1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
31 #include "insn-config.h"
37 #include "cfgcleanup.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
45 #include "function-abi.h"
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
76 Registers and "quantity numbers":
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
111 Constants and quantity numbers
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
246 rtx_insn
*const_insn
;
247 rtx comparison_const
;
249 unsigned int first_reg
, last_reg
;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code
) comparison_code
: 16;
253 ENUM_BITFIELD(machine_mode
) mode
: 8;
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem
*qty_table
;
259 /* Insn being scanned. */
261 static rtx_insn
*this_insn
;
262 static bool optimize_this_for_speed_p
;
264 /* Index by register number, gives the number of the next (or
265 previous) register in the chain of registers sharing the same
268 Or -1 if this register is at the end of the chain.
270 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
272 /* Per-register equivalence chain. */
278 /* The table of all register equivalence chains. */
279 static struct reg_eqv_elem
*reg_eqv_table
;
283 /* The timestamp at which this register is initialized. */
284 unsigned int timestamp
;
286 /* The quantity number of the register's current contents. */
289 /* The number of times the register has been altered in the current
293 /* The REG_TICK value at which rtx's containing this register are
294 valid in the hash table. If this does not equal the current
295 reg_tick value, such expressions existing in the hash table are
299 /* The SUBREG that was set when REG_TICK was last incremented. Set
300 to -1 if the last store was to the whole register, not a subreg. */
301 unsigned int subreg_ticked
;
304 /* A table of cse_reg_info indexed by register numbers. */
305 static struct cse_reg_info
*cse_reg_info_table
;
307 /* The size of the above table. */
308 static unsigned int cse_reg_info_table_size
;
310 /* The index of the first entry that has not been initialized. */
311 static unsigned int cse_reg_info_table_first_uninitialized
;
313 /* The timestamp at the beginning of the current run of
314 cse_extended_basic_block. We increment this variable at the beginning of
315 the current run of cse_extended_basic_block. The timestamp field of a
316 cse_reg_info entry matches the value of this variable if and only
317 if the entry has been initialized during the current run of
318 cse_extended_basic_block. */
319 static unsigned int cse_reg_info_timestamp
;
321 /* A HARD_REG_SET containing all the hard registers for which there is
322 currently a REG expression in the hash table. Note the difference
323 from the above variables, which indicate if the REG is mentioned in some
324 expression in the table. */
326 static HARD_REG_SET hard_regs_in_table
;
328 /* True if CSE has altered the CFG. */
329 static bool cse_cfg_altered
;
331 /* True if CSE has altered conditional jump insns in such a way
332 that jump optimization should be redone. */
333 static bool cse_jumps_altered
;
335 /* True if we put a LABEL_REF into the hash table for an INSN
336 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
337 to put in the note. */
338 static bool recorded_label_ref
;
340 /* canon_hash stores 1 in do_not_record if it notices a reference to PC or
341 some other volatile subexpression. */
343 static int do_not_record
;
345 /* canon_hash stores 1 in hash_arg_in_memory
346 if it notices a reference to memory within the expression being hashed. */
348 static int hash_arg_in_memory
;
350 /* The hash table contains buckets which are chains of `struct table_elt's,
351 each recording one expression's information.
352 That expression is in the `exp' field.
354 The canon_exp field contains a canonical (from the point of view of
355 alias analysis) version of the `exp' field.
357 Those elements with the same hash code are chained in both directions
358 through the `next_same_hash' and `prev_same_hash' fields.
360 Each set of expressions with equivalent values
361 are on a two-way chain through the `next_same_value'
362 and `prev_same_value' fields, and all point with
363 the `first_same_value' field at the first element in
364 that chain. The chain is in order of increasing cost.
365 Each element's cost value is in its `cost' field.
367 The `in_memory' field is nonzero for elements that
368 involve any reference to memory. These elements are removed
369 whenever a write is done to an unidentified location in memory.
370 To be safe, we assume that a memory address is unidentified unless
371 the address is either a symbol constant or a constant plus
372 the frame pointer or argument pointer.
374 The `related_value' field is used to connect related expressions
375 (that differ by adding an integer).
376 The related expressions are chained in a circular fashion.
377 `related_value' is zero for expressions for which this
380 The `cost' field stores the cost of this element's expression.
381 The `regcost' field stores the value returned by approx_reg_cost for
382 this element's expression.
384 The `is_const' flag is set if the element is a constant (including
387 The `flag' field is used as a temporary during some search routines.
389 The `mode' field is usually the same as GET_MODE (`exp'), but
390 if `exp' is a CONST_INT and has no machine mode then the `mode'
391 field is the mode it was being used as. Each constant is
392 recorded separately for each mode it is used with. */
398 struct table_elt
*next_same_hash
;
399 struct table_elt
*prev_same_hash
;
400 struct table_elt
*next_same_value
;
401 struct table_elt
*prev_same_value
;
402 struct table_elt
*first_same_value
;
403 struct table_elt
*related_value
;
406 /* The size of this field should match the size
407 of the mode field of struct rtx_def (see rtl.h). */
408 ENUM_BITFIELD(machine_mode
) mode
: 8;
414 /* We don't want a lot of buckets, because we rarely have very many
415 things stored in the hash table, and a lot of buckets slows
416 down a lot of loops that happen frequently. */
418 #define HASH_SIZE (1 << HASH_SHIFT)
419 #define HASH_MASK (HASH_SIZE - 1)
421 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
422 register (hard registers may require `do_not_record' to be set). */
425 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
426 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
427 : canon_hash (X, M)) & HASH_MASK)
429 /* Like HASH, but without side-effects. */
430 #define SAFE_HASH(X, M) \
431 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
432 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
433 : safe_hash (X, M)) & HASH_MASK)
435 /* Determine whether register number N is considered a fixed register for the
436 purpose of approximating register costs.
437 It is desirable to replace other regs with fixed regs, to reduce need for
439 A reg wins if it is either the frame pointer or designated as fixed. */
440 #define FIXED_REGNO_P(N) \
441 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
442 || fixed_regs[N] || global_regs[N])
444 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
445 hard registers and pointers into the frame are the cheapest with a cost
446 of 0. Next come pseudos with a cost of one and other hard registers with
447 a cost of 2. Aside from these special cases, call `rtx_cost'. */
449 #define CHEAP_REGNO(N) \
450 (REGNO_PTR_FRAME_P (N) \
451 || (HARD_REGISTER_NUM_P (N) \
452 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
454 #define COST(X, MODE) \
455 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
456 #define COST_IN(X, MODE, OUTER, OPNO) \
457 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
459 /* Get the number of times this register has been updated in this
462 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
464 /* Get the point at which REG was recorded in the table. */
466 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
468 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
471 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
473 /* Get the quantity number for REG. */
475 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
477 /* Determine if the quantity number for register X represents a valid index
478 into the qty_table. */
480 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
482 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
484 #define CHEAPER(X, Y) \
485 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
487 static struct table_elt
*table
[HASH_SIZE
];
489 /* Chain of `struct table_elt's made so far for this function
490 but currently removed from the table. */
492 static struct table_elt
*free_element_chain
;
494 /* Trace a patch through the CFG. */
498 /* The basic block for this path entry. */
502 /* This data describes a block that will be processed by
503 cse_extended_basic_block. */
505 struct cse_basic_block_data
507 /* Total number of SETs in block. */
509 /* Size of current branch path, if any. */
511 /* Current path, indicating which basic_blocks will be processed. */
512 struct branch_path
*path
;
516 /* Pointers to the live in/live out bitmaps for the boundaries of the
518 static bitmap cse_ebb_live_in
, cse_ebb_live_out
;
520 /* A simple bitmap to track which basic blocks have been visited
521 already as part of an already processed extended basic block. */
522 static sbitmap cse_visited_basic_blocks
;
524 static bool fixed_base_plus_p (rtx x
);
525 static int notreg_cost (rtx
, machine_mode
, enum rtx_code
, int);
526 static int preferable (int, int, int, int);
527 static void new_basic_block (void);
528 static void make_new_qty (unsigned int, machine_mode
);
529 static void make_regs_eqv (unsigned int, unsigned int);
530 static void delete_reg_equiv (unsigned int);
531 static int mention_regs (rtx
);
532 static int insert_regs (rtx
, struct table_elt
*, int);
533 static void remove_from_table (struct table_elt
*, unsigned);
534 static void remove_pseudo_from_table (rtx
, unsigned);
535 static struct table_elt
*lookup (rtx
, unsigned, machine_mode
);
536 static struct table_elt
*lookup_for_remove (rtx
, unsigned, machine_mode
);
537 static rtx
lookup_as_function (rtx
, enum rtx_code
);
538 static struct table_elt
*insert_with_costs (rtx
, struct table_elt
*, unsigned,
539 machine_mode
, int, int);
540 static struct table_elt
*insert (rtx
, struct table_elt
*, unsigned,
542 static void merge_equiv_classes (struct table_elt
*, struct table_elt
*);
543 static void invalidate (rtx
, machine_mode
);
544 static void remove_invalid_refs (unsigned int);
545 static void remove_invalid_subreg_refs (unsigned int, poly_uint64
,
547 static void rehash_using_reg (rtx
);
548 static void invalidate_memory (void);
549 static rtx
use_related_value (rtx
, struct table_elt
*);
551 static inline unsigned canon_hash (rtx
, machine_mode
);
552 static inline unsigned safe_hash (rtx
, machine_mode
);
553 static inline unsigned hash_rtx_string (const char *);
555 static rtx
canon_reg (rtx
, rtx_insn
*);
556 static enum rtx_code
find_comparison_args (enum rtx_code
, rtx
*, rtx
*,
559 static rtx
fold_rtx (rtx
, rtx_insn
*);
560 static rtx
equiv_constant (rtx
);
561 static void record_jump_equiv (rtx_insn
*, bool);
562 static void record_jump_cond (enum rtx_code
, machine_mode
, rtx
, rtx
,
564 static void cse_insn (rtx_insn
*);
565 static void cse_prescan_path (struct cse_basic_block_data
*);
566 static void invalidate_from_clobbers (rtx_insn
*);
567 static void invalidate_from_sets_and_clobbers (rtx_insn
*);
568 static void cse_extended_basic_block (struct cse_basic_block_data
*);
569 extern void dump_class (struct table_elt
*);
570 static void get_cse_reg_info_1 (unsigned int regno
);
571 static struct cse_reg_info
* get_cse_reg_info (unsigned int regno
);
573 static void flush_hash_table (void);
574 static bool insn_live_p (rtx_insn
*, int *);
575 static bool set_live_p (rtx
, int *);
576 static void cse_change_cc_mode_insn (rtx_insn
*, rtx
);
577 static void cse_change_cc_mode_insns (rtx_insn
*, rtx_insn
*, rtx
);
578 static machine_mode
cse_cc_succs (basic_block
, basic_block
, rtx
, rtx
,
582 #undef RTL_HOOKS_GEN_LOWPART
583 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
585 static const struct rtl_hooks cse_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
587 /* Nonzero if X has the form (PLUS frame-pointer integer). */
590 fixed_base_plus_p (rtx x
)
592 switch (GET_CODE (x
))
595 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
)
597 if (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
602 if (!CONST_INT_P (XEXP (x
, 1)))
604 return fixed_base_plus_p (XEXP (x
, 0));
611 /* Dump the expressions in the equivalence class indicated by CLASSP.
612 This function is used only for debugging. */
614 dump_class (struct table_elt
*classp
)
616 struct table_elt
*elt
;
618 fprintf (stderr
, "Equivalence chain for ");
619 print_rtl (stderr
, classp
->exp
);
620 fprintf (stderr
, ": \n");
622 for (elt
= classp
->first_same_value
; elt
; elt
= elt
->next_same_value
)
624 print_rtl (stderr
, elt
->exp
);
625 fprintf (stderr
, "\n");
629 /* Return an estimate of the cost of the registers used in an rtx.
630 This is mostly the number of different REG expressions in the rtx;
631 however for some exceptions like fixed registers we use a cost of
632 0. If any other hard register reference occurs, return MAX_COST. */
635 approx_reg_cost (const_rtx x
)
638 subrtx_iterator::array_type array
;
639 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
644 unsigned int regno
= REGNO (x
);
645 if (!CHEAP_REGNO (regno
))
647 if (regno
< FIRST_PSEUDO_REGISTER
)
649 if (targetm
.small_register_classes_for_mode_p (GET_MODE (x
)))
661 /* Return a negative value if an rtx A, whose costs are given by COST_A
662 and REGCOST_A, is more desirable than an rtx B.
663 Return a positive value if A is less desirable, or 0 if the two are
666 preferable (int cost_a
, int regcost_a
, int cost_b
, int regcost_b
)
668 /* First, get rid of cases involving expressions that are entirely
670 if (cost_a
!= cost_b
)
672 if (cost_a
== MAX_COST
)
674 if (cost_b
== MAX_COST
)
678 /* Avoid extending lifetimes of hardregs. */
679 if (regcost_a
!= regcost_b
)
681 if (regcost_a
== MAX_COST
)
683 if (regcost_b
== MAX_COST
)
687 /* Normal operation costs take precedence. */
688 if (cost_a
!= cost_b
)
689 return cost_a
- cost_b
;
690 /* Only if these are identical consider effects on register pressure. */
691 if (regcost_a
!= regcost_b
)
692 return regcost_a
- regcost_b
;
696 /* Internal function, to compute cost when X is not a register; called
697 from COST macro to keep it simple. */
700 notreg_cost (rtx x
, machine_mode mode
, enum rtx_code outer
, int opno
)
702 scalar_int_mode int_mode
, inner_mode
;
703 return ((GET_CODE (x
) == SUBREG
704 && REG_P (SUBREG_REG (x
))
705 && is_int_mode (mode
, &int_mode
)
706 && is_int_mode (GET_MODE (SUBREG_REG (x
)), &inner_mode
)
707 && GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (inner_mode
)
708 && subreg_lowpart_p (x
)
709 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, inner_mode
))
711 : rtx_cost (x
, mode
, outer
, opno
, optimize_this_for_speed_p
) * 2);
715 /* Initialize CSE_REG_INFO_TABLE. */
718 init_cse_reg_info (unsigned int nregs
)
720 /* Do we need to grow the table? */
721 if (nregs
> cse_reg_info_table_size
)
723 unsigned int new_size
;
725 if (cse_reg_info_table_size
< 2048)
727 /* Compute a new size that is a power of 2 and no smaller
728 than the large of NREGS and 64. */
729 new_size
= (cse_reg_info_table_size
730 ? cse_reg_info_table_size
: 64);
732 while (new_size
< nregs
)
737 /* If we need a big table, allocate just enough to hold
742 /* Reallocate the table with NEW_SIZE entries. */
743 free (cse_reg_info_table
);
744 cse_reg_info_table
= XNEWVEC (struct cse_reg_info
, new_size
);
745 cse_reg_info_table_size
= new_size
;
746 cse_reg_info_table_first_uninitialized
= 0;
749 /* Do we have all of the first NREGS entries initialized? */
750 if (cse_reg_info_table_first_uninitialized
< nregs
)
752 unsigned int old_timestamp
= cse_reg_info_timestamp
- 1;
755 /* Put the old timestamp on newly allocated entries so that they
756 will all be considered out of date. We do not touch those
757 entries beyond the first NREGS entries to be nice to the
759 for (i
= cse_reg_info_table_first_uninitialized
; i
< nregs
; i
++)
760 cse_reg_info_table
[i
].timestamp
= old_timestamp
;
762 cse_reg_info_table_first_uninitialized
= nregs
;
766 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
769 get_cse_reg_info_1 (unsigned int regno
)
771 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
772 entry will be considered to have been initialized. */
773 cse_reg_info_table
[regno
].timestamp
= cse_reg_info_timestamp
;
775 /* Initialize the rest of the entry. */
776 cse_reg_info_table
[regno
].reg_tick
= 1;
777 cse_reg_info_table
[regno
].reg_in_table
= -1;
778 cse_reg_info_table
[regno
].subreg_ticked
= -1;
779 cse_reg_info_table
[regno
].reg_qty
= -regno
- 1;
782 /* Find a cse_reg_info entry for REGNO. */
784 static inline struct cse_reg_info
*
785 get_cse_reg_info (unsigned int regno
)
787 struct cse_reg_info
*p
= &cse_reg_info_table
[regno
];
789 /* If this entry has not been initialized, go ahead and initialize
791 if (p
->timestamp
!= cse_reg_info_timestamp
)
792 get_cse_reg_info_1 (regno
);
797 /* Clear the hash table and initialize each register with its own quantity,
798 for a new basic block. */
801 new_basic_block (void)
807 /* Invalidate cse_reg_info_table. */
808 cse_reg_info_timestamp
++;
810 /* Clear out hash table state for this pass. */
811 CLEAR_HARD_REG_SET (hard_regs_in_table
);
813 /* The per-quantity values used to be initialized here, but it is
814 much faster to initialize each as it is made in `make_new_qty'. */
816 for (i
= 0; i
< HASH_SIZE
; i
++)
818 struct table_elt
*first
;
823 struct table_elt
*last
= first
;
827 while (last
->next_same_hash
!= NULL
)
828 last
= last
->next_same_hash
;
830 /* Now relink this hash entire chain into
831 the free element list. */
833 last
->next_same_hash
= free_element_chain
;
834 free_element_chain
= first
;
839 /* Say that register REG contains a quantity in mode MODE not in any
840 register before and initialize that quantity. */
843 make_new_qty (unsigned int reg
, machine_mode mode
)
846 struct qty_table_elem
*ent
;
847 struct reg_eqv_elem
*eqv
;
849 gcc_assert (next_qty
< max_qty
);
851 q
= REG_QTY (reg
) = next_qty
++;
853 ent
->first_reg
= reg
;
856 ent
->const_rtx
= ent
->const_insn
= NULL
;
857 ent
->comparison_code
= UNKNOWN
;
859 eqv
= ®_eqv_table
[reg
];
860 eqv
->next
= eqv
->prev
= -1;
863 /* Make reg NEW equivalent to reg OLD.
864 OLD is not changing; NEW is. */
867 make_regs_eqv (unsigned int new_reg
, unsigned int old_reg
)
869 unsigned int lastr
, firstr
;
870 int q
= REG_QTY (old_reg
);
871 struct qty_table_elem
*ent
;
875 /* Nothing should become eqv until it has a "non-invalid" qty number. */
876 gcc_assert (REGNO_QTY_VALID_P (old_reg
));
878 REG_QTY (new_reg
) = q
;
879 firstr
= ent
->first_reg
;
880 lastr
= ent
->last_reg
;
882 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
883 hard regs. Among pseudos, if NEW will live longer than any other reg
884 of the same qty, and that is beyond the current basic block,
885 make it the new canonical replacement for this qty. */
886 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
887 /* Certain fixed registers might be of the class NO_REGS. This means
888 that not only can they not be allocated by the compiler, but
889 they cannot be used in substitutions or canonicalizations
891 && (new_reg
>= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new_reg
) != NO_REGS
)
892 && ((new_reg
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new_reg
))
893 || (new_reg
>= FIRST_PSEUDO_REGISTER
894 && (firstr
< FIRST_PSEUDO_REGISTER
895 || (bitmap_bit_p (cse_ebb_live_out
, new_reg
)
896 && !bitmap_bit_p (cse_ebb_live_out
, firstr
))
897 || (bitmap_bit_p (cse_ebb_live_in
, new_reg
)
898 && !bitmap_bit_p (cse_ebb_live_in
, firstr
))))))
900 reg_eqv_table
[firstr
].prev
= new_reg
;
901 reg_eqv_table
[new_reg
].next
= firstr
;
902 reg_eqv_table
[new_reg
].prev
= -1;
903 ent
->first_reg
= new_reg
;
907 /* If NEW is a hard reg (known to be non-fixed), insert at end.
908 Otherwise, insert before any non-fixed hard regs that are at the
909 end. Registers of class NO_REGS cannot be used as an
910 equivalent for anything. */
911 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_eqv_table
[lastr
].prev
>= 0
912 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
913 && new_reg
>= FIRST_PSEUDO_REGISTER
)
914 lastr
= reg_eqv_table
[lastr
].prev
;
915 reg_eqv_table
[new_reg
].next
= reg_eqv_table
[lastr
].next
;
916 if (reg_eqv_table
[lastr
].next
>= 0)
917 reg_eqv_table
[reg_eqv_table
[lastr
].next
].prev
= new_reg
;
919 qty_table
[q
].last_reg
= new_reg
;
920 reg_eqv_table
[lastr
].next
= new_reg
;
921 reg_eqv_table
[new_reg
].prev
= lastr
;
925 /* Remove REG from its equivalence class. */
928 delete_reg_equiv (unsigned int reg
)
930 struct qty_table_elem
*ent
;
931 int q
= REG_QTY (reg
);
934 /* If invalid, do nothing. */
935 if (! REGNO_QTY_VALID_P (reg
))
940 p
= reg_eqv_table
[reg
].prev
;
941 n
= reg_eqv_table
[reg
].next
;
944 reg_eqv_table
[n
].prev
= p
;
948 reg_eqv_table
[p
].next
= n
;
952 REG_QTY (reg
) = -reg
- 1;
955 /* Remove any invalid expressions from the hash table
956 that refer to any of the registers contained in expression X.
958 Make sure that newly inserted references to those registers
959 as subexpressions will be considered valid.
961 mention_regs is not called when a register itself
962 is being stored in the table.
964 Return 1 if we have done something that may have changed the hash code
981 unsigned int regno
= REGNO (x
);
982 unsigned int endregno
= END_REGNO (x
);
985 for (i
= regno
; i
< endregno
; i
++)
987 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
988 remove_invalid_refs (i
);
990 REG_IN_TABLE (i
) = REG_TICK (i
);
991 SUBREG_TICKED (i
) = -1;
997 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
998 pseudo if they don't use overlapping words. We handle only pseudos
999 here for simplicity. */
1000 if (code
== SUBREG
&& REG_P (SUBREG_REG (x
))
1001 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
)
1003 unsigned int i
= REGNO (SUBREG_REG (x
));
1005 if (REG_IN_TABLE (i
) >= 0 && REG_IN_TABLE (i
) != REG_TICK (i
))
1007 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1008 the last store to this register really stored into this
1009 subreg, then remove the memory of this subreg.
1010 Otherwise, remove any memory of the entire register and
1011 all its subregs from the table. */
1012 if (REG_TICK (i
) - REG_IN_TABLE (i
) > 1
1013 || SUBREG_TICKED (i
) != REGNO (SUBREG_REG (x
)))
1014 remove_invalid_refs (i
);
1016 remove_invalid_subreg_refs (i
, SUBREG_BYTE (x
), GET_MODE (x
));
1019 REG_IN_TABLE (i
) = REG_TICK (i
);
1020 SUBREG_TICKED (i
) = REGNO (SUBREG_REG (x
));
1024 /* If X is a comparison or a COMPARE and either operand is a register
1025 that does not have a quantity, give it one. This is so that a later
1026 call to record_jump_equiv won't cause X to be assigned a different
1027 hash code and not found in the table after that call.
1029 It is not necessary to do this here, since rehash_using_reg can
1030 fix up the table later, but doing this here eliminates the need to
1031 call that expensive function in the most common case where the only
1032 use of the register is in the comparison. */
1034 if (code
== COMPARE
|| COMPARISON_P (x
))
1036 if (REG_P (XEXP (x
, 0))
1037 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
1038 if (insert_regs (XEXP (x
, 0), NULL
, 0))
1040 rehash_using_reg (XEXP (x
, 0));
1044 if (REG_P (XEXP (x
, 1))
1045 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
1046 if (insert_regs (XEXP (x
, 1), NULL
, 0))
1048 rehash_using_reg (XEXP (x
, 1));
1053 fmt
= GET_RTX_FORMAT (code
);
1054 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1056 changed
|= mention_regs (XEXP (x
, i
));
1057 else if (fmt
[i
] == 'E')
1058 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1059 changed
|= mention_regs (XVECEXP (x
, i
, j
));
1064 /* Update the register quantities for inserting X into the hash table
1065 with a value equivalent to CLASSP.
1066 (If the class does not contain a REG, it is irrelevant.)
1067 If MODIFIED is nonzero, X is a destination; it is being modified.
1068 Note that delete_reg_equiv should be called on a register
1069 before insert_regs is done on that register with MODIFIED != 0.
1071 Nonzero value means that elements of reg_qty have changed
1072 so X's hash code may be different. */
1075 insert_regs (rtx x
, struct table_elt
*classp
, int modified
)
1079 unsigned int regno
= REGNO (x
);
1082 /* If REGNO is in the equivalence table already but is of the
1083 wrong mode for that equivalence, don't do anything here. */
1085 qty_valid
= REGNO_QTY_VALID_P (regno
);
1088 struct qty_table_elem
*ent
= &qty_table
[REG_QTY (regno
)];
1090 if (ent
->mode
!= GET_MODE (x
))
1094 if (modified
|| ! qty_valid
)
1097 for (classp
= classp
->first_same_value
;
1099 classp
= classp
->next_same_value
)
1100 if (REG_P (classp
->exp
)
1101 && GET_MODE (classp
->exp
) == GET_MODE (x
))
1103 unsigned c_regno
= REGNO (classp
->exp
);
1105 gcc_assert (REGNO_QTY_VALID_P (c_regno
));
1107 /* Suppose that 5 is hard reg and 100 and 101 are
1110 (set (reg:si 100) (reg:si 5))
1111 (set (reg:si 5) (reg:si 100))
1112 (set (reg:di 101) (reg:di 5))
1114 We would now set REG_QTY (101) = REG_QTY (5), but the
1115 entry for 5 is in SImode. When we use this later in
1116 copy propagation, we get the register in wrong mode. */
1117 if (qty_table
[REG_QTY (c_regno
)].mode
!= GET_MODE (x
))
1120 make_regs_eqv (regno
, c_regno
);
1124 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1125 than REG_IN_TABLE to find out if there was only a single preceding
1126 invalidation - for the SUBREG - or another one, which would be
1127 for the full register. However, if we find here that REG_TICK
1128 indicates that the register is invalid, it means that it has
1129 been invalidated in a separate operation. The SUBREG might be used
1130 now (then this is a recursive call), or we might use the full REG
1131 now and a SUBREG of it later. So bump up REG_TICK so that
1132 mention_regs will do the right thing. */
1134 && REG_IN_TABLE (regno
) >= 0
1135 && REG_TICK (regno
) == REG_IN_TABLE (regno
) + 1)
1137 make_new_qty (regno
, GET_MODE (x
));
1144 /* If X is a SUBREG, we will likely be inserting the inner register in the
1145 table. If that register doesn't have an assigned quantity number at
1146 this point but does later, the insertion that we will be doing now will
1147 not be accessible because its hash code will have changed. So assign
1148 a quantity number now. */
1150 else if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
))
1151 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
1153 insert_regs (SUBREG_REG (x
), NULL
, 0);
1158 return mention_regs (x
);
1162 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1163 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1164 CST is equal to an anchor. */
1167 compute_const_anchors (rtx cst
,
1168 HOST_WIDE_INT
*lower_base
, HOST_WIDE_INT
*lower_offs
,
1169 HOST_WIDE_INT
*upper_base
, HOST_WIDE_INT
*upper_offs
)
1171 HOST_WIDE_INT n
= INTVAL (cst
);
1173 *lower_base
= n
& ~(targetm
.const_anchor
- 1);
1174 if (*lower_base
== n
)
1178 (n
+ (targetm
.const_anchor
- 1)) & ~(targetm
.const_anchor
- 1);
1179 *upper_offs
= n
- *upper_base
;
1180 *lower_offs
= n
- *lower_base
;
1184 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1187 insert_const_anchor (HOST_WIDE_INT anchor
, rtx reg
, HOST_WIDE_INT offs
,
1190 struct table_elt
*elt
;
1195 anchor_exp
= GEN_INT (anchor
);
1196 hash
= HASH (anchor_exp
, mode
);
1197 elt
= lookup (anchor_exp
, hash
, mode
);
1199 elt
= insert (anchor_exp
, NULL
, hash
, mode
);
1201 exp
= plus_constant (mode
, reg
, offs
);
1202 /* REG has just been inserted and the hash codes recomputed. */
1204 hash
= HASH (exp
, mode
);
1206 /* Use the cost of the register rather than the whole expression. When
1207 looking up constant anchors we will further offset the corresponding
1208 expression therefore it does not make sense to prefer REGs over
1209 reg-immediate additions. Prefer instead the oldest expression. Also
1210 don't prefer pseudos over hard regs so that we derive constants in
1211 argument registers from other argument registers rather than from the
1212 original pseudo that was used to synthesize the constant. */
1213 insert_with_costs (exp
, elt
, hash
, mode
, COST (reg
, mode
), 1);
1216 /* The constant CST is equivalent to the register REG. Create
1217 equivalences between the two anchors of CST and the corresponding
1218 register-offset expressions using REG. */
1221 insert_const_anchors (rtx reg
, rtx cst
, machine_mode mode
)
1223 HOST_WIDE_INT lower_base
, lower_offs
, upper_base
, upper_offs
;
1225 if (!compute_const_anchors (cst
, &lower_base
, &lower_offs
,
1226 &upper_base
, &upper_offs
))
1229 /* Ignore anchors of value 0. Constants accessible from zero are
1231 if (lower_base
!= 0)
1232 insert_const_anchor (lower_base
, reg
, -lower_offs
, mode
);
1234 if (upper_base
!= 0)
1235 insert_const_anchor (upper_base
, reg
, -upper_offs
, mode
);
1238 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1239 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1240 valid expression. Return the cheapest and oldest of such expressions. In
1241 *OLD, return how old the resulting expression is compared to the other
1242 equivalent expressions. */
1245 find_reg_offset_for_const (struct table_elt
*anchor_elt
, HOST_WIDE_INT offs
,
1248 struct table_elt
*elt
;
1250 struct table_elt
*match_elt
;
1253 /* Find the cheapest and *oldest* expression to maximize the chance of
1254 reusing the same pseudo. */
1258 for (elt
= anchor_elt
->first_same_value
, idx
= 0;
1260 elt
= elt
->next_same_value
, idx
++)
1262 if (match_elt
&& CHEAPER (match_elt
, elt
))
1265 if (REG_P (elt
->exp
)
1266 || (GET_CODE (elt
->exp
) == PLUS
1267 && REG_P (XEXP (elt
->exp
, 0))
1268 && GET_CODE (XEXP (elt
->exp
, 1)) == CONST_INT
))
1272 /* Ignore expressions that are no longer valid. */
1273 if (!REG_P (elt
->exp
) && !exp_equiv_p (elt
->exp
, elt
->exp
, 1, false))
1276 x
= plus_constant (GET_MODE (elt
->exp
), elt
->exp
, offs
);
1278 || (GET_CODE (x
) == PLUS
1279 && IN_RANGE (INTVAL (XEXP (x
, 1)),
1280 -targetm
.const_anchor
,
1281 targetm
.const_anchor
- 1)))
1293 /* Try to express the constant SRC_CONST using a register+offset expression
1294 derived from a constant anchor. Return it if successful or NULL_RTX,
1298 try_const_anchors (rtx src_const
, machine_mode mode
)
1300 struct table_elt
*lower_elt
, *upper_elt
;
1301 HOST_WIDE_INT lower_base
, lower_offs
, upper_base
, upper_offs
;
1302 rtx lower_anchor_rtx
, upper_anchor_rtx
;
1303 rtx lower_exp
= NULL_RTX
, upper_exp
= NULL_RTX
;
1304 unsigned lower_old
, upper_old
;
1306 /* CONST_INT is used for CC modes, but we should leave those alone. */
1307 if (GET_MODE_CLASS (mode
) == MODE_CC
)
1310 gcc_assert (SCALAR_INT_MODE_P (mode
));
1311 if (!compute_const_anchors (src_const
, &lower_base
, &lower_offs
,
1312 &upper_base
, &upper_offs
))
1315 lower_anchor_rtx
= GEN_INT (lower_base
);
1316 upper_anchor_rtx
= GEN_INT (upper_base
);
1317 lower_elt
= lookup (lower_anchor_rtx
, HASH (lower_anchor_rtx
, mode
), mode
);
1318 upper_elt
= lookup (upper_anchor_rtx
, HASH (upper_anchor_rtx
, mode
), mode
);
1321 lower_exp
= find_reg_offset_for_const (lower_elt
, lower_offs
, &lower_old
);
1323 upper_exp
= find_reg_offset_for_const (upper_elt
, upper_offs
, &upper_old
);
1330 /* Return the older expression. */
1331 return (upper_old
> lower_old
? upper_exp
: lower_exp
);
1334 /* Look in or update the hash table. */
1336 /* Remove table element ELT from use in the table.
1337 HASH is its hash code, made using the HASH macro.
1338 It's an argument because often that is known in advance
1339 and we save much time not recomputing it. */
1342 remove_from_table (struct table_elt
*elt
, unsigned int hash
)
1347 /* Mark this element as removed. See cse_insn. */
1348 elt
->first_same_value
= 0;
1350 /* Remove the table element from its equivalence class. */
1353 struct table_elt
*prev
= elt
->prev_same_value
;
1354 struct table_elt
*next
= elt
->next_same_value
;
1357 next
->prev_same_value
= prev
;
1360 prev
->next_same_value
= next
;
1363 struct table_elt
*newfirst
= next
;
1366 next
->first_same_value
= newfirst
;
1367 next
= next
->next_same_value
;
1372 /* Remove the table element from its hash bucket. */
1375 struct table_elt
*prev
= elt
->prev_same_hash
;
1376 struct table_elt
*next
= elt
->next_same_hash
;
1379 next
->prev_same_hash
= prev
;
1382 prev
->next_same_hash
= next
;
1383 else if (table
[hash
] == elt
)
1387 /* This entry is not in the proper hash bucket. This can happen
1388 when two classes were merged by `merge_equiv_classes'. Search
1389 for the hash bucket that it heads. This happens only very
1390 rarely, so the cost is acceptable. */
1391 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1392 if (table
[hash
] == elt
)
1397 /* Remove the table element from its related-value circular chain. */
1399 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1401 struct table_elt
*p
= elt
->related_value
;
1403 while (p
->related_value
!= elt
)
1404 p
= p
->related_value
;
1405 p
->related_value
= elt
->related_value
;
1406 if (p
->related_value
== p
)
1407 p
->related_value
= 0;
1410 /* Now add it to the free element chain. */
1411 elt
->next_same_hash
= free_element_chain
;
1412 free_element_chain
= elt
;
1415 /* Same as above, but X is a pseudo-register. */
1418 remove_pseudo_from_table (rtx x
, unsigned int hash
)
1420 struct table_elt
*elt
;
1422 /* Because a pseudo-register can be referenced in more than one
1423 mode, we might have to remove more than one table entry. */
1424 while ((elt
= lookup_for_remove (x
, hash
, VOIDmode
)))
1425 remove_from_table (elt
, hash
);
1428 /* Look up X in the hash table and return its table element,
1429 or 0 if X is not in the table.
1431 MODE is the machine-mode of X, or if X is an integer constant
1432 with VOIDmode then MODE is the mode with which X will be used.
1434 Here we are satisfied to find an expression whose tree structure
1437 static struct table_elt
*
1438 lookup (rtx x
, unsigned int hash
, machine_mode mode
)
1440 struct table_elt
*p
;
1442 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1443 if (mode
== p
->mode
&& ((x
== p
->exp
&& REG_P (x
))
1444 || exp_equiv_p (x
, p
->exp
, !REG_P (x
), false)))
1450 /* Like `lookup' but don't care whether the table element uses invalid regs.
1451 Also ignore discrepancies in the machine mode of a register. */
1453 static struct table_elt
*
1454 lookup_for_remove (rtx x
, unsigned int hash
, machine_mode mode
)
1456 struct table_elt
*p
;
1460 unsigned int regno
= REGNO (x
);
1462 /* Don't check the machine mode when comparing registers;
1463 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1464 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1466 && REGNO (p
->exp
) == regno
)
1471 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1473 && (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, false)))
1480 /* Look for an expression equivalent to X and with code CODE.
1481 If one is found, return that expression. */
1484 lookup_as_function (rtx x
, enum rtx_code code
)
1487 = lookup (x
, SAFE_HASH (x
, VOIDmode
), GET_MODE (x
));
1492 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1493 if (GET_CODE (p
->exp
) == code
1494 /* Make sure this is a valid entry in the table. */
1495 && exp_equiv_p (p
->exp
, p
->exp
, 1, false))
1501 /* Insert X in the hash table, assuming HASH is its hash code and
1502 CLASSP is an element of the class it should go in (or 0 if a new
1503 class should be made). COST is the code of X and reg_cost is the
1504 cost of registers in X. It is inserted at the proper position to
1505 keep the class in the order cheapest first.
1507 MODE is the machine-mode of X, or if X is an integer constant
1508 with VOIDmode then MODE is the mode with which X will be used.
1510 For elements of equal cheapness, the most recent one
1511 goes in front, except that the first element in the list
1512 remains first unless a cheaper element is added. The order of
1513 pseudo-registers does not matter, as canon_reg will be called to
1514 find the cheapest when a register is retrieved from the table.
1516 The in_memory field in the hash table element is set to 0.
1517 The caller must set it nonzero if appropriate.
1519 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1520 and if insert_regs returns a nonzero value
1521 you must then recompute its hash code before calling here.
1523 If necessary, update table showing constant values of quantities. */
1525 static struct table_elt
*
1526 insert_with_costs (rtx x
, struct table_elt
*classp
, unsigned int hash
,
1527 machine_mode mode
, int cost
, int reg_cost
)
1529 struct table_elt
*elt
;
1531 /* If X is a register and we haven't made a quantity for it,
1532 something is wrong. */
1533 gcc_assert (!REG_P (x
) || REGNO_QTY_VALID_P (REGNO (x
)));
1535 /* If X is a hard register, show it is being put in the table. */
1536 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1537 add_to_hard_reg_set (&hard_regs_in_table
, GET_MODE (x
), REGNO (x
));
1539 /* Put an element for X into the right hash bucket. */
1541 elt
= free_element_chain
;
1543 free_element_chain
= elt
->next_same_hash
;
1545 elt
= XNEW (struct table_elt
);
1548 elt
->canon_exp
= NULL_RTX
;
1550 elt
->regcost
= reg_cost
;
1551 elt
->next_same_value
= 0;
1552 elt
->prev_same_value
= 0;
1553 elt
->next_same_hash
= table
[hash
];
1554 elt
->prev_same_hash
= 0;
1555 elt
->related_value
= 0;
1558 elt
->is_const
= (CONSTANT_P (x
) || fixed_base_plus_p (x
));
1561 table
[hash
]->prev_same_hash
= elt
;
1564 /* Put it into the proper value-class. */
1567 classp
= classp
->first_same_value
;
1568 if (CHEAPER (elt
, classp
))
1569 /* Insert at the head of the class. */
1571 struct table_elt
*p
;
1572 elt
->next_same_value
= classp
;
1573 classp
->prev_same_value
= elt
;
1574 elt
->first_same_value
= elt
;
1576 for (p
= classp
; p
; p
= p
->next_same_value
)
1577 p
->first_same_value
= elt
;
1581 /* Insert not at head of the class. */
1582 /* Put it after the last element cheaper than X. */
1583 struct table_elt
*p
, *next
;
1586 (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1590 /* Put it after P and before NEXT. */
1591 elt
->next_same_value
= next
;
1593 next
->prev_same_value
= elt
;
1595 elt
->prev_same_value
= p
;
1596 p
->next_same_value
= elt
;
1597 elt
->first_same_value
= classp
;
1601 elt
->first_same_value
= elt
;
1603 /* If this is a constant being set equivalent to a register or a register
1604 being set equivalent to a constant, note the constant equivalence.
1606 If this is a constant, it cannot be equivalent to a different constant,
1607 and a constant is the only thing that can be cheaper than a register. So
1608 we know the register is the head of the class (before the constant was
1611 If this is a register that is not already known equivalent to a
1612 constant, we must check the entire class.
1614 If this is a register that is already known equivalent to an insn,
1615 update the qtys `const_insn' to show that `this_insn' is the latest
1616 insn making that quantity equivalent to the constant. */
1618 if (elt
->is_const
&& classp
&& REG_P (classp
->exp
)
1621 int exp_q
= REG_QTY (REGNO (classp
->exp
));
1622 struct qty_table_elem
*exp_ent
= &qty_table
[exp_q
];
1624 exp_ent
->const_rtx
= gen_lowpart (exp_ent
->mode
, x
);
1625 exp_ent
->const_insn
= this_insn
;
1630 && ! qty_table
[REG_QTY (REGNO (x
))].const_rtx
1633 struct table_elt
*p
;
1635 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1637 if (p
->is_const
&& !REG_P (p
->exp
))
1639 int x_q
= REG_QTY (REGNO (x
));
1640 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
1643 = gen_lowpart (GET_MODE (x
), p
->exp
);
1644 x_ent
->const_insn
= this_insn
;
1651 && qty_table
[REG_QTY (REGNO (x
))].const_rtx
1652 && GET_MODE (x
) == qty_table
[REG_QTY (REGNO (x
))].mode
)
1653 qty_table
[REG_QTY (REGNO (x
))].const_insn
= this_insn
;
1655 /* If this is a constant with symbolic value,
1656 and it has a term with an explicit integer value,
1657 link it up with related expressions. */
1658 if (GET_CODE (x
) == CONST
)
1660 rtx subexp
= get_related_value (x
);
1662 struct table_elt
*subelt
, *subelt_prev
;
1666 /* Get the integer-free subexpression in the hash table. */
1667 subhash
= SAFE_HASH (subexp
, mode
);
1668 subelt
= lookup (subexp
, subhash
, mode
);
1670 subelt
= insert (subexp
, NULL
, subhash
, mode
);
1671 /* Initialize SUBELT's circular chain if it has none. */
1672 if (subelt
->related_value
== 0)
1673 subelt
->related_value
= subelt
;
1674 /* Find the element in the circular chain that precedes SUBELT. */
1675 subelt_prev
= subelt
;
1676 while (subelt_prev
->related_value
!= subelt
)
1677 subelt_prev
= subelt_prev
->related_value
;
1678 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1679 This way the element that follows SUBELT is the oldest one. */
1680 elt
->related_value
= subelt_prev
->related_value
;
1681 subelt_prev
->related_value
= elt
;
1688 /* Wrap insert_with_costs by passing the default costs. */
1690 static struct table_elt
*
1691 insert (rtx x
, struct table_elt
*classp
, unsigned int hash
,
1694 return insert_with_costs (x
, classp
, hash
, mode
,
1695 COST (x
, mode
), approx_reg_cost (x
));
1699 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1700 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1701 the two classes equivalent.
1703 CLASS1 will be the surviving class; CLASS2 should not be used after this
1706 Any invalid entries in CLASS2 will not be copied. */
1709 merge_equiv_classes (struct table_elt
*class1
, struct table_elt
*class2
)
1711 struct table_elt
*elt
, *next
, *new_elt
;
1713 /* Ensure we start with the head of the classes. */
1714 class1
= class1
->first_same_value
;
1715 class2
= class2
->first_same_value
;
1717 /* If they were already equal, forget it. */
1718 if (class1
== class2
)
1721 for (elt
= class2
; elt
; elt
= next
)
1725 machine_mode mode
= elt
->mode
;
1727 next
= elt
->next_same_value
;
1729 /* Remove old entry, make a new one in CLASS1's class.
1730 Don't do this for invalid entries as we cannot find their
1731 hash code (it also isn't necessary). */
1732 if (REG_P (exp
) || exp_equiv_p (exp
, exp
, 1, false))
1734 bool need_rehash
= false;
1736 hash_arg_in_memory
= 0;
1737 hash
= HASH (exp
, mode
);
1741 need_rehash
= REGNO_QTY_VALID_P (REGNO (exp
));
1742 delete_reg_equiv (REGNO (exp
));
1745 if (REG_P (exp
) && REGNO (exp
) >= FIRST_PSEUDO_REGISTER
)
1746 remove_pseudo_from_table (exp
, hash
);
1748 remove_from_table (elt
, hash
);
1750 if (insert_regs (exp
, class1
, 0) || need_rehash
)
1752 rehash_using_reg (exp
);
1753 hash
= HASH (exp
, mode
);
1755 new_elt
= insert (exp
, class1
, hash
, mode
);
1756 new_elt
->in_memory
= hash_arg_in_memory
;
1757 if (GET_CODE (exp
) == ASM_OPERANDS
&& elt
->cost
== MAX_COST
)
1758 new_elt
->cost
= MAX_COST
;
1763 /* Flush the entire hash table. */
1766 flush_hash_table (void)
1769 struct table_elt
*p
;
1771 for (i
= 0; i
< HASH_SIZE
; i
++)
1772 for (p
= table
[i
]; p
; p
= table
[i
])
1774 /* Note that invalidate can remove elements
1775 after P in the current hash chain. */
1777 invalidate (p
->exp
, VOIDmode
);
1779 remove_from_table (p
, i
);
1783 /* Check whether an anti dependence exists between X and EXP. MODE and
1784 ADDR are as for canon_anti_dependence. */
1787 check_dependence (const_rtx x
, rtx exp
, machine_mode mode
, rtx addr
)
1789 subrtx_iterator::array_type array
;
1790 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1792 const_rtx x
= *iter
;
1793 if (MEM_P (x
) && canon_anti_dependence (x
, true, exp
, mode
, addr
))
1799 /* Remove from the hash table, or mark as invalid, all expressions whose
1800 values could be altered by storing in register X. */
1803 invalidate_reg (rtx x
)
1805 gcc_assert (GET_CODE (x
) == REG
);
1807 /* If X is a register, dependencies on its contents are recorded
1808 through the qty number mechanism. Just change the qty number of
1809 the register, mark it as invalid for expressions that refer to it,
1810 and remove it itself. */
1811 unsigned int regno
= REGNO (x
);
1812 unsigned int hash
= HASH (x
, GET_MODE (x
));
1814 /* Remove REGNO from any quantity list it might be on and indicate
1815 that its value might have changed. If it is a pseudo, remove its
1816 entry from the hash table.
1818 For a hard register, we do the first two actions above for any
1819 additional hard registers corresponding to X. Then, if any of these
1820 registers are in the table, we must remove any REG entries that
1821 overlap these registers. */
1823 delete_reg_equiv (regno
);
1825 SUBREG_TICKED (regno
) = -1;
1827 if (regno
>= FIRST_PSEUDO_REGISTER
)
1828 remove_pseudo_from_table (x
, hash
);
1831 HOST_WIDE_INT in_table
= TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1832 unsigned int endregno
= END_REGNO (x
);
1834 struct table_elt
*p
, *next
;
1836 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1838 for (rn
= regno
+ 1; rn
< endregno
; rn
++)
1840 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, rn
);
1841 CLEAR_HARD_REG_BIT (hard_regs_in_table
, rn
);
1842 delete_reg_equiv (rn
);
1844 SUBREG_TICKED (rn
) = -1;
1848 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
1849 for (p
= table
[hash
]; p
; p
= next
)
1851 next
= p
->next_same_hash
;
1853 if (!REG_P (p
->exp
) || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1856 unsigned int tregno
= REGNO (p
->exp
);
1857 unsigned int tendregno
= END_REGNO (p
->exp
);
1858 if (tendregno
> regno
&& tregno
< endregno
)
1859 remove_from_table (p
, hash
);
1864 /* Remove from the hash table, or mark as invalid, all expressions whose
1865 values could be altered by storing in X. X is a register, a subreg, or
1866 a memory reference with nonvarying address (because, when a memory
1867 reference with a varying address is stored in, all memory references are
1868 removed by invalidate_memory so specific invalidation is superfluous).
1869 FULL_MODE, if not VOIDmode, indicates that this much should be
1870 invalidated instead of just the amount indicated by the mode of X. This
1871 is only used for bitfield stores into memory.
1873 A nonvarying address may be just a register or just a symbol reference,
1874 or it may be either of those plus a numeric offset. */
1877 invalidate (rtx x
, machine_mode full_mode
)
1880 struct table_elt
*p
;
1883 switch (GET_CODE (x
))
1890 invalidate (SUBREG_REG (x
), VOIDmode
);
1894 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; --i
)
1895 invalidate (XVECEXP (x
, 0, i
), VOIDmode
);
1899 /* This is part of a disjoint return value; extract the location in
1900 question ignoring the offset. */
1901 invalidate (XEXP (x
, 0), VOIDmode
);
1905 addr
= canon_rtx (get_addr (XEXP (x
, 0)));
1906 /* Calculate the canonical version of X here so that
1907 true_dependence doesn't generate new RTL for X on each call. */
1910 /* Remove all hash table elements that refer to overlapping pieces of
1912 if (full_mode
== VOIDmode
)
1913 full_mode
= GET_MODE (x
);
1915 for (i
= 0; i
< HASH_SIZE
; i
++)
1917 struct table_elt
*next
;
1919 for (p
= table
[i
]; p
; p
= next
)
1921 next
= p
->next_same_hash
;
1924 /* Just canonicalize the expression once;
1925 otherwise each time we call invalidate
1926 true_dependence will canonicalize the
1927 expression again. */
1929 p
->canon_exp
= canon_rtx (p
->exp
);
1930 if (check_dependence (p
->canon_exp
, x
, full_mode
, addr
))
1931 remove_from_table (p
, i
);
1942 /* Invalidate DEST. Used when DEST is not going to be added
1943 into the hash table for some reason, e.g. do_not_record
1947 invalidate_dest (rtx dest
)
1950 || GET_CODE (dest
) == SUBREG
1952 invalidate (dest
, VOIDmode
);
1953 else if (GET_CODE (dest
) == STRICT_LOW_PART
1954 || GET_CODE (dest
) == ZERO_EXTRACT
)
1955 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
1958 /* Remove all expressions that refer to register REGNO,
1959 since they are already invalid, and we are about to
1960 mark that register valid again and don't want the old
1961 expressions to reappear as valid. */
1964 remove_invalid_refs (unsigned int regno
)
1967 struct table_elt
*p
, *next
;
1969 for (i
= 0; i
< HASH_SIZE
; i
++)
1970 for (p
= table
[i
]; p
; p
= next
)
1972 next
= p
->next_same_hash
;
1973 if (!REG_P (p
->exp
) && refers_to_regno_p (regno
, p
->exp
))
1974 remove_from_table (p
, i
);
1978 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1981 remove_invalid_subreg_refs (unsigned int regno
, poly_uint64 offset
,
1985 struct table_elt
*p
, *next
;
1987 for (i
= 0; i
< HASH_SIZE
; i
++)
1988 for (p
= table
[i
]; p
; p
= next
)
1991 next
= p
->next_same_hash
;
1994 && (GET_CODE (exp
) != SUBREG
1995 || !REG_P (SUBREG_REG (exp
))
1996 || REGNO (SUBREG_REG (exp
)) != regno
1997 || ranges_maybe_overlap_p (SUBREG_BYTE (exp
),
1998 GET_MODE_SIZE (GET_MODE (exp
)),
1999 offset
, GET_MODE_SIZE (mode
)))
2000 && refers_to_regno_p (regno
, p
->exp
))
2001 remove_from_table (p
, i
);
2005 /* Recompute the hash codes of any valid entries in the hash table that
2006 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2008 This is called when we make a jump equivalence. */
2011 rehash_using_reg (rtx x
)
2014 struct table_elt
*p
, *next
;
2017 if (GET_CODE (x
) == SUBREG
)
2020 /* If X is not a register or if the register is known not to be in any
2021 valid entries in the table, we have no work to do. */
2024 || REG_IN_TABLE (REGNO (x
)) < 0
2025 || REG_IN_TABLE (REGNO (x
)) != REG_TICK (REGNO (x
)))
2028 /* Scan all hash chains looking for valid entries that mention X.
2029 If we find one and it is in the wrong hash chain, move it. */
2031 for (i
= 0; i
< HASH_SIZE
; i
++)
2032 for (p
= table
[i
]; p
; p
= next
)
2034 next
= p
->next_same_hash
;
2035 if (reg_mentioned_p (x
, p
->exp
)
2036 && exp_equiv_p (p
->exp
, p
->exp
, 1, false)
2037 && i
!= (hash
= SAFE_HASH (p
->exp
, p
->mode
)))
2039 if (p
->next_same_hash
)
2040 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
2042 if (p
->prev_same_hash
)
2043 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
2045 table
[i
] = p
->next_same_hash
;
2047 p
->next_same_hash
= table
[hash
];
2048 p
->prev_same_hash
= 0;
2050 table
[hash
]->prev_same_hash
= p
;
2056 /* Remove from the hash table any expression that is a call-clobbered
2057 register in INSN. Also update their TICK values. */
2060 invalidate_for_call (rtx_insn
*insn
)
2064 struct table_elt
*p
, *next
;
2066 hard_reg_set_iterator hrsi
;
2068 /* Go through all the hard registers. For each that might be clobbered
2069 in call insn INSN, remove the register from quantity chains and update
2070 reg_tick if defined. Also see if any of these registers is currently
2073 ??? We could be more precise for partially-clobbered registers,
2074 and only invalidate values that actually occupy the clobbered part
2075 of the registers. It doesn't seem worth the effort though, since
2076 we shouldn't see this situation much before RA. Whatever choice
2077 we make here has to be consistent with the table walk below,
2078 so any change to this test will require a change there too. */
2079 HARD_REG_SET callee_clobbers
2080 = insn_callee_abi (insn
).full_and_partial_reg_clobbers ();
2081 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers
, 0, regno
, hrsi
)
2083 delete_reg_equiv (regno
);
2084 if (REG_TICK (regno
) >= 0)
2087 SUBREG_TICKED (regno
) = -1;
2089 in_table
|= (TEST_HARD_REG_BIT (hard_regs_in_table
, regno
) != 0);
2092 /* In the case where we have no call-clobbered hard registers in the
2093 table, we are done. Otherwise, scan the table and remove any
2094 entry that overlaps a call-clobbered register. */
2097 for (hash
= 0; hash
< HASH_SIZE
; hash
++)
2098 for (p
= table
[hash
]; p
; p
= next
)
2100 next
= p
->next_same_hash
;
2103 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
2106 /* This must use the same test as above rather than the
2107 more accurate clobbers_reg_p. */
2108 if (overlaps_hard_reg_set_p (callee_clobbers
, GET_MODE (p
->exp
),
2110 remove_from_table (p
, hash
);
2114 /* Given an expression X of type CONST,
2115 and ELT which is its table entry (or 0 if it
2116 is not in the hash table),
2117 return an alternate expression for X as a register plus integer.
2118 If none can be found, return 0. */
2121 use_related_value (rtx x
, struct table_elt
*elt
)
2123 struct table_elt
*relt
= 0;
2124 struct table_elt
*p
, *q
;
2125 HOST_WIDE_INT offset
;
2127 /* First, is there anything related known?
2128 If we have a table element, we can tell from that.
2129 Otherwise, must look it up. */
2131 if (elt
!= 0 && elt
->related_value
!= 0)
2133 else if (elt
== 0 && GET_CODE (x
) == CONST
)
2135 rtx subexp
= get_related_value (x
);
2137 relt
= lookup (subexp
,
2138 SAFE_HASH (subexp
, GET_MODE (subexp
)),
2145 /* Search all related table entries for one that has an
2146 equivalent register. */
2151 /* This loop is strange in that it is executed in two different cases.
2152 The first is when X is already in the table. Then it is searching
2153 the RELATED_VALUE list of X's class (RELT). The second case is when
2154 X is not in the table. Then RELT points to a class for the related
2157 Ensure that, whatever case we are in, that we ignore classes that have
2158 the same value as X. */
2160 if (rtx_equal_p (x
, p
->exp
))
2163 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
2170 p
= p
->related_value
;
2172 /* We went all the way around, so there is nothing to be found.
2173 Alternatively, perhaps RELT was in the table for some other reason
2174 and it has no related values recorded. */
2175 if (p
== relt
|| p
== 0)
2182 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
2183 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2184 return plus_constant (q
->mode
, q
->exp
, offset
);
2188 /* Hash a string. Just add its bytes up. */
2189 static inline unsigned
2190 hash_rtx_string (const char *ps
)
2193 const unsigned char *p
= (const unsigned char *) ps
;
2202 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2203 When the callback returns true, we continue with the new rtx. */
2206 hash_rtx_cb (const_rtx x
, machine_mode mode
,
2207 int *do_not_record_p
, int *hash_arg_in_memory_p
,
2208 bool have_reg_qty
, hash_rtx_callback_function cb
)
2214 machine_mode newmode
;
2217 /* Used to turn recursion into iteration. We can't rely on GCC's
2218 tail-recursion elimination since we need to keep accumulating values
2224 /* Invoke the callback first. */
2226 && ((*cb
) (x
, mode
, &newx
, &newmode
)))
2228 hash
+= hash_rtx_cb (newx
, newmode
, do_not_record_p
,
2229 hash_arg_in_memory_p
, have_reg_qty
, cb
);
2233 code
= GET_CODE (x
);
2238 unsigned int regno
= REGNO (x
);
2240 if (do_not_record_p
&& !reload_completed
)
2242 /* On some machines, we can't record any non-fixed hard register,
2243 because extending its life will cause reload problems. We
2244 consider ap, fp, sp, gp to be fixed for this purpose.
2246 We also consider CCmode registers to be fixed for this purpose;
2247 failure to do so leads to failure to simplify 0<100 type of
2250 On all machines, we can't record any global registers.
2251 Nor should we record any register that is in a small
2252 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2255 if (regno
>= FIRST_PSEUDO_REGISTER
)
2257 else if (x
== frame_pointer_rtx
2258 || x
== hard_frame_pointer_rtx
2259 || x
== arg_pointer_rtx
2260 || x
== stack_pointer_rtx
2261 || x
== pic_offset_table_rtx
)
2263 else if (global_regs
[regno
])
2265 else if (fixed_regs
[regno
])
2267 else if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
2269 else if (targetm
.small_register_classes_for_mode_p (GET_MODE (x
)))
2271 else if (targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
)))
2278 *do_not_record_p
= 1;
2283 hash
+= ((unsigned int) REG
<< 7);
2284 hash
+= (have_reg_qty
? (unsigned) REG_QTY (regno
) : regno
);
2288 /* We handle SUBREG of a REG specially because the underlying
2289 reg changes its hash value with every value change; we don't
2290 want to have to forget unrelated subregs when one subreg changes. */
2293 if (REG_P (SUBREG_REG (x
)))
2295 hash
+= (((unsigned int) SUBREG
<< 7)
2296 + REGNO (SUBREG_REG (x
))
2297 + (constant_lower_bound (SUBREG_BYTE (x
))
2305 hash
+= (((unsigned int) CONST_INT
<< 7) + (unsigned int) mode
2306 + (unsigned int) INTVAL (x
));
2309 case CONST_WIDE_INT
:
2310 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (x
); i
++)
2311 hash
+= CONST_WIDE_INT_ELT (x
, i
);
2314 case CONST_POLY_INT
:
2318 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2319 h
.add_wide_int (CONST_POLY_INT_COEFFS (x
)[i
]);
2324 /* This is like the general case, except that it only counts
2325 the integers representing the constant. */
2326 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
2327 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
2328 hash
+= ((unsigned int) CONST_DOUBLE_LOW (x
)
2329 + (unsigned int) CONST_DOUBLE_HIGH (x
));
2331 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
2335 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
2336 hash
+= fixed_hash (CONST_FIXED_VALUE (x
));
2344 units
= const_vector_encoded_nelts (x
);
2346 for (i
= 0; i
< units
; ++i
)
2348 elt
= CONST_VECTOR_ENCODED_ELT (x
, i
);
2349 hash
+= hash_rtx_cb (elt
, GET_MODE (elt
),
2350 do_not_record_p
, hash_arg_in_memory_p
,
2357 /* Assume there is only one rtx object for any given label. */
2359 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2360 differences and differences between each stage's debugging dumps. */
2361 hash
+= (((unsigned int) LABEL_REF
<< 7)
2362 + CODE_LABEL_NUMBER (label_ref_label (x
)));
2367 /* Don't hash on the symbol's address to avoid bootstrap differences.
2368 Different hash values may cause expressions to be recorded in
2369 different orders and thus different registers to be used in the
2370 final assembler. This also avoids differences in the dump files
2371 between various stages. */
2373 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
2376 h
+= (h
<< 7) + *p
++; /* ??? revisit */
2378 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
2383 /* We don't record if marked volatile or if BLKmode since we don't
2384 know the size of the move. */
2385 if (do_not_record_p
&& (MEM_VOLATILE_P (x
) || GET_MODE (x
) == BLKmode
))
2387 *do_not_record_p
= 1;
2390 if (hash_arg_in_memory_p
&& !MEM_READONLY_P (x
))
2391 *hash_arg_in_memory_p
= 1;
2393 /* Now that we have already found this special case,
2394 might as well speed it up as much as possible. */
2395 hash
+= (unsigned) MEM
;
2400 /* A USE that mentions non-volatile memory needs special
2401 handling since the MEM may be BLKmode which normally
2402 prevents an entry from being made. Pure calls are
2403 marked by a USE which mentions BLKmode memory.
2404 See calls.c:emit_call_1. */
2405 if (MEM_P (XEXP (x
, 0))
2406 && ! MEM_VOLATILE_P (XEXP (x
, 0)))
2408 hash
+= (unsigned) USE
;
2411 if (hash_arg_in_memory_p
&& !MEM_READONLY_P (x
))
2412 *hash_arg_in_memory_p
= 1;
2414 /* Now that we have already found this special case,
2415 might as well speed it up as much as possible. */
2416 hash
+= (unsigned) MEM
;
2430 case UNSPEC_VOLATILE
:
2431 if (do_not_record_p
) {
2432 *do_not_record_p
= 1;
2440 if (do_not_record_p
&& MEM_VOLATILE_P (x
))
2442 *do_not_record_p
= 1;
2447 /* We don't want to take the filename and line into account. */
2448 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
2449 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x
))
2450 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
2451 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
2453 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2455 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
2457 hash
+= (hash_rtx_cb (ASM_OPERANDS_INPUT (x
, i
),
2458 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)),
2459 do_not_record_p
, hash_arg_in_memory_p
,
2462 (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
)));
2465 hash
+= hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
2466 x
= ASM_OPERANDS_INPUT (x
, 0);
2467 mode
= GET_MODE (x
);
2479 i
= GET_RTX_LENGTH (code
) - 1;
2480 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2481 fmt
= GET_RTX_FORMAT (code
);
2487 /* If we are about to do the last recursive call
2488 needed at this level, change it into iteration.
2489 This function is called enough to be worth it. */
2496 hash
+= hash_rtx_cb (XEXP (x
, i
), VOIDmode
, do_not_record_p
,
2497 hash_arg_in_memory_p
,
2502 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2503 hash
+= hash_rtx_cb (XVECEXP (x
, i
, j
), VOIDmode
, do_not_record_p
,
2504 hash_arg_in_memory_p
,
2509 hash
+= hash_rtx_string (XSTR (x
, i
));
2513 hash
+= (unsigned int) XINT (x
, i
);
2517 hash
+= constant_lower_bound (SUBREG_BYTE (x
));
2532 /* Hash an rtx. We are careful to make sure the value is never negative.
2533 Equivalent registers hash identically.
2534 MODE is used in hashing for CONST_INTs only;
2535 otherwise the mode of X is used.
2537 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2539 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2540 a MEM rtx which does not have the MEM_READONLY_P flag set.
2542 Note that cse_insn knows that the hash code of a MEM expression
2543 is just (int) MEM plus the hash code of the address. */
2546 hash_rtx (const_rtx x
, machine_mode mode
, int *do_not_record_p
,
2547 int *hash_arg_in_memory_p
, bool have_reg_qty
)
2549 return hash_rtx_cb (x
, mode
, do_not_record_p
,
2550 hash_arg_in_memory_p
, have_reg_qty
, NULL
);
2553 /* Hash an rtx X for cse via hash_rtx.
2554 Stores 1 in do_not_record if any subexpression is volatile.
2555 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2556 does not have the MEM_READONLY_P flag set. */
2558 static inline unsigned
2559 canon_hash (rtx x
, machine_mode mode
)
2561 return hash_rtx (x
, mode
, &do_not_record
, &hash_arg_in_memory
, true);
2564 /* Like canon_hash but with no side effects, i.e. do_not_record
2565 and hash_arg_in_memory are not changed. */
2567 static inline unsigned
2568 safe_hash (rtx x
, machine_mode mode
)
2570 int dummy_do_not_record
;
2571 return hash_rtx (x
, mode
, &dummy_do_not_record
, NULL
, true);
2574 /* Return 1 iff X and Y would canonicalize into the same thing,
2575 without actually constructing the canonicalization of either one.
2576 If VALIDATE is nonzero,
2577 we assume X is an expression being processed from the rtl
2578 and Y was found in the hash table. We check register refs
2579 in Y for being marked as valid.
2581 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2584 exp_equiv_p (const_rtx x
, const_rtx y
, int validate
, bool for_gcse
)
2590 /* Note: it is incorrect to assume an expression is equivalent to itself
2591 if VALIDATE is nonzero. */
2592 if (x
== y
&& !validate
)
2595 if (x
== 0 || y
== 0)
2598 code
= GET_CODE (x
);
2599 if (code
!= GET_CODE (y
))
2602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2603 if (GET_MODE (x
) != GET_MODE (y
))
2606 /* MEMs referring to different address space are not equivalent. */
2607 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
2617 if (!same_vector_encodings_p (x
, y
))
2622 return label_ref_label (x
) == label_ref_label (y
);
2625 return XSTR (x
, 0) == XSTR (y
, 0);
2629 return REGNO (x
) == REGNO (y
);
2632 unsigned int regno
= REGNO (y
);
2634 unsigned int endregno
= END_REGNO (y
);
2636 /* If the quantities are not the same, the expressions are not
2637 equivalent. If there are and we are not to validate, they
2638 are equivalent. Otherwise, ensure all regs are up-to-date. */
2640 if (REG_QTY (REGNO (x
)) != REG_QTY (regno
))
2646 for (i
= regno
; i
< endregno
; i
++)
2647 if (REG_IN_TABLE (i
) != REG_TICK (i
))
2656 /* A volatile mem should not be considered equivalent to any
2658 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
2661 /* Can't merge two expressions in different alias sets, since we
2662 can decide that the expression is transparent in a block when
2663 it isn't, due to it being set with the different alias set.
2665 Also, can't merge two expressions with different MEM_ATTRS.
2666 They could e.g. be two different entities allocated into the
2667 same space on the stack (see e.g. PR25130). In that case, the
2668 MEM addresses can be the same, even though the two MEMs are
2669 absolutely not equivalent.
2671 But because really all MEM attributes should be the same for
2672 equivalent MEMs, we just use the invariant that MEMs that have
2673 the same attributes share the same mem_attrs data structure. */
2674 if (!mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
2677 /* If we are handling exceptions, we cannot consider two expressions
2678 with different trapping status as equivalent, because simple_mem
2679 might accept one and reject the other. */
2680 if (cfun
->can_throw_non_call_exceptions
2681 && (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
)))
2686 /* For commutative operations, check both orders. */
2694 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0),
2696 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2697 validate
, for_gcse
))
2698 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2700 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2701 validate
, for_gcse
)));
2704 /* We don't use the generic code below because we want to
2705 disregard filename and line numbers. */
2707 /* A volatile asm isn't equivalent to any other. */
2708 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
2711 if (GET_MODE (x
) != GET_MODE (y
)
2712 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
2713 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
2714 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
2715 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
2716 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
2719 if (ASM_OPERANDS_INPUT_LENGTH (x
))
2721 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
2722 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
2723 ASM_OPERANDS_INPUT (y
, i
),
2725 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
2726 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
2736 /* Compare the elements. If any pair of corresponding elements
2737 fail to match, return 0 for the whole thing. */
2739 fmt
= GET_RTX_FORMAT (code
);
2740 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2745 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
),
2746 validate
, for_gcse
))
2751 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2753 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2754 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2755 validate
, for_gcse
))
2760 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2765 if (XINT (x
, i
) != XINT (y
, i
))
2770 if (XWINT (x
, i
) != XWINT (y
, i
))
2775 if (maybe_ne (SUBREG_BYTE (x
), SUBREG_BYTE (y
)))
2791 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2792 the result if necessary. INSN is as for canon_reg. */
2795 validate_canon_reg (rtx
*xloc
, rtx_insn
*insn
)
2799 rtx new_rtx
= canon_reg (*xloc
, insn
);
2801 /* If replacing pseudo with hard reg or vice versa, ensure the
2802 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2803 gcc_assert (insn
&& new_rtx
);
2804 validate_change (insn
, xloc
, new_rtx
, 1);
2808 /* Canonicalize an expression:
2809 replace each register reference inside it
2810 with the "oldest" equivalent register.
2812 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2813 after we make our substitution. The calls are made with IN_GROUP nonzero
2814 so apply_change_group must be called upon the outermost return from this
2815 function (unless INSN is zero). The result of apply_change_group can
2816 generally be discarded since the changes we are making are optional. */
2819 canon_reg (rtx x
, rtx_insn
*insn
)
2828 code
= GET_CODE (x
);
2844 struct qty_table_elem
*ent
;
2846 /* Never replace a hard reg, because hard regs can appear
2847 in more than one machine mode, and we must preserve the mode
2848 of each occurrence. Also, some hard regs appear in
2849 MEMs that are shared and mustn't be altered. Don't try to
2850 replace any reg that maps to a reg of class NO_REGS. */
2851 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2852 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2855 q
= REG_QTY (REGNO (x
));
2856 ent
= &qty_table
[q
];
2857 first
= ent
->first_reg
;
2858 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2859 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2860 : gen_rtx_REG (ent
->mode
, first
));
2867 fmt
= GET_RTX_FORMAT (code
);
2868 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2873 validate_canon_reg (&XEXP (x
, i
), insn
);
2874 else if (fmt
[i
] == 'E')
2875 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2876 validate_canon_reg (&XVECEXP (x
, i
, j
), insn
);
2882 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2883 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2884 what values are being compared.
2886 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2887 actually being compared. For example, if *PARG1 was (reg:CC CC_REG) and
2888 *PARG2 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that
2889 were compared to produce (reg:CC CC_REG).
2891 The return value is the comparison operator and is either the code of
2892 A or the code corresponding to the inverse of the comparison. */
2894 static enum rtx_code
2895 find_comparison_args (enum rtx_code code
, rtx
*parg1
, rtx
*parg2
,
2896 machine_mode
*pmode1
, machine_mode
*pmode2
)
2899 hash_set
<rtx
> *visited
= NULL
;
2900 /* Set nonzero when we find something of interest. */
2903 arg1
= *parg1
, arg2
= *parg2
;
2905 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2907 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
2909 int reverse_code
= 0;
2910 struct table_elt
*p
= 0;
2912 /* Remember state from previous iteration. */
2916 visited
= new hash_set
<rtx
>;
2921 /* If arg1 is a COMPARE, extract the comparison arguments from it. */
2923 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
2926 /* If ARG1 is a comparison operator and CODE is testing for
2927 STORE_FLAG_VALUE, get the inner arguments. */
2929 else if (COMPARISON_P (arg1
))
2931 #ifdef FLOAT_STORE_FLAG_VALUE
2932 REAL_VALUE_TYPE fsfv
;
2936 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2937 && code
== LT
&& STORE_FLAG_VALUE
== -1)
2938 #ifdef FLOAT_STORE_FLAG_VALUE
2939 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1
))
2940 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
2941 REAL_VALUE_NEGATIVE (fsfv
)))
2946 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2947 && code
== GE
&& STORE_FLAG_VALUE
== -1)
2948 #ifdef FLOAT_STORE_FLAG_VALUE
2949 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1
))
2950 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
2951 REAL_VALUE_NEGATIVE (fsfv
)))
2954 x
= arg1
, reverse_code
= 1;
2957 /* ??? We could also check for
2959 (ne (and (eq (...) (const_int 1))) (const_int 0))
2961 and related forms, but let's wait until we see them occurring. */
2964 /* Look up ARG1 in the hash table and see if it has an equivalence
2965 that lets us see what is being compared. */
2966 p
= lookup (arg1
, SAFE_HASH (arg1
, GET_MODE (arg1
)), GET_MODE (arg1
));
2969 p
= p
->first_same_value
;
2971 /* If what we compare is already known to be constant, that is as
2973 We need to break the loop in this case, because otherwise we
2974 can have an infinite loop when looking at a reg that is known
2975 to be a constant which is the same as a comparison of a reg
2976 against zero which appears later in the insn stream, which in
2977 turn is constant and the same as the comparison of the first reg
2983 for (; p
; p
= p
->next_same_value
)
2985 machine_mode inner_mode
= GET_MODE (p
->exp
);
2986 #ifdef FLOAT_STORE_FLAG_VALUE
2987 REAL_VALUE_TYPE fsfv
;
2990 /* If the entry isn't valid, skip it. */
2991 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, false))
2994 /* If it's a comparison we've used before, skip it. */
2995 if (visited
&& visited
->contains (p
->exp
))
2998 if (GET_CODE (p
->exp
) == COMPARE
2999 /* Another possibility is that this machine has a compare insn
3000 that includes the comparison code. In that case, ARG1 would
3001 be equivalent to a comparison operation that would set ARG1 to
3002 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3003 ORIG_CODE is the actual comparison being done; if it is an EQ,
3004 we must reverse ORIG_CODE. On machine with a negative value
3005 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3008 && val_signbit_known_set_p (inner_mode
,
3010 #ifdef FLOAT_STORE_FLAG_VALUE
3012 && SCALAR_FLOAT_MODE_P (inner_mode
)
3013 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
3014 REAL_VALUE_NEGATIVE (fsfv
)))
3017 && COMPARISON_P (p
->exp
)))
3022 else if ((code
== EQ
3024 && val_signbit_known_set_p (inner_mode
,
3026 #ifdef FLOAT_STORE_FLAG_VALUE
3028 && SCALAR_FLOAT_MODE_P (inner_mode
)
3029 && (fsfv
= FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1
)),
3030 REAL_VALUE_NEGATIVE (fsfv
)))
3033 && COMPARISON_P (p
->exp
))
3040 /* If this non-trapping address, e.g. fp + constant, the
3041 equivalent is a better operand since it may let us predict
3042 the value of the comparison. */
3043 else if (!rtx_addr_can_trap_p (p
->exp
))
3050 /* If we didn't find a useful equivalence for ARG1, we are done.
3051 Otherwise, set up for the next iteration. */
3055 /* If we need to reverse the comparison, make sure that is
3056 possible -- we can't necessarily infer the value of GE from LT
3057 with floating-point operands. */
3060 enum rtx_code reversed
= reversed_comparison_code (x
, NULL
);
3061 if (reversed
== UNKNOWN
)
3066 else if (COMPARISON_P (x
))
3067 code
= GET_CODE (x
);
3068 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
3071 /* Return our results. Return the modes from before fold_rtx
3072 because fold_rtx might produce const_int, and then it's too late. */
3073 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
3074 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
3081 /* If X is a nontrivial arithmetic operation on an argument for which
3082 a constant value can be determined, return the result of operating
3083 on that value, as a constant. Otherwise, return X, possibly with
3084 one or more operands changed to a forward-propagated constant.
3086 If X is a register whose contents are known, we do NOT return
3087 those contents here; equiv_constant is called to perform that task.
3088 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3090 INSN is the insn that we may be modifying. If it is 0, make a copy
3091 of X before modifying it. */
3094 fold_rtx (rtx x
, rtx_insn
*insn
)
3104 /* Operands of X. */
3105 /* Workaround -Wmaybe-uninitialized false positive during
3106 profiledbootstrap by initializing them. */
3107 rtx folded_arg0
= NULL_RTX
;
3108 rtx folded_arg1
= NULL_RTX
;
3110 /* Constant equivalents of first three operands of X;
3111 0 when no such equivalent is known. */
3116 /* The mode of the first operand of X. We need this for sign and zero
3118 machine_mode mode_arg0
;
3123 /* Try to perform some initial simplifications on X. */
3124 code
= GET_CODE (x
);
3129 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3130 than it would in other contexts. Basically its mode does not
3131 signify the size of the object read. That information is carried
3132 by size operand. If we happen to have a MEM of the appropriate
3133 mode in our tables with a constant value we could simplify the
3134 extraction incorrectly if we allowed substitution of that value
3138 if ((new_rtx
= equiv_constant (x
)) != NULL_RTX
)
3148 /* No use simplifying an EXPR_LIST
3149 since they are used only for lists of args
3150 in a function call's REG_EQUAL note. */
3157 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
3158 validate_change (insn
, &ASM_OPERANDS_INPUT (x
, i
),
3159 fold_rtx (ASM_OPERANDS_INPUT (x
, i
), insn
), 0);
3164 if (NO_FUNCTION_CSE
&& CONSTANT_P (XEXP (XEXP (x
, 0), 0)))
3169 rtx trueop0
= XEXP (x
, 0);
3170 mode
= GET_MODE (trueop0
);
3171 rtx trueop1
= XEXP (x
, 1);
3172 /* If we select a low-part subreg, return that. */
3173 if (vec_series_lowpart_p (GET_MODE (x
), mode
, trueop1
))
3175 rtx new_rtx
= lowpart_subreg (GET_MODE (x
), trueop0
, mode
);
3176 if (new_rtx
!= NULL_RTX
)
3181 /* Anything else goes through the loop below. */
3186 mode
= GET_MODE (x
);
3190 mode_arg0
= VOIDmode
;
3192 /* Try folding our operands.
3193 Then see which ones have constant values known. */
3195 fmt
= GET_RTX_FORMAT (code
);
3196 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3199 rtx folded_arg
= XEXP (x
, i
), const_arg
;
3200 machine_mode mode_arg
= GET_MODE (folded_arg
);
3202 switch (GET_CODE (folded_arg
))
3207 const_arg
= equiv_constant (folded_arg
);
3214 const_arg
= folded_arg
;
3218 folded_arg
= fold_rtx (folded_arg
, insn
);
3219 const_arg
= equiv_constant (folded_arg
);
3223 /* For the first three operands, see if the operand
3224 is constant or equivalent to a constant. */
3228 folded_arg0
= folded_arg
;
3229 const_arg0
= const_arg
;
3230 mode_arg0
= mode_arg
;
3233 folded_arg1
= folded_arg
;
3234 const_arg1
= const_arg
;
3237 const_arg2
= const_arg
;
3241 /* Pick the least expensive of the argument and an equivalent constant
3244 && const_arg
!= folded_arg
3245 && (COST_IN (const_arg
, mode_arg
, code
, i
)
3246 <= COST_IN (folded_arg
, mode_arg
, code
, i
))
3248 /* It's not safe to substitute the operand of a conversion
3249 operator with a constant, as the conversion's identity
3250 depends upon the mode of its operand. This optimization
3251 is handled by the call to simplify_unary_operation. */
3252 && (GET_RTX_CLASS (code
) != RTX_UNARY
3253 || GET_MODE (const_arg
) == mode_arg0
3254 || (code
!= ZERO_EXTEND
3255 && code
!= SIGN_EXTEND
3257 && code
!= FLOAT_TRUNCATE
3258 && code
!= FLOAT_EXTEND
3261 && code
!= UNSIGNED_FLOAT
3262 && code
!= UNSIGNED_FIX
)))
3263 folded_arg
= const_arg
;
3265 if (folded_arg
== XEXP (x
, i
))
3268 if (insn
== NULL_RTX
&& !changed
)
3271 validate_unshare_change (insn
, &XEXP (x
, i
), folded_arg
, 1);
3276 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3277 consistent with the order in X. */
3278 if (canonicalize_change_group (insn
, x
))
3280 std::swap (const_arg0
, const_arg1
);
3281 std::swap (folded_arg0
, folded_arg1
);
3284 apply_change_group ();
3287 /* If X is an arithmetic operation, see if we can simplify it. */
3289 switch (GET_RTX_CLASS (code
))
3293 /* We can't simplify extension ops unless we know the
3295 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
3296 && mode_arg0
== VOIDmode
)
3299 new_rtx
= simplify_unary_operation (code
, mode
,
3300 const_arg0
? const_arg0
: folded_arg0
,
3306 case RTX_COMM_COMPARE
:
3307 /* See what items are actually being compared and set FOLDED_ARG[01]
3308 to those values and CODE to the actual comparison code. If any are
3309 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3310 do anything if both operands are already known to be constant. */
3312 /* ??? Vector mode comparisons are not supported yet. */
3313 if (VECTOR_MODE_P (mode
))
3316 if (const_arg0
== 0 || const_arg1
== 0)
3318 struct table_elt
*p0
, *p1
;
3319 rtx true_rtx
, false_rtx
;
3320 machine_mode mode_arg1
;
3322 if (SCALAR_FLOAT_MODE_P (mode
))
3324 #ifdef FLOAT_STORE_FLAG_VALUE
3325 true_rtx
= (const_double_from_real_value
3326 (FLOAT_STORE_FLAG_VALUE (mode
), mode
));
3328 true_rtx
= NULL_RTX
;
3330 false_rtx
= CONST0_RTX (mode
);
3334 true_rtx
= const_true_rtx
;
3335 false_rtx
= const0_rtx
;
3338 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
3339 &mode_arg0
, &mode_arg1
);
3341 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3342 what kinds of things are being compared, so we can't do
3343 anything with this comparison. */
3345 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
3348 const_arg0
= equiv_constant (folded_arg0
);
3349 const_arg1
= equiv_constant (folded_arg1
);
3351 /* If we do not now have two constants being compared, see
3352 if we can nevertheless deduce some things about the
3354 if (const_arg0
== 0 || const_arg1
== 0)
3356 if (const_arg1
!= NULL
)
3358 rtx cheapest_simplification
;
3361 struct table_elt
*p
;
3363 /* See if we can find an equivalent of folded_arg0
3364 that gets us a cheaper expression, possibly a
3365 constant through simplifications. */
3366 p
= lookup (folded_arg0
, SAFE_HASH (folded_arg0
, mode_arg0
),
3371 cheapest_simplification
= x
;
3372 cheapest_cost
= COST (x
, mode
);
3374 for (p
= p
->first_same_value
; p
!= NULL
; p
= p
->next_same_value
)
3378 /* If the entry isn't valid, skip it. */
3379 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, false))
3382 /* Try to simplify using this equivalence. */
3384 = simplify_relational_operation (code
, mode
,
3389 if (simp_result
== NULL
)
3392 cost
= COST (simp_result
, mode
);
3393 if (cost
< cheapest_cost
)
3395 cheapest_cost
= cost
;
3396 cheapest_simplification
= simp_result
;
3400 /* If we have a cheaper expression now, use that
3401 and try folding it further, from the top. */
3402 if (cheapest_simplification
!= x
)
3403 return fold_rtx (copy_rtx (cheapest_simplification
),
3408 /* See if the two operands are the same. */
3410 if ((REG_P (folded_arg0
)
3411 && REG_P (folded_arg1
)
3412 && (REG_QTY (REGNO (folded_arg0
))
3413 == REG_QTY (REGNO (folded_arg1
))))
3414 || ((p0
= lookup (folded_arg0
,
3415 SAFE_HASH (folded_arg0
, mode_arg0
),
3417 && (p1
= lookup (folded_arg1
,
3418 SAFE_HASH (folded_arg1
, mode_arg0
),
3420 && p0
->first_same_value
== p1
->first_same_value
))
3421 folded_arg1
= folded_arg0
;
3423 /* If FOLDED_ARG0 is a register, see if the comparison we are
3424 doing now is either the same as we did before or the reverse
3425 (we only check the reverse if not floating-point). */
3426 else if (REG_P (folded_arg0
))
3428 int qty
= REG_QTY (REGNO (folded_arg0
));
3430 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
)))
3432 struct qty_table_elem
*ent
= &qty_table
[qty
];
3434 if ((comparison_dominates_p (ent
->comparison_code
, code
)
3435 || (! FLOAT_MODE_P (mode_arg0
)
3436 && comparison_dominates_p (ent
->comparison_code
,
3437 reverse_condition (code
))))
3438 && (rtx_equal_p (ent
->comparison_const
, folded_arg1
)
3440 && rtx_equal_p (ent
->comparison_const
,
3442 || (REG_P (folded_arg1
)
3443 && (REG_QTY (REGNO (folded_arg1
)) == ent
->comparison_qty
))))
3445 if (comparison_dominates_p (ent
->comparison_code
, code
))
3460 /* If we are comparing against zero, see if the first operand is
3461 equivalent to an IOR with a constant. If so, we may be able to
3462 determine the result of this comparison. */
3463 if (const_arg1
== const0_rtx
&& !const_arg0
)
3465 rtx y
= lookup_as_function (folded_arg0
, IOR
);
3469 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
3470 && CONST_INT_P (inner_const
)
3471 && INTVAL (inner_const
) != 0)
3472 folded_arg0
= gen_rtx_IOR (mode_arg0
, XEXP (y
, 0), inner_const
);
3476 rtx op0
= const_arg0
? const_arg0
: copy_rtx (folded_arg0
);
3477 rtx op1
= const_arg1
? const_arg1
: copy_rtx (folded_arg1
);
3478 new_rtx
= simplify_relational_operation (code
, mode
, mode_arg0
,
3484 case RTX_COMM_ARITH
:
3488 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3489 with that LABEL_REF as its second operand. If so, the result is
3490 the first operand of that MINUS. This handles switches with an
3491 ADDR_DIFF_VEC table. */
3492 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
3495 = GET_CODE (folded_arg0
) == MINUS
? folded_arg0
3496 : lookup_as_function (folded_arg0
, MINUS
);
3498 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
3499 && label_ref_label (XEXP (y
, 1)) == label_ref_label (const_arg1
))
3502 /* Now try for a CONST of a MINUS like the above. */
3503 if ((y
= (GET_CODE (folded_arg0
) == CONST
? folded_arg0
3504 : lookup_as_function (folded_arg0
, CONST
))) != 0
3505 && GET_CODE (XEXP (y
, 0)) == MINUS
3506 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
3507 && label_ref_label (XEXP (XEXP (y
, 0), 1)) == label_ref_label (const_arg1
))
3508 return XEXP (XEXP (y
, 0), 0);
3511 /* Likewise if the operands are in the other order. */
3512 if (const_arg0
&& GET_CODE (const_arg0
) == LABEL_REF
)
3515 = GET_CODE (folded_arg1
) == MINUS
? folded_arg1
3516 : lookup_as_function (folded_arg1
, MINUS
);
3518 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
3519 && label_ref_label (XEXP (y
, 1)) == label_ref_label (const_arg0
))
3522 /* Now try for a CONST of a MINUS like the above. */
3523 if ((y
= (GET_CODE (folded_arg1
) == CONST
? folded_arg1
3524 : lookup_as_function (folded_arg1
, CONST
))) != 0
3525 && GET_CODE (XEXP (y
, 0)) == MINUS
3526 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
3527 && label_ref_label (XEXP (XEXP (y
, 0), 1)) == label_ref_label (const_arg0
))
3528 return XEXP (XEXP (y
, 0), 0);
3531 /* If second operand is a register equivalent to a negative
3532 CONST_INT, see if we can find a register equivalent to the
3533 positive constant. Make a MINUS if so. Don't do this for
3534 a non-negative constant since we might then alternate between
3535 choosing positive and negative constants. Having the positive
3536 constant previously-used is the more common case. Be sure
3537 the resulting constant is non-negative; if const_arg1 were
3538 the smallest negative number this would overflow: depending
3539 on the mode, this would either just be the same value (and
3540 hence not save anything) or be incorrect. */
3541 if (const_arg1
!= 0 && CONST_INT_P (const_arg1
)
3542 && INTVAL (const_arg1
) < 0
3543 /* This used to test
3545 -INTVAL (const_arg1) >= 0
3547 But The Sun V5.0 compilers mis-compiled that test. So
3548 instead we test for the problematic value in a more direct
3549 manner and hope the Sun compilers get it correct. */
3550 && INTVAL (const_arg1
) !=
3551 (HOST_WIDE_INT_1
<< (HOST_BITS_PER_WIDE_INT
- 1))
3552 && REG_P (folded_arg1
))
3554 rtx new_const
= GEN_INT (-INTVAL (const_arg1
));
3556 = lookup (new_const
, SAFE_HASH (new_const
, mode
), mode
);
3559 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
3561 return simplify_gen_binary (MINUS
, mode
, folded_arg0
,
3562 canon_reg (p
->exp
, NULL
));
3567 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3568 If so, produce (PLUS Z C2-C). */
3569 if (const_arg1
!= 0 && poly_int_rtx_p (const_arg1
, &xval
))
3571 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
3572 if (y
&& poly_int_rtx_p (XEXP (y
, 1)))
3573 return fold_rtx (plus_constant (mode
, copy_rtx (y
), -xval
),
3580 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
3581 case IOR
: case AND
: case XOR
:
3583 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
3584 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3585 is known to be of similar form, we may be able to replace the
3586 operation with a combined operation. This may eliminate the
3587 intermediate operation if every use is simplified in this way.
3588 Note that the similar optimization done by combine.c only works
3589 if the intermediate operation's result has only one reference. */
3591 if (REG_P (folded_arg0
)
3592 && const_arg1
&& CONST_INT_P (const_arg1
))
3595 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
3596 rtx y
, inner_const
, new_const
;
3597 rtx canon_const_arg1
= const_arg1
;
3598 enum rtx_code associate_code
;
3601 && (INTVAL (const_arg1
) >= GET_MODE_UNIT_PRECISION (mode
)
3602 || INTVAL (const_arg1
) < 0))
3604 if (SHIFT_COUNT_TRUNCATED
)
3605 canon_const_arg1
= gen_int_shift_amount
3606 (mode
, (INTVAL (const_arg1
)
3607 & (GET_MODE_UNIT_BITSIZE (mode
) - 1)));
3612 y
= lookup_as_function (folded_arg0
, code
);
3616 /* If we have compiled a statement like
3617 "if (x == (x & mask1))", and now are looking at
3618 "x & mask2", we will have a case where the first operand
3619 of Y is the same as our first operand. Unless we detect
3620 this case, an infinite loop will result. */
3621 if (XEXP (y
, 0) == folded_arg0
)
3624 inner_const
= equiv_constant (fold_rtx (XEXP (y
, 1), 0));
3625 if (!inner_const
|| !CONST_INT_P (inner_const
))
3628 /* Don't associate these operations if they are a PLUS with the
3629 same constant and it is a power of two. These might be doable
3630 with a pre- or post-increment. Similarly for two subtracts of
3631 identical powers of two with post decrement. */
3633 if (code
== PLUS
&& const_arg1
== inner_const
3634 && ((HAVE_PRE_INCREMENT
3635 && pow2p_hwi (INTVAL (const_arg1
)))
3636 || (HAVE_POST_INCREMENT
3637 && pow2p_hwi (INTVAL (const_arg1
)))
3638 || (HAVE_PRE_DECREMENT
3639 && pow2p_hwi (- INTVAL (const_arg1
)))
3640 || (HAVE_POST_DECREMENT
3641 && pow2p_hwi (- INTVAL (const_arg1
)))))
3644 /* ??? Vector mode shifts by scalar
3645 shift operand are not supported yet. */
3646 if (is_shift
&& VECTOR_MODE_P (mode
))
3650 && (INTVAL (inner_const
) >= GET_MODE_UNIT_PRECISION (mode
)
3651 || INTVAL (inner_const
) < 0))
3653 if (SHIFT_COUNT_TRUNCATED
)
3654 inner_const
= gen_int_shift_amount
3655 (mode
, (INTVAL (inner_const
)
3656 & (GET_MODE_UNIT_BITSIZE (mode
) - 1)));
3661 /* Compute the code used to compose the constants. For example,
3662 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3664 associate_code
= (is_shift
|| code
== MINUS
? PLUS
: code
);
3666 new_const
= simplify_binary_operation (associate_code
, mode
,
3673 /* If we are associating shift operations, don't let this
3674 produce a shift of the size of the object or larger.
3675 This could occur when we follow a sign-extend by a right
3676 shift on a machine that does a sign-extend as a pair
3680 && CONST_INT_P (new_const
)
3681 && INTVAL (new_const
) >= GET_MODE_UNIT_PRECISION (mode
))
3683 /* As an exception, we can turn an ASHIFTRT of this
3684 form into a shift of the number of bits - 1. */
3685 if (code
== ASHIFTRT
)
3686 new_const
= gen_int_shift_amount
3687 (mode
, GET_MODE_UNIT_BITSIZE (mode
) - 1);
3688 else if (!side_effects_p (XEXP (y
, 0)))
3689 return CONST0_RTX (mode
);
3694 y
= copy_rtx (XEXP (y
, 0));
3696 /* If Y contains our first operand (the most common way this
3697 can happen is if Y is a MEM), we would do into an infinite
3698 loop if we tried to fold it. So don't in that case. */
3700 if (! reg_mentioned_p (folded_arg0
, y
))
3701 y
= fold_rtx (y
, insn
);
3703 return simplify_gen_binary (code
, mode
, y
, new_const
);
3707 case DIV
: case UDIV
:
3708 /* ??? The associative optimization performed immediately above is
3709 also possible for DIV and UDIV using associate_code of MULT.
3710 However, we would need extra code to verify that the
3711 multiplication does not overflow, that is, there is no overflow
3712 in the calculation of new_const. */
3719 new_rtx
= simplify_binary_operation (code
, mode
,
3720 const_arg0
? const_arg0
: folded_arg0
,
3721 const_arg1
? const_arg1
: folded_arg1
);
3725 /* (lo_sum (high X) X) is simply X. */
3726 if (code
== LO_SUM
&& const_arg0
!= 0
3727 && GET_CODE (const_arg0
) == HIGH
3728 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
3733 case RTX_BITFIELD_OPS
:
3734 new_rtx
= simplify_ternary_operation (code
, mode
, mode_arg0
,
3735 const_arg0
? const_arg0
: folded_arg0
,
3736 const_arg1
? const_arg1
: folded_arg1
,
3737 const_arg2
? const_arg2
: XEXP (x
, 2));
3744 return new_rtx
? new_rtx
: x
;
3747 /* Return a constant value currently equivalent to X.
3748 Return 0 if we don't know one. */
3751 equiv_constant (rtx x
)
3754 && REGNO_QTY_VALID_P (REGNO (x
)))
3756 int x_q
= REG_QTY (REGNO (x
));
3757 struct qty_table_elem
*x_ent
= &qty_table
[x_q
];
3759 if (x_ent
->const_rtx
)
3760 x
= gen_lowpart (GET_MODE (x
), x_ent
->const_rtx
);
3763 if (x
== 0 || CONSTANT_P (x
))
3766 if (GET_CODE (x
) == SUBREG
)
3768 machine_mode mode
= GET_MODE (x
);
3769 machine_mode imode
= GET_MODE (SUBREG_REG (x
));
3772 /* See if we previously assigned a constant value to this SUBREG. */
3773 if ((new_rtx
= lookup_as_function (x
, CONST_INT
)) != 0
3774 || (new_rtx
= lookup_as_function (x
, CONST_WIDE_INT
)) != 0
3775 || (NUM_POLY_INT_COEFFS
> 1
3776 && (new_rtx
= lookup_as_function (x
, CONST_POLY_INT
)) != 0)
3777 || (new_rtx
= lookup_as_function (x
, CONST_DOUBLE
)) != 0
3778 || (new_rtx
= lookup_as_function (x
, CONST_FIXED
)) != 0)
3781 /* If we didn't and if doing so makes sense, see if we previously
3782 assigned a constant value to the enclosing word mode SUBREG. */
3783 if (known_lt (GET_MODE_SIZE (mode
), UNITS_PER_WORD
)
3784 && known_lt (UNITS_PER_WORD
, GET_MODE_SIZE (imode
)))
3786 poly_int64 byte
= (SUBREG_BYTE (x
)
3787 - subreg_lowpart_offset (mode
, word_mode
));
3788 if (known_ge (byte
, 0) && multiple_p (byte
, UNITS_PER_WORD
))
3790 rtx y
= gen_rtx_SUBREG (word_mode
, SUBREG_REG (x
), byte
);
3791 new_rtx
= lookup_as_function (y
, CONST_INT
);
3793 return gen_lowpart (mode
, new_rtx
);
3797 /* Otherwise see if we already have a constant for the inner REG,
3798 and if that is enough to calculate an equivalent constant for
3799 the subreg. Note that the upper bits of paradoxical subregs
3800 are undefined, so they cannot be said to equal anything. */
3801 if (REG_P (SUBREG_REG (x
))
3802 && !paradoxical_subreg_p (x
)
3803 && (new_rtx
= equiv_constant (SUBREG_REG (x
))) != 0)
3804 return simplify_subreg (mode
, new_rtx
, imode
, SUBREG_BYTE (x
));
3809 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3810 the hash table in case its value was seen before. */
3814 struct table_elt
*elt
;
3816 x
= avoid_constant_pool_reference (x
);
3820 elt
= lookup (x
, SAFE_HASH (x
, GET_MODE (x
)), GET_MODE (x
));
3824 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
3825 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
3832 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3835 In certain cases, this can cause us to add an equivalence. For example,
3836 if we are following the taken case of
3838 we can add the fact that `i' and '2' are now equivalent.
3840 In any case, we can record that this comparison was passed. If the same
3841 comparison is seen later, we will know its value. */
3844 record_jump_equiv (rtx_insn
*insn
, bool taken
)
3846 int cond_known_true
;
3849 machine_mode mode
, mode0
, mode1
;
3850 int reversed_nonequality
= 0;
3853 /* Ensure this is the right kind of insn. */
3854 gcc_assert (any_condjump_p (insn
));
3856 set
= pc_set (insn
);
3858 /* See if this jump condition is known true or false. */
3860 cond_known_true
= (XEXP (SET_SRC (set
), 2) == pc_rtx
);
3862 cond_known_true
= (XEXP (SET_SRC (set
), 1) == pc_rtx
);
3864 /* Get the type of comparison being done and the operands being compared.
3865 If we had to reverse a non-equality condition, record that fact so we
3866 know that it isn't valid for floating-point. */
3867 code
= GET_CODE (XEXP (SET_SRC (set
), 0));
3868 op0
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 0), insn
);
3869 op1
= fold_rtx (XEXP (XEXP (SET_SRC (set
), 0), 1), insn
);
3871 /* If fold_rtx returns NULL_RTX, there's nothing to record. */
3872 if (op0
== NULL_RTX
|| op1
== NULL_RTX
)
3875 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
3876 if (! cond_known_true
)
3878 code
= reversed_comparison_code_parts (code
, op0
, op1
, insn
);
3880 /* Don't remember if we can't find the inverse. */
3881 if (code
== UNKNOWN
)
3885 /* The mode is the mode of the non-constant. */
3887 if (mode1
!= VOIDmode
)
3890 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
3893 /* Yet another form of subreg creation. In this case, we want something in
3894 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3897 record_jump_cond_subreg (machine_mode mode
, rtx op
)
3899 machine_mode op_mode
= GET_MODE (op
);
3900 if (op_mode
== mode
|| op_mode
== VOIDmode
)
3902 return lowpart_subreg (mode
, op
, op_mode
);
3905 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3906 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3907 Make any useful entries we can with that information. Called from
3908 above function and called recursively. */
3911 record_jump_cond (enum rtx_code code
, machine_mode mode
, rtx op0
,
3912 rtx op1
, int reversed_nonequality
)
3914 unsigned op0_hash
, op1_hash
;
3915 int op0_in_memory
, op1_in_memory
;
3916 struct table_elt
*op0_elt
, *op1_elt
;
3918 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3919 we know that they are also equal in the smaller mode (this is also
3920 true for all smaller modes whether or not there is a SUBREG, but
3921 is not worth testing for with no SUBREG). */
3923 /* Note that GET_MODE (op0) may not equal MODE. */
3924 if (code
== EQ
&& paradoxical_subreg_p (op0
))
3926 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
3927 rtx tem
= record_jump_cond_subreg (inner_mode
, op1
);
3929 record_jump_cond (code
, mode
, SUBREG_REG (op0
), tem
,
3930 reversed_nonequality
);
3933 if (code
== EQ
&& paradoxical_subreg_p (op1
))
3935 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
3936 rtx tem
= record_jump_cond_subreg (inner_mode
, op0
);
3938 record_jump_cond (code
, mode
, SUBREG_REG (op1
), tem
,
3939 reversed_nonequality
);
3942 /* Similarly, if this is an NE comparison, and either is a SUBREG
3943 making a smaller mode, we know the whole thing is also NE. */
3945 /* Note that GET_MODE (op0) may not equal MODE;
3946 if we test MODE instead, we can get an infinite recursion
3947 alternating between two modes each wider than MODE. */
3950 && partial_subreg_p (op0
)
3951 && subreg_lowpart_p (op0
))
3953 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
3954 rtx tem
= record_jump_cond_subreg (inner_mode
, op1
);
3956 record_jump_cond (code
, mode
, SUBREG_REG (op0
), tem
,
3957 reversed_nonequality
);
3961 && partial_subreg_p (op1
)
3962 && subreg_lowpart_p (op1
))
3964 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
3965 rtx tem
= record_jump_cond_subreg (inner_mode
, op0
);
3967 record_jump_cond (code
, mode
, SUBREG_REG (op1
), tem
,
3968 reversed_nonequality
);
3971 /* Hash both operands. */
3974 hash_arg_in_memory
= 0;
3975 op0_hash
= HASH (op0
, mode
);
3976 op0_in_memory
= hash_arg_in_memory
;
3982 hash_arg_in_memory
= 0;
3983 op1_hash
= HASH (op1
, mode
);
3984 op1_in_memory
= hash_arg_in_memory
;
3989 /* Look up both operands. */
3990 op0_elt
= lookup (op0
, op0_hash
, mode
);
3991 op1_elt
= lookup (op1
, op1_hash
, mode
);
3993 /* If both operands are already equivalent or if they are not in the
3994 table but are identical, do nothing. */
3995 if ((op0_elt
!= 0 && op1_elt
!= 0
3996 && op0_elt
->first_same_value
== op1_elt
->first_same_value
)
3997 || op0
== op1
|| rtx_equal_p (op0
, op1
))
4000 /* If we aren't setting two things equal all we can do is save this
4001 comparison. Similarly if this is floating-point. In the latter
4002 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4003 If we record the equality, we might inadvertently delete code
4004 whose intent was to change -0 to +0. */
4006 if (code
!= EQ
|| FLOAT_MODE_P (GET_MODE (op0
)))
4008 struct qty_table_elem
*ent
;
4011 /* If we reversed a floating-point comparison, if OP0 is not a
4012 register, or if OP1 is neither a register or constant, we can't
4016 op1
= equiv_constant (op1
);
4018 if ((reversed_nonequality
&& FLOAT_MODE_P (mode
))
4019 || !REG_P (op0
) || op1
== 0)
4022 /* Put OP0 in the hash table if it isn't already. This gives it a
4023 new quantity number. */
4026 if (insert_regs (op0
, NULL
, 0))
4028 rehash_using_reg (op0
);
4029 op0_hash
= HASH (op0
, mode
);
4031 /* If OP0 is contained in OP1, this changes its hash code
4032 as well. Faster to rehash than to check, except
4033 for the simple case of a constant. */
4034 if (! CONSTANT_P (op1
))
4035 op1_hash
= HASH (op1
,mode
);
4038 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4039 op0_elt
->in_memory
= op0_in_memory
;
4042 qty
= REG_QTY (REGNO (op0
));
4043 ent
= &qty_table
[qty
];
4045 ent
->comparison_code
= code
;
4048 /* Look it up again--in case op0 and op1 are the same. */
4049 op1_elt
= lookup (op1
, op1_hash
, mode
);
4051 /* Put OP1 in the hash table so it gets a new quantity number. */
4054 if (insert_regs (op1
, NULL
, 0))
4056 rehash_using_reg (op1
);
4057 op1_hash
= HASH (op1
, mode
);
4060 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4061 op1_elt
->in_memory
= op1_in_memory
;
4064 ent
->comparison_const
= NULL_RTX
;
4065 ent
->comparison_qty
= REG_QTY (REGNO (op1
));
4069 ent
->comparison_const
= op1
;
4070 ent
->comparison_qty
= -1;
4076 /* If either side is still missing an equivalence, make it now,
4077 then merge the equivalences. */
4081 if (insert_regs (op0
, NULL
, 0))
4083 rehash_using_reg (op0
);
4084 op0_hash
= HASH (op0
, mode
);
4087 op0_elt
= insert (op0
, NULL
, op0_hash
, mode
);
4088 op0_elt
->in_memory
= op0_in_memory
;
4093 if (insert_regs (op1
, NULL
, 0))
4095 rehash_using_reg (op1
);
4096 op1_hash
= HASH (op1
, mode
);
4099 op1_elt
= insert (op1
, NULL
, op1_hash
, mode
);
4100 op1_elt
->in_memory
= op1_in_memory
;
4103 merge_equiv_classes (op0_elt
, op1_elt
);
4106 /* CSE processing for one instruction.
4108 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4109 but the few that "leak through" are cleaned up by cse_insn, and complex
4110 addressing modes are often formed here.
4112 The main function is cse_insn, and between here and that function
4113 a couple of helper functions is defined to keep the size of cse_insn
4114 within reasonable proportions.
4116 Data is shared between the main and helper functions via STRUCT SET,
4117 that contains all data related for every set in the instruction that
4120 Note that cse_main processes all sets in the instruction. Most
4121 passes in GCC only process simple SET insns or single_set insns, but
4122 CSE processes insns with multiple sets as well. */
4124 /* Data on one SET contained in the instruction. */
4128 /* The SET rtx itself. */
4130 /* The SET_SRC of the rtx (the original value, if it is changing). */
4132 /* The hash-table element for the SET_SRC of the SET. */
4133 struct table_elt
*src_elt
;
4134 /* Hash value for the SET_SRC. */
4136 /* Hash value for the SET_DEST. */
4138 /* The SET_DEST, with SUBREG, etc., stripped. */
4140 /* Nonzero if the SET_SRC is in memory. */
4142 /* Nonzero if the SET_SRC contains something
4143 whose value cannot be predicted and understood. */
4145 /* Original machine mode, in case it becomes a CONST_INT.
4146 The size of this field should match the size of the mode
4147 field of struct rtx_def (see rtl.h). */
4148 ENUM_BITFIELD(machine_mode
) mode
: 8;
4149 /* Hash value of constant equivalent for SET_SRC. */
4150 unsigned src_const_hash
;
4151 /* A constant equivalent for SET_SRC, if any. */
4153 /* Table entry for constant equivalent for SET_SRC, if any. */
4154 struct table_elt
*src_const_elt
;
4155 /* Table entry for the destination address. */
4156 struct table_elt
*dest_addr_elt
;
4159 /* Special handling for (set REG0 REG1) where REG0 is the
4160 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4161 be used in the sequel, so (if easily done) change this insn to
4162 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4163 that computed their value. Then REG1 will become a dead store
4164 and won't cloud the situation for later optimizations.
4166 Do not make this change if REG1 is a hard register, because it will
4167 then be used in the sequel and we may be changing a two-operand insn
4168 into a three-operand insn.
4170 This is the last transformation that cse_insn will try to do. */
4173 try_back_substitute_reg (rtx set
, rtx_insn
*insn
)
4175 rtx dest
= SET_DEST (set
);
4176 rtx src
= SET_SRC (set
);
4179 && REG_P (src
) && ! HARD_REGISTER_P (src
)
4180 && REGNO_QTY_VALID_P (REGNO (src
)))
4182 int src_q
= REG_QTY (REGNO (src
));
4183 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
4185 if (src_ent
->first_reg
== REGNO (dest
))
4187 /* Scan for the previous nonnote insn, but stop at a basic
4189 rtx_insn
*prev
= insn
;
4190 rtx_insn
*bb_head
= BB_HEAD (BLOCK_FOR_INSN (insn
));
4193 prev
= PREV_INSN (prev
);
4195 while (prev
!= bb_head
&& (NOTE_P (prev
) || DEBUG_INSN_P (prev
)));
4197 /* Do not swap the registers around if the previous instruction
4198 attaches a REG_EQUIV note to REG1.
4200 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4201 from the pseudo that originally shadowed an incoming argument
4202 to another register. Some uses of REG_EQUIV might rely on it
4203 being attached to REG1 rather than REG2.
4205 This section previously turned the REG_EQUIV into a REG_EQUAL
4206 note. We cannot do that because REG_EQUIV may provide an
4207 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4208 if (NONJUMP_INSN_P (prev
)
4209 && GET_CODE (PATTERN (prev
)) == SET
4210 && SET_DEST (PATTERN (prev
)) == src
4211 && ! find_reg_note (prev
, REG_EQUIV
, NULL_RTX
))
4215 validate_change (prev
, &SET_DEST (PATTERN (prev
)), dest
, 1);
4216 validate_change (insn
, &SET_DEST (set
), src
, 1);
4217 validate_change (insn
, &SET_SRC (set
), dest
, 1);
4218 apply_change_group ();
4220 /* If INSN has a REG_EQUAL note, and this note mentions
4221 REG0, then we must delete it, because the value in
4222 REG0 has changed. If the note's value is REG1, we must
4223 also delete it because that is now this insn's dest. */
4224 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
4226 && (reg_mentioned_p (dest
, XEXP (note
, 0))
4227 || rtx_equal_p (src
, XEXP (note
, 0))))
4228 remove_note (insn
, note
);
4230 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4231 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4234 remove_note (insn
, note
);
4235 gcc_assert (!find_reg_note (prev
, REG_ARGS_SIZE
, NULL_RTX
));
4236 set_unique_reg_note (prev
, REG_ARGS_SIZE
, XEXP (note
, 0));
4243 /* Record all the SETs in this instruction into SETS_PTR,
4244 and return the number of recorded sets. */
4246 find_sets_in_insn (rtx_insn
*insn
, struct set
**psets
)
4248 struct set
*sets
= *psets
;
4250 rtx x
= PATTERN (insn
);
4252 if (GET_CODE (x
) == SET
)
4254 /* Ignore SETs that are unconditional jumps.
4255 They never need cse processing, so this does not hurt.
4256 The reason is not efficiency but rather
4257 so that we can test at the end for instructions
4258 that have been simplified to unconditional jumps
4259 and not be misled by unchanged instructions
4260 that were unconditional jumps to begin with. */
4261 if (SET_DEST (x
) == pc_rtx
4262 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
4264 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4265 The hard function value register is used only once, to copy to
4266 someplace else, so it isn't worth cse'ing. */
4267 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4270 sets
[n_sets
++].rtl
= x
;
4272 else if (GET_CODE (x
) == PARALLEL
)
4274 int i
, lim
= XVECLEN (x
, 0);
4276 /* Go over the expressions of the PARALLEL in forward order, to
4277 put them in the same order in the SETS array. */
4278 for (i
= 0; i
< lim
; i
++)
4280 rtx y
= XVECEXP (x
, 0, i
);
4281 if (GET_CODE (y
) == SET
)
4283 /* As above, we ignore unconditional jumps and call-insns and
4284 ignore the result of apply_change_group. */
4285 if (SET_DEST (y
) == pc_rtx
4286 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
4288 else if (GET_CODE (SET_SRC (y
)) == CALL
)
4291 sets
[n_sets
++].rtl
= y
;
4299 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4302 canon_asm_operands (rtx x
, rtx_insn
*insn
)
4304 for (int i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
4306 rtx input
= ASM_OPERANDS_INPUT (x
, i
);
4307 if (!(REG_P (input
) && HARD_REGISTER_P (input
)))
4309 input
= canon_reg (input
, insn
);
4310 validate_change (insn
, &ASM_OPERANDS_INPUT (x
, i
), input
, 1);
4315 /* Where possible, substitute every register reference in the N_SETS
4316 number of SETS in INSN with the canonical register.
4318 Register canonicalization propagatest the earliest register (i.e.
4319 one that is set before INSN) with the same value. This is a very
4320 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4321 to RTL. For instance, a CONST for an address is usually expanded
4322 multiple times to loads into different registers, thus creating many
4323 subexpressions of the form:
4325 (set (reg1) (some_const))
4326 (set (mem (... reg1 ...) (thing)))
4327 (set (reg2) (some_const))
4328 (set (mem (... reg2 ...) (thing)))
4330 After canonicalizing, the code takes the following form:
4332 (set (reg1) (some_const))
4333 (set (mem (... reg1 ...) (thing)))
4334 (set (reg2) (some_const))
4335 (set (mem (... reg1 ...) (thing)))
4337 The set to reg2 is now trivially dead, and the memory reference (or
4338 address, or whatever) may be a candidate for further CSEing.
4340 In this function, the result of apply_change_group can be ignored;
4344 canonicalize_insn (rtx_insn
*insn
, struct set
**psets
, int n_sets
)
4346 struct set
*sets
= *psets
;
4348 rtx x
= PATTERN (insn
);
4353 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
4354 if (GET_CODE (XEXP (tem
, 0)) != SET
)
4355 XEXP (tem
, 0) = canon_reg (XEXP (tem
, 0), insn
);
4358 if (GET_CODE (x
) == SET
&& GET_CODE (SET_SRC (x
)) == CALL
)
4360 canon_reg (SET_SRC (x
), insn
);
4361 apply_change_group ();
4362 fold_rtx (SET_SRC (x
), insn
);
4364 else if (GET_CODE (x
) == CLOBBER
)
4366 /* If we clobber memory, canon the address.
4367 This does nothing when a register is clobbered
4368 because we have already invalidated the reg. */
4369 if (MEM_P (XEXP (x
, 0)))
4370 canon_reg (XEXP (x
, 0), insn
);
4372 else if (GET_CODE (x
) == USE
4373 && ! (REG_P (XEXP (x
, 0))
4374 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
4375 /* Canonicalize a USE of a pseudo register or memory location. */
4376 canon_reg (x
, insn
);
4377 else if (GET_CODE (x
) == ASM_OPERANDS
)
4378 canon_asm_operands (x
, insn
);
4379 else if (GET_CODE (x
) == CALL
)
4381 canon_reg (x
, insn
);
4382 apply_change_group ();
4385 else if (DEBUG_INSN_P (insn
))
4386 canon_reg (PATTERN (insn
), insn
);
4387 else if (GET_CODE (x
) == PARALLEL
)
4389 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
4391 rtx y
= XVECEXP (x
, 0, i
);
4392 if (GET_CODE (y
) == SET
&& GET_CODE (SET_SRC (y
)) == CALL
)
4394 canon_reg (SET_SRC (y
), insn
);
4395 apply_change_group ();
4396 fold_rtx (SET_SRC (y
), insn
);
4398 else if (GET_CODE (y
) == CLOBBER
)
4400 if (MEM_P (XEXP (y
, 0)))
4401 canon_reg (XEXP (y
, 0), insn
);
4403 else if (GET_CODE (y
) == USE
4404 && ! (REG_P (XEXP (y
, 0))
4405 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
4406 canon_reg (y
, insn
);
4407 else if (GET_CODE (y
) == ASM_OPERANDS
)
4408 canon_asm_operands (y
, insn
);
4409 else if (GET_CODE (y
) == CALL
)
4411 canon_reg (y
, insn
);
4412 apply_change_group ();
4418 if (n_sets
== 1 && REG_NOTES (insn
) != 0
4419 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0)
4421 /* We potentially will process this insn many times. Therefore,
4422 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4425 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4426 because cse_insn handles those specially. */
4427 if (GET_CODE (SET_DEST (sets
[0].rtl
)) != STRICT_LOW_PART
4428 && rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
)))
4429 remove_note (insn
, tem
);
4432 canon_reg (XEXP (tem
, 0), insn
);
4433 apply_change_group ();
4434 XEXP (tem
, 0) = fold_rtx (XEXP (tem
, 0), insn
);
4435 df_notes_rescan (insn
);
4439 /* Canonicalize sources and addresses of destinations.
4440 We do this in a separate pass to avoid problems when a MATCH_DUP is
4441 present in the insn pattern. In that case, we want to ensure that
4442 we don't break the duplicate nature of the pattern. So we will replace
4443 both operands at the same time. Otherwise, we would fail to find an
4444 equivalent substitution in the loop calling validate_change below.
4446 We used to suppress canonicalization of DEST if it appears in SRC,
4447 but we don't do this any more. */
4449 for (i
= 0; i
< n_sets
; i
++)
4451 rtx dest
= SET_DEST (sets
[i
].rtl
);
4452 rtx src
= SET_SRC (sets
[i
].rtl
);
4453 rtx new_rtx
= canon_reg (src
, insn
);
4455 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new_rtx
, 1);
4457 if (GET_CODE (dest
) == ZERO_EXTRACT
)
4459 validate_change (insn
, &XEXP (dest
, 1),
4460 canon_reg (XEXP (dest
, 1), insn
), 1);
4461 validate_change (insn
, &XEXP (dest
, 2),
4462 canon_reg (XEXP (dest
, 2), insn
), 1);
4465 while (GET_CODE (dest
) == SUBREG
4466 || GET_CODE (dest
) == ZERO_EXTRACT
4467 || GET_CODE (dest
) == STRICT_LOW_PART
)
4468 dest
= XEXP (dest
, 0);
4471 canon_reg (dest
, insn
);
4474 /* Now that we have done all the replacements, we can apply the change
4475 group and see if they all work. Note that this will cause some
4476 canonicalizations that would have worked individually not to be applied
4477 because some other canonicalization didn't work, but this should not
4480 The result of apply_change_group can be ignored; see canon_reg. */
4482 apply_change_group ();
4485 /* Main function of CSE.
4486 First simplify sources and addresses of all assignments
4487 in the instruction, using previously-computed equivalents values.
4488 Then install the new sources and destinations in the table
4489 of available values. */
4492 cse_insn (rtx_insn
*insn
)
4494 rtx x
= PATTERN (insn
);
4500 struct table_elt
*src_eqv_elt
= 0;
4501 int src_eqv_volatile
= 0;
4502 int src_eqv_in_memory
= 0;
4503 unsigned src_eqv_hash
= 0;
4505 struct set
*sets
= (struct set
*) 0;
4507 if (GET_CODE (x
) == SET
)
4508 sets
= XALLOCA (struct set
);
4509 else if (GET_CODE (x
) == PARALLEL
)
4510 sets
= XALLOCAVEC (struct set
, XVECLEN (x
, 0));
4514 /* Find all regs explicitly clobbered in this insn,
4515 to ensure they are not replaced with any other regs
4516 elsewhere in this insn. */
4517 invalidate_from_sets_and_clobbers (insn
);
4519 /* Record all the SETs in this instruction. */
4520 n_sets
= find_sets_in_insn (insn
, &sets
);
4522 /* Substitute the canonical register where possible. */
4523 canonicalize_insn (insn
, &sets
, n_sets
);
4525 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4526 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4527 latter condition is necessary because SRC_EQV is handled specially for
4528 this case, and if it isn't set, then there will be no equivalence
4529 for the destination. */
4530 if (n_sets
== 1 && REG_NOTES (insn
) != 0
4531 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0)
4534 if (GET_CODE (SET_DEST (sets
[0].rtl
)) != ZERO_EXTRACT
4535 && (! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
))
4536 || GET_CODE (SET_DEST (sets
[0].rtl
)) == STRICT_LOW_PART
))
4537 src_eqv
= copy_rtx (XEXP (tem
, 0));
4538 /* If DEST is of the form ZERO_EXTACT, as in:
4539 (set (zero_extract:SI (reg:SI 119)
4540 (const_int 16 [0x10])
4541 (const_int 16 [0x10]))
4542 (const_int 51154 [0xc7d2]))
4543 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4544 point. Note that this is different from SRC_EQV. We can however
4545 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4546 else if (GET_CODE (SET_DEST (sets
[0].rtl
)) == ZERO_EXTRACT
4547 && CONST_INT_P (XEXP (tem
, 0))
4548 && CONST_INT_P (XEXP (SET_DEST (sets
[0].rtl
), 1))
4549 && CONST_INT_P (XEXP (SET_DEST (sets
[0].rtl
), 2)))
4551 rtx dest_reg
= XEXP (SET_DEST (sets
[0].rtl
), 0);
4552 /* This is the mode of XEXP (tem, 0) as well. */
4553 scalar_int_mode dest_mode
4554 = as_a
<scalar_int_mode
> (GET_MODE (dest_reg
));
4555 rtx width
= XEXP (SET_DEST (sets
[0].rtl
), 1);
4556 rtx pos
= XEXP (SET_DEST (sets
[0].rtl
), 2);
4557 HOST_WIDE_INT val
= INTVAL (XEXP (tem
, 0));
4560 if (BITS_BIG_ENDIAN
)
4561 shift
= (GET_MODE_PRECISION (dest_mode
)
4562 - INTVAL (pos
) - INTVAL (width
));
4564 shift
= INTVAL (pos
);
4565 if (INTVAL (width
) == HOST_BITS_PER_WIDE_INT
)
4566 mask
= HOST_WIDE_INT_M1
;
4568 mask
= (HOST_WIDE_INT_1
<< INTVAL (width
)) - 1;
4569 val
= (val
>> shift
) & mask
;
4570 src_eqv
= GEN_INT (val
);
4574 /* Set sets[i].src_elt to the class each source belongs to.
4575 Detect assignments from or to volatile things
4576 and set set[i] to zero so they will be ignored
4577 in the rest of this function.
4579 Nothing in this loop changes the hash table or the register chains. */
4581 for (i
= 0; i
< n_sets
; i
++)
4583 bool repeat
= false;
4584 bool noop_insn
= false;
4587 struct table_elt
*elt
= 0, *p
;
4591 rtx src_related
= 0;
4592 bool src_related_is_const_anchor
= false;
4593 struct table_elt
*src_const_elt
= 0;
4594 int src_cost
= MAX_COST
;
4595 int src_eqv_cost
= MAX_COST
;
4596 int src_folded_cost
= MAX_COST
;
4597 int src_related_cost
= MAX_COST
;
4598 int src_elt_cost
= MAX_COST
;
4599 int src_regcost
= MAX_COST
;
4600 int src_eqv_regcost
= MAX_COST
;
4601 int src_folded_regcost
= MAX_COST
;
4602 int src_related_regcost
= MAX_COST
;
4603 int src_elt_regcost
= MAX_COST
;
4604 scalar_int_mode int_mode
;
4606 dest
= SET_DEST (sets
[i
].rtl
);
4607 src
= SET_SRC (sets
[i
].rtl
);
4609 /* If SRC is a constant that has no machine mode,
4610 hash it with the destination's machine mode.
4611 This way we can keep different modes separate. */
4613 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
4614 sets
[i
].mode
= mode
;
4618 machine_mode eqvmode
= mode
;
4619 if (GET_CODE (dest
) == STRICT_LOW_PART
)
4620 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
4622 hash_arg_in_memory
= 0;
4623 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
4625 /* Find the equivalence class for the equivalent expression. */
4628 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, eqvmode
);
4630 src_eqv_volatile
= do_not_record
;
4631 src_eqv_in_memory
= hash_arg_in_memory
;
4634 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4635 value of the INNER register, not the destination. So it is not
4636 a valid substitution for the source. But save it for later. */
4637 if (GET_CODE (dest
) == STRICT_LOW_PART
)
4640 src_eqv_here
= src_eqv
;
4642 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4643 simplified result, which may not necessarily be valid. */
4644 src_folded
= fold_rtx (src
, NULL
);
4647 /* ??? This caused bad code to be generated for the m68k port with -O2.
4648 Suppose src is (CONST_INT -1), and that after truncation src_folded
4649 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4650 At the end we will add src and src_const to the same equivalence
4651 class. We now have 3 and -1 on the same equivalence class. This
4652 causes later instructions to be mis-optimized. */
4653 /* If storing a constant in a bitfield, pre-truncate the constant
4654 so we will be able to record it later. */
4655 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
)
4657 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
4659 if (CONST_INT_P (src
)
4660 && CONST_INT_P (width
)
4661 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
4662 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
4664 = GEN_INT (INTVAL (src
) & ((HOST_WIDE_INT_1
4665 << INTVAL (width
)) - 1));
4669 /* Compute SRC's hash code, and also notice if it
4670 should not be recorded at all. In that case,
4671 prevent any further processing of this assignment.
4673 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4674 This avoids getting the source register into the tables, where it
4675 may be invalidated later (via REG_QTY), then trigger an ICE upon
4678 This is only a problem in multi-set insns. If it were a single
4679 set the dead copy would have been removed. If the RHS were anything
4680 but a simple REG, then we won't call insert_regs and thus there's
4681 no potential for triggering the ICE. */
4682 do_not_record
= (REG_P (dest
)
4684 && find_reg_note (insn
, REG_UNUSED
, dest
));
4685 hash_arg_in_memory
= 0;
4688 sets
[i
].src_hash
= HASH (src
, mode
);
4689 sets
[i
].src_volatile
= do_not_record
;
4690 sets
[i
].src_in_memory
= hash_arg_in_memory
;
4692 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4693 a pseudo, do not record SRC. Using SRC as a replacement for
4694 anything else will be incorrect in that situation. Note that
4695 this usually occurs only for stack slots, in which case all the
4696 RTL would be referring to SRC, so we don't lose any optimization
4697 opportunities by not having SRC in the hash table. */
4700 && find_reg_note (insn
, REG_EQUIV
, NULL_RTX
) != 0
4702 && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
4703 sets
[i
].src_volatile
= 1;
4705 else if (GET_CODE (src
) == ASM_OPERANDS
4706 && GET_CODE (x
) == PARALLEL
)
4708 /* Do not record result of a non-volatile inline asm with
4709 more than one result. */
4711 sets
[i
].src_volatile
= 1;
4713 int j
, lim
= XVECLEN (x
, 0);
4714 for (j
= 0; j
< lim
; j
++)
4716 rtx y
= XVECEXP (x
, 0, j
);
4717 /* And do not record result of a non-volatile inline asm
4718 with "memory" clobber. */
4719 if (GET_CODE (y
) == CLOBBER
&& MEM_P (XEXP (y
, 0)))
4721 sets
[i
].src_volatile
= 1;
4728 /* It is no longer clear why we used to do this, but it doesn't
4729 appear to still be needed. So let's try without it since this
4730 code hurts cse'ing widened ops. */
4731 /* If source is a paradoxical subreg (such as QI treated as an SI),
4732 treat it as volatile. It may do the work of an SI in one context
4733 where the extra bits are not being used, but cannot replace an SI
4735 if (paradoxical_subreg_p (src
))
4736 sets
[i
].src_volatile
= 1;
4739 /* Locate all possible equivalent forms for SRC. Try to replace
4740 SRC in the insn with each cheaper equivalent.
4742 We have the following types of equivalents: SRC itself, a folded
4743 version, a value given in a REG_EQUAL note, or a value related
4746 Each of these equivalents may be part of an additional class
4747 of equivalents (if more than one is in the table, they must be in
4748 the same class; we check for this).
4750 If the source is volatile, we don't do any table lookups.
4752 We note any constant equivalent for possible later use in a
4755 if (!sets
[i
].src_volatile
)
4756 elt
= lookup (src
, sets
[i
].src_hash
, mode
);
4758 sets
[i
].src_elt
= elt
;
4760 if (elt
&& src_eqv_here
&& src_eqv_elt
)
4762 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
4764 /* The REG_EQUAL is indicating that two formerly distinct
4765 classes are now equivalent. So merge them. */
4766 merge_equiv_classes (elt
, src_eqv_elt
);
4767 src_eqv_hash
= HASH (src_eqv
, elt
->mode
);
4768 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, elt
->mode
);
4774 else if (src_eqv_elt
)
4777 /* Try to find a constant somewhere and record it in `src_const'.
4778 Record its table element, if any, in `src_const_elt'. Look in
4779 any known equivalences first. (If the constant is not in the
4780 table, also set `sets[i].src_const_hash'). */
4782 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
4786 src_const_elt
= elt
;
4791 && (CONSTANT_P (src_folded
)
4792 /* Consider (minus (label_ref L1) (label_ref L2)) as
4793 "constant" here so we will record it. This allows us
4794 to fold switch statements when an ADDR_DIFF_VEC is used. */
4795 || (GET_CODE (src_folded
) == MINUS
4796 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
4797 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
4798 src_const
= src_folded
, src_const_elt
= elt
;
4799 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
4800 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
4802 /* If we don't know if the constant is in the table, get its
4803 hash code and look it up. */
4804 if (src_const
&& src_const_elt
== 0)
4806 sets
[i
].src_const_hash
= HASH (src_const
, mode
);
4807 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash
, mode
);
4810 sets
[i
].src_const
= src_const
;
4811 sets
[i
].src_const_elt
= src_const_elt
;
4813 /* If the constant and our source are both in the table, mark them as
4814 equivalent. Otherwise, if a constant is in the table but the source
4815 isn't, set ELT to it. */
4816 if (src_const_elt
&& elt
4817 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
4818 merge_equiv_classes (elt
, src_const_elt
);
4819 else if (src_const_elt
&& elt
== 0)
4820 elt
= src_const_elt
;
4822 /* See if there is a register linearly related to a constant
4823 equivalent of SRC. */
4825 && (GET_CODE (src_const
) == CONST
4826 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
4828 src_related
= use_related_value (src_const
, src_const_elt
);
4831 struct table_elt
*src_related_elt
4832 = lookup (src_related
, HASH (src_related
, mode
), mode
);
4833 if (src_related_elt
&& elt
)
4835 if (elt
->first_same_value
4836 != src_related_elt
->first_same_value
)
4837 /* This can occur when we previously saw a CONST
4838 involving a SYMBOL_REF and then see the SYMBOL_REF
4839 twice. Merge the involved classes. */
4840 merge_equiv_classes (elt
, src_related_elt
);
4843 src_related_elt
= 0;
4845 else if (src_related_elt
&& elt
== 0)
4846 elt
= src_related_elt
;
4850 /* See if we have a CONST_INT that is already in a register in a
4853 if (src_const
&& src_related
== 0 && CONST_INT_P (src_const
)
4854 && is_int_mode (mode
, &int_mode
)
4855 && GET_MODE_PRECISION (int_mode
) < BITS_PER_WORD
)
4857 opt_scalar_int_mode wider_mode_iter
;
4858 FOR_EACH_WIDER_MODE (wider_mode_iter
, int_mode
)
4860 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
4861 if (GET_MODE_PRECISION (wider_mode
) > BITS_PER_WORD
)
4864 struct table_elt
*const_elt
4865 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
4870 for (const_elt
= const_elt
->first_same_value
;
4871 const_elt
; const_elt
= const_elt
->next_same_value
)
4872 if (REG_P (const_elt
->exp
))
4874 src_related
= gen_lowpart (int_mode
, const_elt
->exp
);
4878 if (src_related
!= 0)
4883 /* Another possibility is that we have an AND with a constant in
4884 a mode narrower than a word. If so, it might have been generated
4885 as part of an "if" which would narrow the AND. If we already
4886 have done the AND in a wider mode, we can use a SUBREG of that
4889 if (flag_expensive_optimizations
&& ! src_related
4890 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
4891 && GET_CODE (src
) == AND
&& CONST_INT_P (XEXP (src
, 1))
4892 && GET_MODE_SIZE (int_mode
) < UNITS_PER_WORD
)
4894 opt_scalar_int_mode tmode_iter
;
4895 rtx new_and
= gen_rtx_AND (VOIDmode
, NULL_RTX
, XEXP (src
, 1));
4897 FOR_EACH_WIDER_MODE (tmode_iter
, int_mode
)
4899 scalar_int_mode tmode
= tmode_iter
.require ();
4900 if (GET_MODE_SIZE (tmode
) > UNITS_PER_WORD
)
4903 rtx inner
= gen_lowpart (tmode
, XEXP (src
, 0));
4904 struct table_elt
*larger_elt
;
4908 PUT_MODE (new_and
, tmode
);
4909 XEXP (new_and
, 0) = inner
;
4910 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
4911 if (larger_elt
== 0)
4914 for (larger_elt
= larger_elt
->first_same_value
;
4915 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
4916 if (REG_P (larger_elt
->exp
))
4919 = gen_lowpart (int_mode
, larger_elt
->exp
);
4929 /* See if a MEM has already been loaded with a widening operation;
4930 if it has, we can use a subreg of that. Many CISC machines
4931 also have such operations, but this is only likely to be
4932 beneficial on these machines. */
4935 if (flag_expensive_optimizations
&& src_related
== 0
4936 && MEM_P (src
) && ! do_not_record
4937 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
4938 && (extend_op
= load_extend_op (int_mode
)) != UNKNOWN
)
4940 struct rtx_def memory_extend_buf
;
4941 rtx memory_extend_rtx
= &memory_extend_buf
;
4943 /* Set what we are trying to extend and the operation it might
4944 have been extended with. */
4945 memset (memory_extend_rtx
, 0, sizeof (*memory_extend_rtx
));
4946 PUT_CODE (memory_extend_rtx
, extend_op
);
4947 XEXP (memory_extend_rtx
, 0) = src
;
4949 opt_scalar_int_mode tmode_iter
;
4950 FOR_EACH_WIDER_MODE (tmode_iter
, int_mode
)
4952 struct table_elt
*larger_elt
;
4954 scalar_int_mode tmode
= tmode_iter
.require ();
4955 if (GET_MODE_SIZE (tmode
) > UNITS_PER_WORD
)
4958 PUT_MODE (memory_extend_rtx
, tmode
);
4959 larger_elt
= lookup (memory_extend_rtx
,
4960 HASH (memory_extend_rtx
, tmode
), tmode
);
4961 if (larger_elt
== 0)
4964 for (larger_elt
= larger_elt
->first_same_value
;
4965 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
4966 if (REG_P (larger_elt
->exp
))
4968 src_related
= gen_lowpart (int_mode
, larger_elt
->exp
);
4977 /* Try to express the constant using a register+offset expression
4978 derived from a constant anchor. */
4980 if (targetm
.const_anchor
4983 && GET_CODE (src_const
) == CONST_INT
)
4985 src_related
= try_const_anchors (src_const
, mode
);
4986 src_related_is_const_anchor
= src_related
!= NULL_RTX
;
4990 if (src
== src_folded
)
4993 /* At this point, ELT, if nonzero, points to a class of expressions
4994 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4995 and SRC_RELATED, if nonzero, each contain additional equivalent
4996 expressions. Prune these latter expressions by deleting expressions
4997 already in the equivalence class.
4999 Check for an equivalent identical to the destination. If found,
5000 this is the preferred equivalent since it will likely lead to
5001 elimination of the insn. Indicate this by placing it in
5005 elt
= elt
->first_same_value
;
5006 for (p
= elt
; p
; p
= p
->next_same_value
)
5008 enum rtx_code code
= GET_CODE (p
->exp
);
5010 /* If the expression is not valid, ignore it. Then we do not
5011 have to check for validity below. In most cases, we can use
5012 `rtx_equal_p', since canonicalization has already been done. */
5013 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, false))
5016 /* Also skip paradoxical subregs, unless that's what we're
5018 if (paradoxical_subreg_p (p
->exp
)
5020 && GET_CODE (src
) == SUBREG
5021 && GET_MODE (src
) == GET_MODE (p
->exp
)
5022 && partial_subreg_p (GET_MODE (SUBREG_REG (src
)),
5023 GET_MODE (SUBREG_REG (p
->exp
)))))
5026 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
5028 else if (src_folded
&& GET_CODE (src_folded
) == code
5029 && rtx_equal_p (src_folded
, p
->exp
))
5031 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
5032 && rtx_equal_p (src_eqv_here
, p
->exp
))
5034 else if (src_related
&& GET_CODE (src_related
) == code
5035 && rtx_equal_p (src_related
, p
->exp
))
5038 /* This is the same as the destination of the insns, we want
5039 to prefer it. Copy it to src_related. The code below will
5040 then give it a negative cost. */
5041 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
5042 src_related
= p
->exp
;
5045 /* Find the cheapest valid equivalent, trying all the available
5046 possibilities. Prefer items not in the hash table to ones
5047 that are when they are equal cost. Note that we can never
5048 worsen an insn as the current contents will also succeed.
5049 If we find an equivalent identical to the destination, use it as best,
5050 since this insn will probably be eliminated in that case. */
5053 if (rtx_equal_p (src
, dest
))
5054 src_cost
= src_regcost
= -1;
5057 src_cost
= COST (src
, mode
);
5058 src_regcost
= approx_reg_cost (src
);
5064 if (rtx_equal_p (src_eqv_here
, dest
))
5065 src_eqv_cost
= src_eqv_regcost
= -1;
5068 src_eqv_cost
= COST (src_eqv_here
, mode
);
5069 src_eqv_regcost
= approx_reg_cost (src_eqv_here
);
5075 if (rtx_equal_p (src_folded
, dest
))
5076 src_folded_cost
= src_folded_regcost
= -1;
5079 src_folded_cost
= COST (src_folded
, mode
);
5080 src_folded_regcost
= approx_reg_cost (src_folded
);
5086 if (rtx_equal_p (src_related
, dest
))
5087 src_related_cost
= src_related_regcost
= -1;
5090 src_related_cost
= COST (src_related
, mode
);
5091 src_related_regcost
= approx_reg_cost (src_related
);
5093 /* If a const-anchor is used to synthesize a constant that
5094 normally requires multiple instructions then slightly prefer
5095 it over the original sequence. These instructions are likely
5096 to become redundant now. We can't compare against the cost
5097 of src_eqv_here because, on MIPS for example, multi-insn
5098 constants have zero cost; they are assumed to be hoisted from
5100 if (src_related_is_const_anchor
5101 && src_related_cost
== src_cost
5107 /* If this was an indirect jump insn, a known label will really be
5108 cheaper even though it looks more expensive. */
5109 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
5110 src_folded
= src_const
, src_folded_cost
= src_folded_regcost
= -1;
5112 /* Terminate loop when replacement made. This must terminate since
5113 the current contents will be tested and will always be valid. */
5118 /* Skip invalid entries. */
5119 while (elt
&& !REG_P (elt
->exp
)
5120 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, false))
5121 elt
= elt
->next_same_value
;
5123 /* A paradoxical subreg would be bad here: it'll be the right
5124 size, but later may be adjusted so that the upper bits aren't
5125 what we want. So reject it. */
5127 && paradoxical_subreg_p (elt
->exp
)
5128 /* It is okay, though, if the rtx we're trying to match
5129 will ignore any of the bits we can't predict. */
5131 && GET_CODE (src
) == SUBREG
5132 && GET_MODE (src
) == GET_MODE (elt
->exp
)
5133 && partial_subreg_p (GET_MODE (SUBREG_REG (src
)),
5134 GET_MODE (SUBREG_REG (elt
->exp
)))))
5136 elt
= elt
->next_same_value
;
5142 src_elt_cost
= elt
->cost
;
5143 src_elt_regcost
= elt
->regcost
;
5146 /* Find cheapest and skip it for the next time. For items
5147 of equal cost, use this order:
5148 src_folded, src, src_eqv, src_related and hash table entry. */
5150 && preferable (src_folded_cost
, src_folded_regcost
,
5151 src_cost
, src_regcost
) <= 0
5152 && preferable (src_folded_cost
, src_folded_regcost
,
5153 src_eqv_cost
, src_eqv_regcost
) <= 0
5154 && preferable (src_folded_cost
, src_folded_regcost
,
5155 src_related_cost
, src_related_regcost
) <= 0
5156 && preferable (src_folded_cost
, src_folded_regcost
,
5157 src_elt_cost
, src_elt_regcost
) <= 0)
5158 trial
= src_folded
, src_folded_cost
= MAX_COST
;
5160 && preferable (src_cost
, src_regcost
,
5161 src_eqv_cost
, src_eqv_regcost
) <= 0
5162 && preferable (src_cost
, src_regcost
,
5163 src_related_cost
, src_related_regcost
) <= 0
5164 && preferable (src_cost
, src_regcost
,
5165 src_elt_cost
, src_elt_regcost
) <= 0)
5166 trial
= src
, src_cost
= MAX_COST
;
5167 else if (src_eqv_here
5168 && preferable (src_eqv_cost
, src_eqv_regcost
,
5169 src_related_cost
, src_related_regcost
) <= 0
5170 && preferable (src_eqv_cost
, src_eqv_regcost
,
5171 src_elt_cost
, src_elt_regcost
) <= 0)
5172 trial
= src_eqv_here
, src_eqv_cost
= MAX_COST
;
5173 else if (src_related
5174 && preferable (src_related_cost
, src_related_regcost
,
5175 src_elt_cost
, src_elt_regcost
) <= 0)
5176 trial
= src_related
, src_related_cost
= MAX_COST
;
5180 elt
= elt
->next_same_value
;
5181 src_elt_cost
= MAX_COST
;
5185 (set (reg:M N) (const_int A))
5186 (set (reg:M2 O) (const_int B))
5187 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5189 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
5190 && CONST_INT_P (trial
)
5191 && CONST_INT_P (XEXP (SET_DEST (sets
[i
].rtl
), 1))
5192 && CONST_INT_P (XEXP (SET_DEST (sets
[i
].rtl
), 2))
5193 && REG_P (XEXP (SET_DEST (sets
[i
].rtl
), 0))
5195 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets
[i
].rtl
))),
5196 INTVAL (XEXP (SET_DEST (sets
[i
].rtl
), 1))))
5197 && ((unsigned) INTVAL (XEXP (SET_DEST (sets
[i
].rtl
), 1))
5198 + (unsigned) INTVAL (XEXP (SET_DEST (sets
[i
].rtl
), 2))
5199 <= HOST_BITS_PER_WIDE_INT
))
5201 rtx dest_reg
= XEXP (SET_DEST (sets
[i
].rtl
), 0);
5202 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5203 rtx pos
= XEXP (SET_DEST (sets
[i
].rtl
), 2);
5204 unsigned int dest_hash
= HASH (dest_reg
, GET_MODE (dest_reg
));
5205 struct table_elt
*dest_elt
5206 = lookup (dest_reg
, dest_hash
, GET_MODE (dest_reg
));
5207 rtx dest_cst
= NULL
;
5210 for (p
= dest_elt
->first_same_value
; p
; p
= p
->next_same_value
)
5211 if (p
->is_const
&& CONST_INT_P (p
->exp
))
5218 HOST_WIDE_INT val
= INTVAL (dest_cst
);
5221 /* This is the mode of DEST_CST as well. */
5222 scalar_int_mode dest_mode
5223 = as_a
<scalar_int_mode
> (GET_MODE (dest_reg
));
5224 if (BITS_BIG_ENDIAN
)
5225 shift
= GET_MODE_PRECISION (dest_mode
)
5226 - INTVAL (pos
) - INTVAL (width
);
5228 shift
= INTVAL (pos
);
5229 if (INTVAL (width
) == HOST_BITS_PER_WIDE_INT
)
5230 mask
= HOST_WIDE_INT_M1
;
5232 mask
= (HOST_WIDE_INT_1
<< INTVAL (width
)) - 1;
5233 val
&= ~(mask
<< shift
);
5234 val
|= (INTVAL (trial
) & mask
) << shift
;
5235 val
= trunc_int_for_mode (val
, dest_mode
);
5236 validate_unshare_change (insn
, &SET_DEST (sets
[i
].rtl
),
5238 validate_unshare_change (insn
, &SET_SRC (sets
[i
].rtl
),
5240 if (apply_change_group ())
5242 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
5245 remove_note (insn
, note
);
5246 df_notes_rescan (insn
);
5250 src_eqv_volatile
= 0;
5251 src_eqv_in_memory
= 0;
5259 /* We don't normally have an insn matching (set (pc) (pc)), so
5260 check for this separately here. We will delete such an
5263 For other cases such as a table jump or conditional jump
5264 where we know the ultimate target, go ahead and replace the
5265 operand. While that may not make a valid insn, we will
5266 reemit the jump below (and also insert any necessary
5268 if (n_sets
== 1 && dest
== pc_rtx
5270 || (GET_CODE (trial
) == LABEL_REF
5271 && ! condjump_p (insn
))))
5273 /* Don't substitute non-local labels, this confuses CFG. */
5274 if (GET_CODE (trial
) == LABEL_REF
5275 && LABEL_REF_NONLOCAL_P (trial
))
5278 SET_SRC (sets
[i
].rtl
) = trial
;
5279 cse_jumps_altered
= true;
5283 /* Similarly, lots of targets don't allow no-op
5284 (set (mem x) (mem x)) moves. Even (set (reg x) (reg x))
5285 might be impossible for certain registers (like CC registers). */
5286 else if (n_sets
== 1
5288 && (MEM_P (trial
) || REG_P (trial
))
5289 && rtx_equal_p (trial
, dest
)
5290 && !side_effects_p (dest
)
5291 && (cfun
->can_delete_dead_exceptions
5292 || insn_nothrow_p (insn
))
5293 /* We can only remove the later store if the earlier aliases
5294 at least all accesses the later one. */
5296 || ((MEM_ALIAS_SET (dest
) == MEM_ALIAS_SET (trial
)
5297 || alias_set_subset_of (MEM_ALIAS_SET (dest
),
5298 MEM_ALIAS_SET (trial
)))
5299 && (!MEM_EXPR (trial
)
5300 || refs_same_for_tbaa_p (MEM_EXPR (trial
),
5301 MEM_EXPR (dest
))))))
5303 SET_SRC (sets
[i
].rtl
) = trial
;
5308 /* Reject certain invalid forms of CONST that we create. */
5309 else if (CONSTANT_P (trial
)
5310 && GET_CODE (trial
) == CONST
5311 /* Reject cases that will cause decode_rtx_const to
5312 die. On the alpha when simplifying a switch, we
5313 get (const (truncate (minus (label_ref)
5315 && (GET_CODE (XEXP (trial
, 0)) == TRUNCATE
5316 /* Likewise on IA-64, except without the
5318 || (GET_CODE (XEXP (trial
, 0)) == MINUS
5319 && GET_CODE (XEXP (XEXP (trial
, 0), 0)) == LABEL_REF
5320 && GET_CODE (XEXP (XEXP (trial
, 0), 1)) == LABEL_REF
)))
5321 /* Do nothing for this case. */
5324 /* Do not replace anything with a MEM, except the replacement
5325 is a no-op. This allows this loop to terminate. */
5326 else if (MEM_P (trial
) && !rtx_equal_p (trial
, SET_SRC(sets
[i
].rtl
)))
5327 /* Do nothing for this case. */
5330 /* Look for a substitution that makes a valid insn. */
5331 else if (validate_unshare_change (insn
, &SET_SRC (sets
[i
].rtl
),
5334 rtx new_rtx
= canon_reg (SET_SRC (sets
[i
].rtl
), insn
);
5336 /* The result of apply_change_group can be ignored; see
5339 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new_rtx
, 1);
5340 apply_change_group ();
5345 /* If the current function uses a constant pool and this is a
5346 constant, try making a pool entry. Put it in src_folded
5347 unless we already have done this since that is where it
5348 likely came from. */
5350 else if (crtl
->uses_const_pool
5351 && CONSTANT_P (trial
)
5352 && !CONST_INT_P (trial
)
5353 && (src_folded
== 0 || !MEM_P (src_folded
))
5354 && GET_MODE_CLASS (mode
) != MODE_CC
5355 && mode
!= VOIDmode
)
5357 src_folded
= force_const_mem (mode
, trial
);
5360 src_folded_cost
= COST (src_folded
, mode
);
5361 src_folded_regcost
= approx_reg_cost (src_folded
);
5366 /* If we changed the insn too much, handle this set from scratch. */
5373 src
= SET_SRC (sets
[i
].rtl
);
5375 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5376 However, there is an important exception: If both are registers
5377 that are not the head of their equivalence class, replace SET_SRC
5378 with the head of the class. If we do not do this, we will have
5379 both registers live over a portion of the basic block. This way,
5380 their lifetimes will likely abut instead of overlapping. */
5382 && REGNO_QTY_VALID_P (REGNO (dest
)))
5384 int dest_q
= REG_QTY (REGNO (dest
));
5385 struct qty_table_elem
*dest_ent
= &qty_table
[dest_q
];
5387 if (dest_ent
->mode
== GET_MODE (dest
)
5388 && dest_ent
->first_reg
!= REGNO (dest
)
5389 && REG_P (src
) && REGNO (src
) == REGNO (dest
)
5390 /* Don't do this if the original insn had a hard reg as
5391 SET_SRC or SET_DEST. */
5392 && (!REG_P (sets
[i
].src
)
5393 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
)
5394 && (!REG_P (dest
) || REGNO (dest
) >= FIRST_PSEUDO_REGISTER
))
5395 /* We can't call canon_reg here because it won't do anything if
5396 SRC is a hard register. */
5398 int src_q
= REG_QTY (REGNO (src
));
5399 struct qty_table_elem
*src_ent
= &qty_table
[src_q
];
5400 int first
= src_ent
->first_reg
;
5402 = (first
>= FIRST_PSEUDO_REGISTER
5403 ? regno_reg_rtx
[first
] : gen_rtx_REG (GET_MODE (src
), first
));
5405 /* We must use validate-change even for this, because this
5406 might be a special no-op instruction, suitable only to
5408 if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new_src
, 0))
5411 /* If we had a constant that is cheaper than what we are now
5412 setting SRC to, use that constant. We ignored it when we
5413 thought we could make this into a no-op. */
5414 if (src_const
&& COST (src_const
, mode
) < COST (src
, mode
)
5415 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
5422 /* If we made a change, recompute SRC values. */
5423 if (src
!= sets
[i
].src
)
5426 hash_arg_in_memory
= 0;
5428 sets
[i
].src_hash
= HASH (src
, mode
);
5429 sets
[i
].src_volatile
= do_not_record
;
5430 sets
[i
].src_in_memory
= hash_arg_in_memory
;
5431 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash
, mode
);
5434 /* If this is a single SET, we are setting a register, and we have an
5435 equivalent constant, we want to add a REG_EQUAL note if the constant
5436 is different from the source. We don't want to do it for a constant
5437 pseudo since verifying that this pseudo hasn't been eliminated is a
5438 pain; moreover such a note won't help anything.
5440 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5441 which can be created for a reference to a compile time computable
5442 entry in a jump table. */
5446 && !REG_P (src_const
)
5447 && !(GET_CODE (src_const
) == SUBREG
5448 && REG_P (SUBREG_REG (src_const
)))
5449 && !(GET_CODE (src_const
) == CONST
5450 && GET_CODE (XEXP (src_const
, 0)) == MINUS
5451 && GET_CODE (XEXP (XEXP (src_const
, 0), 0)) == LABEL_REF
5452 && GET_CODE (XEXP (XEXP (src_const
, 0), 1)) == LABEL_REF
)
5453 && !rtx_equal_p (src
, src_const
))
5455 /* Make sure that the rtx is not shared. */
5456 src_const
= copy_rtx (src_const
);
5458 /* Record the actual constant value in a REG_EQUAL note,
5459 making a new one if one does not already exist. */
5460 set_unique_reg_note (insn
, REG_EQUAL
, src_const
);
5461 df_notes_rescan (insn
);
5464 /* Now deal with the destination. */
5467 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5468 while (GET_CODE (dest
) == SUBREG
5469 || GET_CODE (dest
) == ZERO_EXTRACT
5470 || GET_CODE (dest
) == STRICT_LOW_PART
)
5471 dest
= XEXP (dest
, 0);
5473 sets
[i
].inner_dest
= dest
;
5477 #ifdef PUSH_ROUNDING
5478 /* Stack pushes invalidate the stack pointer. */
5479 rtx addr
= XEXP (dest
, 0);
5480 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
5481 && XEXP (addr
, 0) == stack_pointer_rtx
)
5482 invalidate (stack_pointer_rtx
, VOIDmode
);
5484 dest
= fold_rtx (dest
, insn
);
5487 /* Compute the hash code of the destination now,
5488 before the effects of this instruction are recorded,
5489 since the register values used in the address computation
5490 are those before this instruction. */
5491 sets
[i
].dest_hash
= HASH (dest
, mode
);
5493 /* Don't enter a bit-field in the hash table
5494 because the value in it after the store
5495 may not equal what was stored, due to truncation. */
5497 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
)
5499 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5501 if (src_const
!= 0 && CONST_INT_P (src_const
)
5502 && CONST_INT_P (width
)
5503 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
5504 && ! (INTVAL (src_const
)
5505 & (HOST_WIDE_INT_M1U
<< INTVAL (width
))))
5506 /* Exception: if the value is constant,
5507 and it won't be truncated, record it. */
5511 /* This is chosen so that the destination will be invalidated
5512 but no new value will be recorded.
5513 We must invalidate because sometimes constant
5514 values can be recorded for bitfields. */
5515 sets
[i
].src_elt
= 0;
5516 sets
[i
].src_volatile
= 1;
5522 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5524 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
5526 /* One less use of the label this insn used to jump to. */
5527 cse_cfg_altered
|= delete_insn_and_edges (insn
);
5528 cse_jumps_altered
= true;
5529 /* No more processing for this set. */
5533 /* Similarly for no-op moves. */
5536 if (cfun
->can_throw_non_call_exceptions
&& can_throw_internal (insn
))
5537 cse_cfg_altered
= true;
5538 cse_cfg_altered
|= delete_insn_and_edges (insn
);
5539 /* No more processing for this set. */
5543 /* If this SET is now setting PC to a label, we know it used to
5544 be a conditional or computed branch. */
5545 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
5546 && !LABEL_REF_NONLOCAL_P (src
))
5548 /* We reemit the jump in as many cases as possible just in
5549 case the form of an unconditional jump is significantly
5550 different than a computed jump or conditional jump.
5552 If this insn has multiple sets, then reemitting the
5553 jump is nontrivial. So instead we just force rerecognition
5554 and hope for the best. */
5557 rtx_jump_insn
*new_rtx
;
5560 rtx_insn
*seq
= targetm
.gen_jump (XEXP (src
, 0));
5561 new_rtx
= emit_jump_insn_before (seq
, insn
);
5562 JUMP_LABEL (new_rtx
) = XEXP (src
, 0);
5563 LABEL_NUSES (XEXP (src
, 0))++;
5565 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5566 note
= find_reg_note (insn
, REG_NON_LOCAL_GOTO
, 0);
5569 XEXP (note
, 1) = NULL_RTX
;
5570 REG_NOTES (new_rtx
) = note
;
5573 cse_cfg_altered
|= delete_insn_and_edges (insn
);
5577 INSN_CODE (insn
) = -1;
5579 /* Do not bother deleting any unreachable code, let jump do it. */
5580 cse_jumps_altered
= true;
5584 /* If destination is volatile, invalidate it and then do no further
5585 processing for this assignment. */
5587 else if (do_not_record
)
5589 invalidate_dest (dest
);
5593 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
5596 sets
[i
].dest_hash
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
5599 invalidate_dest (SET_DEST (sets
[i
].rtl
));
5605 /* Now enter all non-volatile source expressions in the hash table
5606 if they are not already present.
5607 Record their equivalence classes in src_elt.
5608 This way we can insert the corresponding destinations into
5609 the same classes even if the actual sources are no longer in them
5610 (having been invalidated). */
5612 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
5613 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
5615 struct table_elt
*elt
;
5616 struct table_elt
*classp
= sets
[0].src_elt
;
5617 rtx dest
= SET_DEST (sets
[0].rtl
);
5618 machine_mode eqvmode
= GET_MODE (dest
);
5620 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5622 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
5625 if (insert_regs (src_eqv
, classp
, 0))
5627 rehash_using_reg (src_eqv
);
5628 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
5630 elt
= insert (src_eqv
, classp
, src_eqv_hash
, eqvmode
);
5631 elt
->in_memory
= src_eqv_in_memory
;
5634 /* Check to see if src_eqv_elt is the same as a set source which
5635 does not yet have an elt, and if so set the elt of the set source
5637 for (i
= 0; i
< n_sets
; i
++)
5638 if (sets
[i
].rtl
&& sets
[i
].src_elt
== 0
5639 && rtx_equal_p (SET_SRC (sets
[i
].rtl
), src_eqv
))
5640 sets
[i
].src_elt
= src_eqv_elt
;
5643 for (i
= 0; i
< n_sets
; i
++)
5644 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
5645 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
5647 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
5649 /* REG_EQUAL in setting a STRICT_LOW_PART
5650 gives an equivalent for the entire destination register,
5651 not just for the subreg being stored in now.
5652 This is a more interesting equivalence, so we arrange later
5653 to treat the entire reg as the destination. */
5654 sets
[i
].src_elt
= src_eqv_elt
;
5655 sets
[i
].src_hash
= src_eqv_hash
;
5659 /* Insert source and constant equivalent into hash table, if not
5661 struct table_elt
*classp
= src_eqv_elt
;
5662 rtx src
= sets
[i
].src
;
5663 rtx dest
= SET_DEST (sets
[i
].rtl
);
5665 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
5667 /* It's possible that we have a source value known to be
5668 constant but don't have a REG_EQUAL note on the insn.
5669 Lack of a note will mean src_eqv_elt will be NULL. This
5670 can happen where we've generated a SUBREG to access a
5671 CONST_INT that is already in a register in a wider mode.
5672 Ensure that the source expression is put in the proper
5675 classp
= sets
[i
].src_const_elt
;
5677 if (sets
[i
].src_elt
== 0)
5679 struct table_elt
*elt
;
5681 /* Note that these insert_regs calls cannot remove
5682 any of the src_elt's, because they would have failed to
5683 match if not still valid. */
5684 if (insert_regs (src
, classp
, 0))
5686 rehash_using_reg (src
);
5687 sets
[i
].src_hash
= HASH (src
, mode
);
5689 elt
= insert (src
, classp
, sets
[i
].src_hash
, mode
);
5690 elt
->in_memory
= sets
[i
].src_in_memory
;
5691 /* If inline asm has any clobbers, ensure we only reuse
5692 existing inline asms and never try to put the ASM_OPERANDS
5693 into an insn that isn't inline asm. */
5694 if (GET_CODE (src
) == ASM_OPERANDS
5695 && GET_CODE (x
) == PARALLEL
)
5696 elt
->cost
= MAX_COST
;
5697 sets
[i
].src_elt
= classp
= elt
;
5699 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
5700 && src
!= sets
[i
].src_const
5701 && ! rtx_equal_p (sets
[i
].src_const
, src
))
5702 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
5703 sets
[i
].src_const_hash
, mode
);
5706 else if (sets
[i
].src_elt
== 0)
5707 /* If we did not insert the source into the hash table (e.g., it was
5708 volatile), note the equivalence class for the REG_EQUAL value, if any,
5709 so that the destination goes into that class. */
5710 sets
[i
].src_elt
= src_eqv_elt
;
5712 /* Record destination addresses in the hash table. This allows us to
5713 check if they are invalidated by other sets. */
5714 for (i
= 0; i
< n_sets
; i
++)
5718 rtx x
= sets
[i
].inner_dest
;
5719 struct table_elt
*elt
;
5726 mode
= GET_MODE (x
);
5727 hash
= HASH (x
, mode
);
5728 elt
= lookup (x
, hash
, mode
);
5731 if (insert_regs (x
, NULL
, 0))
5733 rtx dest
= SET_DEST (sets
[i
].rtl
);
5735 rehash_using_reg (x
);
5736 hash
= HASH (x
, mode
);
5737 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
5739 elt
= insert (x
, NULL
, hash
, mode
);
5742 sets
[i
].dest_addr_elt
= elt
;
5745 sets
[i
].dest_addr_elt
= NULL
;
5749 invalidate_from_clobbers (insn
);
5751 /* Some registers are invalidated by subroutine calls. Memory is
5752 invalidated by non-constant calls. */
5756 if (!(RTL_CONST_OR_PURE_CALL_P (insn
)))
5757 invalidate_memory ();
5759 /* For const/pure calls, invalidate any argument slots, because
5760 those are owned by the callee. */
5761 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
5762 if (GET_CODE (XEXP (tem
, 0)) == USE
5763 && MEM_P (XEXP (XEXP (tem
, 0), 0)))
5764 invalidate (XEXP (XEXP (tem
, 0), 0), VOIDmode
);
5765 invalidate_for_call (insn
);
5768 /* Now invalidate everything set by this instruction.
5769 If a SUBREG or other funny destination is being set,
5770 sets[i].rtl is still nonzero, so here we invalidate the reg
5771 a part of which is being set. */
5773 for (i
= 0; i
< n_sets
; i
++)
5776 /* We can't use the inner dest, because the mode associated with
5777 a ZERO_EXTRACT is significant. */
5778 rtx dest
= SET_DEST (sets
[i
].rtl
);
5780 /* Needed for registers to remove the register from its
5781 previous quantity's chain.
5782 Needed for memory if this is a nonvarying address, unless
5783 we have just done an invalidate_memory that covers even those. */
5784 if (REG_P (dest
) || GET_CODE (dest
) == SUBREG
)
5785 invalidate (dest
, VOIDmode
);
5786 else if (MEM_P (dest
))
5787 invalidate (dest
, VOIDmode
);
5788 else if (GET_CODE (dest
) == STRICT_LOW_PART
5789 || GET_CODE (dest
) == ZERO_EXTRACT
)
5790 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
5793 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5794 the regs restored by the longjmp come from a later time
5796 if (CALL_P (insn
) && find_reg_note (insn
, REG_SETJMP
, NULL
))
5798 flush_hash_table ();
5802 /* Make sure registers mentioned in destinations
5803 are safe for use in an expression to be inserted.
5804 This removes from the hash table
5805 any invalid entry that refers to one of these registers.
5807 We don't care about the return value from mention_regs because
5808 we are going to hash the SET_DEST values unconditionally. */
5810 for (i
= 0; i
< n_sets
; i
++)
5814 rtx x
= SET_DEST (sets
[i
].rtl
);
5820 /* We used to rely on all references to a register becoming
5821 inaccessible when a register changes to a new quantity,
5822 since that changes the hash code. However, that is not
5823 safe, since after HASH_SIZE new quantities we get a
5824 hash 'collision' of a register with its own invalid
5825 entries. And since SUBREGs have been changed not to
5826 change their hash code with the hash code of the register,
5827 it wouldn't work any longer at all. So we have to check
5828 for any invalid references lying around now.
5829 This code is similar to the REG case in mention_regs,
5830 but it knows that reg_tick has been incremented, and
5831 it leaves reg_in_table as -1 . */
5832 unsigned int regno
= REGNO (x
);
5833 unsigned int endregno
= END_REGNO (x
);
5836 for (i
= regno
; i
< endregno
; i
++)
5838 if (REG_IN_TABLE (i
) >= 0)
5840 remove_invalid_refs (i
);
5841 REG_IN_TABLE (i
) = -1;
5848 /* We may have just removed some of the src_elt's from the hash table.
5849 So replace each one with the current head of the same class.
5850 Also check if destination addresses have been removed. */
5852 for (i
= 0; i
< n_sets
; i
++)
5855 if (sets
[i
].dest_addr_elt
5856 && sets
[i
].dest_addr_elt
->first_same_value
== 0)
5858 /* The elt was removed, which means this destination is not
5859 valid after this instruction. */
5860 sets
[i
].rtl
= NULL_RTX
;
5862 else if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
5863 /* If elt was removed, find current head of same class,
5864 or 0 if nothing remains of that class. */
5866 struct table_elt
*elt
= sets
[i
].src_elt
;
5868 while (elt
&& elt
->prev_same_value
)
5869 elt
= elt
->prev_same_value
;
5871 while (elt
&& elt
->first_same_value
== 0)
5872 elt
= elt
->next_same_value
;
5873 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
5877 /* Now insert the destinations into their equivalence classes. */
5879 for (i
= 0; i
< n_sets
; i
++)
5882 rtx dest
= SET_DEST (sets
[i
].rtl
);
5883 struct table_elt
*elt
;
5885 /* Don't record value if we are not supposed to risk allocating
5886 floating-point values in registers that might be wider than
5888 if ((flag_float_store
5890 && FLOAT_MODE_P (GET_MODE (dest
)))
5891 /* Don't record BLKmode values, because we don't know the
5892 size of it, and can't be sure that other BLKmode values
5893 have the same or smaller size. */
5894 || GET_MODE (dest
) == BLKmode
5895 /* If we didn't put a REG_EQUAL value or a source into the hash
5896 table, there is no point is recording DEST. */
5897 || sets
[i
].src_elt
== 0)
5900 /* STRICT_LOW_PART isn't part of the value BEING set,
5901 and neither is the SUBREG inside it.
5902 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5903 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5904 dest
= SUBREG_REG (XEXP (dest
, 0));
5906 if (REG_P (dest
) || GET_CODE (dest
) == SUBREG
)
5907 /* Registers must also be inserted into chains for quantities. */
5908 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
5910 /* If `insert_regs' changes something, the hash code must be
5912 rehash_using_reg (dest
);
5913 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
5916 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5917 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5918 if (paradoxical_subreg_p (dest
))
5921 elt
= insert (dest
, sets
[i
].src_elt
,
5922 sets
[i
].dest_hash
, GET_MODE (dest
));
5924 /* If this is a constant, insert the constant anchors with the
5925 equivalent register-offset expressions using register DEST. */
5926 if (targetm
.const_anchor
5928 && SCALAR_INT_MODE_P (GET_MODE (dest
))
5929 && GET_CODE (sets
[i
].src_elt
->exp
) == CONST_INT
)
5930 insert_const_anchors (dest
, sets
[i
].src_elt
->exp
, GET_MODE (dest
));
5932 elt
->in_memory
= (MEM_P (sets
[i
].inner_dest
)
5933 && !MEM_READONLY_P (sets
[i
].inner_dest
));
5935 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5936 narrower than M2, and both M1 and M2 are the same number of words,
5937 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5938 make that equivalence as well.
5940 However, BAR may have equivalences for which gen_lowpart
5941 will produce a simpler value than gen_lowpart applied to
5942 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5943 BAR's equivalences. If we don't get a simplified form, make
5944 the SUBREG. It will not be used in an equivalence, but will
5945 cause two similar assignments to be detected.
5947 Note the loop below will find SUBREG_REG (DEST) since we have
5948 already entered SRC and DEST of the SET in the table. */
5950 if (GET_CODE (dest
) == SUBREG
5951 && (known_equal_after_align_down
5952 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) - 1,
5953 GET_MODE_SIZE (GET_MODE (dest
)) - 1,
5955 && !partial_subreg_p (dest
)
5956 && sets
[i
].src_elt
!= 0)
5958 machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
5959 struct table_elt
*elt
, *classp
= 0;
5961 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
5962 elt
= elt
->next_same_value
)
5966 struct table_elt
*src_elt
;
5968 /* Ignore invalid entries. */
5969 if (!REG_P (elt
->exp
)
5970 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, false))
5973 /* We may have already been playing subreg games. If the
5974 mode is already correct for the destination, use it. */
5975 if (GET_MODE (elt
->exp
) == new_mode
)
5980 = subreg_lowpart_offset (new_mode
, GET_MODE (dest
));
5981 new_src
= simplify_gen_subreg (new_mode
, elt
->exp
,
5982 GET_MODE (dest
), byte
);
5985 /* The call to simplify_gen_subreg fails if the value
5986 is VOIDmode, yet we can't do any simplification, e.g.
5987 for EXPR_LISTs denoting function call results.
5988 It is invalid to construct a SUBREG with a VOIDmode
5989 SUBREG_REG, hence a zero new_src means we can't do
5990 this substitution. */
5994 src_hash
= HASH (new_src
, new_mode
);
5995 src_elt
= lookup (new_src
, src_hash
, new_mode
);
5997 /* Put the new source in the hash table is if isn't
6001 if (insert_regs (new_src
, classp
, 0))
6003 rehash_using_reg (new_src
);
6004 src_hash
= HASH (new_src
, new_mode
);
6006 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
6007 src_elt
->in_memory
= elt
->in_memory
;
6008 if (GET_CODE (new_src
) == ASM_OPERANDS
6009 && elt
->cost
== MAX_COST
)
6010 src_elt
->cost
= MAX_COST
;
6012 else if (classp
&& classp
!= src_elt
->first_same_value
)
6013 /* Show that two things that we've seen before are
6014 actually the same. */
6015 merge_equiv_classes (src_elt
, classp
);
6017 classp
= src_elt
->first_same_value
;
6018 /* Ignore invalid entries. */
6020 && !REG_P (classp
->exp
)
6021 && ! exp_equiv_p (classp
->exp
, classp
->exp
, 1, false))
6022 classp
= classp
->next_same_value
;
6027 /* Special handling for (set REG0 REG1) where REG0 is the
6028 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6029 be used in the sequel, so (if easily done) change this insn to
6030 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6031 that computed their value. Then REG1 will become a dead store
6032 and won't cloud the situation for later optimizations.
6034 Do not make this change if REG1 is a hard register, because it will
6035 then be used in the sequel and we may be changing a two-operand insn
6036 into a three-operand insn.
6038 Also do not do this if we are operating on a copy of INSN. */
6040 if (n_sets
== 1 && sets
[0].rtl
)
6041 try_back_substitute_reg (sets
[0].rtl
, insn
);
6046 /* Remove from the hash table all expressions that reference memory. */
6049 invalidate_memory (void)
6052 struct table_elt
*p
, *next
;
6054 for (i
= 0; i
< HASH_SIZE
; i
++)
6055 for (p
= table
[i
]; p
; p
= next
)
6057 next
= p
->next_same_hash
;
6059 remove_from_table (p
, i
);
6063 /* Perform invalidation on the basis of everything about INSN,
6064 except for invalidating the actual places that are SET in it.
6065 This includes the places CLOBBERed, and anything that might
6066 alias with something that is SET or CLOBBERed. */
6069 invalidate_from_clobbers (rtx_insn
*insn
)
6071 rtx x
= PATTERN (insn
);
6073 if (GET_CODE (x
) == CLOBBER
)
6075 rtx ref
= XEXP (x
, 0);
6078 if (REG_P (ref
) || GET_CODE (ref
) == SUBREG
6080 invalidate (ref
, VOIDmode
);
6081 else if (GET_CODE (ref
) == STRICT_LOW_PART
6082 || GET_CODE (ref
) == ZERO_EXTRACT
)
6083 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6086 else if (GET_CODE (x
) == PARALLEL
)
6089 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
6091 rtx y
= XVECEXP (x
, 0, i
);
6092 if (GET_CODE (y
) == CLOBBER
)
6094 rtx ref
= XEXP (y
, 0);
6095 if (REG_P (ref
) || GET_CODE (ref
) == SUBREG
6097 invalidate (ref
, VOIDmode
);
6098 else if (GET_CODE (ref
) == STRICT_LOW_PART
6099 || GET_CODE (ref
) == ZERO_EXTRACT
)
6100 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
6106 /* Perform invalidation on the basis of everything about INSN.
6107 This includes the places CLOBBERed, and anything that might
6108 alias with something that is SET or CLOBBERed. */
6111 invalidate_from_sets_and_clobbers (rtx_insn
*insn
)
6114 rtx x
= PATTERN (insn
);
6118 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
6120 rtx temx
= XEXP (tem
, 0);
6121 if (GET_CODE (temx
) == CLOBBER
)
6122 invalidate (SET_DEST (temx
), VOIDmode
);
6126 /* Ensure we invalidate the destination register of a CALL insn.
6127 This is necessary for machines where this register is a fixed_reg,
6128 because no other code would invalidate it. */
6129 if (GET_CODE (x
) == SET
&& GET_CODE (SET_SRC (x
)) == CALL
)
6130 invalidate (SET_DEST (x
), VOIDmode
);
6132 else if (GET_CODE (x
) == PARALLEL
)
6136 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
6138 rtx y
= XVECEXP (x
, 0, i
);
6139 if (GET_CODE (y
) == CLOBBER
)
6141 rtx clobbered
= XEXP (y
, 0);
6143 if (REG_P (clobbered
)
6144 || GET_CODE (clobbered
) == SUBREG
)
6145 invalidate (clobbered
, VOIDmode
);
6146 else if (GET_CODE (clobbered
) == STRICT_LOW_PART
6147 || GET_CODE (clobbered
) == ZERO_EXTRACT
)
6148 invalidate (XEXP (clobbered
, 0), GET_MODE (clobbered
));
6150 else if (GET_CODE (y
) == SET
&& GET_CODE (SET_SRC (y
)) == CALL
)
6151 invalidate (SET_DEST (y
), VOIDmode
);
6156 static rtx
cse_process_note (rtx
);
6158 /* A simplify_replace_fn_rtx callback for cse_process_note. Process X,
6159 part of the REG_NOTES of an insn. Replace any registers with either
6160 an equivalent constant or the canonical form of the register.
6161 Only replace addresses if the containing MEM remains valid.
6163 Return the replacement for X, or null if it should be simplified
6167 cse_process_note_1 (rtx x
, const_rtx
, void *)
6171 validate_change (x
, &XEXP (x
, 0), cse_process_note (XEXP (x
, 0)), false);
6177 int i
= REG_QTY (REGNO (x
));
6179 /* Return a constant or a constant register. */
6180 if (REGNO_QTY_VALID_P (REGNO (x
)))
6182 struct qty_table_elem
*ent
= &qty_table
[i
];
6184 if (ent
->const_rtx
!= NULL_RTX
6185 && (CONSTANT_P (ent
->const_rtx
)
6186 || REG_P (ent
->const_rtx
)))
6188 rtx new_rtx
= gen_lowpart (GET_MODE (x
), ent
->const_rtx
);
6190 return copy_rtx (new_rtx
);
6194 /* Otherwise, canonicalize this register. */
6195 return canon_reg (x
, NULL
);
6201 /* Process X, part of the REG_NOTES of an insn. Replace any registers in it
6202 with either an equivalent constant or the canonical form of the register.
6203 Only replace addresses if the containing MEM remains valid. */
6206 cse_process_note (rtx x
)
6208 return simplify_replace_fn_rtx (x
, NULL_RTX
, cse_process_note_1
, NULL
);
6212 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6214 DATA is a pointer to a struct cse_basic_block_data, that is used to
6216 It is filled with a queue of basic blocks, starting with FIRST_BB
6217 and following a trace through the CFG.
6219 If all paths starting at FIRST_BB have been followed, or no new path
6220 starting at FIRST_BB can be constructed, this function returns FALSE.
6221 Otherwise, DATA->path is filled and the function returns TRUE indicating
6222 that a path to follow was found.
6224 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6225 block in the path will be FIRST_BB. */
6228 cse_find_path (basic_block first_bb
, struct cse_basic_block_data
*data
,
6235 bitmap_set_bit (cse_visited_basic_blocks
, first_bb
->index
);
6237 /* See if there is a previous path. */
6238 path_size
= data
->path_size
;
6240 /* There is a previous path. Make sure it started with FIRST_BB. */
6242 gcc_assert (data
->path
[0].bb
== first_bb
);
6244 /* There was only one basic block in the last path. Clear the path and
6245 return, so that paths starting at another basic block can be tried. */
6252 /* If the path was empty from the beginning, construct a new path. */
6254 data
->path
[path_size
++].bb
= first_bb
;
6257 /* Otherwise, path_size must be equal to or greater than 2, because
6258 a previous path exists that is at least two basic blocks long.
6260 Update the previous branch path, if any. If the last branch was
6261 previously along the branch edge, take the fallthrough edge now. */
6262 while (path_size
>= 2)
6264 basic_block last_bb_in_path
, previous_bb_in_path
;
6268 last_bb_in_path
= data
->path
[path_size
].bb
;
6269 previous_bb_in_path
= data
->path
[path_size
- 1].bb
;
6271 /* If we previously followed a path along the branch edge, try
6272 the fallthru edge now. */
6273 if (EDGE_COUNT (previous_bb_in_path
->succs
) == 2
6274 && any_condjump_p (BB_END (previous_bb_in_path
))
6275 && (e
= find_edge (previous_bb_in_path
, last_bb_in_path
))
6276 && e
== BRANCH_EDGE (previous_bb_in_path
))
6278 bb
= FALLTHRU_EDGE (previous_bb_in_path
)->dest
;
6279 if (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
6280 && single_pred_p (bb
)
6281 /* We used to assert here that we would only see blocks
6282 that we have not visited yet. But we may end up
6283 visiting basic blocks twice if the CFG has changed
6284 in this run of cse_main, because when the CFG changes
6285 the topological sort of the CFG also changes. A basic
6286 blocks that previously had more than two predecessors
6287 may now have a single predecessor, and become part of
6288 a path that starts at another basic block.
6290 We still want to visit each basic block only once, so
6291 halt the path here if we have already visited BB. */
6292 && !bitmap_bit_p (cse_visited_basic_blocks
, bb
->index
))
6294 bitmap_set_bit (cse_visited_basic_blocks
, bb
->index
);
6295 data
->path
[path_size
++].bb
= bb
;
6300 data
->path
[path_size
].bb
= NULL
;
6303 /* If only one block remains in the path, bail. */
6311 /* Extend the path if possible. */
6314 bb
= data
->path
[path_size
- 1].bb
;
6315 while (bb
&& path_size
< param_max_cse_path_length
)
6317 if (single_succ_p (bb
))
6318 e
= single_succ_edge (bb
);
6319 else if (EDGE_COUNT (bb
->succs
) == 2
6320 && any_condjump_p (BB_END (bb
)))
6322 /* First try to follow the branch. If that doesn't lead
6323 to a useful path, follow the fallthru edge. */
6324 e
= BRANCH_EDGE (bb
);
6325 if (!single_pred_p (e
->dest
))
6326 e
= FALLTHRU_EDGE (bb
);
6332 && !((e
->flags
& EDGE_ABNORMAL_CALL
) && cfun
->has_nonlocal_label
)
6333 && e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
6334 && single_pred_p (e
->dest
)
6335 /* Avoid visiting basic blocks twice. The large comment
6336 above explains why this can happen. */
6337 && !bitmap_bit_p (cse_visited_basic_blocks
, e
->dest
->index
))
6339 basic_block bb2
= e
->dest
;
6340 bitmap_set_bit (cse_visited_basic_blocks
, bb2
->index
);
6341 data
->path
[path_size
++].bb
= bb2
;
6350 data
->path_size
= path_size
;
6351 return path_size
!= 0;
6354 /* Dump the path in DATA to file F. NSETS is the number of sets
6358 cse_dump_path (struct cse_basic_block_data
*data
, int nsets
, FILE *f
)
6362 fprintf (f
, ";; Following path with %d sets: ", nsets
);
6363 for (path_entry
= 0; path_entry
< data
->path_size
; path_entry
++)
6364 fprintf (f
, "%d ", (data
->path
[path_entry
].bb
)->index
);
6370 /* Return true if BB has exception handling successor edges. */
6373 have_eh_succ_edges (basic_block bb
)
6378 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6379 if (e
->flags
& EDGE_EH
)
6386 /* Scan to the end of the path described by DATA. Return an estimate of
6387 the total number of SETs of all insns in the path. */
6390 cse_prescan_path (struct cse_basic_block_data
*data
)
6393 int path_size
= data
->path_size
;
6396 /* Scan to end of each basic block in the path. */
6397 for (path_entry
= 0; path_entry
< path_size
; path_entry
++)
6402 bb
= data
->path
[path_entry
].bb
;
6404 FOR_BB_INSNS (bb
, insn
)
6409 /* A PARALLEL can have lots of SETs in it,
6410 especially if it is really an ASM_OPERANDS. */
6411 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
6412 nsets
+= XVECLEN (PATTERN (insn
), 0);
6418 data
->nsets
= nsets
;
6421 /* Return true if the pattern of INSN uses a LABEL_REF for which
6422 there isn't a REG_LABEL_OPERAND note. */
6425 check_for_label_ref (rtx_insn
*insn
)
6427 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6428 note for it, we must rerun jump since it needs to place the note. If
6429 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6430 don't do this since no REG_LABEL_OPERAND will be added. */
6431 subrtx_iterator::array_type array
;
6432 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
6434 const_rtx x
= *iter
;
6435 if (GET_CODE (x
) == LABEL_REF
6436 && !LABEL_REF_NONLOCAL_P (x
)
6438 || !label_is_jump_target_p (label_ref_label (x
), insn
))
6439 && LABEL_P (label_ref_label (x
))
6440 && INSN_UID (label_ref_label (x
)) != 0
6441 && !find_reg_note (insn
, REG_LABEL_OPERAND
, label_ref_label (x
)))
6447 /* Process a single extended basic block described by EBB_DATA. */
6450 cse_extended_basic_block (struct cse_basic_block_data
*ebb_data
)
6452 int path_size
= ebb_data
->path_size
;
6456 /* Allocate the space needed by qty_table. */
6457 qty_table
= XNEWVEC (struct qty_table_elem
, max_qty
);
6460 cse_ebb_live_in
= df_get_live_in (ebb_data
->path
[0].bb
);
6461 cse_ebb_live_out
= df_get_live_out (ebb_data
->path
[path_size
- 1].bb
);
6462 for (path_entry
= 0; path_entry
< path_size
; path_entry
++)
6467 bb
= ebb_data
->path
[path_entry
].bb
;
6469 /* Invalidate recorded information for eh regs if there is an EH
6470 edge pointing to that bb. */
6471 if (bb_has_eh_pred (bb
))
6475 FOR_EACH_ARTIFICIAL_DEF (def
, bb
->index
)
6476 if (DF_REF_FLAGS (def
) & DF_REF_AT_TOP
)
6477 invalidate (DF_REF_REG (def
), GET_MODE (DF_REF_REG (def
)));
6480 optimize_this_for_speed_p
= optimize_bb_for_speed_p (bb
);
6481 FOR_BB_INSNS (bb
, insn
)
6483 /* If we have processed 1,000 insns, flush the hash table to
6484 avoid extreme quadratic behavior. We must not include NOTEs
6485 in the count since there may be more of them when generating
6486 debugging information. If we clear the table at different
6487 times, code generated with -g -O might be different than code
6488 generated with -O but not -g.
6490 FIXME: This is a real kludge and needs to be done some other
6492 if (NONDEBUG_INSN_P (insn
)
6493 && num_insns
++ > param_max_cse_insns
)
6495 flush_hash_table ();
6501 /* Process notes first so we have all notes in canonical forms
6502 when looking for duplicate operations. */
6503 bool changed
= false;
6504 for (rtx note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
6505 if (REG_NOTE_KIND (note
) == REG_EQUAL
)
6507 rtx newval
= cse_process_note (XEXP (note
, 0));
6508 if (newval
!= XEXP (note
, 0))
6510 XEXP (note
, 0) = newval
;
6515 df_notes_rescan (insn
);
6519 /* If we haven't already found an insn where we added a LABEL_REF,
6521 if (INSN_P (insn
) && !recorded_label_ref
6522 && check_for_label_ref (insn
))
6523 recorded_label_ref
= true;
6527 /* With non-call exceptions, we are not always able to update
6528 the CFG properly inside cse_insn. So clean up possibly
6529 redundant EH edges here. */
6530 if (cfun
->can_throw_non_call_exceptions
&& have_eh_succ_edges (bb
))
6531 cse_cfg_altered
|= purge_dead_edges (bb
);
6533 /* If we changed a conditional jump, we may have terminated
6534 the path we are following. Check that by verifying that
6535 the edge we would take still exists. If the edge does
6536 not exist anymore, purge the remainder of the path.
6537 Note that this will cause us to return to the caller. */
6538 if (path_entry
< path_size
- 1)
6540 basic_block next_bb
= ebb_data
->path
[path_entry
+ 1].bb
;
6541 if (!find_edge (bb
, next_bb
))
6547 /* If we truncate the path, we must also reset the
6548 visited bit on the remaining blocks in the path,
6549 or we will never visit them at all. */
6550 bitmap_clear_bit (cse_visited_basic_blocks
,
6551 ebb_data
->path
[path_size
].bb
->index
);
6552 ebb_data
->path
[path_size
].bb
= NULL
;
6554 while (path_size
- 1 != path_entry
);
6555 ebb_data
->path_size
= path_size
;
6559 /* If this is a conditional jump insn, record any known
6560 equivalences due to the condition being tested. */
6562 if (path_entry
< path_size
- 1
6563 && EDGE_COUNT (bb
->succs
) == 2
6565 && single_set (insn
)
6566 && any_condjump_p (insn
))
6568 basic_block next_bb
= ebb_data
->path
[path_entry
+ 1].bb
;
6569 bool taken
= (next_bb
== BRANCH_EDGE (bb
)->dest
);
6570 record_jump_equiv (insn
, taken
);
6574 gcc_assert (next_qty
<= max_qty
);
6580 /* Perform cse on the instructions of a function.
6581 F is the first instruction.
6582 NREGS is one plus the highest pseudo-reg number used in the instruction.
6584 Return 2 if jump optimizations should be redone due to simplifications
6585 in conditional jump instructions.
6586 Return 1 if the CFG should be cleaned up because it has been modified.
6587 Return 0 otherwise. */
6590 cse_main (rtx_insn
*f ATTRIBUTE_UNUSED
, int nregs
)
6592 struct cse_basic_block_data ebb_data
;
6594 int *rc_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6597 /* CSE doesn't use dominane info but can invalidate it in different ways.
6598 For simplicity free dominance info here. */
6599 free_dominance_info (CDI_DOMINATORS
);
6601 df_set_flags (DF_LR_RUN_DCE
);
6602 df_note_add_problem ();
6604 df_set_flags (DF_DEFER_INSN_RESCAN
);
6606 reg_scan (get_insns (), max_reg_num ());
6607 init_cse_reg_info (nregs
);
6609 ebb_data
.path
= XNEWVEC (struct branch_path
,
6610 param_max_cse_path_length
);
6612 cse_cfg_altered
= false;
6613 cse_jumps_altered
= false;
6614 recorded_label_ref
= false;
6615 ebb_data
.path_size
= 0;
6617 rtl_hooks
= cse_rtl_hooks
;
6620 init_alias_analysis ();
6622 reg_eqv_table
= XNEWVEC (struct reg_eqv_elem
, nregs
);
6624 /* Set up the table of already visited basic blocks. */
6625 cse_visited_basic_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
6626 bitmap_clear (cse_visited_basic_blocks
);
6628 /* Loop over basic blocks in reverse completion order (RPO),
6629 excluding the ENTRY and EXIT blocks. */
6630 n_blocks
= pre_and_rev_post_order_compute (NULL
, rc_order
, false);
6632 while (i
< n_blocks
)
6634 /* Find the first block in the RPO queue that we have not yet
6635 processed before. */
6638 bb
= BASIC_BLOCK_FOR_FN (cfun
, rc_order
[i
++]);
6640 while (bitmap_bit_p (cse_visited_basic_blocks
, bb
->index
)
6643 /* Find all paths starting with BB, and process them. */
6644 while (cse_find_path (bb
, &ebb_data
, flag_cse_follow_jumps
))
6646 /* Pre-scan the path. */
6647 cse_prescan_path (&ebb_data
);
6649 /* If this basic block has no sets, skip it. */
6650 if (ebb_data
.nsets
== 0)
6653 /* Get a reasonable estimate for the maximum number of qty's
6654 needed for this path. For this, we take the number of sets
6655 and multiply that by MAX_RECOG_OPERANDS. */
6656 max_qty
= ebb_data
.nsets
* MAX_RECOG_OPERANDS
;
6658 /* Dump the path we're about to process. */
6660 cse_dump_path (&ebb_data
, ebb_data
.nsets
, dump_file
);
6662 cse_extended_basic_block (&ebb_data
);
6667 end_alias_analysis ();
6668 free (reg_eqv_table
);
6669 free (ebb_data
.path
);
6670 sbitmap_free (cse_visited_basic_blocks
);
6672 rtl_hooks
= general_rtl_hooks
;
6674 if (cse_jumps_altered
|| recorded_label_ref
)
6676 else if (cse_cfg_altered
)
6682 /* Count the number of times registers are used (not set) in X.
6683 COUNTS is an array in which we accumulate the count, INCR is how much
6684 we count each register usage.
6686 Don't count a usage of DEST, which is the SET_DEST of a SET which
6687 contains X in its SET_SRC. This is because such a SET does not
6688 modify the liveness of DEST.
6689 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6690 We must then count uses of a SET_DEST regardless, because the insn can't be
6694 count_reg_usage (rtx x
, int *counts
, rtx dest
, int incr
)
6704 switch (code
= GET_CODE (x
))
6708 counts
[REGNO (x
)] += incr
;
6719 /* If we are clobbering a MEM, mark any registers inside the address
6721 if (MEM_P (XEXP (x
, 0)))
6722 count_reg_usage (XEXP (XEXP (x
, 0), 0), counts
, NULL_RTX
, incr
);
6726 /* Unless we are setting a REG, count everything in SET_DEST. */
6727 if (!REG_P (SET_DEST (x
)))
6728 count_reg_usage (SET_DEST (x
), counts
, NULL_RTX
, incr
);
6729 count_reg_usage (SET_SRC (x
), counts
,
6730 dest
? dest
: SET_DEST (x
),
6740 /* We expect dest to be NULL_RTX here. If the insn may throw,
6741 or if it cannot be deleted due to side-effects, mark this fact
6742 by setting DEST to pc_rtx. */
6743 if ((!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (x
))
6744 || side_effects_p (PATTERN (x
)))
6746 if (code
== CALL_INSN
)
6747 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x
), counts
, dest
, incr
);
6748 count_reg_usage (PATTERN (x
), counts
, dest
, incr
);
6750 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6753 note
= find_reg_equal_equiv_note (x
);
6756 rtx eqv
= XEXP (note
, 0);
6758 if (GET_CODE (eqv
) == EXPR_LIST
)
6759 /* This REG_EQUAL note describes the result of a function call.
6760 Process all the arguments. */
6763 count_reg_usage (XEXP (eqv
, 0), counts
, dest
, incr
);
6764 eqv
= XEXP (eqv
, 1);
6766 while (eqv
&& GET_CODE (eqv
) == EXPR_LIST
);
6768 count_reg_usage (eqv
, counts
, dest
, incr
);
6773 if (REG_NOTE_KIND (x
) == REG_EQUAL
6774 || (REG_NOTE_KIND (x
) != REG_NONNEG
&& GET_CODE (XEXP (x
,0)) == USE
)
6775 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6776 involving registers in the address. */
6777 || GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6778 count_reg_usage (XEXP (x
, 0), counts
, NULL_RTX
, incr
);
6780 count_reg_usage (XEXP (x
, 1), counts
, NULL_RTX
, incr
);
6784 /* Iterate over just the inputs, not the constraints as well. */
6785 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
6786 count_reg_usage (ASM_OPERANDS_INPUT (x
, i
), counts
, dest
, incr
);
6797 fmt
= GET_RTX_FORMAT (code
);
6798 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6801 count_reg_usage (XEXP (x
, i
), counts
, dest
, incr
);
6802 else if (fmt
[i
] == 'E')
6803 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6804 count_reg_usage (XVECEXP (x
, i
, j
), counts
, dest
, incr
);
6808 /* Return true if X is a dead register. */
6811 is_dead_reg (const_rtx x
, int *counts
)
6814 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
6815 && counts
[REGNO (x
)] == 0);
6818 /* Return true if set is live. */
6820 set_live_p (rtx set
, int *counts
)
6822 if (set_noop_p (set
))
6825 if (!is_dead_reg (SET_DEST (set
), counts
)
6826 || side_effects_p (SET_SRC (set
)))
6832 /* Return true if insn is live. */
6835 insn_live_p (rtx_insn
*insn
, int *counts
)
6838 if (!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (insn
))
6840 else if (GET_CODE (PATTERN (insn
)) == SET
)
6841 return set_live_p (PATTERN (insn
), counts
);
6842 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
6844 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
6846 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
6848 if (GET_CODE (elt
) == SET
)
6850 if (set_live_p (elt
, counts
))
6853 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
6858 else if (DEBUG_INSN_P (insn
))
6862 if (DEBUG_MARKER_INSN_P (insn
))
6865 for (next
= NEXT_INSN (insn
); next
; next
= NEXT_INSN (next
))
6868 else if (!DEBUG_INSN_P (next
))
6870 /* If we find an inspection point, such as a debug begin stmt,
6871 we want to keep the earlier debug insn. */
6872 else if (DEBUG_MARKER_INSN_P (next
))
6874 else if (INSN_VAR_LOCATION_DECL (insn
) == INSN_VAR_LOCATION_DECL (next
))
6883 /* Count the number of stores into pseudo. Callback for note_stores. */
6886 count_stores (rtx x
, const_rtx set ATTRIBUTE_UNUSED
, void *data
)
6888 int *counts
= (int *) data
;
6889 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
6890 counts
[REGNO (x
)]++;
6893 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6894 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6895 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6896 Set *SEEN_REPL to true if we see a dead register that does have
6900 is_dead_debug_insn (const_rtx pat
, int *counts
, rtx
*replacements
,
6903 subrtx_iterator::array_type array
;
6904 FOR_EACH_SUBRTX (iter
, array
, pat
, NONCONST
)
6906 const_rtx x
= *iter
;
6907 if (is_dead_reg (x
, counts
))
6909 if (replacements
&& replacements
[REGNO (x
)] != NULL_RTX
)
6918 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6919 Callback for simplify_replace_fn_rtx. */
6922 replace_dead_reg (rtx x
, const_rtx old_rtx ATTRIBUTE_UNUSED
, void *data
)
6924 rtx
*replacements
= (rtx
*) data
;
6927 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
6928 && replacements
[REGNO (x
)] != NULL_RTX
)
6930 if (GET_MODE (x
) == GET_MODE (replacements
[REGNO (x
)]))
6931 return replacements
[REGNO (x
)];
6932 return lowpart_subreg (GET_MODE (x
), replacements
[REGNO (x
)],
6933 GET_MODE (replacements
[REGNO (x
)]));
6938 /* Scan all the insns and delete any that are dead; i.e., they store a register
6939 that is never used or they copy a register to itself.
6941 This is used to remove insns made obviously dead by cse, loop or other
6942 optimizations. It improves the heuristics in loop since it won't try to
6943 move dead invariants out of loops or make givs for dead quantities. The
6944 remaining passes of the compilation are also sped up. */
6947 delete_trivially_dead_insns (rtx_insn
*insns
, int nreg
)
6950 rtx_insn
*insn
, *prev
;
6951 rtx
*replacements
= NULL
;
6954 timevar_push (TV_DELETE_TRIVIALLY_DEAD
);
6955 /* First count the number of times each register is used. */
6956 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6958 counts
= XCNEWVEC (int, nreg
* 3);
6959 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
6960 if (DEBUG_BIND_INSN_P (insn
))
6961 count_reg_usage (INSN_VAR_LOCATION_LOC (insn
), counts
+ nreg
,
6963 else if (INSN_P (insn
))
6965 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
6966 note_stores (insn
, count_stores
, counts
+ nreg
* 2);
6968 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6969 First one counts how many times each pseudo is used outside
6970 of debug insns, second counts how many times each pseudo is
6971 used in debug insns and third counts how many times a pseudo
6976 counts
= XCNEWVEC (int, nreg
);
6977 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
6979 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
6980 /* If no debug insns can be present, COUNTS is just an array
6981 which counts how many times each pseudo is used. */
6983 /* Pseudo PIC register should be considered as used due to possible
6984 new usages generated. */
6985 if (!reload_completed
6986 && pic_offset_table_rtx
6987 && REGNO (pic_offset_table_rtx
) >= FIRST_PSEUDO_REGISTER
)
6988 counts
[REGNO (pic_offset_table_rtx
)]++;
6989 /* Go from the last insn to the first and delete insns that only set unused
6990 registers or copy a register to itself. As we delete an insn, remove
6991 usage counts for registers it uses.
6993 The first jump optimization pass may leave a real insn as the last
6994 insn in the function. We must not skip that insn or we may end
6995 up deleting code that is not really dead.
6997 If some otherwise unused register is only used in DEBUG_INSNs,
6998 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6999 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7000 has been created for the unused register, replace it with
7001 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7002 for (insn
= get_last_insn (); insn
; insn
= prev
)
7006 prev
= PREV_INSN (insn
);
7010 live_insn
= insn_live_p (insn
, counts
);
7012 /* If this is a dead insn, delete it and show registers in it aren't
7015 if (! live_insn
&& dbg_cnt (delete_trivial_dead
))
7017 if (DEBUG_INSN_P (insn
))
7019 if (DEBUG_BIND_INSN_P (insn
))
7020 count_reg_usage (INSN_VAR_LOCATION_LOC (insn
), counts
+ nreg
,
7026 if (MAY_HAVE_DEBUG_BIND_INSNS
7027 && (set
= single_set (insn
)) != NULL_RTX
7028 && is_dead_reg (SET_DEST (set
), counts
)
7029 /* Used at least once in some DEBUG_INSN. */
7030 && counts
[REGNO (SET_DEST (set
)) + nreg
] > 0
7031 /* And set exactly once. */
7032 && counts
[REGNO (SET_DEST (set
)) + nreg
* 2] == 1
7033 && !side_effects_p (SET_SRC (set
))
7034 && asm_noperands (PATTERN (insn
)) < 0)
7036 rtx dval
, bind_var_loc
;
7039 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7040 dval
= make_debug_expr_from_rtl (SET_DEST (set
));
7042 /* Emit a debug bind insn before the insn in which
7045 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set
)),
7046 DEBUG_EXPR_TREE_DECL (dval
),
7048 VAR_INIT_STATUS_INITIALIZED
);
7049 count_reg_usage (bind_var_loc
, counts
+ nreg
, NULL_RTX
, 1);
7051 bind
= emit_debug_insn_before (bind_var_loc
, insn
);
7052 df_insn_rescan (bind
);
7054 if (replacements
== NULL
)
7055 replacements
= XCNEWVEC (rtx
, nreg
);
7056 replacements
[REGNO (SET_DEST (set
))] = dval
;
7059 count_reg_usage (insn
, counts
, NULL_RTX
, -1);
7062 cse_cfg_altered
|= delete_insn_and_edges (insn
);
7066 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7068 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
7069 if (DEBUG_BIND_INSN_P (insn
))
7071 /* If this debug insn references a dead register that wasn't replaced
7072 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7073 bool seen_repl
= false;
7074 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn
),
7075 counts
, replacements
, &seen_repl
))
7077 INSN_VAR_LOCATION_LOC (insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
7078 df_insn_rescan (insn
);
7082 INSN_VAR_LOCATION_LOC (insn
)
7083 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn
),
7084 NULL_RTX
, replace_dead_reg
,
7086 df_insn_rescan (insn
);
7089 free (replacements
);
7092 if (dump_file
&& ndead
)
7093 fprintf (dump_file
, "Deleted %i trivially dead insns\n",
7097 timevar_pop (TV_DELETE_TRIVIALLY_DEAD
);
7101 /* If LOC contains references to NEWREG in a different mode, change them
7102 to use NEWREG instead. */
7105 cse_change_cc_mode (subrtx_ptr_iterator::array_type
&array
,
7106 rtx
*loc
, rtx_insn
*insn
, rtx newreg
)
7108 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
7114 && REGNO (x
) == REGNO (newreg
)
7115 && GET_MODE (x
) != GET_MODE (newreg
))
7117 validate_change (insn
, loc
, newreg
, 1);
7118 iter
.skip_subrtxes ();
7123 /* Change the mode of any reference to the register REGNO (NEWREG) to
7124 GET_MODE (NEWREG) in INSN. */
7127 cse_change_cc_mode_insn (rtx_insn
*insn
, rtx newreg
)
7134 subrtx_ptr_iterator::array_type array
;
7135 cse_change_cc_mode (array
, &PATTERN (insn
), insn
, newreg
);
7136 cse_change_cc_mode (array
, ®_NOTES (insn
), insn
, newreg
);
7138 /* If the following assertion was triggered, there is most probably
7139 something wrong with the cc_modes_compatible back end function.
7140 CC modes only can be considered compatible if the insn - with the mode
7141 replaced by any of the compatible modes - can still be recognized. */
7142 success
= apply_change_group ();
7143 gcc_assert (success
);
7146 /* Change the mode of any reference to the register REGNO (NEWREG) to
7147 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7148 any instruction which modifies NEWREG. */
7151 cse_change_cc_mode_insns (rtx_insn
*start
, rtx_insn
*end
, rtx newreg
)
7155 for (insn
= start
; insn
!= end
; insn
= NEXT_INSN (insn
))
7157 if (! INSN_P (insn
))
7160 if (reg_set_p (newreg
, insn
))
7163 cse_change_cc_mode_insn (insn
, newreg
);
7167 /* BB is a basic block which finishes with CC_REG as a condition code
7168 register which is set to CC_SRC. Look through the successors of BB
7169 to find blocks which have a single predecessor (i.e., this one),
7170 and look through those blocks for an assignment to CC_REG which is
7171 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7172 permitted to change the mode of CC_SRC to a compatible mode. This
7173 returns VOIDmode if no equivalent assignments were found.
7174 Otherwise it returns the mode which CC_SRC should wind up with.
7175 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7176 but is passed unmodified down to recursive calls in order to prevent
7179 The main complexity in this function is handling the mode issues.
7180 We may have more than one duplicate which we can eliminate, and we
7181 try to find a mode which will work for multiple duplicates. */
7184 cse_cc_succs (basic_block bb
, basic_block orig_bb
, rtx cc_reg
, rtx cc_src
,
7185 bool can_change_mode
)
7189 unsigned int insn_count
;
7192 machine_mode modes
[2];
7193 rtx_insn
*last_insns
[2];
7198 /* We expect to have two successors. Look at both before picking
7199 the final mode for the comparison. If we have more successors
7200 (i.e., some sort of table jump, although that seems unlikely),
7201 then we require all beyond the first two to use the same
7204 found_equiv
= false;
7205 mode
= GET_MODE (cc_src
);
7207 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7212 if (e
->flags
& EDGE_COMPLEX
)
7215 if (EDGE_COUNT (e
->dest
->preds
) != 1
7216 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
7217 /* Avoid endless recursion on unreachable blocks. */
7218 || e
->dest
== orig_bb
)
7221 end
= NEXT_INSN (BB_END (e
->dest
));
7222 for (insn
= BB_HEAD (e
->dest
); insn
!= end
; insn
= NEXT_INSN (insn
))
7226 if (! INSN_P (insn
))
7229 /* If CC_SRC is modified, we have to stop looking for
7230 something which uses it. */
7231 if (modified_in_p (cc_src
, insn
))
7234 /* Check whether INSN sets CC_REG to CC_SRC. */
7235 set
= single_set (insn
);
7237 && REG_P (SET_DEST (set
))
7238 && REGNO (SET_DEST (set
)) == REGNO (cc_reg
))
7241 machine_mode set_mode
;
7242 machine_mode comp_mode
;
7245 set_mode
= GET_MODE (SET_SRC (set
));
7246 comp_mode
= set_mode
;
7247 if (rtx_equal_p (cc_src
, SET_SRC (set
)))
7249 else if (GET_CODE (cc_src
) == COMPARE
7250 && GET_CODE (SET_SRC (set
)) == COMPARE
7252 && rtx_equal_p (XEXP (cc_src
, 0),
7253 XEXP (SET_SRC (set
), 0))
7254 && rtx_equal_p (XEXP (cc_src
, 1),
7255 XEXP (SET_SRC (set
), 1)))
7258 comp_mode
= targetm
.cc_modes_compatible (mode
, set_mode
);
7259 if (comp_mode
!= VOIDmode
7260 && (can_change_mode
|| comp_mode
== mode
))
7267 if (insn_count
< ARRAY_SIZE (insns
))
7269 insns
[insn_count
] = insn
;
7270 modes
[insn_count
] = set_mode
;
7271 last_insns
[insn_count
] = end
;
7274 if (mode
!= comp_mode
)
7276 gcc_assert (can_change_mode
);
7279 /* The modified insn will be re-recognized later. */
7280 PUT_MODE (cc_src
, mode
);
7285 if (set_mode
!= mode
)
7287 /* We found a matching expression in the
7288 wrong mode, but we don't have room to
7289 store it in the array. Punt. This case
7293 /* INSN sets CC_REG to a value equal to CC_SRC
7294 with the right mode. We can simply delete
7299 /* We found an instruction to delete. Keep looking,
7300 in the hopes of finding a three-way jump. */
7304 /* We found an instruction which sets the condition
7305 code, so don't look any farther. */
7309 /* If INSN sets CC_REG in some other way, don't look any
7311 if (reg_set_p (cc_reg
, insn
))
7315 /* If we fell off the bottom of the block, we can keep looking
7316 through successors. We pass CAN_CHANGE_MODE as false because
7317 we aren't prepared to handle compatibility between the
7318 further blocks and this block. */
7321 machine_mode submode
;
7323 submode
= cse_cc_succs (e
->dest
, orig_bb
, cc_reg
, cc_src
, false);
7324 if (submode
!= VOIDmode
)
7326 gcc_assert (submode
== mode
);
7328 can_change_mode
= false;
7336 /* Now INSN_COUNT is the number of instructions we found which set
7337 CC_REG to a value equivalent to CC_SRC. The instructions are in
7338 INSNS. The modes used by those instructions are in MODES. */
7341 for (i
= 0; i
< insn_count
; ++i
)
7343 if (modes
[i
] != mode
)
7345 /* We need to change the mode of CC_REG in INSNS[i] and
7346 subsequent instructions. */
7349 if (GET_MODE (cc_reg
) == mode
)
7352 newreg
= gen_rtx_REG (mode
, REGNO (cc_reg
));
7354 cse_change_cc_mode_insns (NEXT_INSN (insns
[i
]), last_insns
[i
],
7358 cse_cfg_altered
|= delete_insn_and_edges (insns
[i
]);
7364 /* If we have a fixed condition code register (or two), walk through
7365 the instructions and try to eliminate duplicate assignments. */
7368 cse_condition_code_reg (void)
7370 unsigned int cc_regno_1
;
7371 unsigned int cc_regno_2
;
7376 if (! targetm
.fixed_condition_code_regs (&cc_regno_1
, &cc_regno_2
))
7379 cc_reg_1
= gen_rtx_REG (CCmode
, cc_regno_1
);
7380 if (cc_regno_2
!= INVALID_REGNUM
)
7381 cc_reg_2
= gen_rtx_REG (CCmode
, cc_regno_2
);
7383 cc_reg_2
= NULL_RTX
;
7385 FOR_EACH_BB_FN (bb
, cfun
)
7387 rtx_insn
*last_insn
;
7390 rtx_insn
*cc_src_insn
;
7393 machine_mode orig_mode
;
7395 /* Look for blocks which end with a conditional jump based on a
7396 condition code register. Then look for the instruction which
7397 sets the condition code register. Then look through the
7398 successor blocks for instructions which set the condition
7399 code register to the same value. There are other possible
7400 uses of the condition code register, but these are by far the
7401 most common and the ones which we are most likely to be able
7404 last_insn
= BB_END (bb
);
7405 if (!JUMP_P (last_insn
))
7408 if (reg_referenced_p (cc_reg_1
, PATTERN (last_insn
)))
7410 else if (cc_reg_2
&& reg_referenced_p (cc_reg_2
, PATTERN (last_insn
)))
7417 for (insn
= PREV_INSN (last_insn
);
7418 insn
&& insn
!= PREV_INSN (BB_HEAD (bb
));
7419 insn
= PREV_INSN (insn
))
7423 if (! INSN_P (insn
))
7425 set
= single_set (insn
);
7427 && REG_P (SET_DEST (set
))
7428 && REGNO (SET_DEST (set
)) == REGNO (cc_reg
))
7431 cc_src
= SET_SRC (set
);
7434 else if (reg_set_p (cc_reg
, insn
))
7441 if (modified_between_p (cc_src
, cc_src_insn
, NEXT_INSN (last_insn
)))
7444 /* Now CC_REG is a condition code register used for a
7445 conditional jump at the end of the block, and CC_SRC, in
7446 CC_SRC_INSN, is the value to which that condition code
7447 register is set, and CC_SRC is still meaningful at the end of
7450 orig_mode
= GET_MODE (cc_src
);
7451 mode
= cse_cc_succs (bb
, bb
, cc_reg
, cc_src
, true);
7452 if (mode
!= VOIDmode
)
7454 gcc_assert (mode
== GET_MODE (cc_src
));
7455 if (mode
!= orig_mode
)
7457 rtx newreg
= gen_rtx_REG (mode
, REGNO (cc_reg
));
7459 cse_change_cc_mode_insn (cc_src_insn
, newreg
);
7461 /* Do the same in the following insns that use the
7462 current value of CC_REG within BB. */
7463 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn
),
7464 NEXT_INSN (last_insn
),
7472 /* Perform common subexpression elimination. Nonzero value from
7473 `cse_main' means that jumps were simplified and some code may now
7474 be unreachable, so do jump optimization again. */
7476 rest_of_handle_cse (void)
7481 dump_flow_info (dump_file
, dump_flags
);
7483 tem
= cse_main (get_insns (), max_reg_num ());
7485 /* If we are not running more CSE passes, then we are no longer
7486 expecting CSE to be run. But always rerun it in a cheap mode. */
7487 cse_not_expected
= !flag_rerun_cse_after_loop
&& !flag_gcse
;
7491 timevar_push (TV_JUMP
);
7492 rebuild_jump_labels (get_insns ());
7493 cse_cfg_altered
|= cleanup_cfg (CLEANUP_CFG_CHANGED
);
7494 timevar_pop (TV_JUMP
);
7496 else if (tem
== 1 || optimize
> 1)
7497 cse_cfg_altered
|= cleanup_cfg (0);
7504 const pass_data pass_data_cse
=
7506 RTL_PASS
, /* type */
7508 OPTGROUP_NONE
, /* optinfo_flags */
7510 0, /* properties_required */
7511 0, /* properties_provided */
7512 0, /* properties_destroyed */
7513 0, /* todo_flags_start */
7514 TODO_df_finish
, /* todo_flags_finish */
7517 class pass_cse
: public rtl_opt_pass
7520 pass_cse (gcc::context
*ctxt
)
7521 : rtl_opt_pass (pass_data_cse
, ctxt
)
7524 /* opt_pass methods: */
7525 virtual bool gate (function
*) { return optimize
> 0; }
7526 virtual unsigned int execute (function
*) { return rest_of_handle_cse (); }
7528 }; // class pass_cse
7533 make_pass_cse (gcc::context
*ctxt
)
7535 return new pass_cse (ctxt
);
7539 /* Run second CSE pass after loop optimizations. */
7541 rest_of_handle_cse2 (void)
7546 dump_flow_info (dump_file
, dump_flags
);
7548 tem
= cse_main (get_insns (), max_reg_num ());
7550 /* Run a pass to eliminate duplicated assignments to condition code
7551 registers. We have to run this after bypass_jumps, because it
7552 makes it harder for that pass to determine whether a jump can be
7554 cse_condition_code_reg ();
7556 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7560 timevar_push (TV_JUMP
);
7561 rebuild_jump_labels (get_insns ());
7562 cse_cfg_altered
|= cleanup_cfg (CLEANUP_CFG_CHANGED
);
7563 timevar_pop (TV_JUMP
);
7565 else if (tem
== 1 || cse_cfg_altered
)
7566 cse_cfg_altered
|= cleanup_cfg (0);
7568 cse_not_expected
= 1;
7575 const pass_data pass_data_cse2
=
7577 RTL_PASS
, /* type */
7579 OPTGROUP_NONE
, /* optinfo_flags */
7580 TV_CSE2
, /* tv_id */
7581 0, /* properties_required */
7582 0, /* properties_provided */
7583 0, /* properties_destroyed */
7584 0, /* todo_flags_start */
7585 TODO_df_finish
, /* todo_flags_finish */
7588 class pass_cse2
: public rtl_opt_pass
7591 pass_cse2 (gcc::context
*ctxt
)
7592 : rtl_opt_pass (pass_data_cse2
, ctxt
)
7595 /* opt_pass methods: */
7596 virtual bool gate (function
*)
7598 return optimize
> 0 && flag_rerun_cse_after_loop
;
7601 virtual unsigned int execute (function
*) { return rest_of_handle_cse2 (); }
7603 }; // class pass_cse2
7608 make_pass_cse2 (gcc::context
*ctxt
)
7610 return new pass_cse2 (ctxt
);
7613 /* Run second CSE pass after loop optimizations. */
7615 rest_of_handle_cse_after_global_opts (void)
7620 /* We only want to do local CSE, so don't follow jumps. */
7621 save_cfj
= flag_cse_follow_jumps
;
7622 flag_cse_follow_jumps
= 0;
7624 rebuild_jump_labels (get_insns ());
7625 tem
= cse_main (get_insns (), max_reg_num ());
7626 cse_cfg_altered
|= purge_all_dead_edges ();
7627 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7629 cse_not_expected
= !flag_rerun_cse_after_loop
;
7631 /* If cse altered any jumps, rerun jump opts to clean things up. */
7634 timevar_push (TV_JUMP
);
7635 rebuild_jump_labels (get_insns ());
7636 cse_cfg_altered
|= cleanup_cfg (CLEANUP_CFG_CHANGED
);
7637 timevar_pop (TV_JUMP
);
7639 else if (tem
== 1 || cse_cfg_altered
)
7640 cse_cfg_altered
|= cleanup_cfg (0);
7642 flag_cse_follow_jumps
= save_cfj
;
7648 const pass_data pass_data_cse_after_global_opts
=
7650 RTL_PASS
, /* type */
7651 "cse_local", /* name */
7652 OPTGROUP_NONE
, /* optinfo_flags */
7654 0, /* properties_required */
7655 0, /* properties_provided */
7656 0, /* properties_destroyed */
7657 0, /* todo_flags_start */
7658 TODO_df_finish
, /* todo_flags_finish */
7661 class pass_cse_after_global_opts
: public rtl_opt_pass
7664 pass_cse_after_global_opts (gcc::context
*ctxt
)
7665 : rtl_opt_pass (pass_data_cse_after_global_opts
, ctxt
)
7668 /* opt_pass methods: */
7669 virtual bool gate (function
*)
7671 return optimize
> 0 && flag_rerun_cse_after_global_opts
;
7674 virtual unsigned int execute (function
*)
7676 return rest_of_handle_cse_after_global_opts ();
7679 }; // class pass_cse_after_global_opts
7684 make_pass_cse_after_global_opts (gcc::context
*ctxt
)
7686 return new pass_cse_after_global_opts (ctxt
);