2005-01-16 Steven G. Kargl <kargls@comcast.net>
[official-gcc.git] / gcc / ada / namet.adb
blob8bd712754f9fa04b21ba64271e00438a6531bcb9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- N A M E T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- WARNING: There is a C version of this package. Any changes to this
35 -- source file must be properly reflected in the C header file a-namet.h
36 -- which is created manually from namet.ads and namet.adb.
38 with Debug; use Debug;
39 with Output; use Output;
40 with Tree_IO; use Tree_IO;
41 with Widechar; use Widechar;
43 package body Namet is
45 Name_Chars_Reserve : constant := 5000;
46 Name_Entries_Reserve : constant := 100;
47 -- The names table is locked during gigi processing, since gigi assumes
48 -- that the table does not move. After returning from gigi, the names
49 -- table is unlocked again, since writing library file information needs
50 -- to generate some extra names. To avoid the inefficiency of always
51 -- reallocating during this second unlocked phase, we reserve a bit of
52 -- extra space before doing the release call.
54 Hash_Num : constant Int := 2**12;
55 -- Number of headers in the hash table. Current hash algorithm is closely
56 -- tailored to this choice, so it can only be changed if a corresponding
57 -- change is made to the hash alogorithm.
59 Hash_Max : constant Int := Hash_Num - 1;
60 -- Indexes in the hash header table run from 0 to Hash_Num - 1
62 subtype Hash_Index_Type is Int range 0 .. Hash_Max;
63 -- Range of hash index values
65 Hash_Table : array (Hash_Index_Type) of Name_Id;
66 -- The hash table is used to locate existing entries in the names table.
67 -- The entries point to the first names table entry whose hash value
68 -- matches the hash code. Then subsequent names table entries with the
69 -- same hash code value are linked through the Hash_Link fields.
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 function Hash return Hash_Index_Type;
76 pragma Inline (Hash);
77 -- Compute hash code for name stored in Name_Buffer (length in Name_Len)
79 procedure Strip_Qualification_And_Suffixes;
80 -- Given an encoded entity name in Name_Buffer, remove package body
81 -- suffix as described for Strip_Package_Body_Suffix, and also remove
82 -- all qualification, i.e. names followed by two underscores. The
83 -- contents of Name_Buffer is modified by this call, and on return
84 -- Name_Buffer and Name_Len reflect the stripped name.
86 -----------------------------
87 -- Add_Char_To_Name_Buffer --
88 -----------------------------
90 procedure Add_Char_To_Name_Buffer (C : Character) is
91 begin
92 if Name_Len < Name_Buffer'Last then
93 Name_Len := Name_Len + 1;
94 Name_Buffer (Name_Len) := C;
95 end if;
96 end Add_Char_To_Name_Buffer;
98 ----------------------------
99 -- Add_Nat_To_Name_Buffer --
100 ----------------------------
102 procedure Add_Nat_To_Name_Buffer (V : Nat) is
103 begin
104 if V >= 10 then
105 Add_Nat_To_Name_Buffer (V / 10);
106 end if;
108 Add_Char_To_Name_Buffer (Character'Val (Character'Pos ('0') + V rem 10));
109 end Add_Nat_To_Name_Buffer;
111 ----------------------------
112 -- Add_Str_To_Name_Buffer --
113 ----------------------------
115 procedure Add_Str_To_Name_Buffer (S : String) is
116 begin
117 for J in S'Range loop
118 Add_Char_To_Name_Buffer (S (J));
119 end loop;
120 end Add_Str_To_Name_Buffer;
123 --------------
124 -- Finalize --
125 --------------
127 procedure Finalize is
128 Max_Chain_Length : constant := 50;
129 -- Max length of chains for which specific information is output
131 F : array (Int range 0 .. Max_Chain_Length) of Int;
132 -- N'th entry is number of chains of length N
134 Probes : Int := 0;
135 -- Used to compute average number of probes
137 Nsyms : Int := 0;
138 -- Number of symbols in table
140 begin
141 if Debug_Flag_H then
142 for J in F'Range loop
143 F (J) := 0;
144 end loop;
146 for J in Hash_Index_Type loop
147 if Hash_Table (J) = No_Name then
148 F (0) := F (0) + 1;
150 else
151 Write_Str ("Hash_Table (");
152 Write_Int (Int (J));
153 Write_Str (") has ");
155 declare
156 C : Int := 1;
157 N : Name_Id;
158 S : Int;
160 begin
161 C := 0;
162 N := Hash_Table (J);
164 while N /= No_Name loop
165 N := Name_Entries.Table (N).Hash_Link;
166 C := C + 1;
167 end loop;
169 Write_Int (C);
170 Write_Str (" entries");
171 Write_Eol;
173 if C < Max_Chain_Length then
174 F (C) := F (C) + 1;
175 else
176 F (Max_Chain_Length) := F (Max_Chain_Length) + 1;
177 end if;
179 N := Hash_Table (J);
181 while N /= No_Name loop
182 S := Name_Entries.Table (N).Name_Chars_Index;
183 Write_Str (" ");
185 for J in 1 .. Name_Entries.Table (N).Name_Len loop
186 Write_Char (Name_Chars.Table (S + Int (J)));
187 end loop;
189 Write_Eol;
190 N := Name_Entries.Table (N).Hash_Link;
191 end loop;
192 end;
193 end if;
194 end loop;
196 Write_Eol;
198 for J in Int range 0 .. Max_Chain_Length loop
199 if F (J) /= 0 then
200 Write_Str ("Number of hash chains of length ");
202 if J < 10 then
203 Write_Char (' ');
204 end if;
206 Write_Int (J);
208 if J = Max_Chain_Length then
209 Write_Str (" or greater");
210 end if;
212 Write_Str (" = ");
213 Write_Int (F (J));
214 Write_Eol;
216 if J /= 0 then
217 Nsyms := Nsyms + F (J);
218 Probes := Probes + F (J) * (1 + J) * 100;
219 end if;
220 end if;
221 end loop;
223 Write_Eol;
224 Write_Str ("Average number of probes for lookup = ");
225 Probes := Probes / Nsyms;
226 Write_Int (Probes / 200);
227 Write_Char ('.');
228 Probes := (Probes mod 200) / 2;
229 Write_Char (Character'Val (48 + Probes / 10));
230 Write_Char (Character'Val (48 + Probes mod 10));
231 Write_Eol;
232 Write_Eol;
233 end if;
234 end Finalize;
236 -----------------------------
237 -- Get_Decoded_Name_String --
238 -----------------------------
240 procedure Get_Decoded_Name_String (Id : Name_Id) is
241 C : Character;
242 P : Natural;
244 begin
245 Get_Name_String (Id);
247 -- Quick loop to see if there is anything special to do
249 P := 1;
250 loop
251 if P = Name_Len then
252 return;
254 else
255 C := Name_Buffer (P);
257 exit when
258 C = 'U' or else
259 C = 'W' or else
260 C = 'Q' or else
261 C = 'O';
263 P := P + 1;
264 end if;
265 end loop;
267 -- Here we have at least some encoding that we must decode
269 Decode : declare
270 New_Len : Natural;
271 Old : Positive;
272 New_Buf : String (1 .. Name_Buffer'Last);
274 procedure Copy_One_Character;
275 -- Copy a character from Name_Buffer to New_Buf. Includes case
276 -- of copying a Uhh or Whhhh sequence and decoding it.
278 function Hex (N : Natural) return Natural;
279 -- Scans past N digits using Old pointer and returns hex value
281 procedure Insert_Character (C : Character);
282 -- Insert a new character into output decoded name
284 ------------------------
285 -- Copy_One_Character --
286 ------------------------
288 procedure Copy_One_Character is
289 C : Character;
291 begin
292 C := Name_Buffer (Old);
294 -- U (upper half insertion case)
296 if C = 'U'
297 and then Old < Name_Len
298 and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
299 and then Name_Buffer (Old + 1) /= '_'
300 then
301 Old := Old + 1;
302 Insert_Character (Character'Val (Hex (2)));
304 -- W (wide character insertion)
306 elsif C = 'W'
307 and then Old < Name_Len
308 and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
309 and then Name_Buffer (Old + 1) /= '_'
310 then
311 Old := Old + 1;
312 Widechar.Set_Wide (Char_Code (Hex (4)), New_Buf, New_Len);
314 -- Any other character is copied unchanged
316 else
317 Insert_Character (C);
318 Old := Old + 1;
319 end if;
320 end Copy_One_Character;
322 ---------
323 -- Hex --
324 ---------
326 function Hex (N : Natural) return Natural is
327 T : Natural := 0;
328 C : Character;
330 begin
331 for J in 1 .. N loop
332 C := Name_Buffer (Old);
333 Old := Old + 1;
335 pragma Assert (C in '0' .. '9' or else C in 'a' .. 'f');
337 if C <= '9' then
338 T := 16 * T + Character'Pos (C) - Character'Pos ('0');
339 else -- C in 'a' .. 'f'
340 T := 16 * T + Character'Pos (C) - (Character'Pos ('a') - 10);
341 end if;
342 end loop;
344 return T;
345 end Hex;
347 ----------------------
348 -- Insert_Character --
349 ----------------------
351 procedure Insert_Character (C : Character) is
352 begin
353 New_Len := New_Len + 1;
354 New_Buf (New_Len) := C;
355 end Insert_Character;
357 -- Start of processing for Decode
359 begin
360 New_Len := 0;
361 Old := 1;
363 -- Loop through characters of name
365 while Old <= Name_Len loop
367 -- Case of character literal, put apostrophes around character
369 if Name_Buffer (Old) = 'Q'
370 and then Old < Name_Len
371 then
372 Old := Old + 1;
373 Insert_Character (''');
374 Copy_One_Character;
375 Insert_Character (''');
377 -- Case of operator name
379 elsif Name_Buffer (Old) = 'O'
380 and then Old < Name_Len
381 and then Name_Buffer (Old + 1) not in 'A' .. 'Z'
382 and then Name_Buffer (Old + 1) /= '_'
383 then
384 Old := Old + 1;
386 declare
387 -- This table maps the 2nd and 3rd characters of the name
388 -- into the required output. Two blanks means leave the
389 -- name alone
391 Map : constant String :=
392 "ab " & -- Oabs => "abs"
393 "ad+ " & -- Oadd => "+"
394 "an " & -- Oand => "and"
395 "co& " & -- Oconcat => "&"
396 "di/ " & -- Odivide => "/"
397 "eq= " & -- Oeq => "="
398 "ex**" & -- Oexpon => "**"
399 "gt> " & -- Ogt => ">"
400 "ge>=" & -- Oge => ">="
401 "le<=" & -- Ole => "<="
402 "lt< " & -- Olt => "<"
403 "mo " & -- Omod => "mod"
404 "mu* " & -- Omutliply => "*"
405 "ne/=" & -- One => "/="
406 "no " & -- Onot => "not"
407 "or " & -- Oor => "or"
408 "re " & -- Orem => "rem"
409 "su- " & -- Osubtract => "-"
410 "xo "; -- Oxor => "xor"
412 J : Integer;
414 begin
415 Insert_Character ('"');
417 -- Search the map. Note that this loop must terminate, if
418 -- not we have some kind of internal error, and a constraint
419 -- constraint error may be raised.
421 J := Map'First;
422 loop
423 exit when Name_Buffer (Old) = Map (J)
424 and then Name_Buffer (Old + 1) = Map (J + 1);
425 J := J + 4;
426 end loop;
428 -- Special operator name
430 if Map (J + 2) /= ' ' then
431 Insert_Character (Map (J + 2));
433 if Map (J + 3) /= ' ' then
434 Insert_Character (Map (J + 3));
435 end if;
437 Insert_Character ('"');
439 -- Skip past original operator name in input
441 while Old <= Name_Len
442 and then Name_Buffer (Old) in 'a' .. 'z'
443 loop
444 Old := Old + 1;
445 end loop;
447 -- For other operator names, leave them in lower case,
448 -- surrounded by apostrophes
450 else
451 -- Copy original operator name from input to output
453 while Old <= Name_Len
454 and then Name_Buffer (Old) in 'a' .. 'z'
455 loop
456 Copy_One_Character;
457 end loop;
459 Insert_Character ('"');
460 end if;
461 end;
463 -- Else copy one character and keep going
465 else
466 Copy_One_Character;
467 end if;
468 end loop;
470 -- Copy new buffer as result
472 Name_Len := New_Len;
473 Name_Buffer (1 .. New_Len) := New_Buf (1 .. New_Len);
474 end Decode;
475 end Get_Decoded_Name_String;
477 -------------------------------------------
478 -- Get_Decoded_Name_String_With_Brackets --
479 -------------------------------------------
481 procedure Get_Decoded_Name_String_With_Brackets (Id : Name_Id) is
482 P : Natural;
484 begin
485 -- Case of operator name, normal decoding is fine
487 if Name_Buffer (1) = 'O' then
488 Get_Decoded_Name_String (Id);
490 -- For character literals, normal decoding is fine
492 elsif Name_Buffer (1) = 'Q' then
493 Get_Decoded_Name_String (Id);
495 -- Only remaining issue is U/W sequences
497 else
498 Get_Name_String (Id);
500 P := 1;
501 while P < Name_Len loop
502 if Name_Buffer (P + 1) in 'A' .. 'Z' then
503 P := P + 1;
505 elsif Name_Buffer (P) = 'U' then
506 for J in reverse P + 3 .. P + Name_Len loop
507 Name_Buffer (J + 3) := Name_Buffer (J);
508 end loop;
510 Name_Len := Name_Len + 3;
511 Name_Buffer (P + 3) := Name_Buffer (P + 2);
512 Name_Buffer (P + 2) := Name_Buffer (P + 1);
513 Name_Buffer (P) := '[';
514 Name_Buffer (P + 1) := '"';
515 Name_Buffer (P + 4) := '"';
516 Name_Buffer (P + 5) := ']';
517 P := P + 6;
519 elsif Name_Buffer (P) = 'W'
520 and then P < Name_Len
521 and then Name_Buffer (P + 1) not in 'A' .. 'Z'
522 and then Name_Buffer (P + 1) /= '_'
523 then
524 Name_Buffer (P + 8 .. P + Name_Len + 5) :=
525 Name_Buffer (P + 5 .. Name_Len);
526 Name_Buffer (P + 5) := Name_Buffer (P + 4);
527 Name_Buffer (P + 4) := Name_Buffer (P + 3);
528 Name_Buffer (P + 3) := Name_Buffer (P + 2);
529 Name_Buffer (P + 2) := Name_Buffer (P + 1);
530 Name_Buffer (P) := '[';
531 Name_Buffer (P + 1) := '"';
532 Name_Buffer (P + 6) := '"';
533 Name_Buffer (P + 7) := ']';
534 Name_Len := Name_Len + 5;
535 P := P + 8;
537 else
538 P := P + 1;
539 end if;
540 end loop;
541 end if;
542 end Get_Decoded_Name_String_With_Brackets;
544 ------------------------
545 -- Get_Last_Two_Chars --
546 ------------------------
548 procedure Get_Last_Two_Chars (N : Name_Id; C1, C2 : out Character) is
549 NE : Name_Entry renames Name_Entries.Table (N);
550 NEL : constant Int := Int (NE.Name_Len);
552 begin
553 if NEL >= 2 then
554 C1 := Name_Chars.Table (NE.Name_Chars_Index + NEL - 1);
555 C2 := Name_Chars.Table (NE.Name_Chars_Index + NEL - 0);
556 else
557 C1 := ASCII.NUL;
558 C2 := ASCII.NUL;
559 end if;
560 end Get_Last_Two_Chars;
562 ---------------------
563 -- Get_Name_String --
564 ---------------------
566 -- Procedure version leaving result in Name_Buffer, length in Name_Len
568 procedure Get_Name_String (Id : Name_Id) is
569 S : Int;
571 begin
572 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
574 S := Name_Entries.Table (Id).Name_Chars_Index;
575 Name_Len := Natural (Name_Entries.Table (Id).Name_Len);
577 for J in 1 .. Name_Len loop
578 Name_Buffer (J) := Name_Chars.Table (S + Int (J));
579 end loop;
580 end Get_Name_String;
582 ---------------------
583 -- Get_Name_String --
584 ---------------------
586 -- Function version returning a string
588 function Get_Name_String (Id : Name_Id) return String is
589 S : Int;
591 begin
592 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
593 S := Name_Entries.Table (Id).Name_Chars_Index;
595 declare
596 R : String (1 .. Natural (Name_Entries.Table (Id).Name_Len));
598 begin
599 for J in R'Range loop
600 R (J) := Name_Chars.Table (S + Int (J));
601 end loop;
603 return R;
604 end;
605 end Get_Name_String;
607 --------------------------------
608 -- Get_Name_String_And_Append --
609 --------------------------------
611 procedure Get_Name_String_And_Append (Id : Name_Id) is
612 S : Int;
614 begin
615 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
617 S := Name_Entries.Table (Id).Name_Chars_Index;
619 for J in 1 .. Natural (Name_Entries.Table (Id).Name_Len) loop
620 Name_Len := Name_Len + 1;
621 Name_Buffer (Name_Len) := Name_Chars.Table (S + Int (J));
622 end loop;
623 end Get_Name_String_And_Append;
625 -------------------------
626 -- Get_Name_Table_Byte --
627 -------------------------
629 function Get_Name_Table_Byte (Id : Name_Id) return Byte is
630 begin
631 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
632 return Name_Entries.Table (Id).Byte_Info;
633 end Get_Name_Table_Byte;
635 -------------------------
636 -- Get_Name_Table_Info --
637 -------------------------
639 function Get_Name_Table_Info (Id : Name_Id) return Int is
640 begin
641 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
642 return Name_Entries.Table (Id).Int_Info;
643 end Get_Name_Table_Info;
645 -----------------------------------------
646 -- Get_Unqualified_Decoded_Name_String --
647 -----------------------------------------
649 procedure Get_Unqualified_Decoded_Name_String (Id : Name_Id) is
650 begin
651 Get_Decoded_Name_String (Id);
652 Strip_Qualification_And_Suffixes;
653 end Get_Unqualified_Decoded_Name_String;
655 ---------------------------------
656 -- Get_Unqualified_Name_String --
657 ---------------------------------
659 procedure Get_Unqualified_Name_String (Id : Name_Id) is
660 begin
661 Get_Name_String (Id);
662 Strip_Qualification_And_Suffixes;
663 end Get_Unqualified_Name_String;
665 ----------
666 -- Hash --
667 ----------
669 function Hash return Hash_Index_Type is
670 begin
671 -- For the cases of 1-12 characters, all characters participate in the
672 -- hash. The positioning is randomized, with the bias that characters
673 -- later on participate fully (i.e. are added towards the right side).
675 case Name_Len is
677 when 0 =>
678 return 0;
680 when 1 =>
681 return
682 Character'Pos (Name_Buffer (1));
684 when 2 =>
685 return ((
686 Character'Pos (Name_Buffer (1))) * 64 +
687 Character'Pos (Name_Buffer (2))) mod Hash_Num;
689 when 3 =>
690 return (((
691 Character'Pos (Name_Buffer (1))) * 16 +
692 Character'Pos (Name_Buffer (3))) * 16 +
693 Character'Pos (Name_Buffer (2))) mod Hash_Num;
695 when 4 =>
696 return ((((
697 Character'Pos (Name_Buffer (1))) * 8 +
698 Character'Pos (Name_Buffer (2))) * 8 +
699 Character'Pos (Name_Buffer (3))) * 8 +
700 Character'Pos (Name_Buffer (4))) mod Hash_Num;
702 when 5 =>
703 return (((((
704 Character'Pos (Name_Buffer (4))) * 8 +
705 Character'Pos (Name_Buffer (1))) * 4 +
706 Character'Pos (Name_Buffer (3))) * 4 +
707 Character'Pos (Name_Buffer (5))) * 8 +
708 Character'Pos (Name_Buffer (2))) mod Hash_Num;
710 when 6 =>
711 return ((((((
712 Character'Pos (Name_Buffer (5))) * 4 +
713 Character'Pos (Name_Buffer (1))) * 4 +
714 Character'Pos (Name_Buffer (4))) * 4 +
715 Character'Pos (Name_Buffer (2))) * 4 +
716 Character'Pos (Name_Buffer (6))) * 4 +
717 Character'Pos (Name_Buffer (3))) mod Hash_Num;
719 when 7 =>
720 return (((((((
721 Character'Pos (Name_Buffer (4))) * 4 +
722 Character'Pos (Name_Buffer (3))) * 4 +
723 Character'Pos (Name_Buffer (1))) * 4 +
724 Character'Pos (Name_Buffer (2))) * 2 +
725 Character'Pos (Name_Buffer (5))) * 2 +
726 Character'Pos (Name_Buffer (7))) * 2 +
727 Character'Pos (Name_Buffer (6))) mod Hash_Num;
729 when 8 =>
730 return ((((((((
731 Character'Pos (Name_Buffer (2))) * 4 +
732 Character'Pos (Name_Buffer (1))) * 4 +
733 Character'Pos (Name_Buffer (3))) * 2 +
734 Character'Pos (Name_Buffer (5))) * 2 +
735 Character'Pos (Name_Buffer (7))) * 2 +
736 Character'Pos (Name_Buffer (6))) * 2 +
737 Character'Pos (Name_Buffer (4))) * 2 +
738 Character'Pos (Name_Buffer (8))) mod Hash_Num;
740 when 9 =>
741 return (((((((((
742 Character'Pos (Name_Buffer (2))) * 4 +
743 Character'Pos (Name_Buffer (1))) * 4 +
744 Character'Pos (Name_Buffer (3))) * 4 +
745 Character'Pos (Name_Buffer (4))) * 2 +
746 Character'Pos (Name_Buffer (8))) * 2 +
747 Character'Pos (Name_Buffer (7))) * 2 +
748 Character'Pos (Name_Buffer (5))) * 2 +
749 Character'Pos (Name_Buffer (6))) * 2 +
750 Character'Pos (Name_Buffer (9))) mod Hash_Num;
752 when 10 =>
753 return ((((((((((
754 Character'Pos (Name_Buffer (01))) * 2 +
755 Character'Pos (Name_Buffer (02))) * 2 +
756 Character'Pos (Name_Buffer (08))) * 2 +
757 Character'Pos (Name_Buffer (03))) * 2 +
758 Character'Pos (Name_Buffer (04))) * 2 +
759 Character'Pos (Name_Buffer (09))) * 2 +
760 Character'Pos (Name_Buffer (06))) * 2 +
761 Character'Pos (Name_Buffer (05))) * 2 +
762 Character'Pos (Name_Buffer (07))) * 2 +
763 Character'Pos (Name_Buffer (10))) mod Hash_Num;
765 when 11 =>
766 return (((((((((((
767 Character'Pos (Name_Buffer (05))) * 2 +
768 Character'Pos (Name_Buffer (01))) * 2 +
769 Character'Pos (Name_Buffer (06))) * 2 +
770 Character'Pos (Name_Buffer (09))) * 2 +
771 Character'Pos (Name_Buffer (07))) * 2 +
772 Character'Pos (Name_Buffer (03))) * 2 +
773 Character'Pos (Name_Buffer (08))) * 2 +
774 Character'Pos (Name_Buffer (02))) * 2 +
775 Character'Pos (Name_Buffer (10))) * 2 +
776 Character'Pos (Name_Buffer (04))) * 2 +
777 Character'Pos (Name_Buffer (11))) mod Hash_Num;
779 when 12 =>
780 return ((((((((((((
781 Character'Pos (Name_Buffer (03))) * 2 +
782 Character'Pos (Name_Buffer (02))) * 2 +
783 Character'Pos (Name_Buffer (05))) * 2 +
784 Character'Pos (Name_Buffer (01))) * 2 +
785 Character'Pos (Name_Buffer (06))) * 2 +
786 Character'Pos (Name_Buffer (04))) * 2 +
787 Character'Pos (Name_Buffer (08))) * 2 +
788 Character'Pos (Name_Buffer (11))) * 2 +
789 Character'Pos (Name_Buffer (07))) * 2 +
790 Character'Pos (Name_Buffer (09))) * 2 +
791 Character'Pos (Name_Buffer (10))) * 2 +
792 Character'Pos (Name_Buffer (12))) mod Hash_Num;
794 -- Names longer than 12 characters are handled by taking the first
795 -- 6 odd numbered characters and the last 6 even numbered characters.
797 when others => declare
798 Even_Name_Len : constant Integer := (Name_Len) / 2 * 2;
799 begin
800 return ((((((((((((
801 Character'Pos (Name_Buffer (01))) * 2 +
802 Character'Pos (Name_Buffer (Even_Name_Len - 10))) * 2 +
803 Character'Pos (Name_Buffer (03))) * 2 +
804 Character'Pos (Name_Buffer (Even_Name_Len - 08))) * 2 +
805 Character'Pos (Name_Buffer (05))) * 2 +
806 Character'Pos (Name_Buffer (Even_Name_Len - 06))) * 2 +
807 Character'Pos (Name_Buffer (07))) * 2 +
808 Character'Pos (Name_Buffer (Even_Name_Len - 04))) * 2 +
809 Character'Pos (Name_Buffer (09))) * 2 +
810 Character'Pos (Name_Buffer (Even_Name_Len - 02))) * 2 +
811 Character'Pos (Name_Buffer (11))) * 2 +
812 Character'Pos (Name_Buffer (Even_Name_Len))) mod Hash_Num;
813 end;
814 end case;
815 end Hash;
817 ----------------
818 -- Initialize --
819 ----------------
821 procedure Initialize is
822 begin
823 Name_Chars.Init;
824 Name_Entries.Init;
826 -- Initialize entries for one character names
828 for C in Character loop
829 Name_Entries.Increment_Last;
830 Name_Entries.Table (Name_Entries.Last).Name_Chars_Index :=
831 Name_Chars.Last;
832 Name_Entries.Table (Name_Entries.Last).Name_Len := 1;
833 Name_Entries.Table (Name_Entries.Last).Hash_Link := No_Name;
834 Name_Entries.Table (Name_Entries.Last).Int_Info := 0;
835 Name_Entries.Table (Name_Entries.Last).Byte_Info := 0;
836 Name_Chars.Increment_Last;
837 Name_Chars.Table (Name_Chars.Last) := C;
838 Name_Chars.Increment_Last;
839 Name_Chars.Table (Name_Chars.Last) := ASCII.NUL;
840 end loop;
842 -- Clear hash table
844 for J in Hash_Index_Type loop
845 Hash_Table (J) := No_Name;
846 end loop;
847 end Initialize;
849 ----------------------
850 -- Is_Internal_Name --
851 ----------------------
853 -- Version taking an argument
855 function Is_Internal_Name (Id : Name_Id) return Boolean is
856 begin
857 Get_Name_String (Id);
858 return Is_Internal_Name;
859 end Is_Internal_Name;
861 ----------------------
862 -- Is_Internal_Name --
863 ----------------------
865 -- Version taking its input from Name_Buffer
867 function Is_Internal_Name return Boolean is
868 begin
869 if Name_Buffer (1) = '_'
870 or else Name_Buffer (Name_Len) = '_'
871 then
872 return True;
874 else
875 -- Test backwards, because we only want to test the last entity
876 -- name if the name we have is qualified with other entities.
878 for J in reverse 1 .. Name_Len loop
879 if Is_OK_Internal_Letter (Name_Buffer (J)) then
880 return True;
882 -- Quit if we come to terminating double underscore (note that
883 -- if the current character is an underscore, we know that
884 -- there is a previous character present, since we already
885 -- filtered out the case of Name_Buffer (1) = '_' above.
887 elsif Name_Buffer (J) = '_'
888 and then Name_Buffer (J - 1) = '_'
889 and then Name_Buffer (J - 2) /= '_'
890 then
891 return False;
892 end if;
893 end loop;
894 end if;
896 return False;
897 end Is_Internal_Name;
899 ---------------------------
900 -- Is_OK_Internal_Letter --
901 ---------------------------
903 function Is_OK_Internal_Letter (C : Character) return Boolean is
904 begin
905 return C in 'A' .. 'Z'
906 and then C /= 'O'
907 and then C /= 'Q'
908 and then C /= 'U'
909 and then C /= 'W'
910 and then C /= 'X';
911 end Is_OK_Internal_Letter;
913 ----------------------
914 -- Is_Operator_Name --
915 ----------------------
917 function Is_Operator_Name (Id : Name_Id) return Boolean is
918 S : Int;
919 begin
920 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
921 S := Name_Entries.Table (Id).Name_Chars_Index;
922 return Name_Chars.Table (S + 1) = 'O';
923 end Is_Operator_Name;
925 --------------------
926 -- Length_Of_Name --
927 --------------------
929 function Length_Of_Name (Id : Name_Id) return Nat is
930 begin
931 return Int (Name_Entries.Table (Id).Name_Len);
932 end Length_Of_Name;
934 ----------
935 -- Lock --
936 ----------
938 procedure Lock is
939 begin
940 Name_Chars.Set_Last (Name_Chars.Last + Name_Chars_Reserve);
941 Name_Entries.Set_Last (Name_Entries.Last + Name_Entries_Reserve);
942 Name_Chars.Locked := True;
943 Name_Entries.Locked := True;
944 Name_Chars.Release;
945 Name_Entries.Release;
946 end Lock;
948 ------------------------
949 -- Name_Chars_Address --
950 ------------------------
952 function Name_Chars_Address return System.Address is
953 begin
954 return Name_Chars.Table (0)'Address;
955 end Name_Chars_Address;
957 ----------------
958 -- Name_Enter --
959 ----------------
961 function Name_Enter return Name_Id is
962 begin
963 Name_Entries.Increment_Last;
964 Name_Entries.Table (Name_Entries.Last).Name_Chars_Index :=
965 Name_Chars.Last;
966 Name_Entries.Table (Name_Entries.Last).Name_Len := Short (Name_Len);
967 Name_Entries.Table (Name_Entries.Last).Hash_Link := No_Name;
968 Name_Entries.Table (Name_Entries.Last).Int_Info := 0;
969 Name_Entries.Table (Name_Entries.Last).Byte_Info := 0;
971 -- Set corresponding string entry in the Name_Chars table
973 for J in 1 .. Name_Len loop
974 Name_Chars.Increment_Last;
975 Name_Chars.Table (Name_Chars.Last) := Name_Buffer (J);
976 end loop;
978 Name_Chars.Increment_Last;
979 Name_Chars.Table (Name_Chars.Last) := ASCII.NUL;
981 return Name_Entries.Last;
982 end Name_Enter;
984 --------------------------
985 -- Name_Entries_Address --
986 --------------------------
988 function Name_Entries_Address return System.Address is
989 begin
990 return Name_Entries.Table (First_Name_Id)'Address;
991 end Name_Entries_Address;
993 ------------------------
994 -- Name_Entries_Count --
995 ------------------------
997 function Name_Entries_Count return Nat is
998 begin
999 return Int (Name_Entries.Last - Name_Entries.First + 1);
1000 end Name_Entries_Count;
1002 ---------------
1003 -- Name_Find --
1004 ---------------
1006 function Name_Find return Name_Id is
1007 New_Id : Name_Id;
1008 -- Id of entry in hash search, and value to be returned
1010 S : Int;
1011 -- Pointer into string table
1013 Hash_Index : Hash_Index_Type;
1014 -- Computed hash index
1016 begin
1017 -- Quick handling for one character names
1019 if Name_Len = 1 then
1020 return Name_Id (First_Name_Id + Character'Pos (Name_Buffer (1)));
1022 -- Otherwise search hash table for existing matching entry
1024 else
1025 Hash_Index := Namet.Hash;
1026 New_Id := Hash_Table (Hash_Index);
1028 if New_Id = No_Name then
1029 Hash_Table (Hash_Index) := Name_Entries.Last + 1;
1031 else
1032 Search : loop
1033 if Name_Len /=
1034 Integer (Name_Entries.Table (New_Id).Name_Len)
1035 then
1036 goto No_Match;
1037 end if;
1039 S := Name_Entries.Table (New_Id).Name_Chars_Index;
1041 for J in 1 .. Name_Len loop
1042 if Name_Chars.Table (S + Int (J)) /= Name_Buffer (J) then
1043 goto No_Match;
1044 end if;
1045 end loop;
1047 return New_Id;
1049 -- Current entry in hash chain does not match
1051 <<No_Match>>
1052 if Name_Entries.Table (New_Id).Hash_Link /= No_Name then
1053 New_Id := Name_Entries.Table (New_Id).Hash_Link;
1054 else
1055 Name_Entries.Table (New_Id).Hash_Link :=
1056 Name_Entries.Last + 1;
1057 exit Search;
1058 end if;
1060 end loop Search;
1061 end if;
1063 -- We fall through here only if a matching entry was not found in the
1064 -- hash table. We now create a new entry in the names table. The hash
1065 -- link pointing to the new entry (Name_Entries.Last+1) has been set.
1067 Name_Entries.Increment_Last;
1068 Name_Entries.Table (Name_Entries.Last).Name_Chars_Index :=
1069 Name_Chars.Last;
1070 Name_Entries.Table (Name_Entries.Last).Name_Len := Short (Name_Len);
1071 Name_Entries.Table (Name_Entries.Last).Hash_Link := No_Name;
1072 Name_Entries.Table (Name_Entries.Last).Int_Info := 0;
1073 Name_Entries.Table (Name_Entries.Last).Byte_Info := 0;
1075 -- Set corresponding string entry in the Name_Chars table
1077 for J in 1 .. Name_Len loop
1078 Name_Chars.Increment_Last;
1079 Name_Chars.Table (Name_Chars.Last) := Name_Buffer (J);
1080 end loop;
1082 Name_Chars.Increment_Last;
1083 Name_Chars.Table (Name_Chars.Last) := ASCII.NUL;
1085 return Name_Entries.Last;
1086 end if;
1087 end Name_Find;
1089 ----------------------
1090 -- Reset_Name_Table --
1091 ----------------------
1093 procedure Reset_Name_Table is
1094 begin
1095 for J in First_Name_Id .. Name_Entries.Last loop
1096 Name_Entries.Table (J).Int_Info := 0;
1097 Name_Entries.Table (J).Byte_Info := 0;
1098 end loop;
1099 end Reset_Name_Table;
1101 --------------------------------
1102 -- Set_Character_Literal_Name --
1103 --------------------------------
1105 procedure Set_Character_Literal_Name (C : Char_Code) is
1106 begin
1107 Name_Buffer (1) := 'Q';
1108 Name_Len := 1;
1109 Store_Encoded_Character (C);
1110 end Set_Character_Literal_Name;
1112 -------------------------
1113 -- Set_Name_Table_Byte --
1114 -------------------------
1116 procedure Set_Name_Table_Byte (Id : Name_Id; Val : Byte) is
1117 begin
1118 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
1119 Name_Entries.Table (Id).Byte_Info := Val;
1120 end Set_Name_Table_Byte;
1122 -------------------------
1123 -- Set_Name_Table_Info --
1124 -------------------------
1126 procedure Set_Name_Table_Info (Id : Name_Id; Val : Int) is
1127 begin
1128 pragma Assert (Id in Name_Entries.First .. Name_Entries.Last);
1129 Name_Entries.Table (Id).Int_Info := Val;
1130 end Set_Name_Table_Info;
1132 -----------------------------
1133 -- Store_Encoded_Character --
1134 -----------------------------
1136 procedure Store_Encoded_Character (C : Char_Code) is
1138 procedure Set_Hex_Chars (N : Natural);
1139 -- Stores given value, which is in the range 0 .. 255, as two hex
1140 -- digits (using lower case a-f) in Name_Buffer, incrementing Name_Len
1142 procedure Set_Hex_Chars (N : Natural) is
1143 Hexd : constant String := "0123456789abcdef";
1145 begin
1146 Name_Buffer (Name_Len + 1) := Hexd (N / 16 + 1);
1147 Name_Buffer (Name_Len + 2) := Hexd (N mod 16 + 1);
1148 Name_Len := Name_Len + 2;
1149 end Set_Hex_Chars;
1151 begin
1152 Name_Len := Name_Len + 1;
1154 if In_Character_Range (C) then
1155 declare
1156 CC : constant Character := Get_Character (C);
1157 begin
1158 if CC in 'a' .. 'z' or else CC in '0' .. '9' then
1159 Name_Buffer (Name_Len) := CC;
1160 else
1161 Name_Buffer (Name_Len) := 'U';
1162 Set_Hex_Chars (Natural (C));
1163 end if;
1164 end;
1166 else
1167 Name_Buffer (Name_Len) := 'W';
1168 Set_Hex_Chars (Natural (C) / 256);
1169 Set_Hex_Chars (Natural (C) mod 256);
1170 end if;
1172 end Store_Encoded_Character;
1174 --------------------------------------
1175 -- Strip_Qualification_And_Suffixes --
1176 --------------------------------------
1178 procedure Strip_Qualification_And_Suffixes is
1179 J : Integer;
1181 begin
1182 -- Strip package body qualification string off end
1184 for J in reverse 2 .. Name_Len loop
1185 if Name_Buffer (J) = 'X' then
1186 Name_Len := J - 1;
1187 exit;
1188 end if;
1190 exit when Name_Buffer (J) /= 'b'
1191 and then Name_Buffer (J) /= 'n'
1192 and then Name_Buffer (J) /= 'p';
1193 end loop;
1195 -- Find rightmost __ or $ separator if one exists. First we position
1196 -- to start the search. If we have a character constant, position
1197 -- just before it, otherwise position to last character but one
1199 if Name_Buffer (Name_Len) = ''' then
1200 J := Name_Len - 2;
1201 while J > 0 and then Name_Buffer (J) /= ''' loop
1202 J := J - 1;
1203 end loop;
1205 else
1206 J := Name_Len - 1;
1207 end if;
1209 -- Loop to search for rightmost __ or $ (homonym) separator
1211 while J > 1 loop
1213 -- If $ separator, homonym separator, so strip it and keep looking
1215 if Name_Buffer (J) = '$' then
1216 Name_Len := J - 1;
1217 J := Name_Len - 1;
1219 -- Else check for __ found
1221 elsif Name_Buffer (J) = '_' and then Name_Buffer (J + 1) = '_' then
1223 -- Found __ so see if digit follows, and if so, this is a
1224 -- homonym separator, so strip it and keep looking.
1226 if Name_Buffer (J + 2) in '0' .. '9' then
1227 Name_Len := J - 1;
1228 J := Name_Len - 1;
1230 -- If not a homonym separator, then we simply strip the
1231 -- separator and everything that precedes it, and we are done
1233 else
1234 Name_Buffer (1 .. Name_Len - J - 1) :=
1235 Name_Buffer (J + 2 .. Name_Len);
1236 Name_Len := Name_Len - J - 1;
1237 exit;
1238 end if;
1240 else
1241 J := J - 1;
1242 end if;
1243 end loop;
1244 end Strip_Qualification_And_Suffixes;
1246 ---------------
1247 -- Tree_Read --
1248 ---------------
1250 procedure Tree_Read is
1251 begin
1252 Name_Chars.Tree_Read;
1253 Name_Entries.Tree_Read;
1255 Tree_Read_Data
1256 (Hash_Table'Address,
1257 Hash_Table'Length * (Hash_Table'Component_Size / Storage_Unit));
1258 end Tree_Read;
1260 ----------------
1261 -- Tree_Write --
1262 ----------------
1264 procedure Tree_Write is
1265 begin
1266 Name_Chars.Tree_Write;
1267 Name_Entries.Tree_Write;
1269 Tree_Write_Data
1270 (Hash_Table'Address,
1271 Hash_Table'Length * (Hash_Table'Component_Size / Storage_Unit));
1272 end Tree_Write;
1274 ------------
1275 -- Unlock --
1276 ------------
1278 procedure Unlock is
1279 begin
1280 Name_Chars.Set_Last (Name_Chars.Last - Name_Chars_Reserve);
1281 Name_Entries.Set_Last (Name_Entries.Last - Name_Entries_Reserve);
1282 Name_Chars.Locked := False;
1283 Name_Entries.Locked := False;
1284 Name_Chars.Release;
1285 Name_Entries.Release;
1286 end Unlock;
1288 --------
1289 -- wn --
1290 --------
1292 procedure wn (Id : Name_Id) is
1293 begin
1294 Write_Name (Id);
1295 Write_Eol;
1296 end wn;
1298 ----------------
1299 -- Write_Name --
1300 ----------------
1302 procedure Write_Name (Id : Name_Id) is
1303 begin
1304 if Id >= First_Name_Id then
1305 Get_Name_String (Id);
1306 Write_Str (Name_Buffer (1 .. Name_Len));
1307 end if;
1308 end Write_Name;
1310 ------------------------
1311 -- Write_Name_Decoded --
1312 ------------------------
1314 procedure Write_Name_Decoded (Id : Name_Id) is
1315 begin
1316 if Id >= First_Name_Id then
1317 Get_Decoded_Name_String (Id);
1318 Write_Str (Name_Buffer (1 .. Name_Len));
1319 end if;
1320 end Write_Name_Decoded;
1322 end Namet;