MASKS(L) (L)->masks
820 #define LOOP_VINFO_LENS(L) (L)->lens
821 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
822 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
823 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
824 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
825 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
826 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
827 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
828 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
829 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
830 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
831 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
832 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
833 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
834 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
835 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
836 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
837 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
838 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
839 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
840 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
841 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
842 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
843 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
844 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
845 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
846 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
847 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
848 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
849 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
850 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
851 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
852 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
853 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
855 #define LOOP_VINFO_FULLY_MASKED_P(L) \
856 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
857 && !LOOP_VINFO_MASKS (L).is_empty ())
859 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
860 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
861 && !LOOP_VINFO_LENS (L).is_empty ())
863 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
864 ((L)->may_misalign_stmts.length () > 0)
865 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
866 ((L)->comp_alias_ddrs.length () > 0 \
867 || (L)->check_unequal_addrs.length () > 0 \
868 || (L)->lower_bounds.length () > 0)
869 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
870 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
871 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
872 (LOOP_VINFO_SIMD_IF_COND (L))
873 #define LOOP_REQUIRES_VERSIONING(L) \
874 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
875 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
876 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
877 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
879 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
880 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
882 #define LOOP_VINFO_EPILOGUE_P(L) \
883 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
885 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
886 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
888 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
889 value signifies success, and a NULL value signifies failure, supporting
890 propagating an opt_problem * describing the failure back up the call
891 stack. */
892 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
894 static inline loop_vec_info
895 loop_vec_info_for_loop (class loop *loop)
897 return (loop_vec_info) loop->aux;
900 struct slp_root
902 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
903 vec<stmt_vec_info> roots_)
904 : kind(kind_), stmts(stmts_), roots(roots_) {}
905 slp_instance_kind kind;
906 vec<stmt_vec_info> stmts;
907 vec<stmt_vec_info> roots;
910 typedef class _bb_vec_info : public vec_info
912 public:
913 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
914 ~_bb_vec_info ();
916 /* The region we are operating on. bbs[0] is the entry, excluding
917 its PHI nodes. In the future we might want to track an explicit
918 entry edge to cover bbs[0] PHI nodes and have a region entry
919 insert location. */
920 vec<basic_block> bbs;
922 vec<slp_root> roots;
923 } *bb_vec_info;
925 #define BB_VINFO_BB(B) (B)->bb
926 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
927 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
928 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
929 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
931 static inline bb_vec_info
932 vec_info_for_bb (basic_block bb)
934 return (bb_vec_info) bb->aux;
937 /*-----------------------------------------------------------------*/
938 /* Info on vectorized defs. */
939 /*-----------------------------------------------------------------*/
940 enum stmt_vec_info_type {
941 undef_vec_info_type = 0,
942 load_vec_info_type,
943 store_vec_info_type,
944 shift_vec_info_type,
945 op_vec_info_type,
946 call_vec_info_type,
947 call_simd_clone_vec_info_type,
948 assignment_vec_info_type,
949 condition_vec_info_type,
950 comparison_vec_info_type,
951 reduc_vec_info_type,
952 induc_vec_info_type,
953 type_promotion_vec_info_type,
954 type_demotion_vec_info_type,
955 type_conversion_vec_info_type,
956 cycle_phi_info_type,
957 lc_phi_info_type,
958 phi_info_type,
959 loop_exit_ctrl_vec_info_type
962 /* Indicates whether/how a variable is used in the scope of loop/basic
963 block. */
964 enum vect_relevant {
965 vect_unused_in_scope = 0,
967 /* The def is only used outside the loop. */
968 vect_used_only_live,
969 /* The def is in the inner loop, and the use is in the outer loop, and the
970 use is a reduction stmt. */
971 vect_used_in_outer_by_reduction,
972 /* The def is in the inner loop, and the use is in the outer loop (and is
973 not part of reduction). */
974 vect_used_in_outer,
976 /* defs that feed computations that end up (only) in a reduction. These
977 defs may be used by non-reduction stmts, but eventually, any
978 computations/values that are affected by these defs are used to compute
979 a reduction (i.e. don't get stored to memory, for example). We use this
980 to identify computations that we can change the order in which they are
981 computed. */
982 vect_used_by_reduction,
984 vect_used_in_scope
987 /* The type of vectorization that can be applied to the stmt: regular loop-based
988 vectorization; pure SLP - the stmt is a part of SLP instances and does not
989 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
990 a part of SLP instance and also must be loop-based vectorized, since it has
991 uses outside SLP sequences.
993 In the loop context the meanings of pure and hybrid SLP are slightly
994 different. By saying that pure SLP is applied to the loop, we mean that we
995 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
996 vectorized without doing any conceptual unrolling, cause we don't pack
997 together stmts from different iterations, only within a single iteration.
998 Loop hybrid SLP means that we exploit both intra-iteration and
999 inter-iteration parallelism (e.g., number of elements in the vector is 4
1000 and the slp-group-size is 2, in which case we don't have enough parallelism
1001 within an iteration, so we obtain the rest of the parallelism from subsequent
1002 iterations by unrolling the loop by 2). */
1003 enum slp_vect_type {
1004 loop_vect = 0,
1005 pure_slp,
1006 hybrid
1009 /* Says whether a statement is a load, a store of a vectorized statement
1010 result, or a store of an invariant value. */
1011 enum vec_load_store_type {
1012 VLS_LOAD,
1013 VLS_STORE,
1014 VLS_STORE_INVARIANT
1017 /* Describes how we're going to vectorize an individual load or store,
1018 or a group of loads or stores. */
1019 enum vect_memory_access_type {
1020 /* An access to an invariant address. This is used only for loads. */
1021 VMAT_INVARIANT,
1023 /* A simple contiguous access. */
1024 VMAT_CONTIGUOUS,
1026 /* A contiguous access that goes down in memory rather than up,
1027 with no additional permutation. This is used only for stores
1028 of invariants. */
1029 VMAT_CONTIGUOUS_DOWN,
1031 /* A simple contiguous access in which the elements need to be permuted
1032 after loading or before storing. Only used for loop vectorization;
1033 SLP uses separate permutes. */
1034 VMAT_CONTIGUOUS_PERMUTE,
1036 /* A simple contiguous access in which the elements need to be reversed
1037 after loading or before storing. */
1038 VMAT_CONTIGUOUS_REVERSE,
1040 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1041 VMAT_LOAD_STORE_LANES,
1043 /* An access in which each scalar element is loaded or stored
1044 individually. */
1045 VMAT_ELEMENTWISE,
1047 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1048 SLP accesses. Each unrolled iteration uses a contiguous load
1049 or store for the whole group, but the groups from separate iterations
1050 are combined in the same way as for VMAT_ELEMENTWISE. */
1051 VMAT_STRIDED_SLP,
1053 /* The access uses gather loads or scatter stores. */
1054 VMAT_GATHER_SCATTER
1057 class dr_vec_info {
1058 public:
1059 /* The data reference itself. */
1060 data_reference *dr;
1061 /* The statement that contains the data reference. */
1062 stmt_vec_info stmt;
1063 /* The analysis group this DR belongs to when doing BB vectorization.
1064 DRs of the same group belong to the same conditional execution context. */
1065 unsigned group;
1066 /* The misalignment in bytes of the reference, or -1 if not known. */
1067 int misalignment;
1068 /* The byte alignment that we'd ideally like the reference to have,
1069 and the value that misalignment is measured against. */
1070 poly_uint64 target_alignment;
1071 /* If true the alignment of base_decl needs to be increased. */
1072 bool base_misaligned;
1073 tree base_decl;
1075 /* Stores current vectorized loop's offset. To be added to the DR's
1076 offset to calculate current offset of data reference. */
1077 tree offset;
1080 typedef struct data_reference *dr_p;
1082 class _stmt_vec_info {
1083 public:
1085 enum stmt_vec_info_type type;
1087 /* Indicates whether this stmts is part of a computation whose result is
1088 used outside the loop. */
1089 bool live;
1091 /* Stmt is part of some pattern (computation idiom) */
1092 bool in_pattern_p;
1094 /* True if the statement was created during pattern recognition as
1095 part of the replacement for RELATED_STMT. This implies that the
1096 statement isn't part of any basic block, although for convenience
1097 its gimple_bb is the same as for RELATED_STMT. */
1098 bool pattern_stmt_p;
1100 /* Is this statement vectorizable or should it be skipped in (partial)
1101 vectorization. */
1102 bool vectorizable;
1104 /* The stmt to which this info struct refers to. */
1105 gimple *stmt;
1107 /* The vector type to be used for the LHS of this statement. */
1108 tree vectype;
1110 /* The vectorized stmts. */
1111 vec<gimple *> vec_stmts;
1113 /* The following is relevant only for stmts that contain a non-scalar
1114 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1115 at most one such data-ref. */
1117 dr_vec_info dr_aux;
1119 /* Information about the data-ref relative to this loop
1120 nest (the loop that is being considered for vectorization). */
1121 innermost_loop_behavior dr_wrt_vec_loop;
1123 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1124 this information is still available in vect_update_ivs_after_vectorizer
1125 where we may not be able to re-analyze the PHI nodes evolution as
1126 peeling for the prologue loop can make it unanalyzable. The evolution
1127 part is still correct after peeling, but the base may have changed from
1128 the version here. */
1129 tree loop_phi_evolution_base_unchanged;
1130 tree loop_phi_evolution_part;
1132 /* Used for various bookkeeping purposes, generally holding a pointer to
1133 some other stmt S that is in some way "related" to this stmt.
1134 Current use of this field is:
1135 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1136 true): S is the "pattern stmt" that represents (and replaces) the
1137 sequence of stmts that constitutes the pattern. Similarly, the
1138 related_stmt of the "pattern stmt" points back to this stmt (which is
1139 the last stmt in the original sequence of stmts that constitutes the
1140 pattern). */
1141 stmt_vec_info related_stmt;
1143 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1144 The sequence is attached to the original statement rather than the
1145 pattern statement. */
1146 gimple_seq pattern_def_seq;
1148 /* Selected SIMD clone's function info. First vector element
1149 is SIMD clone's function decl, followed by a pair of trees (base + step)
1150 for linear arguments (pair of NULLs for other arguments). */
1151 vec<tree> simd_clone_info;
1153 /* Classify the def of this stmt. */
1154 enum vect_def_type def_type;
1156 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1157 enum slp_vect_type slp_type;
1159 /* Interleaving and reduction chains info. */
1160 /* First element in the group. */
1161 stmt_vec_info first_element;
1162 /* Pointer to the next element in the group. */
1163 stmt_vec_info next_element;
1164 /* The size of the group. */
1165 unsigned int size;
1166 /* For stores, number of stores from this group seen. We vectorize the last
1167 one. */
1168 unsigned int store_count;
1169 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1170 is 1. */
1171 unsigned int gap;
1173 /* The minimum negative dependence distance this stmt participates in
1174 or zero if none. */
1175 unsigned int min_neg_dist;
1177 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1178 of the loop induction variable and computation of array indexes. relevant
1179 indicates whether the stmt needs to be vectorized. */
1180 enum vect_relevant relevant;
1182 /* For loads if this is a gather, for stores if this is a scatter. */
1183 bool gather_scatter_p;
1185 /* True if this is an access with loop-invariant stride. */
1186 bool strided_p;
1188 /* For both loads and stores. */
1189 unsigned simd_lane_access_p : 3;
1191 /* Classifies how the load or store is going to be implemented
1192 for loop vectorization. */
1193 vect_memory_access_type memory_access_type;
1195 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1196 tree induc_cond_initial_val;
1198 /* If not NULL the value to be added to compute final reduction value. */
1199 tree reduc_epilogue_adjustment;
1201 /* On a reduction PHI the reduction type as detected by
1202 vect_is_simple_reduction and vectorizable_reduction. */
1203 enum vect_reduction_type reduc_type;
1205 /* The original reduction code, to be used in the epilogue. */
1206 enum tree_code reduc_code;
1207 /* An internal function we should use in the epilogue. */
1208 internal_fn reduc_fn;
1210 /* On a stmt participating in the reduction the index of the operand
1211 on the reduction SSA cycle. */
1212 int reduc_idx;
1214 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1215 On the def returned by vect_force_simple_reduction the
1216 corresponding PHI. */
1217 stmt_vec_info reduc_def;
1219 /* The vector input type relevant for reduction vectorization. */
1220 tree reduc_vectype_in;
1222 /* The vector type for performing the actual reduction. */
1223 tree reduc_vectype;
1225 /* If IS_REDUC_INFO is true and if the vector code is performing
1226 N scalar reductions in parallel, this variable gives the initial
1227 scalar values of those N reductions. */
1228 vec<tree> reduc_initial_values;
1230 /* If IS_REDUC_INFO is true and if the vector code is performing
1231 N scalar reductions in parallel, this variable gives the vectorized code's
1232 final (scalar) result for each of those N reductions. In other words,
1233 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1234 SSA PHI for reduction number I. */
1235 vec<tree> reduc_scalar_results;
1237 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1238 being performed by an epilogue loop and we have decided to reuse
1239 this accumulator from the main loop. */
1240 vect_reusable_accumulator *reused_accumulator;
1242 /* Whether we force a single cycle PHI during reduction vectorization. */
1243 bool force_single_cycle;
1245 /* Whether on this stmt reduction meta is recorded. */
1246 bool is_reduc_info;
1248 /* If nonzero, the lhs of the statement could be truncated to this
1249 many bits without affecting any users of the result. */
1250 unsigned int min_output_precision;
1252 /* If nonzero, all non-boolean input operands have the same precision,
1253 and they could each be truncated to this many bits without changing
1254 the result. */
1255 unsigned int min_input_precision;
1257 /* If OPERATION_BITS is nonzero, the statement could be performed on
1258 an integer with the sign and number of bits given by OPERATION_SIGN
1259 and OPERATION_BITS without changing the result. */
1260 unsigned int operation_precision;
1261 signop operation_sign;
1263 /* If the statement produces a boolean result, this value describes
1264 how we should choose the associated vector type. The possible
1265 values are:
1267 - an integer precision N if we should use the vector mask type
1268 associated with N-bit integers. This is only used if all relevant
1269 input booleans also want the vector mask type for N-bit integers,
1270 or if we can convert them into that form by pattern-matching.
1272 - ~0U if we considered choosing a vector mask type but decided
1273 to treat the boolean as a normal integer type instead.
1275 - 0 otherwise. This means either that the operation isn't one that
1276 could have a vector mask type (and so should have a normal vector
1277 type instead) or that we simply haven't made a choice either way. */
1278 unsigned int mask_precision;
1280 /* True if this is only suitable for SLP vectorization. */
1281 bool slp_vect_only_p;
1283 /* True if this is a pattern that can only be handled by SLP
1284 vectorization. */
1285 bool slp_vect_pattern_only_p;
1288 /* Information about a gather/scatter call. */
1289 struct gather_scatter_info {
1290 /* The internal function to use for the gather/scatter operation,
1291 or IFN_LAST if a built-in function should be used instead. */
1292 internal_fn ifn;
1294 /* The FUNCTION_DECL for the built-in gather/scatter function,
1295 or null if an internal function should be used instead. */
1296 tree decl;
1298 /* The loop-invariant base value. */
1299 tree base;
1301 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1302 tree offset;
1304 /* Each offset element should be multiplied by this amount before
1305 being added to the base. */
1306 int scale;
1308 /* The definition type for the vectorized offset. */
1309 enum vect_def_type offset_dt;
1311 /* The type of the vectorized offset. */
1312 tree offset_vectype;
1314 /* The type of the scalar elements after loading or before storing. */
1315 tree element_type;
1317 /* The type of the scalar elements being loaded or stored. */
1318 tree memory_type;
1321 /* Access Functions. */
1322 #define STMT_VINFO_TYPE(S) (S)->type
1323 #define STMT_VINFO_STMT(S) (S)->stmt
1324 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1325 #define STMT_VINFO_LIVE_P(S) (S)->live
1326 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1327 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1328 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1329 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1330 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1331 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1332 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1333 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1334 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1335 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1336 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1337 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1339 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1340 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1341 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1342 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1343 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1344 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1345 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1346 (S)->dr_wrt_vec_loop.base_misalignment
1347 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1348 (S)->dr_wrt_vec_loop.offset_alignment
1349 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1350 (S)->dr_wrt_vec_loop.step_alignment
1352 #define STMT_VINFO_DR_INFO(S) \
1353 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1355 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1356 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1357 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1358 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1359 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1360 #define STMT_VINFO_GROUPED_ACCESS(S) \
1361 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1362 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1363 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1364 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1365 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1366 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1367 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1368 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1369 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1370 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1371 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1372 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1374 #define DR_GROUP_FIRST_ELEMENT(S) \
1375 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1376 #define DR_GROUP_NEXT_ELEMENT(S) \
1377 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1378 #define DR_GROUP_SIZE(S) \
1379 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1380 #define DR_GROUP_STORE_COUNT(S) \
1381 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1382 #define DR_GROUP_GAP(S) \
1383 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1385 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1386 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1387 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1388 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1389 #define REDUC_GROUP_SIZE(S) \
1390 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1392 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1394 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1395 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1396 #define STMT_SLP_TYPE(S) (S)->slp_type
1398 #define VECT_MAX_COST 1000
1400 /* The maximum number of intermediate steps required in multi-step type
1401 conversion. */
1402 #define MAX_INTERM_CVT_STEPS 3
1404 #define MAX_VECTORIZATION_FACTOR INT_MAX
1406 /* Nonzero if TYPE represents a (scalar) boolean type or type
1407 in the middle-end compatible with it (unsigned precision 1 integral
1408 types). Used to determine which types should be vectorized as
1409 VECTOR_BOOLEAN_TYPE_P. */
1411 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1412 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1413 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1414 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1415 && TYPE_PRECISION (TYPE) == 1 \
1416 && TYPE_UNSIGNED (TYPE)))
1418 static inline bool
1419 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1421 return (loop->inner
1422 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1425 /* PHI is either a scalar reduction phi or a scalar induction phi.
1426 Return the initial value of the variable on entry to the containing
1427 loop. */
1429 static inline tree
1430 vect_phi_initial_value (gphi *phi)
1432 basic_block bb = gimple_bb (phi);
1433 edge pe = loop_preheader_edge (bb->loop_father);
1434 gcc_assert (pe->dest == bb);
1435 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1438 /* Return true if STMT_INFO should produce a vector mask type rather than
1439 a normal nonmask type. */
1441 static inline bool
1442 vect_use_mask_type_p (stmt_vec_info stmt_info)
1444 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1447 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1448 pattern. */
1450 static inline bool
1451 is_pattern_stmt_p (stmt_vec_info stmt_info)
1453 return stmt_info->pattern_stmt_p;
1456 /* If STMT_INFO is a pattern statement, return the statement that it
1457 replaces, otherwise return STMT_INFO itself. */
1459 inline stmt_vec_info
1460 vect_orig_stmt (stmt_vec_info stmt_info)
1462 if (is_pattern_stmt_p (stmt_info))
1463 return STMT_VINFO_RELATED_STMT (stmt_info);
1464 return stmt_info;
1467 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1469 static inline stmt_vec_info
1470 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1472 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1473 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1474 return stmt1_info;
1475 else
1476 return stmt2_info;
1479 /* If STMT_INFO has been replaced by a pattern statement, return the
1480 replacement statement, otherwise return STMT_INFO itself. */
1482 inline stmt_vec_info
1483 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1485 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1486 return STMT_VINFO_RELATED_STMT (stmt_info);
1487 return stmt_info;
1490 /* Return true if BB is a loop header. */
1492 static inline bool
1493 is_loop_header_bb_p (basic_block bb)
1495 if (bb == (bb->loop_father)->header)
1496 return true;
1497 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1498 return false;
1501 /* Return pow2 (X). */
1503 static inline int
1504 vect_pow2 (int x)
1506 int i, res = 1;
1508 for (i = 0; i < x; i++)
1509 res *= 2;
1511 return res;
1514 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1516 static inline int
1517 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1518 tree vectype, int misalign)
1520 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1521 vectype, misalign);
1524 /* Get cost by calling cost target builtin. */
1526 static inline
1527 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1529 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1532 /* Alias targetm.vectorize.init_cost. */
1534 static inline void *
1535 init_cost (class loop *loop_info, bool costing_for_scalar)
1537 return targetm.vectorize.init_cost (loop_info, costing_for_scalar);
1540 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1541 stmt_vec_info, tree, int, unsigned,
1542 enum vect_cost_model_location);
1544 /* Alias targetm.vectorize.add_stmt_cost. */
1546 static inline unsigned
1547 add_stmt_cost (vec_info *vinfo, void *data, int count,
1548 enum vect_cost_for_stmt kind,
1549 stmt_vec_info stmt_info, tree vectype, int misalign,
1550 enum vect_cost_model_location where)
1552 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1553 stmt_info, vectype,
1554 misalign, where);
1555 if (dump_file && (dump_flags & TDF_DETAILS))
1556 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1557 cost, where);
1558 return cost;
1561 /* Alias targetm.vectorize.add_stmt_cost. */
1563 static inline unsigned
1564 add_stmt_cost (vec_info *vinfo, void *data, stmt_info_for_cost *i)
1566 return add_stmt_cost (vinfo, data, i->count, i->kind, i->stmt_info,
1567 i->vectype, i->misalign, i->where);
1570 /* Alias targetm.vectorize.finish_cost. */
1572 static inline void
1573 finish_cost (void *data, unsigned *prologue_cost,
1574 unsigned *body_cost, unsigned *epilogue_cost)
1576 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1579 /* Alias targetm.vectorize.destroy_cost_data. */
1581 static inline void
1582 destroy_cost_data (void *data)
1584 targetm.vectorize.destroy_cost_data (data);
1587 inline void
1588 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1590 stmt_info_for_cost *cost;
1591 unsigned i;
1592 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1593 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1594 cost->vectype, cost->misalign, cost->where);
1597 /*-----------------------------------------------------------------*/
1598 /* Info on data references alignment. */
1599 /*-----------------------------------------------------------------*/
1600 #define DR_MISALIGNMENT_UNKNOWN (-1)
1601 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1603 inline void
1604 set_dr_misalignment (dr_vec_info *dr_info, int val)
1606 dr_info->misalignment = val;
1609 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype);
1611 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1613 /* Only defined once DR_MISALIGNMENT is defined. */
1614 static inline const poly_uint64
1615 dr_target_alignment (dr_vec_info *dr_info)
1617 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1618 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1619 return dr_info->target_alignment;
1621 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1623 static inline void
1624 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1626 dr_info->target_alignment = val;
1628 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1630 /* Return true if data access DR_INFO is aligned to the targets
1631 preferred alignment for VECTYPE (which may be less than a full vector). */
1633 static inline bool
1634 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1636 return (dr_misalignment (dr_info, vectype) == 0);
1639 /* Return TRUE if the (mis-)alignment of the data access is known with
1640 respect to the targets preferred alignment for VECTYPE, and FALSE
1641 otherwise. */
1643 static inline bool
1644 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1646 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1649 /* Return the minimum alignment in bytes that the vectorized version
1650 of DR_INFO is guaranteed to have. */
1652 static inline unsigned int
1653 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1655 int misalignment = dr_misalignment (dr_info, vectype);
1656 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1657 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1658 else if (misalignment == 0)
1659 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1660 return misalignment & -misalignment;
1663 /* Return the behavior of DR_INFO with respect to the vectorization context
1664 (which for outer loop vectorization might not be the behavior recorded
1665 in DR_INFO itself). */
1667 static inline innermost_loop_behavior *
1668 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1670 stmt_vec_info stmt_info = dr_info->stmt;
1671 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1672 if (loop_vinfo == NULL
1673 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1674 return &DR_INNERMOST (dr_info->dr);
1675 else
1676 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1679 /* Return the offset calculated by adding the offset of this DR_INFO to the
1680 corresponding data_reference's offset. If CHECK_OUTER then use
1681 vect_dr_behavior to select the appropriate data_reference to use. */
1683 inline tree
1684 get_dr_vinfo_offset (vec_info *vinfo,
1685 dr_vec_info *dr_info, bool check_outer = false)
1687 innermost_loop_behavior *base;
1688 if (check_outer)
1689 base = vect_dr_behavior (vinfo, dr_info);
1690 else
1691 base = &dr_info->dr->innermost;
1693 tree offset = base->offset;
1695 if (!dr_info->offset)
1696 return offset;
1698 offset = fold_convert (sizetype, offset);
1699 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1700 dr_info->offset);
1704 /* Return the vect cost model for LOOP. */
1705 static inline enum vect_cost_model
1706 loop_cost_model (loop_p loop)
1708 if (loop != NULL
1709 && loop->force_vectorize
1710 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1711 return flag_simd_cost_model;
1712 return flag_vect_cost_model;
1715 /* Return true if the vect cost model is unlimited. */
1716 static inline bool
1717 unlimited_cost_model (loop_p loop)
1719 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
1722 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1723 if the first iteration should use a partial mask in order to achieve
1724 alignment. */
1726 static inline bool
1727 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1729 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1730 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1733 /* Return the number of vectors of type VECTYPE that are needed to get
1734 NUNITS elements. NUNITS should be based on the vectorization factor,
1735 so it is always a known multiple of the number of elements in VECTYPE. */
1737 static inline unsigned int
1738 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1740 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1743 /* Return the number of copies needed for loop vectorization when
1744 a statement operates on vectors of type VECTYPE. This is the
1745 vectorization factor divided by the number of elements in
1746 VECTYPE and is always known at compile time. */
1748 static inline unsigned int
1749 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1751 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1754 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1755 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1757 static inline void
1758 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1760 /* All unit counts have the form vec_info::vector_size * X for some
1761 rational X, so two unit sizes must have a common multiple.
1762 Everything is a multiple of the initial value of 1. */
1763 *max_nunits = force_common_multiple (*max_nunits, nunits);
1766 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1767 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1768 if we haven't yet recorded any vector types. */
1770 static inline void
1771 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1773 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1776 /* Return the vectorization factor that should be used for costing
1777 purposes while vectorizing the loop described by LOOP_VINFO.
1778 Pick a reasonable estimate if the vectorization factor isn't
1779 known at compile time. */
1781 static inline unsigned int
1782 vect_vf_for_cost (loop_vec_info loop_vinfo)
1784 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1787 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1788 Pick a reasonable estimate if the exact number isn't known at
1789 compile time. */
1791 static inline unsigned int
1792 vect_nunits_for_cost (tree vec_type)
1794 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1797 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1799 static inline unsigned HOST_WIDE_INT
1800 vect_max_vf (loop_vec_info loop_vinfo)
1802 unsigned HOST_WIDE_INT vf;
1803 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1804 return vf;
1805 return MAX_VECTORIZATION_FACTOR;
1808 /* Return the size of the value accessed by unvectorized data reference
1809 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1810 for the associated gimple statement, since that guarantees that DR_INFO
1811 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1812 here includes things like V1SI, which can be vectorized in the same way
1813 as a plain SI.) */
1815 inline unsigned int
1816 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1818 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1821 /* Return true if LOOP_VINFO requires a runtime check for whether the
1822 vector loop is profitable. */
1824 inline bool
1825 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1827 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1828 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1829 && th >= vect_vf_for_cost (loop_vinfo));
1832 /* Source location + hotness information. */
1833 extern dump_user_location_t vect_location;
1835 /* A macro for calling:
1836 dump_begin_scope (MSG, vect_location);
1837 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1838 and then calling
1839 dump_end_scope ();
1840 once the object goes out of scope, thus capturing the nesting of
1841 the scopes.
1843 These scopes affect dump messages within them: dump messages at the
1844 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1845 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1847 #define DUMP_VECT_SCOPE(MSG) \
1848 AUTO_DUMP_SCOPE (MSG, vect_location)
1850 /* A sentinel class for ensuring that the "vect_location" global gets
1851 reset at the end of a scope.
1853 The "vect_location" global is used during dumping and contains a
1854 location_t, which could contain references to a tree block via the
1855 ad-hoc data. This data is used for tracking inlining information,
1856 but it's not a GC root; it's simply assumed that such locations never
1857 get accessed if the blocks are optimized away.
1859 Hence we need to ensure that such locations are purged at the end
1860 of any operations using them (e.g. via this class). */
1862 class auto_purge_vect_location
1864 public:
1865 ~auto_purge_vect_location ();
1868 /*-----------------------------------------------------------------*/
1869 /* Function prototypes. */
1870 /*-----------------------------------------------------------------*/
1872 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1873 in tree-vect-loop-manip.c. */
1874 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1875 tree, tree, tree, bool);
1876 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1877 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1878 class loop *, edge);
1879 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1880 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1881 tree *, tree *, tree *, int, bool, bool,
1882 tree *);
1883 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
1884 extern void vect_prepare_for_masked_peels (loop_vec_info);
1885 extern dump_user_location_t find_loop_location (class loop *);
1886 extern bool vect_can_advance_ivs_p (loop_vec_info);
1887 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1889 /* In tree-vect-stmts.c. */
1890 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1891 poly_uint64 = 0);
1892 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1893 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1894 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1895 extern tree get_same_sized_vectype (tree, tree);
1896 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1897 extern bool vect_get_loop_mask_type (loop_vec_info);
1898 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1899 stmt_vec_info * = NULL, gimple ** = NULL);
1900 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1901 tree *, stmt_vec_info * = NULL,
1902 gimple ** = NULL);
1903 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1904 unsigned, tree *, slp_tree *,
1905 enum vect_def_type *,
1906 tree *, stmt_vec_info * = NULL);
1907 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1908 extern bool supportable_widening_operation (vec_info *,
1909 enum tree_code, stmt_vec_info,
1910 tree, tree, enum tree_code *,
1911 enum tree_code *, int *,
1912 vec<tree> *);
1913 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1914 enum tree_code *, int *,
1915 vec<tree> *);
1917 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1918 enum vect_cost_for_stmt, stmt_vec_info,
1919 tree, int, enum vect_cost_model_location);
1921 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1923 static inline unsigned
1924 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1925 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1926 int misalign, enum vect_cost_model_location where)
1928 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1929 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1932 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1933 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1934 gimple_stmt_iterator *);
1935 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1936 extern tree vect_get_store_rhs (stmt_vec_info);
1937 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1938 tree op, vec<tree> *, tree = NULL);
1939 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1940 tree, vec<tree> *,
1941 tree = NULL, vec<tree> * = NULL,
1942 tree = NULL, vec<tree> * = NULL,
1943 tree = NULL, vec<tree> * = NULL);
1944 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1945 tree, vec<tree> *, tree,
1946 tree = NULL, vec<tree> * = NULL, tree = NULL,
1947 tree = NULL, vec<tree> * = NULL, tree = NULL,
1948 tree = NULL, vec<tree> * = NULL, tree = NULL);
1949 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1950 gimple_stmt_iterator *);
1951 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1952 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1953 gimple_stmt_iterator *,
1954 slp_tree, slp_instance);
1955 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1956 extern bool vect_nop_conversion_p (stmt_vec_info);
1957 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1958 slp_tree,
1959 slp_instance, stmt_vector_for_cost *);
1960 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
1961 dr_alignment_support, int, bool,
1962 unsigned int *, unsigned int *,
1963 stmt_vector_for_cost *,
1964 stmt_vector_for_cost *, bool);
1965 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1966 dr_alignment_support, int,
1967 unsigned int *, stmt_vector_for_cost *);
1968 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1969 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1970 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1971 extern void optimize_mask_stores (class loop*);
1972 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
1973 const char * = nullptr);
1974 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1975 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1976 stmt_vec_info, tree *,
1977 tree *, unsigned int = 0);
1978 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1980 /* In tree-vect-data-refs.c. */
1981 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1982 extern enum dr_alignment_support vect_supportable_dr_alignment
1983 (vec_info *, dr_vec_info *, tree, int);
1984 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
1985 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1986 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1987 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1988 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1989 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
1990 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
1991 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1992 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1993 tree, int, internal_fn *, tree *);
1994 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1995 gather_scatter_info *);
1996 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1997 vec<data_reference_p> *,
1998 vec<int> *, int);
1999 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2000 extern void vect_record_base_alignments (vec_info *);
2001 extern tree vect_create_data_ref_ptr (vec_info *,
2002 stmt_vec_info, tree, class loop *, tree,
2003 tree *, gimple_stmt_iterator *,
2004 gimple **, bool,
2005 tree = NULL_TREE, tree = NULL_TREE);
2006 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2007 stmt_vec_info, tree);
2008 extern void vect_copy_ref_info (tree, tree);
2009 extern tree vect_create_destination_var (tree, tree);
2010 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2011 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2012 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2013 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2014 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2015 unsigned int, stmt_vec_info,
2016 gimple_stmt_iterator *, vec<tree> *);
2017 extern tree vect_setup_realignment (vec_info *,
2018 stmt_vec_info, gimple_stmt_iterator *,
2019 tree *, enum dr_alignment_support, tree,
2020 class loop **);
2021 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2022 int, gimple_stmt_iterator *);
2023 extern void vect_record_grouped_load_vectors (vec_info *,
2024 stmt_vec_info, vec<tree>);
2025 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2026 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2027 const char * = NULL);
2028 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2029 stmt_vec_info, gimple_seq *,
2030 tree, tree = NULL_TREE);
2032 /* In tree-vect-loop.c. */
2033 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2034 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2035 /* Used in tree-vect-loop-manip.c */
2036 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2037 bool);
2038 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
2039 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2040 enum tree_code);
2041 extern bool needs_fold_left_reduction_p (tree, tree_code);
2042 /* Drive for loop analysis stage. */
2043 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2044 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2045 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2046 tree *, bool);
2047 extern tree vect_halve_mask_nunits (tree, machine_mode);
2048 extern tree vect_double_mask_nunits (tree, machine_mode);
2049 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2050 unsigned int, tree, tree);
2051 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2052 unsigned int, tree, unsigned int);
2053 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2054 tree, unsigned int);
2055 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2056 unsigned int);
2057 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2058 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2059 extern bool reduction_fn_for_scalar_code (enum tree_code, internal_fn *);
2061 /* Drive for loop transformation stage. */
2062 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2063 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
2064 vec_info_shared *);
2065 extern bool vectorizable_live_operation (vec_info *,
2066 stmt_vec_info, gimple_stmt_iterator *,
2067 slp_tree, slp_instance, int,
2068 bool, stmt_vector_for_cost *);
2069 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2070 slp_tree, slp_instance,
2071 stmt_vector_for_cost *);
2072 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2073 gimple **, slp_tree,
2074 stmt_vector_for_cost *);
2075 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2076 gimple_stmt_iterator *,
2077 gimple **, slp_tree);
2078 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2079 gimple **,
2080 slp_tree, slp_instance);
2081 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2082 gimple **, slp_tree);
2083 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2084 stmt_vector_for_cost *);
2085 extern bool vect_emulated_vector_p (tree);
2086 extern bool vect_can_vectorize_without_simd_p (tree_code);
2087 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2088 stmt_vector_for_cost *,
2089 stmt_vector_for_cost *,
2090 stmt_vector_for_cost *);
2091 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2093 /* In tree-vect-slp.c. */
2094 extern void vect_slp_init (void);
2095 extern void vect_slp_fini (void);
2096 extern void vect_free_slp_instance (slp_instance);
2097 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2098 gimple_stmt_iterator *, poly_uint64,
2099 bool, unsigned *,
2100 unsigned * = nullptr, bool = false);
2101 extern bool vect_slp_analyze_operations (vec_info *);
2102 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2103 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2104 extern bool vect_make_slp_decision (loop_vec_info);
2105 extern void vect_detect_hybrid_slp (loop_vec_info);
2106 extern void vect_optimize_slp (vec_info *);
2107 extern void vect_gather_slp_loads (vec_info *);
2108 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2109 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2110 unsigned n = -1U);
2111 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2112 extern bool vect_slp_function (function *);
2113 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2114 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2115 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2116 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2117 unsigned int * = NULL,
2118 tree * = NULL, tree * = NULL);
2119 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2120 const vec<tree> &, unsigned int, vec<tree> &);
2121 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2122 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2123 extern void vect_free_slp_tree (slp_tree);
2125 /* In tree-vect-patterns.c. */
2126 extern void
2127 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2129 /* Pattern recognition functions.
2130 Additional pattern recognition functions can (and will) be added
2131 in the future. */
2132 void vect_pattern_recog (vec_info *);
2134 /* In tree-vectorizer.c. */
2135 unsigned vectorize_loops (void);
2136 void vect_free_loop_info_assumptions (class loop *);
2137 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2138 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2140 /* SLP Pattern matcher types, tree-vect-slp-patterns.c. */
2142 /* Forward declaration of possible two operands operation that can be matched
2143 by the complex numbers pattern matchers. */
2144 enum _complex_operation : unsigned;
2146 /* All possible load permute values that could result from the partial data-flow
2147 analysis. */
2148 typedef enum _complex_perm_kinds {
2149 PERM_UNKNOWN,
2150 PERM_EVENODD,
2151 PERM_ODDEVEN,
2152 PERM_ODDODD,
2153 PERM_EVENEVEN,
2154 /* Can be combined with any other PERM values. */
2155 PERM_TOP
2156 } complex_perm_kinds_t;
2158 /* Cache from nodes to the load permutation they represent. */
2159 typedef hash_map <slp_tree, complex_perm_kinds_t>
2160 slp_tree_to_load_perm_map_t;
2162 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2163 from this type. */
2165 class vect_pattern
2167 protected:
2168 /* The number of arguments that the IFN requires. */
2169 unsigned m_num_args;
2171 /* The internal function that will be used when a pattern is created. */
2172 internal_fn m_ifn;
2174 /* The current node being inspected. */
2175 slp_tree *m_node;
2177 /* The list of operands to be the children for the node produced when the
2178 internal function is created. */
2179 vec<slp_tree> m_ops;
2181 /* Default constructor where NODE is the root of the tree to inspect. */
2182 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2184 this->m_ifn = ifn;
2185 this->m_node = node;
2186 this->m_ops.create (0);
2187 if (m_ops)
2188 this->m_ops.safe_splice (*m_ops);
2191 public:
2193 /* Create a new instance of the pattern matcher class of the given type. */
2194 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *, slp_tree *);
2196 /* Build the pattern from the data collected so far. */
2197 virtual void build (vec_info *) = 0;
2199 /* Default destructor. */
2200 virtual ~vect_pattern ()
2202 this->m_ops.release ();
2206 /* Function pointer to create a new pattern matcher from a generic type. */
2207 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2208 slp_tree *);
2210 /* List of supported pattern matchers. */
2211 extern vect_pattern_decl_t slp_patterns[];
2213 /* Number of supported pattern matchers. */
2214 extern size_t num__slp_patterns;
2216 /* ----------------------------------------------------------------------
2217 Target support routines
2218 -----------------------------------------------------------------------
2219 The following routines are provided to simplify costing decisions in
2220 target code. Please add more as needed. */
2222 /* Return true if an operaton of kind KIND for STMT_INFO represents
2223 the extraction of an element from a vector in preparation for
2224 storing the element to memory. */
2225 inline bool
2226 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2228 return (kind == vec_to_scalar
2229 && STMT_VINFO_DATA_REF (stmt_info)
2230 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2233 /* Return true if STMT_INFO represents part of a reduction. */
2234 inline bool
2235 vect_is_reduction (stmt_vec_info stmt_info)
2237 return (STMT_VINFO_REDUC_DEF (stmt_info)
2238 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)));
2241 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2242 of the reduction it describes, otherwise return -1. */
2243 inline int
2244 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2246 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2247 if (STMT_VINFO_REDUC_DEF (stmt_info))
2249 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2250 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2252 return -1;
2255 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2256 scalar type of the values being compared. Return null otherwise. */
2257 inline tree
2258 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2260 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2261 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2263 tree cond = gimple_assign_rhs1 (assign);
2264 if (COMPARISON_CLASS_P (cond))
2265 return TREE_TYPE (TREE_OPERAND (cond, 0));
2267 return NULL_TREE;
2270 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2271 scalar type of the values being compared. Return null otherwise. */
2272 inline tree
2273 vect_comparison_type (stmt_vec_info stmt_info)
2275 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2276 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2277 return TREE_TYPE (gimple_assign_rhs1 (assign));
2278 return vect_embedded_comparison_type (stmt_info);
2281 /* Return true if STMT_INFO extends the result of a load. */
2282 inline bool
2283 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2285 /* Although this is quite large for an inline function, this part
2286 at least should be inline. */
2287 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2288 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2289 return false;
2291 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2292 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2293 tree rhs_type = TREE_TYPE (rhs);
2294 if (!INTEGRAL_TYPE_P (lhs_type)
2295 || !INTEGRAL_TYPE_P (rhs_type)
2296 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2297 return false;
2299 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2300 return (def_stmt_info
2301 && STMT_VINFO_DATA_REF (def_stmt_info)
2302 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2305 /* Return true if STMT_INFO is an integer truncation. */
2306 inline bool
2307 vect_is_integer_truncation (stmt_vec_info stmt_info)
2309 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2310 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2311 return false;
2313 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2314 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2315 return (INTEGRAL_TYPE_P (lhs_type)
2316 && INTEGRAL_TYPE_P (rhs_type)
2317 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2320 #endif /* GCC_TREE_VECTORIZER_H */