2005-01-16 Steven G. Kargl <kargls@comcast.net>
[official-gcc.git] / gcc / expr.c
blob2e1320ec33628200d22352583c6f3fc83b6f7aa6
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
62 #ifdef PUSH_ROUNDING
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
67 #endif
68 #endif
70 #endif
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
75 #else
76 #define STACK_PUSH_CODE PRE_INC
77 #endif
78 #endif
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
87 int cse_not_expected;
89 /* This structure is used by move_by_pieces to describe the move to
90 be performed. */
91 struct move_by_pieces
93 rtx to;
94 rtx to_addr;
95 int autinc_to;
96 int explicit_inc_to;
97 rtx from;
98 rtx from_addr;
99 int autinc_from;
100 int explicit_inc_from;
101 unsigned HOST_WIDE_INT len;
102 HOST_WIDE_INT offset;
103 int reverse;
106 /* This structure is used by store_by_pieces to describe the clear to
107 be performed. */
109 struct store_by_pieces
111 rtx to;
112 rtx to_addr;
113 int autinc_to;
114 int explicit_inc_to;
115 unsigned HOST_WIDE_INT len;
116 HOST_WIDE_INT offset;
117 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
118 void *constfundata;
119 int reverse;
122 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
123 unsigned int,
124 unsigned int);
125 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
126 struct move_by_pieces *);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
129 static rtx emit_block_move_via_libcall (rtx, rtx, rtx);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces *);
137 static bool clear_storage_via_clrmem (rtx, rtx, unsigned);
138 static rtx clear_storage_via_libcall (rtx, rtx);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor (tree);
150 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
152 static int is_aligning_offset (tree, tree);
153 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
154 enum expand_modifier);
155 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
156 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
157 #ifdef PUSH_ROUNDING
158 static void emit_single_push_insn (enum machine_mode, rtx, tree);
159 #endif
160 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
161 static rtx const_vector_from_tree (tree);
162 static void write_complex_part (rtx, rtx, bool);
164 /* Record for each mode whether we can move a register directly to or
165 from an object of that mode in memory. If we can't, we won't try
166 to use that mode directly when accessing a field of that mode. */
168 static char direct_load[NUM_MACHINE_MODES];
169 static char direct_store[NUM_MACHINE_MODES];
171 /* Record for each mode whether we can float-extend from memory. */
173 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO)
181 #endif
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO)
189 #endif
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero, or
193 to "memcpy" storage when the source is a constant string. */
194 #ifndef STORE_BY_PIECES_P
195 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
196 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
197 < (unsigned int) MOVE_RATIO)
198 #endif
200 /* This array records the insn_code of insns to perform block moves. */
201 enum insn_code movmem_optab[NUM_MACHINE_MODES];
203 /* This array records the insn_code of insns to perform block clears. */
204 enum insn_code clrmem_optab[NUM_MACHINE_MODES];
206 /* These arrays record the insn_code of two different kinds of insns
207 to perform block compares. */
208 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
213 #ifndef SLOW_UNALIGNED_ACCESS
214 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
215 #endif
217 /* This is run once per compilation to set up which modes can be used
218 directly in memory and to initialize the block move optab. */
220 void
221 init_expr_once (void)
223 rtx insn, pat;
224 enum machine_mode mode;
225 int num_clobbers;
226 rtx mem, mem1;
227 rtx reg;
229 /* Try indexing by frame ptr and try by stack ptr.
230 It is known that on the Convex the stack ptr isn't a valid index.
231 With luck, one or the other is valid on any machine. */
232 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
233 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
235 /* A scratch register we can modify in-place below to avoid
236 useless RTL allocations. */
237 reg = gen_rtx_REG (VOIDmode, -1);
239 insn = rtx_alloc (INSN);
240 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
241 PATTERN (insn) = pat;
243 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
244 mode = (enum machine_mode) ((int) mode + 1))
246 int regno;
248 direct_load[(int) mode] = direct_store[(int) mode] = 0;
249 PUT_MODE (mem, mode);
250 PUT_MODE (mem1, mode);
251 PUT_MODE (reg, mode);
253 /* See if there is some register that can be used in this mode and
254 directly loaded or stored from memory. */
256 if (mode != VOIDmode && mode != BLKmode)
257 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
258 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
259 regno++)
261 if (! HARD_REGNO_MODE_OK (regno, mode))
262 continue;
264 REGNO (reg) = regno;
266 SET_SRC (pat) = mem;
267 SET_DEST (pat) = reg;
268 if (recog (pat, insn, &num_clobbers) >= 0)
269 direct_load[(int) mode] = 1;
271 SET_SRC (pat) = mem1;
272 SET_DEST (pat) = reg;
273 if (recog (pat, insn, &num_clobbers) >= 0)
274 direct_load[(int) mode] = 1;
276 SET_SRC (pat) = reg;
277 SET_DEST (pat) = mem;
278 if (recog (pat, insn, &num_clobbers) >= 0)
279 direct_store[(int) mode] = 1;
281 SET_SRC (pat) = reg;
282 SET_DEST (pat) = mem1;
283 if (recog (pat, insn, &num_clobbers) >= 0)
284 direct_store[(int) mode] = 1;
288 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
290 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
291 mode = GET_MODE_WIDER_MODE (mode))
293 enum machine_mode srcmode;
294 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
295 srcmode = GET_MODE_WIDER_MODE (srcmode))
297 enum insn_code ic;
299 ic = can_extend_p (mode, srcmode, 0);
300 if (ic == CODE_FOR_nothing)
301 continue;
303 PUT_MODE (mem, srcmode);
305 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
306 float_extend_from_mem[mode][srcmode] = true;
311 /* This is run at the start of compiling a function. */
313 void
314 init_expr (void)
316 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
319 /* Copy data from FROM to TO, where the machine modes are not the same.
320 Both modes may be integer, or both may be floating.
321 UNSIGNEDP should be nonzero if FROM is an unsigned type.
322 This causes zero-extension instead of sign-extension. */
324 void
325 convert_move (rtx to, rtx from, int unsignedp)
327 enum machine_mode to_mode = GET_MODE (to);
328 enum machine_mode from_mode = GET_MODE (from);
329 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
330 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
331 enum insn_code code;
332 rtx libcall;
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
336 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
339 gcc_assert (to_real == from_real);
341 /* If the source and destination are already the same, then there's
342 nothing to do. */
343 if (to == from)
344 return;
346 /* If FROM is a SUBREG that indicates that we have already done at least
347 the required extension, strip it. We don't handle such SUBREGs as
348 TO here. */
350 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
351 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
352 >= GET_MODE_SIZE (to_mode))
353 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
354 from = gen_lowpart (to_mode, from), from_mode = to_mode;
356 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
358 if (to_mode == from_mode
359 || (from_mode == VOIDmode && CONSTANT_P (from)))
361 emit_move_insn (to, from);
362 return;
365 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
367 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
369 if (VECTOR_MODE_P (to_mode))
370 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
371 else
372 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
374 emit_move_insn (to, from);
375 return;
378 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
380 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
381 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
382 return;
385 if (to_real)
387 rtx value, insns;
388 convert_optab tab;
390 gcc_assert (GET_MODE_PRECISION (from_mode)
391 != GET_MODE_PRECISION (to_mode));
393 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
394 tab = sext_optab;
395 else
396 tab = trunc_optab;
398 /* Try converting directly if the insn is supported. */
400 code = tab->handlers[to_mode][from_mode].insn_code;
401 if (code != CODE_FOR_nothing)
403 emit_unop_insn (code, to, from,
404 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
405 return;
408 /* Otherwise use a libcall. */
409 libcall = tab->handlers[to_mode][from_mode].libfunc;
411 /* Is this conversion implemented yet? */
412 gcc_assert (libcall);
414 start_sequence ();
415 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
416 1, from, from_mode);
417 insns = get_insns ();
418 end_sequence ();
419 emit_libcall_block (insns, to, value,
420 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
421 from)
422 : gen_rtx_FLOAT_EXTEND (to_mode, from));
423 return;
426 /* Handle pointer conversion. */ /* SPEE 900220. */
427 /* Targets are expected to provide conversion insns between PxImode and
428 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
429 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
431 enum machine_mode full_mode
432 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
434 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
435 != CODE_FOR_nothing);
437 if (full_mode != from_mode)
438 from = convert_to_mode (full_mode, from, unsignedp);
439 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
440 to, from, UNKNOWN);
441 return;
443 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
448 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
449 != CODE_FOR_nothing);
451 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
452 to, from, UNKNOWN);
453 if (to_mode == full_mode)
454 return;
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
460 /* Now both modes are integers. */
462 /* Handle expanding beyond a word. */
463 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
464 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
466 rtx insns;
467 rtx lowpart;
468 rtx fill_value;
469 rtx lowfrom;
470 int i;
471 enum machine_mode lowpart_mode;
472 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
474 /* Try converting directly if the insn is supported. */
475 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
476 != CODE_FOR_nothing)
478 /* If FROM is a SUBREG, put it into a register. Do this
479 so that we always generate the same set of insns for
480 better cse'ing; if an intermediate assignment occurred,
481 we won't be doing the operation directly on the SUBREG. */
482 if (optimize > 0 && GET_CODE (from) == SUBREG)
483 from = force_reg (from_mode, from);
484 emit_unop_insn (code, to, from, equiv_code);
485 return;
487 /* Next, try converting via full word. */
488 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
489 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
490 != CODE_FOR_nothing))
492 if (REG_P (to))
494 if (reg_overlap_mentioned_p (to, from))
495 from = force_reg (from_mode, from);
496 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
498 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
499 emit_unop_insn (code, to,
500 gen_lowpart (word_mode, to), equiv_code);
501 return;
504 /* No special multiword conversion insn; do it by hand. */
505 start_sequence ();
507 /* Since we will turn this into a no conflict block, we must ensure
508 that the source does not overlap the target. */
510 if (reg_overlap_mentioned_p (to, from))
511 from = force_reg (from_mode, from);
513 /* Get a copy of FROM widened to a word, if necessary. */
514 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
515 lowpart_mode = word_mode;
516 else
517 lowpart_mode = from_mode;
519 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
521 lowpart = gen_lowpart (lowpart_mode, to);
522 emit_move_insn (lowpart, lowfrom);
524 /* Compute the value to put in each remaining word. */
525 if (unsignedp)
526 fill_value = const0_rtx;
527 else
529 #ifdef HAVE_slt
530 if (HAVE_slt
531 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
532 && STORE_FLAG_VALUE == -1)
534 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
535 lowpart_mode, 0);
536 fill_value = gen_reg_rtx (word_mode);
537 emit_insn (gen_slt (fill_value));
539 else
540 #endif
542 fill_value
543 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
544 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
545 NULL_RTX, 0);
546 fill_value = convert_to_mode (word_mode, fill_value, 1);
550 /* Fill the remaining words. */
551 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
553 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
554 rtx subword = operand_subword (to, index, 1, to_mode);
556 gcc_assert (subword);
558 if (fill_value != subword)
559 emit_move_insn (subword, fill_value);
562 insns = get_insns ();
563 end_sequence ();
565 emit_no_conflict_block (insns, to, from, NULL_RTX,
566 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
567 return;
570 /* Truncating multi-word to a word or less. */
571 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
572 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
574 if (!((MEM_P (from)
575 && ! MEM_VOLATILE_P (from)
576 && direct_load[(int) to_mode]
577 && ! mode_dependent_address_p (XEXP (from, 0)))
578 || REG_P (from)
579 || GET_CODE (from) == SUBREG))
580 from = force_reg (from_mode, from);
581 convert_move (to, gen_lowpart (word_mode, from), 0);
582 return;
585 /* Now follow all the conversions between integers
586 no more than a word long. */
588 /* For truncation, usually we can just refer to FROM in a narrower mode. */
589 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
590 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
591 GET_MODE_BITSIZE (from_mode)))
593 if (!((MEM_P (from)
594 && ! MEM_VOLATILE_P (from)
595 && direct_load[(int) to_mode]
596 && ! mode_dependent_address_p (XEXP (from, 0)))
597 || REG_P (from)
598 || GET_CODE (from) == SUBREG))
599 from = force_reg (from_mode, from);
600 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
601 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
602 from = copy_to_reg (from);
603 emit_move_insn (to, gen_lowpart (to_mode, from));
604 return;
607 /* Handle extension. */
608 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
610 /* Convert directly if that works. */
611 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
612 != CODE_FOR_nothing)
614 if (flag_force_mem)
615 from = force_not_mem (from);
617 emit_unop_insn (code, to, from, equiv_code);
618 return;
620 else
622 enum machine_mode intermediate;
623 rtx tmp;
624 tree shift_amount;
626 /* Search for a mode to convert via. */
627 for (intermediate = from_mode; intermediate != VOIDmode;
628 intermediate = GET_MODE_WIDER_MODE (intermediate))
629 if (((can_extend_p (to_mode, intermediate, unsignedp)
630 != CODE_FOR_nothing)
631 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (intermediate))))
634 && (can_extend_p (intermediate, from_mode, unsignedp)
635 != CODE_FOR_nothing))
637 convert_move (to, convert_to_mode (intermediate, from,
638 unsignedp), unsignedp);
639 return;
642 /* No suitable intermediate mode.
643 Generate what we need with shifts. */
644 shift_amount = build_int_cst (NULL_TREE,
645 GET_MODE_BITSIZE (to_mode)
646 - GET_MODE_BITSIZE (from_mode));
647 from = gen_lowpart (to_mode, force_reg (from_mode, from));
648 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
649 to, unsignedp);
650 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
651 to, unsignedp);
652 if (tmp != to)
653 emit_move_insn (to, tmp);
654 return;
658 /* Support special truncate insns for certain modes. */
659 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
661 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
662 to, from, UNKNOWN);
663 return;
666 /* Handle truncation of volatile memrefs, and so on;
667 the things that couldn't be truncated directly,
668 and for which there was no special instruction.
670 ??? Code above formerly short-circuited this, for most integer
671 mode pairs, with a force_reg in from_mode followed by a recursive
672 call to this routine. Appears always to have been wrong. */
673 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
675 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
676 emit_move_insn (to, temp);
677 return;
680 /* Mode combination is not recognized. */
681 gcc_unreachable ();
684 /* Return an rtx for a value that would result
685 from converting X to mode MODE.
686 Both X and MODE may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
688 This can be done by referring to a part of X in place
689 or by copying to a new temporary with conversion. */
692 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
694 return convert_modes (mode, VOIDmode, x, unsignedp);
697 /* Return an rtx for a value that would result
698 from converting X from mode OLDMODE to mode MODE.
699 Both modes may be floating, or both integer.
700 UNSIGNEDP is nonzero if X is an unsigned value.
702 This can be done by referring to a part of X in place
703 or by copying to a new temporary with conversion.
705 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
708 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
710 rtx temp;
712 /* If FROM is a SUBREG that indicates that we have already done at least
713 the required extension, strip it. */
715 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
716 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
717 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
718 x = gen_lowpart (mode, x);
720 if (GET_MODE (x) != VOIDmode)
721 oldmode = GET_MODE (x);
723 if (mode == oldmode)
724 return x;
726 /* There is one case that we must handle specially: If we are converting
727 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
728 we are to interpret the constant as unsigned, gen_lowpart will do
729 the wrong if the constant appears negative. What we want to do is
730 make the high-order word of the constant zero, not all ones. */
732 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
733 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
734 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
736 HOST_WIDE_INT val = INTVAL (x);
738 if (oldmode != VOIDmode
739 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
741 int width = GET_MODE_BITSIZE (oldmode);
743 /* We need to zero extend VAL. */
744 val &= ((HOST_WIDE_INT) 1 << width) - 1;
747 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
750 /* We can do this with a gen_lowpart if both desired and current modes
751 are integer, and this is either a constant integer, a register, or a
752 non-volatile MEM. Except for the constant case where MODE is no
753 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 if ((GET_CODE (x) == CONST_INT
756 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
757 || (GET_MODE_CLASS (mode) == MODE_INT
758 && GET_MODE_CLASS (oldmode) == MODE_INT
759 && (GET_CODE (x) == CONST_DOUBLE
760 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
761 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
762 && direct_load[(int) mode])
763 || (REG_P (x)
764 && (! HARD_REGISTER_P (x)
765 || HARD_REGNO_MODE_OK (REGNO (x), mode))
766 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
767 GET_MODE_BITSIZE (GET_MODE (x)))))))))
769 /* ?? If we don't know OLDMODE, we have to assume here that
770 X does not need sign- or zero-extension. This may not be
771 the case, but it's the best we can do. */
772 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
773 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
775 HOST_WIDE_INT val = INTVAL (x);
776 int width = GET_MODE_BITSIZE (oldmode);
778 /* We must sign or zero-extend in this case. Start by
779 zero-extending, then sign extend if we need to. */
780 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 if (! unsignedp
782 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
783 val |= (HOST_WIDE_INT) (-1) << width;
785 return gen_int_mode (val, mode);
788 return gen_lowpart (mode, x);
791 /* Converting from integer constant into mode is always equivalent to an
792 subreg operation. */
793 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
795 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
796 return simplify_gen_subreg (mode, x, oldmode, 0);
799 temp = gen_reg_rtx (mode);
800 convert_move (temp, x, unsignedp);
801 return temp;
804 /* STORE_MAX_PIECES is the number of bytes at a time that we can
805 store efficiently. Due to internal GCC limitations, this is
806 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
807 for an immediate constant. */
809 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
811 /* Determine whether the LEN bytes can be moved by using several move
812 instructions. Return nonzero if a call to move_by_pieces should
813 succeed. */
816 can_move_by_pieces (unsigned HOST_WIDE_INT len,
817 unsigned int align ATTRIBUTE_UNUSED)
819 return MOVE_BY_PIECES_P (len, align);
822 /* Generate several move instructions to copy LEN bytes from block FROM to
823 block TO. (These are MEM rtx's with BLKmode).
825 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
826 used to push FROM to the stack.
828 ALIGN is maximum stack alignment we can assume.
830 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
831 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
832 stpcpy. */
835 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
836 unsigned int align, int endp)
838 struct move_by_pieces data;
839 rtx to_addr, from_addr = XEXP (from, 0);
840 unsigned int max_size = MOVE_MAX_PIECES + 1;
841 enum machine_mode mode = VOIDmode, tmode;
842 enum insn_code icode;
844 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
846 data.offset = 0;
847 data.from_addr = from_addr;
848 if (to)
850 to_addr = XEXP (to, 0);
851 data.to = to;
852 data.autinc_to
853 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
854 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
855 data.reverse
856 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
858 else
860 to_addr = NULL_RTX;
861 data.to = NULL_RTX;
862 data.autinc_to = 1;
863 #ifdef STACK_GROWS_DOWNWARD
864 data.reverse = 1;
865 #else
866 data.reverse = 0;
867 #endif
869 data.to_addr = to_addr;
870 data.from = from;
871 data.autinc_from
872 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
873 || GET_CODE (from_addr) == POST_INC
874 || GET_CODE (from_addr) == POST_DEC);
876 data.explicit_inc_from = 0;
877 data.explicit_inc_to = 0;
878 if (data.reverse) data.offset = len;
879 data.len = len;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data.autinc_from && data.autinc_to)
885 && move_by_pieces_ninsns (len, align, max_size) > 2)
887 /* Find the mode of the largest move... */
888 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
889 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
890 if (GET_MODE_SIZE (tmode) < max_size)
891 mode = tmode;
893 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
895 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
896 data.autinc_from = 1;
897 data.explicit_inc_from = -1;
899 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
901 data.from_addr = copy_addr_to_reg (from_addr);
902 data.autinc_from = 1;
903 data.explicit_inc_from = 1;
905 if (!data.autinc_from && CONSTANT_P (from_addr))
906 data.from_addr = copy_addr_to_reg (from_addr);
907 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
909 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
910 data.autinc_to = 1;
911 data.explicit_inc_to = -1;
913 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
915 data.to_addr = copy_addr_to_reg (to_addr);
916 data.autinc_to = 1;
917 data.explicit_inc_to = 1;
919 if (!data.autinc_to && CONSTANT_P (to_addr))
920 data.to_addr = copy_addr_to_reg (to_addr);
923 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
924 if (align >= GET_MODE_ALIGNMENT (tmode))
925 align = GET_MODE_ALIGNMENT (tmode);
926 else
928 enum machine_mode xmode;
930 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
931 tmode != VOIDmode;
932 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
933 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
934 || SLOW_UNALIGNED_ACCESS (tmode, align))
935 break;
937 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
940 /* First move what we can in the largest integer mode, then go to
941 successively smaller modes. */
943 while (max_size > 1)
945 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
946 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
947 if (GET_MODE_SIZE (tmode) < max_size)
948 mode = tmode;
950 if (mode == VOIDmode)
951 break;
953 icode = mov_optab->handlers[(int) mode].insn_code;
954 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
955 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
957 max_size = GET_MODE_SIZE (mode);
960 /* The code above should have handled everything. */
961 gcc_assert (!data.len);
963 if (endp)
965 rtx to1;
967 gcc_assert (!data.reverse);
968 if (data.autinc_to)
970 if (endp == 2)
972 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
973 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
974 else
975 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
976 -1));
978 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
979 data.offset);
981 else
983 if (endp == 2)
984 --data.offset;
985 to1 = adjust_address (data.to, QImode, data.offset);
987 return to1;
989 else
990 return data.to;
993 /* Return number of insns required to move L bytes by pieces.
994 ALIGN (in bits) is maximum alignment we can assume. */
996 static unsigned HOST_WIDE_INT
997 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
998 unsigned int max_size)
1000 unsigned HOST_WIDE_INT n_insns = 0;
1001 enum machine_mode tmode;
1003 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1004 if (align >= GET_MODE_ALIGNMENT (tmode))
1005 align = GET_MODE_ALIGNMENT (tmode);
1006 else
1008 enum machine_mode tmode, xmode;
1010 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1011 tmode != VOIDmode;
1012 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1013 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1014 || SLOW_UNALIGNED_ACCESS (tmode, align))
1015 break;
1017 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1020 while (max_size > 1)
1022 enum machine_mode mode = VOIDmode;
1023 enum insn_code icode;
1025 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1026 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1027 if (GET_MODE_SIZE (tmode) < max_size)
1028 mode = tmode;
1030 if (mode == VOIDmode)
1031 break;
1033 icode = mov_optab->handlers[(int) mode].insn_code;
1034 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1035 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1037 max_size = GET_MODE_SIZE (mode);
1040 gcc_assert (!l);
1041 return n_insns;
1044 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1045 with move instructions for mode MODE. GENFUN is the gen_... function
1046 to make a move insn for that mode. DATA has all the other info. */
1048 static void
1049 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1050 struct move_by_pieces *data)
1052 unsigned int size = GET_MODE_SIZE (mode);
1053 rtx to1 = NULL_RTX, from1;
1055 while (data->len >= size)
1057 if (data->reverse)
1058 data->offset -= size;
1060 if (data->to)
1062 if (data->autinc_to)
1063 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1064 data->offset);
1065 else
1066 to1 = adjust_address (data->to, mode, data->offset);
1069 if (data->autinc_from)
1070 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1071 data->offset);
1072 else
1073 from1 = adjust_address (data->from, mode, data->offset);
1075 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1076 emit_insn (gen_add2_insn (data->to_addr,
1077 GEN_INT (-(HOST_WIDE_INT)size)));
1078 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1079 emit_insn (gen_add2_insn (data->from_addr,
1080 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (data->to)
1083 emit_insn ((*genfun) (to1, from1));
1084 else
1086 #ifdef PUSH_ROUNDING
1087 emit_single_push_insn (mode, from1, NULL);
1088 #else
1089 gcc_unreachable ();
1090 #endif
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1094 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1095 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1096 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1098 if (! data->reverse)
1099 data->offset += size;
1101 data->len -= size;
1105 /* Emit code to move a block Y to a block X. This may be done with
1106 string-move instructions, with multiple scalar move instructions,
1107 or with a library call.
1109 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1110 SIZE is an rtx that says how long they are.
1111 ALIGN is the maximum alignment we can assume they have.
1112 METHOD describes what kind of copy this is, and what mechanisms may be used.
1114 Return the address of the new block, if memcpy is called and returns it,
1115 0 otherwise. */
1118 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1120 bool may_use_call;
1121 rtx retval = 0;
1122 unsigned int align;
1124 switch (method)
1126 case BLOCK_OP_NORMAL:
1127 may_use_call = true;
1128 break;
1130 case BLOCK_OP_CALL_PARM:
1131 may_use_call = block_move_libcall_safe_for_call_parm ();
1133 /* Make inhibit_defer_pop nonzero around the library call
1134 to force it to pop the arguments right away. */
1135 NO_DEFER_POP;
1136 break;
1138 case BLOCK_OP_NO_LIBCALL:
1139 may_use_call = false;
1140 break;
1142 default:
1143 gcc_unreachable ();
1146 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1148 gcc_assert (MEM_P (x));
1149 gcc_assert (MEM_P (y));
1150 gcc_assert (size);
1152 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1153 block copy is more efficient for other large modes, e.g. DCmode. */
1154 x = adjust_address (x, BLKmode, 0);
1155 y = adjust_address (y, BLKmode, 0);
1157 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1158 can be incorrect is coming from __builtin_memcpy. */
1159 if (GET_CODE (size) == CONST_INT)
1161 if (INTVAL (size) == 0)
1162 return 0;
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1170 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align))
1174 else if (may_use_call)
1175 retval = emit_block_move_via_libcall (x, y, size);
1176 else
1177 emit_block_move_via_loop (x, y, size, align);
1179 if (method == BLOCK_OP_CALL_PARM)
1180 OK_DEFER_POP;
1182 return retval;
1185 /* A subroutine of emit_block_move. Returns true if calling the
1186 block move libcall will not clobber any parameters which may have
1187 already been placed on the stack. */
1189 static bool
1190 block_move_libcall_safe_for_call_parm (void)
1192 /* If arguments are pushed on the stack, then they're safe. */
1193 if (PUSH_ARGS)
1194 return true;
1196 /* If registers go on the stack anyway, any argument is sure to clobber
1197 an outgoing argument. */
1198 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1200 tree fn = emit_block_move_libcall_fn (false);
1201 (void) fn;
1202 if (REG_PARM_STACK_SPACE (fn) != 0)
1203 return false;
1205 #endif
1207 /* If any argument goes in memory, then it might clobber an outgoing
1208 argument. */
1210 CUMULATIVE_ARGS args_so_far;
1211 tree fn, arg;
1213 fn = emit_block_move_libcall_fn (false);
1214 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1216 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1217 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1219 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1220 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1221 if (!tmp || !REG_P (tmp))
1222 return false;
1223 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1224 return false;
1225 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1228 return true;
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1234 static bool
1235 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1237 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1238 int save_volatile_ok = volatile_ok;
1239 enum machine_mode mode;
1241 /* Since this is a move insn, we don't care about volatility. */
1242 volatile_ok = 1;
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1248 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1249 mode = GET_MODE_WIDER_MODE (mode))
1251 enum insn_code code = movmem_optab[(int) mode];
1252 insn_operand_predicate_fn pred;
1254 if (code != CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1261 <= (GET_MODE_MASK (mode) >> 1)))
1262 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1263 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1264 || (*pred) (x, BLKmode))
1265 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1266 || (*pred) (y, BLKmode))
1267 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1268 || (*pred) (opalign, VOIDmode)))
1270 rtx op2;
1271 rtx last = get_last_insn ();
1272 rtx pat;
1274 op2 = convert_to_mode (mode, size, 1);
1275 pred = insn_data[(int) code].operand[2].predicate;
1276 if (pred != 0 && ! (*pred) (op2, mode))
1277 op2 = copy_to_mode_reg (mode, op2);
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1284 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1285 if (pat)
1287 emit_insn (pat);
1288 volatile_ok = save_volatile_ok;
1289 return true;
1291 else
1292 delete_insns_since (last);
1296 volatile_ok = save_volatile_ok;
1297 return false;
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1303 static rtx
1304 emit_block_move_via_libcall (rtx dst, rtx src, rtx size)
1306 rtx dst_addr, src_addr;
1307 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1308 enum machine_mode size_mode;
1309 rtx retval;
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1313 use them later. */
1315 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1316 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1318 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1319 src_addr = convert_memory_address (ptr_mode, src_addr);
1321 dst_tree = make_tree (ptr_type_node, dst_addr);
1322 src_tree = make_tree (ptr_type_node, src_addr);
1324 size_mode = TYPE_MODE (sizetype);
1326 size = convert_to_mode (size_mode, size, 1);
1327 size = copy_to_mode_reg (size_mode, size);
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1335 size_tree = make_tree (sizetype, size);
1337 fn = emit_block_move_libcall_fn (true);
1338 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1339 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1340 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1344 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1345 call_expr, arg_list, NULL_TREE);
1347 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1349 return retval;
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1356 static GTY(()) tree block_move_fn;
1358 void
1359 init_block_move_fn (const char *asmspec)
1361 if (!block_move_fn)
1363 tree args, fn;
1365 fn = get_identifier ("memcpy");
1366 args = build_function_type_list (ptr_type_node, ptr_type_node,
1367 const_ptr_type_node, sizetype,
1368 NULL_TREE);
1370 fn = build_decl (FUNCTION_DECL, fn, args);
1371 DECL_EXTERNAL (fn) = 1;
1372 TREE_PUBLIC (fn) = 1;
1373 DECL_ARTIFICIAL (fn) = 1;
1374 TREE_NOTHROW (fn) = 1;
1376 block_move_fn = fn;
1379 if (asmspec)
1380 set_user_assembler_name (block_move_fn, asmspec);
1383 static tree
1384 emit_block_move_libcall_fn (int for_call)
1386 static bool emitted_extern;
1388 if (!block_move_fn)
1389 init_block_move_fn (NULL);
1391 if (for_call && !emitted_extern)
1393 emitted_extern = true;
1394 make_decl_rtl (block_move_fn);
1395 assemble_external (block_move_fn);
1398 return block_move_fn;
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1405 static void
1406 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1407 unsigned int align ATTRIBUTE_UNUSED)
1409 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1410 enum machine_mode iter_mode;
1412 iter_mode = GET_MODE (size);
1413 if (iter_mode == VOIDmode)
1414 iter_mode = word_mode;
1416 top_label = gen_label_rtx ();
1417 cmp_label = gen_label_rtx ();
1418 iter = gen_reg_rtx (iter_mode);
1420 emit_move_insn (iter, const0_rtx);
1422 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1423 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1424 do_pending_stack_adjust ();
1426 emit_jump (cmp_label);
1427 emit_label (top_label);
1429 tmp = convert_modes (Pmode, iter_mode, iter, true);
1430 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1431 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1432 x = change_address (x, QImode, x_addr);
1433 y = change_address (y, QImode, y_addr);
1435 emit_move_insn (x, y);
1437 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1438 true, OPTAB_LIB_WIDEN);
1439 if (tmp != iter)
1440 emit_move_insn (iter, tmp);
1442 emit_label (cmp_label);
1444 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1445 true, top_label);
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1451 void
1452 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1454 int i;
1455 #ifdef HAVE_load_multiple
1456 rtx pat;
1457 rtx last;
1458 #endif
1460 if (nregs == 0)
1461 return;
1463 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1464 x = validize_mem (force_const_mem (mode, x));
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple)
1470 last = get_last_insn ();
1471 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1472 GEN_INT (nregs));
1473 if (pat)
1475 emit_insn (pat);
1476 return;
1478 else
1479 delete_insns_since (last);
1481 #endif
1483 for (i = 0; i < nregs; i++)
1484 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1485 operand_subword_force (x, i, mode));
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1491 void
1492 move_block_from_reg (int regno, rtx x, int nregs)
1494 int i;
1496 if (nregs == 0)
1497 return;
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple)
1503 rtx last = get_last_insn ();
1504 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1505 GEN_INT (nregs));
1506 if (pat)
1508 emit_insn (pat);
1509 return;
1511 else
1512 delete_insns_since (last);
1514 #endif
1516 for (i = 0; i < nregs; i++)
1518 rtx tem = operand_subword (x, i, 1, BLKmode);
1520 gcc_assert (tem);
1522 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1533 gen_group_rtx (rtx orig)
1535 int i, length;
1536 rtx *tmps;
1538 gcc_assert (GET_CODE (orig) == PARALLEL);
1540 length = XVECLEN (orig, 0);
1541 tmps = alloca (sizeof (rtx) * length);
1543 /* Skip a NULL entry in first slot. */
1544 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1546 if (i)
1547 tmps[0] = 0;
1549 for (; i < length; i++)
1551 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1552 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1554 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1557 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1560 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1561 except that values are placed in TMPS[i], and must later be moved
1562 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1564 static void
1565 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1567 rtx src;
1568 int start, i;
1569 enum machine_mode m = GET_MODE (orig_src);
1571 gcc_assert (GET_CODE (dst) == PARALLEL);
1573 if (m != VOIDmode
1574 && !SCALAR_INT_MODE_P (m)
1575 && !MEM_P (orig_src)
1576 && GET_CODE (orig_src) != CONCAT)
1578 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1579 if (imode == BLKmode)
1580 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1581 else
1582 src = gen_reg_rtx (imode);
1583 if (imode != BLKmode)
1584 src = gen_lowpart (GET_MODE (orig_src), src);
1585 emit_move_insn (src, orig_src);
1586 /* ...and back again. */
1587 if (imode != BLKmode)
1588 src = gen_lowpart (imode, src);
1589 emit_group_load_1 (tmps, dst, src, type, ssize);
1590 return;
1593 /* Check for a NULL entry, used to indicate that the parameter goes
1594 both on the stack and in registers. */
1595 if (XEXP (XVECEXP (dst, 0, 0), 0))
1596 start = 0;
1597 else
1598 start = 1;
1600 /* Process the pieces. */
1601 for (i = start; i < XVECLEN (dst, 0); i++)
1603 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1604 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1605 unsigned int bytelen = GET_MODE_SIZE (mode);
1606 int shift = 0;
1608 /* Handle trailing fragments that run over the size of the struct. */
1609 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1611 /* Arrange to shift the fragment to where it belongs.
1612 extract_bit_field loads to the lsb of the reg. */
1613 if (
1614 #ifdef BLOCK_REG_PADDING
1615 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1616 == (BYTES_BIG_ENDIAN ? upward : downward)
1617 #else
1618 BYTES_BIG_ENDIAN
1619 #endif
1621 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1622 bytelen = ssize - bytepos;
1623 gcc_assert (bytelen > 0);
1626 /* If we won't be loading directly from memory, protect the real source
1627 from strange tricks we might play; but make sure that the source can
1628 be loaded directly into the destination. */
1629 src = orig_src;
1630 if (!MEM_P (orig_src)
1631 && (!CONSTANT_P (orig_src)
1632 || (GET_MODE (orig_src) != mode
1633 && GET_MODE (orig_src) != VOIDmode)))
1635 if (GET_MODE (orig_src) == VOIDmode)
1636 src = gen_reg_rtx (mode);
1637 else
1638 src = gen_reg_rtx (GET_MODE (orig_src));
1640 emit_move_insn (src, orig_src);
1643 /* Optimize the access just a bit. */
1644 if (MEM_P (src)
1645 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1646 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1647 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1648 && bytelen == GET_MODE_SIZE (mode))
1650 tmps[i] = gen_reg_rtx (mode);
1651 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1653 else if (COMPLEX_MODE_P (mode)
1654 && GET_MODE (src) == mode
1655 && bytelen == GET_MODE_SIZE (mode))
1656 /* Let emit_move_complex do the bulk of the work. */
1657 tmps[i] = src;
1658 else if (GET_CODE (src) == CONCAT)
1660 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1661 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1663 if ((bytepos == 0 && bytelen == slen0)
1664 || (bytepos != 0 && bytepos + bytelen <= slen))
1666 /* The following assumes that the concatenated objects all
1667 have the same size. In this case, a simple calculation
1668 can be used to determine the object and the bit field
1669 to be extracted. */
1670 tmps[i] = XEXP (src, bytepos / slen0);
1671 if (! CONSTANT_P (tmps[i])
1672 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1673 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1674 (bytepos % slen0) * BITS_PER_UNIT,
1675 1, NULL_RTX, mode, mode);
1677 else
1679 rtx mem;
1681 gcc_assert (!bytepos);
1682 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1683 emit_move_insn (mem, src);
1684 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1685 0, 1, NULL_RTX, mode, mode);
1688 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1689 SIMD register, which is currently broken. While we get GCC
1690 to emit proper RTL for these cases, let's dump to memory. */
1691 else if (VECTOR_MODE_P (GET_MODE (dst))
1692 && REG_P (src))
1694 int slen = GET_MODE_SIZE (GET_MODE (src));
1695 rtx mem;
1697 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1698 emit_move_insn (mem, src);
1699 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1701 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1702 && XVECLEN (dst, 0) > 1)
1703 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1704 else if (CONSTANT_P (src)
1705 || (REG_P (src) && GET_MODE (src) == mode))
1706 tmps[i] = src;
1707 else
1708 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1709 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1710 mode, mode);
1712 if (shift)
1713 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1714 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1718 /* Emit code to move a block SRC of type TYPE to a block DST,
1719 where DST is non-consecutive registers represented by a PARALLEL.
1720 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1721 if not known. */
1723 void
1724 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1726 rtx *tmps;
1727 int i;
1729 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1730 emit_group_load_1 (tmps, dst, src, type, ssize);
1732 /* Copy the extracted pieces into the proper (probable) hard regs. */
1733 for (i = 0; i < XVECLEN (dst, 0); i++)
1735 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1736 if (d == NULL)
1737 continue;
1738 emit_move_insn (d, tmps[i]);
1742 /* Similar, but load SRC into new pseudos in a format that looks like
1743 PARALLEL. This can later be fed to emit_group_move to get things
1744 in the right place. */
1747 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1749 rtvec vec;
1750 int i;
1752 vec = rtvec_alloc (XVECLEN (parallel, 0));
1753 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1755 /* Convert the vector to look just like the original PARALLEL, except
1756 with the computed values. */
1757 for (i = 0; i < XVECLEN (parallel, 0); i++)
1759 rtx e = XVECEXP (parallel, 0, i);
1760 rtx d = XEXP (e, 0);
1762 if (d)
1764 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1765 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1767 RTVEC_ELT (vec, i) = e;
1770 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1773 /* Emit code to move a block SRC to block DST, where SRC and DST are
1774 non-consecutive groups of registers, each represented by a PARALLEL. */
1776 void
1777 emit_group_move (rtx dst, rtx src)
1779 int i;
1781 gcc_assert (GET_CODE (src) == PARALLEL
1782 && GET_CODE (dst) == PARALLEL
1783 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1785 /* Skip first entry if NULL. */
1786 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1787 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1788 XEXP (XVECEXP (src, 0, i), 0));
1791 /* Move a group of registers represented by a PARALLEL into pseudos. */
1794 emit_group_move_into_temps (rtx src)
1796 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1797 int i;
1799 for (i = 0; i < XVECLEN (src, 0); i++)
1801 rtx e = XVECEXP (src, 0, i);
1802 rtx d = XEXP (e, 0);
1804 if (d)
1805 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1812 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1813 where SRC is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_DST, or -1 if not
1815 known. */
1817 void
1818 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1820 rtx *tmps, dst;
1821 int start, i;
1822 enum machine_mode m = GET_MODE (orig_dst);
1824 gcc_assert (GET_CODE (src) == PARALLEL);
1826 if (!SCALAR_INT_MODE_P (m)
1827 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1829 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1830 if (imode == BLKmode)
1831 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1832 else
1833 dst = gen_reg_rtx (imode);
1834 emit_group_store (dst, src, type, ssize);
1835 if (imode != BLKmode)
1836 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1837 emit_move_insn (orig_dst, dst);
1838 return;
1841 /* Check for a NULL entry, used to indicate that the parameter goes
1842 both on the stack and in registers. */
1843 if (XEXP (XVECEXP (src, 0, 0), 0))
1844 start = 0;
1845 else
1846 start = 1;
1848 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1850 /* Copy the (probable) hard regs into pseudos. */
1851 for (i = start; i < XVECLEN (src, 0); i++)
1853 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1854 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1855 emit_move_insn (tmps[i], reg);
1858 /* If we won't be storing directly into memory, protect the real destination
1859 from strange tricks we might play. */
1860 dst = orig_dst;
1861 if (GET_CODE (dst) == PARALLEL)
1863 rtx temp;
1865 /* We can get a PARALLEL dst if there is a conditional expression in
1866 a return statement. In that case, the dst and src are the same,
1867 so no action is necessary. */
1868 if (rtx_equal_p (dst, src))
1869 return;
1871 /* It is unclear if we can ever reach here, but we may as well handle
1872 it. Allocate a temporary, and split this into a store/load to/from
1873 the temporary. */
1875 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1876 emit_group_store (temp, src, type, ssize);
1877 emit_group_load (dst, temp, type, ssize);
1878 return;
1880 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1882 dst = gen_reg_rtx (GET_MODE (orig_dst));
1883 /* Make life a bit easier for combine. */
1884 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1887 /* Process the pieces. */
1888 for (i = start; i < XVECLEN (src, 0); i++)
1890 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1891 enum machine_mode mode = GET_MODE (tmps[i]);
1892 unsigned int bytelen = GET_MODE_SIZE (mode);
1893 rtx dest = dst;
1895 /* Handle trailing fragments that run over the size of the struct. */
1896 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1898 /* store_bit_field always takes its value from the lsb.
1899 Move the fragment to the lsb if it's not already there. */
1900 if (
1901 #ifdef BLOCK_REG_PADDING
1902 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1903 == (BYTES_BIG_ENDIAN ? upward : downward)
1904 #else
1905 BYTES_BIG_ENDIAN
1906 #endif
1909 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1910 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1911 build_int_cst (NULL_TREE, shift),
1912 tmps[i], 0);
1914 bytelen = ssize - bytepos;
1917 if (GET_CODE (dst) == CONCAT)
1919 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1920 dest = XEXP (dst, 0);
1921 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1923 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1924 dest = XEXP (dst, 1);
1926 else
1928 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1929 dest = assign_stack_temp (GET_MODE (dest),
1930 GET_MODE_SIZE (GET_MODE (dest)), 0);
1931 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1932 tmps[i]);
1933 dst = dest;
1934 break;
1938 /* Optimize the access just a bit. */
1939 if (MEM_P (dest)
1940 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1941 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1942 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1943 && bytelen == GET_MODE_SIZE (mode))
1944 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1945 else
1946 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1947 mode, tmps[i]);
1950 /* Copy from the pseudo into the (probable) hard reg. */
1951 if (orig_dst != dst)
1952 emit_move_insn (orig_dst, dst);
1955 /* Generate code to copy a BLKmode object of TYPE out of a
1956 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1957 is null, a stack temporary is created. TGTBLK is returned.
1959 The purpose of this routine is to handle functions that return
1960 BLKmode structures in registers. Some machines (the PA for example)
1961 want to return all small structures in registers regardless of the
1962 structure's alignment. */
1965 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
1967 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
1968 rtx src = NULL, dst = NULL;
1969 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
1970 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
1972 if (tgtblk == 0)
1974 tgtblk = assign_temp (build_qualified_type (type,
1975 (TYPE_QUALS (type)
1976 | TYPE_QUAL_CONST)),
1977 0, 1, 1);
1978 preserve_temp_slots (tgtblk);
1981 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1982 into a new pseudo which is a full word. */
1984 if (GET_MODE (srcreg) != BLKmode
1985 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
1986 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
1988 /* If the structure doesn't take up a whole number of words, see whether
1989 SRCREG is padded on the left or on the right. If it's on the left,
1990 set PADDING_CORRECTION to the number of bits to skip.
1992 In most ABIs, the structure will be returned at the least end of
1993 the register, which translates to right padding on little-endian
1994 targets and left padding on big-endian targets. The opposite
1995 holds if the structure is returned at the most significant
1996 end of the register. */
1997 if (bytes % UNITS_PER_WORD != 0
1998 && (targetm.calls.return_in_msb (type)
1999 ? !BYTES_BIG_ENDIAN
2000 : BYTES_BIG_ENDIAN))
2001 padding_correction
2002 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2004 /* Copy the structure BITSIZE bites at a time.
2006 We could probably emit more efficient code for machines which do not use
2007 strict alignment, but it doesn't seem worth the effort at the current
2008 time. */
2009 for (bitpos = 0, xbitpos = padding_correction;
2010 bitpos < bytes * BITS_PER_UNIT;
2011 bitpos += bitsize, xbitpos += bitsize)
2013 /* We need a new source operand each time xbitpos is on a
2014 word boundary and when xbitpos == padding_correction
2015 (the first time through). */
2016 if (xbitpos % BITS_PER_WORD == 0
2017 || xbitpos == padding_correction)
2018 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2019 GET_MODE (srcreg));
2021 /* We need a new destination operand each time bitpos is on
2022 a word boundary. */
2023 if (bitpos % BITS_PER_WORD == 0)
2024 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2026 /* Use xbitpos for the source extraction (right justified) and
2027 xbitpos for the destination store (left justified). */
2028 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2029 extract_bit_field (src, bitsize,
2030 xbitpos % BITS_PER_WORD, 1,
2031 NULL_RTX, word_mode, word_mode));
2034 return tgtblk;
2037 /* Add a USE expression for REG to the (possibly empty) list pointed
2038 to by CALL_FUSAGE. REG must denote a hard register. */
2040 void
2041 use_reg (rtx *call_fusage, rtx reg)
2043 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2045 *call_fusage
2046 = gen_rtx_EXPR_LIST (VOIDmode,
2047 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2050 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2051 starting at REGNO. All of these registers must be hard registers. */
2053 void
2054 use_regs (rtx *call_fusage, int regno, int nregs)
2056 int i;
2058 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2060 for (i = 0; i < nregs; i++)
2061 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2064 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2065 PARALLEL REGS. This is for calls that pass values in multiple
2066 non-contiguous locations. The Irix 6 ABI has examples of this. */
2068 void
2069 use_group_regs (rtx *call_fusage, rtx regs)
2071 int i;
2073 for (i = 0; i < XVECLEN (regs, 0); i++)
2075 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2077 /* A NULL entry means the parameter goes both on the stack and in
2078 registers. This can also be a MEM for targets that pass values
2079 partially on the stack and partially in registers. */
2080 if (reg != 0 && REG_P (reg))
2081 use_reg (call_fusage, reg);
2086 /* Determine whether the LEN bytes generated by CONSTFUN can be
2087 stored to memory using several move instructions. CONSTFUNDATA is
2088 a pointer which will be passed as argument in every CONSTFUN call.
2089 ALIGN is maximum alignment we can assume. Return nonzero if a
2090 call to store_by_pieces should succeed. */
2093 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2094 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2095 void *constfundata, unsigned int align)
2097 unsigned HOST_WIDE_INT l;
2098 unsigned int max_size;
2099 HOST_WIDE_INT offset = 0;
2100 enum machine_mode mode, tmode;
2101 enum insn_code icode;
2102 int reverse;
2103 rtx cst;
2105 if (len == 0)
2106 return 1;
2108 if (! STORE_BY_PIECES_P (len, align))
2109 return 0;
2111 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2112 if (align >= GET_MODE_ALIGNMENT (tmode))
2113 align = GET_MODE_ALIGNMENT (tmode);
2114 else
2116 enum machine_mode xmode;
2118 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2119 tmode != VOIDmode;
2120 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2121 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2122 || SLOW_UNALIGNED_ACCESS (tmode, align))
2123 break;
2125 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2128 /* We would first store what we can in the largest integer mode, then go to
2129 successively smaller modes. */
2131 for (reverse = 0;
2132 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2133 reverse++)
2135 l = len;
2136 mode = VOIDmode;
2137 max_size = STORE_MAX_PIECES + 1;
2138 while (max_size > 1)
2140 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2141 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2142 if (GET_MODE_SIZE (tmode) < max_size)
2143 mode = tmode;
2145 if (mode == VOIDmode)
2146 break;
2148 icode = mov_optab->handlers[(int) mode].insn_code;
2149 if (icode != CODE_FOR_nothing
2150 && align >= GET_MODE_ALIGNMENT (mode))
2152 unsigned int size = GET_MODE_SIZE (mode);
2154 while (l >= size)
2156 if (reverse)
2157 offset -= size;
2159 cst = (*constfun) (constfundata, offset, mode);
2160 if (!LEGITIMATE_CONSTANT_P (cst))
2161 return 0;
2163 if (!reverse)
2164 offset += size;
2166 l -= size;
2170 max_size = GET_MODE_SIZE (mode);
2173 /* The code above should have handled everything. */
2174 gcc_assert (!l);
2177 return 1;
2180 /* Generate several move instructions to store LEN bytes generated by
2181 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2182 pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume.
2184 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2185 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2186 stpcpy. */
2189 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2190 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2191 void *constfundata, unsigned int align, int endp)
2193 struct store_by_pieces data;
2195 if (len == 0)
2197 gcc_assert (endp != 2);
2198 return to;
2201 gcc_assert (STORE_BY_PIECES_P (len, align));
2202 data.constfun = constfun;
2203 data.constfundata = constfundata;
2204 data.len = len;
2205 data.to = to;
2206 store_by_pieces_1 (&data, align);
2207 if (endp)
2209 rtx to1;
2211 gcc_assert (!data.reverse);
2212 if (data.autinc_to)
2214 if (endp == 2)
2216 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2217 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2218 else
2219 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2220 -1));
2222 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2223 data.offset);
2225 else
2227 if (endp == 2)
2228 --data.offset;
2229 to1 = adjust_address (data.to, QImode, data.offset);
2231 return to1;
2233 else
2234 return data.to;
2237 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2238 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2240 static void
2241 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2243 struct store_by_pieces data;
2245 if (len == 0)
2246 return;
2248 data.constfun = clear_by_pieces_1;
2249 data.constfundata = NULL;
2250 data.len = len;
2251 data.to = to;
2252 store_by_pieces_1 (&data, align);
2255 /* Callback routine for clear_by_pieces.
2256 Return const0_rtx unconditionally. */
2258 static rtx
2259 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2260 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2261 enum machine_mode mode ATTRIBUTE_UNUSED)
2263 return const0_rtx;
2266 /* Subroutine of clear_by_pieces and store_by_pieces.
2267 Generate several move instructions to store LEN bytes of block TO. (A MEM
2268 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2270 static void
2271 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2272 unsigned int align ATTRIBUTE_UNUSED)
2274 rtx to_addr = XEXP (data->to, 0);
2275 unsigned int max_size = STORE_MAX_PIECES + 1;
2276 enum machine_mode mode = VOIDmode, tmode;
2277 enum insn_code icode;
2279 data->offset = 0;
2280 data->to_addr = to_addr;
2281 data->autinc_to
2282 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2283 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2285 data->explicit_inc_to = 0;
2286 data->reverse
2287 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2288 if (data->reverse)
2289 data->offset = data->len;
2291 /* If storing requires more than two move insns,
2292 copy addresses to registers (to make displacements shorter)
2293 and use post-increment if available. */
2294 if (!data->autinc_to
2295 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2297 /* Determine the main mode we'll be using. */
2298 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2299 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2300 if (GET_MODE_SIZE (tmode) < max_size)
2301 mode = tmode;
2303 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2305 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2306 data->autinc_to = 1;
2307 data->explicit_inc_to = -1;
2310 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2311 && ! data->autinc_to)
2313 data->to_addr = copy_addr_to_reg (to_addr);
2314 data->autinc_to = 1;
2315 data->explicit_inc_to = 1;
2318 if ( !data->autinc_to && CONSTANT_P (to_addr))
2319 data->to_addr = copy_addr_to_reg (to_addr);
2322 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2323 if (align >= GET_MODE_ALIGNMENT (tmode))
2324 align = GET_MODE_ALIGNMENT (tmode);
2325 else
2327 enum machine_mode xmode;
2329 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2330 tmode != VOIDmode;
2331 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2332 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2333 || SLOW_UNALIGNED_ACCESS (tmode, align))
2334 break;
2336 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2339 /* First store what we can in the largest integer mode, then go to
2340 successively smaller modes. */
2342 while (max_size > 1)
2344 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2345 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2346 if (GET_MODE_SIZE (tmode) < max_size)
2347 mode = tmode;
2349 if (mode == VOIDmode)
2350 break;
2352 icode = mov_optab->handlers[(int) mode].insn_code;
2353 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2354 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2356 max_size = GET_MODE_SIZE (mode);
2359 /* The code above should have handled everything. */
2360 gcc_assert (!data->len);
2363 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2364 with move instructions for mode MODE. GENFUN is the gen_... function
2365 to make a move insn for that mode. DATA has all the other info. */
2367 static void
2368 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2369 struct store_by_pieces *data)
2371 unsigned int size = GET_MODE_SIZE (mode);
2372 rtx to1, cst;
2374 while (data->len >= size)
2376 if (data->reverse)
2377 data->offset -= size;
2379 if (data->autinc_to)
2380 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2381 data->offset);
2382 else
2383 to1 = adjust_address (data->to, mode, data->offset);
2385 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2386 emit_insn (gen_add2_insn (data->to_addr,
2387 GEN_INT (-(HOST_WIDE_INT) size)));
2389 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2390 emit_insn ((*genfun) (to1, cst));
2392 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2393 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2395 if (! data->reverse)
2396 data->offset += size;
2398 data->len -= size;
2402 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2403 its length in bytes. */
2406 clear_storage (rtx object, rtx size)
2408 enum machine_mode mode = GET_MODE (object);
2409 unsigned int align;
2411 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2412 just move a zero. Otherwise, do this a piece at a time. */
2413 if (mode != BLKmode
2414 && GET_CODE (size) == CONST_INT
2415 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2417 rtx zero = CONST0_RTX (mode);
2418 if (zero != NULL)
2420 emit_move_insn (object, zero);
2421 return NULL;
2424 if (COMPLEX_MODE_P (mode))
2426 zero = CONST0_RTX (GET_MODE_INNER (mode));
2427 if (zero != NULL)
2429 write_complex_part (object, zero, 0);
2430 write_complex_part (object, zero, 1);
2431 return NULL;
2436 if (size == const0_rtx)
2437 return NULL;
2439 align = MEM_ALIGN (object);
2441 if (GET_CODE (size) == CONST_INT
2442 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2443 clear_by_pieces (object, INTVAL (size), align);
2444 else if (clear_storage_via_clrmem (object, size, align))
2446 else
2447 return clear_storage_via_libcall (object, size);
2449 return NULL;
2452 /* A subroutine of clear_storage. Expand a clrmem pattern;
2453 return true if successful. */
2455 static bool
2456 clear_storage_via_clrmem (rtx object, rtx size, unsigned int align)
2458 /* Try the most limited insn first, because there's no point
2459 including more than one in the machine description unless
2460 the more limited one has some advantage. */
2462 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2463 enum machine_mode mode;
2465 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2466 mode = GET_MODE_WIDER_MODE (mode))
2468 enum insn_code code = clrmem_optab[(int) mode];
2469 insn_operand_predicate_fn pred;
2471 if (code != CODE_FOR_nothing
2472 /* We don't need MODE to be narrower than
2473 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2474 the mode mask, as it is returned by the macro, it will
2475 definitely be less than the actual mode mask. */
2476 && ((GET_CODE (size) == CONST_INT
2477 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2478 <= (GET_MODE_MASK (mode) >> 1)))
2479 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2480 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2481 || (*pred) (object, BLKmode))
2482 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2483 || (*pred) (opalign, VOIDmode)))
2485 rtx op1;
2486 rtx last = get_last_insn ();
2487 rtx pat;
2489 op1 = convert_to_mode (mode, size, 1);
2490 pred = insn_data[(int) code].operand[1].predicate;
2491 if (pred != 0 && ! (*pred) (op1, mode))
2492 op1 = copy_to_mode_reg (mode, op1);
2494 pat = GEN_FCN ((int) code) (object, op1, opalign);
2495 if (pat)
2497 emit_insn (pat);
2498 return true;
2500 else
2501 delete_insns_since (last);
2505 return false;
2508 /* A subroutine of clear_storage. Expand a call to memset.
2509 Return the return value of memset, 0 otherwise. */
2511 static rtx
2512 clear_storage_via_libcall (rtx object, rtx size)
2514 tree call_expr, arg_list, fn, object_tree, size_tree;
2515 enum machine_mode size_mode;
2516 rtx retval;
2518 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2519 place those into new pseudos into a VAR_DECL and use them later. */
2521 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2523 size_mode = TYPE_MODE (sizetype);
2524 size = convert_to_mode (size_mode, size, 1);
2525 size = copy_to_mode_reg (size_mode, size);
2527 /* It is incorrect to use the libcall calling conventions to call
2528 memset in this context. This could be a user call to memset and
2529 the user may wish to examine the return value from memset. For
2530 targets where libcalls and normal calls have different conventions
2531 for returning pointers, we could end up generating incorrect code. */
2533 object_tree = make_tree (ptr_type_node, object);
2534 size_tree = make_tree (sizetype, size);
2536 fn = clear_storage_libcall_fn (true);
2537 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2538 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2539 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2541 /* Now we have to build up the CALL_EXPR itself. */
2542 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2543 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2544 call_expr, arg_list, NULL_TREE);
2546 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2548 return retval;
2551 /* A subroutine of clear_storage_via_libcall. Create the tree node
2552 for the function we use for block clears. The first time FOR_CALL
2553 is true, we call assemble_external. */
2555 static GTY(()) tree block_clear_fn;
2557 void
2558 init_block_clear_fn (const char *asmspec)
2560 if (!block_clear_fn)
2562 tree fn, args;
2564 fn = get_identifier ("memset");
2565 args = build_function_type_list (ptr_type_node, ptr_type_node,
2566 integer_type_node, sizetype,
2567 NULL_TREE);
2569 fn = build_decl (FUNCTION_DECL, fn, args);
2570 DECL_EXTERNAL (fn) = 1;
2571 TREE_PUBLIC (fn) = 1;
2572 DECL_ARTIFICIAL (fn) = 1;
2573 TREE_NOTHROW (fn) = 1;
2575 block_clear_fn = fn;
2578 if (asmspec)
2579 set_user_assembler_name (block_clear_fn, asmspec);
2582 static tree
2583 clear_storage_libcall_fn (int for_call)
2585 static bool emitted_extern;
2587 if (!block_clear_fn)
2588 init_block_clear_fn (NULL);
2590 if (for_call && !emitted_extern)
2592 emitted_extern = true;
2593 make_decl_rtl (block_clear_fn);
2594 assemble_external (block_clear_fn);
2597 return block_clear_fn;
2600 /* Write to one of the components of the complex value CPLX. Write VAL to
2601 the real part if IMAG_P is false, and the imaginary part if its true. */
2603 static void
2604 write_complex_part (rtx cplx, rtx val, bool imag_p)
2606 enum machine_mode cmode;
2607 enum machine_mode imode;
2608 unsigned ibitsize;
2610 if (GET_CODE (cplx) == CONCAT)
2612 emit_move_insn (XEXP (cplx, imag_p), val);
2613 return;
2616 cmode = GET_MODE (cplx);
2617 imode = GET_MODE_INNER (cmode);
2618 ibitsize = GET_MODE_BITSIZE (imode);
2620 /* If the sub-object is at least word sized, then we know that subregging
2621 will work. This special case is important, since store_bit_field
2622 wants to operate on integer modes, and there's rarely an OImode to
2623 correspond to TCmode. */
2624 if (ibitsize >= BITS_PER_WORD
2625 /* For hard regs we have exact predicates. Assume we can split
2626 the original object if it spans an even number of hard regs.
2627 This special case is important for SCmode on 64-bit platforms
2628 where the natural size of floating-point regs is 32-bit. */
2629 || (GET_CODE (cplx) == REG
2630 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2631 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0)
2632 /* For MEMs we always try to make a "subreg", that is to adjust
2633 the MEM, because store_bit_field may generate overly
2634 convoluted RTL for sub-word fields. */
2635 || MEM_P (cplx))
2637 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2638 imag_p ? GET_MODE_SIZE (imode) : 0);
2639 if (part)
2641 emit_move_insn (part, val);
2642 return;
2644 else
2645 /* simplify_gen_subreg may fail for sub-word MEMs. */
2646 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2649 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2652 /* Extract one of the components of the complex value CPLX. Extract the
2653 real part if IMAG_P is false, and the imaginary part if it's true. */
2655 static rtx
2656 read_complex_part (rtx cplx, bool imag_p)
2658 enum machine_mode cmode, imode;
2659 unsigned ibitsize;
2661 if (GET_CODE (cplx) == CONCAT)
2662 return XEXP (cplx, imag_p);
2664 cmode = GET_MODE (cplx);
2665 imode = GET_MODE_INNER (cmode);
2666 ibitsize = GET_MODE_BITSIZE (imode);
2668 /* Special case reads from complex constants that got spilled to memory. */
2669 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2671 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2672 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2674 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2675 if (CONSTANT_CLASS_P (part))
2676 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2680 /* If the sub-object is at least word sized, then we know that subregging
2681 will work. This special case is important, since extract_bit_field
2682 wants to operate on integer modes, and there's rarely an OImode to
2683 correspond to TCmode. */
2684 if (ibitsize >= BITS_PER_WORD
2685 /* For hard regs we have exact predicates. Assume we can split
2686 the original object if it spans an even number of hard regs.
2687 This special case is important for SCmode on 64-bit platforms
2688 where the natural size of floating-point regs is 32-bit. */
2689 || (GET_CODE (cplx) == REG
2690 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2691 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0)
2692 /* For MEMs we always try to make a "subreg", that is to adjust
2693 the MEM, because extract_bit_field may generate overly
2694 convoluted RTL for sub-word fields. */
2695 || MEM_P (cplx))
2697 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2698 imag_p ? GET_MODE_SIZE (imode) : 0);
2699 if (ret)
2700 return ret;
2701 else
2702 /* simplify_gen_subreg may fail for sub-word MEMs. */
2703 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2706 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2707 true, NULL_RTX, imode, imode);
2710 /* A subroutine of emit_move_via_alt_mode. Yet another lowpart generator.
2711 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2712 represented in NEW_MODE. */
2714 static rtx
2715 emit_move_change_mode (enum machine_mode new_mode,
2716 enum machine_mode old_mode, rtx x)
2718 rtx ret;
2720 if (reload_in_progress && MEM_P (x))
2722 /* We can't use gen_lowpart here because it may call change_address
2723 which is not appropriate if we were called when a reload was in
2724 progress. We don't have to worry about changing the address since
2725 the size in bytes is supposed to be the same. Copy the MEM to
2726 change the mode and move any substitutions from the old MEM to
2727 the new one. */
2729 ret = adjust_address_nv (x, new_mode, 0);
2730 copy_replacements (x, ret);
2732 else
2734 /* Note that we do want simplify_subreg's behaviour of validating
2735 that the new mode is ok for a hard register. If we were to use
2736 simplify_gen_subreg, we would create the subreg, but would
2737 probably run into the target not being able to implement it. */
2738 ret = simplify_subreg (new_mode, x, old_mode, 0);
2741 return ret;
2744 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2745 ALT_MODE instead of the operand's natural mode, MODE. CODE is the insn
2746 code for the move in ALT_MODE, and is known to be valid. Returns the
2747 instruction emitted, or NULL if X or Y cannot be represented in ALT_MODE. */
2749 static rtx
2750 emit_move_via_alt_mode (enum machine_mode alt_mode, enum machine_mode mode,
2751 enum insn_code code, rtx x, rtx y)
2753 x = emit_move_change_mode (alt_mode, mode, x);
2754 if (x == NULL_RTX)
2755 return NULL_RTX;
2756 y = emit_move_change_mode (alt_mode, mode, y);
2757 if (y == NULL_RTX)
2758 return NULL_RTX;
2759 return emit_insn (GEN_FCN (code) (x, y));
2762 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2763 an integer mode of the same size as MODE. Returns the instruction
2764 emitted, or NULL if such a move could not be generated. */
2766 static rtx
2767 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y)
2769 enum machine_mode imode;
2770 enum insn_code code;
2772 /* There must exist a mode of the exact size we require. */
2773 imode = int_mode_for_mode (mode);
2774 if (imode == BLKmode)
2775 return NULL_RTX;
2777 /* The target must support moves in this mode. */
2778 code = mov_optab->handlers[imode].insn_code;
2779 if (code == CODE_FOR_nothing)
2780 return NULL_RTX;
2782 return emit_move_via_alt_mode (imode, mode, code, x, y);
2785 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2786 Return an equivalent MEM that does not use an auto-increment. */
2788 static rtx
2789 emit_move_resolve_push (enum machine_mode mode, rtx x)
2791 enum rtx_code code = GET_CODE (XEXP (x, 0));
2792 HOST_WIDE_INT adjust;
2793 rtx temp;
2795 adjust = GET_MODE_SIZE (mode);
2796 #ifdef PUSH_ROUNDING
2797 adjust = PUSH_ROUNDING (adjust);
2798 #endif
2799 if (code == PRE_DEC || code == POST_DEC)
2800 adjust = -adjust;
2802 /* Do not use anti_adjust_stack, since we don't want to update
2803 stack_pointer_delta. */
2804 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2805 GEN_INT (adjust), stack_pointer_rtx,
2806 0, OPTAB_LIB_WIDEN);
2807 if (temp != stack_pointer_rtx)
2808 emit_move_insn (stack_pointer_rtx, temp);
2810 switch (code)
2812 case PRE_INC:
2813 case PRE_DEC:
2814 temp = stack_pointer_rtx;
2815 break;
2816 case POST_INC:
2817 temp = plus_constant (stack_pointer_rtx, -GET_MODE_SIZE (mode));
2818 break;
2819 case POST_DEC:
2820 temp = plus_constant (stack_pointer_rtx, GET_MODE_SIZE (mode));
2821 break;
2822 default:
2823 gcc_unreachable ();
2826 return replace_equiv_address (x, temp);
2829 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2830 X is known to satisfy push_operand, and MODE is known to be complex.
2831 Returns the last instruction emitted. */
2833 static rtx
2834 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2836 enum machine_mode submode = GET_MODE_INNER (mode);
2837 bool imag_first;
2839 #ifdef PUSH_ROUNDING
2840 unsigned int submodesize = GET_MODE_SIZE (submode);
2842 /* In case we output to the stack, but the size is smaller than the
2843 machine can push exactly, we need to use move instructions. */
2844 if (PUSH_ROUNDING (submodesize) != submodesize)
2846 x = emit_move_resolve_push (mode, x);
2847 return emit_move_insn (x, y);
2849 #endif
2851 /* Note that the real part always precedes the imag part in memory
2852 regardless of machine's endianness. */
2853 switch (GET_CODE (XEXP (x, 0)))
2855 case PRE_DEC:
2856 case POST_DEC:
2857 imag_first = true;
2858 break;
2859 case PRE_INC:
2860 case POST_INC:
2861 imag_first = false;
2862 break;
2863 default:
2864 gcc_unreachable ();
2867 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2868 read_complex_part (y, imag_first));
2869 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2870 read_complex_part (y, !imag_first));
2873 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2874 MODE is known to be complex. Returns the last instruction emitted. */
2876 static rtx
2877 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2879 bool try_int;
2881 /* Need to take special care for pushes, to maintain proper ordering
2882 of the data, and possibly extra padding. */
2883 if (push_operand (x, mode))
2884 return emit_move_complex_push (mode, x, y);
2886 /* For memory to memory moves, optimial behaviour can be had with the
2887 existing block move logic. */
2888 if (MEM_P (x) && MEM_P (y))
2890 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
2891 BLOCK_OP_NO_LIBCALL);
2892 return get_last_insn ();
2895 /* See if we can coerce the target into moving both values at once. */
2897 /* Not possible if the values are inherently not adjacent. */
2898 if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2899 try_int = false;
2900 /* Is possible if both are registers (or subregs of registers). */
2901 else if (register_operand (x, mode) && register_operand (y, mode))
2902 try_int = true;
2903 /* If one of the operands is a memory, and alignment constraints
2904 are friendly enough, we may be able to do combined memory operations.
2905 We do not attempt this if Y is a constant because that combination is
2906 usually better with the by-parts thing below. */
2907 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2908 && (!STRICT_ALIGNMENT
2909 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2910 try_int = true;
2911 else
2912 try_int = false;
2914 if (try_int)
2916 rtx ret = emit_move_via_integer (mode, x, y);
2917 if (ret)
2918 return ret;
2921 /* Show the output dies here. This is necessary for SUBREGs
2922 of pseudos since we cannot track their lifetimes correctly;
2923 hard regs shouldn't appear here except as return values. */
2924 if (!reload_completed && !reload_in_progress
2925 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
2926 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2928 write_complex_part (x, read_complex_part (y, false), false);
2929 write_complex_part (x, read_complex_part (y, true), true);
2930 return get_last_insn ();
2933 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2934 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2936 static rtx
2937 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
2939 rtx ret;
2941 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
2942 if (mode != CCmode)
2944 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
2945 if (code != CODE_FOR_nothing)
2946 return emit_move_via_alt_mode (CCmode, mode, code, x, y);
2949 /* Otherwise, find the MODE_INT mode of the same width. */
2950 ret = emit_move_via_integer (mode, x, y);
2951 gcc_assert (ret != NULL);
2952 return ret;
2955 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2956 MODE is any multi-word or full-word mode that lacks a move_insn
2957 pattern. Note that you will get better code if you define such
2958 patterns, even if they must turn into multiple assembler instructions. */
2960 static rtx
2961 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
2963 rtx last_insn = 0;
2964 rtx seq, inner;
2965 bool need_clobber;
2966 int i;
2968 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
2970 /* If X is a push on the stack, do the push now and replace
2971 X with a reference to the stack pointer. */
2972 if (push_operand (x, mode))
2973 x = emit_move_resolve_push (mode, x);
2975 /* If we are in reload, see if either operand is a MEM whose address
2976 is scheduled for replacement. */
2977 if (reload_in_progress && MEM_P (x)
2978 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
2979 x = replace_equiv_address_nv (x, inner);
2980 if (reload_in_progress && MEM_P (y)
2981 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
2982 y = replace_equiv_address_nv (y, inner);
2984 start_sequence ();
2986 need_clobber = false;
2987 for (i = 0;
2988 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2989 i++)
2991 rtx xpart = operand_subword (x, i, 1, mode);
2992 rtx ypart = operand_subword (y, i, 1, mode);
2994 /* If we can't get a part of Y, put Y into memory if it is a
2995 constant. Otherwise, force it into a register. If we still
2996 can't get a part of Y, abort. */
2997 if (ypart == 0 && CONSTANT_P (y))
2999 y = force_const_mem (mode, y);
3000 ypart = operand_subword (y, i, 1, mode);
3002 else if (ypart == 0)
3003 ypart = operand_subword_force (y, i, mode);
3005 gcc_assert (xpart && ypart);
3007 need_clobber |= (GET_CODE (xpart) == SUBREG);
3009 last_insn = emit_move_insn (xpart, ypart);
3012 seq = get_insns ();
3013 end_sequence ();
3015 /* Show the output dies here. This is necessary for SUBREGs
3016 of pseudos since we cannot track their lifetimes correctly;
3017 hard regs shouldn't appear here except as return values.
3018 We never want to emit such a clobber after reload. */
3019 if (x != y
3020 && ! (reload_in_progress || reload_completed)
3021 && need_clobber != 0)
3022 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3024 emit_insn (seq);
3026 return last_insn;
3029 /* Low level part of emit_move_insn.
3030 Called just like emit_move_insn, but assumes X and Y
3031 are basically valid. */
3034 emit_move_insn_1 (rtx x, rtx y)
3036 enum machine_mode mode = GET_MODE (x);
3037 enum insn_code code;
3039 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3041 code = mov_optab->handlers[mode].insn_code;
3042 if (code != CODE_FOR_nothing)
3043 return emit_insn (GEN_FCN (code) (x, y));
3045 /* Expand complex moves by moving real part and imag part. */
3046 if (COMPLEX_MODE_P (mode))
3047 return emit_move_complex (mode, x, y);
3049 if (GET_MODE_CLASS (mode) == MODE_CC)
3050 return emit_move_ccmode (mode, x, y);
3052 /* Try using a move pattern for the corresponding integer mode. This is
3053 only safe when simplify_subreg can convert MODE constants into integer
3054 constants. At present, it can only do this reliably if the value
3055 fits within a HOST_WIDE_INT. */
3056 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3058 rtx ret = emit_move_via_integer (mode, x, y);
3059 if (ret)
3060 return ret;
3063 return emit_move_multi_word (mode, x, y);
3066 /* Generate code to copy Y into X.
3067 Both Y and X must have the same mode, except that
3068 Y can be a constant with VOIDmode.
3069 This mode cannot be BLKmode; use emit_block_move for that.
3071 Return the last instruction emitted. */
3074 emit_move_insn (rtx x, rtx y)
3076 enum machine_mode mode = GET_MODE (x);
3077 rtx y_cst = NULL_RTX;
3078 rtx last_insn, set;
3080 gcc_assert (mode != BLKmode
3081 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3083 if (CONSTANT_P (y))
3085 if (optimize
3086 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3087 && (last_insn = compress_float_constant (x, y)))
3088 return last_insn;
3090 y_cst = y;
3092 if (!LEGITIMATE_CONSTANT_P (y))
3094 y = force_const_mem (mode, y);
3096 /* If the target's cannot_force_const_mem prevented the spill,
3097 assume that the target's move expanders will also take care
3098 of the non-legitimate constant. */
3099 if (!y)
3100 y = y_cst;
3104 /* If X or Y are memory references, verify that their addresses are valid
3105 for the machine. */
3106 if (MEM_P (x)
3107 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3108 && ! push_operand (x, GET_MODE (x)))
3109 || (flag_force_addr
3110 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3111 x = validize_mem (x);
3113 if (MEM_P (y)
3114 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3115 || (flag_force_addr
3116 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3117 y = validize_mem (y);
3119 gcc_assert (mode != BLKmode);
3121 last_insn = emit_move_insn_1 (x, y);
3123 if (y_cst && REG_P (x)
3124 && (set = single_set (last_insn)) != NULL_RTX
3125 && SET_DEST (set) == x
3126 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3127 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3129 return last_insn;
3132 /* If Y is representable exactly in a narrower mode, and the target can
3133 perform the extension directly from constant or memory, then emit the
3134 move as an extension. */
3136 static rtx
3137 compress_float_constant (rtx x, rtx y)
3139 enum machine_mode dstmode = GET_MODE (x);
3140 enum machine_mode orig_srcmode = GET_MODE (y);
3141 enum machine_mode srcmode;
3142 REAL_VALUE_TYPE r;
3144 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3146 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3147 srcmode != orig_srcmode;
3148 srcmode = GET_MODE_WIDER_MODE (srcmode))
3150 enum insn_code ic;
3151 rtx trunc_y, last_insn;
3153 /* Skip if the target can't extend this way. */
3154 ic = can_extend_p (dstmode, srcmode, 0);
3155 if (ic == CODE_FOR_nothing)
3156 continue;
3158 /* Skip if the narrowed value isn't exact. */
3159 if (! exact_real_truncate (srcmode, &r))
3160 continue;
3162 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3164 if (LEGITIMATE_CONSTANT_P (trunc_y))
3166 /* Skip if the target needs extra instructions to perform
3167 the extension. */
3168 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3169 continue;
3171 else if (float_extend_from_mem[dstmode][srcmode])
3172 trunc_y = validize_mem (force_const_mem (srcmode, trunc_y));
3173 else
3174 continue;
3176 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3177 last_insn = get_last_insn ();
3179 if (REG_P (x))
3180 set_unique_reg_note (last_insn, REG_EQUAL, y);
3182 return last_insn;
3185 return NULL_RTX;
3188 /* Pushing data onto the stack. */
3190 /* Push a block of length SIZE (perhaps variable)
3191 and return an rtx to address the beginning of the block.
3192 The value may be virtual_outgoing_args_rtx.
3194 EXTRA is the number of bytes of padding to push in addition to SIZE.
3195 BELOW nonzero means this padding comes at low addresses;
3196 otherwise, the padding comes at high addresses. */
3199 push_block (rtx size, int extra, int below)
3201 rtx temp;
3203 size = convert_modes (Pmode, ptr_mode, size, 1);
3204 if (CONSTANT_P (size))
3205 anti_adjust_stack (plus_constant (size, extra));
3206 else if (REG_P (size) && extra == 0)
3207 anti_adjust_stack (size);
3208 else
3210 temp = copy_to_mode_reg (Pmode, size);
3211 if (extra != 0)
3212 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3213 temp, 0, OPTAB_LIB_WIDEN);
3214 anti_adjust_stack (temp);
3217 #ifndef STACK_GROWS_DOWNWARD
3218 if (0)
3219 #else
3220 if (1)
3221 #endif
3223 temp = virtual_outgoing_args_rtx;
3224 if (extra != 0 && below)
3225 temp = plus_constant (temp, extra);
3227 else
3229 if (GET_CODE (size) == CONST_INT)
3230 temp = plus_constant (virtual_outgoing_args_rtx,
3231 -INTVAL (size) - (below ? 0 : extra));
3232 else if (extra != 0 && !below)
3233 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3234 negate_rtx (Pmode, plus_constant (size, extra)));
3235 else
3236 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3237 negate_rtx (Pmode, size));
3240 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3243 #ifdef PUSH_ROUNDING
3245 /* Emit single push insn. */
3247 static void
3248 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3250 rtx dest_addr;
3251 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3252 rtx dest;
3253 enum insn_code icode;
3254 insn_operand_predicate_fn pred;
3256 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3257 /* If there is push pattern, use it. Otherwise try old way of throwing
3258 MEM representing push operation to move expander. */
3259 icode = push_optab->handlers[(int) mode].insn_code;
3260 if (icode != CODE_FOR_nothing)
3262 if (((pred = insn_data[(int) icode].operand[0].predicate)
3263 && !((*pred) (x, mode))))
3264 x = force_reg (mode, x);
3265 emit_insn (GEN_FCN (icode) (x));
3266 return;
3268 if (GET_MODE_SIZE (mode) == rounded_size)
3269 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3270 /* If we are to pad downward, adjust the stack pointer first and
3271 then store X into the stack location using an offset. This is
3272 because emit_move_insn does not know how to pad; it does not have
3273 access to type. */
3274 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3276 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3277 HOST_WIDE_INT offset;
3279 emit_move_insn (stack_pointer_rtx,
3280 expand_binop (Pmode,
3281 #ifdef STACK_GROWS_DOWNWARD
3282 sub_optab,
3283 #else
3284 add_optab,
3285 #endif
3286 stack_pointer_rtx,
3287 GEN_INT (rounded_size),
3288 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3290 offset = (HOST_WIDE_INT) padding_size;
3291 #ifdef STACK_GROWS_DOWNWARD
3292 if (STACK_PUSH_CODE == POST_DEC)
3293 /* We have already decremented the stack pointer, so get the
3294 previous value. */
3295 offset += (HOST_WIDE_INT) rounded_size;
3296 #else
3297 if (STACK_PUSH_CODE == POST_INC)
3298 /* We have already incremented the stack pointer, so get the
3299 previous value. */
3300 offset -= (HOST_WIDE_INT) rounded_size;
3301 #endif
3302 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3304 else
3306 #ifdef STACK_GROWS_DOWNWARD
3307 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3308 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3309 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3310 #else
3311 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3312 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3313 GEN_INT (rounded_size));
3314 #endif
3315 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3318 dest = gen_rtx_MEM (mode, dest_addr);
3320 if (type != 0)
3322 set_mem_attributes (dest, type, 1);
3324 if (flag_optimize_sibling_calls)
3325 /* Function incoming arguments may overlap with sibling call
3326 outgoing arguments and we cannot allow reordering of reads
3327 from function arguments with stores to outgoing arguments
3328 of sibling calls. */
3329 set_mem_alias_set (dest, 0);
3331 emit_move_insn (dest, x);
3333 #endif
3335 /* Generate code to push X onto the stack, assuming it has mode MODE and
3336 type TYPE.
3337 MODE is redundant except when X is a CONST_INT (since they don't
3338 carry mode info).
3339 SIZE is an rtx for the size of data to be copied (in bytes),
3340 needed only if X is BLKmode.
3342 ALIGN (in bits) is maximum alignment we can assume.
3344 If PARTIAL and REG are both nonzero, then copy that many of the first
3345 bytes of X into registers starting with REG, and push the rest of X.
3346 The amount of space pushed is decreased by PARTIAL bytes.
3347 REG must be a hard register in this case.
3348 If REG is zero but PARTIAL is not, take any all others actions for an
3349 argument partially in registers, but do not actually load any
3350 registers.
3352 EXTRA is the amount in bytes of extra space to leave next to this arg.
3353 This is ignored if an argument block has already been allocated.
3355 On a machine that lacks real push insns, ARGS_ADDR is the address of
3356 the bottom of the argument block for this call. We use indexing off there
3357 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3358 argument block has not been preallocated.
3360 ARGS_SO_FAR is the size of args previously pushed for this call.
3362 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3363 for arguments passed in registers. If nonzero, it will be the number
3364 of bytes required. */
3366 void
3367 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3368 unsigned int align, int partial, rtx reg, int extra,
3369 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3370 rtx alignment_pad)
3372 rtx xinner;
3373 enum direction stack_direction
3374 #ifdef STACK_GROWS_DOWNWARD
3375 = downward;
3376 #else
3377 = upward;
3378 #endif
3380 /* Decide where to pad the argument: `downward' for below,
3381 `upward' for above, or `none' for don't pad it.
3382 Default is below for small data on big-endian machines; else above. */
3383 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3385 /* Invert direction if stack is post-decrement.
3386 FIXME: why? */
3387 if (STACK_PUSH_CODE == POST_DEC)
3388 if (where_pad != none)
3389 where_pad = (where_pad == downward ? upward : downward);
3391 xinner = x;
3393 if (mode == BLKmode)
3395 /* Copy a block into the stack, entirely or partially. */
3397 rtx temp;
3398 int used;
3399 int offset;
3400 int skip;
3402 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3403 used = partial - offset;
3405 gcc_assert (size);
3407 /* USED is now the # of bytes we need not copy to the stack
3408 because registers will take care of them. */
3410 if (partial != 0)
3411 xinner = adjust_address (xinner, BLKmode, used);
3413 /* If the partial register-part of the arg counts in its stack size,
3414 skip the part of stack space corresponding to the registers.
3415 Otherwise, start copying to the beginning of the stack space,
3416 by setting SKIP to 0. */
3417 skip = (reg_parm_stack_space == 0) ? 0 : used;
3419 #ifdef PUSH_ROUNDING
3420 /* Do it with several push insns if that doesn't take lots of insns
3421 and if there is no difficulty with push insns that skip bytes
3422 on the stack for alignment purposes. */
3423 if (args_addr == 0
3424 && PUSH_ARGS
3425 && GET_CODE (size) == CONST_INT
3426 && skip == 0
3427 && MEM_ALIGN (xinner) >= align
3428 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3429 /* Here we avoid the case of a structure whose weak alignment
3430 forces many pushes of a small amount of data,
3431 and such small pushes do rounding that causes trouble. */
3432 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3433 || align >= BIGGEST_ALIGNMENT
3434 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3435 == (align / BITS_PER_UNIT)))
3436 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3438 /* Push padding now if padding above and stack grows down,
3439 or if padding below and stack grows up.
3440 But if space already allocated, this has already been done. */
3441 if (extra && args_addr == 0
3442 && where_pad != none && where_pad != stack_direction)
3443 anti_adjust_stack (GEN_INT (extra));
3445 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3447 else
3448 #endif /* PUSH_ROUNDING */
3450 rtx target;
3452 /* Otherwise make space on the stack and copy the data
3453 to the address of that space. */
3455 /* Deduct words put into registers from the size we must copy. */
3456 if (partial != 0)
3458 if (GET_CODE (size) == CONST_INT)
3459 size = GEN_INT (INTVAL (size) - used);
3460 else
3461 size = expand_binop (GET_MODE (size), sub_optab, size,
3462 GEN_INT (used), NULL_RTX, 0,
3463 OPTAB_LIB_WIDEN);
3466 /* Get the address of the stack space.
3467 In this case, we do not deal with EXTRA separately.
3468 A single stack adjust will do. */
3469 if (! args_addr)
3471 temp = push_block (size, extra, where_pad == downward);
3472 extra = 0;
3474 else if (GET_CODE (args_so_far) == CONST_INT)
3475 temp = memory_address (BLKmode,
3476 plus_constant (args_addr,
3477 skip + INTVAL (args_so_far)));
3478 else
3479 temp = memory_address (BLKmode,
3480 plus_constant (gen_rtx_PLUS (Pmode,
3481 args_addr,
3482 args_so_far),
3483 skip));
3485 if (!ACCUMULATE_OUTGOING_ARGS)
3487 /* If the source is referenced relative to the stack pointer,
3488 copy it to another register to stabilize it. We do not need
3489 to do this if we know that we won't be changing sp. */
3491 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3492 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3493 temp = copy_to_reg (temp);
3496 target = gen_rtx_MEM (BLKmode, temp);
3498 /* We do *not* set_mem_attributes here, because incoming arguments
3499 may overlap with sibling call outgoing arguments and we cannot
3500 allow reordering of reads from function arguments with stores
3501 to outgoing arguments of sibling calls. We do, however, want
3502 to record the alignment of the stack slot. */
3503 /* ALIGN may well be better aligned than TYPE, e.g. due to
3504 PARM_BOUNDARY. Assume the caller isn't lying. */
3505 set_mem_align (target, align);
3507 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3510 else if (partial > 0)
3512 /* Scalar partly in registers. */
3514 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3515 int i;
3516 int not_stack;
3517 /* # bytes of start of argument
3518 that we must make space for but need not store. */
3519 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3520 int args_offset = INTVAL (args_so_far);
3521 int skip;
3523 /* Push padding now if padding above and stack grows down,
3524 or if padding below and stack grows up.
3525 But if space already allocated, this has already been done. */
3526 if (extra && args_addr == 0
3527 && where_pad != none && where_pad != stack_direction)
3528 anti_adjust_stack (GEN_INT (extra));
3530 /* If we make space by pushing it, we might as well push
3531 the real data. Otherwise, we can leave OFFSET nonzero
3532 and leave the space uninitialized. */
3533 if (args_addr == 0)
3534 offset = 0;
3536 /* Now NOT_STACK gets the number of words that we don't need to
3537 allocate on the stack. */
3538 not_stack = (partial - offset) / UNITS_PER_WORD;
3540 /* If the partial register-part of the arg counts in its stack size,
3541 skip the part of stack space corresponding to the registers.
3542 Otherwise, start copying to the beginning of the stack space,
3543 by setting SKIP to 0. */
3544 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3546 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3547 x = validize_mem (force_const_mem (mode, x));
3549 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3550 SUBREGs of such registers are not allowed. */
3551 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3552 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3553 x = copy_to_reg (x);
3555 /* Loop over all the words allocated on the stack for this arg. */
3556 /* We can do it by words, because any scalar bigger than a word
3557 has a size a multiple of a word. */
3558 #ifndef PUSH_ARGS_REVERSED
3559 for (i = not_stack; i < size; i++)
3560 #else
3561 for (i = size - 1; i >= not_stack; i--)
3562 #endif
3563 if (i >= not_stack + offset)
3564 emit_push_insn (operand_subword_force (x, i, mode),
3565 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3566 0, args_addr,
3567 GEN_INT (args_offset + ((i - not_stack + skip)
3568 * UNITS_PER_WORD)),
3569 reg_parm_stack_space, alignment_pad);
3571 else
3573 rtx addr;
3574 rtx dest;
3576 /* Push padding now if padding above and stack grows down,
3577 or if padding below and stack grows up.
3578 But if space already allocated, this has already been done. */
3579 if (extra && args_addr == 0
3580 && where_pad != none && where_pad != stack_direction)
3581 anti_adjust_stack (GEN_INT (extra));
3583 #ifdef PUSH_ROUNDING
3584 if (args_addr == 0 && PUSH_ARGS)
3585 emit_single_push_insn (mode, x, type);
3586 else
3587 #endif
3589 if (GET_CODE (args_so_far) == CONST_INT)
3590 addr
3591 = memory_address (mode,
3592 plus_constant (args_addr,
3593 INTVAL (args_so_far)));
3594 else
3595 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3596 args_so_far));
3597 dest = gen_rtx_MEM (mode, addr);
3599 /* We do *not* set_mem_attributes here, because incoming arguments
3600 may overlap with sibling call outgoing arguments and we cannot
3601 allow reordering of reads from function arguments with stores
3602 to outgoing arguments of sibling calls. We do, however, want
3603 to record the alignment of the stack slot. */
3604 /* ALIGN may well be better aligned than TYPE, e.g. due to
3605 PARM_BOUNDARY. Assume the caller isn't lying. */
3606 set_mem_align (dest, align);
3608 emit_move_insn (dest, x);
3612 /* If part should go in registers, copy that part
3613 into the appropriate registers. Do this now, at the end,
3614 since mem-to-mem copies above may do function calls. */
3615 if (partial > 0 && reg != 0)
3617 /* Handle calls that pass values in multiple non-contiguous locations.
3618 The Irix 6 ABI has examples of this. */
3619 if (GET_CODE (reg) == PARALLEL)
3620 emit_group_load (reg, x, type, -1);
3621 else
3623 gcc_assert (partial % UNITS_PER_WORD == 0);
3624 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3628 if (extra && args_addr == 0 && where_pad == stack_direction)
3629 anti_adjust_stack (GEN_INT (extra));
3631 if (alignment_pad && args_addr == 0)
3632 anti_adjust_stack (alignment_pad);
3635 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3636 operations. */
3638 static rtx
3639 get_subtarget (rtx x)
3641 return (optimize
3642 || x == 0
3643 /* Only registers can be subtargets. */
3644 || !REG_P (x)
3645 /* Don't use hard regs to avoid extending their life. */
3646 || REGNO (x) < FIRST_PSEUDO_REGISTER
3647 ? 0 : x);
3650 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3651 FIELD is a bitfield. Returns true if the optimization was successful,
3652 and there's nothing else to do. */
3654 static bool
3655 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3656 unsigned HOST_WIDE_INT bitpos,
3657 enum machine_mode mode1, rtx str_rtx,
3658 tree to, tree src)
3660 enum machine_mode str_mode = GET_MODE (str_rtx);
3661 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3662 tree op0, op1;
3663 rtx value, result;
3664 optab binop;
3666 if (mode1 != VOIDmode
3667 || bitsize >= BITS_PER_WORD
3668 || str_bitsize > BITS_PER_WORD
3669 || TREE_SIDE_EFFECTS (to)
3670 || TREE_THIS_VOLATILE (to))
3671 return false;
3673 STRIP_NOPS (src);
3674 if (!BINARY_CLASS_P (src)
3675 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3676 return false;
3678 op0 = TREE_OPERAND (src, 0);
3679 op1 = TREE_OPERAND (src, 1);
3680 STRIP_NOPS (op0);
3682 if (!operand_equal_p (to, op0, 0))
3683 return false;
3685 if (MEM_P (str_rtx))
3687 unsigned HOST_WIDE_INT offset1;
3689 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3690 str_mode = word_mode;
3691 str_mode = get_best_mode (bitsize, bitpos,
3692 MEM_ALIGN (str_rtx), str_mode, 0);
3693 if (str_mode == VOIDmode)
3694 return false;
3695 str_bitsize = GET_MODE_BITSIZE (str_mode);
3697 offset1 = bitpos;
3698 bitpos %= str_bitsize;
3699 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3700 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3702 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3703 return false;
3705 /* If the bit field covers the whole REG/MEM, store_field
3706 will likely generate better code. */
3707 if (bitsize >= str_bitsize)
3708 return false;
3710 /* We can't handle fields split across multiple entities. */
3711 if (bitpos + bitsize > str_bitsize)
3712 return false;
3714 if (BYTES_BIG_ENDIAN)
3715 bitpos = str_bitsize - bitpos - bitsize;
3717 switch (TREE_CODE (src))
3719 case PLUS_EXPR:
3720 case MINUS_EXPR:
3721 /* For now, just optimize the case of the topmost bitfield
3722 where we don't need to do any masking and also
3723 1 bit bitfields where xor can be used.
3724 We might win by one instruction for the other bitfields
3725 too if insv/extv instructions aren't used, so that
3726 can be added later. */
3727 if (bitpos + bitsize != str_bitsize
3728 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3729 break;
3731 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3732 value = convert_modes (str_mode,
3733 TYPE_MODE (TREE_TYPE (op1)), value,
3734 TYPE_UNSIGNED (TREE_TYPE (op1)));
3736 /* We may be accessing data outside the field, which means
3737 we can alias adjacent data. */
3738 if (MEM_P (str_rtx))
3740 str_rtx = shallow_copy_rtx (str_rtx);
3741 set_mem_alias_set (str_rtx, 0);
3742 set_mem_expr (str_rtx, 0);
3745 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3746 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3748 value = expand_and (str_mode, value, const1_rtx, NULL);
3749 binop = xor_optab;
3751 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3752 build_int_cst (NULL_TREE, bitpos),
3753 NULL_RTX, 1);
3754 result = expand_binop (str_mode, binop, str_rtx,
3755 value, str_rtx, 1, OPTAB_WIDEN);
3756 if (result != str_rtx)
3757 emit_move_insn (str_rtx, result);
3758 return true;
3760 default:
3761 break;
3764 return false;
3768 /* Expand an assignment that stores the value of FROM into TO. */
3770 void
3771 expand_assignment (tree to, tree from)
3773 rtx to_rtx = 0;
3774 rtx result;
3776 /* Don't crash if the lhs of the assignment was erroneous. */
3778 if (TREE_CODE (to) == ERROR_MARK)
3780 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3781 return;
3784 /* Assignment of a structure component needs special treatment
3785 if the structure component's rtx is not simply a MEM.
3786 Assignment of an array element at a constant index, and assignment of
3787 an array element in an unaligned packed structure field, has the same
3788 problem. */
3789 if (handled_component_p (to)
3790 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3792 enum machine_mode mode1;
3793 HOST_WIDE_INT bitsize, bitpos;
3794 rtx orig_to_rtx;
3795 tree offset;
3796 int unsignedp;
3797 int volatilep = 0;
3798 tree tem;
3800 push_temp_slots ();
3801 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3802 &unsignedp, &volatilep, true);
3804 /* If we are going to use store_bit_field and extract_bit_field,
3805 make sure to_rtx will be safe for multiple use. */
3807 orig_to_rtx = to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
3809 if (offset != 0)
3811 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3813 gcc_assert (MEM_P (to_rtx));
3815 #ifdef POINTERS_EXTEND_UNSIGNED
3816 if (GET_MODE (offset_rtx) != Pmode)
3817 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3818 #else
3819 if (GET_MODE (offset_rtx) != ptr_mode)
3820 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3821 #endif
3823 /* A constant address in TO_RTX can have VOIDmode, we must not try
3824 to call force_reg for that case. Avoid that case. */
3825 if (MEM_P (to_rtx)
3826 && GET_MODE (to_rtx) == BLKmode
3827 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3828 && bitsize > 0
3829 && (bitpos % bitsize) == 0
3830 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3831 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3833 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3834 bitpos = 0;
3837 to_rtx = offset_address (to_rtx, offset_rtx,
3838 highest_pow2_factor_for_target (to,
3839 offset));
3842 /* Handle expand_expr of a complex value returning a CONCAT. */
3843 if (GET_CODE (to_rtx) == CONCAT)
3845 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
3847 gcc_assert (bitpos == 0);
3848 result = store_expr (from, to_rtx, false);
3850 else
3852 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
3853 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
3856 else
3858 if (MEM_P (to_rtx))
3860 /* If the field is at offset zero, we could have been given the
3861 DECL_RTX of the parent struct. Don't munge it. */
3862 to_rtx = shallow_copy_rtx (to_rtx);
3864 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
3866 /* Deal with volatile and readonly fields. The former is only
3867 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3868 if (volatilep)
3869 MEM_VOLATILE_P (to_rtx) = 1;
3870 if (component_uses_parent_alias_set (to))
3871 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
3874 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
3875 to_rtx, to, from))
3876 result = NULL;
3877 else
3878 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3879 TREE_TYPE (tem), get_alias_set (to));
3882 if (result)
3883 preserve_temp_slots (result);
3884 free_temp_slots ();
3885 pop_temp_slots ();
3886 return;
3889 /* If the rhs is a function call and its value is not an aggregate,
3890 call the function before we start to compute the lhs.
3891 This is needed for correct code for cases such as
3892 val = setjmp (buf) on machines where reference to val
3893 requires loading up part of an address in a separate insn.
3895 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3896 since it might be a promoted variable where the zero- or sign- extension
3897 needs to be done. Handling this in the normal way is safe because no
3898 computation is done before the call. */
3899 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
3900 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3901 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
3902 && REG_P (DECL_RTL (to))))
3904 rtx value;
3906 push_temp_slots ();
3907 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3908 if (to_rtx == 0)
3909 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3911 /* Handle calls that return values in multiple non-contiguous locations.
3912 The Irix 6 ABI has examples of this. */
3913 if (GET_CODE (to_rtx) == PARALLEL)
3914 emit_group_load (to_rtx, value, TREE_TYPE (from),
3915 int_size_in_bytes (TREE_TYPE (from)));
3916 else if (GET_MODE (to_rtx) == BLKmode)
3917 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
3918 else
3920 if (POINTER_TYPE_P (TREE_TYPE (to)))
3921 value = convert_memory_address (GET_MODE (to_rtx), value);
3922 emit_move_insn (to_rtx, value);
3924 preserve_temp_slots (to_rtx);
3925 free_temp_slots ();
3926 pop_temp_slots ();
3927 return;
3930 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3931 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3933 if (to_rtx == 0)
3934 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3936 /* Don't move directly into a return register. */
3937 if (TREE_CODE (to) == RESULT_DECL
3938 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
3940 rtx temp;
3942 push_temp_slots ();
3943 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3945 if (GET_CODE (to_rtx) == PARALLEL)
3946 emit_group_load (to_rtx, temp, TREE_TYPE (from),
3947 int_size_in_bytes (TREE_TYPE (from)));
3948 else
3949 emit_move_insn (to_rtx, temp);
3951 preserve_temp_slots (to_rtx);
3952 free_temp_slots ();
3953 pop_temp_slots ();
3954 return;
3957 /* In case we are returning the contents of an object which overlaps
3958 the place the value is being stored, use a safe function when copying
3959 a value through a pointer into a structure value return block. */
3960 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3961 && current_function_returns_struct
3962 && !current_function_returns_pcc_struct)
3964 rtx from_rtx, size;
3966 push_temp_slots ();
3967 size = expr_size (from);
3968 from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
3970 emit_library_call (memmove_libfunc, LCT_NORMAL,
3971 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3972 XEXP (from_rtx, 0), Pmode,
3973 convert_to_mode (TYPE_MODE (sizetype),
3974 size, TYPE_UNSIGNED (sizetype)),
3975 TYPE_MODE (sizetype));
3977 preserve_temp_slots (to_rtx);
3978 free_temp_slots ();
3979 pop_temp_slots ();
3980 return;
3983 /* Compute FROM and store the value in the rtx we got. */
3985 push_temp_slots ();
3986 result = store_expr (from, to_rtx, 0);
3987 preserve_temp_slots (result);
3988 free_temp_slots ();
3989 pop_temp_slots ();
3990 return;
3993 /* Generate code for computing expression EXP,
3994 and storing the value into TARGET.
3996 If the mode is BLKmode then we may return TARGET itself.
3997 It turns out that in BLKmode it doesn't cause a problem.
3998 because C has no operators that could combine two different
3999 assignments into the same BLKmode object with different values
4000 with no sequence point. Will other languages need this to
4001 be more thorough?
4003 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4004 stack, and block moves may need to be treated specially. */
4007 store_expr (tree exp, rtx target, int call_param_p)
4009 rtx temp;
4010 rtx alt_rtl = NULL_RTX;
4011 int dont_return_target = 0;
4013 if (VOID_TYPE_P (TREE_TYPE (exp)))
4015 /* C++ can generate ?: expressions with a throw expression in one
4016 branch and an rvalue in the other. Here, we resolve attempts to
4017 store the throw expression's nonexistent result. */
4018 gcc_assert (!call_param_p);
4019 expand_expr (exp, const0_rtx, VOIDmode, 0);
4020 return NULL_RTX;
4022 if (TREE_CODE (exp) == COMPOUND_EXPR)
4024 /* Perform first part of compound expression, then assign from second
4025 part. */
4026 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4027 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4028 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4030 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4032 /* For conditional expression, get safe form of the target. Then
4033 test the condition, doing the appropriate assignment on either
4034 side. This avoids the creation of unnecessary temporaries.
4035 For non-BLKmode, it is more efficient not to do this. */
4037 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4039 do_pending_stack_adjust ();
4040 NO_DEFER_POP;
4041 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4042 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4043 emit_jump_insn (gen_jump (lab2));
4044 emit_barrier ();
4045 emit_label (lab1);
4046 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4047 emit_label (lab2);
4048 OK_DEFER_POP;
4050 return NULL_RTX;
4052 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4053 /* If this is a scalar in a register that is stored in a wider mode
4054 than the declared mode, compute the result into its declared mode
4055 and then convert to the wider mode. Our value is the computed
4056 expression. */
4058 rtx inner_target = 0;
4060 /* We can do the conversion inside EXP, which will often result
4061 in some optimizations. Do the conversion in two steps: first
4062 change the signedness, if needed, then the extend. But don't
4063 do this if the type of EXP is a subtype of something else
4064 since then the conversion might involve more than just
4065 converting modes. */
4066 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4067 && TREE_TYPE (TREE_TYPE (exp)) == 0
4068 && (!lang_hooks.reduce_bit_field_operations
4069 || (GET_MODE_PRECISION (GET_MODE (target))
4070 == TYPE_PRECISION (TREE_TYPE (exp)))))
4072 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4073 != SUBREG_PROMOTED_UNSIGNED_P (target))
4074 exp = convert
4075 (lang_hooks.types.signed_or_unsigned_type
4076 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4078 exp = convert (lang_hooks.types.type_for_mode
4079 (GET_MODE (SUBREG_REG (target)),
4080 SUBREG_PROMOTED_UNSIGNED_P (target)),
4081 exp);
4083 inner_target = SUBREG_REG (target);
4086 temp = expand_expr (exp, inner_target, VOIDmode,
4087 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4089 /* If TEMP is a VOIDmode constant, use convert_modes to make
4090 sure that we properly convert it. */
4091 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4093 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4094 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4095 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4096 GET_MODE (target), temp,
4097 SUBREG_PROMOTED_UNSIGNED_P (target));
4100 convert_move (SUBREG_REG (target), temp,
4101 SUBREG_PROMOTED_UNSIGNED_P (target));
4103 return NULL_RTX;
4105 else
4107 temp = expand_expr_real (exp, target, GET_MODE (target),
4108 (call_param_p
4109 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4110 &alt_rtl);
4111 /* Return TARGET if it's a specified hardware register.
4112 If TARGET is a volatile mem ref, either return TARGET
4113 or return a reg copied *from* TARGET; ANSI requires this.
4115 Otherwise, if TEMP is not TARGET, return TEMP
4116 if it is constant (for efficiency),
4117 or if we really want the correct value. */
4118 if (!(target && REG_P (target)
4119 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4120 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4121 && ! rtx_equal_p (temp, target)
4122 && CONSTANT_P (temp))
4123 dont_return_target = 1;
4126 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4127 the same as that of TARGET, adjust the constant. This is needed, for
4128 example, in case it is a CONST_DOUBLE and we want only a word-sized
4129 value. */
4130 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4131 && TREE_CODE (exp) != ERROR_MARK
4132 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4133 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4134 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4136 /* If value was not generated in the target, store it there.
4137 Convert the value to TARGET's type first if necessary and emit the
4138 pending incrementations that have been queued when expanding EXP.
4139 Note that we cannot emit the whole queue blindly because this will
4140 effectively disable the POST_INC optimization later.
4142 If TEMP and TARGET compare equal according to rtx_equal_p, but
4143 one or both of them are volatile memory refs, we have to distinguish
4144 two cases:
4145 - expand_expr has used TARGET. In this case, we must not generate
4146 another copy. This can be detected by TARGET being equal according
4147 to == .
4148 - expand_expr has not used TARGET - that means that the source just
4149 happens to have the same RTX form. Since temp will have been created
4150 by expand_expr, it will compare unequal according to == .
4151 We must generate a copy in this case, to reach the correct number
4152 of volatile memory references. */
4154 if ((! rtx_equal_p (temp, target)
4155 || (temp != target && (side_effects_p (temp)
4156 || side_effects_p (target))))
4157 && TREE_CODE (exp) != ERROR_MARK
4158 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4159 but TARGET is not valid memory reference, TEMP will differ
4160 from TARGET although it is really the same location. */
4161 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4162 /* If there's nothing to copy, don't bother. Don't call expr_size
4163 unless necessary, because some front-ends (C++) expr_size-hook
4164 aborts on objects that are not supposed to be bit-copied or
4165 bit-initialized. */
4166 && expr_size (exp) != const0_rtx)
4168 if (GET_MODE (temp) != GET_MODE (target)
4169 && GET_MODE (temp) != VOIDmode)
4171 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4172 if (dont_return_target)
4174 /* In this case, we will return TEMP,
4175 so make sure it has the proper mode.
4176 But don't forget to store the value into TARGET. */
4177 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4178 emit_move_insn (target, temp);
4180 else
4181 convert_move (target, temp, unsignedp);
4184 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4186 /* Handle copying a string constant into an array. The string
4187 constant may be shorter than the array. So copy just the string's
4188 actual length, and clear the rest. First get the size of the data
4189 type of the string, which is actually the size of the target. */
4190 rtx size = expr_size (exp);
4192 if (GET_CODE (size) == CONST_INT
4193 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4194 emit_block_move (target, temp, size,
4195 (call_param_p
4196 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4197 else
4199 /* Compute the size of the data to copy from the string. */
4200 tree copy_size
4201 = size_binop (MIN_EXPR,
4202 make_tree (sizetype, size),
4203 size_int (TREE_STRING_LENGTH (exp)));
4204 rtx copy_size_rtx
4205 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4206 (call_param_p
4207 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4208 rtx label = 0;
4210 /* Copy that much. */
4211 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4212 TYPE_UNSIGNED (sizetype));
4213 emit_block_move (target, temp, copy_size_rtx,
4214 (call_param_p
4215 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4217 /* Figure out how much is left in TARGET that we have to clear.
4218 Do all calculations in ptr_mode. */
4219 if (GET_CODE (copy_size_rtx) == CONST_INT)
4221 size = plus_constant (size, -INTVAL (copy_size_rtx));
4222 target = adjust_address (target, BLKmode,
4223 INTVAL (copy_size_rtx));
4225 else
4227 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4228 copy_size_rtx, NULL_RTX, 0,
4229 OPTAB_LIB_WIDEN);
4231 #ifdef POINTERS_EXTEND_UNSIGNED
4232 if (GET_MODE (copy_size_rtx) != Pmode)
4233 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4234 TYPE_UNSIGNED (sizetype));
4235 #endif
4237 target = offset_address (target, copy_size_rtx,
4238 highest_pow2_factor (copy_size));
4239 label = gen_label_rtx ();
4240 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4241 GET_MODE (size), 0, label);
4244 if (size != const0_rtx)
4245 clear_storage (target, size);
4247 if (label)
4248 emit_label (label);
4251 /* Handle calls that return values in multiple non-contiguous locations.
4252 The Irix 6 ABI has examples of this. */
4253 else if (GET_CODE (target) == PARALLEL)
4254 emit_group_load (target, temp, TREE_TYPE (exp),
4255 int_size_in_bytes (TREE_TYPE (exp)));
4256 else if (GET_MODE (temp) == BLKmode)
4257 emit_block_move (target, temp, expr_size (exp),
4258 (call_param_p
4259 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4260 else
4262 temp = force_operand (temp, target);
4263 if (temp != target)
4264 emit_move_insn (target, temp);
4268 return NULL_RTX;
4271 /* Examine CTOR to discover:
4272 * how many scalar fields are set to nonzero values,
4273 and place it in *P_NZ_ELTS;
4274 * how many scalar fields are set to non-constant values,
4275 and place it in *P_NC_ELTS; and
4276 * how many scalar fields in total are in CTOR,
4277 and place it in *P_ELT_COUNT. */
4279 static void
4280 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4281 HOST_WIDE_INT *p_nc_elts,
4282 HOST_WIDE_INT *p_elt_count)
4284 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4285 tree list;
4287 nz_elts = 0;
4288 nc_elts = 0;
4289 elt_count = 0;
4291 for (list = CONSTRUCTOR_ELTS (ctor); list; list = TREE_CHAIN (list))
4293 tree value = TREE_VALUE (list);
4294 tree purpose = TREE_PURPOSE (list);
4295 HOST_WIDE_INT mult;
4297 mult = 1;
4298 if (TREE_CODE (purpose) == RANGE_EXPR)
4300 tree lo_index = TREE_OPERAND (purpose, 0);
4301 tree hi_index = TREE_OPERAND (purpose, 1);
4303 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4304 mult = (tree_low_cst (hi_index, 1)
4305 - tree_low_cst (lo_index, 1) + 1);
4308 switch (TREE_CODE (value))
4310 case CONSTRUCTOR:
4312 HOST_WIDE_INT nz = 0, nc = 0, count = 0;
4313 categorize_ctor_elements_1 (value, &nz, &nc, &count);
4314 nz_elts += mult * nz;
4315 nc_elts += mult * nc;
4316 elt_count += mult * count;
4318 break;
4320 case INTEGER_CST:
4321 case REAL_CST:
4322 if (!initializer_zerop (value))
4323 nz_elts += mult;
4324 elt_count += mult;
4325 break;
4327 case STRING_CST:
4328 nz_elts += mult * TREE_STRING_LENGTH (value);
4329 elt_count += mult * TREE_STRING_LENGTH (value);
4330 break;
4332 case COMPLEX_CST:
4333 if (!initializer_zerop (TREE_REALPART (value)))
4334 nz_elts += mult;
4335 if (!initializer_zerop (TREE_IMAGPART (value)))
4336 nz_elts += mult;
4337 elt_count += mult;
4338 break;
4340 case VECTOR_CST:
4342 tree v;
4343 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4345 if (!initializer_zerop (TREE_VALUE (v)))
4346 nz_elts += mult;
4347 elt_count += mult;
4350 break;
4352 default:
4353 nz_elts += mult;
4354 elt_count += mult;
4355 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4356 nc_elts += mult;
4357 break;
4361 *p_nz_elts += nz_elts;
4362 *p_nc_elts += nc_elts;
4363 *p_elt_count += elt_count;
4366 void
4367 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4368 HOST_WIDE_INT *p_nc_elts,
4369 HOST_WIDE_INT *p_elt_count)
4371 *p_nz_elts = 0;
4372 *p_nc_elts = 0;
4373 *p_elt_count = 0;
4374 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count);
4377 /* Count the number of scalars in TYPE. Return -1 on overflow or
4378 variable-sized. */
4380 HOST_WIDE_INT
4381 count_type_elements (tree type)
4383 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4384 switch (TREE_CODE (type))
4386 case ARRAY_TYPE:
4388 tree telts = array_type_nelts (type);
4389 if (telts && host_integerp (telts, 1))
4391 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4392 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type));
4393 if (n == 0)
4394 return 0;
4395 else if (max / n > m)
4396 return n * m;
4398 return -1;
4401 case RECORD_TYPE:
4403 HOST_WIDE_INT n = 0, t;
4404 tree f;
4406 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4407 if (TREE_CODE (f) == FIELD_DECL)
4409 t = count_type_elements (TREE_TYPE (f));
4410 if (t < 0)
4411 return -1;
4412 n += t;
4415 return n;
4418 case UNION_TYPE:
4419 case QUAL_UNION_TYPE:
4421 /* Ho hum. How in the world do we guess here? Clearly it isn't
4422 right to count the fields. Guess based on the number of words. */
4423 HOST_WIDE_INT n = int_size_in_bytes (type);
4424 if (n < 0)
4425 return -1;
4426 return n / UNITS_PER_WORD;
4429 case COMPLEX_TYPE:
4430 return 2;
4432 case VECTOR_TYPE:
4433 return TYPE_VECTOR_SUBPARTS (type);
4435 case INTEGER_TYPE:
4436 case REAL_TYPE:
4437 case ENUMERAL_TYPE:
4438 case BOOLEAN_TYPE:
4439 case CHAR_TYPE:
4440 case POINTER_TYPE:
4441 case OFFSET_TYPE:
4442 case REFERENCE_TYPE:
4443 return 1;
4445 case VOID_TYPE:
4446 case METHOD_TYPE:
4447 case FILE_TYPE:
4448 case FUNCTION_TYPE:
4449 case LANG_TYPE:
4450 default:
4451 gcc_unreachable ();
4455 /* Return 1 if EXP contains mostly (3/4) zeros. */
4457 static int
4458 mostly_zeros_p (tree exp)
4460 if (TREE_CODE (exp) == CONSTRUCTOR)
4463 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4465 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count);
4466 elts = count_type_elements (TREE_TYPE (exp));
4468 return nz_elts < elts / 4;
4471 return initializer_zerop (exp);
4474 /* Helper function for store_constructor.
4475 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4476 TYPE is the type of the CONSTRUCTOR, not the element type.
4477 CLEARED is as for store_constructor.
4478 ALIAS_SET is the alias set to use for any stores.
4480 This provides a recursive shortcut back to store_constructor when it isn't
4481 necessary to go through store_field. This is so that we can pass through
4482 the cleared field to let store_constructor know that we may not have to
4483 clear a substructure if the outer structure has already been cleared. */
4485 static void
4486 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4487 HOST_WIDE_INT bitpos, enum machine_mode mode,
4488 tree exp, tree type, int cleared, int alias_set)
4490 if (TREE_CODE (exp) == CONSTRUCTOR
4491 /* We can only call store_constructor recursively if the size and
4492 bit position are on a byte boundary. */
4493 && bitpos % BITS_PER_UNIT == 0
4494 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4495 /* If we have a nonzero bitpos for a register target, then we just
4496 let store_field do the bitfield handling. This is unlikely to
4497 generate unnecessary clear instructions anyways. */
4498 && (bitpos == 0 || MEM_P (target)))
4500 if (MEM_P (target))
4501 target
4502 = adjust_address (target,
4503 GET_MODE (target) == BLKmode
4504 || 0 != (bitpos
4505 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4506 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4509 /* Update the alias set, if required. */
4510 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4511 && MEM_ALIAS_SET (target) != 0)
4513 target = copy_rtx (target);
4514 set_mem_alias_set (target, alias_set);
4517 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4519 else
4520 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4523 /* Store the value of constructor EXP into the rtx TARGET.
4524 TARGET is either a REG or a MEM; we know it cannot conflict, since
4525 safe_from_p has been called.
4526 CLEARED is true if TARGET is known to have been zero'd.
4527 SIZE is the number of bytes of TARGET we are allowed to modify: this
4528 may not be the same as the size of EXP if we are assigning to a field
4529 which has been packed to exclude padding bits. */
4531 static void
4532 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4534 tree type = TREE_TYPE (exp);
4535 #ifdef WORD_REGISTER_OPERATIONS
4536 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4537 #endif
4539 switch (TREE_CODE (type))
4541 case RECORD_TYPE:
4542 case UNION_TYPE:
4543 case QUAL_UNION_TYPE:
4545 tree elt;
4547 /* If size is zero or the target is already cleared, do nothing. */
4548 if (size == 0 || cleared)
4549 cleared = 1;
4550 /* We either clear the aggregate or indicate the value is dead. */
4551 else if ((TREE_CODE (type) == UNION_TYPE
4552 || TREE_CODE (type) == QUAL_UNION_TYPE)
4553 && ! CONSTRUCTOR_ELTS (exp))
4554 /* If the constructor is empty, clear the union. */
4556 clear_storage (target, expr_size (exp));
4557 cleared = 1;
4560 /* If we are building a static constructor into a register,
4561 set the initial value as zero so we can fold the value into
4562 a constant. But if more than one register is involved,
4563 this probably loses. */
4564 else if (REG_P (target) && TREE_STATIC (exp)
4565 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4567 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4568 cleared = 1;
4571 /* If the constructor has fewer fields than the structure or
4572 if we are initializing the structure to mostly zeros, clear
4573 the whole structure first. Don't do this if TARGET is a
4574 register whose mode size isn't equal to SIZE since
4575 clear_storage can't handle this case. */
4576 else if (size > 0
4577 && ((list_length (CONSTRUCTOR_ELTS (exp))
4578 != fields_length (type))
4579 || mostly_zeros_p (exp))
4580 && (!REG_P (target)
4581 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4582 == size)))
4584 clear_storage (target, GEN_INT (size));
4585 cleared = 1;
4588 if (! cleared)
4589 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4591 /* Store each element of the constructor into the
4592 corresponding field of TARGET. */
4594 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4596 tree field = TREE_PURPOSE (elt);
4597 tree value = TREE_VALUE (elt);
4598 enum machine_mode mode;
4599 HOST_WIDE_INT bitsize;
4600 HOST_WIDE_INT bitpos = 0;
4601 tree offset;
4602 rtx to_rtx = target;
4604 /* Just ignore missing fields. We cleared the whole
4605 structure, above, if any fields are missing. */
4606 if (field == 0)
4607 continue;
4609 if (cleared && initializer_zerop (value))
4610 continue;
4612 if (host_integerp (DECL_SIZE (field), 1))
4613 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4614 else
4615 bitsize = -1;
4617 mode = DECL_MODE (field);
4618 if (DECL_BIT_FIELD (field))
4619 mode = VOIDmode;
4621 offset = DECL_FIELD_OFFSET (field);
4622 if (host_integerp (offset, 0)
4623 && host_integerp (bit_position (field), 0))
4625 bitpos = int_bit_position (field);
4626 offset = 0;
4628 else
4629 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4631 if (offset)
4633 rtx offset_rtx;
4635 offset
4636 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4637 make_tree (TREE_TYPE (exp),
4638 target));
4640 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4641 gcc_assert (MEM_P (to_rtx));
4643 #ifdef POINTERS_EXTEND_UNSIGNED
4644 if (GET_MODE (offset_rtx) != Pmode)
4645 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4646 #else
4647 if (GET_MODE (offset_rtx) != ptr_mode)
4648 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4649 #endif
4651 to_rtx = offset_address (to_rtx, offset_rtx,
4652 highest_pow2_factor (offset));
4655 #ifdef WORD_REGISTER_OPERATIONS
4656 /* If this initializes a field that is smaller than a
4657 word, at the start of a word, try to widen it to a full
4658 word. This special case allows us to output C++ member
4659 function initializations in a form that the optimizers
4660 can understand. */
4661 if (REG_P (target)
4662 && bitsize < BITS_PER_WORD
4663 && bitpos % BITS_PER_WORD == 0
4664 && GET_MODE_CLASS (mode) == MODE_INT
4665 && TREE_CODE (value) == INTEGER_CST
4666 && exp_size >= 0
4667 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4669 tree type = TREE_TYPE (value);
4671 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4673 type = lang_hooks.types.type_for_size
4674 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4675 value = convert (type, value);
4678 if (BYTES_BIG_ENDIAN)
4679 value
4680 = fold (build2 (LSHIFT_EXPR, type, value,
4681 build_int_cst (NULL_TREE,
4682 BITS_PER_WORD - bitsize)));
4683 bitsize = BITS_PER_WORD;
4684 mode = word_mode;
4686 #endif
4688 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4689 && DECL_NONADDRESSABLE_P (field))
4691 to_rtx = copy_rtx (to_rtx);
4692 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4695 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4696 value, type, cleared,
4697 get_alias_set (TREE_TYPE (field)));
4699 break;
4701 case ARRAY_TYPE:
4703 tree elt;
4704 int i;
4705 int need_to_clear;
4706 tree domain;
4707 tree elttype = TREE_TYPE (type);
4708 int const_bounds_p;
4709 HOST_WIDE_INT minelt = 0;
4710 HOST_WIDE_INT maxelt = 0;
4712 domain = TYPE_DOMAIN (type);
4713 const_bounds_p = (TYPE_MIN_VALUE (domain)
4714 && TYPE_MAX_VALUE (domain)
4715 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4716 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4718 /* If we have constant bounds for the range of the type, get them. */
4719 if (const_bounds_p)
4721 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4722 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4725 /* If the constructor has fewer elements than the array, clear
4726 the whole array first. Similarly if this is static
4727 constructor of a non-BLKmode object. */
4728 if (cleared)
4729 need_to_clear = 0;
4730 else if (REG_P (target) && TREE_STATIC (exp))
4731 need_to_clear = 1;
4732 else
4734 HOST_WIDE_INT count = 0, zero_count = 0;
4735 need_to_clear = ! const_bounds_p;
4737 /* This loop is a more accurate version of the loop in
4738 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4739 is also needed to check for missing elements. */
4740 for (elt = CONSTRUCTOR_ELTS (exp);
4741 elt != NULL_TREE && ! need_to_clear;
4742 elt = TREE_CHAIN (elt))
4744 tree index = TREE_PURPOSE (elt);
4745 HOST_WIDE_INT this_node_count;
4747 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4749 tree lo_index = TREE_OPERAND (index, 0);
4750 tree hi_index = TREE_OPERAND (index, 1);
4752 if (! host_integerp (lo_index, 1)
4753 || ! host_integerp (hi_index, 1))
4755 need_to_clear = 1;
4756 break;
4759 this_node_count = (tree_low_cst (hi_index, 1)
4760 - tree_low_cst (lo_index, 1) + 1);
4762 else
4763 this_node_count = 1;
4765 count += this_node_count;
4766 if (mostly_zeros_p (TREE_VALUE (elt)))
4767 zero_count += this_node_count;
4770 /* Clear the entire array first if there are any missing
4771 elements, or if the incidence of zero elements is >=
4772 75%. */
4773 if (! need_to_clear
4774 && (count < maxelt - minelt + 1
4775 || 4 * zero_count >= 3 * count))
4776 need_to_clear = 1;
4779 if (need_to_clear && size > 0)
4781 if (REG_P (target))
4782 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4783 else
4784 clear_storage (target, GEN_INT (size));
4785 cleared = 1;
4788 if (!cleared && REG_P (target))
4789 /* Inform later passes that the old value is dead. */
4790 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4792 /* Store each element of the constructor into the
4793 corresponding element of TARGET, determined by counting the
4794 elements. */
4795 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4796 elt;
4797 elt = TREE_CHAIN (elt), i++)
4799 enum machine_mode mode;
4800 HOST_WIDE_INT bitsize;
4801 HOST_WIDE_INT bitpos;
4802 int unsignedp;
4803 tree value = TREE_VALUE (elt);
4804 tree index = TREE_PURPOSE (elt);
4805 rtx xtarget = target;
4807 if (cleared && initializer_zerop (value))
4808 continue;
4810 unsignedp = TYPE_UNSIGNED (elttype);
4811 mode = TYPE_MODE (elttype);
4812 if (mode == BLKmode)
4813 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
4814 ? tree_low_cst (TYPE_SIZE (elttype), 1)
4815 : -1);
4816 else
4817 bitsize = GET_MODE_BITSIZE (mode);
4819 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4821 tree lo_index = TREE_OPERAND (index, 0);
4822 tree hi_index = TREE_OPERAND (index, 1);
4823 rtx index_r, pos_rtx;
4824 HOST_WIDE_INT lo, hi, count;
4825 tree position;
4827 /* If the range is constant and "small", unroll the loop. */
4828 if (const_bounds_p
4829 && host_integerp (lo_index, 0)
4830 && host_integerp (hi_index, 0)
4831 && (lo = tree_low_cst (lo_index, 0),
4832 hi = tree_low_cst (hi_index, 0),
4833 count = hi - lo + 1,
4834 (!MEM_P (target)
4835 || count <= 2
4836 || (host_integerp (TYPE_SIZE (elttype), 1)
4837 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
4838 <= 40 * 8)))))
4840 lo -= minelt; hi -= minelt;
4841 for (; lo <= hi; lo++)
4843 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
4845 if (MEM_P (target)
4846 && !MEM_KEEP_ALIAS_SET_P (target)
4847 && TREE_CODE (type) == ARRAY_TYPE
4848 && TYPE_NONALIASED_COMPONENT (type))
4850 target = copy_rtx (target);
4851 MEM_KEEP_ALIAS_SET_P (target) = 1;
4854 store_constructor_field
4855 (target, bitsize, bitpos, mode, value, type, cleared,
4856 get_alias_set (elttype));
4859 else
4861 rtx loop_start = gen_label_rtx ();
4862 rtx loop_end = gen_label_rtx ();
4863 tree exit_cond;
4865 expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4866 unsignedp = TYPE_UNSIGNED (domain);
4868 index = build_decl (VAR_DECL, NULL_TREE, domain);
4870 index_r
4871 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4872 &unsignedp, 0));
4873 SET_DECL_RTL (index, index_r);
4874 store_expr (lo_index, index_r, 0);
4876 /* Build the head of the loop. */
4877 do_pending_stack_adjust ();
4878 emit_label (loop_start);
4880 /* Assign value to element index. */
4881 position
4882 = convert (ssizetype,
4883 fold (build2 (MINUS_EXPR, TREE_TYPE (index),
4884 index, TYPE_MIN_VALUE (domain))));
4885 position = size_binop (MULT_EXPR, position,
4886 convert (ssizetype,
4887 TYPE_SIZE_UNIT (elttype)));
4889 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4890 xtarget = offset_address (target, pos_rtx,
4891 highest_pow2_factor (position));
4892 xtarget = adjust_address (xtarget, mode, 0);
4893 if (TREE_CODE (value) == CONSTRUCTOR)
4894 store_constructor (value, xtarget, cleared,
4895 bitsize / BITS_PER_UNIT);
4896 else
4897 store_expr (value, xtarget, 0);
4899 /* Generate a conditional jump to exit the loop. */
4900 exit_cond = build2 (LT_EXPR, integer_type_node,
4901 index, hi_index);
4902 jumpif (exit_cond, loop_end);
4904 /* Update the loop counter, and jump to the head of
4905 the loop. */
4906 expand_assignment (index,
4907 build2 (PLUS_EXPR, TREE_TYPE (index),
4908 index, integer_one_node));
4910 emit_jump (loop_start);
4912 /* Build the end of the loop. */
4913 emit_label (loop_end);
4916 else if ((index != 0 && ! host_integerp (index, 0))
4917 || ! host_integerp (TYPE_SIZE (elttype), 1))
4919 tree position;
4921 if (index == 0)
4922 index = ssize_int (1);
4924 if (minelt)
4925 index = fold_convert (ssizetype,
4926 fold (build2 (MINUS_EXPR,
4927 TREE_TYPE (index),
4928 index,
4929 TYPE_MIN_VALUE (domain))));
4931 position = size_binop (MULT_EXPR, index,
4932 convert (ssizetype,
4933 TYPE_SIZE_UNIT (elttype)));
4934 xtarget = offset_address (target,
4935 expand_expr (position, 0, VOIDmode, 0),
4936 highest_pow2_factor (position));
4937 xtarget = adjust_address (xtarget, mode, 0);
4938 store_expr (value, xtarget, 0);
4940 else
4942 if (index != 0)
4943 bitpos = ((tree_low_cst (index, 0) - minelt)
4944 * tree_low_cst (TYPE_SIZE (elttype), 1));
4945 else
4946 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
4948 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
4949 && TREE_CODE (type) == ARRAY_TYPE
4950 && TYPE_NONALIASED_COMPONENT (type))
4952 target = copy_rtx (target);
4953 MEM_KEEP_ALIAS_SET_P (target) = 1;
4955 store_constructor_field (target, bitsize, bitpos, mode, value,
4956 type, cleared, get_alias_set (elttype));
4959 break;
4962 case VECTOR_TYPE:
4964 tree elt;
4965 int i;
4966 int need_to_clear;
4967 int icode = 0;
4968 tree elttype = TREE_TYPE (type);
4969 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
4970 enum machine_mode eltmode = TYPE_MODE (elttype);
4971 HOST_WIDE_INT bitsize;
4972 HOST_WIDE_INT bitpos;
4973 rtvec vector = NULL;
4974 unsigned n_elts;
4976 gcc_assert (eltmode != BLKmode);
4978 n_elts = TYPE_VECTOR_SUBPARTS (type);
4979 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
4981 enum machine_mode mode = GET_MODE (target);
4983 icode = (int) vec_init_optab->handlers[mode].insn_code;
4984 if (icode != CODE_FOR_nothing)
4986 unsigned int i;
4988 vector = rtvec_alloc (n_elts);
4989 for (i = 0; i < n_elts; i++)
4990 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
4994 /* If the constructor has fewer elements than the vector,
4995 clear the whole array first. Similarly if this is static
4996 constructor of a non-BLKmode object. */
4997 if (cleared)
4998 need_to_clear = 0;
4999 else if (REG_P (target) && TREE_STATIC (exp))
5000 need_to_clear = 1;
5001 else
5003 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5005 for (elt = CONSTRUCTOR_ELTS (exp);
5006 elt != NULL_TREE;
5007 elt = TREE_CHAIN (elt))
5009 int n_elts_here = tree_low_cst
5010 (int_const_binop (TRUNC_DIV_EXPR,
5011 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt))),
5012 TYPE_SIZE (elttype), 0), 1);
5014 count += n_elts_here;
5015 if (mostly_zeros_p (TREE_VALUE (elt)))
5016 zero_count += n_elts_here;
5019 /* Clear the entire vector first if there are any missing elements,
5020 or if the incidence of zero elements is >= 75%. */
5021 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5024 if (need_to_clear && size > 0 && !vector)
5026 if (REG_P (target))
5027 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5028 else
5029 clear_storage (target, GEN_INT (size));
5030 cleared = 1;
5033 if (!cleared && REG_P (target))
5034 /* Inform later passes that the old value is dead. */
5035 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5037 /* Store each element of the constructor into the corresponding
5038 element of TARGET, determined by counting the elements. */
5039 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
5040 elt;
5041 elt = TREE_CHAIN (elt), i += bitsize / elt_size)
5043 tree value = TREE_VALUE (elt);
5044 tree index = TREE_PURPOSE (elt);
5045 HOST_WIDE_INT eltpos;
5047 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5048 if (cleared && initializer_zerop (value))
5049 continue;
5051 if (index != 0)
5052 eltpos = tree_low_cst (index, 1);
5053 else
5054 eltpos = i;
5056 if (vector)
5058 /* Vector CONSTRUCTORs should only be built from smaller
5059 vectors in the case of BLKmode vectors. */
5060 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5061 RTVEC_ELT (vector, eltpos)
5062 = expand_expr (value, NULL_RTX, VOIDmode, 0);
5064 else
5066 enum machine_mode value_mode =
5067 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5068 ? TYPE_MODE (TREE_TYPE (value))
5069 : eltmode;
5070 bitpos = eltpos * elt_size;
5071 store_constructor_field (target, bitsize, bitpos,
5072 value_mode, value, type,
5073 cleared, get_alias_set (elttype));
5077 if (vector)
5078 emit_insn (GEN_FCN (icode)
5079 (target,
5080 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5081 break;
5084 default:
5085 gcc_unreachable ();
5089 /* Store the value of EXP (an expression tree)
5090 into a subfield of TARGET which has mode MODE and occupies
5091 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5092 If MODE is VOIDmode, it means that we are storing into a bit-field.
5094 Always return const0_rtx unless we have something particular to
5095 return.
5097 TYPE is the type of the underlying object,
5099 ALIAS_SET is the alias set for the destination. This value will
5100 (in general) be different from that for TARGET, since TARGET is a
5101 reference to the containing structure. */
5103 static rtx
5104 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5105 enum machine_mode mode, tree exp, tree type, int alias_set)
5107 HOST_WIDE_INT width_mask = 0;
5109 if (TREE_CODE (exp) == ERROR_MARK)
5110 return const0_rtx;
5112 /* If we have nothing to store, do nothing unless the expression has
5113 side-effects. */
5114 if (bitsize == 0)
5115 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5116 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5117 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5119 /* If we are storing into an unaligned field of an aligned union that is
5120 in a register, we may have the mode of TARGET being an integer mode but
5121 MODE == BLKmode. In that case, get an aligned object whose size and
5122 alignment are the same as TARGET and store TARGET into it (we can avoid
5123 the store if the field being stored is the entire width of TARGET). Then
5124 call ourselves recursively to store the field into a BLKmode version of
5125 that object. Finally, load from the object into TARGET. This is not
5126 very efficient in general, but should only be slightly more expensive
5127 than the otherwise-required unaligned accesses. Perhaps this can be
5128 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5129 twice, once with emit_move_insn and once via store_field. */
5131 if (mode == BLKmode
5132 && (REG_P (target) || GET_CODE (target) == SUBREG))
5134 rtx object = assign_temp (type, 0, 1, 1);
5135 rtx blk_object = adjust_address (object, BLKmode, 0);
5137 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5138 emit_move_insn (object, target);
5140 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5142 emit_move_insn (target, object);
5144 /* We want to return the BLKmode version of the data. */
5145 return blk_object;
5148 if (GET_CODE (target) == CONCAT)
5150 /* We're storing into a struct containing a single __complex. */
5152 gcc_assert (!bitpos);
5153 return store_expr (exp, target, 0);
5156 /* If the structure is in a register or if the component
5157 is a bit field, we cannot use addressing to access it.
5158 Use bit-field techniques or SUBREG to store in it. */
5160 if (mode == VOIDmode
5161 || (mode != BLKmode && ! direct_store[(int) mode]
5162 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5163 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5164 || REG_P (target)
5165 || GET_CODE (target) == SUBREG
5166 /* If the field isn't aligned enough to store as an ordinary memref,
5167 store it as a bit field. */
5168 || (mode != BLKmode
5169 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5170 || bitpos % GET_MODE_ALIGNMENT (mode))
5171 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5172 || (bitpos % BITS_PER_UNIT != 0)))
5173 /* If the RHS and field are a constant size and the size of the
5174 RHS isn't the same size as the bitfield, we must use bitfield
5175 operations. */
5176 || (bitsize >= 0
5177 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5178 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5180 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
5182 /* If BITSIZE is narrower than the size of the type of EXP
5183 we will be narrowing TEMP. Normally, what's wanted are the
5184 low-order bits. However, if EXP's type is a record and this is
5185 big-endian machine, we want the upper BITSIZE bits. */
5186 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5187 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5188 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5189 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5190 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5191 - bitsize),
5192 NULL_RTX, 1);
5194 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5195 MODE. */
5196 if (mode != VOIDmode && mode != BLKmode
5197 && mode != TYPE_MODE (TREE_TYPE (exp)))
5198 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5200 /* If the modes of TARGET and TEMP are both BLKmode, both
5201 must be in memory and BITPOS must be aligned on a byte
5202 boundary. If so, we simply do a block copy. */
5203 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5205 gcc_assert (MEM_P (target) && MEM_P (temp)
5206 && !(bitpos % BITS_PER_UNIT));
5208 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5209 emit_block_move (target, temp,
5210 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5211 / BITS_PER_UNIT),
5212 BLOCK_OP_NORMAL);
5214 return const0_rtx;
5217 /* Store the value in the bitfield. */
5218 store_bit_field (target, bitsize, bitpos, mode, temp);
5220 return const0_rtx;
5222 else
5224 /* Now build a reference to just the desired component. */
5225 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5227 if (to_rtx == target)
5228 to_rtx = copy_rtx (to_rtx);
5230 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5231 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5232 set_mem_alias_set (to_rtx, alias_set);
5234 return store_expr (exp, to_rtx, 0);
5238 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5239 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5240 codes and find the ultimate containing object, which we return.
5242 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5243 bit position, and *PUNSIGNEDP to the signedness of the field.
5244 If the position of the field is variable, we store a tree
5245 giving the variable offset (in units) in *POFFSET.
5246 This offset is in addition to the bit position.
5247 If the position is not variable, we store 0 in *POFFSET.
5249 If any of the extraction expressions is volatile,
5250 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5252 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5253 is a mode that can be used to access the field. In that case, *PBITSIZE
5254 is redundant.
5256 If the field describes a variable-sized object, *PMODE is set to
5257 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5258 this case, but the address of the object can be found.
5260 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5261 look through nodes that serve as markers of a greater alignment than
5262 the one that can be deduced from the expression. These nodes make it
5263 possible for front-ends to prevent temporaries from being created by
5264 the middle-end on alignment considerations. For that purpose, the
5265 normal operating mode at high-level is to always pass FALSE so that
5266 the ultimate containing object is really returned; moreover, the
5267 associated predicate handled_component_p will always return TRUE
5268 on these nodes, thus indicating that they are essentially handled
5269 by get_inner_reference. TRUE should only be passed when the caller
5270 is scanning the expression in order to build another representation
5271 and specifically knows how to handle these nodes; as such, this is
5272 the normal operating mode in the RTL expanders. */
5274 tree
5275 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5276 HOST_WIDE_INT *pbitpos, tree *poffset,
5277 enum machine_mode *pmode, int *punsignedp,
5278 int *pvolatilep, bool keep_aligning)
5280 tree size_tree = 0;
5281 enum machine_mode mode = VOIDmode;
5282 tree offset = size_zero_node;
5283 tree bit_offset = bitsize_zero_node;
5284 tree tem;
5286 /* First get the mode, signedness, and size. We do this from just the
5287 outermost expression. */
5288 if (TREE_CODE (exp) == COMPONENT_REF)
5290 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5291 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5292 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5294 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5296 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5298 size_tree = TREE_OPERAND (exp, 1);
5299 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5301 else
5303 mode = TYPE_MODE (TREE_TYPE (exp));
5304 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5306 if (mode == BLKmode)
5307 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5308 else
5309 *pbitsize = GET_MODE_BITSIZE (mode);
5312 if (size_tree != 0)
5314 if (! host_integerp (size_tree, 1))
5315 mode = BLKmode, *pbitsize = -1;
5316 else
5317 *pbitsize = tree_low_cst (size_tree, 1);
5320 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5321 and find the ultimate containing object. */
5322 while (1)
5324 switch (TREE_CODE (exp))
5326 case BIT_FIELD_REF:
5327 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5328 TREE_OPERAND (exp, 2));
5329 break;
5331 case COMPONENT_REF:
5333 tree field = TREE_OPERAND (exp, 1);
5334 tree this_offset = component_ref_field_offset (exp);
5336 /* If this field hasn't been filled in yet, don't go past it.
5337 This should only happen when folding expressions made during
5338 type construction. */
5339 if (this_offset == 0)
5340 break;
5342 offset = size_binop (PLUS_EXPR, offset, this_offset);
5343 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5344 DECL_FIELD_BIT_OFFSET (field));
5346 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5348 break;
5350 case ARRAY_REF:
5351 case ARRAY_RANGE_REF:
5353 tree index = TREE_OPERAND (exp, 1);
5354 tree low_bound = array_ref_low_bound (exp);
5355 tree unit_size = array_ref_element_size (exp);
5357 /* We assume all arrays have sizes that are a multiple of a byte.
5358 First subtract the lower bound, if any, in the type of the
5359 index, then convert to sizetype and multiply by the size of
5360 the array element. */
5361 if (! integer_zerop (low_bound))
5362 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
5363 index, low_bound));
5365 offset = size_binop (PLUS_EXPR, offset,
5366 size_binop (MULT_EXPR,
5367 convert (sizetype, index),
5368 unit_size));
5370 break;
5372 case REALPART_EXPR:
5373 break;
5375 case IMAGPART_EXPR:
5376 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5377 bitsize_int (*pbitsize));
5378 break;
5380 case VIEW_CONVERT_EXPR:
5381 if (keep_aligning && STRICT_ALIGNMENT
5382 && (TYPE_ALIGN (TREE_TYPE (exp))
5383 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5384 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5385 < BIGGEST_ALIGNMENT)
5386 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5387 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5388 goto done;
5389 break;
5391 default:
5392 goto done;
5395 /* If any reference in the chain is volatile, the effect is volatile. */
5396 if (TREE_THIS_VOLATILE (exp))
5397 *pvolatilep = 1;
5399 exp = TREE_OPERAND (exp, 0);
5401 done:
5403 /* If OFFSET is constant, see if we can return the whole thing as a
5404 constant bit position. Otherwise, split it up. */
5405 if (host_integerp (offset, 0)
5406 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5407 bitsize_unit_node))
5408 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5409 && host_integerp (tem, 0))
5410 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5411 else
5412 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5414 *pmode = mode;
5415 return exp;
5418 /* Return a tree of sizetype representing the size, in bytes, of the element
5419 of EXP, an ARRAY_REF. */
5421 tree
5422 array_ref_element_size (tree exp)
5424 tree aligned_size = TREE_OPERAND (exp, 3);
5425 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5427 /* If a size was specified in the ARRAY_REF, it's the size measured
5428 in alignment units of the element type. So multiply by that value. */
5429 if (aligned_size)
5431 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5432 sizetype from another type of the same width and signedness. */
5433 if (TREE_TYPE (aligned_size) != sizetype)
5434 aligned_size = fold_convert (sizetype, aligned_size);
5435 return size_binop (MULT_EXPR, aligned_size,
5436 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5439 /* Otherwise, take the size from that of the element type. Substitute
5440 any PLACEHOLDER_EXPR that we have. */
5441 else
5442 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5445 /* Return a tree representing the lower bound of the array mentioned in
5446 EXP, an ARRAY_REF. */
5448 tree
5449 array_ref_low_bound (tree exp)
5451 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5453 /* If a lower bound is specified in EXP, use it. */
5454 if (TREE_OPERAND (exp, 2))
5455 return TREE_OPERAND (exp, 2);
5457 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5458 substituting for a PLACEHOLDER_EXPR as needed. */
5459 if (domain_type && TYPE_MIN_VALUE (domain_type))
5460 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5462 /* Otherwise, return a zero of the appropriate type. */
5463 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5466 /* Return a tree representing the upper bound of the array mentioned in
5467 EXP, an ARRAY_REF. */
5469 tree
5470 array_ref_up_bound (tree exp)
5472 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5474 /* If there is a domain type and it has an upper bound, use it, substituting
5475 for a PLACEHOLDER_EXPR as needed. */
5476 if (domain_type && TYPE_MAX_VALUE (domain_type))
5477 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5479 /* Otherwise fail. */
5480 return NULL_TREE;
5483 /* Return a tree representing the offset, in bytes, of the field referenced
5484 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5486 tree
5487 component_ref_field_offset (tree exp)
5489 tree aligned_offset = TREE_OPERAND (exp, 2);
5490 tree field = TREE_OPERAND (exp, 1);
5492 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5493 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5494 value. */
5495 if (aligned_offset)
5497 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5498 sizetype from another type of the same width and signedness. */
5499 if (TREE_TYPE (aligned_offset) != sizetype)
5500 aligned_offset = fold_convert (sizetype, aligned_offset);
5501 return size_binop (MULT_EXPR, aligned_offset,
5502 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5505 /* Otherwise, take the offset from that of the field. Substitute
5506 any PLACEHOLDER_EXPR that we have. */
5507 else
5508 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5511 /* Return 1 if T is an expression that get_inner_reference handles. */
5514 handled_component_p (tree t)
5516 switch (TREE_CODE (t))
5518 case BIT_FIELD_REF:
5519 case COMPONENT_REF:
5520 case ARRAY_REF:
5521 case ARRAY_RANGE_REF:
5522 case VIEW_CONVERT_EXPR:
5523 case REALPART_EXPR:
5524 case IMAGPART_EXPR:
5525 return 1;
5527 default:
5528 return 0;
5532 /* Given an rtx VALUE that may contain additions and multiplications, return
5533 an equivalent value that just refers to a register, memory, or constant.
5534 This is done by generating instructions to perform the arithmetic and
5535 returning a pseudo-register containing the value.
5537 The returned value may be a REG, SUBREG, MEM or constant. */
5540 force_operand (rtx value, rtx target)
5542 rtx op1, op2;
5543 /* Use subtarget as the target for operand 0 of a binary operation. */
5544 rtx subtarget = get_subtarget (target);
5545 enum rtx_code code = GET_CODE (value);
5547 /* Check for subreg applied to an expression produced by loop optimizer. */
5548 if (code == SUBREG
5549 && !REG_P (SUBREG_REG (value))
5550 && !MEM_P (SUBREG_REG (value)))
5552 value = simplify_gen_subreg (GET_MODE (value),
5553 force_reg (GET_MODE (SUBREG_REG (value)),
5554 force_operand (SUBREG_REG (value),
5555 NULL_RTX)),
5556 GET_MODE (SUBREG_REG (value)),
5557 SUBREG_BYTE (value));
5558 code = GET_CODE (value);
5561 /* Check for a PIC address load. */
5562 if ((code == PLUS || code == MINUS)
5563 && XEXP (value, 0) == pic_offset_table_rtx
5564 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5565 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5566 || GET_CODE (XEXP (value, 1)) == CONST))
5568 if (!subtarget)
5569 subtarget = gen_reg_rtx (GET_MODE (value));
5570 emit_move_insn (subtarget, value);
5571 return subtarget;
5574 if (code == ZERO_EXTEND || code == SIGN_EXTEND)
5576 if (!target)
5577 target = gen_reg_rtx (GET_MODE (value));
5578 convert_move (target, force_operand (XEXP (value, 0), NULL),
5579 code == ZERO_EXTEND);
5580 return target;
5583 if (ARITHMETIC_P (value))
5585 op2 = XEXP (value, 1);
5586 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5587 subtarget = 0;
5588 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5590 code = PLUS;
5591 op2 = negate_rtx (GET_MODE (value), op2);
5594 /* Check for an addition with OP2 a constant integer and our first
5595 operand a PLUS of a virtual register and something else. In that
5596 case, we want to emit the sum of the virtual register and the
5597 constant first and then add the other value. This allows virtual
5598 register instantiation to simply modify the constant rather than
5599 creating another one around this addition. */
5600 if (code == PLUS && GET_CODE (op2) == CONST_INT
5601 && GET_CODE (XEXP (value, 0)) == PLUS
5602 && REG_P (XEXP (XEXP (value, 0), 0))
5603 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5604 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5606 rtx temp = expand_simple_binop (GET_MODE (value), code,
5607 XEXP (XEXP (value, 0), 0), op2,
5608 subtarget, 0, OPTAB_LIB_WIDEN);
5609 return expand_simple_binop (GET_MODE (value), code, temp,
5610 force_operand (XEXP (XEXP (value,
5611 0), 1), 0),
5612 target, 0, OPTAB_LIB_WIDEN);
5615 op1 = force_operand (XEXP (value, 0), subtarget);
5616 op2 = force_operand (op2, NULL_RTX);
5617 switch (code)
5619 case MULT:
5620 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5621 case DIV:
5622 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5623 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5624 target, 1, OPTAB_LIB_WIDEN);
5625 else
5626 return expand_divmod (0,
5627 FLOAT_MODE_P (GET_MODE (value))
5628 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5629 GET_MODE (value), op1, op2, target, 0);
5630 break;
5631 case MOD:
5632 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5633 target, 0);
5634 break;
5635 case UDIV:
5636 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5637 target, 1);
5638 break;
5639 case UMOD:
5640 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5641 target, 1);
5642 break;
5643 case ASHIFTRT:
5644 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5645 target, 0, OPTAB_LIB_WIDEN);
5646 break;
5647 default:
5648 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5649 target, 1, OPTAB_LIB_WIDEN);
5652 if (UNARY_P (value))
5654 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5655 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5658 #ifdef INSN_SCHEDULING
5659 /* On machines that have insn scheduling, we want all memory reference to be
5660 explicit, so we need to deal with such paradoxical SUBREGs. */
5661 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5662 && (GET_MODE_SIZE (GET_MODE (value))
5663 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5664 value
5665 = simplify_gen_subreg (GET_MODE (value),
5666 force_reg (GET_MODE (SUBREG_REG (value)),
5667 force_operand (SUBREG_REG (value),
5668 NULL_RTX)),
5669 GET_MODE (SUBREG_REG (value)),
5670 SUBREG_BYTE (value));
5671 #endif
5673 return value;
5676 /* Subroutine of expand_expr: return nonzero iff there is no way that
5677 EXP can reference X, which is being modified. TOP_P is nonzero if this
5678 call is going to be used to determine whether we need a temporary
5679 for EXP, as opposed to a recursive call to this function.
5681 It is always safe for this routine to return zero since it merely
5682 searches for optimization opportunities. */
5685 safe_from_p (rtx x, tree exp, int top_p)
5687 rtx exp_rtl = 0;
5688 int i, nops;
5690 if (x == 0
5691 /* If EXP has varying size, we MUST use a target since we currently
5692 have no way of allocating temporaries of variable size
5693 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5694 So we assume here that something at a higher level has prevented a
5695 clash. This is somewhat bogus, but the best we can do. Only
5696 do this when X is BLKmode and when we are at the top level. */
5697 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5698 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5699 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5700 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5701 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5702 != INTEGER_CST)
5703 && GET_MODE (x) == BLKmode)
5704 /* If X is in the outgoing argument area, it is always safe. */
5705 || (MEM_P (x)
5706 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5707 || (GET_CODE (XEXP (x, 0)) == PLUS
5708 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5709 return 1;
5711 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5712 find the underlying pseudo. */
5713 if (GET_CODE (x) == SUBREG)
5715 x = SUBREG_REG (x);
5716 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5717 return 0;
5720 /* Now look at our tree code and possibly recurse. */
5721 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5723 case tcc_declaration:
5724 exp_rtl = DECL_RTL_IF_SET (exp);
5725 break;
5727 case tcc_constant:
5728 return 1;
5730 case tcc_exceptional:
5731 if (TREE_CODE (exp) == TREE_LIST)
5733 while (1)
5735 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
5736 return 0;
5737 exp = TREE_CHAIN (exp);
5738 if (!exp)
5739 return 1;
5740 if (TREE_CODE (exp) != TREE_LIST)
5741 return safe_from_p (x, exp, 0);
5744 else if (TREE_CODE (exp) == ERROR_MARK)
5745 return 1; /* An already-visited SAVE_EXPR? */
5746 else
5747 return 0;
5749 case tcc_statement:
5750 /* The only case we look at here is the DECL_INITIAL inside a
5751 DECL_EXPR. */
5752 return (TREE_CODE (exp) != DECL_EXPR
5753 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
5754 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
5755 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
5757 case tcc_binary:
5758 case tcc_comparison:
5759 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
5760 return 0;
5761 /* Fall through. */
5763 case tcc_unary:
5764 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5766 case tcc_expression:
5767 case tcc_reference:
5768 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5769 the expression. If it is set, we conflict iff we are that rtx or
5770 both are in memory. Otherwise, we check all operands of the
5771 expression recursively. */
5773 switch (TREE_CODE (exp))
5775 case ADDR_EXPR:
5776 /* If the operand is static or we are static, we can't conflict.
5777 Likewise if we don't conflict with the operand at all. */
5778 if (staticp (TREE_OPERAND (exp, 0))
5779 || TREE_STATIC (exp)
5780 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
5781 return 1;
5783 /* Otherwise, the only way this can conflict is if we are taking
5784 the address of a DECL a that address if part of X, which is
5785 very rare. */
5786 exp = TREE_OPERAND (exp, 0);
5787 if (DECL_P (exp))
5789 if (!DECL_RTL_SET_P (exp)
5790 || !MEM_P (DECL_RTL (exp)))
5791 return 0;
5792 else
5793 exp_rtl = XEXP (DECL_RTL (exp), 0);
5795 break;
5797 case MISALIGNED_INDIRECT_REF:
5798 case ALIGN_INDIRECT_REF:
5799 case INDIRECT_REF:
5800 if (MEM_P (x)
5801 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
5802 get_alias_set (exp)))
5803 return 0;
5804 break;
5806 case CALL_EXPR:
5807 /* Assume that the call will clobber all hard registers and
5808 all of memory. */
5809 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5810 || MEM_P (x))
5811 return 0;
5812 break;
5814 case WITH_CLEANUP_EXPR:
5815 case CLEANUP_POINT_EXPR:
5816 /* Lowered by gimplify.c. */
5817 gcc_unreachable ();
5819 case SAVE_EXPR:
5820 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5822 default:
5823 break;
5826 /* If we have an rtx, we do not need to scan our operands. */
5827 if (exp_rtl)
5828 break;
5830 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
5831 for (i = 0; i < nops; i++)
5832 if (TREE_OPERAND (exp, i) != 0
5833 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5834 return 0;
5836 /* If this is a language-specific tree code, it may require
5837 special handling. */
5838 if ((unsigned int) TREE_CODE (exp)
5839 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5840 && !lang_hooks.safe_from_p (x, exp))
5841 return 0;
5842 break;
5844 case tcc_type:
5845 /* Should never get a type here. */
5846 gcc_unreachable ();
5849 /* If we have an rtl, find any enclosed object. Then see if we conflict
5850 with it. */
5851 if (exp_rtl)
5853 if (GET_CODE (exp_rtl) == SUBREG)
5855 exp_rtl = SUBREG_REG (exp_rtl);
5856 if (REG_P (exp_rtl)
5857 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5858 return 0;
5861 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5862 are memory and they conflict. */
5863 return ! (rtx_equal_p (x, exp_rtl)
5864 || (MEM_P (x) && MEM_P (exp_rtl)
5865 && true_dependence (exp_rtl, VOIDmode, x,
5866 rtx_addr_varies_p)));
5869 /* If we reach here, it is safe. */
5870 return 1;
5874 /* Return the highest power of two that EXP is known to be a multiple of.
5875 This is used in updating alignment of MEMs in array references. */
5877 static unsigned HOST_WIDE_INT
5878 highest_pow2_factor (tree exp)
5880 unsigned HOST_WIDE_INT c0, c1;
5882 switch (TREE_CODE (exp))
5884 case INTEGER_CST:
5885 /* We can find the lowest bit that's a one. If the low
5886 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5887 We need to handle this case since we can find it in a COND_EXPR,
5888 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5889 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5890 later ICE. */
5891 if (TREE_CONSTANT_OVERFLOW (exp))
5892 return BIGGEST_ALIGNMENT;
5893 else
5895 /* Note: tree_low_cst is intentionally not used here,
5896 we don't care about the upper bits. */
5897 c0 = TREE_INT_CST_LOW (exp);
5898 c0 &= -c0;
5899 return c0 ? c0 : BIGGEST_ALIGNMENT;
5901 break;
5903 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
5904 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5905 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5906 return MIN (c0, c1);
5908 case MULT_EXPR:
5909 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5910 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5911 return c0 * c1;
5913 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
5914 case CEIL_DIV_EXPR:
5915 if (integer_pow2p (TREE_OPERAND (exp, 1))
5916 && host_integerp (TREE_OPERAND (exp, 1), 1))
5918 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5919 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
5920 return MAX (1, c0 / c1);
5922 break;
5924 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
5925 case SAVE_EXPR:
5926 return highest_pow2_factor (TREE_OPERAND (exp, 0));
5928 case COMPOUND_EXPR:
5929 return highest_pow2_factor (TREE_OPERAND (exp, 1));
5931 case COND_EXPR:
5932 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5933 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
5934 return MIN (c0, c1);
5936 default:
5937 break;
5940 return 1;
5943 /* Similar, except that the alignment requirements of TARGET are
5944 taken into account. Assume it is at least as aligned as its
5945 type, unless it is a COMPONENT_REF in which case the layout of
5946 the structure gives the alignment. */
5948 static unsigned HOST_WIDE_INT
5949 highest_pow2_factor_for_target (tree target, tree exp)
5951 unsigned HOST_WIDE_INT target_align, factor;
5953 factor = highest_pow2_factor (exp);
5954 if (TREE_CODE (target) == COMPONENT_REF)
5955 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
5956 else
5957 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
5958 return MAX (factor, target_align);
5961 /* Expands variable VAR. */
5963 void
5964 expand_var (tree var)
5966 if (DECL_EXTERNAL (var))
5967 return;
5969 if (TREE_STATIC (var))
5970 /* If this is an inlined copy of a static local variable,
5971 look up the original decl. */
5972 var = DECL_ORIGIN (var);
5974 if (TREE_STATIC (var)
5975 ? !TREE_ASM_WRITTEN (var)
5976 : !DECL_RTL_SET_P (var))
5978 if (TREE_CODE (var) == VAR_DECL && DECL_VALUE_EXPR (var))
5979 /* Should be ignored. */;
5980 else if (lang_hooks.expand_decl (var))
5981 /* OK. */;
5982 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
5983 expand_decl (var);
5984 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
5985 rest_of_decl_compilation (var, 0, 0);
5986 else
5987 /* No expansion needed. */
5988 gcc_assert (TREE_CODE (var) == TYPE_DECL
5989 || TREE_CODE (var) == CONST_DECL
5990 || TREE_CODE (var) == FUNCTION_DECL
5991 || TREE_CODE (var) == LABEL_DECL);
5995 /* Subroutine of expand_expr. Expand the two operands of a binary
5996 expression EXP0 and EXP1 placing the results in OP0 and OP1.
5997 The value may be stored in TARGET if TARGET is nonzero. The
5998 MODIFIER argument is as documented by expand_expr. */
6000 static void
6001 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6002 enum expand_modifier modifier)
6004 if (! safe_from_p (target, exp1, 1))
6005 target = 0;
6006 if (operand_equal_p (exp0, exp1, 0))
6008 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6009 *op1 = copy_rtx (*op0);
6011 else
6013 /* If we need to preserve evaluation order, copy exp0 into its own
6014 temporary variable so that it can't be clobbered by exp1. */
6015 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6016 exp0 = save_expr (exp0);
6017 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6018 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6023 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6024 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6026 static rtx
6027 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6028 enum expand_modifier modifier)
6030 rtx result, subtarget;
6031 tree inner, offset;
6032 HOST_WIDE_INT bitsize, bitpos;
6033 int volatilep, unsignedp;
6034 enum machine_mode mode1;
6036 /* If we are taking the address of a constant and are at the top level,
6037 we have to use output_constant_def since we can't call force_const_mem
6038 at top level. */
6039 /* ??? This should be considered a front-end bug. We should not be
6040 generating ADDR_EXPR of something that isn't an LVALUE. The only
6041 exception here is STRING_CST. */
6042 if (TREE_CODE (exp) == CONSTRUCTOR
6043 || CONSTANT_CLASS_P (exp))
6044 return XEXP (output_constant_def (exp, 0), 0);
6046 /* Everything must be something allowed by is_gimple_addressable. */
6047 switch (TREE_CODE (exp))
6049 case INDIRECT_REF:
6050 /* This case will happen via recursion for &a->b. */
6051 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, EXPAND_NORMAL);
6053 case CONST_DECL:
6054 /* Recurse and make the output_constant_def clause above handle this. */
6055 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6056 tmode, modifier);
6058 case REALPART_EXPR:
6059 /* The real part of the complex number is always first, therefore
6060 the address is the same as the address of the parent object. */
6061 offset = 0;
6062 bitpos = 0;
6063 inner = TREE_OPERAND (exp, 0);
6064 break;
6066 case IMAGPART_EXPR:
6067 /* The imaginary part of the complex number is always second.
6068 The expression is therefore always offset by the size of the
6069 scalar type. */
6070 offset = 0;
6071 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6072 inner = TREE_OPERAND (exp, 0);
6073 break;
6075 default:
6076 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6077 expand_expr, as that can have various side effects; LABEL_DECLs for
6078 example, may not have their DECL_RTL set yet. Assume language
6079 specific tree nodes can be expanded in some interesting way. */
6080 if (DECL_P (exp)
6081 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6083 result = expand_expr (exp, target, tmode,
6084 modifier == EXPAND_INITIALIZER
6085 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6087 /* If the DECL isn't in memory, then the DECL wasn't properly
6088 marked TREE_ADDRESSABLE, which will be either a front-end
6089 or a tree optimizer bug. */
6090 gcc_assert (GET_CODE (result) == MEM);
6091 result = XEXP (result, 0);
6093 /* ??? Is this needed anymore? */
6094 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6096 assemble_external (exp);
6097 TREE_USED (exp) = 1;
6100 if (modifier != EXPAND_INITIALIZER
6101 && modifier != EXPAND_CONST_ADDRESS)
6102 result = force_operand (result, target);
6103 return result;
6106 /* Pass FALSE as the last argument to get_inner_reference although
6107 we are expanding to RTL. The rationale is that we know how to
6108 handle "aligning nodes" here: we can just bypass them because
6109 they won't change the final object whose address will be returned
6110 (they actually exist only for that purpose). */
6111 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6112 &mode1, &unsignedp, &volatilep, false);
6113 break;
6116 /* We must have made progress. */
6117 gcc_assert (inner != exp);
6119 subtarget = offset || bitpos ? NULL_RTX : target;
6120 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6122 if (offset)
6124 rtx tmp;
6126 if (modifier != EXPAND_NORMAL)
6127 result = force_operand (result, NULL);
6128 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6130 result = convert_memory_address (tmode, result);
6131 tmp = convert_memory_address (tmode, tmp);
6133 if (modifier == EXPAND_SUM)
6134 result = gen_rtx_PLUS (tmode, result, tmp);
6135 else
6137 subtarget = bitpos ? NULL_RTX : target;
6138 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6139 1, OPTAB_LIB_WIDEN);
6143 if (bitpos)
6145 /* Someone beforehand should have rejected taking the address
6146 of such an object. */
6147 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6149 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6150 if (modifier < EXPAND_SUM)
6151 result = force_operand (result, target);
6154 return result;
6157 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6158 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6160 static rtx
6161 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6162 enum expand_modifier modifier)
6164 enum machine_mode rmode;
6165 rtx result;
6167 /* Target mode of VOIDmode says "whatever's natural". */
6168 if (tmode == VOIDmode)
6169 tmode = TYPE_MODE (TREE_TYPE (exp));
6171 /* We can get called with some Weird Things if the user does silliness
6172 like "(short) &a". In that case, convert_memory_address won't do
6173 the right thing, so ignore the given target mode. */
6174 if (tmode != Pmode && tmode != ptr_mode)
6175 tmode = Pmode;
6177 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6178 tmode, modifier);
6180 /* Despite expand_expr claims concerning ignoring TMODE when not
6181 strictly convenient, stuff breaks if we don't honor it. Note
6182 that combined with the above, we only do this for pointer modes. */
6183 rmode = GET_MODE (result);
6184 if (rmode == VOIDmode)
6185 rmode = tmode;
6186 if (rmode != tmode)
6187 result = convert_memory_address (tmode, result);
6189 return result;
6193 /* expand_expr: generate code for computing expression EXP.
6194 An rtx for the computed value is returned. The value is never null.
6195 In the case of a void EXP, const0_rtx is returned.
6197 The value may be stored in TARGET if TARGET is nonzero.
6198 TARGET is just a suggestion; callers must assume that
6199 the rtx returned may not be the same as TARGET.
6201 If TARGET is CONST0_RTX, it means that the value will be ignored.
6203 If TMODE is not VOIDmode, it suggests generating the
6204 result in mode TMODE. But this is done only when convenient.
6205 Otherwise, TMODE is ignored and the value generated in its natural mode.
6206 TMODE is just a suggestion; callers must assume that
6207 the rtx returned may not have mode TMODE.
6209 Note that TARGET may have neither TMODE nor MODE. In that case, it
6210 probably will not be used.
6212 If MODIFIER is EXPAND_SUM then when EXP is an addition
6213 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6214 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6215 products as above, or REG or MEM, or constant.
6216 Ordinarily in such cases we would output mul or add instructions
6217 and then return a pseudo reg containing the sum.
6219 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6220 it also marks a label as absolutely required (it can't be dead).
6221 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6222 This is used for outputting expressions used in initializers.
6224 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6225 with a constant address even if that address is not normally legitimate.
6226 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6228 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6229 a call parameter. Such targets require special care as we haven't yet
6230 marked TARGET so that it's safe from being trashed by libcalls. We
6231 don't want to use TARGET for anything but the final result;
6232 Intermediate values must go elsewhere. Additionally, calls to
6233 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6235 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6236 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6237 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6238 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6239 recursively. */
6241 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6242 enum expand_modifier, rtx *);
6245 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6246 enum expand_modifier modifier, rtx *alt_rtl)
6248 int rn = -1;
6249 rtx ret, last = NULL;
6251 /* Handle ERROR_MARK before anybody tries to access its type. */
6252 if (TREE_CODE (exp) == ERROR_MARK
6253 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6255 ret = CONST0_RTX (tmode);
6256 return ret ? ret : const0_rtx;
6259 if (flag_non_call_exceptions)
6261 rn = lookup_stmt_eh_region (exp);
6262 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6263 if (rn >= 0)
6264 last = get_last_insn ();
6267 /* If this is an expression of some kind and it has an associated line
6268 number, then emit the line number before expanding the expression.
6270 We need to save and restore the file and line information so that
6271 errors discovered during expansion are emitted with the right
6272 information. It would be better of the diagnostic routines
6273 used the file/line information embedded in the tree nodes rather
6274 than globals. */
6275 if (cfun && EXPR_HAS_LOCATION (exp))
6277 location_t saved_location = input_location;
6278 input_location = EXPR_LOCATION (exp);
6279 emit_line_note (input_location);
6281 /* Record where the insns produced belong. */
6282 record_block_change (TREE_BLOCK (exp));
6284 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6286 input_location = saved_location;
6288 else
6290 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6293 /* If using non-call exceptions, mark all insns that may trap.
6294 expand_call() will mark CALL_INSNs before we get to this code,
6295 but it doesn't handle libcalls, and these may trap. */
6296 if (rn >= 0)
6298 rtx insn;
6299 for (insn = next_real_insn (last); insn;
6300 insn = next_real_insn (insn))
6302 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6303 /* If we want exceptions for non-call insns, any
6304 may_trap_p instruction may throw. */
6305 && GET_CODE (PATTERN (insn)) != CLOBBER
6306 && GET_CODE (PATTERN (insn)) != USE
6307 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6309 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6310 REG_NOTES (insn));
6315 return ret;
6318 static rtx
6319 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6320 enum expand_modifier modifier, rtx *alt_rtl)
6322 rtx op0, op1, temp;
6323 tree type = TREE_TYPE (exp);
6324 int unsignedp;
6325 enum machine_mode mode;
6326 enum tree_code code = TREE_CODE (exp);
6327 optab this_optab;
6328 rtx subtarget, original_target;
6329 int ignore;
6330 tree context;
6331 bool reduce_bit_field = false;
6332 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6333 ? reduce_to_bit_field_precision ((expr), \
6334 target, \
6335 type) \
6336 : (expr))
6338 mode = TYPE_MODE (type);
6339 unsignedp = TYPE_UNSIGNED (type);
6340 if (lang_hooks.reduce_bit_field_operations
6341 && TREE_CODE (type) == INTEGER_TYPE
6342 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6344 /* An operation in what may be a bit-field type needs the
6345 result to be reduced to the precision of the bit-field type,
6346 which is narrower than that of the type's mode. */
6347 reduce_bit_field = true;
6348 if (modifier == EXPAND_STACK_PARM)
6349 target = 0;
6352 /* Use subtarget as the target for operand 0 of a binary operation. */
6353 subtarget = get_subtarget (target);
6354 original_target = target;
6355 ignore = (target == const0_rtx
6356 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6357 || code == CONVERT_EXPR || code == COND_EXPR
6358 || code == VIEW_CONVERT_EXPR)
6359 && TREE_CODE (type) == VOID_TYPE));
6361 /* If we are going to ignore this result, we need only do something
6362 if there is a side-effect somewhere in the expression. If there
6363 is, short-circuit the most common cases here. Note that we must
6364 not call expand_expr with anything but const0_rtx in case this
6365 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6367 if (ignore)
6369 if (! TREE_SIDE_EFFECTS (exp))
6370 return const0_rtx;
6372 /* Ensure we reference a volatile object even if value is ignored, but
6373 don't do this if all we are doing is taking its address. */
6374 if (TREE_THIS_VOLATILE (exp)
6375 && TREE_CODE (exp) != FUNCTION_DECL
6376 && mode != VOIDmode && mode != BLKmode
6377 && modifier != EXPAND_CONST_ADDRESS)
6379 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6380 if (MEM_P (temp))
6381 temp = copy_to_reg (temp);
6382 return const0_rtx;
6385 if (TREE_CODE_CLASS (code) == tcc_unary
6386 || code == COMPONENT_REF || code == INDIRECT_REF)
6387 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6388 modifier);
6390 else if (TREE_CODE_CLASS (code) == tcc_binary
6391 || TREE_CODE_CLASS (code) == tcc_comparison
6392 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6394 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6395 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6396 return const0_rtx;
6398 else if (code == BIT_FIELD_REF)
6400 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6401 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6402 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6403 return const0_rtx;
6406 target = 0;
6409 /* If will do cse, generate all results into pseudo registers
6410 since 1) that allows cse to find more things
6411 and 2) otherwise cse could produce an insn the machine
6412 cannot support. An exception is a CONSTRUCTOR into a multi-word
6413 MEM: that's much more likely to be most efficient into the MEM.
6414 Another is a CALL_EXPR which must return in memory. */
6416 if (! cse_not_expected && mode != BLKmode && target
6417 && (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
6418 && ! (code == CONSTRUCTOR && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
6419 && ! (code == CALL_EXPR && aggregate_value_p (exp, exp)))
6420 target = 0;
6422 switch (code)
6424 case LABEL_DECL:
6426 tree function = decl_function_context (exp);
6428 temp = label_rtx (exp);
6429 temp = gen_rtx_LABEL_REF (Pmode, temp);
6431 if (function != current_function_decl
6432 && function != 0)
6433 LABEL_REF_NONLOCAL_P (temp) = 1;
6435 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6436 return temp;
6439 case SSA_NAME:
6440 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6441 NULL);
6443 case PARM_DECL:
6444 case VAR_DECL:
6445 /* If a static var's type was incomplete when the decl was written,
6446 but the type is complete now, lay out the decl now. */
6447 if (DECL_SIZE (exp) == 0
6448 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6449 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6450 layout_decl (exp, 0);
6452 /* ... fall through ... */
6454 case FUNCTION_DECL:
6455 case RESULT_DECL:
6456 gcc_assert (DECL_RTL (exp));
6458 /* Ensure variable marked as used even if it doesn't go through
6459 a parser. If it hasn't be used yet, write out an external
6460 definition. */
6461 if (! TREE_USED (exp))
6463 assemble_external (exp);
6464 TREE_USED (exp) = 1;
6467 /* Show we haven't gotten RTL for this yet. */
6468 temp = 0;
6470 /* Variables inherited from containing functions should have
6471 been lowered by this point. */
6472 context = decl_function_context (exp);
6473 gcc_assert (!context
6474 || context == current_function_decl
6475 || TREE_STATIC (exp)
6476 /* ??? C++ creates functions that are not TREE_STATIC. */
6477 || TREE_CODE (exp) == FUNCTION_DECL);
6479 /* This is the case of an array whose size is to be determined
6480 from its initializer, while the initializer is still being parsed.
6481 See expand_decl. */
6483 if (MEM_P (DECL_RTL (exp))
6484 && REG_P (XEXP (DECL_RTL (exp), 0)))
6485 temp = validize_mem (DECL_RTL (exp));
6487 /* If DECL_RTL is memory, we are in the normal case and either
6488 the address is not valid or it is not a register and -fforce-addr
6489 is specified, get the address into a register. */
6491 else if (MEM_P (DECL_RTL (exp))
6492 && modifier != EXPAND_CONST_ADDRESS
6493 && modifier != EXPAND_SUM
6494 && modifier != EXPAND_INITIALIZER
6495 && (! memory_address_p (DECL_MODE (exp),
6496 XEXP (DECL_RTL (exp), 0))
6497 || (flag_force_addr
6498 && !REG_P (XEXP (DECL_RTL (exp), 0)))))
6500 if (alt_rtl)
6501 *alt_rtl = DECL_RTL (exp);
6502 temp = replace_equiv_address (DECL_RTL (exp),
6503 copy_rtx (XEXP (DECL_RTL (exp), 0)));
6506 /* If we got something, return it. But first, set the alignment
6507 if the address is a register. */
6508 if (temp != 0)
6510 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6511 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6513 return temp;
6516 /* If the mode of DECL_RTL does not match that of the decl, it
6517 must be a promoted value. We return a SUBREG of the wanted mode,
6518 but mark it so that we know that it was already extended. */
6520 if (REG_P (DECL_RTL (exp))
6521 && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp))
6523 enum machine_mode pmode;
6525 /* Get the signedness used for this variable. Ensure we get the
6526 same mode we got when the variable was declared. */
6527 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6528 (TREE_CODE (exp) == RESULT_DECL ? 1 : 0));
6529 gcc_assert (GET_MODE (DECL_RTL (exp)) == pmode);
6531 temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
6532 SUBREG_PROMOTED_VAR_P (temp) = 1;
6533 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6534 return temp;
6537 return DECL_RTL (exp);
6539 case INTEGER_CST:
6540 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6541 TREE_INT_CST_HIGH (exp), mode);
6543 /* ??? If overflow is set, fold will have done an incomplete job,
6544 which can result in (plus xx (const_int 0)), which can get
6545 simplified by validate_replace_rtx during virtual register
6546 instantiation, which can result in unrecognizable insns.
6547 Avoid this by forcing all overflows into registers. */
6548 if (TREE_CONSTANT_OVERFLOW (exp)
6549 && modifier != EXPAND_INITIALIZER)
6550 temp = force_reg (mode, temp);
6552 return temp;
6554 case VECTOR_CST:
6555 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6556 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6557 return const_vector_from_tree (exp);
6558 else
6559 return expand_expr (build1 (CONSTRUCTOR, TREE_TYPE (exp),
6560 TREE_VECTOR_CST_ELTS (exp)),
6561 ignore ? const0_rtx : target, tmode, modifier);
6563 case CONST_DECL:
6564 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6566 case REAL_CST:
6567 /* If optimized, generate immediate CONST_DOUBLE
6568 which will be turned into memory by reload if necessary.
6570 We used to force a register so that loop.c could see it. But
6571 this does not allow gen_* patterns to perform optimizations with
6572 the constants. It also produces two insns in cases like "x = 1.0;".
6573 On most machines, floating-point constants are not permitted in
6574 many insns, so we'd end up copying it to a register in any case.
6576 Now, we do the copying in expand_binop, if appropriate. */
6577 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6578 TYPE_MODE (TREE_TYPE (exp)));
6580 case COMPLEX_CST:
6581 /* Handle evaluating a complex constant in a CONCAT target. */
6582 if (original_target && GET_CODE (original_target) == CONCAT)
6584 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6585 rtx rtarg, itarg;
6587 rtarg = XEXP (original_target, 0);
6588 itarg = XEXP (original_target, 1);
6590 /* Move the real and imaginary parts separately. */
6591 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6592 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6594 if (op0 != rtarg)
6595 emit_move_insn (rtarg, op0);
6596 if (op1 != itarg)
6597 emit_move_insn (itarg, op1);
6599 return original_target;
6602 /* ... fall through ... */
6604 case STRING_CST:
6605 temp = output_constant_def (exp, 1);
6607 /* temp contains a constant address.
6608 On RISC machines where a constant address isn't valid,
6609 make some insns to get that address into a register. */
6610 if (modifier != EXPAND_CONST_ADDRESS
6611 && modifier != EXPAND_INITIALIZER
6612 && modifier != EXPAND_SUM
6613 && (! memory_address_p (mode, XEXP (temp, 0))
6614 || flag_force_addr))
6615 return replace_equiv_address (temp,
6616 copy_rtx (XEXP (temp, 0)));
6617 return temp;
6619 case SAVE_EXPR:
6621 tree val = TREE_OPERAND (exp, 0);
6622 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6624 if (!SAVE_EXPR_RESOLVED_P (exp))
6626 /* We can indeed still hit this case, typically via builtin
6627 expanders calling save_expr immediately before expanding
6628 something. Assume this means that we only have to deal
6629 with non-BLKmode values. */
6630 gcc_assert (GET_MODE (ret) != BLKmode);
6632 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6633 DECL_ARTIFICIAL (val) = 1;
6634 DECL_IGNORED_P (val) = 1;
6635 TREE_OPERAND (exp, 0) = val;
6636 SAVE_EXPR_RESOLVED_P (exp) = 1;
6638 if (!CONSTANT_P (ret))
6639 ret = copy_to_reg (ret);
6640 SET_DECL_RTL (val, ret);
6643 return ret;
6646 case GOTO_EXPR:
6647 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6648 expand_goto (TREE_OPERAND (exp, 0));
6649 else
6650 expand_computed_goto (TREE_OPERAND (exp, 0));
6651 return const0_rtx;
6653 case CONSTRUCTOR:
6654 /* If we don't need the result, just ensure we evaluate any
6655 subexpressions. */
6656 if (ignore)
6658 tree elt;
6660 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6661 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0);
6663 return const0_rtx;
6666 /* All elts simple constants => refer to a constant in memory. But
6667 if this is a non-BLKmode mode, let it store a field at a time
6668 since that should make a CONST_INT or CONST_DOUBLE when we
6669 fold. Likewise, if we have a target we can use, it is best to
6670 store directly into the target unless the type is large enough
6671 that memcpy will be used. If we are making an initializer and
6672 all operands are constant, put it in memory as well.
6674 FIXME: Avoid trying to fill vector constructors piece-meal.
6675 Output them with output_constant_def below unless we're sure
6676 they're zeros. This should go away when vector initializers
6677 are treated like VECTOR_CST instead of arrays.
6679 else if ((TREE_STATIC (exp)
6680 && ((mode == BLKmode
6681 && ! (target != 0 && safe_from_p (target, exp, 1)))
6682 || TREE_ADDRESSABLE (exp)
6683 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6684 && (! MOVE_BY_PIECES_P
6685 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6686 TYPE_ALIGN (type)))
6687 && ! mostly_zeros_p (exp))))
6688 || ((modifier == EXPAND_INITIALIZER
6689 || modifier == EXPAND_CONST_ADDRESS)
6690 && TREE_CONSTANT (exp)))
6692 rtx constructor = output_constant_def (exp, 1);
6694 if (modifier != EXPAND_CONST_ADDRESS
6695 && modifier != EXPAND_INITIALIZER
6696 && modifier != EXPAND_SUM)
6697 constructor = validize_mem (constructor);
6699 return constructor;
6701 else
6703 /* Handle calls that pass values in multiple non-contiguous
6704 locations. The Irix 6 ABI has examples of this. */
6705 if (target == 0 || ! safe_from_p (target, exp, 1)
6706 || GET_CODE (target) == PARALLEL
6707 || modifier == EXPAND_STACK_PARM)
6708 target
6709 = assign_temp (build_qualified_type (type,
6710 (TYPE_QUALS (type)
6711 | (TREE_READONLY (exp)
6712 * TYPE_QUAL_CONST))),
6713 0, TREE_ADDRESSABLE (exp), 1);
6715 store_constructor (exp, target, 0, int_expr_size (exp));
6716 return target;
6719 case MISALIGNED_INDIRECT_REF:
6720 case ALIGN_INDIRECT_REF:
6721 case INDIRECT_REF:
6723 tree exp1 = TREE_OPERAND (exp, 0);
6724 tree orig;
6726 if (modifier != EXPAND_WRITE)
6728 tree t;
6730 t = fold_read_from_constant_string (exp);
6731 if (t)
6732 return expand_expr (t, target, tmode, modifier);
6735 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6736 op0 = memory_address (mode, op0);
6738 if (code == ALIGN_INDIRECT_REF)
6740 int align = TYPE_ALIGN_UNIT (type);
6741 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
6742 op0 = memory_address (mode, op0);
6745 temp = gen_rtx_MEM (mode, op0);
6747 orig = REF_ORIGINAL (exp);
6748 if (!orig)
6749 orig = exp;
6750 set_mem_attributes (temp, orig, 0);
6752 /* Resolve the misalignment now, so that we don't have to remember
6753 to resolve it later. Of course, this only works for reads. */
6754 /* ??? When we get around to supporting writes, we'll have to handle
6755 this in store_expr directly. The vectorizer isn't generating
6756 those yet, however. */
6757 if (code == MISALIGNED_INDIRECT_REF)
6759 int icode;
6760 rtx reg, insn;
6762 gcc_assert (modifier == EXPAND_NORMAL);
6764 /* The vectorizer should have already checked the mode. */
6765 icode = movmisalign_optab->handlers[mode].insn_code;
6766 gcc_assert (icode != CODE_FOR_nothing);
6768 /* We've already validated the memory, and we're creating a
6769 new pseudo destination. The predicates really can't fail. */
6770 reg = gen_reg_rtx (mode);
6772 /* Nor can the insn generator. */
6773 insn = GEN_FCN (icode) (reg, temp);
6774 emit_insn (insn);
6776 return reg;
6779 return temp;
6782 case ARRAY_REF:
6785 tree array = TREE_OPERAND (exp, 0);
6786 tree index = TREE_OPERAND (exp, 1);
6788 /* Fold an expression like: "foo"[2].
6789 This is not done in fold so it won't happen inside &.
6790 Don't fold if this is for wide characters since it's too
6791 difficult to do correctly and this is a very rare case. */
6793 if (modifier != EXPAND_CONST_ADDRESS
6794 && modifier != EXPAND_INITIALIZER
6795 && modifier != EXPAND_MEMORY)
6797 tree t = fold_read_from_constant_string (exp);
6799 if (t)
6800 return expand_expr (t, target, tmode, modifier);
6803 /* If this is a constant index into a constant array,
6804 just get the value from the array. Handle both the cases when
6805 we have an explicit constructor and when our operand is a variable
6806 that was declared const. */
6808 if (modifier != EXPAND_CONST_ADDRESS
6809 && modifier != EXPAND_INITIALIZER
6810 && modifier != EXPAND_MEMORY
6811 && TREE_CODE (array) == CONSTRUCTOR
6812 && ! TREE_SIDE_EFFECTS (array)
6813 && TREE_CODE (index) == INTEGER_CST)
6815 tree elem;
6817 for (elem = CONSTRUCTOR_ELTS (array);
6818 (elem && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6819 elem = TREE_CHAIN (elem))
6822 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6823 return expand_expr (fold (TREE_VALUE (elem)), target, tmode,
6824 modifier);
6827 else if (optimize >= 1
6828 && modifier != EXPAND_CONST_ADDRESS
6829 && modifier != EXPAND_INITIALIZER
6830 && modifier != EXPAND_MEMORY
6831 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6832 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6833 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
6834 && targetm.binds_local_p (array))
6836 if (TREE_CODE (index) == INTEGER_CST)
6838 tree init = DECL_INITIAL (array);
6840 if (TREE_CODE (init) == CONSTRUCTOR)
6842 tree elem;
6844 for (elem = CONSTRUCTOR_ELTS (init);
6845 (elem
6846 && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6847 elem = TREE_CHAIN (elem))
6850 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6851 return expand_expr (fold (TREE_VALUE (elem)), target,
6852 tmode, modifier);
6854 else if (TREE_CODE (init) == STRING_CST
6855 && 0 > compare_tree_int (index,
6856 TREE_STRING_LENGTH (init)))
6858 tree type = TREE_TYPE (TREE_TYPE (init));
6859 enum machine_mode mode = TYPE_MODE (type);
6861 if (GET_MODE_CLASS (mode) == MODE_INT
6862 && GET_MODE_SIZE (mode) == 1)
6863 return gen_int_mode (TREE_STRING_POINTER (init)
6864 [TREE_INT_CST_LOW (index)], mode);
6869 goto normal_inner_ref;
6871 case COMPONENT_REF:
6872 /* If the operand is a CONSTRUCTOR, we can just extract the
6873 appropriate field if it is present. */
6874 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
6876 tree elt;
6878 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6879 elt = TREE_CHAIN (elt))
6880 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6881 /* We can normally use the value of the field in the
6882 CONSTRUCTOR. However, if this is a bitfield in
6883 an integral mode that we can fit in a HOST_WIDE_INT,
6884 we must mask only the number of bits in the bitfield,
6885 since this is done implicitly by the constructor. If
6886 the bitfield does not meet either of those conditions,
6887 we can't do this optimization. */
6888 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6889 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6890 == MODE_INT)
6891 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6892 <= HOST_BITS_PER_WIDE_INT))))
6894 if (DECL_BIT_FIELD (TREE_PURPOSE (elt))
6895 && modifier == EXPAND_STACK_PARM)
6896 target = 0;
6897 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6898 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6900 HOST_WIDE_INT bitsize
6901 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
6902 enum machine_mode imode
6903 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6905 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6907 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6908 op0 = expand_and (imode, op0, op1, target);
6910 else
6912 tree count
6913 = build_int_cst (NULL_TREE,
6914 GET_MODE_BITSIZE (imode) - bitsize);
6916 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6917 target, 0);
6918 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6919 target, 0);
6923 return op0;
6926 goto normal_inner_ref;
6928 case BIT_FIELD_REF:
6929 case ARRAY_RANGE_REF:
6930 normal_inner_ref:
6932 enum machine_mode mode1;
6933 HOST_WIDE_INT bitsize, bitpos;
6934 tree offset;
6935 int volatilep = 0;
6936 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6937 &mode1, &unsignedp, &volatilep, true);
6938 rtx orig_op0;
6940 /* If we got back the original object, something is wrong. Perhaps
6941 we are evaluating an expression too early. In any event, don't
6942 infinitely recurse. */
6943 gcc_assert (tem != exp);
6945 /* If TEM's type is a union of variable size, pass TARGET to the inner
6946 computation, since it will need a temporary and TARGET is known
6947 to have to do. This occurs in unchecked conversion in Ada. */
6949 orig_op0 = op0
6950 = expand_expr (tem,
6951 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6952 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6953 != INTEGER_CST)
6954 && modifier != EXPAND_STACK_PARM
6955 ? target : NULL_RTX),
6956 VOIDmode,
6957 (modifier == EXPAND_INITIALIZER
6958 || modifier == EXPAND_CONST_ADDRESS
6959 || modifier == EXPAND_STACK_PARM)
6960 ? modifier : EXPAND_NORMAL);
6962 /* If this is a constant, put it into a register if it is a
6963 legitimate constant and OFFSET is 0 and memory if it isn't. */
6964 if (CONSTANT_P (op0))
6966 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6967 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6968 && offset == 0)
6969 op0 = force_reg (mode, op0);
6970 else
6971 op0 = validize_mem (force_const_mem (mode, op0));
6974 /* Otherwise, if this object not in memory and we either have an
6975 offset or a BLKmode result, put it there. This case can't occur in
6976 C, but can in Ada if we have unchecked conversion of an expression
6977 from a scalar type to an array or record type or for an
6978 ARRAY_RANGE_REF whose type is BLKmode. */
6979 else if (!MEM_P (op0)
6980 && (offset != 0
6981 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
6983 tree nt = build_qualified_type (TREE_TYPE (tem),
6984 (TYPE_QUALS (TREE_TYPE (tem))
6985 | TYPE_QUAL_CONST));
6986 rtx memloc = assign_temp (nt, 1, 1, 1);
6988 emit_move_insn (memloc, op0);
6989 op0 = memloc;
6992 if (offset != 0)
6994 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
6995 EXPAND_SUM);
6997 gcc_assert (MEM_P (op0));
6999 #ifdef POINTERS_EXTEND_UNSIGNED
7000 if (GET_MODE (offset_rtx) != Pmode)
7001 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7002 #else
7003 if (GET_MODE (offset_rtx) != ptr_mode)
7004 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7005 #endif
7007 if (GET_MODE (op0) == BLKmode
7008 /* A constant address in OP0 can have VOIDmode, we must
7009 not try to call force_reg in that case. */
7010 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7011 && bitsize != 0
7012 && (bitpos % bitsize) == 0
7013 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7014 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7016 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7017 bitpos = 0;
7020 op0 = offset_address (op0, offset_rtx,
7021 highest_pow2_factor (offset));
7024 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7025 record its alignment as BIGGEST_ALIGNMENT. */
7026 if (MEM_P (op0) && bitpos == 0 && offset != 0
7027 && is_aligning_offset (offset, tem))
7028 set_mem_align (op0, BIGGEST_ALIGNMENT);
7030 /* Don't forget about volatility even if this is a bitfield. */
7031 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7033 if (op0 == orig_op0)
7034 op0 = copy_rtx (op0);
7036 MEM_VOLATILE_P (op0) = 1;
7039 /* The following code doesn't handle CONCAT.
7040 Assume only bitpos == 0 can be used for CONCAT, due to
7041 one element arrays having the same mode as its element. */
7042 if (GET_CODE (op0) == CONCAT)
7044 gcc_assert (bitpos == 0
7045 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7046 return op0;
7049 /* In cases where an aligned union has an unaligned object
7050 as a field, we might be extracting a BLKmode value from
7051 an integer-mode (e.g., SImode) object. Handle this case
7052 by doing the extract into an object as wide as the field
7053 (which we know to be the width of a basic mode), then
7054 storing into memory, and changing the mode to BLKmode. */
7055 if (mode1 == VOIDmode
7056 || REG_P (op0) || GET_CODE (op0) == SUBREG
7057 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7058 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7059 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7060 && modifier != EXPAND_CONST_ADDRESS
7061 && modifier != EXPAND_INITIALIZER)
7062 /* If the field isn't aligned enough to fetch as a memref,
7063 fetch it as a bit field. */
7064 || (mode1 != BLKmode
7065 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7066 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7067 || (MEM_P (op0)
7068 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7069 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7070 && ((modifier == EXPAND_CONST_ADDRESS
7071 || modifier == EXPAND_INITIALIZER)
7072 ? STRICT_ALIGNMENT
7073 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7074 || (bitpos % BITS_PER_UNIT != 0)))
7075 /* If the type and the field are a constant size and the
7076 size of the type isn't the same size as the bitfield,
7077 we must use bitfield operations. */
7078 || (bitsize >= 0
7079 && TYPE_SIZE (TREE_TYPE (exp))
7080 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7081 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7082 bitsize)))
7084 enum machine_mode ext_mode = mode;
7086 if (ext_mode == BLKmode
7087 && ! (target != 0 && MEM_P (op0)
7088 && MEM_P (target)
7089 && bitpos % BITS_PER_UNIT == 0))
7090 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7092 if (ext_mode == BLKmode)
7094 if (target == 0)
7095 target = assign_temp (type, 0, 1, 1);
7097 if (bitsize == 0)
7098 return target;
7100 /* In this case, BITPOS must start at a byte boundary and
7101 TARGET, if specified, must be a MEM. */
7102 gcc_assert (MEM_P (op0)
7103 && (!target || MEM_P (target))
7104 && !(bitpos % BITS_PER_UNIT));
7106 emit_block_move (target,
7107 adjust_address (op0, VOIDmode,
7108 bitpos / BITS_PER_UNIT),
7109 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7110 / BITS_PER_UNIT),
7111 (modifier == EXPAND_STACK_PARM
7112 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7114 return target;
7117 op0 = validize_mem (op0);
7119 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7120 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7122 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7123 (modifier == EXPAND_STACK_PARM
7124 ? NULL_RTX : target),
7125 ext_mode, ext_mode);
7127 /* If the result is a record type and BITSIZE is narrower than
7128 the mode of OP0, an integral mode, and this is a big endian
7129 machine, we must put the field into the high-order bits. */
7130 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7131 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7132 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7133 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7134 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7135 - bitsize),
7136 op0, 1);
7138 /* If the result type is BLKmode, store the data into a temporary
7139 of the appropriate type, but with the mode corresponding to the
7140 mode for the data we have (op0's mode). It's tempting to make
7141 this a constant type, since we know it's only being stored once,
7142 but that can cause problems if we are taking the address of this
7143 COMPONENT_REF because the MEM of any reference via that address
7144 will have flags corresponding to the type, which will not
7145 necessarily be constant. */
7146 if (mode == BLKmode)
7148 rtx new
7149 = assign_stack_temp_for_type
7150 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7152 emit_move_insn (new, op0);
7153 op0 = copy_rtx (new);
7154 PUT_MODE (op0, BLKmode);
7155 set_mem_attributes (op0, exp, 1);
7158 return op0;
7161 /* If the result is BLKmode, use that to access the object
7162 now as well. */
7163 if (mode == BLKmode)
7164 mode1 = BLKmode;
7166 /* Get a reference to just this component. */
7167 if (modifier == EXPAND_CONST_ADDRESS
7168 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7169 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7170 else
7171 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7173 if (op0 == orig_op0)
7174 op0 = copy_rtx (op0);
7176 set_mem_attributes (op0, exp, 0);
7177 if (REG_P (XEXP (op0, 0)))
7178 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7180 MEM_VOLATILE_P (op0) |= volatilep;
7181 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7182 || modifier == EXPAND_CONST_ADDRESS
7183 || modifier == EXPAND_INITIALIZER)
7184 return op0;
7185 else if (target == 0)
7186 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7188 convert_move (target, op0, unsignedp);
7189 return target;
7192 case OBJ_TYPE_REF:
7193 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7195 case CALL_EXPR:
7196 /* Check for a built-in function. */
7197 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7198 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7199 == FUNCTION_DECL)
7200 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7202 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7203 == BUILT_IN_FRONTEND)
7204 return lang_hooks.expand_expr (exp, original_target,
7205 tmode, modifier,
7206 alt_rtl);
7207 else
7208 return expand_builtin (exp, target, subtarget, tmode, ignore);
7211 return expand_call (exp, target, ignore);
7213 case NON_LVALUE_EXPR:
7214 case NOP_EXPR:
7215 case CONVERT_EXPR:
7216 if (TREE_OPERAND (exp, 0) == error_mark_node)
7217 return const0_rtx;
7219 if (TREE_CODE (type) == UNION_TYPE)
7221 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7223 /* If both input and output are BLKmode, this conversion isn't doing
7224 anything except possibly changing memory attribute. */
7225 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7227 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7228 modifier);
7230 result = copy_rtx (result);
7231 set_mem_attributes (result, exp, 0);
7232 return result;
7235 if (target == 0)
7237 if (TYPE_MODE (type) != BLKmode)
7238 target = gen_reg_rtx (TYPE_MODE (type));
7239 else
7240 target = assign_temp (type, 0, 1, 1);
7243 if (MEM_P (target))
7244 /* Store data into beginning of memory target. */
7245 store_expr (TREE_OPERAND (exp, 0),
7246 adjust_address (target, TYPE_MODE (valtype), 0),
7247 modifier == EXPAND_STACK_PARM);
7249 else
7251 gcc_assert (REG_P (target));
7253 /* Store this field into a union of the proper type. */
7254 store_field (target,
7255 MIN ((int_size_in_bytes (TREE_TYPE
7256 (TREE_OPERAND (exp, 0)))
7257 * BITS_PER_UNIT),
7258 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7259 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7260 type, 0);
7263 /* Return the entire union. */
7264 return target;
7267 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7269 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7270 modifier);
7272 /* If the signedness of the conversion differs and OP0 is
7273 a promoted SUBREG, clear that indication since we now
7274 have to do the proper extension. */
7275 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7276 && GET_CODE (op0) == SUBREG)
7277 SUBREG_PROMOTED_VAR_P (op0) = 0;
7279 return REDUCE_BIT_FIELD (op0);
7282 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7283 if (GET_MODE (op0) == mode)
7286 /* If OP0 is a constant, just convert it into the proper mode. */
7287 else if (CONSTANT_P (op0))
7289 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7290 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7292 if (modifier == EXPAND_INITIALIZER)
7293 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7294 subreg_lowpart_offset (mode,
7295 inner_mode));
7296 else
7297 op0= convert_modes (mode, inner_mode, op0,
7298 TYPE_UNSIGNED (inner_type));
7301 else if (modifier == EXPAND_INITIALIZER)
7302 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7304 else if (target == 0)
7305 op0 = convert_to_mode (mode, op0,
7306 TYPE_UNSIGNED (TREE_TYPE
7307 (TREE_OPERAND (exp, 0))));
7308 else
7310 convert_move (target, op0,
7311 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7312 op0 = target;
7315 return REDUCE_BIT_FIELD (op0);
7317 case VIEW_CONVERT_EXPR:
7318 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7320 /* If the input and output modes are both the same, we are done.
7321 Otherwise, if neither mode is BLKmode and both are integral and within
7322 a word, we can use gen_lowpart. If neither is true, make sure the
7323 operand is in memory and convert the MEM to the new mode. */
7324 if (TYPE_MODE (type) == GET_MODE (op0))
7326 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7327 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7328 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
7329 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD
7330 && GET_MODE_SIZE (GET_MODE (op0)) <= UNITS_PER_WORD)
7331 op0 = gen_lowpart (TYPE_MODE (type), op0);
7332 else if (!MEM_P (op0))
7334 /* If the operand is not a MEM, force it into memory. Since we
7335 are going to be be changing the mode of the MEM, don't call
7336 force_const_mem for constants because we don't allow pool
7337 constants to change mode. */
7338 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7340 gcc_assert (!TREE_ADDRESSABLE (exp));
7342 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7343 target
7344 = assign_stack_temp_for_type
7345 (TYPE_MODE (inner_type),
7346 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7348 emit_move_insn (target, op0);
7349 op0 = target;
7352 /* At this point, OP0 is in the correct mode. If the output type is such
7353 that the operand is known to be aligned, indicate that it is.
7354 Otherwise, we need only be concerned about alignment for non-BLKmode
7355 results. */
7356 if (MEM_P (op0))
7358 op0 = copy_rtx (op0);
7360 if (TYPE_ALIGN_OK (type))
7361 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7362 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7363 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7365 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7366 HOST_WIDE_INT temp_size
7367 = MAX (int_size_in_bytes (inner_type),
7368 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7369 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7370 temp_size, 0, type);
7371 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7373 gcc_assert (!TREE_ADDRESSABLE (exp));
7375 if (GET_MODE (op0) == BLKmode)
7376 emit_block_move (new_with_op0_mode, op0,
7377 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7378 (modifier == EXPAND_STACK_PARM
7379 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7380 else
7381 emit_move_insn (new_with_op0_mode, op0);
7383 op0 = new;
7386 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7389 return op0;
7391 case PLUS_EXPR:
7392 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7393 something else, make sure we add the register to the constant and
7394 then to the other thing. This case can occur during strength
7395 reduction and doing it this way will produce better code if the
7396 frame pointer or argument pointer is eliminated.
7398 fold-const.c will ensure that the constant is always in the inner
7399 PLUS_EXPR, so the only case we need to do anything about is if
7400 sp, ap, or fp is our second argument, in which case we must swap
7401 the innermost first argument and our second argument. */
7403 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7404 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7405 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7406 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7407 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7408 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7410 tree t = TREE_OPERAND (exp, 1);
7412 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7413 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7416 /* If the result is to be ptr_mode and we are adding an integer to
7417 something, we might be forming a constant. So try to use
7418 plus_constant. If it produces a sum and we can't accept it,
7419 use force_operand. This allows P = &ARR[const] to generate
7420 efficient code on machines where a SYMBOL_REF is not a valid
7421 address.
7423 If this is an EXPAND_SUM call, always return the sum. */
7424 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7425 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7427 if (modifier == EXPAND_STACK_PARM)
7428 target = 0;
7429 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7430 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7431 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7433 rtx constant_part;
7435 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7436 EXPAND_SUM);
7437 /* Use immed_double_const to ensure that the constant is
7438 truncated according to the mode of OP1, then sign extended
7439 to a HOST_WIDE_INT. Using the constant directly can result
7440 in non-canonical RTL in a 64x32 cross compile. */
7441 constant_part
7442 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7443 (HOST_WIDE_INT) 0,
7444 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7445 op1 = plus_constant (op1, INTVAL (constant_part));
7446 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7447 op1 = force_operand (op1, target);
7448 return REDUCE_BIT_FIELD (op1);
7451 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7452 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7453 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7455 rtx constant_part;
7457 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7458 (modifier == EXPAND_INITIALIZER
7459 ? EXPAND_INITIALIZER : EXPAND_SUM));
7460 if (! CONSTANT_P (op0))
7462 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7463 VOIDmode, modifier);
7464 /* Return a PLUS if modifier says it's OK. */
7465 if (modifier == EXPAND_SUM
7466 || modifier == EXPAND_INITIALIZER)
7467 return simplify_gen_binary (PLUS, mode, op0, op1);
7468 goto binop2;
7470 /* Use immed_double_const to ensure that the constant is
7471 truncated according to the mode of OP1, then sign extended
7472 to a HOST_WIDE_INT. Using the constant directly can result
7473 in non-canonical RTL in a 64x32 cross compile. */
7474 constant_part
7475 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7476 (HOST_WIDE_INT) 0,
7477 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7478 op0 = plus_constant (op0, INTVAL (constant_part));
7479 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7480 op0 = force_operand (op0, target);
7481 return REDUCE_BIT_FIELD (op0);
7485 /* No sense saving up arithmetic to be done
7486 if it's all in the wrong mode to form part of an address.
7487 And force_operand won't know whether to sign-extend or
7488 zero-extend. */
7489 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7490 || mode != ptr_mode)
7492 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7493 subtarget, &op0, &op1, 0);
7494 if (op0 == const0_rtx)
7495 return op1;
7496 if (op1 == const0_rtx)
7497 return op0;
7498 goto binop2;
7501 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7502 subtarget, &op0, &op1, modifier);
7503 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7505 case MINUS_EXPR:
7506 /* For initializers, we are allowed to return a MINUS of two
7507 symbolic constants. Here we handle all cases when both operands
7508 are constant. */
7509 /* Handle difference of two symbolic constants,
7510 for the sake of an initializer. */
7511 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7512 && really_constant_p (TREE_OPERAND (exp, 0))
7513 && really_constant_p (TREE_OPERAND (exp, 1)))
7515 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7516 NULL_RTX, &op0, &op1, modifier);
7518 /* If the last operand is a CONST_INT, use plus_constant of
7519 the negated constant. Else make the MINUS. */
7520 if (GET_CODE (op1) == CONST_INT)
7521 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7522 else
7523 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7526 /* No sense saving up arithmetic to be done
7527 if it's all in the wrong mode to form part of an address.
7528 And force_operand won't know whether to sign-extend or
7529 zero-extend. */
7530 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7531 || mode != ptr_mode)
7532 goto binop;
7534 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7535 subtarget, &op0, &op1, modifier);
7537 /* Convert A - const to A + (-const). */
7538 if (GET_CODE (op1) == CONST_INT)
7540 op1 = negate_rtx (mode, op1);
7541 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7544 goto binop2;
7546 case MULT_EXPR:
7547 /* If first operand is constant, swap them.
7548 Thus the following special case checks need only
7549 check the second operand. */
7550 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7552 tree t1 = TREE_OPERAND (exp, 0);
7553 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7554 TREE_OPERAND (exp, 1) = t1;
7557 /* Attempt to return something suitable for generating an
7558 indexed address, for machines that support that. */
7560 if (modifier == EXPAND_SUM && mode == ptr_mode
7561 && host_integerp (TREE_OPERAND (exp, 1), 0))
7563 tree exp1 = TREE_OPERAND (exp, 1);
7565 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7566 EXPAND_SUM);
7568 if (!REG_P (op0))
7569 op0 = force_operand (op0, NULL_RTX);
7570 if (!REG_P (op0))
7571 op0 = copy_to_mode_reg (mode, op0);
7573 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7574 gen_int_mode (tree_low_cst (exp1, 0),
7575 TYPE_MODE (TREE_TYPE (exp1)))));
7578 if (modifier == EXPAND_STACK_PARM)
7579 target = 0;
7581 /* Check for multiplying things that have been extended
7582 from a narrower type. If this machine supports multiplying
7583 in that narrower type with a result in the desired type,
7584 do it that way, and avoid the explicit type-conversion. */
7585 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7586 && TREE_CODE (type) == INTEGER_TYPE
7587 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7588 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7589 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7590 && int_fits_type_p (TREE_OPERAND (exp, 1),
7591 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7592 /* Don't use a widening multiply if a shift will do. */
7593 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7594 > HOST_BITS_PER_WIDE_INT)
7595 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7597 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7598 && (TYPE_PRECISION (TREE_TYPE
7599 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7600 == TYPE_PRECISION (TREE_TYPE
7601 (TREE_OPERAND
7602 (TREE_OPERAND (exp, 0), 0))))
7603 /* If both operands are extended, they must either both
7604 be zero-extended or both be sign-extended. */
7605 && (TYPE_UNSIGNED (TREE_TYPE
7606 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7607 == TYPE_UNSIGNED (TREE_TYPE
7608 (TREE_OPERAND
7609 (TREE_OPERAND (exp, 0), 0)))))))
7611 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7612 enum machine_mode innermode = TYPE_MODE (op0type);
7613 bool zextend_p = TYPE_UNSIGNED (op0type);
7614 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7615 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7617 if (mode == GET_MODE_WIDER_MODE (innermode))
7619 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7621 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7622 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7623 TREE_OPERAND (exp, 1),
7624 NULL_RTX, &op0, &op1, 0);
7625 else
7626 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7627 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7628 NULL_RTX, &op0, &op1, 0);
7629 goto binop3;
7631 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7632 && innermode == word_mode)
7634 rtx htem, hipart;
7635 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7636 NULL_RTX, VOIDmode, 0);
7637 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7638 op1 = convert_modes (innermode, mode,
7639 expand_expr (TREE_OPERAND (exp, 1),
7640 NULL_RTX, VOIDmode, 0),
7641 unsignedp);
7642 else
7643 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7644 NULL_RTX, VOIDmode, 0);
7645 temp = expand_binop (mode, other_optab, op0, op1, target,
7646 unsignedp, OPTAB_LIB_WIDEN);
7647 hipart = gen_highpart (innermode, temp);
7648 htem = expand_mult_highpart_adjust (innermode, hipart,
7649 op0, op1, hipart,
7650 zextend_p);
7651 if (htem != hipart)
7652 emit_move_insn (hipart, htem);
7653 return REDUCE_BIT_FIELD (temp);
7657 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7658 subtarget, &op0, &op1, 0);
7659 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7661 case TRUNC_DIV_EXPR:
7662 case FLOOR_DIV_EXPR:
7663 case CEIL_DIV_EXPR:
7664 case ROUND_DIV_EXPR:
7665 case EXACT_DIV_EXPR:
7666 if (modifier == EXPAND_STACK_PARM)
7667 target = 0;
7668 /* Possible optimization: compute the dividend with EXPAND_SUM
7669 then if the divisor is constant can optimize the case
7670 where some terms of the dividend have coeffs divisible by it. */
7671 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7672 subtarget, &op0, &op1, 0);
7673 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7675 case RDIV_EXPR:
7676 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7677 expensive divide. If not, combine will rebuild the original
7678 computation. */
7679 if (flag_unsafe_math_optimizations && optimize && !optimize_size
7680 && TREE_CODE (type) == REAL_TYPE
7681 && !real_onep (TREE_OPERAND (exp, 0)))
7682 return expand_expr (build2 (MULT_EXPR, type, TREE_OPERAND (exp, 0),
7683 build2 (RDIV_EXPR, type,
7684 build_real (type, dconst1),
7685 TREE_OPERAND (exp, 1))),
7686 target, tmode, modifier);
7688 goto binop;
7690 case TRUNC_MOD_EXPR:
7691 case FLOOR_MOD_EXPR:
7692 case CEIL_MOD_EXPR:
7693 case ROUND_MOD_EXPR:
7694 if (modifier == EXPAND_STACK_PARM)
7695 target = 0;
7696 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7697 subtarget, &op0, &op1, 0);
7698 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7700 case FIX_ROUND_EXPR:
7701 case FIX_FLOOR_EXPR:
7702 case FIX_CEIL_EXPR:
7703 gcc_unreachable (); /* Not used for C. */
7705 case FIX_TRUNC_EXPR:
7706 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7707 if (target == 0 || modifier == EXPAND_STACK_PARM)
7708 target = gen_reg_rtx (mode);
7709 expand_fix (target, op0, unsignedp);
7710 return target;
7712 case FLOAT_EXPR:
7713 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7714 if (target == 0 || modifier == EXPAND_STACK_PARM)
7715 target = gen_reg_rtx (mode);
7716 /* expand_float can't figure out what to do if FROM has VOIDmode.
7717 So give it the correct mode. With -O, cse will optimize this. */
7718 if (GET_MODE (op0) == VOIDmode)
7719 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7720 op0);
7721 expand_float (target, op0,
7722 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7723 return target;
7725 case NEGATE_EXPR:
7726 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7727 if (modifier == EXPAND_STACK_PARM)
7728 target = 0;
7729 temp = expand_unop (mode,
7730 optab_for_tree_code (NEGATE_EXPR, type),
7731 op0, target, 0);
7732 gcc_assert (temp);
7733 return REDUCE_BIT_FIELD (temp);
7735 case ABS_EXPR:
7736 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7737 if (modifier == EXPAND_STACK_PARM)
7738 target = 0;
7740 /* ABS_EXPR is not valid for complex arguments. */
7741 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7742 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7744 /* Unsigned abs is simply the operand. Testing here means we don't
7745 risk generating incorrect code below. */
7746 if (TYPE_UNSIGNED (type))
7747 return op0;
7749 return expand_abs (mode, op0, target, unsignedp,
7750 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7752 case MAX_EXPR:
7753 case MIN_EXPR:
7754 target = original_target;
7755 if (target == 0
7756 || modifier == EXPAND_STACK_PARM
7757 || (MEM_P (target) && MEM_VOLATILE_P (target))
7758 || GET_MODE (target) != mode
7759 || (REG_P (target)
7760 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7761 target = gen_reg_rtx (mode);
7762 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7763 target, &op0, &op1, 0);
7765 /* First try to do it with a special MIN or MAX instruction.
7766 If that does not win, use a conditional jump to select the proper
7767 value. */
7768 this_optab = optab_for_tree_code (code, type);
7769 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7770 OPTAB_WIDEN);
7771 if (temp != 0)
7772 return temp;
7774 /* At this point, a MEM target is no longer useful; we will get better
7775 code without it. */
7777 if (! REG_P (target))
7778 target = gen_reg_rtx (mode);
7780 /* If op1 was placed in target, swap op0 and op1. */
7781 if (target != op0 && target == op1)
7783 rtx tem = op0;
7784 op0 = op1;
7785 op1 = tem;
7788 /* We generate better code and avoid problems with op1 mentioning
7789 target by forcing op1 into a pseudo if it isn't a constant. */
7790 if (! CONSTANT_P (op1))
7791 op1 = force_reg (mode, op1);
7793 if (target != op0)
7794 emit_move_insn (target, op0);
7796 op0 = gen_label_rtx ();
7798 /* If this mode is an integer too wide to compare properly,
7799 compare word by word. Rely on cse to optimize constant cases. */
7800 if (GET_MODE_CLASS (mode) == MODE_INT
7801 && ! can_compare_p (GE, mode, ccp_jump))
7803 if (code == MAX_EXPR)
7804 do_jump_by_parts_greater_rtx (mode, unsignedp, target, op1,
7805 NULL_RTX, op0);
7806 else
7807 do_jump_by_parts_greater_rtx (mode, unsignedp, op1, target,
7808 NULL_RTX, op0);
7810 else
7812 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7813 unsignedp, mode, NULL_RTX, NULL_RTX, op0);
7815 emit_move_insn (target, op1);
7816 emit_label (op0);
7817 return target;
7819 case BIT_NOT_EXPR:
7820 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7821 if (modifier == EXPAND_STACK_PARM)
7822 target = 0;
7823 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7824 gcc_assert (temp);
7825 return temp;
7827 /* ??? Can optimize bitwise operations with one arg constant.
7828 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7829 and (a bitwise1 b) bitwise2 b (etc)
7830 but that is probably not worth while. */
7832 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7833 boolean values when we want in all cases to compute both of them. In
7834 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7835 as actual zero-or-1 values and then bitwise anding. In cases where
7836 there cannot be any side effects, better code would be made by
7837 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7838 how to recognize those cases. */
7840 case TRUTH_AND_EXPR:
7841 code = BIT_AND_EXPR;
7842 case BIT_AND_EXPR:
7843 goto binop;
7845 case TRUTH_OR_EXPR:
7846 code = BIT_IOR_EXPR;
7847 case BIT_IOR_EXPR:
7848 goto binop;
7850 case TRUTH_XOR_EXPR:
7851 code = BIT_XOR_EXPR;
7852 case BIT_XOR_EXPR:
7853 goto binop;
7855 case LSHIFT_EXPR:
7856 case RSHIFT_EXPR:
7857 case LROTATE_EXPR:
7858 case RROTATE_EXPR:
7859 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7860 subtarget = 0;
7861 if (modifier == EXPAND_STACK_PARM)
7862 target = 0;
7863 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7864 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7865 unsignedp);
7867 /* Could determine the answer when only additive constants differ. Also,
7868 the addition of one can be handled by changing the condition. */
7869 case LT_EXPR:
7870 case LE_EXPR:
7871 case GT_EXPR:
7872 case GE_EXPR:
7873 case EQ_EXPR:
7874 case NE_EXPR:
7875 case UNORDERED_EXPR:
7876 case ORDERED_EXPR:
7877 case UNLT_EXPR:
7878 case UNLE_EXPR:
7879 case UNGT_EXPR:
7880 case UNGE_EXPR:
7881 case UNEQ_EXPR:
7882 case LTGT_EXPR:
7883 temp = do_store_flag (exp,
7884 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
7885 tmode != VOIDmode ? tmode : mode, 0);
7886 if (temp != 0)
7887 return temp;
7889 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7890 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7891 && original_target
7892 && REG_P (original_target)
7893 && (GET_MODE (original_target)
7894 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7896 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7897 VOIDmode, 0);
7899 /* If temp is constant, we can just compute the result. */
7900 if (GET_CODE (temp) == CONST_INT)
7902 if (INTVAL (temp) != 0)
7903 emit_move_insn (target, const1_rtx);
7904 else
7905 emit_move_insn (target, const0_rtx);
7907 return target;
7910 if (temp != original_target)
7912 enum machine_mode mode1 = GET_MODE (temp);
7913 if (mode1 == VOIDmode)
7914 mode1 = tmode != VOIDmode ? tmode : mode;
7916 temp = copy_to_mode_reg (mode1, temp);
7919 op1 = gen_label_rtx ();
7920 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7921 GET_MODE (temp), unsignedp, op1);
7922 emit_move_insn (temp, const1_rtx);
7923 emit_label (op1);
7924 return temp;
7927 /* If no set-flag instruction, must generate a conditional store
7928 into a temporary variable. Drop through and handle this
7929 like && and ||. */
7931 if (! ignore
7932 && (target == 0
7933 || modifier == EXPAND_STACK_PARM
7934 || ! safe_from_p (target, exp, 1)
7935 /* Make sure we don't have a hard reg (such as function's return
7936 value) live across basic blocks, if not optimizing. */
7937 || (!optimize && REG_P (target)
7938 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7939 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7941 if (target)
7942 emit_move_insn (target, const0_rtx);
7944 op1 = gen_label_rtx ();
7945 jumpifnot (exp, op1);
7947 if (target)
7948 emit_move_insn (target, const1_rtx);
7950 emit_label (op1);
7951 return ignore ? const0_rtx : target;
7953 case TRUTH_NOT_EXPR:
7954 if (modifier == EXPAND_STACK_PARM)
7955 target = 0;
7956 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7957 /* The parser is careful to generate TRUTH_NOT_EXPR
7958 only with operands that are always zero or one. */
7959 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7960 target, 1, OPTAB_LIB_WIDEN);
7961 gcc_assert (temp);
7962 return temp;
7964 case STATEMENT_LIST:
7966 tree_stmt_iterator iter;
7968 gcc_assert (ignore);
7970 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
7971 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
7973 return const0_rtx;
7975 case COND_EXPR:
7976 /* A COND_EXPR with its type being VOID_TYPE represents a
7977 conditional jump and is handled in
7978 expand_gimple_cond_expr. */
7979 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
7981 /* Note that COND_EXPRs whose type is a structure or union
7982 are required to be constructed to contain assignments of
7983 a temporary variable, so that we can evaluate them here
7984 for side effect only. If type is void, we must do likewise. */
7986 gcc_assert (!TREE_ADDRESSABLE (type)
7987 && !ignore
7988 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
7989 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
7991 /* If we are not to produce a result, we have no target. Otherwise,
7992 if a target was specified use it; it will not be used as an
7993 intermediate target unless it is safe. If no target, use a
7994 temporary. */
7996 if (modifier != EXPAND_STACK_PARM
7997 && original_target
7998 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
7999 && GET_MODE (original_target) == mode
8000 #ifdef HAVE_conditional_move
8001 && (! can_conditionally_move_p (mode)
8002 || REG_P (original_target))
8003 #endif
8004 && !MEM_P (original_target))
8005 temp = original_target;
8006 else
8007 temp = assign_temp (type, 0, 0, 1);
8009 do_pending_stack_adjust ();
8010 NO_DEFER_POP;
8011 op0 = gen_label_rtx ();
8012 op1 = gen_label_rtx ();
8013 jumpifnot (TREE_OPERAND (exp, 0), op0);
8014 store_expr (TREE_OPERAND (exp, 1), temp,
8015 modifier == EXPAND_STACK_PARM);
8017 emit_jump_insn (gen_jump (op1));
8018 emit_barrier ();
8019 emit_label (op0);
8020 store_expr (TREE_OPERAND (exp, 2), temp,
8021 modifier == EXPAND_STACK_PARM);
8023 emit_label (op1);
8024 OK_DEFER_POP;
8025 return temp;
8027 case VEC_COND_EXPR:
8028 target = expand_vec_cond_expr (exp, target);
8029 return target;
8031 case MODIFY_EXPR:
8033 tree lhs = TREE_OPERAND (exp, 0);
8034 tree rhs = TREE_OPERAND (exp, 1);
8036 gcc_assert (ignore);
8038 /* Check for |= or &= of a bitfield of size one into another bitfield
8039 of size 1. In this case, (unless we need the result of the
8040 assignment) we can do this more efficiently with a
8041 test followed by an assignment, if necessary.
8043 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8044 things change so we do, this code should be enhanced to
8045 support it. */
8046 if (TREE_CODE (lhs) == COMPONENT_REF
8047 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8048 || TREE_CODE (rhs) == BIT_AND_EXPR)
8049 && TREE_OPERAND (rhs, 0) == lhs
8050 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8051 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8052 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8054 rtx label = gen_label_rtx ();
8056 do_jump (TREE_OPERAND (rhs, 1),
8057 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8058 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8059 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8060 (TREE_CODE (rhs) == BIT_IOR_EXPR
8061 ? integer_one_node
8062 : integer_zero_node)));
8063 do_pending_stack_adjust ();
8064 emit_label (label);
8065 return const0_rtx;
8068 expand_assignment (lhs, rhs);
8070 return const0_rtx;
8073 case RETURN_EXPR:
8074 if (!TREE_OPERAND (exp, 0))
8075 expand_null_return ();
8076 else
8077 expand_return (TREE_OPERAND (exp, 0));
8078 return const0_rtx;
8080 case ADDR_EXPR:
8081 return expand_expr_addr_expr (exp, target, tmode, modifier);
8083 case COMPLEX_EXPR:
8084 /* Get the rtx code of the operands. */
8085 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8086 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8088 if (!target)
8089 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8091 /* Move the real (op0) and imaginary (op1) parts to their location. */
8092 write_complex_part (target, op0, false);
8093 write_complex_part (target, op1, true);
8095 return target;
8097 case REALPART_EXPR:
8098 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8099 return read_complex_part (op0, false);
8101 case IMAGPART_EXPR:
8102 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8103 return read_complex_part (op0, true);
8105 case RESX_EXPR:
8106 expand_resx_expr (exp);
8107 return const0_rtx;
8109 case TRY_CATCH_EXPR:
8110 case CATCH_EXPR:
8111 case EH_FILTER_EXPR:
8112 case TRY_FINALLY_EXPR:
8113 /* Lowered by tree-eh.c. */
8114 gcc_unreachable ();
8116 case WITH_CLEANUP_EXPR:
8117 case CLEANUP_POINT_EXPR:
8118 case TARGET_EXPR:
8119 case CASE_LABEL_EXPR:
8120 case VA_ARG_EXPR:
8121 case BIND_EXPR:
8122 case INIT_EXPR:
8123 case CONJ_EXPR:
8124 case COMPOUND_EXPR:
8125 case PREINCREMENT_EXPR:
8126 case PREDECREMENT_EXPR:
8127 case POSTINCREMENT_EXPR:
8128 case POSTDECREMENT_EXPR:
8129 case LOOP_EXPR:
8130 case EXIT_EXPR:
8131 case TRUTH_ANDIF_EXPR:
8132 case TRUTH_ORIF_EXPR:
8133 /* Lowered by gimplify.c. */
8134 gcc_unreachable ();
8136 case EXC_PTR_EXPR:
8137 return get_exception_pointer (cfun);
8139 case FILTER_EXPR:
8140 return get_exception_filter (cfun);
8142 case FDESC_EXPR:
8143 /* Function descriptors are not valid except for as
8144 initialization constants, and should not be expanded. */
8145 gcc_unreachable ();
8147 case SWITCH_EXPR:
8148 expand_case (exp);
8149 return const0_rtx;
8151 case LABEL_EXPR:
8152 expand_label (TREE_OPERAND (exp, 0));
8153 return const0_rtx;
8155 case ASM_EXPR:
8156 expand_asm_expr (exp);
8157 return const0_rtx;
8159 case WITH_SIZE_EXPR:
8160 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8161 have pulled out the size to use in whatever context it needed. */
8162 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8163 modifier, alt_rtl);
8165 case REALIGN_LOAD_EXPR:
8167 tree oprnd0 = TREE_OPERAND (exp, 0);
8168 tree oprnd1 = TREE_OPERAND (exp, 1);
8169 tree oprnd2 = TREE_OPERAND (exp, 2);
8170 rtx op2;
8172 this_optab = optab_for_tree_code (code, type);
8173 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8174 op2 = expand_expr (oprnd2, NULL_RTX, VOIDmode, 0);
8175 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8176 target, unsignedp);
8177 if (temp == 0)
8178 abort ();
8179 return temp;
8183 default:
8184 return lang_hooks.expand_expr (exp, original_target, tmode,
8185 modifier, alt_rtl);
8188 /* Here to do an ordinary binary operator. */
8189 binop:
8190 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8191 subtarget, &op0, &op1, 0);
8192 binop2:
8193 this_optab = optab_for_tree_code (code, type);
8194 binop3:
8195 if (modifier == EXPAND_STACK_PARM)
8196 target = 0;
8197 temp = expand_binop (mode, this_optab, op0, op1, target,
8198 unsignedp, OPTAB_LIB_WIDEN);
8199 gcc_assert (temp);
8200 return REDUCE_BIT_FIELD (temp);
8202 #undef REDUCE_BIT_FIELD
8204 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8205 signedness of TYPE), possibly returning the result in TARGET. */
8206 static rtx
8207 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8209 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8210 if (target && GET_MODE (target) != GET_MODE (exp))
8211 target = 0;
8212 if (TYPE_UNSIGNED (type))
8214 rtx mask;
8215 if (prec < HOST_BITS_PER_WIDE_INT)
8216 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8217 GET_MODE (exp));
8218 else
8219 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8220 ((unsigned HOST_WIDE_INT) 1
8221 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8222 GET_MODE (exp));
8223 return expand_and (GET_MODE (exp), exp, mask, target);
8225 else
8227 tree count = build_int_cst (NULL_TREE,
8228 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8229 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8230 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8234 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8235 when applied to the address of EXP produces an address known to be
8236 aligned more than BIGGEST_ALIGNMENT. */
8238 static int
8239 is_aligning_offset (tree offset, tree exp)
8241 /* Strip off any conversions. */
8242 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8243 || TREE_CODE (offset) == NOP_EXPR
8244 || TREE_CODE (offset) == CONVERT_EXPR)
8245 offset = TREE_OPERAND (offset, 0);
8247 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8248 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8249 if (TREE_CODE (offset) != BIT_AND_EXPR
8250 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8251 || compare_tree_int (TREE_OPERAND (offset, 1),
8252 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8253 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8254 return 0;
8256 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8257 It must be NEGATE_EXPR. Then strip any more conversions. */
8258 offset = TREE_OPERAND (offset, 0);
8259 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8260 || TREE_CODE (offset) == NOP_EXPR
8261 || TREE_CODE (offset) == CONVERT_EXPR)
8262 offset = TREE_OPERAND (offset, 0);
8264 if (TREE_CODE (offset) != NEGATE_EXPR)
8265 return 0;
8267 offset = TREE_OPERAND (offset, 0);
8268 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8269 || TREE_CODE (offset) == NOP_EXPR
8270 || TREE_CODE (offset) == CONVERT_EXPR)
8271 offset = TREE_OPERAND (offset, 0);
8273 /* This must now be the address of EXP. */
8274 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8277 /* Return the tree node if an ARG corresponds to a string constant or zero
8278 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8279 in bytes within the string that ARG is accessing. The type of the
8280 offset will be `sizetype'. */
8282 tree
8283 string_constant (tree arg, tree *ptr_offset)
8285 tree array, offset;
8286 STRIP_NOPS (arg);
8288 if (TREE_CODE (arg) == ADDR_EXPR)
8290 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8292 *ptr_offset = size_zero_node;
8293 return TREE_OPERAND (arg, 0);
8295 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8297 array = TREE_OPERAND (arg, 0);
8298 offset = size_zero_node;
8300 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8302 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8303 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8304 if (TREE_CODE (array) != STRING_CST
8305 && TREE_CODE (array) != VAR_DECL)
8306 return 0;
8308 else
8309 return 0;
8311 else if (TREE_CODE (arg) == PLUS_EXPR)
8313 tree arg0 = TREE_OPERAND (arg, 0);
8314 tree arg1 = TREE_OPERAND (arg, 1);
8316 STRIP_NOPS (arg0);
8317 STRIP_NOPS (arg1);
8319 if (TREE_CODE (arg0) == ADDR_EXPR
8320 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8321 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8323 array = TREE_OPERAND (arg0, 0);
8324 offset = arg1;
8326 else if (TREE_CODE (arg1) == ADDR_EXPR
8327 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8328 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8330 array = TREE_OPERAND (arg1, 0);
8331 offset = arg0;
8333 else
8334 return 0;
8336 else
8337 return 0;
8339 if (TREE_CODE (array) == STRING_CST)
8341 *ptr_offset = convert (sizetype, offset);
8342 return array;
8344 else if (TREE_CODE (array) == VAR_DECL)
8346 int length;
8348 /* Variables initialized to string literals can be handled too. */
8349 if (DECL_INITIAL (array) == NULL_TREE
8350 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8351 return 0;
8353 /* If they are read-only, non-volatile and bind locally. */
8354 if (! TREE_READONLY (array)
8355 || TREE_SIDE_EFFECTS (array)
8356 || ! targetm.binds_local_p (array))
8357 return 0;
8359 /* Avoid const char foo[4] = "abcde"; */
8360 if (DECL_SIZE_UNIT (array) == NULL_TREE
8361 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8362 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8363 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8364 return 0;
8366 /* If variable is bigger than the string literal, OFFSET must be constant
8367 and inside of the bounds of the string literal. */
8368 offset = convert (sizetype, offset);
8369 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8370 && (! host_integerp (offset, 1)
8371 || compare_tree_int (offset, length) >= 0))
8372 return 0;
8374 *ptr_offset = offset;
8375 return DECL_INITIAL (array);
8378 return 0;
8381 /* Generate code to calculate EXP using a store-flag instruction
8382 and return an rtx for the result. EXP is either a comparison
8383 or a TRUTH_NOT_EXPR whose operand is a comparison.
8385 If TARGET is nonzero, store the result there if convenient.
8387 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8388 cheap.
8390 Return zero if there is no suitable set-flag instruction
8391 available on this machine.
8393 Once expand_expr has been called on the arguments of the comparison,
8394 we are committed to doing the store flag, since it is not safe to
8395 re-evaluate the expression. We emit the store-flag insn by calling
8396 emit_store_flag, but only expand the arguments if we have a reason
8397 to believe that emit_store_flag will be successful. If we think that
8398 it will, but it isn't, we have to simulate the store-flag with a
8399 set/jump/set sequence. */
8401 static rtx
8402 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8404 enum rtx_code code;
8405 tree arg0, arg1, type;
8406 tree tem;
8407 enum machine_mode operand_mode;
8408 int invert = 0;
8409 int unsignedp;
8410 rtx op0, op1;
8411 enum insn_code icode;
8412 rtx subtarget = target;
8413 rtx result, label;
8415 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8416 result at the end. We can't simply invert the test since it would
8417 have already been inverted if it were valid. This case occurs for
8418 some floating-point comparisons. */
8420 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8421 invert = 1, exp = TREE_OPERAND (exp, 0);
8423 arg0 = TREE_OPERAND (exp, 0);
8424 arg1 = TREE_OPERAND (exp, 1);
8426 /* Don't crash if the comparison was erroneous. */
8427 if (arg0 == error_mark_node || arg1 == error_mark_node)
8428 return const0_rtx;
8430 type = TREE_TYPE (arg0);
8431 operand_mode = TYPE_MODE (type);
8432 unsignedp = TYPE_UNSIGNED (type);
8434 /* We won't bother with BLKmode store-flag operations because it would mean
8435 passing a lot of information to emit_store_flag. */
8436 if (operand_mode == BLKmode)
8437 return 0;
8439 /* We won't bother with store-flag operations involving function pointers
8440 when function pointers must be canonicalized before comparisons. */
8441 #ifdef HAVE_canonicalize_funcptr_for_compare
8442 if (HAVE_canonicalize_funcptr_for_compare
8443 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8444 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8445 == FUNCTION_TYPE))
8446 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8447 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8448 == FUNCTION_TYPE))))
8449 return 0;
8450 #endif
8452 STRIP_NOPS (arg0);
8453 STRIP_NOPS (arg1);
8455 /* Get the rtx comparison code to use. We know that EXP is a comparison
8456 operation of some type. Some comparisons against 1 and -1 can be
8457 converted to comparisons with zero. Do so here so that the tests
8458 below will be aware that we have a comparison with zero. These
8459 tests will not catch constants in the first operand, but constants
8460 are rarely passed as the first operand. */
8462 switch (TREE_CODE (exp))
8464 case EQ_EXPR:
8465 code = EQ;
8466 break;
8467 case NE_EXPR:
8468 code = NE;
8469 break;
8470 case LT_EXPR:
8471 if (integer_onep (arg1))
8472 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8473 else
8474 code = unsignedp ? LTU : LT;
8475 break;
8476 case LE_EXPR:
8477 if (! unsignedp && integer_all_onesp (arg1))
8478 arg1 = integer_zero_node, code = LT;
8479 else
8480 code = unsignedp ? LEU : LE;
8481 break;
8482 case GT_EXPR:
8483 if (! unsignedp && integer_all_onesp (arg1))
8484 arg1 = integer_zero_node, code = GE;
8485 else
8486 code = unsignedp ? GTU : GT;
8487 break;
8488 case GE_EXPR:
8489 if (integer_onep (arg1))
8490 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8491 else
8492 code = unsignedp ? GEU : GE;
8493 break;
8495 case UNORDERED_EXPR:
8496 code = UNORDERED;
8497 break;
8498 case ORDERED_EXPR:
8499 code = ORDERED;
8500 break;
8501 case UNLT_EXPR:
8502 code = UNLT;
8503 break;
8504 case UNLE_EXPR:
8505 code = UNLE;
8506 break;
8507 case UNGT_EXPR:
8508 code = UNGT;
8509 break;
8510 case UNGE_EXPR:
8511 code = UNGE;
8512 break;
8513 case UNEQ_EXPR:
8514 code = UNEQ;
8515 break;
8516 case LTGT_EXPR:
8517 code = LTGT;
8518 break;
8520 default:
8521 gcc_unreachable ();
8524 /* Put a constant second. */
8525 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8527 tem = arg0; arg0 = arg1; arg1 = tem;
8528 code = swap_condition (code);
8531 /* If this is an equality or inequality test of a single bit, we can
8532 do this by shifting the bit being tested to the low-order bit and
8533 masking the result with the constant 1. If the condition was EQ,
8534 we xor it with 1. This does not require an scc insn and is faster
8535 than an scc insn even if we have it.
8537 The code to make this transformation was moved into fold_single_bit_test,
8538 so we just call into the folder and expand its result. */
8540 if ((code == NE || code == EQ)
8541 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8542 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8544 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8545 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8546 arg0, arg1, type),
8547 target, VOIDmode, EXPAND_NORMAL);
8550 /* Now see if we are likely to be able to do this. Return if not. */
8551 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8552 return 0;
8554 icode = setcc_gen_code[(int) code];
8555 if (icode == CODE_FOR_nothing
8556 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8558 /* We can only do this if it is one of the special cases that
8559 can be handled without an scc insn. */
8560 if ((code == LT && integer_zerop (arg1))
8561 || (! only_cheap && code == GE && integer_zerop (arg1)))
8563 else if (BRANCH_COST >= 0
8564 && ! only_cheap && (code == NE || code == EQ)
8565 && TREE_CODE (type) != REAL_TYPE
8566 && ((abs_optab->handlers[(int) operand_mode].insn_code
8567 != CODE_FOR_nothing)
8568 || (ffs_optab->handlers[(int) operand_mode].insn_code
8569 != CODE_FOR_nothing)))
8571 else
8572 return 0;
8575 if (! get_subtarget (target)
8576 || GET_MODE (subtarget) != operand_mode)
8577 subtarget = 0;
8579 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
8581 if (target == 0)
8582 target = gen_reg_rtx (mode);
8584 result = emit_store_flag (target, code, op0, op1,
8585 operand_mode, unsignedp, 1);
8587 if (result)
8589 if (invert)
8590 result = expand_binop (mode, xor_optab, result, const1_rtx,
8591 result, 0, OPTAB_LIB_WIDEN);
8592 return result;
8595 /* If this failed, we have to do this with set/compare/jump/set code. */
8596 if (!REG_P (target)
8597 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
8598 target = gen_reg_rtx (GET_MODE (target));
8600 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
8601 result = compare_from_rtx (op0, op1, code, unsignedp,
8602 operand_mode, NULL_RTX);
8603 if (GET_CODE (result) == CONST_INT)
8604 return (((result == const0_rtx && ! invert)
8605 || (result != const0_rtx && invert))
8606 ? const0_rtx : const1_rtx);
8608 /* The code of RESULT may not match CODE if compare_from_rtx
8609 decided to swap its operands and reverse the original code.
8611 We know that compare_from_rtx returns either a CONST_INT or
8612 a new comparison code, so it is safe to just extract the
8613 code from RESULT. */
8614 code = GET_CODE (result);
8616 label = gen_label_rtx ();
8617 gcc_assert (bcc_gen_fctn[(int) code]);
8619 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
8620 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
8621 emit_label (label);
8623 return target;
8627 /* Stubs in case we haven't got a casesi insn. */
8628 #ifndef HAVE_casesi
8629 # define HAVE_casesi 0
8630 # define gen_casesi(a, b, c, d, e) (0)
8631 # define CODE_FOR_casesi CODE_FOR_nothing
8632 #endif
8634 /* If the machine does not have a case insn that compares the bounds,
8635 this means extra overhead for dispatch tables, which raises the
8636 threshold for using them. */
8637 #ifndef CASE_VALUES_THRESHOLD
8638 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8639 #endif /* CASE_VALUES_THRESHOLD */
8641 unsigned int
8642 case_values_threshold (void)
8644 return CASE_VALUES_THRESHOLD;
8647 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8648 0 otherwise (i.e. if there is no casesi instruction). */
8650 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
8651 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
8653 enum machine_mode index_mode = SImode;
8654 int index_bits = GET_MODE_BITSIZE (index_mode);
8655 rtx op1, op2, index;
8656 enum machine_mode op_mode;
8658 if (! HAVE_casesi)
8659 return 0;
8661 /* Convert the index to SImode. */
8662 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
8664 enum machine_mode omode = TYPE_MODE (index_type);
8665 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
8667 /* We must handle the endpoints in the original mode. */
8668 index_expr = build2 (MINUS_EXPR, index_type,
8669 index_expr, minval);
8670 minval = integer_zero_node;
8671 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8672 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
8673 omode, 1, default_label);
8674 /* Now we can safely truncate. */
8675 index = convert_to_mode (index_mode, index, 0);
8677 else
8679 if (TYPE_MODE (index_type) != index_mode)
8681 index_expr = convert (lang_hooks.types.type_for_size
8682 (index_bits, 0), index_expr);
8683 index_type = TREE_TYPE (index_expr);
8686 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8689 do_pending_stack_adjust ();
8691 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
8692 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
8693 (index, op_mode))
8694 index = copy_to_mode_reg (op_mode, index);
8696 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
8698 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
8699 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
8700 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
8701 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
8702 (op1, op_mode))
8703 op1 = copy_to_mode_reg (op_mode, op1);
8705 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
8707 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
8708 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
8709 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
8710 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
8711 (op2, op_mode))
8712 op2 = copy_to_mode_reg (op_mode, op2);
8714 emit_jump_insn (gen_casesi (index, op1, op2,
8715 table_label, default_label));
8716 return 1;
8719 /* Attempt to generate a tablejump instruction; same concept. */
8720 #ifndef HAVE_tablejump
8721 #define HAVE_tablejump 0
8722 #define gen_tablejump(x, y) (0)
8723 #endif
8725 /* Subroutine of the next function.
8727 INDEX is the value being switched on, with the lowest value
8728 in the table already subtracted.
8729 MODE is its expected mode (needed if INDEX is constant).
8730 RANGE is the length of the jump table.
8731 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8733 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8734 index value is out of range. */
8736 static void
8737 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
8738 rtx default_label)
8740 rtx temp, vector;
8742 if (INTVAL (range) > cfun->max_jumptable_ents)
8743 cfun->max_jumptable_ents = INTVAL (range);
8745 /* Do an unsigned comparison (in the proper mode) between the index
8746 expression and the value which represents the length of the range.
8747 Since we just finished subtracting the lower bound of the range
8748 from the index expression, this comparison allows us to simultaneously
8749 check that the original index expression value is both greater than
8750 or equal to the minimum value of the range and less than or equal to
8751 the maximum value of the range. */
8753 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
8754 default_label);
8756 /* If index is in range, it must fit in Pmode.
8757 Convert to Pmode so we can index with it. */
8758 if (mode != Pmode)
8759 index = convert_to_mode (Pmode, index, 1);
8761 /* Don't let a MEM slip through, because then INDEX that comes
8762 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8763 and break_out_memory_refs will go to work on it and mess it up. */
8764 #ifdef PIC_CASE_VECTOR_ADDRESS
8765 if (flag_pic && !REG_P (index))
8766 index = copy_to_mode_reg (Pmode, index);
8767 #endif
8769 /* If flag_force_addr were to affect this address
8770 it could interfere with the tricky assumptions made
8771 about addresses that contain label-refs,
8772 which may be valid only very near the tablejump itself. */
8773 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8774 GET_MODE_SIZE, because this indicates how large insns are. The other
8775 uses should all be Pmode, because they are addresses. This code
8776 could fail if addresses and insns are not the same size. */
8777 index = gen_rtx_PLUS (Pmode,
8778 gen_rtx_MULT (Pmode, index,
8779 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
8780 gen_rtx_LABEL_REF (Pmode, table_label));
8781 #ifdef PIC_CASE_VECTOR_ADDRESS
8782 if (flag_pic)
8783 index = PIC_CASE_VECTOR_ADDRESS (index);
8784 else
8785 #endif
8786 index = memory_address_noforce (CASE_VECTOR_MODE, index);
8787 temp = gen_reg_rtx (CASE_VECTOR_MODE);
8788 vector = gen_const_mem (CASE_VECTOR_MODE, index);
8789 convert_move (temp, vector, 0);
8791 emit_jump_insn (gen_tablejump (temp, table_label));
8793 /* If we are generating PIC code or if the table is PC-relative, the
8794 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8795 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
8796 emit_barrier ();
8800 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
8801 rtx table_label, rtx default_label)
8803 rtx index;
8805 if (! HAVE_tablejump)
8806 return 0;
8808 index_expr = fold (build2 (MINUS_EXPR, index_type,
8809 convert (index_type, index_expr),
8810 convert (index_type, minval)));
8811 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8812 do_pending_stack_adjust ();
8814 do_tablejump (index, TYPE_MODE (index_type),
8815 convert_modes (TYPE_MODE (index_type),
8816 TYPE_MODE (TREE_TYPE (range)),
8817 expand_expr (range, NULL_RTX,
8818 VOIDmode, 0),
8819 TYPE_UNSIGNED (TREE_TYPE (range))),
8820 table_label, default_label);
8821 return 1;
8824 /* Nonzero if the mode is a valid vector mode for this architecture.
8825 This returns nonzero even if there is no hardware support for the
8826 vector mode, but we can emulate with narrower modes. */
8829 vector_mode_valid_p (enum machine_mode mode)
8831 enum mode_class class = GET_MODE_CLASS (mode);
8832 enum machine_mode innermode;
8834 /* Doh! What's going on? */
8835 if (class != MODE_VECTOR_INT
8836 && class != MODE_VECTOR_FLOAT)
8837 return 0;
8839 /* Hardware support. Woo hoo! */
8840 if (targetm.vector_mode_supported_p (mode))
8841 return 1;
8843 innermode = GET_MODE_INNER (mode);
8845 /* We should probably return 1 if requesting V4DI and we have no DI,
8846 but we have V2DI, but this is probably very unlikely. */
8848 /* If we have support for the inner mode, we can safely emulate it.
8849 We may not have V2DI, but me can emulate with a pair of DIs. */
8850 return targetm.scalar_mode_supported_p (innermode);
8853 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8854 static rtx
8855 const_vector_from_tree (tree exp)
8857 rtvec v;
8858 int units, i;
8859 tree link, elt;
8860 enum machine_mode inner, mode;
8862 mode = TYPE_MODE (TREE_TYPE (exp));
8864 if (initializer_zerop (exp))
8865 return CONST0_RTX (mode);
8867 units = GET_MODE_NUNITS (mode);
8868 inner = GET_MODE_INNER (mode);
8870 v = rtvec_alloc (units);
8872 link = TREE_VECTOR_CST_ELTS (exp);
8873 for (i = 0; link; link = TREE_CHAIN (link), ++i)
8875 elt = TREE_VALUE (link);
8877 if (TREE_CODE (elt) == REAL_CST)
8878 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
8879 inner);
8880 else
8881 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
8882 TREE_INT_CST_HIGH (elt),
8883 inner);
8886 /* Initialize remaining elements to 0. */
8887 for (; i < units; ++i)
8888 RTVEC_ELT (v, i) = CONST0_RTX (inner);
8890 return gen_rtx_CONST_VECTOR (mode, v);
8892 #include "gt-expr.h"