1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains various simple utilities to analyze the CFG. */
24 #include "coretypes.h"
32 /* Store the data structures necessary for depth-first search. */
33 class depth_first_search
36 depth_first_search ();
38 basic_block
execute (basic_block
);
39 void add_bb (basic_block
);
42 /* stack for backtracking during the algorithm */
43 auto_vec
<basic_block
, 20> m_stack
;
45 /* record of basic blocks already seen by depth-first search */
46 auto_sbitmap m_visited_blocks
;
50 /* Mark the back edges in DFS traversal.
51 Return nonzero if a loop (natural or otherwise) is present.
52 Inspired by Depth_First_Search_PP described in:
54 Advanced Compiler Design and Implementation
58 and heavily borrowed from pre_and_rev_post_order_compute. */
61 mark_dfs_back_edges (void)
69 /* Allocate the preorder and postorder number arrays. */
70 pre
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
71 post
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
73 /* Allocate stack for back-tracking up CFG. */
74 auto_vec
<edge_iterator
, 20> stack (n_basic_blocks_for_fn (cfun
) + 1);
76 /* Allocate bitmap to track nodes that have been visited. */
77 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
79 /* None of the nodes in the CFG have been visited yet. */
80 bitmap_clear (visited
);
82 /* Push the first edge on to the stack. */
83 stack
.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
));
85 while (!stack
.is_empty ())
90 /* Look at the edge on the top of the stack. */
91 edge_iterator ei
= stack
.last ();
92 src
= ei_edge (ei
)->src
;
93 dest
= ei_edge (ei
)->dest
;
94 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
96 /* Check if the edge destination has been visited yet. */
97 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && ! bitmap_bit_p (visited
,
100 /* Mark that we have visited the destination. */
101 bitmap_set_bit (visited
, dest
->index
);
103 pre
[dest
->index
] = prenum
++;
104 if (EDGE_COUNT (dest
->succs
) > 0)
106 /* Since the DEST node has been visited for the first
107 time, check its successors. */
108 stack
.quick_push (ei_start (dest
->succs
));
111 post
[dest
->index
] = postnum
++;
115 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
116 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
117 && pre
[src
->index
] >= pre
[dest
->index
]
118 && post
[dest
->index
] == 0)
119 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
121 if (ei_one_before_end_p (ei
)
122 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
123 post
[src
->index
] = postnum
++;
125 if (!ei_one_before_end_p (ei
))
126 ei_next (&stack
.last ());
138 /* Find unreachable blocks. An unreachable block will have 0 in
139 the reachable bit in block->flags. A nonzero value indicates the
140 block is reachable. */
143 find_unreachable_blocks (void)
147 basic_block
*tos
, *worklist
, bb
;
149 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
151 /* Clear all the reachability flags. */
153 FOR_EACH_BB_FN (bb
, cfun
)
154 bb
->flags
&= ~BB_REACHABLE
;
156 /* Add our starting points to the worklist. Almost always there will
157 be only one. It isn't inconceivable that we might one day directly
158 support Fortran alternate entry points. */
160 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
164 /* Mark the block reachable. */
165 e
->dest
->flags
|= BB_REACHABLE
;
168 /* Iterate: find everything reachable from what we've already seen. */
170 while (tos
!= worklist
)
172 basic_block b
= *--tos
;
174 FOR_EACH_EDGE (e
, ei
, b
->succs
)
176 basic_block dest
= e
->dest
;
178 if (!(dest
->flags
& BB_REACHABLE
))
181 dest
->flags
|= BB_REACHABLE
;
189 /* Verify that there are no unreachable blocks in the current function. */
192 verify_no_unreachable_blocks (void)
194 find_unreachable_blocks ();
197 FOR_EACH_BB_FN (bb
, cfun
)
198 gcc_assert ((bb
->flags
& BB_REACHABLE
) != 0);
202 /* Functions to access an edge list with a vector representation.
203 Enough data is kept such that given an index number, the
204 pred and succ that edge represents can be determined, or
205 given a pred and a succ, its index number can be returned.
206 This allows algorithms which consume a lot of memory to
207 represent the normally full matrix of edge (pred,succ) with a
208 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
209 wasted space in the client code due to sparse flow graphs. */
211 /* This functions initializes the edge list. Basically the entire
212 flowgraph is processed, and all edges are assigned a number,
213 and the data structure is filled in. */
216 create_edge_list (void)
218 struct edge_list
*elist
;
224 /* Determine the number of edges in the flow graph by counting successor
225 edges on each basic block. */
227 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
228 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
230 num_edges
+= EDGE_COUNT (bb
->succs
);
233 elist
= XNEW (struct edge_list
);
234 elist
->num_edges
= num_edges
;
235 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
239 /* Follow successors of blocks, and register these edges. */
240 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
241 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
242 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
243 elist
->index_to_edge
[num_edges
++] = e
;
248 /* This function free's memory associated with an edge list. */
251 free_edge_list (struct edge_list
*elist
)
255 free (elist
->index_to_edge
);
260 /* This function provides debug output showing an edge list. */
263 print_edge_list (FILE *f
, struct edge_list
*elist
)
267 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
268 n_basic_blocks_for_fn (cfun
), elist
->num_edges
);
270 for (x
= 0; x
< elist
->num_edges
; x
++)
272 fprintf (f
, " %-4d - edge(", x
);
273 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
274 fprintf (f
, "entry,");
276 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
278 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
279 fprintf (f
, "exit)\n");
281 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
285 /* This function provides an internal consistency check of an edge list,
286 verifying that all edges are present, and that there are no
290 verify_edge_list (FILE *f
, struct edge_list
*elist
)
292 int pred
, succ
, index
;
294 basic_block bb
, p
, s
;
297 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
298 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
300 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
302 pred
= e
->src
->index
;
303 succ
= e
->dest
->index
;
304 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
305 if (index
== EDGE_INDEX_NO_EDGE
)
307 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
311 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
312 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
313 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
314 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
315 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
316 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
320 /* We've verified that all the edges are in the list, now lets make sure
321 there are no spurious edges in the list. This is an expensive check! */
323 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
324 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
325 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
329 FOR_EACH_EDGE (e
, ei
, p
->succs
)
336 FOR_EACH_EDGE (e
, ei
, s
->preds
)
343 if (EDGE_INDEX (elist
, p
, s
)
344 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
345 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
347 if (EDGE_INDEX (elist
, p
, s
)
348 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
349 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
350 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
355 /* Functions to compute control dependences. */
357 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
359 control_dependences::set_control_dependence_map_bit (basic_block bb
,
362 if (bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
364 gcc_assert (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
365 bitmap_set_bit (control_dependence_map
[bb
->index
], edge_index
);
368 /* Clear all control dependences for block BB. */
370 control_dependences::clear_control_dependence_bitmap (basic_block bb
)
372 bitmap_clear (control_dependence_map
[bb
->index
]);
375 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
376 This function is necessary because some blocks have negative numbers. */
378 static inline basic_block
379 find_pdom (basic_block block
)
381 gcc_assert (block
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
));
383 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
384 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
387 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
389 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
394 /* Determine all blocks' control dependences on the given edge with edge_list
395 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
398 control_dependences::find_control_dependence (int edge_index
)
400 basic_block current_block
;
401 basic_block ending_block
;
403 gcc_assert (get_edge_src (edge_index
) != EXIT_BLOCK_PTR_FOR_FN (cfun
));
405 /* For abnormal edges, we don't make current_block control
406 dependent because instructions that throw are always necessary
408 edge e
= find_edge (get_edge_src (edge_index
), get_edge_dest (edge_index
));
409 if (e
->flags
& EDGE_ABNORMAL
)
412 if (get_edge_src (edge_index
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
413 ending_block
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
415 ending_block
= find_pdom (get_edge_src (edge_index
));
417 for (current_block
= get_edge_dest (edge_index
);
418 current_block
!= ending_block
419 && current_block
!= EXIT_BLOCK_PTR_FOR_FN (cfun
);
420 current_block
= find_pdom (current_block
))
421 set_control_dependence_map_bit (current_block
, edge_index
);
424 /* Record all blocks' control dependences on all edges in the edge
425 list EL, ala Morgan, Section 3.6. */
427 control_dependences::control_dependences ()
429 timevar_push (TV_CONTROL_DEPENDENCES
);
431 /* Initialize the edge list. */
434 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
435 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
436 num_edges
+= EDGE_COUNT (bb
->succs
);
437 m_el
.create (num_edges
);
440 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
441 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
442 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
443 m_el
.quick_push (std::make_pair (e
->src
->index
, e
->dest
->index
));
445 control_dependence_map
.create (last_basic_block_for_fn (cfun
));
446 for (int i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
447 control_dependence_map
.quick_push (BITMAP_ALLOC (NULL
));
448 for (int i
= 0; i
< num_edges
; ++i
)
449 find_control_dependence (i
);
451 timevar_pop (TV_CONTROL_DEPENDENCES
);
454 /* Free control dependences and the associated edge list. */
456 control_dependences::~control_dependences ()
458 for (unsigned i
= 0; i
< control_dependence_map
.length (); ++i
)
459 BITMAP_FREE (control_dependence_map
[i
]);
460 control_dependence_map
.release ();
464 /* Returns the bitmap of edges the basic-block I is dependent on. */
467 control_dependences::get_edges_dependent_on (int i
)
469 return control_dependence_map
[i
];
472 /* Returns the edge source with index I from the edge list. */
475 control_dependences::get_edge_src (int i
)
477 return BASIC_BLOCK_FOR_FN (cfun
, m_el
[i
].first
);
480 /* Returns the edge destination with index I from the edge list. */
483 control_dependences::get_edge_dest (int i
)
485 return BASIC_BLOCK_FOR_FN (cfun
, m_el
[i
].second
);
489 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
490 If no such edge exists, return NULL. */
493 find_edge (basic_block pred
, basic_block succ
)
498 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
500 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
506 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
514 /* This routine will determine what, if any, edge there is between
515 a specified predecessor and successor. */
518 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
522 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
523 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
524 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
527 return (EDGE_INDEX_NO_EDGE
);
530 /* This routine will remove any fake predecessor edges for a basic block.
531 When the edge is removed, it is also removed from whatever successor
535 remove_fake_predecessors (basic_block bb
)
540 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
542 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
549 /* This routine will remove all fake edges from the flow graph. If
550 we remove all fake successors, it will automatically remove all
551 fake predecessors. */
554 remove_fake_edges (void)
558 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
559 remove_fake_predecessors (bb
);
562 /* This routine will remove all fake edges to the EXIT_BLOCK. */
565 remove_fake_exit_edges (void)
567 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun
));
571 /* This function will add a fake edge between any block which has no
572 successors, and the exit block. Some data flow equations require these
576 add_noreturn_fake_exit_edges (void)
580 FOR_EACH_BB_FN (bb
, cfun
)
581 if (EDGE_COUNT (bb
->succs
) == 0)
582 make_single_succ_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
585 /* This function adds a fake edge between any noreturn block and
586 infinite loops to the exit block. Some optimizations require a path
587 from each node to the exit node.
589 See also Morgan, Figure 3.10, pp. 82-83.
591 The current implementation is ugly, not attempting to minimize the
592 number of inserted fake edges. To reduce the number of fake edges
593 to insert, add fake edges from _innermost_ loops containing only
594 nodes not reachable from the exit block. */
597 connect_infinite_loops_to_exit (void)
599 /* First add fake exits to noreturn blocks, this is required to
600 discover only truly infinite loops below. */
601 add_noreturn_fake_exit_edges ();
603 /* Perform depth-first search in the reverse graph to find nodes
604 reachable from the exit block. */
605 depth_first_search dfs
;
606 dfs
.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
608 /* Repeatedly add fake edges, updating the unreachable nodes. */
609 basic_block unvisited_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
612 unvisited_block
= dfs
.execute (unvisited_block
);
613 if (!unvisited_block
)
616 basic_block deadend_block
= dfs_find_deadend (unvisited_block
);
617 edge e
= make_edge (deadend_block
, EXIT_BLOCK_PTR_FOR_FN (cfun
),
619 e
->probability
= profile_probability::never ();
620 dfs
.add_bb (deadend_block
);
624 /* Compute reverse top sort order. This is computing a post order
625 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
626 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
627 true, unreachable blocks are deleted. */
630 post_order_compute (int *post_order
, bool include_entry_exit
,
631 bool delete_unreachable
)
633 int post_order_num
= 0;
636 if (include_entry_exit
)
637 post_order
[post_order_num
++] = EXIT_BLOCK
;
639 /* Allocate stack for back-tracking up CFG. */
640 auto_vec
<edge_iterator
, 20> stack (n_basic_blocks_for_fn (cfun
) + 1);
642 /* Allocate bitmap to track nodes that have been visited. */
643 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
645 /* None of the nodes in the CFG have been visited yet. */
646 bitmap_clear (visited
);
648 /* Push the first edge on to the stack. */
649 stack
.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
));
651 while (!stack
.is_empty ())
656 /* Look at the edge on the top of the stack. */
657 edge_iterator ei
= stack
.last ();
658 src
= ei_edge (ei
)->src
;
659 dest
= ei_edge (ei
)->dest
;
661 /* Check if the edge destination has been visited yet. */
662 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
663 && ! bitmap_bit_p (visited
, dest
->index
))
665 /* Mark that we have visited the destination. */
666 bitmap_set_bit (visited
, dest
->index
);
668 if (EDGE_COUNT (dest
->succs
) > 0)
669 /* Since the DEST node has been visited for the first
670 time, check its successors. */
671 stack
.quick_push (ei_start (dest
->succs
));
673 post_order
[post_order_num
++] = dest
->index
;
677 if (ei_one_before_end_p (ei
)
678 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
679 post_order
[post_order_num
++] = src
->index
;
681 if (!ei_one_before_end_p (ei
))
682 ei_next (&stack
.last ());
688 if (include_entry_exit
)
690 post_order
[post_order_num
++] = ENTRY_BLOCK
;
691 count
= post_order_num
;
694 count
= post_order_num
+ 2;
696 /* Delete the unreachable blocks if some were found and we are
697 supposed to do it. */
698 if (delete_unreachable
&& (count
!= n_basic_blocks_for_fn (cfun
)))
702 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
703 != EXIT_BLOCK_PTR_FOR_FN (cfun
); b
= next_bb
)
705 next_bb
= b
->next_bb
;
707 if (!(bitmap_bit_p (visited
, b
->index
)))
708 delete_basic_block (b
);
711 tidy_fallthru_edges ();
714 return post_order_num
;
718 /* Helper routine for inverted_post_order_compute
719 flow_dfs_compute_reverse_execute, and the reverse-CFG
720 deapth first search in dominance.c.
721 BB has to belong to a region of CFG
722 unreachable by inverted traversal from the exit.
723 i.e. there's no control flow path from ENTRY to EXIT
724 that contains this BB.
725 This can happen in two cases - if there's an infinite loop
726 or if there's a block that has no successor
727 (call to a function with no return).
728 Some RTL passes deal with this condition by
729 calling connect_infinite_loops_to_exit () and/or
730 add_noreturn_fake_exit_edges ().
731 However, those methods involve modifying the CFG itself
732 which may not be desirable.
733 Hence, we deal with the infinite loop/no return cases
734 by identifying a unique basic block that can reach all blocks
735 in such a region by inverted traversal.
736 This function returns a basic block that guarantees
737 that all blocks in the region are reachable
738 by starting an inverted traversal from the returned block. */
741 dfs_find_deadend (basic_block bb
)
744 basic_block next
= bb
;
748 if (EDGE_COUNT (next
->succs
) == 0)
751 if (! bitmap_set_bit (visited
, next
->index
))
755 /* If we are in an analyzed cycle make sure to try exiting it.
756 Note this is a heuristic only and expected to work when loop
757 fixup is needed as well. */
758 if (! bb
->loop_father
759 || ! loop_outer (bb
->loop_father
))
760 next
= EDGE_SUCC (bb
, 0)->dest
;
765 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
766 if (loop_exit_edge_p (bb
->loop_father
, e
))
768 next
= e
? e
->dest
: EDGE_SUCC (bb
, 0)->dest
;
776 /* Compute the reverse top sort order of the inverted CFG
777 i.e. starting from the exit block and following the edges backward
778 (from successors to predecessors).
779 This ordering can be used for forward dataflow problems among others.
781 Optionally if START_POINTS is specified, start from exit block and all
782 basic blocks in START_POINTS. This is used by CD-DCE.
784 This function assumes that all blocks in the CFG are reachable
785 from the ENTRY (but not necessarily from EXIT).
787 If there's an infinite loop,
788 a simple inverted traversal starting from the blocks
789 with no successors can't visit all blocks.
790 To solve this problem, we first do inverted traversal
791 starting from the blocks with no successor.
792 And if there's any block left that's not visited by the regular
793 inverted traversal from EXIT,
794 those blocks are in such problematic region.
795 Among those, we find one block that has
796 any visited predecessor (which is an entry into such a region),
797 and start looking for a "dead end" from that block
798 and do another inverted traversal from that block. */
801 inverted_post_order_compute (vec
<int> *post_order
,
802 sbitmap
*start_points
)
805 post_order
->reserve_exact (n_basic_blocks_for_fn (cfun
));
808 verify_no_unreachable_blocks ();
810 /* Allocate stack for back-tracking up CFG. */
811 auto_vec
<edge_iterator
, 20> stack (n_basic_blocks_for_fn (cfun
) + 1);
813 /* Allocate bitmap to track nodes that have been visited. */
814 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
816 /* None of the nodes in the CFG have been visited yet. */
817 bitmap_clear (visited
);
821 FOR_ALL_BB_FN (bb
, cfun
)
822 if (bitmap_bit_p (*start_points
, bb
->index
)
823 && EDGE_COUNT (bb
->preds
) > 0)
825 stack
.quick_push (ei_start (bb
->preds
));
826 bitmap_set_bit (visited
, bb
->index
);
828 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
))
830 stack
.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
));
831 bitmap_set_bit (visited
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->index
);
835 /* Put all blocks that have no successor into the initial work list. */
836 FOR_ALL_BB_FN (bb
, cfun
)
837 if (EDGE_COUNT (bb
->succs
) == 0)
839 /* Push the initial edge on to the stack. */
840 if (EDGE_COUNT (bb
->preds
) > 0)
842 stack
.quick_push (ei_start (bb
->preds
));
843 bitmap_set_bit (visited
, bb
->index
);
849 bool has_unvisited_bb
= false;
851 /* The inverted traversal loop. */
852 while (!stack
.is_empty ())
857 /* Look at the edge on the top of the stack. */
859 bb
= ei_edge (ei
)->dest
;
860 pred
= ei_edge (ei
)->src
;
862 /* Check if the predecessor has been visited yet. */
863 if (! bitmap_bit_p (visited
, pred
->index
))
865 /* Mark that we have visited the destination. */
866 bitmap_set_bit (visited
, pred
->index
);
868 if (EDGE_COUNT (pred
->preds
) > 0)
869 /* Since the predecessor node has been visited for the first
870 time, check its predecessors. */
871 stack
.quick_push (ei_start (pred
->preds
));
873 post_order
->quick_push (pred
->index
);
877 if (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
878 && ei_one_before_end_p (ei
))
879 post_order
->quick_push (bb
->index
);
881 if (!ei_one_before_end_p (ei
))
882 ei_next (&stack
.last ());
888 /* Detect any infinite loop and activate the kludge.
889 Note that this doesn't check EXIT_BLOCK itself
890 since EXIT_BLOCK is always added after the outer do-while loop. */
891 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
892 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
893 if (!bitmap_bit_p (visited
, bb
->index
))
895 has_unvisited_bb
= true;
897 if (EDGE_COUNT (bb
->preds
) > 0)
901 basic_block visited_pred
= NULL
;
903 /* Find an already visited predecessor. */
904 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
906 if (bitmap_bit_p (visited
, e
->src
->index
))
907 visited_pred
= e
->src
;
912 basic_block be
= dfs_find_deadend (bb
);
913 gcc_assert (be
!= NULL
);
914 bitmap_set_bit (visited
, be
->index
);
915 stack
.quick_push (ei_start (be
->preds
));
921 if (has_unvisited_bb
&& stack
.is_empty ())
923 /* No blocks are reachable from EXIT at all.
924 Find a dead-end from the ENTRY, and restart the iteration. */
925 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
926 gcc_assert (be
!= NULL
);
927 bitmap_set_bit (visited
, be
->index
);
928 stack
.quick_push (ei_start (be
->preds
));
931 /* The only case the below while fires is
932 when there's an infinite loop. */
934 while (!stack
.is_empty ());
936 /* EXIT_BLOCK is always included. */
937 post_order
->quick_push (EXIT_BLOCK
);
940 /* Compute the depth first search order of FN and store in the array
941 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
942 reverse completion number for each node. Returns the number of nodes
943 visited. A depth first search tries to get as far away from the starting
944 point as quickly as possible.
946 In case the function has unreachable blocks the number of nodes
947 visited does not include them.
949 pre_order is a really a preorder numbering of the graph.
950 rev_post_order is really a reverse postorder numbering of the graph. */
953 pre_and_rev_post_order_compute_fn (struct function
*fn
,
954 int *pre_order
, int *rev_post_order
,
955 bool include_entry_exit
)
957 int pre_order_num
= 0;
958 int rev_post_order_num
= n_basic_blocks_for_fn (fn
) - 1;
960 /* Allocate stack for back-tracking up CFG. */
961 auto_vec
<edge_iterator
, 20> stack (n_basic_blocks_for_fn (fn
) + 1);
963 if (include_entry_exit
)
966 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
969 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
972 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
974 /* BB flag to track nodes that have been visited. */
975 auto_bb_flag
visited (fn
);
977 /* Push the first edge on to the stack. */
978 stack
.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn
)->succs
));
980 while (!stack
.is_empty ())
985 /* Look at the edge on the top of the stack. */
986 edge_iterator ei
= stack
.last ();
987 src
= ei_edge (ei
)->src
;
988 dest
= ei_edge (ei
)->dest
;
990 /* Check if the edge destination has been visited yet. */
991 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (fn
)
992 && ! (dest
->flags
& visited
))
994 /* Mark that we have visited the destination. */
995 dest
->flags
|= visited
;
998 pre_order
[pre_order_num
] = dest
->index
;
1002 if (EDGE_COUNT (dest
->succs
) > 0)
1003 /* Since the DEST node has been visited for the first
1004 time, check its successors. */
1005 stack
.quick_push (ei_start (dest
->succs
));
1006 else if (rev_post_order
)
1007 /* There are no successors for the DEST node so assign
1008 its reverse completion number. */
1009 rev_post_order
[rev_post_order_num
--] = dest
->index
;
1013 if (ei_one_before_end_p (ei
)
1014 && src
!= ENTRY_BLOCK_PTR_FOR_FN (fn
)
1016 /* There are no more successors for the SRC node
1017 so assign its reverse completion number. */
1018 rev_post_order
[rev_post_order_num
--] = src
->index
;
1020 if (!ei_one_before_end_p (ei
))
1021 ei_next (&stack
.last ());
1027 if (include_entry_exit
)
1030 pre_order
[pre_order_num
] = EXIT_BLOCK
;
1033 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
1036 /* Clear the temporarily allocated flag. */
1037 if (!rev_post_order
)
1038 rev_post_order
= pre_order
;
1039 for (int i
= 0; i
< pre_order_num
; ++i
)
1040 BASIC_BLOCK_FOR_FN (fn
, rev_post_order
[i
])->flags
&= ~visited
;
1042 return pre_order_num
;
1045 /* Like pre_and_rev_post_order_compute_fn but operating on the
1046 current function and asserting that all nodes were visited. */
1049 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
1050 bool include_entry_exit
)
1053 = pre_and_rev_post_order_compute_fn (cfun
, pre_order
, rev_post_order
,
1054 include_entry_exit
);
1055 if (include_entry_exit
)
1056 /* The number of nodes visited should be the number of blocks. */
1057 gcc_assert (pre_order_num
== n_basic_blocks_for_fn (cfun
));
1059 /* The number of nodes visited should be the number of blocks minus
1060 the entry and exit blocks which are not visited here. */
1061 gcc_assert (pre_order_num
1062 == (n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
));
1064 return pre_order_num
;
1068 /* Per basic-block data for rev_post_order_and_mark_dfs_back_seme,
1069 element of a sparsely populated array indexed by basic-block number. */
1070 typedef auto_vec
<int, 2> scc_exit_vec_t
;
1071 struct rpoamdbs_bb_data
{
1074 /* The basic-block index of the SCC entry of the block visited first
1075 (the SCC leader). */
1077 /* The index into the RPO array where the blocks SCC entries end
1078 (only valid for the SCC leader). */
1080 /* The indexes of the exits destinations of this SCC (only valid
1081 for the SCC leader). Initialized upon discovery of SCC leaders. */
1082 scc_exit_vec_t scc_exits
;
1085 /* Tag H as a header of B, weaving H and its loop header list into the
1086 current loop header list of B. */
1089 tag_header (int b
, int h
, rpoamdbs_bb_data
*bb_data
)
1091 if (h
== -1 || b
== h
)
1095 while (bb_data
[cur1
].scc
!= -1)
1097 int ih
= bb_data
[cur1
].scc
;
1100 if (bb_data
[ih
].depth
< bb_data
[cur2
].depth
)
1102 bb_data
[cur1
].scc
= cur2
;
1109 bb_data
[cur1
].scc
= cur2
;
1112 /* Comparator for a sort of two edges destinations E1 and E2 after their index
1113 in the PRE array as specified by BB_TO_PRE. */
1116 cmp_edge_dest_pre (const void *e1_
, const void *e2_
, void *data_
)
1118 const int *e1
= (const int *)e1_
;
1119 const int *e2
= (const int *)e2_
;
1120 rpoamdbs_bb_data
*bb_data
= (rpoamdbs_bb_data
*)data_
;
1121 return (bb_data
[*e1
].bb_to_pre
- bb_data
[*e2
].bb_to_pre
);
1124 /* Compute the reverse completion number of a depth first search
1125 on the SEME region denoted by the ENTRY edge and the EXIT_BBS set of
1126 exit block indexes and store it in the array REV_POST_ORDER.
1127 Also sets the EDGE_DFS_BACK edge flags according to this visitation
1129 Returns the number of nodes visited.
1131 In case the function has unreachable blocks the number of nodes
1132 visited does not include them.
1134 If FOR_ITERATION is true then compute an RPO where SCCs form a
1135 contiguous region in the RPO array.
1136 *TOPLEVEL_SCC_EXTENTS if not NULL is filled with pairs of
1137 *REV_POST_ORDER indexes denoting extents of the toplevel SCCs in
1141 rev_post_order_and_mark_dfs_back_seme (struct function
*fn
, edge entry
,
1142 bitmap exit_bbs
, bool for_iteration
,
1143 int *rev_post_order
,
1144 vec
<std::pair
<int, int> >
1145 *toplevel_scc_extents
)
1147 int rev_post_order_num
= 0;
1149 /* BB flag to track nodes that have been visited. */
1150 auto_bb_flag
visited (fn
);
1152 /* Lazily initialized per-BB data for the two DFS walks below. */
1153 rpoamdbs_bb_data
*bb_data
1154 = XNEWVEC (rpoamdbs_bb_data
, last_basic_block_for_fn (fn
));
1156 /* First DFS walk, loop discovery according to
1157 A New Algorithm for Identifying Loops in Decompilation
1158 by Tao Wei, Jian Mao, Wei Zou and You Chen of the Institute of
1159 Computer Science and Technology of the Peking University. */
1160 auto_vec
<edge_iterator
, 20> ei_stack (n_basic_blocks_for_fn (fn
) + 1);
1161 auto_bb_flag
is_header (fn
);
1163 unsigned n_sccs
= 0;
1165 basic_block dest
= entry
->dest
;
1169 /* DFS process DEST. */
1171 bb_data
[dest
->index
].bb_to_pre
= pre_num
++;
1172 bb_data
[dest
->index
].depth
= depth
;
1173 bb_data
[dest
->index
].scc
= -1;
1175 gcc_assert ((dest
->flags
& (is_header
|visited
)) == 0);
1176 dest
->flags
|= visited
;
1177 ei
= ei_start (dest
->succs
);
1178 while (!ei_end_p (ei
))
1180 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
1181 if (bitmap_bit_p (exit_bbs
, ei_edge (ei
)->dest
->index
))
1183 else if (!(ei_edge (ei
)->dest
->flags
& visited
))
1185 ei_stack
.quick_push (ei
);
1186 dest
= ei_edge (ei
)->dest
;
1187 /* DFS recurse on DEST. */
1190 ret_from_find_loops
:
1191 /* Return point of DFS recursion. */
1192 ei
= ei_stack
.pop ();
1193 dest
= ei_edge (ei
)->src
;
1194 int header
= bb_data
[ei_edge (ei
)->dest
->index
].scc
;
1195 tag_header (dest
->index
, header
, bb_data
);
1196 depth
= bb_data
[dest
->index
].depth
+ 1;
1200 if (bb_data
[ei_edge (ei
)->dest
->index
].depth
> 0) /* on the stack */
1202 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
;
1204 ei_edge (ei
)->dest
->flags
|= is_header
;
1205 ::new (&bb_data
[ei_edge (ei
)->dest
->index
].scc_exits
)
1206 auto_vec
<int, 2> ();
1207 tag_header (dest
->index
, ei_edge (ei
)->dest
->index
, bb_data
);
1209 else if (bb_data
[ei_edge (ei
)->dest
->index
].scc
== -1)
1213 int header
= bb_data
[ei_edge (ei
)->dest
->index
].scc
;
1214 if (bb_data
[header
].depth
> 0)
1215 tag_header (dest
->index
, header
, bb_data
);
1218 /* A re-entry into an existing loop. */
1219 /* ??? Need to mark is_header? */
1220 while (bb_data
[header
].scc
!= -1)
1222 header
= bb_data
[header
].scc
;
1223 if (bb_data
[header
].depth
> 0)
1225 tag_header (dest
->index
, header
, bb_data
);
1234 rev_post_order
[rev_post_order_num
++] = dest
->index
;
1235 /* not on the stack anymore */
1236 bb_data
[dest
->index
].depth
= -bb_data
[dest
->index
].depth
;
1237 if (!ei_stack
.is_empty ())
1238 /* Return from DFS recursion. */
1239 goto ret_from_find_loops
;
1241 /* Optimize for no SCCs found or !for_iteration. */
1242 if (n_sccs
== 0 || !for_iteration
)
1244 /* Clear the temporarily allocated flags. */
1245 for (int i
= 0; i
< rev_post_order_num
; ++i
)
1246 BASIC_BLOCK_FOR_FN (fn
, rev_post_order
[i
])->flags
1247 &= ~(is_header
|visited
);
1248 /* And swap elements. */
1249 for (int i
= 0; i
< rev_post_order_num
/2; ++i
)
1250 std::swap (rev_post_order
[i
], rev_post_order
[rev_post_order_num
-i
-1]);
1251 XDELETEVEC (bb_data
);
1253 return rev_post_order_num
;
1256 /* Next find SCC exits, clear the visited flag and compute an upper bound
1257 for the edge stack below. */
1258 unsigned edge_count
= 0;
1259 for (int i
= 0; i
< rev_post_order_num
; ++i
)
1261 int bb
= rev_post_order
[i
];
1262 BASIC_BLOCK_FOR_FN (fn
, bb
)->flags
&= ~visited
;
1264 FOR_EACH_EDGE (e
, ei
, BASIC_BLOCK_FOR_FN (fn
, bb
)->succs
)
1266 if (bitmap_bit_p (exit_bbs
, e
->dest
->index
))
1269 /* if e is an exit from e->src, record it for
1270 bb_data[e->src].scc. */
1271 int src_scc
= e
->src
->index
;
1272 if (!(e
->src
->flags
& is_header
))
1273 src_scc
= bb_data
[src_scc
].scc
;
1276 int dest_scc
= e
->dest
->index
;
1277 if (!(e
->dest
->flags
& is_header
))
1278 dest_scc
= bb_data
[dest_scc
].scc
;
1279 if (src_scc
== dest_scc
)
1281 /* When dest_scc is nested insde src_scc it's not an
1283 int tem_dest_scc
= dest_scc
;
1284 unsigned dest_scc_depth
= 0;
1285 while (tem_dest_scc
!= -1)
1288 if ((tem_dest_scc
= bb_data
[tem_dest_scc
].scc
) == src_scc
)
1291 if (tem_dest_scc
!= -1)
1293 /* When src_scc is nested inside dest_scc record an
1294 exit from the outermost SCC this edge exits. */
1295 int tem_src_scc
= src_scc
;
1296 unsigned src_scc_depth
= 0;
1297 while (tem_src_scc
!= -1)
1299 if (bb_data
[tem_src_scc
].scc
== dest_scc
)
1302 bb_data
[tem_src_scc
].scc_exits
.safe_push (e
->dest
->index
);
1305 tem_src_scc
= bb_data
[tem_src_scc
].scc
;
1308 /* Else find the outermost SCC this edge exits (exits
1309 from the inner SCCs are not important for the DFS
1310 walk adjustment). Do so by computing the common
1311 ancestor SCC where the immediate child it to the source
1312 SCC is the exited SCC. */
1313 if (tem_src_scc
== -1)
1316 while (src_scc_depth
> dest_scc_depth
)
1318 src_scc
= bb_data
[src_scc
].scc
;
1321 while (dest_scc_depth
> src_scc_depth
)
1323 dest_scc
= bb_data
[dest_scc
].scc
;
1326 while (bb_data
[src_scc
].scc
!= bb_data
[dest_scc
].scc
)
1328 src_scc
= bb_data
[src_scc
].scc
;
1329 dest_scc
= bb_data
[dest_scc
].scc
;
1331 bb_data
[src_scc
].scc_exits
.safe_push (e
->dest
->index
);
1336 /* Now the second DFS walk to compute a RPO where the extent of SCCs
1337 is minimized thus SCC members are adjacent in the RPO array.
1338 This is done by performing a DFS walk computing RPO with first visiting
1339 extra direct edges from SCC entry to its exits.
1340 That simulates a DFS walk over the graph with SCCs collapsed and
1341 walking the SCCs themselves only when all outgoing edges from the
1342 SCCs have been visited.
1343 SCC_END[scc-header-index] is the position in the RPO array of the
1344 last member of the SCC. */
1345 auto_vec
<std::pair
<basic_block
, basic_block
>, 20> estack (edge_count
+ 1);
1346 int idx
= rev_post_order_num
;
1350 /* DFS process DEST. */
1352 gcc_checking_assert ((dest
->flags
& visited
) == 0);
1353 /* Verify we enter SCCs through the same header and SCC nesting appears
1355 gcc_assert (bb_data
[dest
->index
].scc
== -1
1356 || (BASIC_BLOCK_FOR_FN (fn
, bb_data
[dest
->index
].scc
)->flags
1358 dest
->flags
|= visited
;
1359 bb_data
[dest
->index
].scc_end
= -1;
1360 if ((dest
->flags
& is_header
)
1361 && !bb_data
[dest
->index
].scc_exits
.is_empty ())
1363 /* Push the all SCC exits as outgoing edges from its header to
1365 To process exits in the same relative order as in the first
1366 DFS walk sort them after their destination PRE order index. */
1367 gcc_sort_r (&bb_data
[dest
->index
].scc_exits
[0],
1368 bb_data
[dest
->index
].scc_exits
.length (),
1369 sizeof (int), cmp_edge_dest_pre
, bb_data
);
1370 /* Process edges in reverse to match previous DFS walk order. */
1371 for (int i
= bb_data
[dest
->index
].scc_exits
.length () - 1; i
>= 0; --i
)
1372 estack
.quick_push (std::make_pair
1373 (dest
, BASIC_BLOCK_FOR_FN (fn
, bb_data
[dest
->index
].scc_exits
[i
])));
1377 if (dest
->flags
& is_header
)
1378 bb_data
[dest
->index
].scc_end
= idx
- 1;
1379 /* Push the edge vector in reverse to match the iteration order
1380 from the DFS walk above. */
1381 for (int i
= EDGE_COUNT (dest
->succs
) - 1; i
>= 0; --i
)
1382 if (!bitmap_bit_p (exit_bbs
, EDGE_SUCC (dest
, i
)->dest
->index
))
1383 estack
.quick_push (std::make_pair (dest
,
1384 EDGE_SUCC (dest
, i
)->dest
));
1386 while (!estack
.is_empty ()
1387 && estack
.last ().first
== dest
)
1389 edest
= estack
.last ().second
;
1390 if (!(edest
->flags
& visited
))
1393 /* DFS recurse on DEST. */
1397 /* Return point of DFS recursion. */
1398 dest
= estack
.last ().first
;
1401 /* If we processed all SCC exits from DEST mark the SCC end
1402 since all RPO entries up to DEST itself will now belong
1403 to its SCC. The special-case of no SCC exits is already
1404 dealt with above. */
1405 if (dest
->flags
& is_header
1406 /* When the last exit edge was processed mark the SCC end
1407 and push the regular edges. */
1408 && bb_data
[dest
->index
].scc_end
== -1
1409 && (estack
.is_empty ()
1410 || estack
.last ().first
!= dest
))
1412 bb_data
[dest
->index
].scc_end
= idx
- 1;
1413 /* Push the edge vector in reverse to match the iteration order
1414 from the DFS walk above. */
1415 for (int i
= EDGE_COUNT (dest
->succs
) - 1; i
>= 0; --i
)
1416 if (!bitmap_bit_p (exit_bbs
, EDGE_SUCC (dest
, i
)->dest
->index
))
1417 estack
.quick_push (std::make_pair (dest
,
1418 EDGE_SUCC (dest
, i
)->dest
));
1421 rev_post_order
[--idx
] = dest
->index
;
1422 if (!estack
.is_empty ())
1423 /* Return from DFS recursion. */
1424 goto ret_from_dfs_rpo
;
1426 /* Each SCC extends are from the position of the header inside
1427 the RPO array up to RPO array index scc_end[header-index]. */
1428 if (toplevel_scc_extents
)
1429 for (int i
= 0; i
< rev_post_order_num
; i
++)
1431 basic_block bb
= BASIC_BLOCK_FOR_FN (fn
, rev_post_order
[i
]);
1432 if (bb
->flags
& is_header
)
1434 toplevel_scc_extents
->safe_push
1435 (std::make_pair (i
, bb_data
[bb
->index
].scc_end
));
1436 i
= bb_data
[bb
->index
].scc_end
;
1440 /* Clear the temporarily allocated flags and free memory. */
1441 for (int i
= 0; i
< rev_post_order_num
; ++i
)
1443 basic_block bb
= BASIC_BLOCK_FOR_FN (fn
, rev_post_order
[i
]);
1444 if (bb
->flags
& is_header
)
1445 bb_data
[bb
->index
].scc_exits
.~scc_exit_vec_t ();
1446 bb
->flags
&= ~(visited
|is_header
);
1449 XDELETEVEC (bb_data
);
1451 return rev_post_order_num
;
1456 /* Compute the depth first search order on the _reverse_ graph and
1457 store it in the array DFS_ORDER, marking the nodes visited in VISITED.
1458 Returns the number of nodes visited.
1460 The computation is split into three pieces:
1462 flow_dfs_compute_reverse_init () creates the necessary data
1465 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1466 structures. The block will start the search.
1468 flow_dfs_compute_reverse_execute () continues (or starts) the
1469 search using the block on the top of the stack, stopping when the
1472 flow_dfs_compute_reverse_finish () destroys the necessary data
1475 Thus, the user will probably call ..._init(), call ..._add_bb() to
1476 add a beginning basic block to the stack, call ..._execute(),
1477 possibly add another bb to the stack and again call ..._execute(),
1478 ..., and finally call _finish(). */
1480 /* Initialize the data structures used for depth-first search on the
1481 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1482 added to the basic block stack. DATA is the current depth-first
1483 search context. If INITIALIZE_STACK is nonzero, there is an
1484 element on the stack. */
1486 depth_first_search::depth_first_search () :
1487 m_stack (n_basic_blocks_for_fn (cfun
)),
1488 m_visited_blocks (last_basic_block_for_fn (cfun
))
1490 bitmap_clear (m_visited_blocks
);
1493 /* Add the specified basic block to the top of the dfs data
1494 structures. When the search continues, it will start at the
1498 depth_first_search::add_bb (basic_block bb
)
1500 m_stack
.quick_push (bb
);
1501 bitmap_set_bit (m_visited_blocks
, bb
->index
);
1504 /* Continue the depth-first search through the reverse graph starting with the
1505 block at the stack's top and ending when the stack is empty. Visited nodes
1506 are marked. Returns an unvisited basic block, or NULL if there is none
1510 depth_first_search::execute (basic_block last_unvisited
)
1516 while (!m_stack
.is_empty ())
1518 bb
= m_stack
.pop ();
1520 /* Perform depth-first search on adjacent vertices. */
1521 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1522 if (!bitmap_bit_p (m_visited_blocks
, e
->src
->index
))
1526 /* Determine if there are unvisited basic blocks. */
1527 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
1528 if (!bitmap_bit_p (m_visited_blocks
, bb
->index
))
1534 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1535 if REVERSE, go against direction of edges. Returns number of blocks
1536 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1538 dfs_enumerate_from (basic_block bb
, int reverse
,
1539 bool (*predicate
) (const_basic_block
, const void *),
1540 basic_block
*rslt
, int rslt_max
, const void *data
)
1542 basic_block
*st
, lbb
;
1545 auto_bb_flag
visited (cfun
);
1547 #define MARK_VISITED(BB) ((BB)->flags |= visited)
1548 #define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
1549 #define VISITED_P(BB) (((BB)->flags & visited) != 0)
1551 st
= XNEWVEC (basic_block
, rslt_max
);
1552 rslt
[tv
++] = st
[sp
++] = bb
;
1561 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1562 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1564 gcc_assert (tv
!= rslt_max
);
1565 rslt
[tv
++] = st
[sp
++] = e
->src
;
1566 MARK_VISITED (e
->src
);
1571 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1572 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1574 gcc_assert (tv
!= rslt_max
);
1575 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1576 MARK_VISITED (e
->dest
);
1581 for (sp
= 0; sp
< tv
; sp
++)
1582 UNMARK_VISITED (rslt
[sp
]);
1585 #undef UNMARK_VISITED
1590 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1592 This algorithm can be found in Timothy Harvey's PhD thesis, at
1593 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1594 dominance algorithms.
1596 First, we identify each join point, j (any node with more than one
1597 incoming edge is a join point).
1599 We then examine each predecessor, p, of j and walk up the dominator tree
1602 We stop the walk when we reach j's immediate dominator - j is in the
1603 dominance frontier of each of the nodes in the walk, except for j's
1604 immediate dominator. Intuitively, all of the rest of j's dominators are
1605 shared by j's predecessors as well.
1606 Since they dominate j, they will not have j in their dominance frontiers.
1608 The number of nodes touched by this algorithm is equal to the size
1609 of the dominance frontiers, no more, no less.
1613 compute_dominance_frontiers (bitmap_head
*frontiers
)
1615 timevar_push (TV_DOM_FRONTIERS
);
1620 FOR_EACH_BB_FN (b
, cfun
)
1622 if (EDGE_COUNT (b
->preds
) >= 2)
1624 basic_block domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1625 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1627 basic_block runner
= p
->src
;
1628 if (runner
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1631 while (runner
!= domsb
)
1633 if (!bitmap_set_bit (&frontiers
[runner
->index
], b
->index
))
1635 runner
= get_immediate_dominator (CDI_DOMINATORS
, runner
);
1641 timevar_pop (TV_DOM_FRONTIERS
);
1644 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1645 return a bitmap with all the blocks in the iterated dominance
1646 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1647 frontier information as returned by compute_dominance_frontiers.
1649 The resulting set of blocks are the potential sites where PHI nodes
1650 are needed. The caller is responsible for freeing the memory
1651 allocated for the return value. */
1654 compute_idf (bitmap def_blocks
, bitmap_head
*dfs
)
1657 unsigned bb_index
, i
;
1658 bitmap phi_insertion_points
;
1660 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1662 /* Seed the work set with all the blocks in DEF_BLOCKS. */
1663 auto_bitmap work_set
;
1664 bitmap_copy (work_set
, def_blocks
);
1665 bitmap_tree_view (work_set
);
1667 /* Pop a block off the workset, add every block that appears in
1668 the original block's DF that we have not already processed to
1669 the workset. Iterate until the workset is empty. Blocks
1670 which are added to the workset are potential sites for
1672 while (!bitmap_empty_p (work_set
))
1674 /* The dominance frontier of a block is blocks after it so iterating
1675 on earlier blocks first is better.
1676 ??? Basic blocks are by no means guaranteed to be ordered in
1677 optimal order for this iteration. */
1678 bb_index
= bitmap_first_set_bit (work_set
);
1679 bitmap_clear_bit (work_set
, bb_index
);
1681 /* Since the registration of NEW -> OLD name mappings is done
1682 separately from the call to update_ssa, when updating the SSA
1683 form, the basic blocks where new and/or old names are defined
1684 may have disappeared by CFG cleanup calls. In this case,
1685 we may pull a non-existing block from the work stack. */
1686 gcc_checking_assert (bb_index
1687 < (unsigned) last_basic_block_for_fn (cfun
));
1689 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs
[bb_index
], phi_insertion_points
,
1692 bitmap_set_bit (work_set
, i
);
1693 bitmap_set_bit (phi_insertion_points
, i
);
1697 return phi_insertion_points
;
1700 /* Intersection and union of preds/succs for sbitmap based data flow
1701 solvers. All four functions defined below take the same arguments:
1702 B is the basic block to perform the operation for. DST is the
1703 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1704 last_basic_block so that it can be indexed with basic block indices.
1705 DST may be (but does not have to be) SRC[B->index]. */
1707 /* Set the bitmap DST to the intersection of SRC of successors of
1711 bitmap_intersection_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1713 unsigned int set_size
= dst
->size
;
1717 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1719 e
= EDGE_SUCC (b
, ix
);
1720 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1723 bitmap_copy (dst
, src
[e
->dest
->index
]);
1730 for (++ix
; ix
< EDGE_COUNT (b
->succs
); ix
++)
1733 SBITMAP_ELT_TYPE
*p
, *r
;
1735 e
= EDGE_SUCC (b
, ix
);
1736 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1739 p
= src
[e
->dest
->index
]->elms
;
1741 for (i
= 0; i
< set_size
; i
++)
1746 /* Set the bitmap DST to the intersection of SRC of predecessors of
1750 bitmap_intersection_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1752 unsigned int set_size
= dst
->size
;
1756 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1758 e
= EDGE_PRED (b
, ix
);
1759 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1762 bitmap_copy (dst
, src
[e
->src
->index
]);
1769 for (++ix
; ix
< EDGE_COUNT (b
->preds
); ix
++)
1772 SBITMAP_ELT_TYPE
*p
, *r
;
1774 e
= EDGE_PRED (b
, ix
);
1775 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1778 p
= src
[e
->src
->index
]->elms
;
1780 for (i
= 0; i
< set_size
; i
++)
1785 /* Set the bitmap DST to the union of SRC of successors of
1789 bitmap_union_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1791 unsigned int set_size
= dst
->size
;
1795 for (ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1797 e
= EDGE_SUCC (b
, ix
);
1798 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1801 bitmap_copy (dst
, src
[e
->dest
->index
]);
1805 if (ix
== EDGE_COUNT (b
->succs
))
1808 for (ix
++; ix
< EDGE_COUNT (b
->succs
); ix
++)
1811 SBITMAP_ELT_TYPE
*p
, *r
;
1813 e
= EDGE_SUCC (b
, ix
);
1814 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1817 p
= src
[e
->dest
->index
]->elms
;
1819 for (i
= 0; i
< set_size
; i
++)
1824 /* Set the bitmap DST to the union of SRC of predecessors of
1828 bitmap_union_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1830 unsigned int set_size
= dst
->size
;
1834 for (ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1836 e
= EDGE_PRED (b
, ix
);
1837 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1840 bitmap_copy (dst
, src
[e
->src
->index
]);
1844 if (ix
== EDGE_COUNT (b
->preds
))
1847 for (ix
++; ix
< EDGE_COUNT (b
->preds
); ix
++)
1850 SBITMAP_ELT_TYPE
*p
, *r
;
1852 e
= EDGE_PRED (b
, ix
);
1853 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1856 p
= src
[e
->src
->index
]->elms
;
1858 for (i
= 0; i
< set_size
; i
++)
1863 /* Returns the list of basic blocks in the function in an order that guarantees
1864 that if a block X has just a single predecessor Y, then Y is after X in the
1868 single_pred_before_succ_order (void)
1871 basic_block
*order
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
1872 unsigned n
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
1874 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
1876 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1877 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1879 bitmap_clear (visited
);
1881 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
1882 FOR_EACH_BB_FN (x
, cfun
)
1887 /* Walk the predecessors of x as long as they have precisely one
1888 predecessor and add them to the list, so that they get stored
1891 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1892 y
= single_pred (y
))
1894 for (y
= x
, i
= n
- np
;
1895 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1896 y
= single_pred (y
), i
++)
1904 gcc_assert (i
== n
- 1);
1908 gcc_assert (n
== 0);
1915 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1916 return that edge. Otherwise return NULL.
1918 When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
1922 single_pred_edge_ignoring_loop_edges (basic_block bb
,
1923 bool ignore_not_executable
)
1929 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1931 /* A loop back edge can be identified by the destination of
1932 the edge dominating the source of the edge. */
1933 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, e
->dest
))
1936 /* We can safely ignore edges that are not executable. */
1937 if (ignore_not_executable
1938 && (e
->flags
& EDGE_EXECUTABLE
) == 0)
1941 /* If we have already seen a non-loop edge, then we must have
1942 multiple incoming non-loop edges and thus we return NULL. */
1946 /* This is the first non-loop incoming edge we have found. Record