Merge branches/gcc-4_9-branch rev 225109.
[official-gcc.git] / gcc-4_9-branch / gcc / var-tracking.c
blobd2ba642019608e8cd8ff5ba38c3d9056030d7f6b
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
705 static int
706 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
707 void *arg)
709 if (dest != stack_pointer_rtx)
710 return 0;
712 switch (GET_CODE (op))
714 case PRE_INC:
715 case PRE_DEC:
716 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
717 return 0;
718 case POST_INC:
719 case POST_DEC:
720 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
721 return 0;
722 case PRE_MODIFY:
723 case POST_MODIFY:
724 /* We handle only adjustments by constant amount. */
725 gcc_assert (GET_CODE (src) == PLUS
726 && CONST_INT_P (XEXP (src, 1))
727 && XEXP (src, 0) == stack_pointer_rtx);
728 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
729 -= INTVAL (XEXP (src, 1));
730 return 0;
731 default:
732 gcc_unreachable ();
736 /* Given a SET, calculate the amount of stack adjustment it contains
737 PRE- and POST-modifying stack pointer.
738 This function is similar to stack_adjust_offset. */
740 static void
741 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
742 HOST_WIDE_INT *post)
744 rtx src = SET_SRC (pattern);
745 rtx dest = SET_DEST (pattern);
746 enum rtx_code code;
748 if (dest == stack_pointer_rtx)
750 /* (set (reg sp) (plus (reg sp) (const_int))) */
751 code = GET_CODE (src);
752 if (! (code == PLUS || code == MINUS)
753 || XEXP (src, 0) != stack_pointer_rtx
754 || !CONST_INT_P (XEXP (src, 1)))
755 return;
757 if (code == MINUS)
758 *post += INTVAL (XEXP (src, 1));
759 else
760 *post -= INTVAL (XEXP (src, 1));
761 return;
763 HOST_WIDE_INT res[2] = { 0, 0 };
764 for_each_inc_dec (&pattern, stack_adjust_offset_pre_post_cb, res);
765 *pre += res[0];
766 *post += res[1];
769 /* Given an INSN, calculate the amount of stack adjustment it contains
770 PRE- and POST-modifying stack pointer. */
772 static void
773 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
774 HOST_WIDE_INT *post)
776 rtx pattern;
778 *pre = 0;
779 *post = 0;
781 pattern = PATTERN (insn);
782 if (RTX_FRAME_RELATED_P (insn))
784 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
785 if (expr)
786 pattern = XEXP (expr, 0);
789 if (GET_CODE (pattern) == SET)
790 stack_adjust_offset_pre_post (pattern, pre, post);
791 else if (GET_CODE (pattern) == PARALLEL
792 || GET_CODE (pattern) == SEQUENCE)
794 int i;
796 /* There may be stack adjustments inside compound insns. Search
797 for them. */
798 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
799 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
800 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
804 /* Compute stack adjustments for all blocks by traversing DFS tree.
805 Return true when the adjustments on all incoming edges are consistent.
806 Heavily borrowed from pre_and_rev_post_order_compute. */
808 static bool
809 vt_stack_adjustments (void)
811 edge_iterator *stack;
812 int sp;
814 /* Initialize entry block. */
815 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
817 INCOMING_FRAME_SP_OFFSET;
818 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
819 INCOMING_FRAME_SP_OFFSET;
821 /* Allocate stack for back-tracking up CFG. */
822 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
823 sp = 0;
825 /* Push the first edge on to the stack. */
826 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
828 while (sp)
830 edge_iterator ei;
831 basic_block src;
832 basic_block dest;
834 /* Look at the edge on the top of the stack. */
835 ei = stack[sp - 1];
836 src = ei_edge (ei)->src;
837 dest = ei_edge (ei)->dest;
839 /* Check if the edge destination has been visited yet. */
840 if (!VTI (dest)->visited)
842 rtx insn;
843 HOST_WIDE_INT pre, post, offset;
844 VTI (dest)->visited = true;
845 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
847 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
848 for (insn = BB_HEAD (dest);
849 insn != NEXT_INSN (BB_END (dest));
850 insn = NEXT_INSN (insn))
851 if (INSN_P (insn))
853 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
854 offset += pre + post;
857 VTI (dest)->out.stack_adjust = offset;
859 if (EDGE_COUNT (dest->succs) > 0)
860 /* Since the DEST node has been visited for the first
861 time, check its successors. */
862 stack[sp++] = ei_start (dest->succs);
864 else
866 /* We can end up with different stack adjustments for the exit block
867 of a shrink-wrapped function if stack_adjust_offset_pre_post
868 doesn't understand the rtx pattern used to restore the stack
869 pointer in the epilogue. For example, on s390(x), the stack
870 pointer is often restored via a load-multiple instruction
871 and so no stack_adjust offset is recorded for it. This means
872 that the stack offset at the end of the epilogue block is the
873 the same as the offset before the epilogue, whereas other paths
874 to the exit block will have the correct stack_adjust.
876 It is safe to ignore these differences because (a) we never
877 use the stack_adjust for the exit block in this pass and
878 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
879 function are correct.
881 We must check whether the adjustments on other edges are
882 the same though. */
883 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
884 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
886 free (stack);
887 return false;
890 if (! ei_one_before_end_p (ei))
891 /* Go to the next edge. */
892 ei_next (&stack[sp - 1]);
893 else
894 /* Return to previous level if there are no more edges. */
895 sp--;
899 free (stack);
900 return true;
903 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
904 hard_frame_pointer_rtx is being mapped to it and offset for it. */
905 static rtx cfa_base_rtx;
906 static HOST_WIDE_INT cfa_base_offset;
908 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
909 or hard_frame_pointer_rtx. */
911 static inline rtx
912 compute_cfa_pointer (HOST_WIDE_INT adjustment)
914 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
917 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
918 or -1 if the replacement shouldn't be done. */
919 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
921 /* Data for adjust_mems callback. */
923 struct adjust_mem_data
925 bool store;
926 enum machine_mode mem_mode;
927 HOST_WIDE_INT stack_adjust;
928 rtx side_effects;
931 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
932 transformation of wider mode arithmetics to narrower mode,
933 -1 if it is suitable and subexpressions shouldn't be
934 traversed and 0 if it is suitable and subexpressions should
935 be traversed. Called through for_each_rtx. */
937 static int
938 use_narrower_mode_test (rtx *loc, void *data)
940 rtx subreg = (rtx) data;
942 if (CONSTANT_P (*loc))
943 return -1;
944 switch (GET_CODE (*loc))
946 case REG:
947 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
948 return 1;
949 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
950 *loc, subreg_lowpart_offset (GET_MODE (subreg),
951 GET_MODE (*loc))))
952 return 1;
953 return -1;
954 case PLUS:
955 case MINUS:
956 case MULT:
957 return 0;
958 case ASHIFT:
959 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
960 return 1;
961 else
962 return -1;
963 default:
964 return 1;
968 /* Transform X into narrower mode MODE from wider mode WMODE. */
970 static rtx
971 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
973 rtx op0, op1;
974 if (CONSTANT_P (x))
975 return lowpart_subreg (mode, x, wmode);
976 switch (GET_CODE (x))
978 case REG:
979 return lowpart_subreg (mode, x, wmode);
980 case PLUS:
981 case MINUS:
982 case MULT:
983 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
984 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
985 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
986 case ASHIFT:
987 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
988 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
989 default:
990 gcc_unreachable ();
994 /* Helper function for adjusting used MEMs. */
996 static rtx
997 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
999 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1000 rtx mem, addr = loc, tem;
1001 enum machine_mode mem_mode_save;
1002 bool store_save;
1003 switch (GET_CODE (loc))
1005 case REG:
1006 /* Don't do any sp or fp replacements outside of MEM addresses
1007 on the LHS. */
1008 if (amd->mem_mode == VOIDmode && amd->store)
1009 return loc;
1010 if (loc == stack_pointer_rtx
1011 && !frame_pointer_needed
1012 && cfa_base_rtx)
1013 return compute_cfa_pointer (amd->stack_adjust);
1014 else if (loc == hard_frame_pointer_rtx
1015 && frame_pointer_needed
1016 && hard_frame_pointer_adjustment != -1
1017 && cfa_base_rtx)
1018 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1019 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1020 return loc;
1021 case MEM:
1022 mem = loc;
1023 if (!amd->store)
1025 mem = targetm.delegitimize_address (mem);
1026 if (mem != loc && !MEM_P (mem))
1027 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1030 addr = XEXP (mem, 0);
1031 mem_mode_save = amd->mem_mode;
1032 amd->mem_mode = GET_MODE (mem);
1033 store_save = amd->store;
1034 amd->store = false;
1035 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1036 amd->store = store_save;
1037 amd->mem_mode = mem_mode_save;
1038 if (mem == loc)
1039 addr = targetm.delegitimize_address (addr);
1040 if (addr != XEXP (mem, 0))
1041 mem = replace_equiv_address_nv (mem, addr);
1042 if (!amd->store)
1043 mem = avoid_constant_pool_reference (mem);
1044 return mem;
1045 case PRE_INC:
1046 case PRE_DEC:
1047 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1048 gen_int_mode (GET_CODE (loc) == PRE_INC
1049 ? GET_MODE_SIZE (amd->mem_mode)
1050 : -GET_MODE_SIZE (amd->mem_mode),
1051 GET_MODE (loc)));
1052 case POST_INC:
1053 case POST_DEC:
1054 if (addr == loc)
1055 addr = XEXP (loc, 0);
1056 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1057 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1058 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1059 gen_int_mode ((GET_CODE (loc) == PRE_INC
1060 || GET_CODE (loc) == POST_INC)
1061 ? GET_MODE_SIZE (amd->mem_mode)
1062 : -GET_MODE_SIZE (amd->mem_mode),
1063 GET_MODE (loc)));
1064 store_save = amd->store;
1065 amd->store = false;
1066 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1067 amd->store = store_save;
1068 amd->side_effects = alloc_EXPR_LIST (0,
1069 gen_rtx_SET (VOIDmode,
1070 XEXP (loc, 0), tem),
1071 amd->side_effects);
1072 return addr;
1073 case PRE_MODIFY:
1074 addr = XEXP (loc, 1);
1075 case POST_MODIFY:
1076 if (addr == loc)
1077 addr = XEXP (loc, 0);
1078 gcc_assert (amd->mem_mode != VOIDmode);
1079 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1080 store_save = amd->store;
1081 amd->store = false;
1082 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1083 adjust_mems, data);
1084 amd->store = store_save;
1085 amd->side_effects = alloc_EXPR_LIST (0,
1086 gen_rtx_SET (VOIDmode,
1087 XEXP (loc, 0), tem),
1088 amd->side_effects);
1089 return addr;
1090 case SUBREG:
1091 /* First try without delegitimization of whole MEMs and
1092 avoid_constant_pool_reference, which is more likely to succeed. */
1093 store_save = amd->store;
1094 amd->store = true;
1095 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1096 data);
1097 amd->store = store_save;
1098 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1099 if (mem == SUBREG_REG (loc))
1101 tem = loc;
1102 goto finish_subreg;
1104 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1105 GET_MODE (SUBREG_REG (loc)),
1106 SUBREG_BYTE (loc));
1107 if (tem)
1108 goto finish_subreg;
1109 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem == NULL_RTX)
1113 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1114 finish_subreg:
1115 if (MAY_HAVE_DEBUG_INSNS
1116 && GET_CODE (tem) == SUBREG
1117 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1118 || GET_CODE (SUBREG_REG (tem)) == MINUS
1119 || GET_CODE (SUBREG_REG (tem)) == MULT
1120 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1121 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1122 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1123 && GET_MODE_SIZE (GET_MODE (tem))
1124 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1125 && subreg_lowpart_p (tem)
1126 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1127 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1128 GET_MODE (SUBREG_REG (tem)));
1129 return tem;
1130 case ASM_OPERANDS:
1131 /* Don't do any replacements in second and following
1132 ASM_OPERANDS of inline-asm with multiple sets.
1133 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1134 and ASM_OPERANDS_LABEL_VEC need to be equal between
1135 all the ASM_OPERANDs in the insn and adjust_insn will
1136 fix this up. */
1137 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1138 return loc;
1139 break;
1140 default:
1141 break;
1143 return NULL_RTX;
1146 /* Helper function for replacement of uses. */
1148 static void
1149 adjust_mem_uses (rtx *x, void *data)
1151 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1152 if (new_x != *x)
1153 validate_change (NULL_RTX, x, new_x, true);
1156 /* Helper function for replacement of stores. */
1158 static void
1159 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1161 if (MEM_P (loc))
1163 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1164 adjust_mems, data);
1165 if (new_dest != SET_DEST (expr))
1167 rtx xexpr = CONST_CAST_RTX (expr);
1168 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1173 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1174 replace them with their value in the insn and add the side-effects
1175 as other sets to the insn. */
1177 static void
1178 adjust_insn (basic_block bb, rtx insn)
1180 struct adjust_mem_data amd;
1181 rtx set;
1183 #ifdef HAVE_window_save
1184 /* If the target machine has an explicit window save instruction, the
1185 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1186 if (RTX_FRAME_RELATED_P (insn)
1187 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1189 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1190 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1191 parm_reg_t *p;
1193 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1195 XVECEXP (rtl, 0, i * 2)
1196 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1197 /* Do not clobber the attached DECL, but only the REG. */
1198 XVECEXP (rtl, 0, i * 2 + 1)
1199 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1200 gen_raw_REG (GET_MODE (p->outgoing),
1201 REGNO (p->outgoing)));
1204 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1205 return;
1207 #endif
1209 amd.mem_mode = VOIDmode;
1210 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1211 amd.side_effects = NULL_RTX;
1213 amd.store = true;
1214 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1216 amd.store = false;
1217 if (GET_CODE (PATTERN (insn)) == PARALLEL
1218 && asm_noperands (PATTERN (insn)) > 0
1219 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1221 rtx body, set0;
1222 int i;
1224 /* inline-asm with multiple sets is tiny bit more complicated,
1225 because the 3 vectors in ASM_OPERANDS need to be shared between
1226 all ASM_OPERANDS in the instruction. adjust_mems will
1227 not touch ASM_OPERANDS other than the first one, asm_noperands
1228 test above needs to be called before that (otherwise it would fail)
1229 and afterwards this code fixes it up. */
1230 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1231 body = PATTERN (insn);
1232 set0 = XVECEXP (body, 0, 0);
1233 gcc_checking_assert (GET_CODE (set0) == SET
1234 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1235 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1236 for (i = 1; i < XVECLEN (body, 0); i++)
1237 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1238 break;
1239 else
1241 set = XVECEXP (body, 0, i);
1242 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1243 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1244 == i);
1245 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1246 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1247 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1248 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1249 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1250 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1252 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1253 ASM_OPERANDS_INPUT_VEC (newsrc)
1254 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1255 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1256 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1257 ASM_OPERANDS_LABEL_VEC (newsrc)
1258 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1259 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1263 else
1264 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1266 /* For read-only MEMs containing some constant, prefer those
1267 constants. */
1268 set = single_set (insn);
1269 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1271 rtx note = find_reg_equal_equiv_note (insn);
1273 if (note && CONSTANT_P (XEXP (note, 0)))
1274 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1277 if (amd.side_effects)
1279 rtx *pat, new_pat, s;
1280 int i, oldn, newn;
1282 pat = &PATTERN (insn);
1283 if (GET_CODE (*pat) == COND_EXEC)
1284 pat = &COND_EXEC_CODE (*pat);
1285 if (GET_CODE (*pat) == PARALLEL)
1286 oldn = XVECLEN (*pat, 0);
1287 else
1288 oldn = 1;
1289 for (s = amd.side_effects, newn = 0; s; newn++)
1290 s = XEXP (s, 1);
1291 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1292 if (GET_CODE (*pat) == PARALLEL)
1293 for (i = 0; i < oldn; i++)
1294 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1295 else
1296 XVECEXP (new_pat, 0, 0) = *pat;
1297 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1298 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1299 free_EXPR_LIST_list (&amd.side_effects);
1300 validate_change (NULL_RTX, pat, new_pat, true);
1304 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1305 static inline rtx
1306 dv_as_rtx (decl_or_value dv)
1308 tree decl;
1310 if (dv_is_value_p (dv))
1311 return dv_as_value (dv);
1313 decl = dv_as_decl (dv);
1315 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1316 return DECL_RTL_KNOWN_SET (decl);
1319 /* Return nonzero if a decl_or_value must not have more than one
1320 variable part. The returned value discriminates among various
1321 kinds of one-part DVs ccording to enum onepart_enum. */
1322 static inline onepart_enum_t
1323 dv_onepart_p (decl_or_value dv)
1325 tree decl;
1327 if (!MAY_HAVE_DEBUG_INSNS)
1328 return NOT_ONEPART;
1330 if (dv_is_value_p (dv))
1331 return ONEPART_VALUE;
1333 decl = dv_as_decl (dv);
1335 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1336 return ONEPART_DEXPR;
1338 if (target_for_debug_bind (decl) != NULL_TREE)
1339 return ONEPART_VDECL;
1341 return NOT_ONEPART;
1344 /* Return the variable pool to be used for a dv of type ONEPART. */
1345 static inline alloc_pool
1346 onepart_pool (onepart_enum_t onepart)
1348 return onepart ? valvar_pool : var_pool;
1351 /* Build a decl_or_value out of a decl. */
1352 static inline decl_or_value
1353 dv_from_decl (tree decl)
1355 decl_or_value dv;
1356 dv = decl;
1357 gcc_checking_assert (dv_is_decl_p (dv));
1358 return dv;
1361 /* Build a decl_or_value out of a value. */
1362 static inline decl_or_value
1363 dv_from_value (rtx value)
1365 decl_or_value dv;
1366 dv = value;
1367 gcc_checking_assert (dv_is_value_p (dv));
1368 return dv;
1371 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1372 static inline decl_or_value
1373 dv_from_rtx (rtx x)
1375 decl_or_value dv;
1377 switch (GET_CODE (x))
1379 case DEBUG_EXPR:
1380 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1381 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1382 break;
1384 case VALUE:
1385 dv = dv_from_value (x);
1386 break;
1388 default:
1389 gcc_unreachable ();
1392 return dv;
1395 extern void debug_dv (decl_or_value dv);
1397 DEBUG_FUNCTION void
1398 debug_dv (decl_or_value dv)
1400 if (dv_is_value_p (dv))
1401 debug_rtx (dv_as_value (dv));
1402 else
1403 debug_generic_stmt (dv_as_decl (dv));
1406 static void loc_exp_dep_clear (variable var);
1408 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1410 static void
1411 variable_htab_free (void *elem)
1413 int i;
1414 variable var = (variable) elem;
1415 location_chain node, next;
1417 gcc_checking_assert (var->refcount > 0);
1419 var->refcount--;
1420 if (var->refcount > 0)
1421 return;
1423 for (i = 0; i < var->n_var_parts; i++)
1425 for (node = var->var_part[i].loc_chain; node; node = next)
1427 next = node->next;
1428 pool_free (loc_chain_pool, node);
1430 var->var_part[i].loc_chain = NULL;
1432 if (var->onepart && VAR_LOC_1PAUX (var))
1434 loc_exp_dep_clear (var);
1435 if (VAR_LOC_DEP_LST (var))
1436 VAR_LOC_DEP_LST (var)->pprev = NULL;
1437 XDELETE (VAR_LOC_1PAUX (var));
1438 /* These may be reused across functions, so reset
1439 e.g. NO_LOC_P. */
1440 if (var->onepart == ONEPART_DEXPR)
1441 set_dv_changed (var->dv, true);
1443 pool_free (onepart_pool (var->onepart), var);
1446 /* Initialize the set (array) SET of attrs to empty lists. */
1448 static void
1449 init_attrs_list_set (attrs *set)
1451 int i;
1453 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1454 set[i] = NULL;
1457 /* Make the list *LISTP empty. */
1459 static void
1460 attrs_list_clear (attrs *listp)
1462 attrs list, next;
1464 for (list = *listp; list; list = next)
1466 next = list->next;
1467 pool_free (attrs_pool, list);
1469 *listp = NULL;
1472 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1474 static attrs
1475 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1477 for (; list; list = list->next)
1478 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1479 return list;
1480 return NULL;
1483 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1485 static void
1486 attrs_list_insert (attrs *listp, decl_or_value dv,
1487 HOST_WIDE_INT offset, rtx loc)
1489 attrs list;
1491 list = (attrs) pool_alloc (attrs_pool);
1492 list->loc = loc;
1493 list->dv = dv;
1494 list->offset = offset;
1495 list->next = *listp;
1496 *listp = list;
1499 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1501 static void
1502 attrs_list_copy (attrs *dstp, attrs src)
1504 attrs n;
1506 attrs_list_clear (dstp);
1507 for (; src; src = src->next)
1509 n = (attrs) pool_alloc (attrs_pool);
1510 n->loc = src->loc;
1511 n->dv = src->dv;
1512 n->offset = src->offset;
1513 n->next = *dstp;
1514 *dstp = n;
1518 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1520 static void
1521 attrs_list_union (attrs *dstp, attrs src)
1523 for (; src; src = src->next)
1525 if (!attrs_list_member (*dstp, src->dv, src->offset))
1526 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1530 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1531 *DSTP. */
1533 static void
1534 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1536 gcc_assert (!*dstp);
1537 for (; src; src = src->next)
1539 if (!dv_onepart_p (src->dv))
1540 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1542 for (src = src2; src; src = src->next)
1544 if (!dv_onepart_p (src->dv)
1545 && !attrs_list_member (*dstp, src->dv, src->offset))
1546 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1550 /* Shared hashtable support. */
1552 /* Return true if VARS is shared. */
1554 static inline bool
1555 shared_hash_shared (shared_hash vars)
1557 return vars->refcount > 1;
1560 /* Return the hash table for VARS. */
1562 static inline variable_table_type
1563 shared_hash_htab (shared_hash vars)
1565 return vars->htab;
1568 /* Return true if VAR is shared, or maybe because VARS is shared. */
1570 static inline bool
1571 shared_var_p (variable var, shared_hash vars)
1573 /* Don't count an entry in the changed_variables table as a duplicate. */
1574 return ((var->refcount > 1 + (int) var->in_changed_variables)
1575 || shared_hash_shared (vars));
1578 /* Copy variables into a new hash table. */
1580 static shared_hash
1581 shared_hash_unshare (shared_hash vars)
1583 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1584 gcc_assert (vars->refcount > 1);
1585 new_vars->refcount = 1;
1586 new_vars->htab.create (vars->htab.elements () + 3);
1587 vars_copy (new_vars->htab, vars->htab);
1588 vars->refcount--;
1589 return new_vars;
1592 /* Increment reference counter on VARS and return it. */
1594 static inline shared_hash
1595 shared_hash_copy (shared_hash vars)
1597 vars->refcount++;
1598 return vars;
1601 /* Decrement reference counter and destroy hash table if not shared
1602 anymore. */
1604 static void
1605 shared_hash_destroy (shared_hash vars)
1607 gcc_checking_assert (vars->refcount > 0);
1608 if (--vars->refcount == 0)
1610 vars->htab.dispose ();
1611 pool_free (shared_hash_pool, vars);
1615 /* Unshare *PVARS if shared and return slot for DV. If INS is
1616 INSERT, insert it if not already present. */
1618 static inline variable_def **
1619 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1620 hashval_t dvhash, enum insert_option ins)
1622 if (shared_hash_shared (*pvars))
1623 *pvars = shared_hash_unshare (*pvars);
1624 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1627 static inline variable_def **
1628 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1629 enum insert_option ins)
1631 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1634 /* Return slot for DV, if it is already present in the hash table.
1635 If it is not present, insert it only VARS is not shared, otherwise
1636 return NULL. */
1638 static inline variable_def **
1639 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1641 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1642 shared_hash_shared (vars)
1643 ? NO_INSERT : INSERT);
1646 static inline variable_def **
1647 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1649 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1652 /* Return slot for DV only if it is already present in the hash table. */
1654 static inline variable_def **
1655 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1656 hashval_t dvhash)
1658 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1661 static inline variable_def **
1662 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1664 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1667 /* Return variable for DV or NULL if not already present in the hash
1668 table. */
1670 static inline variable
1671 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1673 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1676 static inline variable
1677 shared_hash_find (shared_hash vars, decl_or_value dv)
1679 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1682 /* Return true if TVAL is better than CVAL as a canonival value. We
1683 choose lowest-numbered VALUEs, using the RTX address as a
1684 tie-breaker. The idea is to arrange them into a star topology,
1685 such that all of them are at most one step away from the canonical
1686 value, and the canonical value has backlinks to all of them, in
1687 addition to all the actual locations. We don't enforce this
1688 topology throughout the entire dataflow analysis, though.
1691 static inline bool
1692 canon_value_cmp (rtx tval, rtx cval)
1694 return !cval
1695 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1698 static bool dst_can_be_shared;
1700 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1702 static variable_def **
1703 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1704 enum var_init_status initialized)
1706 variable new_var;
1707 int i;
1709 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1710 new_var->dv = var->dv;
1711 new_var->refcount = 1;
1712 var->refcount--;
1713 new_var->n_var_parts = var->n_var_parts;
1714 new_var->onepart = var->onepart;
1715 new_var->in_changed_variables = false;
1717 if (! flag_var_tracking_uninit)
1718 initialized = VAR_INIT_STATUS_INITIALIZED;
1720 for (i = 0; i < var->n_var_parts; i++)
1722 location_chain node;
1723 location_chain *nextp;
1725 if (i == 0 && var->onepart)
1727 /* One-part auxiliary data is only used while emitting
1728 notes, so propagate it to the new variable in the active
1729 dataflow set. If we're not emitting notes, this will be
1730 a no-op. */
1731 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1732 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1733 VAR_LOC_1PAUX (var) = NULL;
1735 else
1736 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1737 nextp = &new_var->var_part[i].loc_chain;
1738 for (node = var->var_part[i].loc_chain; node; node = node->next)
1740 location_chain new_lc;
1742 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1743 new_lc->next = NULL;
1744 if (node->init > initialized)
1745 new_lc->init = node->init;
1746 else
1747 new_lc->init = initialized;
1748 if (node->set_src && !(MEM_P (node->set_src)))
1749 new_lc->set_src = node->set_src;
1750 else
1751 new_lc->set_src = NULL;
1752 new_lc->loc = node->loc;
1754 *nextp = new_lc;
1755 nextp = &new_lc->next;
1758 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1761 dst_can_be_shared = false;
1762 if (shared_hash_shared (set->vars))
1763 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1764 else if (set->traversed_vars && set->vars != set->traversed_vars)
1765 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1766 *slot = new_var;
1767 if (var->in_changed_variables)
1769 variable_def **cslot
1770 = changed_variables.find_slot_with_hash (var->dv,
1771 dv_htab_hash (var->dv), NO_INSERT);
1772 gcc_assert (*cslot == (void *) var);
1773 var->in_changed_variables = false;
1774 variable_htab_free (var);
1775 *cslot = new_var;
1776 new_var->in_changed_variables = true;
1778 return slot;
1781 /* Copy all variables from hash table SRC to hash table DST. */
1783 static void
1784 vars_copy (variable_table_type dst, variable_table_type src)
1786 variable_iterator_type hi;
1787 variable var;
1789 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1791 variable_def **dstp;
1792 var->refcount++;
1793 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1794 *dstp = var;
1798 /* Map a decl to its main debug decl. */
1800 static inline tree
1801 var_debug_decl (tree decl)
1803 if (decl && TREE_CODE (decl) == VAR_DECL
1804 && DECL_HAS_DEBUG_EXPR_P (decl))
1806 tree debugdecl = DECL_DEBUG_EXPR (decl);
1807 if (DECL_P (debugdecl))
1808 decl = debugdecl;
1811 return decl;
1814 /* Set the register LOC to contain DV, OFFSET. */
1816 static void
1817 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1818 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1819 enum insert_option iopt)
1821 attrs node;
1822 bool decl_p = dv_is_decl_p (dv);
1824 if (decl_p)
1825 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1827 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1828 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1829 && node->offset == offset)
1830 break;
1831 if (!node)
1832 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1833 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1836 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1838 static void
1839 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1840 rtx set_src)
1842 tree decl = REG_EXPR (loc);
1843 HOST_WIDE_INT offset = REG_OFFSET (loc);
1845 var_reg_decl_set (set, loc, initialized,
1846 dv_from_decl (decl), offset, set_src, INSERT);
1849 static enum var_init_status
1850 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1852 variable var;
1853 int i;
1854 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1856 if (! flag_var_tracking_uninit)
1857 return VAR_INIT_STATUS_INITIALIZED;
1859 var = shared_hash_find (set->vars, dv);
1860 if (var)
1862 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1864 location_chain nextp;
1865 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1866 if (rtx_equal_p (nextp->loc, loc))
1868 ret_val = nextp->init;
1869 break;
1874 return ret_val;
1877 /* Delete current content of register LOC in dataflow set SET and set
1878 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1879 MODIFY is true, any other live copies of the same variable part are
1880 also deleted from the dataflow set, otherwise the variable part is
1881 assumed to be copied from another location holding the same
1882 part. */
1884 static void
1885 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1886 enum var_init_status initialized, rtx set_src)
1888 tree decl = REG_EXPR (loc);
1889 HOST_WIDE_INT offset = REG_OFFSET (loc);
1890 attrs node, next;
1891 attrs *nextp;
1893 decl = var_debug_decl (decl);
1895 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1896 initialized = get_init_value (set, loc, dv_from_decl (decl));
1898 nextp = &set->regs[REGNO (loc)];
1899 for (node = *nextp; node; node = next)
1901 next = node->next;
1902 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1904 delete_variable_part (set, node->loc, node->dv, node->offset);
1905 pool_free (attrs_pool, node);
1906 *nextp = next;
1908 else
1910 node->loc = loc;
1911 nextp = &node->next;
1914 if (modify)
1915 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1916 var_reg_set (set, loc, initialized, set_src);
1919 /* Delete the association of register LOC in dataflow set SET with any
1920 variables that aren't onepart. If CLOBBER is true, also delete any
1921 other live copies of the same variable part, and delete the
1922 association with onepart dvs too. */
1924 static void
1925 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1927 attrs *nextp = &set->regs[REGNO (loc)];
1928 attrs node, next;
1930 if (clobber)
1932 tree decl = REG_EXPR (loc);
1933 HOST_WIDE_INT offset = REG_OFFSET (loc);
1935 decl = var_debug_decl (decl);
1937 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1940 for (node = *nextp; node; node = next)
1942 next = node->next;
1943 if (clobber || !dv_onepart_p (node->dv))
1945 delete_variable_part (set, node->loc, node->dv, node->offset);
1946 pool_free (attrs_pool, node);
1947 *nextp = next;
1949 else
1950 nextp = &node->next;
1954 /* Delete content of register with number REGNO in dataflow set SET. */
1956 static void
1957 var_regno_delete (dataflow_set *set, int regno)
1959 attrs *reg = &set->regs[regno];
1960 attrs node, next;
1962 for (node = *reg; node; node = next)
1964 next = node->next;
1965 delete_variable_part (set, node->loc, node->dv, node->offset);
1966 pool_free (attrs_pool, node);
1968 *reg = NULL;
1971 /* Return true if I is the negated value of a power of two. */
1972 static bool
1973 negative_power_of_two_p (HOST_WIDE_INT i)
1975 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1976 return x == (x & -x);
1979 /* Strip constant offsets and alignments off of LOC. Return the base
1980 expression. */
1982 static rtx
1983 vt_get_canonicalize_base (rtx loc)
1985 while ((GET_CODE (loc) == PLUS
1986 || GET_CODE (loc) == AND)
1987 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1988 && (GET_CODE (loc) != AND
1989 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1990 loc = XEXP (loc, 0);
1992 return loc;
1995 /* This caches canonicalized addresses for VALUEs, computed using
1996 information in the global cselib table. */
1997 static struct pointer_map_t *global_get_addr_cache;
1999 /* This caches canonicalized addresses for VALUEs, computed using
2000 information from the global cache and information pertaining to a
2001 basic block being analyzed. */
2002 static struct pointer_map_t *local_get_addr_cache;
2004 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2006 /* Return the canonical address for LOC, that must be a VALUE, using a
2007 cached global equivalence or computing it and storing it in the
2008 global cache. */
2010 static rtx
2011 get_addr_from_global_cache (rtx const loc)
2013 rtx x;
2014 void **slot;
2016 gcc_checking_assert (GET_CODE (loc) == VALUE);
2018 slot = pointer_map_insert (global_get_addr_cache, loc);
2019 if (*slot)
2020 return (rtx)*slot;
2022 x = canon_rtx (get_addr (loc));
2024 /* Tentative, avoiding infinite recursion. */
2025 *slot = x;
2027 if (x != loc)
2029 rtx nx = vt_canonicalize_addr (NULL, x);
2030 if (nx != x)
2032 /* The table may have moved during recursion, recompute
2033 SLOT. */
2034 slot = pointer_map_contains (global_get_addr_cache, loc);
2035 *slot = x = nx;
2039 return x;
2042 /* Return the canonical address for LOC, that must be a VALUE, using a
2043 cached local equivalence or computing it and storing it in the
2044 local cache. */
2046 static rtx
2047 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2049 rtx x;
2050 void **slot;
2051 decl_or_value dv;
2052 variable var;
2053 location_chain l;
2055 gcc_checking_assert (GET_CODE (loc) == VALUE);
2057 slot = pointer_map_insert (local_get_addr_cache, loc);
2058 if (*slot)
2059 return (rtx)*slot;
2061 x = get_addr_from_global_cache (loc);
2063 /* Tentative, avoiding infinite recursion. */
2064 *slot = x;
2066 /* Recurse to cache local expansion of X, or if we need to search
2067 for a VALUE in the expansion. */
2068 if (x != loc)
2070 rtx nx = vt_canonicalize_addr (set, x);
2071 if (nx != x)
2073 slot = pointer_map_contains (local_get_addr_cache, loc);
2074 *slot = x = nx;
2076 return x;
2079 dv = dv_from_rtx (x);
2080 var = shared_hash_find (set->vars, dv);
2081 if (!var)
2082 return x;
2084 /* Look for an improved equivalent expression. */
2085 for (l = var->var_part[0].loc_chain; l; l = l->next)
2087 rtx base = vt_get_canonicalize_base (l->loc);
2088 if (GET_CODE (base) == VALUE
2089 && canon_value_cmp (base, loc))
2091 rtx nx = vt_canonicalize_addr (set, l->loc);
2092 if (x != nx)
2094 slot = pointer_map_contains (local_get_addr_cache, loc);
2095 *slot = x = nx;
2097 break;
2101 return x;
2104 /* Canonicalize LOC using equivalences from SET in addition to those
2105 in the cselib static table. It expects a VALUE-based expression,
2106 and it will only substitute VALUEs with other VALUEs or
2107 function-global equivalences, so that, if two addresses have base
2108 VALUEs that are locally or globally related in ways that
2109 memrefs_conflict_p cares about, they will both canonicalize to
2110 expressions that have the same base VALUE.
2112 The use of VALUEs as canonical base addresses enables the canonical
2113 RTXs to remain unchanged globally, if they resolve to a constant,
2114 or throughout a basic block otherwise, so that they can be cached
2115 and the cache needs not be invalidated when REGs, MEMs or such
2116 change. */
2118 static rtx
2119 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2121 HOST_WIDE_INT ofst = 0;
2122 enum machine_mode mode = GET_MODE (oloc);
2123 rtx loc = oloc;
2124 rtx x;
2125 bool retry = true;
2127 while (retry)
2129 while (GET_CODE (loc) == PLUS
2130 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2132 ofst += INTVAL (XEXP (loc, 1));
2133 loc = XEXP (loc, 0);
2136 /* Alignment operations can't normally be combined, so just
2137 canonicalize the base and we're done. We'll normally have
2138 only one stack alignment anyway. */
2139 if (GET_CODE (loc) == AND
2140 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2141 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2143 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2144 if (x != XEXP (loc, 0))
2145 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2146 retry = false;
2149 if (GET_CODE (loc) == VALUE)
2151 if (set)
2152 loc = get_addr_from_local_cache (set, loc);
2153 else
2154 loc = get_addr_from_global_cache (loc);
2156 /* Consolidate plus_constants. */
2157 while (ofst && GET_CODE (loc) == PLUS
2158 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2160 ofst += INTVAL (XEXP (loc, 1));
2161 loc = XEXP (loc, 0);
2164 retry = false;
2166 else
2168 x = canon_rtx (loc);
2169 if (retry)
2170 retry = (x != loc);
2171 loc = x;
2175 /* Add OFST back in. */
2176 if (ofst)
2178 /* Don't build new RTL if we can help it. */
2179 if (GET_CODE (oloc) == PLUS
2180 && XEXP (oloc, 0) == loc
2181 && INTVAL (XEXP (oloc, 1)) == ofst)
2182 return oloc;
2184 loc = plus_constant (mode, loc, ofst);
2187 return loc;
2190 /* Return true iff there's a true dependence between MLOC and LOC.
2191 MADDR must be a canonicalized version of MLOC's address. */
2193 static inline bool
2194 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2196 if (GET_CODE (loc) != MEM)
2197 return false;
2199 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2200 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2201 return false;
2203 return true;
2206 /* Hold parameters for the hashtab traversal function
2207 drop_overlapping_mem_locs, see below. */
2209 struct overlapping_mems
2211 dataflow_set *set;
2212 rtx loc, addr;
2215 /* Remove all MEMs that overlap with COMS->LOC from the location list
2216 of a hash table entry for a value. COMS->ADDR must be a
2217 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2218 canonicalized itself. */
2221 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2223 dataflow_set *set = coms->set;
2224 rtx mloc = coms->loc, addr = coms->addr;
2225 variable var = *slot;
2227 if (var->onepart == ONEPART_VALUE)
2229 location_chain loc, *locp;
2230 bool changed = false;
2231 rtx cur_loc;
2233 gcc_assert (var->n_var_parts == 1);
2235 if (shared_var_p (var, set->vars))
2237 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2238 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2239 break;
2241 if (!loc)
2242 return 1;
2244 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2245 var = *slot;
2246 gcc_assert (var->n_var_parts == 1);
2249 if (VAR_LOC_1PAUX (var))
2250 cur_loc = VAR_LOC_FROM (var);
2251 else
2252 cur_loc = var->var_part[0].cur_loc;
2254 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2255 loc; loc = *locp)
2257 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2259 locp = &loc->next;
2260 continue;
2263 *locp = loc->next;
2264 /* If we have deleted the location which was last emitted
2265 we have to emit new location so add the variable to set
2266 of changed variables. */
2267 if (cur_loc == loc->loc)
2269 changed = true;
2270 var->var_part[0].cur_loc = NULL;
2271 if (VAR_LOC_1PAUX (var))
2272 VAR_LOC_FROM (var) = NULL;
2274 pool_free (loc_chain_pool, loc);
2277 if (!var->var_part[0].loc_chain)
2279 var->n_var_parts--;
2280 changed = true;
2282 if (changed)
2283 variable_was_changed (var, set);
2286 return 1;
2289 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2291 static void
2292 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2294 struct overlapping_mems coms;
2296 gcc_checking_assert (GET_CODE (loc) == MEM);
2298 coms.set = set;
2299 coms.loc = canon_rtx (loc);
2300 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2302 set->traversed_vars = set->vars;
2303 shared_hash_htab (set->vars)
2304 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2305 set->traversed_vars = NULL;
2308 /* Set the location of DV, OFFSET as the MEM LOC. */
2310 static void
2311 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2312 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2313 enum insert_option iopt)
2315 if (dv_is_decl_p (dv))
2316 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2318 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2321 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2322 SET to LOC.
2323 Adjust the address first if it is stack pointer based. */
2325 static void
2326 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2327 rtx set_src)
2329 tree decl = MEM_EXPR (loc);
2330 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2332 var_mem_decl_set (set, loc, initialized,
2333 dv_from_decl (decl), offset, set_src, INSERT);
2336 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2337 dataflow set SET to LOC. If MODIFY is true, any other live copies
2338 of the same variable part are also deleted from the dataflow set,
2339 otherwise the variable part is assumed to be copied from another
2340 location holding the same part.
2341 Adjust the address first if it is stack pointer based. */
2343 static void
2344 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2345 enum var_init_status initialized, rtx set_src)
2347 tree decl = MEM_EXPR (loc);
2348 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2350 clobber_overlapping_mems (set, loc);
2351 decl = var_debug_decl (decl);
2353 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2354 initialized = get_init_value (set, loc, dv_from_decl (decl));
2356 if (modify)
2357 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2358 var_mem_set (set, loc, initialized, set_src);
2361 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2362 true, also delete any other live copies of the same variable part.
2363 Adjust the address first if it is stack pointer based. */
2365 static void
2366 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2368 tree decl = MEM_EXPR (loc);
2369 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2371 clobber_overlapping_mems (set, loc);
2372 decl = var_debug_decl (decl);
2373 if (clobber)
2374 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2375 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2378 /* Return true if LOC should not be expanded for location expressions,
2379 or used in them. */
2381 static inline bool
2382 unsuitable_loc (rtx loc)
2384 switch (GET_CODE (loc))
2386 case PC:
2387 case SCRATCH:
2388 case CC0:
2389 case ASM_INPUT:
2390 case ASM_OPERANDS:
2391 return true;
2393 default:
2394 return false;
2398 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2399 bound to it. */
2401 static inline void
2402 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2404 if (REG_P (loc))
2406 if (modified)
2407 var_regno_delete (set, REGNO (loc));
2408 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2409 dv_from_value (val), 0, NULL_RTX, INSERT);
2411 else if (MEM_P (loc))
2413 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2415 if (modified)
2416 clobber_overlapping_mems (set, loc);
2418 if (l && GET_CODE (l->loc) == VALUE)
2419 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2421 /* If this MEM is a global constant, we don't need it in the
2422 dynamic tables. ??? We should test this before emitting the
2423 micro-op in the first place. */
2424 while (l)
2425 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2426 break;
2427 else
2428 l = l->next;
2430 if (!l)
2431 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2432 dv_from_value (val), 0, NULL_RTX, INSERT);
2434 else
2436 /* Other kinds of equivalences are necessarily static, at least
2437 so long as we do not perform substitutions while merging
2438 expressions. */
2439 gcc_unreachable ();
2440 set_variable_part (set, loc, dv_from_value (val), 0,
2441 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2445 /* Bind a value to a location it was just stored in. If MODIFIED
2446 holds, assume the location was modified, detaching it from any
2447 values bound to it. */
2449 static void
2450 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2452 cselib_val *v = CSELIB_VAL_PTR (val);
2454 gcc_assert (cselib_preserved_value_p (v));
2456 if (dump_file)
2458 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2459 print_inline_rtx (dump_file, loc, 0);
2460 fprintf (dump_file, " evaluates to ");
2461 print_inline_rtx (dump_file, val, 0);
2462 if (v->locs)
2464 struct elt_loc_list *l;
2465 for (l = v->locs; l; l = l->next)
2467 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2468 print_inline_rtx (dump_file, l->loc, 0);
2471 fprintf (dump_file, "\n");
2474 gcc_checking_assert (!unsuitable_loc (loc));
2476 val_bind (set, val, loc, modified);
2479 /* Clear (canonical address) slots that reference X. */
2481 static bool
2482 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2483 void **slot, void *x)
2485 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2486 *slot = NULL;
2487 return true;
2490 /* Reset this node, detaching all its equivalences. Return the slot
2491 in the variable hash table that holds dv, if there is one. */
2493 static void
2494 val_reset (dataflow_set *set, decl_or_value dv)
2496 variable var = shared_hash_find (set->vars, dv) ;
2497 location_chain node;
2498 rtx cval;
2500 if (!var || !var->n_var_parts)
2501 return;
2503 gcc_assert (var->n_var_parts == 1);
2505 if (var->onepart == ONEPART_VALUE)
2507 rtx x = dv_as_value (dv);
2508 void **slot;
2510 /* Relationships in the global cache don't change, so reset the
2511 local cache entry only. */
2512 slot = pointer_map_contains (local_get_addr_cache, x);
2513 if (slot)
2515 /* If the value resolved back to itself, odds are that other
2516 values may have cached it too. These entries now refer
2517 to the old X, so detach them too. Entries that used the
2518 old X but resolved to something else remain ok as long as
2519 that something else isn't also reset. */
2520 if (*slot == x)
2521 pointer_map_traverse (local_get_addr_cache,
2522 local_get_addr_clear_given_value, x);
2523 *slot = NULL;
2527 cval = NULL;
2528 for (node = var->var_part[0].loc_chain; node; node = node->next)
2529 if (GET_CODE (node->loc) == VALUE
2530 && canon_value_cmp (node->loc, cval))
2531 cval = node->loc;
2533 for (node = var->var_part[0].loc_chain; node; node = node->next)
2534 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2536 /* Redirect the equivalence link to the new canonical
2537 value, or simply remove it if it would point at
2538 itself. */
2539 if (cval)
2540 set_variable_part (set, cval, dv_from_value (node->loc),
2541 0, node->init, node->set_src, NO_INSERT);
2542 delete_variable_part (set, dv_as_value (dv),
2543 dv_from_value (node->loc), 0);
2546 if (cval)
2548 decl_or_value cdv = dv_from_value (cval);
2550 /* Keep the remaining values connected, accummulating links
2551 in the canonical value. */
2552 for (node = var->var_part[0].loc_chain; node; node = node->next)
2554 if (node->loc == cval)
2555 continue;
2556 else if (GET_CODE (node->loc) == REG)
2557 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2558 node->set_src, NO_INSERT);
2559 else if (GET_CODE (node->loc) == MEM)
2560 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2561 node->set_src, NO_INSERT);
2562 else
2563 set_variable_part (set, node->loc, cdv, 0,
2564 node->init, node->set_src, NO_INSERT);
2568 /* We remove this last, to make sure that the canonical value is not
2569 removed to the point of requiring reinsertion. */
2570 if (cval)
2571 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2573 clobber_variable_part (set, NULL, dv, 0, NULL);
2576 /* Find the values in a given location and map the val to another
2577 value, if it is unique, or add the location as one holding the
2578 value. */
2580 static void
2581 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2583 decl_or_value dv = dv_from_value (val);
2585 if (dump_file && (dump_flags & TDF_DETAILS))
2587 if (insn)
2588 fprintf (dump_file, "%i: ", INSN_UID (insn));
2589 else
2590 fprintf (dump_file, "head: ");
2591 print_inline_rtx (dump_file, val, 0);
2592 fputs (" is at ", dump_file);
2593 print_inline_rtx (dump_file, loc, 0);
2594 fputc ('\n', dump_file);
2597 val_reset (set, dv);
2599 gcc_checking_assert (!unsuitable_loc (loc));
2601 if (REG_P (loc))
2603 attrs node, found = NULL;
2605 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2606 if (dv_is_value_p (node->dv)
2607 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2609 found = node;
2611 /* Map incoming equivalences. ??? Wouldn't it be nice if
2612 we just started sharing the location lists? Maybe a
2613 circular list ending at the value itself or some
2614 such. */
2615 set_variable_part (set, dv_as_value (node->dv),
2616 dv_from_value (val), node->offset,
2617 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2618 set_variable_part (set, val, node->dv, node->offset,
2619 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2622 /* If we didn't find any equivalence, we need to remember that
2623 this value is held in the named register. */
2624 if (found)
2625 return;
2627 /* ??? Attempt to find and merge equivalent MEMs or other
2628 expressions too. */
2630 val_bind (set, val, loc, false);
2633 /* Initialize dataflow set SET to be empty.
2634 VARS_SIZE is the initial size of hash table VARS. */
2636 static void
2637 dataflow_set_init (dataflow_set *set)
2639 init_attrs_list_set (set->regs);
2640 set->vars = shared_hash_copy (empty_shared_hash);
2641 set->stack_adjust = 0;
2642 set->traversed_vars = NULL;
2645 /* Delete the contents of dataflow set SET. */
2647 static void
2648 dataflow_set_clear (dataflow_set *set)
2650 int i;
2652 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2653 attrs_list_clear (&set->regs[i]);
2655 shared_hash_destroy (set->vars);
2656 set->vars = shared_hash_copy (empty_shared_hash);
2659 /* Copy the contents of dataflow set SRC to DST. */
2661 static void
2662 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2664 int i;
2666 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2667 attrs_list_copy (&dst->regs[i], src->regs[i]);
2669 shared_hash_destroy (dst->vars);
2670 dst->vars = shared_hash_copy (src->vars);
2671 dst->stack_adjust = src->stack_adjust;
2674 /* Information for merging lists of locations for a given offset of variable.
2676 struct variable_union_info
2678 /* Node of the location chain. */
2679 location_chain lc;
2681 /* The sum of positions in the input chains. */
2682 int pos;
2684 /* The position in the chain of DST dataflow set. */
2685 int pos_dst;
2688 /* Buffer for location list sorting and its allocated size. */
2689 static struct variable_union_info *vui_vec;
2690 static int vui_allocated;
2692 /* Compare function for qsort, order the structures by POS element. */
2694 static int
2695 variable_union_info_cmp_pos (const void *n1, const void *n2)
2697 const struct variable_union_info *const i1 =
2698 (const struct variable_union_info *) n1;
2699 const struct variable_union_info *const i2 =
2700 ( const struct variable_union_info *) n2;
2702 if (i1->pos != i2->pos)
2703 return i1->pos - i2->pos;
2705 return (i1->pos_dst - i2->pos_dst);
2708 /* Compute union of location parts of variable *SLOT and the same variable
2709 from hash table DATA. Compute "sorted" union of the location chains
2710 for common offsets, i.e. the locations of a variable part are sorted by
2711 a priority where the priority is the sum of the positions in the 2 chains
2712 (if a location is only in one list the position in the second list is
2713 defined to be larger than the length of the chains).
2714 When we are updating the location parts the newest location is in the
2715 beginning of the chain, so when we do the described "sorted" union
2716 we keep the newest locations in the beginning. */
2718 static int
2719 variable_union (variable src, dataflow_set *set)
2721 variable dst;
2722 variable_def **dstp;
2723 int i, j, k;
2725 dstp = shared_hash_find_slot (set->vars, src->dv);
2726 if (!dstp || !*dstp)
2728 src->refcount++;
2730 dst_can_be_shared = false;
2731 if (!dstp)
2732 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2734 *dstp = src;
2736 /* Continue traversing the hash table. */
2737 return 1;
2739 else
2740 dst = *dstp;
2742 gcc_assert (src->n_var_parts);
2743 gcc_checking_assert (src->onepart == dst->onepart);
2745 /* We can combine one-part variables very efficiently, because their
2746 entries are in canonical order. */
2747 if (src->onepart)
2749 location_chain *nodep, dnode, snode;
2751 gcc_assert (src->n_var_parts == 1
2752 && dst->n_var_parts == 1);
2754 snode = src->var_part[0].loc_chain;
2755 gcc_assert (snode);
2757 restart_onepart_unshared:
2758 nodep = &dst->var_part[0].loc_chain;
2759 dnode = *nodep;
2760 gcc_assert (dnode);
2762 while (snode)
2764 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2766 if (r > 0)
2768 location_chain nnode;
2770 if (shared_var_p (dst, set->vars))
2772 dstp = unshare_variable (set, dstp, dst,
2773 VAR_INIT_STATUS_INITIALIZED);
2774 dst = *dstp;
2775 goto restart_onepart_unshared;
2778 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2779 nnode->loc = snode->loc;
2780 nnode->init = snode->init;
2781 if (!snode->set_src || MEM_P (snode->set_src))
2782 nnode->set_src = NULL;
2783 else
2784 nnode->set_src = snode->set_src;
2785 nnode->next = dnode;
2786 dnode = nnode;
2788 else if (r == 0)
2789 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2791 if (r >= 0)
2792 snode = snode->next;
2794 nodep = &dnode->next;
2795 dnode = *nodep;
2798 return 1;
2801 gcc_checking_assert (!src->onepart);
2803 /* Count the number of location parts, result is K. */
2804 for (i = 0, j = 0, k = 0;
2805 i < src->n_var_parts && j < dst->n_var_parts; k++)
2807 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2809 i++;
2810 j++;
2812 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2813 i++;
2814 else
2815 j++;
2817 k += src->n_var_parts - i;
2818 k += dst->n_var_parts - j;
2820 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2821 thus there are at most MAX_VAR_PARTS different offsets. */
2822 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2824 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2826 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2827 dst = *dstp;
2830 i = src->n_var_parts - 1;
2831 j = dst->n_var_parts - 1;
2832 dst->n_var_parts = k;
2834 for (k--; k >= 0; k--)
2836 location_chain node, node2;
2838 if (i >= 0 && j >= 0
2839 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2841 /* Compute the "sorted" union of the chains, i.e. the locations which
2842 are in both chains go first, they are sorted by the sum of
2843 positions in the chains. */
2844 int dst_l, src_l;
2845 int ii, jj, n;
2846 struct variable_union_info *vui;
2848 /* If DST is shared compare the location chains.
2849 If they are different we will modify the chain in DST with
2850 high probability so make a copy of DST. */
2851 if (shared_var_p (dst, set->vars))
2853 for (node = src->var_part[i].loc_chain,
2854 node2 = dst->var_part[j].loc_chain; node && node2;
2855 node = node->next, node2 = node2->next)
2857 if (!((REG_P (node2->loc)
2858 && REG_P (node->loc)
2859 && REGNO (node2->loc) == REGNO (node->loc))
2860 || rtx_equal_p (node2->loc, node->loc)))
2862 if (node2->init < node->init)
2863 node2->init = node->init;
2864 break;
2867 if (node || node2)
2869 dstp = unshare_variable (set, dstp, dst,
2870 VAR_INIT_STATUS_UNKNOWN);
2871 dst = (variable)*dstp;
2875 src_l = 0;
2876 for (node = src->var_part[i].loc_chain; node; node = node->next)
2877 src_l++;
2878 dst_l = 0;
2879 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2880 dst_l++;
2882 if (dst_l == 1)
2884 /* The most common case, much simpler, no qsort is needed. */
2885 location_chain dstnode = dst->var_part[j].loc_chain;
2886 dst->var_part[k].loc_chain = dstnode;
2887 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2888 node2 = dstnode;
2889 for (node = src->var_part[i].loc_chain; node; node = node->next)
2890 if (!((REG_P (dstnode->loc)
2891 && REG_P (node->loc)
2892 && REGNO (dstnode->loc) == REGNO (node->loc))
2893 || rtx_equal_p (dstnode->loc, node->loc)))
2895 location_chain new_node;
2897 /* Copy the location from SRC. */
2898 new_node = (location_chain) pool_alloc (loc_chain_pool);
2899 new_node->loc = node->loc;
2900 new_node->init = node->init;
2901 if (!node->set_src || MEM_P (node->set_src))
2902 new_node->set_src = NULL;
2903 else
2904 new_node->set_src = node->set_src;
2905 node2->next = new_node;
2906 node2 = new_node;
2908 node2->next = NULL;
2910 else
2912 if (src_l + dst_l > vui_allocated)
2914 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2915 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2916 vui_allocated);
2918 vui = vui_vec;
2920 /* Fill in the locations from DST. */
2921 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2922 node = node->next, jj++)
2924 vui[jj].lc = node;
2925 vui[jj].pos_dst = jj;
2927 /* Pos plus value larger than a sum of 2 valid positions. */
2928 vui[jj].pos = jj + src_l + dst_l;
2931 /* Fill in the locations from SRC. */
2932 n = dst_l;
2933 for (node = src->var_part[i].loc_chain, ii = 0; node;
2934 node = node->next, ii++)
2936 /* Find location from NODE. */
2937 for (jj = 0; jj < dst_l; jj++)
2939 if ((REG_P (vui[jj].lc->loc)
2940 && REG_P (node->loc)
2941 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2942 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2944 vui[jj].pos = jj + ii;
2945 break;
2948 if (jj >= dst_l) /* The location has not been found. */
2950 location_chain new_node;
2952 /* Copy the location from SRC. */
2953 new_node = (location_chain) pool_alloc (loc_chain_pool);
2954 new_node->loc = node->loc;
2955 new_node->init = node->init;
2956 if (!node->set_src || MEM_P (node->set_src))
2957 new_node->set_src = NULL;
2958 else
2959 new_node->set_src = node->set_src;
2960 vui[n].lc = new_node;
2961 vui[n].pos_dst = src_l + dst_l;
2962 vui[n].pos = ii + src_l + dst_l;
2963 n++;
2967 if (dst_l == 2)
2969 /* Special case still very common case. For dst_l == 2
2970 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2971 vui[i].pos == i + src_l + dst_l. */
2972 if (vui[0].pos > vui[1].pos)
2974 /* Order should be 1, 0, 2... */
2975 dst->var_part[k].loc_chain = vui[1].lc;
2976 vui[1].lc->next = vui[0].lc;
2977 if (n >= 3)
2979 vui[0].lc->next = vui[2].lc;
2980 vui[n - 1].lc->next = NULL;
2982 else
2983 vui[0].lc->next = NULL;
2984 ii = 3;
2986 else
2988 dst->var_part[k].loc_chain = vui[0].lc;
2989 if (n >= 3 && vui[2].pos < vui[1].pos)
2991 /* Order should be 0, 2, 1, 3... */
2992 vui[0].lc->next = vui[2].lc;
2993 vui[2].lc->next = vui[1].lc;
2994 if (n >= 4)
2996 vui[1].lc->next = vui[3].lc;
2997 vui[n - 1].lc->next = NULL;
2999 else
3000 vui[1].lc->next = NULL;
3001 ii = 4;
3003 else
3005 /* Order should be 0, 1, 2... */
3006 ii = 1;
3007 vui[n - 1].lc->next = NULL;
3010 for (; ii < n; ii++)
3011 vui[ii - 1].lc->next = vui[ii].lc;
3013 else
3015 qsort (vui, n, sizeof (struct variable_union_info),
3016 variable_union_info_cmp_pos);
3018 /* Reconnect the nodes in sorted order. */
3019 for (ii = 1; ii < n; ii++)
3020 vui[ii - 1].lc->next = vui[ii].lc;
3021 vui[n - 1].lc->next = NULL;
3022 dst->var_part[k].loc_chain = vui[0].lc;
3025 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3027 i--;
3028 j--;
3030 else if ((i >= 0 && j >= 0
3031 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3032 || i < 0)
3034 dst->var_part[k] = dst->var_part[j];
3035 j--;
3037 else if ((i >= 0 && j >= 0
3038 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3039 || j < 0)
3041 location_chain *nextp;
3043 /* Copy the chain from SRC. */
3044 nextp = &dst->var_part[k].loc_chain;
3045 for (node = src->var_part[i].loc_chain; node; node = node->next)
3047 location_chain new_lc;
3049 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3050 new_lc->next = NULL;
3051 new_lc->init = node->init;
3052 if (!node->set_src || MEM_P (node->set_src))
3053 new_lc->set_src = NULL;
3054 else
3055 new_lc->set_src = node->set_src;
3056 new_lc->loc = node->loc;
3058 *nextp = new_lc;
3059 nextp = &new_lc->next;
3062 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3063 i--;
3065 dst->var_part[k].cur_loc = NULL;
3068 if (flag_var_tracking_uninit)
3069 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3071 location_chain node, node2;
3072 for (node = src->var_part[i].loc_chain; node; node = node->next)
3073 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3074 if (rtx_equal_p (node->loc, node2->loc))
3076 if (node->init > node2->init)
3077 node2->init = node->init;
3081 /* Continue traversing the hash table. */
3082 return 1;
3085 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3087 static void
3088 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3090 int i;
3092 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3093 attrs_list_union (&dst->regs[i], src->regs[i]);
3095 if (dst->vars == empty_shared_hash)
3097 shared_hash_destroy (dst->vars);
3098 dst->vars = shared_hash_copy (src->vars);
3100 else
3102 variable_iterator_type hi;
3103 variable var;
3105 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3106 var, variable, hi)
3107 variable_union (var, dst);
3111 /* Whether the value is currently being expanded. */
3112 #define VALUE_RECURSED_INTO(x) \
3113 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3115 /* Whether no expansion was found, saving useless lookups.
3116 It must only be set when VALUE_CHANGED is clear. */
3117 #define NO_LOC_P(x) \
3118 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3120 /* Whether cur_loc in the value needs to be (re)computed. */
3121 #define VALUE_CHANGED(x) \
3122 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3123 /* Whether cur_loc in the decl needs to be (re)computed. */
3124 #define DECL_CHANGED(x) TREE_VISITED (x)
3126 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3127 user DECLs, this means they're in changed_variables. Values and
3128 debug exprs may be left with this flag set if no user variable
3129 requires them to be evaluated. */
3131 static inline void
3132 set_dv_changed (decl_or_value dv, bool newv)
3134 switch (dv_onepart_p (dv))
3136 case ONEPART_VALUE:
3137 if (newv)
3138 NO_LOC_P (dv_as_value (dv)) = false;
3139 VALUE_CHANGED (dv_as_value (dv)) = newv;
3140 break;
3142 case ONEPART_DEXPR:
3143 if (newv)
3144 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3145 /* Fall through... */
3147 default:
3148 DECL_CHANGED (dv_as_decl (dv)) = newv;
3149 break;
3153 /* Return true if DV needs to have its cur_loc recomputed. */
3155 static inline bool
3156 dv_changed_p (decl_or_value dv)
3158 return (dv_is_value_p (dv)
3159 ? VALUE_CHANGED (dv_as_value (dv))
3160 : DECL_CHANGED (dv_as_decl (dv)));
3163 /* Return a location list node whose loc is rtx_equal to LOC, in the
3164 location list of a one-part variable or value VAR, or in that of
3165 any values recursively mentioned in the location lists. VARS must
3166 be in star-canonical form. */
3168 static location_chain
3169 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3171 location_chain node;
3172 enum rtx_code loc_code;
3174 if (!var)
3175 return NULL;
3177 gcc_checking_assert (var->onepart);
3179 if (!var->n_var_parts)
3180 return NULL;
3182 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3184 loc_code = GET_CODE (loc);
3185 for (node = var->var_part[0].loc_chain; node; node = node->next)
3187 decl_or_value dv;
3188 variable rvar;
3190 if (GET_CODE (node->loc) != loc_code)
3192 if (GET_CODE (node->loc) != VALUE)
3193 continue;
3195 else if (loc == node->loc)
3196 return node;
3197 else if (loc_code != VALUE)
3199 if (rtx_equal_p (loc, node->loc))
3200 return node;
3201 continue;
3204 /* Since we're in star-canonical form, we don't need to visit
3205 non-canonical nodes: one-part variables and non-canonical
3206 values would only point back to the canonical node. */
3207 if (dv_is_value_p (var->dv)
3208 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3210 /* Skip all subsequent VALUEs. */
3211 while (node->next && GET_CODE (node->next->loc) == VALUE)
3213 node = node->next;
3214 gcc_checking_assert (!canon_value_cmp (node->loc,
3215 dv_as_value (var->dv)));
3216 if (loc == node->loc)
3217 return node;
3219 continue;
3222 gcc_checking_assert (node == var->var_part[0].loc_chain);
3223 gcc_checking_assert (!node->next);
3225 dv = dv_from_value (node->loc);
3226 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3227 return find_loc_in_1pdv (loc, rvar, vars);
3230 /* ??? Gotta look in cselib_val locations too. */
3232 return NULL;
3235 /* Hash table iteration argument passed to variable_merge. */
3236 struct dfset_merge
3238 /* The set in which the merge is to be inserted. */
3239 dataflow_set *dst;
3240 /* The set that we're iterating in. */
3241 dataflow_set *cur;
3242 /* The set that may contain the other dv we are to merge with. */
3243 dataflow_set *src;
3244 /* Number of onepart dvs in src. */
3245 int src_onepart_cnt;
3248 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3249 loc_cmp order, and it is maintained as such. */
3251 static void
3252 insert_into_intersection (location_chain *nodep, rtx loc,
3253 enum var_init_status status)
3255 location_chain node;
3256 int r;
3258 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3259 if ((r = loc_cmp (node->loc, loc)) == 0)
3261 node->init = MIN (node->init, status);
3262 return;
3264 else if (r > 0)
3265 break;
3267 node = (location_chain) pool_alloc (loc_chain_pool);
3269 node->loc = loc;
3270 node->set_src = NULL;
3271 node->init = status;
3272 node->next = *nodep;
3273 *nodep = node;
3276 /* Insert in DEST the intersection of the locations present in both
3277 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3278 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3279 DSM->dst. */
3281 static void
3282 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3283 location_chain s1node, variable s2var)
3285 dataflow_set *s1set = dsm->cur;
3286 dataflow_set *s2set = dsm->src;
3287 location_chain found;
3289 if (s2var)
3291 location_chain s2node;
3293 gcc_checking_assert (s2var->onepart);
3295 if (s2var->n_var_parts)
3297 s2node = s2var->var_part[0].loc_chain;
3299 for (; s1node && s2node;
3300 s1node = s1node->next, s2node = s2node->next)
3301 if (s1node->loc != s2node->loc)
3302 break;
3303 else if (s1node->loc == val)
3304 continue;
3305 else
3306 insert_into_intersection (dest, s1node->loc,
3307 MIN (s1node->init, s2node->init));
3311 for (; s1node; s1node = s1node->next)
3313 if (s1node->loc == val)
3314 continue;
3316 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3317 shared_hash_htab (s2set->vars))))
3319 insert_into_intersection (dest, s1node->loc,
3320 MIN (s1node->init, found->init));
3321 continue;
3324 if (GET_CODE (s1node->loc) == VALUE
3325 && !VALUE_RECURSED_INTO (s1node->loc))
3327 decl_or_value dv = dv_from_value (s1node->loc);
3328 variable svar = shared_hash_find (s1set->vars, dv);
3329 if (svar)
3331 if (svar->n_var_parts == 1)
3333 VALUE_RECURSED_INTO (s1node->loc) = true;
3334 intersect_loc_chains (val, dest, dsm,
3335 svar->var_part[0].loc_chain,
3336 s2var);
3337 VALUE_RECURSED_INTO (s1node->loc) = false;
3342 /* ??? gotta look in cselib_val locations too. */
3344 /* ??? if the location is equivalent to any location in src,
3345 searched recursively
3347 add to dst the values needed to represent the equivalence
3349 telling whether locations S is equivalent to another dv's
3350 location list:
3352 for each location D in the list
3354 if S and D satisfy rtx_equal_p, then it is present
3356 else if D is a value, recurse without cycles
3358 else if S and D have the same CODE and MODE
3360 for each operand oS and the corresponding oD
3362 if oS and oD are not equivalent, then S an D are not equivalent
3364 else if they are RTX vectors
3366 if any vector oS element is not equivalent to its respective oD,
3367 then S and D are not equivalent
3375 /* Return -1 if X should be before Y in a location list for a 1-part
3376 variable, 1 if Y should be before X, and 0 if they're equivalent
3377 and should not appear in the list. */
3379 static int
3380 loc_cmp (rtx x, rtx y)
3382 int i, j, r;
3383 RTX_CODE code = GET_CODE (x);
3384 const char *fmt;
3386 if (x == y)
3387 return 0;
3389 if (REG_P (x))
3391 if (!REG_P (y))
3392 return -1;
3393 gcc_assert (GET_MODE (x) == GET_MODE (y));
3394 if (REGNO (x) == REGNO (y))
3395 return 0;
3396 else if (REGNO (x) < REGNO (y))
3397 return -1;
3398 else
3399 return 1;
3402 if (REG_P (y))
3403 return 1;
3405 if (MEM_P (x))
3407 if (!MEM_P (y))
3408 return -1;
3409 gcc_assert (GET_MODE (x) == GET_MODE (y));
3410 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3413 if (MEM_P (y))
3414 return 1;
3416 if (GET_CODE (x) == VALUE)
3418 if (GET_CODE (y) != VALUE)
3419 return -1;
3420 /* Don't assert the modes are the same, that is true only
3421 when not recursing. (subreg:QI (value:SI 1:1) 0)
3422 and (subreg:QI (value:DI 2:2) 0) can be compared,
3423 even when the modes are different. */
3424 if (canon_value_cmp (x, y))
3425 return -1;
3426 else
3427 return 1;
3430 if (GET_CODE (y) == VALUE)
3431 return 1;
3433 /* Entry value is the least preferable kind of expression. */
3434 if (GET_CODE (x) == ENTRY_VALUE)
3436 if (GET_CODE (y) != ENTRY_VALUE)
3437 return 1;
3438 gcc_assert (GET_MODE (x) == GET_MODE (y));
3439 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3442 if (GET_CODE (y) == ENTRY_VALUE)
3443 return -1;
3445 if (GET_CODE (x) == GET_CODE (y))
3446 /* Compare operands below. */;
3447 else if (GET_CODE (x) < GET_CODE (y))
3448 return -1;
3449 else
3450 return 1;
3452 gcc_assert (GET_MODE (x) == GET_MODE (y));
3454 if (GET_CODE (x) == DEBUG_EXPR)
3456 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3457 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3458 return -1;
3459 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3460 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3461 return 1;
3464 fmt = GET_RTX_FORMAT (code);
3465 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3466 switch (fmt[i])
3468 case 'w':
3469 if (XWINT (x, i) == XWINT (y, i))
3470 break;
3471 else if (XWINT (x, i) < XWINT (y, i))
3472 return -1;
3473 else
3474 return 1;
3476 case 'n':
3477 case 'i':
3478 if (XINT (x, i) == XINT (y, i))
3479 break;
3480 else if (XINT (x, i) < XINT (y, i))
3481 return -1;
3482 else
3483 return 1;
3485 case 'V':
3486 case 'E':
3487 /* Compare the vector length first. */
3488 if (XVECLEN (x, i) == XVECLEN (y, i))
3489 /* Compare the vectors elements. */;
3490 else if (XVECLEN (x, i) < XVECLEN (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 for (j = 0; j < XVECLEN (x, i); j++)
3496 if ((r = loc_cmp (XVECEXP (x, i, j),
3497 XVECEXP (y, i, j))))
3498 return r;
3499 break;
3501 case 'e':
3502 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3503 return r;
3504 break;
3506 case 'S':
3507 case 's':
3508 if (XSTR (x, i) == XSTR (y, i))
3509 break;
3510 if (!XSTR (x, i))
3511 return -1;
3512 if (!XSTR (y, i))
3513 return 1;
3514 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3515 break;
3516 else if (r < 0)
3517 return -1;
3518 else
3519 return 1;
3521 case 'u':
3522 /* These are just backpointers, so they don't matter. */
3523 break;
3525 case '0':
3526 case 't':
3527 break;
3529 /* It is believed that rtx's at this level will never
3530 contain anything but integers and other rtx's,
3531 except for within LABEL_REFs and SYMBOL_REFs. */
3532 default:
3533 gcc_unreachable ();
3536 return 0;
3539 #if ENABLE_CHECKING
3540 /* Check the order of entries in one-part variables. */
3543 canonicalize_loc_order_check (variable_def **slot,
3544 dataflow_set *data ATTRIBUTE_UNUSED)
3546 variable var = *slot;
3547 location_chain node, next;
3549 #ifdef ENABLE_RTL_CHECKING
3550 int i;
3551 for (i = 0; i < var->n_var_parts; i++)
3552 gcc_assert (var->var_part[0].cur_loc == NULL);
3553 gcc_assert (!var->in_changed_variables);
3554 #endif
3556 if (!var->onepart)
3557 return 1;
3559 gcc_assert (var->n_var_parts == 1);
3560 node = var->var_part[0].loc_chain;
3561 gcc_assert (node);
3563 while ((next = node->next))
3565 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3566 node = next;
3569 return 1;
3571 #endif
3573 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3574 more likely to be chosen as canonical for an equivalence set.
3575 Ensure less likely values can reach more likely neighbors, making
3576 the connections bidirectional. */
3579 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3581 variable var = *slot;
3582 decl_or_value dv = var->dv;
3583 rtx val;
3584 location_chain node;
3586 if (!dv_is_value_p (dv))
3587 return 1;
3589 gcc_checking_assert (var->n_var_parts == 1);
3591 val = dv_as_value (dv);
3593 for (node = var->var_part[0].loc_chain; node; node = node->next)
3594 if (GET_CODE (node->loc) == VALUE)
3596 if (canon_value_cmp (node->loc, val))
3597 VALUE_RECURSED_INTO (val) = true;
3598 else
3600 decl_or_value odv = dv_from_value (node->loc);
3601 variable_def **oslot;
3602 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3604 set_slot_part (set, val, oslot, odv, 0,
3605 node->init, NULL_RTX);
3607 VALUE_RECURSED_INTO (node->loc) = true;
3611 return 1;
3614 /* Remove redundant entries from equivalence lists in onepart
3615 variables, canonicalizing equivalence sets into star shapes. */
3618 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3620 variable var = *slot;
3621 decl_or_value dv = var->dv;
3622 location_chain node;
3623 decl_or_value cdv;
3624 rtx val, cval;
3625 variable_def **cslot;
3626 bool has_value;
3627 bool has_marks;
3629 if (!var->onepart)
3630 return 1;
3632 gcc_checking_assert (var->n_var_parts == 1);
3634 if (dv_is_value_p (dv))
3636 cval = dv_as_value (dv);
3637 if (!VALUE_RECURSED_INTO (cval))
3638 return 1;
3639 VALUE_RECURSED_INTO (cval) = false;
3641 else
3642 cval = NULL_RTX;
3644 restart:
3645 val = cval;
3646 has_value = false;
3647 has_marks = false;
3649 gcc_assert (var->n_var_parts == 1);
3651 for (node = var->var_part[0].loc_chain; node; node = node->next)
3652 if (GET_CODE (node->loc) == VALUE)
3654 has_value = true;
3655 if (VALUE_RECURSED_INTO (node->loc))
3656 has_marks = true;
3657 if (canon_value_cmp (node->loc, cval))
3658 cval = node->loc;
3661 if (!has_value)
3662 return 1;
3664 if (cval == val)
3666 if (!has_marks || dv_is_decl_p (dv))
3667 return 1;
3669 /* Keep it marked so that we revisit it, either after visiting a
3670 child node, or after visiting a new parent that might be
3671 found out. */
3672 VALUE_RECURSED_INTO (val) = true;
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE
3676 && VALUE_RECURSED_INTO (node->loc))
3678 cval = node->loc;
3679 restart_with_cval:
3680 VALUE_RECURSED_INTO (cval) = false;
3681 dv = dv_from_value (cval);
3682 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3683 if (!slot)
3685 gcc_assert (dv_is_decl_p (var->dv));
3686 /* The canonical value was reset and dropped.
3687 Remove it. */
3688 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3689 return 1;
3691 var = *slot;
3692 gcc_assert (dv_is_value_p (var->dv));
3693 if (var->n_var_parts == 0)
3694 return 1;
3695 gcc_assert (var->n_var_parts == 1);
3696 goto restart;
3699 VALUE_RECURSED_INTO (val) = false;
3701 return 1;
3704 /* Push values to the canonical one. */
3705 cdv = dv_from_value (cval);
3706 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3708 for (node = var->var_part[0].loc_chain; node; node = node->next)
3709 if (node->loc != cval)
3711 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3712 node->init, NULL_RTX);
3713 if (GET_CODE (node->loc) == VALUE)
3715 decl_or_value ndv = dv_from_value (node->loc);
3717 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3718 NO_INSERT);
3720 if (canon_value_cmp (node->loc, val))
3722 /* If it could have been a local minimum, it's not any more,
3723 since it's now neighbor to cval, so it may have to push
3724 to it. Conversely, if it wouldn't have prevailed over
3725 val, then whatever mark it has is fine: if it was to
3726 push, it will now push to a more canonical node, but if
3727 it wasn't, then it has already pushed any values it might
3728 have to. */
3729 VALUE_RECURSED_INTO (node->loc) = true;
3730 /* Make sure we visit node->loc by ensuring we cval is
3731 visited too. */
3732 VALUE_RECURSED_INTO (cval) = true;
3734 else if (!VALUE_RECURSED_INTO (node->loc))
3735 /* If we have no need to "recurse" into this node, it's
3736 already "canonicalized", so drop the link to the old
3737 parent. */
3738 clobber_variable_part (set, cval, ndv, 0, NULL);
3740 else if (GET_CODE (node->loc) == REG)
3742 attrs list = set->regs[REGNO (node->loc)], *listp;
3744 /* Change an existing attribute referring to dv so that it
3745 refers to cdv, removing any duplicate this might
3746 introduce, and checking that no previous duplicates
3747 existed, all in a single pass. */
3749 while (list)
3751 if (list->offset == 0
3752 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3753 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3754 break;
3756 list = list->next;
3759 gcc_assert (list);
3760 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3762 list->dv = cdv;
3763 for (listp = &list->next; (list = *listp); listp = &list->next)
3765 if (list->offset)
3766 continue;
3768 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3770 *listp = list->next;
3771 pool_free (attrs_pool, list);
3772 list = *listp;
3773 break;
3776 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3779 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3781 for (listp = &list->next; (list = *listp); listp = &list->next)
3783 if (list->offset)
3784 continue;
3786 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3788 *listp = list->next;
3789 pool_free (attrs_pool, list);
3790 list = *listp;
3791 break;
3794 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3797 else
3798 gcc_unreachable ();
3800 #if ENABLE_CHECKING
3801 while (list)
3803 if (list->offset == 0
3804 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3805 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3806 gcc_unreachable ();
3808 list = list->next;
3810 #endif
3814 if (val)
3815 set_slot_part (set, val, cslot, cdv, 0,
3816 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3818 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3820 /* Variable may have been unshared. */
3821 var = *slot;
3822 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3823 && var->var_part[0].loc_chain->next == NULL);
3825 if (VALUE_RECURSED_INTO (cval))
3826 goto restart_with_cval;
3828 return 1;
3831 /* Bind one-part variables to the canonical value in an equivalence
3832 set. Not doing this causes dataflow convergence failure in rare
3833 circumstances, see PR42873. Unfortunately we can't do this
3834 efficiently as part of canonicalize_values_star, since we may not
3835 have determined or even seen the canonical value of a set when we
3836 get to a variable that references another member of the set. */
3839 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3841 variable var = *slot;
3842 decl_or_value dv = var->dv;
3843 location_chain node;
3844 rtx cval;
3845 decl_or_value cdv;
3846 variable_def **cslot;
3847 variable cvar;
3848 location_chain cnode;
3850 if (!var->onepart || var->onepart == ONEPART_VALUE)
3851 return 1;
3853 gcc_assert (var->n_var_parts == 1);
3855 node = var->var_part[0].loc_chain;
3857 if (GET_CODE (node->loc) != VALUE)
3858 return 1;
3860 gcc_assert (!node->next);
3861 cval = node->loc;
3863 /* Push values to the canonical one. */
3864 cdv = dv_from_value (cval);
3865 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3866 if (!cslot)
3867 return 1;
3868 cvar = *cslot;
3869 gcc_assert (cvar->n_var_parts == 1);
3871 cnode = cvar->var_part[0].loc_chain;
3873 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3874 that are not “more canonical” than it. */
3875 if (GET_CODE (cnode->loc) != VALUE
3876 || !canon_value_cmp (cnode->loc, cval))
3877 return 1;
3879 /* CVAL was found to be non-canonical. Change the variable to point
3880 to the canonical VALUE. */
3881 gcc_assert (!cnode->next);
3882 cval = cnode->loc;
3884 slot = set_slot_part (set, cval, slot, dv, 0,
3885 node->init, node->set_src);
3886 clobber_slot_part (set, cval, slot, 0, node->set_src);
3888 return 1;
3891 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3892 corresponding entry in DSM->src. Multi-part variables are combined
3893 with variable_union, whereas onepart dvs are combined with
3894 intersection. */
3896 static int
3897 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3899 dataflow_set *dst = dsm->dst;
3900 variable_def **dstslot;
3901 variable s2var, dvar = NULL;
3902 decl_or_value dv = s1var->dv;
3903 onepart_enum_t onepart = s1var->onepart;
3904 rtx val;
3905 hashval_t dvhash;
3906 location_chain node, *nodep;
3908 /* If the incoming onepart variable has an empty location list, then
3909 the intersection will be just as empty. For other variables,
3910 it's always union. */
3911 gcc_checking_assert (s1var->n_var_parts
3912 && s1var->var_part[0].loc_chain);
3914 if (!onepart)
3915 return variable_union (s1var, dst);
3917 gcc_checking_assert (s1var->n_var_parts == 1);
3919 dvhash = dv_htab_hash (dv);
3920 if (dv_is_value_p (dv))
3921 val = dv_as_value (dv);
3922 else
3923 val = NULL;
3925 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3926 if (!s2var)
3928 dst_can_be_shared = false;
3929 return 1;
3932 dsm->src_onepart_cnt--;
3933 gcc_assert (s2var->var_part[0].loc_chain
3934 && s2var->onepart == onepart
3935 && s2var->n_var_parts == 1);
3937 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3938 if (dstslot)
3940 dvar = *dstslot;
3941 gcc_assert (dvar->refcount == 1
3942 && dvar->onepart == onepart
3943 && dvar->n_var_parts == 1);
3944 nodep = &dvar->var_part[0].loc_chain;
3946 else
3948 nodep = &node;
3949 node = NULL;
3952 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3954 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3955 dvhash, INSERT);
3956 *dstslot = dvar = s2var;
3957 dvar->refcount++;
3959 else
3961 dst_can_be_shared = false;
3963 intersect_loc_chains (val, nodep, dsm,
3964 s1var->var_part[0].loc_chain, s2var);
3966 if (!dstslot)
3968 if (node)
3970 dvar = (variable) pool_alloc (onepart_pool (onepart));
3971 dvar->dv = dv;
3972 dvar->refcount = 1;
3973 dvar->n_var_parts = 1;
3974 dvar->onepart = onepart;
3975 dvar->in_changed_variables = false;
3976 dvar->var_part[0].loc_chain = node;
3977 dvar->var_part[0].cur_loc = NULL;
3978 if (onepart)
3979 VAR_LOC_1PAUX (dvar) = NULL;
3980 else
3981 VAR_PART_OFFSET (dvar, 0) = 0;
3983 dstslot
3984 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3985 INSERT);
3986 gcc_assert (!*dstslot);
3987 *dstslot = dvar;
3989 else
3990 return 1;
3994 nodep = &dvar->var_part[0].loc_chain;
3995 while ((node = *nodep))
3997 location_chain *nextp = &node->next;
3999 if (GET_CODE (node->loc) == REG)
4001 attrs list;
4003 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4004 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4005 && dv_is_value_p (list->dv))
4006 break;
4008 if (!list)
4009 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4010 dv, 0, node->loc);
4011 /* If this value became canonical for another value that had
4012 this register, we want to leave it alone. */
4013 else if (dv_as_value (list->dv) != val)
4015 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4016 dstslot, dv, 0,
4017 node->init, NULL_RTX);
4018 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4020 /* Since nextp points into the removed node, we can't
4021 use it. The pointer to the next node moved to nodep.
4022 However, if the variable we're walking is unshared
4023 during our walk, we'll keep walking the location list
4024 of the previously-shared variable, in which case the
4025 node won't have been removed, and we'll want to skip
4026 it. That's why we test *nodep here. */
4027 if (*nodep != node)
4028 nextp = nodep;
4031 else
4032 /* Canonicalization puts registers first, so we don't have to
4033 walk it all. */
4034 break;
4035 nodep = nextp;
4038 if (dvar != *dstslot)
4039 dvar = *dstslot;
4040 nodep = &dvar->var_part[0].loc_chain;
4042 if (val)
4044 /* Mark all referenced nodes for canonicalization, and make sure
4045 we have mutual equivalence links. */
4046 VALUE_RECURSED_INTO (val) = true;
4047 for (node = *nodep; node; node = node->next)
4048 if (GET_CODE (node->loc) == VALUE)
4050 VALUE_RECURSED_INTO (node->loc) = true;
4051 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4052 node->init, NULL, INSERT);
4055 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4056 gcc_assert (*dstslot == dvar);
4057 canonicalize_values_star (dstslot, dst);
4058 gcc_checking_assert (dstslot
4059 == shared_hash_find_slot_noinsert_1 (dst->vars,
4060 dv, dvhash));
4061 dvar = *dstslot;
4063 else
4065 bool has_value = false, has_other = false;
4067 /* If we have one value and anything else, we're going to
4068 canonicalize this, so make sure all values have an entry in
4069 the table and are marked for canonicalization. */
4070 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4074 /* If this was marked during register canonicalization,
4075 we know we have to canonicalize values. */
4076 if (has_value)
4077 has_other = true;
4078 has_value = true;
4079 if (has_other)
4080 break;
4082 else
4084 has_other = true;
4085 if (has_value)
4086 break;
4090 if (has_value && has_other)
4092 for (node = *nodep; node; node = node->next)
4094 if (GET_CODE (node->loc) == VALUE)
4096 decl_or_value dv = dv_from_value (node->loc);
4097 variable_def **slot = NULL;
4099 if (shared_hash_shared (dst->vars))
4100 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4101 if (!slot)
4102 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4103 INSERT);
4104 if (!*slot)
4106 variable var = (variable) pool_alloc (onepart_pool
4107 (ONEPART_VALUE));
4108 var->dv = dv;
4109 var->refcount = 1;
4110 var->n_var_parts = 1;
4111 var->onepart = ONEPART_VALUE;
4112 var->in_changed_variables = false;
4113 var->var_part[0].loc_chain = NULL;
4114 var->var_part[0].cur_loc = NULL;
4115 VAR_LOC_1PAUX (var) = NULL;
4116 *slot = var;
4119 VALUE_RECURSED_INTO (node->loc) = true;
4123 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4124 gcc_assert (*dstslot == dvar);
4125 canonicalize_values_star (dstslot, dst);
4126 gcc_checking_assert (dstslot
4127 == shared_hash_find_slot_noinsert_1 (dst->vars,
4128 dv, dvhash));
4129 dvar = *dstslot;
4133 if (!onepart_variable_different_p (dvar, s2var))
4135 variable_htab_free (dvar);
4136 *dstslot = dvar = s2var;
4137 dvar->refcount++;
4139 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4141 variable_htab_free (dvar);
4142 *dstslot = dvar = s1var;
4143 dvar->refcount++;
4144 dst_can_be_shared = false;
4146 else
4147 dst_can_be_shared = false;
4149 return 1;
4152 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4153 multi-part variable. Unions of multi-part variables and
4154 intersections of one-part ones will be handled in
4155 variable_merge_over_cur(). */
4157 static int
4158 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4160 dataflow_set *dst = dsm->dst;
4161 decl_or_value dv = s2var->dv;
4163 if (!s2var->onepart)
4165 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4166 *dstp = s2var;
4167 s2var->refcount++;
4168 return 1;
4171 dsm->src_onepart_cnt++;
4172 return 1;
4175 /* Combine dataflow set information from SRC2 into DST, using PDST
4176 to carry over information across passes. */
4178 static void
4179 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4181 dataflow_set cur = *dst;
4182 dataflow_set *src1 = &cur;
4183 struct dfset_merge dsm;
4184 int i;
4185 size_t src1_elems, src2_elems;
4186 variable_iterator_type hi;
4187 variable var;
4189 src1_elems = shared_hash_htab (src1->vars).elements ();
4190 src2_elems = shared_hash_htab (src2->vars).elements ();
4191 dataflow_set_init (dst);
4192 dst->stack_adjust = cur.stack_adjust;
4193 shared_hash_destroy (dst->vars);
4194 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4195 dst->vars->refcount = 1;
4196 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4199 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4201 dsm.dst = dst;
4202 dsm.src = src2;
4203 dsm.cur = src1;
4204 dsm.src_onepart_cnt = 0;
4206 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4207 var, variable, hi)
4208 variable_merge_over_src (var, &dsm);
4209 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4210 var, variable, hi)
4211 variable_merge_over_cur (var, &dsm);
4213 if (dsm.src_onepart_cnt)
4214 dst_can_be_shared = false;
4216 dataflow_set_destroy (src1);
4219 /* Mark register equivalences. */
4221 static void
4222 dataflow_set_equiv_regs (dataflow_set *set)
4224 int i;
4225 attrs list, *listp;
4227 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4229 rtx canon[NUM_MACHINE_MODES];
4231 /* If the list is empty or one entry, no need to canonicalize
4232 anything. */
4233 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4234 continue;
4236 memset (canon, 0, sizeof (canon));
4238 for (list = set->regs[i]; list; list = list->next)
4239 if (list->offset == 0 && dv_is_value_p (list->dv))
4241 rtx val = dv_as_value (list->dv);
4242 rtx *cvalp = &canon[(int)GET_MODE (val)];
4243 rtx cval = *cvalp;
4245 if (canon_value_cmp (val, cval))
4246 *cvalp = val;
4249 for (list = set->regs[i]; list; list = list->next)
4250 if (list->offset == 0 && dv_onepart_p (list->dv))
4252 rtx cval = canon[(int)GET_MODE (list->loc)];
4254 if (!cval)
4255 continue;
4257 if (dv_is_value_p (list->dv))
4259 rtx val = dv_as_value (list->dv);
4261 if (val == cval)
4262 continue;
4264 VALUE_RECURSED_INTO (val) = true;
4265 set_variable_part (set, val, dv_from_value (cval), 0,
4266 VAR_INIT_STATUS_INITIALIZED,
4267 NULL, NO_INSERT);
4270 VALUE_RECURSED_INTO (cval) = true;
4271 set_variable_part (set, cval, list->dv, 0,
4272 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4275 for (listp = &set->regs[i]; (list = *listp);
4276 listp = list ? &list->next : listp)
4277 if (list->offset == 0 && dv_onepart_p (list->dv))
4279 rtx cval = canon[(int)GET_MODE (list->loc)];
4280 variable_def **slot;
4282 if (!cval)
4283 continue;
4285 if (dv_is_value_p (list->dv))
4287 rtx val = dv_as_value (list->dv);
4288 if (!VALUE_RECURSED_INTO (val))
4289 continue;
4292 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4293 canonicalize_values_star (slot, set);
4294 if (*listp != list)
4295 list = NULL;
4300 /* Remove any redundant values in the location list of VAR, which must
4301 be unshared and 1-part. */
4303 static void
4304 remove_duplicate_values (variable var)
4306 location_chain node, *nodep;
4308 gcc_assert (var->onepart);
4309 gcc_assert (var->n_var_parts == 1);
4310 gcc_assert (var->refcount == 1);
4312 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4314 if (GET_CODE (node->loc) == VALUE)
4316 if (VALUE_RECURSED_INTO (node->loc))
4318 /* Remove duplicate value node. */
4319 *nodep = node->next;
4320 pool_free (loc_chain_pool, node);
4321 continue;
4323 else
4324 VALUE_RECURSED_INTO (node->loc) = true;
4326 nodep = &node->next;
4329 for (node = var->var_part[0].loc_chain; node; node = node->next)
4330 if (GET_CODE (node->loc) == VALUE)
4332 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4333 VALUE_RECURSED_INTO (node->loc) = false;
4338 /* Hash table iteration argument passed to variable_post_merge. */
4339 struct dfset_post_merge
4341 /* The new input set for the current block. */
4342 dataflow_set *set;
4343 /* Pointer to the permanent input set for the current block, or
4344 NULL. */
4345 dataflow_set **permp;
4348 /* Create values for incoming expressions associated with one-part
4349 variables that don't have value numbers for them. */
4352 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4354 dataflow_set *set = dfpm->set;
4355 variable var = *slot;
4356 location_chain node;
4358 if (!var->onepart || !var->n_var_parts)
4359 return 1;
4361 gcc_assert (var->n_var_parts == 1);
4363 if (dv_is_decl_p (var->dv))
4365 bool check_dupes = false;
4367 restart:
4368 for (node = var->var_part[0].loc_chain; node; node = node->next)
4370 if (GET_CODE (node->loc) == VALUE)
4371 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4372 else if (GET_CODE (node->loc) == REG)
4374 attrs att, *attp, *curp = NULL;
4376 if (var->refcount != 1)
4378 slot = unshare_variable (set, slot, var,
4379 VAR_INIT_STATUS_INITIALIZED);
4380 var = *slot;
4381 goto restart;
4384 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4385 attp = &att->next)
4386 if (att->offset == 0
4387 && GET_MODE (att->loc) == GET_MODE (node->loc))
4389 if (dv_is_value_p (att->dv))
4391 rtx cval = dv_as_value (att->dv);
4392 node->loc = cval;
4393 check_dupes = true;
4394 break;
4396 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4397 curp = attp;
4400 if (!curp)
4402 curp = attp;
4403 while (*curp)
4404 if ((*curp)->offset == 0
4405 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4406 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4407 break;
4408 else
4409 curp = &(*curp)->next;
4410 gcc_assert (*curp);
4413 if (!att)
4415 decl_or_value cdv;
4416 rtx cval;
4418 if (!*dfpm->permp)
4420 *dfpm->permp = XNEW (dataflow_set);
4421 dataflow_set_init (*dfpm->permp);
4424 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4425 att; att = att->next)
4426 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4428 gcc_assert (att->offset == 0
4429 && dv_is_value_p (att->dv));
4430 val_reset (set, att->dv);
4431 break;
4434 if (att)
4436 cdv = att->dv;
4437 cval = dv_as_value (cdv);
4439 else
4441 /* Create a unique value to hold this register,
4442 that ought to be found and reused in
4443 subsequent rounds. */
4444 cselib_val *v;
4445 gcc_assert (!cselib_lookup (node->loc,
4446 GET_MODE (node->loc), 0,
4447 VOIDmode));
4448 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4449 VOIDmode);
4450 cselib_preserve_value (v);
4451 cselib_invalidate_rtx (node->loc);
4452 cval = v->val_rtx;
4453 cdv = dv_from_value (cval);
4454 if (dump_file)
4455 fprintf (dump_file,
4456 "Created new value %u:%u for reg %i\n",
4457 v->uid, v->hash, REGNO (node->loc));
4460 var_reg_decl_set (*dfpm->permp, node->loc,
4461 VAR_INIT_STATUS_INITIALIZED,
4462 cdv, 0, NULL, INSERT);
4464 node->loc = cval;
4465 check_dupes = true;
4468 /* Remove attribute referring to the decl, which now
4469 uses the value for the register, already existing or
4470 to be added when we bring perm in. */
4471 att = *curp;
4472 *curp = att->next;
4473 pool_free (attrs_pool, att);
4477 if (check_dupes)
4478 remove_duplicate_values (var);
4481 return 1;
4484 /* Reset values in the permanent set that are not associated with the
4485 chosen expression. */
4488 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4490 dataflow_set *set = dfpm->set;
4491 variable pvar = *pslot, var;
4492 location_chain pnode;
4493 decl_or_value dv;
4494 attrs att;
4496 gcc_assert (dv_is_value_p (pvar->dv)
4497 && pvar->n_var_parts == 1);
4498 pnode = pvar->var_part[0].loc_chain;
4499 gcc_assert (pnode
4500 && !pnode->next
4501 && REG_P (pnode->loc));
4503 dv = pvar->dv;
4505 var = shared_hash_find (set->vars, dv);
4506 if (var)
4508 /* Although variable_post_merge_new_vals may have made decls
4509 non-star-canonical, values that pre-existed in canonical form
4510 remain canonical, and newly-created values reference a single
4511 REG, so they are canonical as well. Since VAR has the
4512 location list for a VALUE, using find_loc_in_1pdv for it is
4513 fine, since VALUEs don't map back to DECLs. */
4514 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4515 return 1;
4516 val_reset (set, dv);
4519 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4520 if (att->offset == 0
4521 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4522 && dv_is_value_p (att->dv))
4523 break;
4525 /* If there is a value associated with this register already, create
4526 an equivalence. */
4527 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4529 rtx cval = dv_as_value (att->dv);
4530 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4531 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4532 NULL, INSERT);
4534 else if (!att)
4536 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4537 dv, 0, pnode->loc);
4538 variable_union (pvar, set);
4541 return 1;
4544 /* Just checking stuff and registering register attributes for
4545 now. */
4547 static void
4548 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4550 struct dfset_post_merge dfpm;
4552 dfpm.set = set;
4553 dfpm.permp = permp;
4555 shared_hash_htab (set->vars)
4556 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4557 if (*permp)
4558 shared_hash_htab ((*permp)->vars)
4559 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4560 shared_hash_htab (set->vars)
4561 .traverse <dataflow_set *, canonicalize_values_star> (set);
4562 shared_hash_htab (set->vars)
4563 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4566 /* Return a node whose loc is a MEM that refers to EXPR in the
4567 location list of a one-part variable or value VAR, or in that of
4568 any values recursively mentioned in the location lists. */
4570 static location_chain
4571 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4573 location_chain node;
4574 decl_or_value dv;
4575 variable var;
4576 location_chain where = NULL;
4578 if (!val)
4579 return NULL;
4581 gcc_assert (GET_CODE (val) == VALUE
4582 && !VALUE_RECURSED_INTO (val));
4584 dv = dv_from_value (val);
4585 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4587 if (!var)
4588 return NULL;
4590 gcc_assert (var->onepart);
4592 if (!var->n_var_parts)
4593 return NULL;
4595 VALUE_RECURSED_INTO (val) = true;
4597 for (node = var->var_part[0].loc_chain; node; node = node->next)
4598 if (MEM_P (node->loc)
4599 && MEM_EXPR (node->loc) == expr
4600 && INT_MEM_OFFSET (node->loc) == 0)
4602 where = node;
4603 break;
4605 else if (GET_CODE (node->loc) == VALUE
4606 && !VALUE_RECURSED_INTO (node->loc)
4607 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4608 break;
4610 VALUE_RECURSED_INTO (val) = false;
4612 return where;
4615 /* Return TRUE if the value of MEM may vary across a call. */
4617 static bool
4618 mem_dies_at_call (rtx mem)
4620 tree expr = MEM_EXPR (mem);
4621 tree decl;
4623 if (!expr)
4624 return true;
4626 decl = get_base_address (expr);
4628 if (!decl)
4629 return true;
4631 if (!DECL_P (decl))
4632 return true;
4634 return (may_be_aliased (decl)
4635 || (!TREE_READONLY (decl) && is_global_var (decl)));
4638 /* Remove all MEMs from the location list of a hash table entry for a
4639 one-part variable, except those whose MEM attributes map back to
4640 the variable itself, directly or within a VALUE. */
4643 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4645 variable var = *slot;
4647 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4649 tree decl = dv_as_decl (var->dv);
4650 location_chain loc, *locp;
4651 bool changed = false;
4653 if (!var->n_var_parts)
4654 return 1;
4656 gcc_assert (var->n_var_parts == 1);
4658 if (shared_var_p (var, set->vars))
4660 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4662 /* We want to remove dying MEMs that doesn't refer to DECL. */
4663 if (GET_CODE (loc->loc) == MEM
4664 && (MEM_EXPR (loc->loc) != decl
4665 || INT_MEM_OFFSET (loc->loc) != 0)
4666 && !mem_dies_at_call (loc->loc))
4667 break;
4668 /* We want to move here MEMs that do refer to DECL. */
4669 else if (GET_CODE (loc->loc) == VALUE
4670 && find_mem_expr_in_1pdv (decl, loc->loc,
4671 shared_hash_htab (set->vars)))
4672 break;
4675 if (!loc)
4676 return 1;
4678 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4679 var = *slot;
4680 gcc_assert (var->n_var_parts == 1);
4683 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4684 loc; loc = *locp)
4686 rtx old_loc = loc->loc;
4687 if (GET_CODE (old_loc) == VALUE)
4689 location_chain mem_node
4690 = find_mem_expr_in_1pdv (decl, loc->loc,
4691 shared_hash_htab (set->vars));
4693 /* ??? This picks up only one out of multiple MEMs that
4694 refer to the same variable. Do we ever need to be
4695 concerned about dealing with more than one, or, given
4696 that they should all map to the same variable
4697 location, their addresses will have been merged and
4698 they will be regarded as equivalent? */
4699 if (mem_node)
4701 loc->loc = mem_node->loc;
4702 loc->set_src = mem_node->set_src;
4703 loc->init = MIN (loc->init, mem_node->init);
4707 if (GET_CODE (loc->loc) != MEM
4708 || (MEM_EXPR (loc->loc) == decl
4709 && INT_MEM_OFFSET (loc->loc) == 0)
4710 || !mem_dies_at_call (loc->loc))
4712 if (old_loc != loc->loc && emit_notes)
4714 if (old_loc == var->var_part[0].cur_loc)
4716 changed = true;
4717 var->var_part[0].cur_loc = NULL;
4720 locp = &loc->next;
4721 continue;
4724 if (emit_notes)
4726 if (old_loc == var->var_part[0].cur_loc)
4728 changed = true;
4729 var->var_part[0].cur_loc = NULL;
4732 *locp = loc->next;
4733 pool_free (loc_chain_pool, loc);
4736 if (!var->var_part[0].loc_chain)
4738 var->n_var_parts--;
4739 changed = true;
4741 if (changed)
4742 variable_was_changed (var, set);
4745 return 1;
4748 /* Remove all MEMs from the location list of a hash table entry for a
4749 value. */
4752 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4754 variable var = *slot;
4756 if (var->onepart == ONEPART_VALUE)
4758 location_chain loc, *locp;
4759 bool changed = false;
4760 rtx cur_loc;
4762 gcc_assert (var->n_var_parts == 1);
4764 if (shared_var_p (var, set->vars))
4766 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4767 if (GET_CODE (loc->loc) == MEM
4768 && mem_dies_at_call (loc->loc))
4769 break;
4771 if (!loc)
4772 return 1;
4774 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4775 var = *slot;
4776 gcc_assert (var->n_var_parts == 1);
4779 if (VAR_LOC_1PAUX (var))
4780 cur_loc = VAR_LOC_FROM (var);
4781 else
4782 cur_loc = var->var_part[0].cur_loc;
4784 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4785 loc; loc = *locp)
4787 if (GET_CODE (loc->loc) != MEM
4788 || !mem_dies_at_call (loc->loc))
4790 locp = &loc->next;
4791 continue;
4794 *locp = loc->next;
4795 /* If we have deleted the location which was last emitted
4796 we have to emit new location so add the variable to set
4797 of changed variables. */
4798 if (cur_loc == loc->loc)
4800 changed = true;
4801 var->var_part[0].cur_loc = NULL;
4802 if (VAR_LOC_1PAUX (var))
4803 VAR_LOC_FROM (var) = NULL;
4805 pool_free (loc_chain_pool, loc);
4808 if (!var->var_part[0].loc_chain)
4810 var->n_var_parts--;
4811 changed = true;
4813 if (changed)
4814 variable_was_changed (var, set);
4817 return 1;
4820 /* Remove all variable-location information about call-clobbered
4821 registers, as well as associations between MEMs and VALUEs. */
4823 static void
4824 dataflow_set_clear_at_call (dataflow_set *set)
4826 unsigned int r;
4827 hard_reg_set_iterator hrsi;
4829 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4830 var_regno_delete (set, r);
4832 if (MAY_HAVE_DEBUG_INSNS)
4834 set->traversed_vars = set->vars;
4835 shared_hash_htab (set->vars)
4836 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4837 set->traversed_vars = set->vars;
4838 shared_hash_htab (set->vars)
4839 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4840 set->traversed_vars = NULL;
4844 static bool
4845 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4847 location_chain lc1, lc2;
4849 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4851 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4853 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4855 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4856 break;
4858 if (rtx_equal_p (lc1->loc, lc2->loc))
4859 break;
4861 if (!lc2)
4862 return true;
4864 return false;
4867 /* Return true if one-part variables VAR1 and VAR2 are different.
4868 They must be in canonical order. */
4870 static bool
4871 onepart_variable_different_p (variable var1, variable var2)
4873 location_chain lc1, lc2;
4875 if (var1 == var2)
4876 return false;
4878 gcc_assert (var1->n_var_parts == 1
4879 && var2->n_var_parts == 1);
4881 lc1 = var1->var_part[0].loc_chain;
4882 lc2 = var2->var_part[0].loc_chain;
4884 gcc_assert (lc1 && lc2);
4886 while (lc1 && lc2)
4888 if (loc_cmp (lc1->loc, lc2->loc))
4889 return true;
4890 lc1 = lc1->next;
4891 lc2 = lc2->next;
4894 return lc1 != lc2;
4897 /* Return true if variables VAR1 and VAR2 are different. */
4899 static bool
4900 variable_different_p (variable var1, variable var2)
4902 int i;
4904 if (var1 == var2)
4905 return false;
4907 if (var1->onepart != var2->onepart)
4908 return true;
4910 if (var1->n_var_parts != var2->n_var_parts)
4911 return true;
4913 if (var1->onepart && var1->n_var_parts)
4915 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4916 && var1->n_var_parts == 1);
4917 /* One-part values have locations in a canonical order. */
4918 return onepart_variable_different_p (var1, var2);
4921 for (i = 0; i < var1->n_var_parts; i++)
4923 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4924 return true;
4925 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4926 return true;
4927 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4928 return true;
4930 return false;
4933 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4935 static bool
4936 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4938 variable_iterator_type hi;
4939 variable var1;
4941 if (old_set->vars == new_set->vars)
4942 return false;
4944 if (shared_hash_htab (old_set->vars).elements ()
4945 != shared_hash_htab (new_set->vars).elements ())
4946 return true;
4948 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4949 var1, variable, hi)
4951 variable_table_type htab = shared_hash_htab (new_set->vars);
4952 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4953 if (!var2)
4955 if (dump_file && (dump_flags & TDF_DETAILS))
4957 fprintf (dump_file, "dataflow difference found: removal of:\n");
4958 dump_var (var1);
4960 return true;
4963 if (variable_different_p (var1, var2))
4965 if (dump_file && (dump_flags & TDF_DETAILS))
4967 fprintf (dump_file, "dataflow difference found: "
4968 "old and new follow:\n");
4969 dump_var (var1);
4970 dump_var (var2);
4972 return true;
4976 /* No need to traverse the second hashtab, if both have the same number
4977 of elements and the second one had all entries found in the first one,
4978 then it can't have any extra entries. */
4979 return false;
4982 /* Free the contents of dataflow set SET. */
4984 static void
4985 dataflow_set_destroy (dataflow_set *set)
4987 int i;
4989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4990 attrs_list_clear (&set->regs[i]);
4992 shared_hash_destroy (set->vars);
4993 set->vars = NULL;
4996 /* Return true if RTL X contains a SYMBOL_REF. */
4998 static bool
4999 contains_symbol_ref (rtx x)
5001 const char *fmt;
5002 RTX_CODE code;
5003 int i;
5005 if (!x)
5006 return false;
5008 code = GET_CODE (x);
5009 if (code == SYMBOL_REF)
5010 return true;
5012 fmt = GET_RTX_FORMAT (code);
5013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5015 if (fmt[i] == 'e')
5017 if (contains_symbol_ref (XEXP (x, i)))
5018 return true;
5020 else if (fmt[i] == 'E')
5022 int j;
5023 for (j = 0; j < XVECLEN (x, i); j++)
5024 if (contains_symbol_ref (XVECEXP (x, i, j)))
5025 return true;
5029 return false;
5032 /* Shall EXPR be tracked? */
5034 static bool
5035 track_expr_p (tree expr, bool need_rtl)
5037 rtx decl_rtl;
5038 tree realdecl;
5040 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5041 return DECL_RTL_SET_P (expr);
5043 /* If EXPR is not a parameter or a variable do not track it. */
5044 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5045 return 0;
5047 /* It also must have a name... */
5048 if (!DECL_NAME (expr) && need_rtl)
5049 return 0;
5051 /* ... and a RTL assigned to it. */
5052 decl_rtl = DECL_RTL_IF_SET (expr);
5053 if (!decl_rtl && need_rtl)
5054 return 0;
5056 /* If this expression is really a debug alias of some other declaration, we
5057 don't need to track this expression if the ultimate declaration is
5058 ignored. */
5059 realdecl = expr;
5060 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5062 realdecl = DECL_DEBUG_EXPR (realdecl);
5063 if (!DECL_P (realdecl))
5065 if (handled_component_p (realdecl)
5066 || (TREE_CODE (realdecl) == MEM_REF
5067 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5069 HOST_WIDE_INT bitsize, bitpos, maxsize;
5070 tree innerdecl
5071 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5072 &maxsize);
5073 if (!DECL_P (innerdecl)
5074 || DECL_IGNORED_P (innerdecl)
5075 /* Do not track declarations for parts of tracked parameters
5076 since we want to track them as a whole instead. */
5077 || (TREE_CODE (innerdecl) == PARM_DECL
5078 && DECL_MODE (innerdecl) != BLKmode
5079 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5080 || TREE_STATIC (innerdecl)
5081 || bitsize <= 0
5082 || bitpos + bitsize > 256
5083 || bitsize != maxsize)
5084 return 0;
5085 else
5086 realdecl = expr;
5088 else
5089 return 0;
5093 /* Do not track EXPR if REALDECL it should be ignored for debugging
5094 purposes. */
5095 if (DECL_IGNORED_P (realdecl))
5096 return 0;
5098 /* Do not track global variables until we are able to emit correct location
5099 list for them. */
5100 if (TREE_STATIC (realdecl))
5101 return 0;
5103 /* When the EXPR is a DECL for alias of some variable (see example)
5104 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5105 DECL_RTL contains SYMBOL_REF.
5107 Example:
5108 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5109 char **_dl_argv;
5111 if (decl_rtl && MEM_P (decl_rtl)
5112 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5113 return 0;
5115 /* If RTX is a memory it should not be very large (because it would be
5116 an array or struct). */
5117 if (decl_rtl && MEM_P (decl_rtl))
5119 /* Do not track structures and arrays. */
5120 if (GET_MODE (decl_rtl) == BLKmode
5121 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5122 return 0;
5123 if (MEM_SIZE_KNOWN_P (decl_rtl)
5124 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5125 return 0;
5128 DECL_CHANGED (expr) = 0;
5129 DECL_CHANGED (realdecl) = 0;
5130 return 1;
5133 /* Determine whether a given LOC refers to the same variable part as
5134 EXPR+OFFSET. */
5136 static bool
5137 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5139 tree expr2;
5140 HOST_WIDE_INT offset2;
5142 if (! DECL_P (expr))
5143 return false;
5145 if (REG_P (loc))
5147 expr2 = REG_EXPR (loc);
5148 offset2 = REG_OFFSET (loc);
5150 else if (MEM_P (loc))
5152 expr2 = MEM_EXPR (loc);
5153 offset2 = INT_MEM_OFFSET (loc);
5155 else
5156 return false;
5158 if (! expr2 || ! DECL_P (expr2))
5159 return false;
5161 expr = var_debug_decl (expr);
5162 expr2 = var_debug_decl (expr2);
5164 return (expr == expr2 && offset == offset2);
5167 /* LOC is a REG or MEM that we would like to track if possible.
5168 If EXPR is null, we don't know what expression LOC refers to,
5169 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5170 LOC is an lvalue register.
5172 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5173 is something we can track. When returning true, store the mode of
5174 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5175 from EXPR in *OFFSET_OUT (if nonnull). */
5177 static bool
5178 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5179 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5181 enum machine_mode mode;
5183 if (expr == NULL || !track_expr_p (expr, true))
5184 return false;
5186 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5187 whole subreg, but only the old inner part is really relevant. */
5188 mode = GET_MODE (loc);
5189 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5191 enum machine_mode pseudo_mode;
5193 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5194 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5196 offset += byte_lowpart_offset (pseudo_mode, mode);
5197 mode = pseudo_mode;
5201 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5202 Do the same if we are storing to a register and EXPR occupies
5203 the whole of register LOC; in that case, the whole of EXPR is
5204 being changed. We exclude complex modes from the second case
5205 because the real and imaginary parts are represented as separate
5206 pseudo registers, even if the whole complex value fits into one
5207 hard register. */
5208 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5209 || (store_reg_p
5210 && !COMPLEX_MODE_P (DECL_MODE (expr))
5211 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5212 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5214 mode = DECL_MODE (expr);
5215 offset = 0;
5218 if (offset < 0 || offset >= MAX_VAR_PARTS)
5219 return false;
5221 if (mode_out)
5222 *mode_out = mode;
5223 if (offset_out)
5224 *offset_out = offset;
5225 return true;
5228 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5229 want to track. When returning nonnull, make sure that the attributes
5230 on the returned value are updated. */
5232 static rtx
5233 var_lowpart (enum machine_mode mode, rtx loc)
5235 unsigned int offset, reg_offset, regno;
5237 if (GET_MODE (loc) == mode)
5238 return loc;
5240 if (!REG_P (loc) && !MEM_P (loc))
5241 return NULL;
5243 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5245 if (MEM_P (loc))
5246 return adjust_address_nv (loc, mode, offset);
5248 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5249 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5250 reg_offset, mode);
5251 return gen_rtx_REG_offset (loc, mode, regno, offset);
5254 /* Carry information about uses and stores while walking rtx. */
5256 struct count_use_info
5258 /* The insn where the RTX is. */
5259 rtx insn;
5261 /* The basic block where insn is. */
5262 basic_block bb;
5264 /* The array of n_sets sets in the insn, as determined by cselib. */
5265 struct cselib_set *sets;
5266 int n_sets;
5268 /* True if we're counting stores, false otherwise. */
5269 bool store_p;
5272 /* Find a VALUE corresponding to X. */
5274 static inline cselib_val *
5275 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5277 int i;
5279 if (cui->sets)
5281 /* This is called after uses are set up and before stores are
5282 processed by cselib, so it's safe to look up srcs, but not
5283 dsts. So we look up expressions that appear in srcs or in
5284 dest expressions, but we search the sets array for dests of
5285 stores. */
5286 if (cui->store_p)
5288 /* Some targets represent memset and memcpy patterns
5289 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5290 (set (mem:BLK ...) (const_int ...)) or
5291 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5292 in that case, otherwise we end up with mode mismatches. */
5293 if (mode == BLKmode && MEM_P (x))
5294 return NULL;
5295 for (i = 0; i < cui->n_sets; i++)
5296 if (cui->sets[i].dest == x)
5297 return cui->sets[i].src_elt;
5299 else
5300 return cselib_lookup (x, mode, 0, VOIDmode);
5303 return NULL;
5306 /* Replace all registers and addresses in an expression with VALUE
5307 expressions that map back to them, unless the expression is a
5308 register. If no mapping is or can be performed, returns NULL. */
5310 static rtx
5311 replace_expr_with_values (rtx loc)
5313 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5314 return NULL;
5315 else if (MEM_P (loc))
5317 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5318 get_address_mode (loc), 0,
5319 GET_MODE (loc));
5320 if (addr)
5321 return replace_equiv_address_nv (loc, addr->val_rtx);
5322 else
5323 return NULL;
5325 else
5326 return cselib_subst_to_values (loc, VOIDmode);
5329 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5330 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5331 RTX. */
5333 static int
5334 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5336 rtx loc = *x;
5338 return GET_CODE (loc) == DEBUG_EXPR;
5341 /* Determine what kind of micro operation to choose for a USE. Return
5342 MO_CLOBBER if no micro operation is to be generated. */
5344 static enum micro_operation_type
5345 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5347 tree expr;
5349 if (cui && cui->sets)
5351 if (GET_CODE (loc) == VAR_LOCATION)
5353 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5355 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5356 if (! VAR_LOC_UNKNOWN_P (ploc))
5358 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5359 VOIDmode);
5361 /* ??? flag_float_store and volatile mems are never
5362 given values, but we could in theory use them for
5363 locations. */
5364 gcc_assert (val || 1);
5366 return MO_VAL_LOC;
5368 else
5369 return MO_CLOBBER;
5372 if (REG_P (loc) || MEM_P (loc))
5374 if (modep)
5375 *modep = GET_MODE (loc);
5376 if (cui->store_p)
5378 if (REG_P (loc)
5379 || (find_use_val (loc, GET_MODE (loc), cui)
5380 && cselib_lookup (XEXP (loc, 0),
5381 get_address_mode (loc), 0,
5382 GET_MODE (loc))))
5383 return MO_VAL_SET;
5385 else
5387 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5389 if (val && !cselib_preserved_value_p (val))
5390 return MO_VAL_USE;
5395 if (REG_P (loc))
5397 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5399 if (loc == cfa_base_rtx)
5400 return MO_CLOBBER;
5401 expr = REG_EXPR (loc);
5403 if (!expr)
5404 return MO_USE_NO_VAR;
5405 else if (target_for_debug_bind (var_debug_decl (expr)))
5406 return MO_CLOBBER;
5407 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5408 false, modep, NULL))
5409 return MO_USE;
5410 else
5411 return MO_USE_NO_VAR;
5413 else if (MEM_P (loc))
5415 expr = MEM_EXPR (loc);
5417 if (!expr)
5418 return MO_CLOBBER;
5419 else if (target_for_debug_bind (var_debug_decl (expr)))
5420 return MO_CLOBBER;
5421 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5422 false, modep, NULL)
5423 /* Multi-part variables shouldn't refer to one-part
5424 variable names such as VALUEs (never happens) or
5425 DEBUG_EXPRs (only happens in the presence of debug
5426 insns). */
5427 && (!MAY_HAVE_DEBUG_INSNS
5428 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5429 return MO_USE;
5430 else
5431 return MO_CLOBBER;
5434 return MO_CLOBBER;
5437 /* Log to OUT information about micro-operation MOPT involving X in
5438 INSN of BB. */
5440 static inline void
5441 log_op_type (rtx x, basic_block bb, rtx insn,
5442 enum micro_operation_type mopt, FILE *out)
5444 fprintf (out, "bb %i op %i insn %i %s ",
5445 bb->index, VTI (bb)->mos.length (),
5446 INSN_UID (insn), micro_operation_type_name[mopt]);
5447 print_inline_rtx (out, x, 2);
5448 fputc ('\n', out);
5451 /* Tell whether the CONCAT used to holds a VALUE and its location
5452 needs value resolution, i.e., an attempt of mapping the location
5453 back to other incoming values. */
5454 #define VAL_NEEDS_RESOLUTION(x) \
5455 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5456 /* Whether the location in the CONCAT is a tracked expression, that
5457 should also be handled like a MO_USE. */
5458 #define VAL_HOLDS_TRACK_EXPR(x) \
5459 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5460 /* Whether the location in the CONCAT should be handled like a MO_COPY
5461 as well. */
5462 #define VAL_EXPR_IS_COPIED(x) \
5463 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5464 /* Whether the location in the CONCAT should be handled like a
5465 MO_CLOBBER as well. */
5466 #define VAL_EXPR_IS_CLOBBERED(x) \
5467 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5469 /* All preserved VALUEs. */
5470 static vec<rtx> preserved_values;
5472 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5474 static void
5475 preserve_value (cselib_val *val)
5477 cselib_preserve_value (val);
5478 preserved_values.safe_push (val->val_rtx);
5481 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5482 any rtxes not suitable for CONST use not replaced by VALUEs
5483 are discovered. */
5485 static int
5486 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5488 if (*x == NULL_RTX)
5489 return 0;
5491 switch (GET_CODE (*x))
5493 case REG:
5494 case DEBUG_EXPR:
5495 case PC:
5496 case SCRATCH:
5497 case CC0:
5498 case ASM_INPUT:
5499 case ASM_OPERANDS:
5500 return 1;
5501 case MEM:
5502 return !MEM_READONLY_P (*x);
5503 default:
5504 return 0;
5508 /* Add uses (register and memory references) LOC which will be tracked
5509 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5511 static int
5512 add_uses (rtx *ploc, void *data)
5514 rtx loc = *ploc;
5515 enum machine_mode mode = VOIDmode;
5516 struct count_use_info *cui = (struct count_use_info *)data;
5517 enum micro_operation_type type = use_type (loc, cui, &mode);
5519 if (type != MO_CLOBBER)
5521 basic_block bb = cui->bb;
5522 micro_operation mo;
5524 mo.type = type;
5525 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5526 mo.insn = cui->insn;
5528 if (type == MO_VAL_LOC)
5530 rtx oloc = loc;
5531 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5532 cselib_val *val;
5534 gcc_assert (cui->sets);
5536 if (MEM_P (vloc)
5537 && !REG_P (XEXP (vloc, 0))
5538 && !MEM_P (XEXP (vloc, 0)))
5540 rtx mloc = vloc;
5541 enum machine_mode address_mode = get_address_mode (mloc);
5542 cselib_val *val
5543 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5544 GET_MODE (mloc));
5546 if (val && !cselib_preserved_value_p (val))
5547 preserve_value (val);
5550 if (CONSTANT_P (vloc)
5551 && (GET_CODE (vloc) != CONST
5552 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5553 /* For constants don't look up any value. */;
5554 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5555 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5557 enum machine_mode mode2;
5558 enum micro_operation_type type2;
5559 rtx nloc = NULL;
5560 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5562 if (resolvable)
5563 nloc = replace_expr_with_values (vloc);
5565 if (nloc)
5567 oloc = shallow_copy_rtx (oloc);
5568 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5571 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5573 type2 = use_type (vloc, 0, &mode2);
5575 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5576 || type2 == MO_CLOBBER);
5578 if (type2 == MO_CLOBBER
5579 && !cselib_preserved_value_p (val))
5581 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5582 preserve_value (val);
5585 else if (!VAR_LOC_UNKNOWN_P (vloc))
5587 oloc = shallow_copy_rtx (oloc);
5588 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5591 mo.u.loc = oloc;
5593 else if (type == MO_VAL_USE)
5595 enum machine_mode mode2 = VOIDmode;
5596 enum micro_operation_type type2;
5597 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5598 rtx vloc, oloc = loc, nloc;
5600 gcc_assert (cui->sets);
5602 if (MEM_P (oloc)
5603 && !REG_P (XEXP (oloc, 0))
5604 && !MEM_P (XEXP (oloc, 0)))
5606 rtx mloc = oloc;
5607 enum machine_mode address_mode = get_address_mode (mloc);
5608 cselib_val *val
5609 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5610 GET_MODE (mloc));
5612 if (val && !cselib_preserved_value_p (val))
5613 preserve_value (val);
5616 type2 = use_type (loc, 0, &mode2);
5618 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5619 || type2 == MO_CLOBBER);
5621 if (type2 == MO_USE)
5622 vloc = var_lowpart (mode2, loc);
5623 else
5624 vloc = oloc;
5626 /* The loc of a MO_VAL_USE may have two forms:
5628 (concat val src): val is at src, a value-based
5629 representation.
5631 (concat (concat val use) src): same as above, with use as
5632 the MO_USE tracked value, if it differs from src.
5636 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5637 nloc = replace_expr_with_values (loc);
5638 if (!nloc)
5639 nloc = oloc;
5641 if (vloc != nloc)
5642 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5643 else
5644 oloc = val->val_rtx;
5646 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5648 if (type2 == MO_USE)
5649 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5650 if (!cselib_preserved_value_p (val))
5652 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5653 preserve_value (val);
5656 else
5657 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5659 if (dump_file && (dump_flags & TDF_DETAILS))
5660 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5661 VTI (bb)->mos.safe_push (mo);
5664 return 0;
5667 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5669 static void
5670 add_uses_1 (rtx *x, void *cui)
5672 for_each_rtx (x, add_uses, cui);
5675 /* This is the value used during expansion of locations. We want it
5676 to be unbounded, so that variables expanded deep in a recursion
5677 nest are fully evaluated, so that their values are cached
5678 correctly. We avoid recursion cycles through other means, and we
5679 don't unshare RTL, so excess complexity is not a problem. */
5680 #define EXPR_DEPTH (INT_MAX)
5681 /* We use this to keep too-complex expressions from being emitted as
5682 location notes, and then to debug information. Users can trade
5683 compile time for ridiculously complex expressions, although they're
5684 seldom useful, and they may often have to be discarded as not
5685 representable anyway. */
5686 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5688 /* Attempt to reverse the EXPR operation in the debug info and record
5689 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5690 no longer live we can express its value as VAL - 6. */
5692 static void
5693 reverse_op (rtx val, const_rtx expr, rtx insn)
5695 rtx src, arg, ret;
5696 cselib_val *v;
5697 struct elt_loc_list *l;
5698 enum rtx_code code;
5699 int count;
5701 if (GET_CODE (expr) != SET)
5702 return;
5704 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5705 return;
5707 src = SET_SRC (expr);
5708 switch (GET_CODE (src))
5710 case PLUS:
5711 case MINUS:
5712 case XOR:
5713 case NOT:
5714 case NEG:
5715 if (!REG_P (XEXP (src, 0)))
5716 return;
5717 break;
5718 case SIGN_EXTEND:
5719 case ZERO_EXTEND:
5720 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5721 return;
5722 break;
5723 default:
5724 return;
5727 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5728 return;
5730 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5731 if (!v || !cselib_preserved_value_p (v))
5732 return;
5734 /* Use canonical V to avoid creating multiple redundant expressions
5735 for different VALUES equivalent to V. */
5736 v = canonical_cselib_val (v);
5738 /* Adding a reverse op isn't useful if V already has an always valid
5739 location. Ignore ENTRY_VALUE, while it is always constant, we should
5740 prefer non-ENTRY_VALUE locations whenever possible. */
5741 for (l = v->locs, count = 0; l; l = l->next, count++)
5742 if (CONSTANT_P (l->loc)
5743 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5744 return;
5745 /* Avoid creating too large locs lists. */
5746 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5747 return;
5749 switch (GET_CODE (src))
5751 case NOT:
5752 case NEG:
5753 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5754 return;
5755 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5756 break;
5757 case SIGN_EXTEND:
5758 case ZERO_EXTEND:
5759 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5760 break;
5761 case XOR:
5762 code = XOR;
5763 goto binary;
5764 case PLUS:
5765 code = MINUS;
5766 goto binary;
5767 case MINUS:
5768 code = PLUS;
5769 goto binary;
5770 binary:
5771 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5772 return;
5773 arg = XEXP (src, 1);
5774 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5776 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5777 if (arg == NULL_RTX)
5778 return;
5779 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5780 return;
5782 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5783 if (ret == val)
5784 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5785 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5786 breaks a lot of routines during var-tracking. */
5787 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5788 break;
5789 default:
5790 gcc_unreachable ();
5793 cselib_add_permanent_equiv (v, ret, insn);
5796 /* Add stores (register and memory references) LOC which will be tracked
5797 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5798 CUIP->insn is instruction which the LOC is part of. */
5800 static void
5801 add_stores (rtx loc, const_rtx expr, void *cuip)
5803 enum machine_mode mode = VOIDmode, mode2;
5804 struct count_use_info *cui = (struct count_use_info *)cuip;
5805 basic_block bb = cui->bb;
5806 micro_operation mo;
5807 rtx oloc = loc, nloc, src = NULL;
5808 enum micro_operation_type type = use_type (loc, cui, &mode);
5809 bool track_p = false;
5810 cselib_val *v;
5811 bool resolve, preserve;
5813 if (type == MO_CLOBBER)
5814 return;
5816 mode2 = mode;
5818 if (REG_P (loc))
5820 gcc_assert (loc != cfa_base_rtx);
5821 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5822 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5823 || GET_CODE (expr) == CLOBBER)
5825 mo.type = MO_CLOBBER;
5826 mo.u.loc = loc;
5827 if (GET_CODE (expr) == SET
5828 && SET_DEST (expr) == loc
5829 && !unsuitable_loc (SET_SRC (expr))
5830 && find_use_val (loc, mode, cui))
5832 gcc_checking_assert (type == MO_VAL_SET);
5833 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5836 else
5838 if (GET_CODE (expr) == SET
5839 && SET_DEST (expr) == loc
5840 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5841 src = var_lowpart (mode2, SET_SRC (expr));
5842 loc = var_lowpart (mode2, loc);
5844 if (src == NULL)
5846 mo.type = MO_SET;
5847 mo.u.loc = loc;
5849 else
5851 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5852 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5854 /* If this is an instruction copying (part of) a parameter
5855 passed by invisible reference to its register location,
5856 pretend it's a SET so that the initial memory location
5857 is discarded, as the parameter register can be reused
5858 for other purposes and we do not track locations based
5859 on generic registers. */
5860 if (MEM_P (src)
5861 && REG_EXPR (loc)
5862 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5863 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5864 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5865 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5866 != arg_pointer_rtx)
5867 mo.type = MO_SET;
5868 else
5869 mo.type = MO_COPY;
5871 else
5872 mo.type = MO_SET;
5873 mo.u.loc = xexpr;
5876 mo.insn = cui->insn;
5878 else if (MEM_P (loc)
5879 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5880 || cui->sets))
5882 if (MEM_P (loc) && type == MO_VAL_SET
5883 && !REG_P (XEXP (loc, 0))
5884 && !MEM_P (XEXP (loc, 0)))
5886 rtx mloc = loc;
5887 enum machine_mode address_mode = get_address_mode (mloc);
5888 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5889 address_mode, 0,
5890 GET_MODE (mloc));
5892 if (val && !cselib_preserved_value_p (val))
5893 preserve_value (val);
5896 if (GET_CODE (expr) == CLOBBER || !track_p)
5898 mo.type = MO_CLOBBER;
5899 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5901 else
5903 if (GET_CODE (expr) == SET
5904 && SET_DEST (expr) == loc
5905 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5906 src = var_lowpart (mode2, SET_SRC (expr));
5907 loc = var_lowpart (mode2, loc);
5909 if (src == NULL)
5911 mo.type = MO_SET;
5912 mo.u.loc = loc;
5914 else
5916 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5917 if (same_variable_part_p (SET_SRC (xexpr),
5918 MEM_EXPR (loc),
5919 INT_MEM_OFFSET (loc)))
5920 mo.type = MO_COPY;
5921 else
5922 mo.type = MO_SET;
5923 mo.u.loc = xexpr;
5926 mo.insn = cui->insn;
5928 else
5929 return;
5931 if (type != MO_VAL_SET)
5932 goto log_and_return;
5934 v = find_use_val (oloc, mode, cui);
5936 if (!v)
5937 goto log_and_return;
5939 resolve = preserve = !cselib_preserved_value_p (v);
5941 /* We cannot track values for multiple-part variables, so we track only
5942 locations for tracked parameters passed either by invisible reference
5943 or directly in multiple locations. */
5944 if (track_p
5945 && REG_P (loc)
5946 && REG_EXPR (loc)
5947 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5948 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5949 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5950 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5951 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5952 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5953 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5955 /* Although we don't use the value here, it could be used later by the
5956 mere virtue of its existence as the operand of the reverse operation
5957 that gave rise to it (typically extension/truncation). Make sure it
5958 is preserved as required by vt_expand_var_loc_chain. */
5959 if (preserve)
5960 preserve_value (v);
5961 goto log_and_return;
5964 if (loc == stack_pointer_rtx
5965 && hard_frame_pointer_adjustment != -1
5966 && preserve)
5967 cselib_set_value_sp_based (v);
5969 nloc = replace_expr_with_values (oloc);
5970 if (nloc)
5971 oloc = nloc;
5973 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5975 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5977 if (oval == v)
5978 return;
5979 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5981 if (oval && !cselib_preserved_value_p (oval))
5983 micro_operation moa;
5985 preserve_value (oval);
5987 moa.type = MO_VAL_USE;
5988 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5989 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5990 moa.insn = cui->insn;
5992 if (dump_file && (dump_flags & TDF_DETAILS))
5993 log_op_type (moa.u.loc, cui->bb, cui->insn,
5994 moa.type, dump_file);
5995 VTI (bb)->mos.safe_push (moa);
5998 resolve = false;
6000 else if (resolve && GET_CODE (mo.u.loc) == SET)
6002 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6003 nloc = replace_expr_with_values (SET_SRC (expr));
6004 else
6005 nloc = NULL_RTX;
6007 /* Avoid the mode mismatch between oexpr and expr. */
6008 if (!nloc && mode != mode2)
6010 nloc = SET_SRC (expr);
6011 gcc_assert (oloc == SET_DEST (expr));
6014 if (nloc && nloc != SET_SRC (mo.u.loc))
6015 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6016 else
6018 if (oloc == SET_DEST (mo.u.loc))
6019 /* No point in duplicating. */
6020 oloc = mo.u.loc;
6021 if (!REG_P (SET_SRC (mo.u.loc)))
6022 resolve = false;
6025 else if (!resolve)
6027 if (GET_CODE (mo.u.loc) == SET
6028 && oloc == SET_DEST (mo.u.loc))
6029 /* No point in duplicating. */
6030 oloc = mo.u.loc;
6032 else
6033 resolve = false;
6035 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6037 if (mo.u.loc != oloc)
6038 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6040 /* The loc of a MO_VAL_SET may have various forms:
6042 (concat val dst): dst now holds val
6044 (concat val (set dst src)): dst now holds val, copied from src
6046 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6047 after replacing mems and non-top-level regs with values.
6049 (concat (concat val dstv) (set dst src)): dst now holds val,
6050 copied from src. dstv is a value-based representation of dst, if
6051 it differs from dst. If resolution is needed, src is a REG, and
6052 its mode is the same as that of val.
6054 (concat (concat val (set dstv srcv)) (set dst src)): src
6055 copied to dst, holding val. dstv and srcv are value-based
6056 representations of dst and src, respectively.
6060 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6061 reverse_op (v->val_rtx, expr, cui->insn);
6063 mo.u.loc = loc;
6065 if (track_p)
6066 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6067 if (preserve)
6069 VAL_NEEDS_RESOLUTION (loc) = resolve;
6070 preserve_value (v);
6072 if (mo.type == MO_CLOBBER)
6073 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6074 if (mo.type == MO_COPY)
6075 VAL_EXPR_IS_COPIED (loc) = 1;
6077 mo.type = MO_VAL_SET;
6079 log_and_return:
6080 if (dump_file && (dump_flags & TDF_DETAILS))
6081 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6082 VTI (bb)->mos.safe_push (mo);
6085 /* Arguments to the call. */
6086 static rtx call_arguments;
6088 /* Compute call_arguments. */
6090 static void
6091 prepare_call_arguments (basic_block bb, rtx insn)
6093 rtx link, x, call;
6094 rtx prev, cur, next;
6095 rtx this_arg = NULL_RTX;
6096 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6097 tree obj_type_ref = NULL_TREE;
6098 CUMULATIVE_ARGS args_so_far_v;
6099 cumulative_args_t args_so_far;
6101 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6102 args_so_far = pack_cumulative_args (&args_so_far_v);
6103 call = get_call_rtx_from (insn);
6104 if (call)
6106 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6108 rtx symbol = XEXP (XEXP (call, 0), 0);
6109 if (SYMBOL_REF_DECL (symbol))
6110 fndecl = SYMBOL_REF_DECL (symbol);
6112 if (fndecl == NULL_TREE)
6113 fndecl = MEM_EXPR (XEXP (call, 0));
6114 if (fndecl
6115 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6116 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6117 fndecl = NULL_TREE;
6118 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6119 type = TREE_TYPE (fndecl);
6120 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6122 if (TREE_CODE (fndecl) == INDIRECT_REF
6123 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6124 obj_type_ref = TREE_OPERAND (fndecl, 0);
6125 fndecl = NULL_TREE;
6127 if (type)
6129 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6130 t = TREE_CHAIN (t))
6131 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6132 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6133 break;
6134 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6135 type = NULL;
6136 else
6138 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6139 link = CALL_INSN_FUNCTION_USAGE (insn);
6140 #ifndef PCC_STATIC_STRUCT_RETURN
6141 if (aggregate_value_p (TREE_TYPE (type), type)
6142 && targetm.calls.struct_value_rtx (type, 0) == 0)
6144 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6145 enum machine_mode mode = TYPE_MODE (struct_addr);
6146 rtx reg;
6147 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6148 nargs + 1);
6149 reg = targetm.calls.function_arg (args_so_far, mode,
6150 struct_addr, true);
6151 targetm.calls.function_arg_advance (args_so_far, mode,
6152 struct_addr, true);
6153 if (reg == NULL_RTX)
6155 for (; link; link = XEXP (link, 1))
6156 if (GET_CODE (XEXP (link, 0)) == USE
6157 && MEM_P (XEXP (XEXP (link, 0), 0)))
6159 link = XEXP (link, 1);
6160 break;
6164 else
6165 #endif
6166 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6167 nargs);
6168 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6170 enum machine_mode mode;
6171 t = TYPE_ARG_TYPES (type);
6172 mode = TYPE_MODE (TREE_VALUE (t));
6173 this_arg = targetm.calls.function_arg (args_so_far, mode,
6174 TREE_VALUE (t), true);
6175 if (this_arg && !REG_P (this_arg))
6176 this_arg = NULL_RTX;
6177 else if (this_arg == NULL_RTX)
6179 for (; link; link = XEXP (link, 1))
6180 if (GET_CODE (XEXP (link, 0)) == USE
6181 && MEM_P (XEXP (XEXP (link, 0), 0)))
6183 this_arg = XEXP (XEXP (link, 0), 0);
6184 break;
6191 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6193 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6194 if (GET_CODE (XEXP (link, 0)) == USE)
6196 rtx item = NULL_RTX;
6197 x = XEXP (XEXP (link, 0), 0);
6198 if (GET_MODE (link) == VOIDmode
6199 || GET_MODE (link) == BLKmode
6200 || (GET_MODE (link) != GET_MODE (x)
6201 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6202 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6203 /* Can't do anything for these, if the original type mode
6204 isn't known or can't be converted. */;
6205 else if (REG_P (x))
6207 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6208 if (val && cselib_preserved_value_p (val))
6209 item = val->val_rtx;
6210 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6212 enum machine_mode mode = GET_MODE (x);
6214 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6215 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6217 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6219 if (reg == NULL_RTX || !REG_P (reg))
6220 continue;
6221 val = cselib_lookup (reg, mode, 0, VOIDmode);
6222 if (val && cselib_preserved_value_p (val))
6224 item = val->val_rtx;
6225 break;
6230 else if (MEM_P (x))
6232 rtx mem = x;
6233 cselib_val *val;
6235 if (!frame_pointer_needed)
6237 struct adjust_mem_data amd;
6238 amd.mem_mode = VOIDmode;
6239 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6240 amd.side_effects = NULL_RTX;
6241 amd.store = true;
6242 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6243 &amd);
6244 gcc_assert (amd.side_effects == NULL_RTX);
6246 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6251 /* For non-integer stack argument see also if they weren't
6252 initialized by integers. */
6253 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6254 if (imode != GET_MODE (mem) && imode != BLKmode)
6256 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6257 imode, 0, VOIDmode);
6258 if (val && cselib_preserved_value_p (val))
6259 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6260 imode);
6264 if (item)
6266 rtx x2 = x;
6267 if (GET_MODE (item) != GET_MODE (link))
6268 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6269 if (GET_MODE (x2) != GET_MODE (link))
6270 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6271 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6272 call_arguments
6273 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6275 if (t && t != void_list_node)
6277 tree argtype = TREE_VALUE (t);
6278 enum machine_mode mode = TYPE_MODE (argtype);
6279 rtx reg;
6280 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6282 argtype = build_pointer_type (argtype);
6283 mode = TYPE_MODE (argtype);
6285 reg = targetm.calls.function_arg (args_so_far, mode,
6286 argtype, true);
6287 if (TREE_CODE (argtype) == REFERENCE_TYPE
6288 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6289 && reg
6290 && REG_P (reg)
6291 && GET_MODE (reg) == mode
6292 && GET_MODE_CLASS (mode) == MODE_INT
6293 && REG_P (x)
6294 && REGNO (x) == REGNO (reg)
6295 && GET_MODE (x) == mode
6296 && item)
6298 enum machine_mode indmode
6299 = TYPE_MODE (TREE_TYPE (argtype));
6300 rtx mem = gen_rtx_MEM (indmode, x);
6301 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6302 if (val && cselib_preserved_value_p (val))
6304 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6305 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6306 call_arguments);
6308 else
6310 struct elt_loc_list *l;
6311 tree initial;
6313 /* Try harder, when passing address of a constant
6314 pool integer it can be easily read back. */
6315 item = XEXP (item, 1);
6316 if (GET_CODE (item) == SUBREG)
6317 item = SUBREG_REG (item);
6318 gcc_assert (GET_CODE (item) == VALUE);
6319 val = CSELIB_VAL_PTR (item);
6320 for (l = val->locs; l; l = l->next)
6321 if (GET_CODE (l->loc) == SYMBOL_REF
6322 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6323 && SYMBOL_REF_DECL (l->loc)
6324 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6326 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6327 if (tree_fits_shwi_p (initial))
6329 item = GEN_INT (tree_to_shwi (initial));
6330 item = gen_rtx_CONCAT (indmode, mem, item);
6331 call_arguments
6332 = gen_rtx_EXPR_LIST (VOIDmode, item,
6333 call_arguments);
6335 break;
6339 targetm.calls.function_arg_advance (args_so_far, mode,
6340 argtype, true);
6341 t = TREE_CHAIN (t);
6345 /* Add debug arguments. */
6346 if (fndecl
6347 && TREE_CODE (fndecl) == FUNCTION_DECL
6348 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6350 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6351 if (debug_args)
6353 unsigned int ix;
6354 tree param;
6355 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6357 rtx item;
6358 tree dtemp = (**debug_args)[ix + 1];
6359 enum machine_mode mode = DECL_MODE (dtemp);
6360 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6361 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6362 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6363 call_arguments);
6368 /* Reverse call_arguments chain. */
6369 prev = NULL_RTX;
6370 for (cur = call_arguments; cur; cur = next)
6372 next = XEXP (cur, 1);
6373 XEXP (cur, 1) = prev;
6374 prev = cur;
6376 call_arguments = prev;
6378 x = get_call_rtx_from (insn);
6379 if (x)
6381 x = XEXP (XEXP (x, 0), 0);
6382 if (GET_CODE (x) == SYMBOL_REF)
6383 /* Don't record anything. */;
6384 else if (CONSTANT_P (x))
6386 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6387 pc_rtx, x);
6388 call_arguments
6389 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6391 else
6393 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6394 if (val && cselib_preserved_value_p (val))
6396 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6397 call_arguments
6398 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6402 if (this_arg)
6404 enum machine_mode mode
6405 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6406 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6407 HOST_WIDE_INT token
6408 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6409 if (token)
6410 clobbered = plus_constant (mode, clobbered,
6411 token * GET_MODE_SIZE (mode));
6412 clobbered = gen_rtx_MEM (mode, clobbered);
6413 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6414 call_arguments
6415 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6419 /* Callback for cselib_record_sets_hook, that records as micro
6420 operations uses and stores in an insn after cselib_record_sets has
6421 analyzed the sets in an insn, but before it modifies the stored
6422 values in the internal tables, unless cselib_record_sets doesn't
6423 call it directly (perhaps because we're not doing cselib in the
6424 first place, in which case sets and n_sets will be 0). */
6426 static void
6427 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6429 basic_block bb = BLOCK_FOR_INSN (insn);
6430 int n1, n2;
6431 struct count_use_info cui;
6432 micro_operation *mos;
6434 cselib_hook_called = true;
6436 cui.insn = insn;
6437 cui.bb = bb;
6438 cui.sets = sets;
6439 cui.n_sets = n_sets;
6441 n1 = VTI (bb)->mos.length ();
6442 cui.store_p = false;
6443 note_uses (&PATTERN (insn), add_uses_1, &cui);
6444 n2 = VTI (bb)->mos.length () - 1;
6445 mos = VTI (bb)->mos.address ();
6447 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6448 MO_VAL_LOC last. */
6449 while (n1 < n2)
6451 while (n1 < n2 && mos[n1].type == MO_USE)
6452 n1++;
6453 while (n1 < n2 && mos[n2].type != MO_USE)
6454 n2--;
6455 if (n1 < n2)
6457 micro_operation sw;
6459 sw = mos[n1];
6460 mos[n1] = mos[n2];
6461 mos[n2] = sw;
6465 n2 = VTI (bb)->mos.length () - 1;
6466 while (n1 < n2)
6468 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6469 n1++;
6470 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6471 n2--;
6472 if (n1 < n2)
6474 micro_operation sw;
6476 sw = mos[n1];
6477 mos[n1] = mos[n2];
6478 mos[n2] = sw;
6482 if (CALL_P (insn))
6484 micro_operation mo;
6486 mo.type = MO_CALL;
6487 mo.insn = insn;
6488 mo.u.loc = call_arguments;
6489 call_arguments = NULL_RTX;
6491 if (dump_file && (dump_flags & TDF_DETAILS))
6492 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6493 VTI (bb)->mos.safe_push (mo);
6496 n1 = VTI (bb)->mos.length ();
6497 /* This will record NEXT_INSN (insn), such that we can
6498 insert notes before it without worrying about any
6499 notes that MO_USEs might emit after the insn. */
6500 cui.store_p = true;
6501 note_stores (PATTERN (insn), add_stores, &cui);
6502 n2 = VTI (bb)->mos.length () - 1;
6503 mos = VTI (bb)->mos.address ();
6505 /* Order the MO_VAL_USEs first (note_stores does nothing
6506 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6507 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6508 while (n1 < n2)
6510 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6511 n1++;
6512 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6513 n2--;
6514 if (n1 < n2)
6516 micro_operation sw;
6518 sw = mos[n1];
6519 mos[n1] = mos[n2];
6520 mos[n2] = sw;
6524 n2 = VTI (bb)->mos.length () - 1;
6525 while (n1 < n2)
6527 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6528 n1++;
6529 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6530 n2--;
6531 if (n1 < n2)
6533 micro_operation sw;
6535 sw = mos[n1];
6536 mos[n1] = mos[n2];
6537 mos[n2] = sw;
6542 static enum var_init_status
6543 find_src_status (dataflow_set *in, rtx src)
6545 tree decl = NULL_TREE;
6546 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6548 if (! flag_var_tracking_uninit)
6549 status = VAR_INIT_STATUS_INITIALIZED;
6551 if (src && REG_P (src))
6552 decl = var_debug_decl (REG_EXPR (src));
6553 else if (src && MEM_P (src))
6554 decl = var_debug_decl (MEM_EXPR (src));
6556 if (src && decl)
6557 status = get_init_value (in, src, dv_from_decl (decl));
6559 return status;
6562 /* SRC is the source of an assignment. Use SET to try to find what
6563 was ultimately assigned to SRC. Return that value if known,
6564 otherwise return SRC itself. */
6566 static rtx
6567 find_src_set_src (dataflow_set *set, rtx src)
6569 tree decl = NULL_TREE; /* The variable being copied around. */
6570 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6571 variable var;
6572 location_chain nextp;
6573 int i;
6574 bool found;
6576 if (src && REG_P (src))
6577 decl = var_debug_decl (REG_EXPR (src));
6578 else if (src && MEM_P (src))
6579 decl = var_debug_decl (MEM_EXPR (src));
6581 if (src && decl)
6583 decl_or_value dv = dv_from_decl (decl);
6585 var = shared_hash_find (set->vars, dv);
6586 if (var)
6588 found = false;
6589 for (i = 0; i < var->n_var_parts && !found; i++)
6590 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6591 nextp = nextp->next)
6592 if (rtx_equal_p (nextp->loc, src))
6594 set_src = nextp->set_src;
6595 found = true;
6601 return set_src;
6604 /* Compute the changes of variable locations in the basic block BB. */
6606 static bool
6607 compute_bb_dataflow (basic_block bb)
6609 unsigned int i;
6610 micro_operation *mo;
6611 bool changed;
6612 dataflow_set old_out;
6613 dataflow_set *in = &VTI (bb)->in;
6614 dataflow_set *out = &VTI (bb)->out;
6616 dataflow_set_init (&old_out);
6617 dataflow_set_copy (&old_out, out);
6618 dataflow_set_copy (out, in);
6620 if (MAY_HAVE_DEBUG_INSNS)
6621 local_get_addr_cache = pointer_map_create ();
6623 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6625 rtx insn = mo->insn;
6627 switch (mo->type)
6629 case MO_CALL:
6630 dataflow_set_clear_at_call (out);
6631 break;
6633 case MO_USE:
6635 rtx loc = mo->u.loc;
6637 if (REG_P (loc))
6638 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6639 else if (MEM_P (loc))
6640 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6642 break;
6644 case MO_VAL_LOC:
6646 rtx loc = mo->u.loc;
6647 rtx val, vloc;
6648 tree var;
6650 if (GET_CODE (loc) == CONCAT)
6652 val = XEXP (loc, 0);
6653 vloc = XEXP (loc, 1);
6655 else
6657 val = NULL_RTX;
6658 vloc = loc;
6661 var = PAT_VAR_LOCATION_DECL (vloc);
6663 clobber_variable_part (out, NULL_RTX,
6664 dv_from_decl (var), 0, NULL_RTX);
6665 if (val)
6667 if (VAL_NEEDS_RESOLUTION (loc))
6668 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6669 set_variable_part (out, val, dv_from_decl (var), 0,
6670 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6671 INSERT);
6673 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6674 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6675 dv_from_decl (var), 0,
6676 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6677 INSERT);
6679 break;
6681 case MO_VAL_USE:
6683 rtx loc = mo->u.loc;
6684 rtx val, vloc, uloc;
6686 vloc = uloc = XEXP (loc, 1);
6687 val = XEXP (loc, 0);
6689 if (GET_CODE (val) == CONCAT)
6691 uloc = XEXP (val, 1);
6692 val = XEXP (val, 0);
6695 if (VAL_NEEDS_RESOLUTION (loc))
6696 val_resolve (out, val, vloc, insn);
6697 else
6698 val_store (out, val, uloc, insn, false);
6700 if (VAL_HOLDS_TRACK_EXPR (loc))
6702 if (GET_CODE (uloc) == REG)
6703 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6704 NULL);
6705 else if (GET_CODE (uloc) == MEM)
6706 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6707 NULL);
6710 break;
6712 case MO_VAL_SET:
6714 rtx loc = mo->u.loc;
6715 rtx val, vloc, uloc;
6716 rtx dstv, srcv;
6718 vloc = loc;
6719 uloc = XEXP (vloc, 1);
6720 val = XEXP (vloc, 0);
6721 vloc = uloc;
6723 if (GET_CODE (uloc) == SET)
6725 dstv = SET_DEST (uloc);
6726 srcv = SET_SRC (uloc);
6728 else
6730 dstv = uloc;
6731 srcv = NULL;
6734 if (GET_CODE (val) == CONCAT)
6736 dstv = vloc = XEXP (val, 1);
6737 val = XEXP (val, 0);
6740 if (GET_CODE (vloc) == SET)
6742 srcv = SET_SRC (vloc);
6744 gcc_assert (val != srcv);
6745 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6747 dstv = vloc = SET_DEST (vloc);
6749 if (VAL_NEEDS_RESOLUTION (loc))
6750 val_resolve (out, val, srcv, insn);
6752 else if (VAL_NEEDS_RESOLUTION (loc))
6754 gcc_assert (GET_CODE (uloc) == SET
6755 && GET_CODE (SET_SRC (uloc)) == REG);
6756 val_resolve (out, val, SET_SRC (uloc), insn);
6759 if (VAL_HOLDS_TRACK_EXPR (loc))
6761 if (VAL_EXPR_IS_CLOBBERED (loc))
6763 if (REG_P (uloc))
6764 var_reg_delete (out, uloc, true);
6765 else if (MEM_P (uloc))
6767 gcc_assert (MEM_P (dstv));
6768 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6769 var_mem_delete (out, dstv, true);
6772 else
6774 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6775 rtx src = NULL, dst = uloc;
6776 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6778 if (GET_CODE (uloc) == SET)
6780 src = SET_SRC (uloc);
6781 dst = SET_DEST (uloc);
6784 if (copied_p)
6786 if (flag_var_tracking_uninit)
6788 status = find_src_status (in, src);
6790 if (status == VAR_INIT_STATUS_UNKNOWN)
6791 status = find_src_status (out, src);
6794 src = find_src_set_src (in, src);
6797 if (REG_P (dst))
6798 var_reg_delete_and_set (out, dst, !copied_p,
6799 status, srcv);
6800 else if (MEM_P (dst))
6802 gcc_assert (MEM_P (dstv));
6803 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6804 var_mem_delete_and_set (out, dstv, !copied_p,
6805 status, srcv);
6809 else if (REG_P (uloc))
6810 var_regno_delete (out, REGNO (uloc));
6811 else if (MEM_P (uloc))
6813 gcc_checking_assert (GET_CODE (vloc) == MEM);
6814 gcc_checking_assert (dstv == vloc);
6815 if (dstv != vloc)
6816 clobber_overlapping_mems (out, vloc);
6819 val_store (out, val, dstv, insn, true);
6821 break;
6823 case MO_SET:
6825 rtx loc = mo->u.loc;
6826 rtx set_src = NULL;
6828 if (GET_CODE (loc) == SET)
6830 set_src = SET_SRC (loc);
6831 loc = SET_DEST (loc);
6834 if (REG_P (loc))
6835 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6836 set_src);
6837 else if (MEM_P (loc))
6838 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6839 set_src);
6841 break;
6843 case MO_COPY:
6845 rtx loc = mo->u.loc;
6846 enum var_init_status src_status;
6847 rtx set_src = NULL;
6849 if (GET_CODE (loc) == SET)
6851 set_src = SET_SRC (loc);
6852 loc = SET_DEST (loc);
6855 if (! flag_var_tracking_uninit)
6856 src_status = VAR_INIT_STATUS_INITIALIZED;
6857 else
6859 src_status = find_src_status (in, set_src);
6861 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6862 src_status = find_src_status (out, set_src);
6865 set_src = find_src_set_src (in, set_src);
6867 if (REG_P (loc))
6868 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6869 else if (MEM_P (loc))
6870 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6872 break;
6874 case MO_USE_NO_VAR:
6876 rtx loc = mo->u.loc;
6878 if (REG_P (loc))
6879 var_reg_delete (out, loc, false);
6880 else if (MEM_P (loc))
6881 var_mem_delete (out, loc, false);
6883 break;
6885 case MO_CLOBBER:
6887 rtx loc = mo->u.loc;
6889 if (REG_P (loc))
6890 var_reg_delete (out, loc, true);
6891 else if (MEM_P (loc))
6892 var_mem_delete (out, loc, true);
6894 break;
6896 case MO_ADJUST:
6897 out->stack_adjust += mo->u.adjust;
6898 break;
6902 if (MAY_HAVE_DEBUG_INSNS)
6904 pointer_map_destroy (local_get_addr_cache);
6905 local_get_addr_cache = NULL;
6907 dataflow_set_equiv_regs (out);
6908 shared_hash_htab (out->vars)
6909 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6910 shared_hash_htab (out->vars)
6911 .traverse <dataflow_set *, canonicalize_values_star> (out);
6912 #if ENABLE_CHECKING
6913 shared_hash_htab (out->vars)
6914 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6915 #endif
6917 changed = dataflow_set_different (&old_out, out);
6918 dataflow_set_destroy (&old_out);
6919 return changed;
6922 /* Find the locations of variables in the whole function. */
6924 static bool
6925 vt_find_locations (void)
6927 fibheap_t worklist, pending, fibheap_swap;
6928 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6929 basic_block bb;
6930 edge e;
6931 int *bb_order;
6932 int *rc_order;
6933 int i;
6934 int htabsz = 0;
6935 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6936 bool success = true;
6938 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6939 /* Compute reverse completion order of depth first search of the CFG
6940 so that the data-flow runs faster. */
6941 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6942 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6943 pre_and_rev_post_order_compute (NULL, rc_order, false);
6944 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6945 bb_order[rc_order[i]] = i;
6946 free (rc_order);
6948 worklist = fibheap_new ();
6949 pending = fibheap_new ();
6950 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6951 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6952 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6953 bitmap_clear (in_worklist);
6955 FOR_EACH_BB_FN (bb, cfun)
6956 fibheap_insert (pending, bb_order[bb->index], bb);
6957 bitmap_ones (in_pending);
6959 while (success && !fibheap_empty (pending))
6961 fibheap_swap = pending;
6962 pending = worklist;
6963 worklist = fibheap_swap;
6964 sbitmap_swap = in_pending;
6965 in_pending = in_worklist;
6966 in_worklist = sbitmap_swap;
6968 bitmap_clear (visited);
6970 while (!fibheap_empty (worklist))
6972 bb = (basic_block) fibheap_extract_min (worklist);
6973 bitmap_clear_bit (in_worklist, bb->index);
6974 gcc_assert (!bitmap_bit_p (visited, bb->index));
6975 if (!bitmap_bit_p (visited, bb->index))
6977 bool changed;
6978 edge_iterator ei;
6979 int oldinsz, oldoutsz;
6981 bitmap_set_bit (visited, bb->index);
6983 if (VTI (bb)->in.vars)
6985 htabsz
6986 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6987 + shared_hash_htab (VTI (bb)->out.vars).size ();
6988 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6989 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6991 else
6992 oldinsz = oldoutsz = 0;
6994 if (MAY_HAVE_DEBUG_INSNS)
6996 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6997 bool first = true, adjust = false;
6999 /* Calculate the IN set as the intersection of
7000 predecessor OUT sets. */
7002 dataflow_set_clear (in);
7003 dst_can_be_shared = true;
7005 FOR_EACH_EDGE (e, ei, bb->preds)
7006 if (!VTI (e->src)->flooded)
7007 gcc_assert (bb_order[bb->index]
7008 <= bb_order[e->src->index]);
7009 else if (first)
7011 dataflow_set_copy (in, &VTI (e->src)->out);
7012 first_out = &VTI (e->src)->out;
7013 first = false;
7015 else
7017 dataflow_set_merge (in, &VTI (e->src)->out);
7018 adjust = true;
7021 if (adjust)
7023 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7024 #if ENABLE_CHECKING
7025 /* Merge and merge_adjust should keep entries in
7026 canonical order. */
7027 shared_hash_htab (in->vars)
7028 .traverse <dataflow_set *,
7029 canonicalize_loc_order_check> (in);
7030 #endif
7031 if (dst_can_be_shared)
7033 shared_hash_destroy (in->vars);
7034 in->vars = shared_hash_copy (first_out->vars);
7038 VTI (bb)->flooded = true;
7040 else
7042 /* Calculate the IN set as union of predecessor OUT sets. */
7043 dataflow_set_clear (&VTI (bb)->in);
7044 FOR_EACH_EDGE (e, ei, bb->preds)
7045 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7048 changed = compute_bb_dataflow (bb);
7049 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7050 + shared_hash_htab (VTI (bb)->out.vars).size ();
7052 if (htabmax && htabsz > htabmax)
7054 if (MAY_HAVE_DEBUG_INSNS)
7055 inform (DECL_SOURCE_LOCATION (cfun->decl),
7056 "variable tracking size limit exceeded with "
7057 "-fvar-tracking-assignments, retrying without");
7058 else
7059 inform (DECL_SOURCE_LOCATION (cfun->decl),
7060 "variable tracking size limit exceeded");
7061 success = false;
7062 break;
7065 if (changed)
7067 FOR_EACH_EDGE (e, ei, bb->succs)
7069 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7070 continue;
7072 if (bitmap_bit_p (visited, e->dest->index))
7074 if (!bitmap_bit_p (in_pending, e->dest->index))
7076 /* Send E->DEST to next round. */
7077 bitmap_set_bit (in_pending, e->dest->index);
7078 fibheap_insert (pending,
7079 bb_order[e->dest->index],
7080 e->dest);
7083 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7085 /* Add E->DEST to current round. */
7086 bitmap_set_bit (in_worklist, e->dest->index);
7087 fibheap_insert (worklist, bb_order[e->dest->index],
7088 e->dest);
7093 if (dump_file)
7094 fprintf (dump_file,
7095 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7096 bb->index,
7097 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7098 oldinsz,
7099 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7100 oldoutsz,
7101 (int)worklist->nodes, (int)pending->nodes, htabsz);
7103 if (dump_file && (dump_flags & TDF_DETAILS))
7105 fprintf (dump_file, "BB %i IN:\n", bb->index);
7106 dump_dataflow_set (&VTI (bb)->in);
7107 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7108 dump_dataflow_set (&VTI (bb)->out);
7114 if (success && MAY_HAVE_DEBUG_INSNS)
7115 FOR_EACH_BB_FN (bb, cfun)
7116 gcc_assert (VTI (bb)->flooded);
7118 free (bb_order);
7119 fibheap_delete (worklist);
7120 fibheap_delete (pending);
7121 sbitmap_free (visited);
7122 sbitmap_free (in_worklist);
7123 sbitmap_free (in_pending);
7125 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7126 return success;
7129 /* Print the content of the LIST to dump file. */
7131 static void
7132 dump_attrs_list (attrs list)
7134 for (; list; list = list->next)
7136 if (dv_is_decl_p (list->dv))
7137 print_mem_expr (dump_file, dv_as_decl (list->dv));
7138 else
7139 print_rtl_single (dump_file, dv_as_value (list->dv));
7140 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7142 fprintf (dump_file, "\n");
7145 /* Print the information about variable *SLOT to dump file. */
7148 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7150 variable var = *slot;
7152 dump_var (var);
7154 /* Continue traversing the hash table. */
7155 return 1;
7158 /* Print the information about variable VAR to dump file. */
7160 static void
7161 dump_var (variable var)
7163 int i;
7164 location_chain node;
7166 if (dv_is_decl_p (var->dv))
7168 const_tree decl = dv_as_decl (var->dv);
7170 if (DECL_NAME (decl))
7172 fprintf (dump_file, " name: %s",
7173 IDENTIFIER_POINTER (DECL_NAME (decl)));
7174 if (dump_flags & TDF_UID)
7175 fprintf (dump_file, "D.%u", DECL_UID (decl));
7177 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7178 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7179 else
7180 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7181 fprintf (dump_file, "\n");
7183 else
7185 fputc (' ', dump_file);
7186 print_rtl_single (dump_file, dv_as_value (var->dv));
7189 for (i = 0; i < var->n_var_parts; i++)
7191 fprintf (dump_file, " offset %ld\n",
7192 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7193 for (node = var->var_part[i].loc_chain; node; node = node->next)
7195 fprintf (dump_file, " ");
7196 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7197 fprintf (dump_file, "[uninit]");
7198 print_rtl_single (dump_file, node->loc);
7203 /* Print the information about variables from hash table VARS to dump file. */
7205 static void
7206 dump_vars (variable_table_type vars)
7208 if (vars.elements () > 0)
7210 fprintf (dump_file, "Variables:\n");
7211 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7215 /* Print the dataflow set SET to dump file. */
7217 static void
7218 dump_dataflow_set (dataflow_set *set)
7220 int i;
7222 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7223 set->stack_adjust);
7224 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7226 if (set->regs[i])
7228 fprintf (dump_file, "Reg %d:", i);
7229 dump_attrs_list (set->regs[i]);
7232 dump_vars (shared_hash_htab (set->vars));
7233 fprintf (dump_file, "\n");
7236 /* Print the IN and OUT sets for each basic block to dump file. */
7238 static void
7239 dump_dataflow_sets (void)
7241 basic_block bb;
7243 FOR_EACH_BB_FN (bb, cfun)
7245 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7246 fprintf (dump_file, "IN:\n");
7247 dump_dataflow_set (&VTI (bb)->in);
7248 fprintf (dump_file, "OUT:\n");
7249 dump_dataflow_set (&VTI (bb)->out);
7253 /* Return the variable for DV in dropped_values, inserting one if
7254 requested with INSERT. */
7256 static inline variable
7257 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7259 variable_def **slot;
7260 variable empty_var;
7261 onepart_enum_t onepart;
7263 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7265 if (!slot)
7266 return NULL;
7268 if (*slot)
7269 return *slot;
7271 gcc_checking_assert (insert == INSERT);
7273 onepart = dv_onepart_p (dv);
7275 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7277 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7278 empty_var->dv = dv;
7279 empty_var->refcount = 1;
7280 empty_var->n_var_parts = 0;
7281 empty_var->onepart = onepart;
7282 empty_var->in_changed_variables = false;
7283 empty_var->var_part[0].loc_chain = NULL;
7284 empty_var->var_part[0].cur_loc = NULL;
7285 VAR_LOC_1PAUX (empty_var) = NULL;
7286 set_dv_changed (dv, true);
7288 *slot = empty_var;
7290 return empty_var;
7293 /* Recover the one-part aux from dropped_values. */
7295 static struct onepart_aux *
7296 recover_dropped_1paux (variable var)
7298 variable dvar;
7300 gcc_checking_assert (var->onepart);
7302 if (VAR_LOC_1PAUX (var))
7303 return VAR_LOC_1PAUX (var);
7305 if (var->onepart == ONEPART_VDECL)
7306 return NULL;
7308 dvar = variable_from_dropped (var->dv, NO_INSERT);
7310 if (!dvar)
7311 return NULL;
7313 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7314 VAR_LOC_1PAUX (dvar) = NULL;
7316 return VAR_LOC_1PAUX (var);
7319 /* Add variable VAR to the hash table of changed variables and
7320 if it has no locations delete it from SET's hash table. */
7322 static void
7323 variable_was_changed (variable var, dataflow_set *set)
7325 hashval_t hash = dv_htab_hash (var->dv);
7327 if (emit_notes)
7329 variable_def **slot;
7331 /* Remember this decl or VALUE has been added to changed_variables. */
7332 set_dv_changed (var->dv, true);
7334 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7336 if (*slot)
7338 variable old_var = *slot;
7339 gcc_assert (old_var->in_changed_variables);
7340 old_var->in_changed_variables = false;
7341 if (var != old_var && var->onepart)
7343 /* Restore the auxiliary info from an empty variable
7344 previously created for changed_variables, so it is
7345 not lost. */
7346 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7347 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7348 VAR_LOC_1PAUX (old_var) = NULL;
7350 variable_htab_free (*slot);
7353 if (set && var->n_var_parts == 0)
7355 onepart_enum_t onepart = var->onepart;
7356 variable empty_var = NULL;
7357 variable_def **dslot = NULL;
7359 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7361 dslot = dropped_values.find_slot_with_hash (var->dv,
7362 dv_htab_hash (var->dv),
7363 INSERT);
7364 empty_var = *dslot;
7366 if (empty_var)
7368 gcc_checking_assert (!empty_var->in_changed_variables);
7369 if (!VAR_LOC_1PAUX (var))
7371 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7372 VAR_LOC_1PAUX (empty_var) = NULL;
7374 else
7375 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7379 if (!empty_var)
7381 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7382 empty_var->dv = var->dv;
7383 empty_var->refcount = 1;
7384 empty_var->n_var_parts = 0;
7385 empty_var->onepart = onepart;
7386 if (dslot)
7388 empty_var->refcount++;
7389 *dslot = empty_var;
7392 else
7393 empty_var->refcount++;
7394 empty_var->in_changed_variables = true;
7395 *slot = empty_var;
7396 if (onepart)
7398 empty_var->var_part[0].loc_chain = NULL;
7399 empty_var->var_part[0].cur_loc = NULL;
7400 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7401 VAR_LOC_1PAUX (var) = NULL;
7403 goto drop_var;
7405 else
7407 if (var->onepart && !VAR_LOC_1PAUX (var))
7408 recover_dropped_1paux (var);
7409 var->refcount++;
7410 var->in_changed_variables = true;
7411 *slot = var;
7414 else
7416 gcc_assert (set);
7417 if (var->n_var_parts == 0)
7419 variable_def **slot;
7421 drop_var:
7422 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7423 if (slot)
7425 if (shared_hash_shared (set->vars))
7426 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7427 NO_INSERT);
7428 shared_hash_htab (set->vars).clear_slot (slot);
7434 /* Look for the index in VAR->var_part corresponding to OFFSET.
7435 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7436 referenced int will be set to the index that the part has or should
7437 have, if it should be inserted. */
7439 static inline int
7440 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7441 int *insertion_point)
7443 int pos, low, high;
7445 if (var->onepart)
7447 if (offset != 0)
7448 return -1;
7450 if (insertion_point)
7451 *insertion_point = 0;
7453 return var->n_var_parts - 1;
7456 /* Find the location part. */
7457 low = 0;
7458 high = var->n_var_parts;
7459 while (low != high)
7461 pos = (low + high) / 2;
7462 if (VAR_PART_OFFSET (var, pos) < offset)
7463 low = pos + 1;
7464 else
7465 high = pos;
7467 pos = low;
7469 if (insertion_point)
7470 *insertion_point = pos;
7472 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7473 return pos;
7475 return -1;
7478 static variable_def **
7479 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7480 decl_or_value dv, HOST_WIDE_INT offset,
7481 enum var_init_status initialized, rtx set_src)
7483 int pos;
7484 location_chain node, next;
7485 location_chain *nextp;
7486 variable var;
7487 onepart_enum_t onepart;
7489 var = *slot;
7491 if (var)
7492 onepart = var->onepart;
7493 else
7494 onepart = dv_onepart_p (dv);
7496 gcc_checking_assert (offset == 0 || !onepart);
7497 gcc_checking_assert (loc != dv_as_opaque (dv));
7499 if (! flag_var_tracking_uninit)
7500 initialized = VAR_INIT_STATUS_INITIALIZED;
7502 if (!var)
7504 /* Create new variable information. */
7505 var = (variable) pool_alloc (onepart_pool (onepart));
7506 var->dv = dv;
7507 var->refcount = 1;
7508 var->n_var_parts = 1;
7509 var->onepart = onepart;
7510 var->in_changed_variables = false;
7511 if (var->onepart)
7512 VAR_LOC_1PAUX (var) = NULL;
7513 else
7514 VAR_PART_OFFSET (var, 0) = offset;
7515 var->var_part[0].loc_chain = NULL;
7516 var->var_part[0].cur_loc = NULL;
7517 *slot = var;
7518 pos = 0;
7519 nextp = &var->var_part[0].loc_chain;
7521 else if (onepart)
7523 int r = -1, c = 0;
7525 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7527 pos = 0;
7529 if (GET_CODE (loc) == VALUE)
7531 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7532 nextp = &node->next)
7533 if (GET_CODE (node->loc) == VALUE)
7535 if (node->loc == loc)
7537 r = 0;
7538 break;
7540 if (canon_value_cmp (node->loc, loc))
7541 c++;
7542 else
7544 r = 1;
7545 break;
7548 else if (REG_P (node->loc) || MEM_P (node->loc))
7549 c++;
7550 else
7552 r = 1;
7553 break;
7556 else if (REG_P (loc))
7558 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7559 nextp = &node->next)
7560 if (REG_P (node->loc))
7562 if (REGNO (node->loc) < REGNO (loc))
7563 c++;
7564 else
7566 if (REGNO (node->loc) == REGNO (loc))
7567 r = 0;
7568 else
7569 r = 1;
7570 break;
7573 else
7575 r = 1;
7576 break;
7579 else if (MEM_P (loc))
7581 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7582 nextp = &node->next)
7583 if (REG_P (node->loc))
7584 c++;
7585 else if (MEM_P (node->loc))
7587 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7588 break;
7589 else
7590 c++;
7592 else
7594 r = 1;
7595 break;
7598 else
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if ((r = loc_cmp (node->loc, loc)) >= 0)
7602 break;
7603 else
7604 c++;
7606 if (r == 0)
7607 return slot;
7609 if (shared_var_p (var, set->vars))
7611 slot = unshare_variable (set, slot, var, initialized);
7612 var = *slot;
7613 for (nextp = &var->var_part[0].loc_chain; c;
7614 nextp = &(*nextp)->next)
7615 c--;
7616 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7619 else
7621 int inspos = 0;
7623 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7625 pos = find_variable_location_part (var, offset, &inspos);
7627 if (pos >= 0)
7629 node = var->var_part[pos].loc_chain;
7631 if (node
7632 && ((REG_P (node->loc) && REG_P (loc)
7633 && REGNO (node->loc) == REGNO (loc))
7634 || rtx_equal_p (node->loc, loc)))
7636 /* LOC is in the beginning of the chain so we have nothing
7637 to do. */
7638 if (node->init < initialized)
7639 node->init = initialized;
7640 if (set_src != NULL)
7641 node->set_src = set_src;
7643 return slot;
7645 else
7647 /* We have to make a copy of a shared variable. */
7648 if (shared_var_p (var, set->vars))
7650 slot = unshare_variable (set, slot, var, initialized);
7651 var = *slot;
7655 else
7657 /* We have not found the location part, new one will be created. */
7659 /* We have to make a copy of the shared variable. */
7660 if (shared_var_p (var, set->vars))
7662 slot = unshare_variable (set, slot, var, initialized);
7663 var = *slot;
7666 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7667 thus there are at most MAX_VAR_PARTS different offsets. */
7668 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7669 && (!var->n_var_parts || !onepart));
7671 /* We have to move the elements of array starting at index
7672 inspos to the next position. */
7673 for (pos = var->n_var_parts; pos > inspos; pos--)
7674 var->var_part[pos] = var->var_part[pos - 1];
7676 var->n_var_parts++;
7677 gcc_checking_assert (!onepart);
7678 VAR_PART_OFFSET (var, pos) = offset;
7679 var->var_part[pos].loc_chain = NULL;
7680 var->var_part[pos].cur_loc = NULL;
7683 /* Delete the location from the list. */
7684 nextp = &var->var_part[pos].loc_chain;
7685 for (node = var->var_part[pos].loc_chain; node; node = next)
7687 next = node->next;
7688 if ((REG_P (node->loc) && REG_P (loc)
7689 && REGNO (node->loc) == REGNO (loc))
7690 || rtx_equal_p (node->loc, loc))
7692 /* Save these values, to assign to the new node, before
7693 deleting this one. */
7694 if (node->init > initialized)
7695 initialized = node->init;
7696 if (node->set_src != NULL && set_src == NULL)
7697 set_src = node->set_src;
7698 if (var->var_part[pos].cur_loc == node->loc)
7699 var->var_part[pos].cur_loc = NULL;
7700 pool_free (loc_chain_pool, node);
7701 *nextp = next;
7702 break;
7704 else
7705 nextp = &node->next;
7708 nextp = &var->var_part[pos].loc_chain;
7711 /* Add the location to the beginning. */
7712 node = (location_chain) pool_alloc (loc_chain_pool);
7713 node->loc = loc;
7714 node->init = initialized;
7715 node->set_src = set_src;
7716 node->next = *nextp;
7717 *nextp = node;
7719 /* If no location was emitted do so. */
7720 if (var->var_part[pos].cur_loc == NULL)
7721 variable_was_changed (var, set);
7723 return slot;
7726 /* Set the part of variable's location in the dataflow set SET. The
7727 variable part is specified by variable's declaration in DV and
7728 offset OFFSET and the part's location by LOC. IOPT should be
7729 NO_INSERT if the variable is known to be in SET already and the
7730 variable hash table must not be resized, and INSERT otherwise. */
7732 static void
7733 set_variable_part (dataflow_set *set, rtx loc,
7734 decl_or_value dv, HOST_WIDE_INT offset,
7735 enum var_init_status initialized, rtx set_src,
7736 enum insert_option iopt)
7738 variable_def **slot;
7740 if (iopt == NO_INSERT)
7741 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7742 else
7744 slot = shared_hash_find_slot (set->vars, dv);
7745 if (!slot)
7746 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7748 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7751 /* Remove all recorded register locations for the given variable part
7752 from dataflow set SET, except for those that are identical to loc.
7753 The variable part is specified by variable's declaration or value
7754 DV and offset OFFSET. */
7756 static variable_def **
7757 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7758 HOST_WIDE_INT offset, rtx set_src)
7760 variable var = *slot;
7761 int pos = find_variable_location_part (var, offset, NULL);
7763 if (pos >= 0)
7765 location_chain node, next;
7767 /* Remove the register locations from the dataflow set. */
7768 next = var->var_part[pos].loc_chain;
7769 for (node = next; node; node = next)
7771 next = node->next;
7772 if (node->loc != loc
7773 && (!flag_var_tracking_uninit
7774 || !set_src
7775 || MEM_P (set_src)
7776 || !rtx_equal_p (set_src, node->set_src)))
7778 if (REG_P (node->loc))
7780 attrs anode, anext;
7781 attrs *anextp;
7783 /* Remove the variable part from the register's
7784 list, but preserve any other variable parts
7785 that might be regarded as live in that same
7786 register. */
7787 anextp = &set->regs[REGNO (node->loc)];
7788 for (anode = *anextp; anode; anode = anext)
7790 anext = anode->next;
7791 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7792 && anode->offset == offset)
7794 pool_free (attrs_pool, anode);
7795 *anextp = anext;
7797 else
7798 anextp = &anode->next;
7802 slot = delete_slot_part (set, node->loc, slot, offset);
7807 return slot;
7810 /* Remove all recorded register locations for the given variable part
7811 from dataflow set SET, except for those that are identical to loc.
7812 The variable part is specified by variable's declaration or value
7813 DV and offset OFFSET. */
7815 static void
7816 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7817 HOST_WIDE_INT offset, rtx set_src)
7819 variable_def **slot;
7821 if (!dv_as_opaque (dv)
7822 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7823 return;
7825 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7826 if (!slot)
7827 return;
7829 clobber_slot_part (set, loc, slot, offset, set_src);
7832 /* Delete the part of variable's location from dataflow set SET. The
7833 variable part is specified by its SET->vars slot SLOT and offset
7834 OFFSET and the part's location by LOC. */
7836 static variable_def **
7837 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7838 HOST_WIDE_INT offset)
7840 variable var = *slot;
7841 int pos = find_variable_location_part (var, offset, NULL);
7843 if (pos >= 0)
7845 location_chain node, next;
7846 location_chain *nextp;
7847 bool changed;
7848 rtx cur_loc;
7850 if (shared_var_p (var, set->vars))
7852 /* If the variable contains the location part we have to
7853 make a copy of the variable. */
7854 for (node = var->var_part[pos].loc_chain; node;
7855 node = node->next)
7857 if ((REG_P (node->loc) && REG_P (loc)
7858 && REGNO (node->loc) == REGNO (loc))
7859 || rtx_equal_p (node->loc, loc))
7861 slot = unshare_variable (set, slot, var,
7862 VAR_INIT_STATUS_UNKNOWN);
7863 var = *slot;
7864 break;
7869 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7870 cur_loc = VAR_LOC_FROM (var);
7871 else
7872 cur_loc = var->var_part[pos].cur_loc;
7874 /* Delete the location part. */
7875 changed = false;
7876 nextp = &var->var_part[pos].loc_chain;
7877 for (node = *nextp; node; node = next)
7879 next = node->next;
7880 if ((REG_P (node->loc) && REG_P (loc)
7881 && REGNO (node->loc) == REGNO (loc))
7882 || rtx_equal_p (node->loc, loc))
7884 /* If we have deleted the location which was last emitted
7885 we have to emit new location so add the variable to set
7886 of changed variables. */
7887 if (cur_loc == node->loc)
7889 changed = true;
7890 var->var_part[pos].cur_loc = NULL;
7891 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7892 VAR_LOC_FROM (var) = NULL;
7894 pool_free (loc_chain_pool, node);
7895 *nextp = next;
7896 break;
7898 else
7899 nextp = &node->next;
7902 if (var->var_part[pos].loc_chain == NULL)
7904 changed = true;
7905 var->n_var_parts--;
7906 while (pos < var->n_var_parts)
7908 var->var_part[pos] = var->var_part[pos + 1];
7909 pos++;
7912 if (changed)
7913 variable_was_changed (var, set);
7916 return slot;
7919 /* Delete the part of variable's location from dataflow set SET. The
7920 variable part is specified by variable's declaration or value DV
7921 and offset OFFSET and the part's location by LOC. */
7923 static void
7924 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7925 HOST_WIDE_INT offset)
7927 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7928 if (!slot)
7929 return;
7931 delete_slot_part (set, loc, slot, offset);
7935 /* Structure for passing some other parameters to function
7936 vt_expand_loc_callback. */
7937 struct expand_loc_callback_data
7939 /* The variables and values active at this point. */
7940 variable_table_type vars;
7942 /* Stack of values and debug_exprs under expansion, and their
7943 children. */
7944 auto_vec<rtx, 4> expanding;
7946 /* Stack of values and debug_exprs whose expansion hit recursion
7947 cycles. They will have VALUE_RECURSED_INTO marked when added to
7948 this list. This flag will be cleared if any of its dependencies
7949 resolves to a valid location. So, if the flag remains set at the
7950 end of the search, we know no valid location for this one can
7951 possibly exist. */
7952 auto_vec<rtx, 4> pending;
7954 /* The maximum depth among the sub-expressions under expansion.
7955 Zero indicates no expansion so far. */
7956 expand_depth depth;
7959 /* Allocate the one-part auxiliary data structure for VAR, with enough
7960 room for COUNT dependencies. */
7962 static void
7963 loc_exp_dep_alloc (variable var, int count)
7965 size_t allocsize;
7967 gcc_checking_assert (var->onepart);
7969 /* We can be called with COUNT == 0 to allocate the data structure
7970 without any dependencies, e.g. for the backlinks only. However,
7971 if we are specifying a COUNT, then the dependency list must have
7972 been emptied before. It would be possible to adjust pointers or
7973 force it empty here, but this is better done at an earlier point
7974 in the algorithm, so we instead leave an assertion to catch
7975 errors. */
7976 gcc_checking_assert (!count
7977 || VAR_LOC_DEP_VEC (var) == NULL
7978 || VAR_LOC_DEP_VEC (var)->is_empty ());
7980 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7981 return;
7983 allocsize = offsetof (struct onepart_aux, deps)
7984 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7986 if (VAR_LOC_1PAUX (var))
7988 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7989 VAR_LOC_1PAUX (var), allocsize);
7990 /* If the reallocation moves the onepaux structure, the
7991 back-pointer to BACKLINKS in the first list member will still
7992 point to its old location. Adjust it. */
7993 if (VAR_LOC_DEP_LST (var))
7994 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7996 else
7998 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7999 *VAR_LOC_DEP_LSTP (var) = NULL;
8000 VAR_LOC_FROM (var) = NULL;
8001 VAR_LOC_DEPTH (var).complexity = 0;
8002 VAR_LOC_DEPTH (var).entryvals = 0;
8004 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8007 /* Remove all entries from the vector of active dependencies of VAR,
8008 removing them from the back-links lists too. */
8010 static void
8011 loc_exp_dep_clear (variable var)
8013 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8015 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8016 if (led->next)
8017 led->next->pprev = led->pprev;
8018 if (led->pprev)
8019 *led->pprev = led->next;
8020 VAR_LOC_DEP_VEC (var)->pop ();
8024 /* Insert an active dependency from VAR on X to the vector of
8025 dependencies, and add the corresponding back-link to X's list of
8026 back-links in VARS. */
8028 static void
8029 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8031 decl_or_value dv;
8032 variable xvar;
8033 loc_exp_dep *led;
8035 dv = dv_from_rtx (x);
8037 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8038 an additional look up? */
8039 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8041 if (!xvar)
8043 xvar = variable_from_dropped (dv, NO_INSERT);
8044 gcc_checking_assert (xvar);
8047 /* No point in adding the same backlink more than once. This may
8048 arise if say the same value appears in two complex expressions in
8049 the same loc_list, or even more than once in a single
8050 expression. */
8051 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8052 return;
8054 if (var->onepart == NOT_ONEPART)
8055 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8056 else
8058 loc_exp_dep empty;
8059 memset (&empty, 0, sizeof (empty));
8060 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8061 led = &VAR_LOC_DEP_VEC (var)->last ();
8063 led->dv = var->dv;
8064 led->value = x;
8066 loc_exp_dep_alloc (xvar, 0);
8067 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8068 led->next = *led->pprev;
8069 if (led->next)
8070 led->next->pprev = &led->next;
8071 *led->pprev = led;
8074 /* Create active dependencies of VAR on COUNT values starting at
8075 VALUE, and corresponding back-links to the entries in VARS. Return
8076 true if we found any pending-recursion results. */
8078 static bool
8079 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8080 variable_table_type vars)
8082 bool pending_recursion = false;
8084 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8085 || VAR_LOC_DEP_VEC (var)->is_empty ());
8087 /* Set up all dependencies from last_child (as set up at the end of
8088 the loop above) to the end. */
8089 loc_exp_dep_alloc (var, count);
8091 while (count--)
8093 rtx x = *value++;
8095 if (!pending_recursion)
8096 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8098 loc_exp_insert_dep (var, x, vars);
8101 return pending_recursion;
8104 /* Notify the back-links of IVAR that are pending recursion that we
8105 have found a non-NIL value for it, so they are cleared for another
8106 attempt to compute a current location. */
8108 static void
8109 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8111 loc_exp_dep *led, *next;
8113 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8115 decl_or_value dv = led->dv;
8116 variable var;
8118 next = led->next;
8120 if (dv_is_value_p (dv))
8122 rtx value = dv_as_value (dv);
8124 /* If we have already resolved it, leave it alone. */
8125 if (!VALUE_RECURSED_INTO (value))
8126 continue;
8128 /* Check that VALUE_RECURSED_INTO, true from the test above,
8129 implies NO_LOC_P. */
8130 gcc_checking_assert (NO_LOC_P (value));
8132 /* We won't notify variables that are being expanded,
8133 because their dependency list is cleared before
8134 recursing. */
8135 NO_LOC_P (value) = false;
8136 VALUE_RECURSED_INTO (value) = false;
8138 gcc_checking_assert (dv_changed_p (dv));
8140 else
8142 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8143 if (!dv_changed_p (dv))
8144 continue;
8147 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8149 if (!var)
8150 var = variable_from_dropped (dv, NO_INSERT);
8152 if (var)
8153 notify_dependents_of_resolved_value (var, vars);
8155 if (next)
8156 next->pprev = led->pprev;
8157 if (led->pprev)
8158 *led->pprev = next;
8159 led->next = NULL;
8160 led->pprev = NULL;
8164 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8165 int max_depth, void *data);
8167 /* Return the combined depth, when one sub-expression evaluated to
8168 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8170 static inline expand_depth
8171 update_depth (expand_depth saved_depth, expand_depth best_depth)
8173 /* If we didn't find anything, stick with what we had. */
8174 if (!best_depth.complexity)
8175 return saved_depth;
8177 /* If we found hadn't found anything, use the depth of the current
8178 expression. Do NOT add one extra level, we want to compute the
8179 maximum depth among sub-expressions. We'll increment it later,
8180 if appropriate. */
8181 if (!saved_depth.complexity)
8182 return best_depth;
8184 /* Combine the entryval count so that regardless of which one we
8185 return, the entryval count is accurate. */
8186 best_depth.entryvals = saved_depth.entryvals
8187 = best_depth.entryvals + saved_depth.entryvals;
8189 if (saved_depth.complexity < best_depth.complexity)
8190 return best_depth;
8191 else
8192 return saved_depth;
8195 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8196 DATA for cselib expand callback. If PENDRECP is given, indicate in
8197 it whether any sub-expression couldn't be fully evaluated because
8198 it is pending recursion resolution. */
8200 static inline rtx
8201 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8203 struct expand_loc_callback_data *elcd
8204 = (struct expand_loc_callback_data *) data;
8205 location_chain loc, next;
8206 rtx result = NULL;
8207 int first_child, result_first_child, last_child;
8208 bool pending_recursion;
8209 rtx loc_from = NULL;
8210 struct elt_loc_list *cloc = NULL;
8211 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8212 int wanted_entryvals, found_entryvals = 0;
8214 /* Clear all backlinks pointing at this, so that we're not notified
8215 while we're active. */
8216 loc_exp_dep_clear (var);
8218 retry:
8219 if (var->onepart == ONEPART_VALUE)
8221 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8223 gcc_checking_assert (cselib_preserved_value_p (val));
8225 cloc = val->locs;
8228 first_child = result_first_child = last_child
8229 = elcd->expanding.length ();
8231 wanted_entryvals = found_entryvals;
8233 /* Attempt to expand each available location in turn. */
8234 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8235 loc || cloc; loc = next)
8237 result_first_child = last_child;
8239 if (!loc)
8241 loc_from = cloc->loc;
8242 next = loc;
8243 cloc = cloc->next;
8244 if (unsuitable_loc (loc_from))
8245 continue;
8247 else
8249 loc_from = loc->loc;
8250 next = loc->next;
8253 gcc_checking_assert (!unsuitable_loc (loc_from));
8255 elcd->depth.complexity = elcd->depth.entryvals = 0;
8256 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8257 vt_expand_loc_callback, data);
8258 last_child = elcd->expanding.length ();
8260 if (result)
8262 depth = elcd->depth;
8264 gcc_checking_assert (depth.complexity
8265 || result_first_child == last_child);
8267 if (last_child - result_first_child != 1)
8269 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8270 depth.entryvals++;
8271 depth.complexity++;
8274 if (depth.complexity <= EXPR_USE_DEPTH)
8276 if (depth.entryvals <= wanted_entryvals)
8277 break;
8278 else if (!found_entryvals || depth.entryvals < found_entryvals)
8279 found_entryvals = depth.entryvals;
8282 result = NULL;
8285 /* Set it up in case we leave the loop. */
8286 depth.complexity = depth.entryvals = 0;
8287 loc_from = NULL;
8288 result_first_child = first_child;
8291 if (!loc_from && wanted_entryvals < found_entryvals)
8293 /* We found entries with ENTRY_VALUEs and skipped them. Since
8294 we could not find any expansions without ENTRY_VALUEs, but we
8295 found at least one with them, go back and get an entry with
8296 the minimum number ENTRY_VALUE count that we found. We could
8297 avoid looping, but since each sub-loc is already resolved,
8298 the re-expansion should be trivial. ??? Should we record all
8299 attempted locs as dependencies, so that we retry the
8300 expansion should any of them change, in the hope it can give
8301 us a new entry without an ENTRY_VALUE? */
8302 elcd->expanding.truncate (first_child);
8303 goto retry;
8306 /* Register all encountered dependencies as active. */
8307 pending_recursion = loc_exp_dep_set
8308 (var, result, elcd->expanding.address () + result_first_child,
8309 last_child - result_first_child, elcd->vars);
8311 elcd->expanding.truncate (first_child);
8313 /* Record where the expansion came from. */
8314 gcc_checking_assert (!result || !pending_recursion);
8315 VAR_LOC_FROM (var) = loc_from;
8316 VAR_LOC_DEPTH (var) = depth;
8318 gcc_checking_assert (!depth.complexity == !result);
8320 elcd->depth = update_depth (saved_depth, depth);
8322 /* Indicate whether any of the dependencies are pending recursion
8323 resolution. */
8324 if (pendrecp)
8325 *pendrecp = pending_recursion;
8327 if (!pendrecp || !pending_recursion)
8328 var->var_part[0].cur_loc = result;
8330 return result;
8333 /* Callback for cselib_expand_value, that looks for expressions
8334 holding the value in the var-tracking hash tables. Return X for
8335 standard processing, anything else is to be used as-is. */
8337 static rtx
8338 vt_expand_loc_callback (rtx x, bitmap regs,
8339 int max_depth ATTRIBUTE_UNUSED,
8340 void *data)
8342 struct expand_loc_callback_data *elcd
8343 = (struct expand_loc_callback_data *) data;
8344 decl_or_value dv;
8345 variable var;
8346 rtx result, subreg;
8347 bool pending_recursion = false;
8348 bool from_empty = false;
8350 switch (GET_CODE (x))
8352 case SUBREG:
8353 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8354 EXPR_DEPTH,
8355 vt_expand_loc_callback, data);
8357 if (!subreg)
8358 return NULL;
8360 result = simplify_gen_subreg (GET_MODE (x), subreg,
8361 GET_MODE (SUBREG_REG (x)),
8362 SUBREG_BYTE (x));
8364 /* Invalid SUBREGs are ok in debug info. ??? We could try
8365 alternate expansions for the VALUE as well. */
8366 if (!result)
8367 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8369 return result;
8371 case DEBUG_EXPR:
8372 case VALUE:
8373 dv = dv_from_rtx (x);
8374 break;
8376 default:
8377 return x;
8380 elcd->expanding.safe_push (x);
8382 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8383 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8385 if (NO_LOC_P (x))
8387 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8388 return NULL;
8391 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8393 if (!var)
8395 from_empty = true;
8396 var = variable_from_dropped (dv, INSERT);
8399 gcc_checking_assert (var);
8401 if (!dv_changed_p (dv))
8403 gcc_checking_assert (!NO_LOC_P (x));
8404 gcc_checking_assert (var->var_part[0].cur_loc);
8405 gcc_checking_assert (VAR_LOC_1PAUX (var));
8406 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8408 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8410 return var->var_part[0].cur_loc;
8413 VALUE_RECURSED_INTO (x) = true;
8414 /* This is tentative, but it makes some tests simpler. */
8415 NO_LOC_P (x) = true;
8417 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8419 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8421 if (pending_recursion)
8423 gcc_checking_assert (!result);
8424 elcd->pending.safe_push (x);
8426 else
8428 NO_LOC_P (x) = !result;
8429 VALUE_RECURSED_INTO (x) = false;
8430 set_dv_changed (dv, false);
8432 if (result)
8433 notify_dependents_of_resolved_value (var, elcd->vars);
8436 return result;
8439 /* While expanding variables, we may encounter recursion cycles
8440 because of mutual (possibly indirect) dependencies between two
8441 particular variables (or values), say A and B. If we're trying to
8442 expand A when we get to B, which in turn attempts to expand A, if
8443 we can't find any other expansion for B, we'll add B to this
8444 pending-recursion stack, and tentatively return NULL for its
8445 location. This tentative value will be used for any other
8446 occurrences of B, unless A gets some other location, in which case
8447 it will notify B that it is worth another try at computing a
8448 location for it, and it will use the location computed for A then.
8449 At the end of the expansion, the tentative NULL locations become
8450 final for all members of PENDING that didn't get a notification.
8451 This function performs this finalization of NULL locations. */
8453 static void
8454 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8456 while (!pending->is_empty ())
8458 rtx x = pending->pop ();
8459 decl_or_value dv;
8461 if (!VALUE_RECURSED_INTO (x))
8462 continue;
8464 gcc_checking_assert (NO_LOC_P (x));
8465 VALUE_RECURSED_INTO (x) = false;
8466 dv = dv_from_rtx (x);
8467 gcc_checking_assert (dv_changed_p (dv));
8468 set_dv_changed (dv, false);
8472 /* Initialize expand_loc_callback_data D with variable hash table V.
8473 It must be a macro because of alloca (vec stack). */
8474 #define INIT_ELCD(d, v) \
8475 do \
8477 (d).vars = (v); \
8478 (d).depth.complexity = (d).depth.entryvals = 0; \
8480 while (0)
8481 /* Finalize expand_loc_callback_data D, resolved to location L. */
8482 #define FINI_ELCD(d, l) \
8483 do \
8485 resolve_expansions_pending_recursion (&(d).pending); \
8486 (d).pending.release (); \
8487 (d).expanding.release (); \
8489 if ((l) && MEM_P (l)) \
8490 (l) = targetm.delegitimize_address (l); \
8492 while (0)
8494 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8495 equivalences in VARS, updating their CUR_LOCs in the process. */
8497 static rtx
8498 vt_expand_loc (rtx loc, variable_table_type vars)
8500 struct expand_loc_callback_data data;
8501 rtx result;
8503 if (!MAY_HAVE_DEBUG_INSNS)
8504 return loc;
8506 INIT_ELCD (data, vars);
8508 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8509 vt_expand_loc_callback, &data);
8511 FINI_ELCD (data, result);
8513 return result;
8516 /* Expand the one-part VARiable to a location, using the equivalences
8517 in VARS, updating their CUR_LOCs in the process. */
8519 static rtx
8520 vt_expand_1pvar (variable var, variable_table_type vars)
8522 struct expand_loc_callback_data data;
8523 rtx loc;
8525 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8527 if (!dv_changed_p (var->dv))
8528 return var->var_part[0].cur_loc;
8530 INIT_ELCD (data, vars);
8532 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8534 gcc_checking_assert (data.expanding.is_empty ());
8536 FINI_ELCD (data, loc);
8538 return loc;
8541 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8542 additional parameters: WHERE specifies whether the note shall be emitted
8543 before or after instruction INSN. */
8546 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8548 variable var = *varp;
8549 rtx insn = data->insn;
8550 enum emit_note_where where = data->where;
8551 variable_table_type vars = data->vars;
8552 rtx note, note_vl;
8553 int i, j, n_var_parts;
8554 bool complete;
8555 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8556 HOST_WIDE_INT last_limit;
8557 tree type_size_unit;
8558 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8559 rtx loc[MAX_VAR_PARTS];
8560 tree decl;
8561 location_chain lc;
8563 gcc_checking_assert (var->onepart == NOT_ONEPART
8564 || var->onepart == ONEPART_VDECL);
8566 decl = dv_as_decl (var->dv);
8568 complete = true;
8569 last_limit = 0;
8570 n_var_parts = 0;
8571 if (!var->onepart)
8572 for (i = 0; i < var->n_var_parts; i++)
8573 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8574 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8575 for (i = 0; i < var->n_var_parts; i++)
8577 enum machine_mode mode, wider_mode;
8578 rtx loc2;
8579 HOST_WIDE_INT offset;
8581 if (i == 0 && var->onepart)
8583 gcc_checking_assert (var->n_var_parts == 1);
8584 offset = 0;
8585 initialized = VAR_INIT_STATUS_INITIALIZED;
8586 loc2 = vt_expand_1pvar (var, vars);
8588 else
8590 if (last_limit < VAR_PART_OFFSET (var, i))
8592 complete = false;
8593 break;
8595 else if (last_limit > VAR_PART_OFFSET (var, i))
8596 continue;
8597 offset = VAR_PART_OFFSET (var, i);
8598 loc2 = var->var_part[i].cur_loc;
8599 if (loc2 && GET_CODE (loc2) == MEM
8600 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8602 rtx depval = XEXP (loc2, 0);
8604 loc2 = vt_expand_loc (loc2, vars);
8606 if (loc2)
8607 loc_exp_insert_dep (var, depval, vars);
8609 if (!loc2)
8611 complete = false;
8612 continue;
8614 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8615 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8616 if (var->var_part[i].cur_loc == lc->loc)
8618 initialized = lc->init;
8619 break;
8621 gcc_assert (lc);
8624 offsets[n_var_parts] = offset;
8625 if (!loc2)
8627 complete = false;
8628 continue;
8630 loc[n_var_parts] = loc2;
8631 mode = GET_MODE (var->var_part[i].cur_loc);
8632 if (mode == VOIDmode && var->onepart)
8633 mode = DECL_MODE (decl);
8634 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8636 /* Attempt to merge adjacent registers or memory. */
8637 wider_mode = GET_MODE_WIDER_MODE (mode);
8638 for (j = i + 1; j < var->n_var_parts; j++)
8639 if (last_limit <= VAR_PART_OFFSET (var, j))
8640 break;
8641 if (j < var->n_var_parts
8642 && wider_mode != VOIDmode
8643 && var->var_part[j].cur_loc
8644 && mode == GET_MODE (var->var_part[j].cur_loc)
8645 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8646 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8647 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8648 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8650 rtx new_loc = NULL;
8652 if (REG_P (loc[n_var_parts])
8653 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8654 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8655 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8656 == REGNO (loc2))
8658 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8659 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8660 mode, 0);
8661 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8662 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8663 if (new_loc)
8665 if (!REG_P (new_loc)
8666 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8667 new_loc = NULL;
8668 else
8669 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8672 else if (MEM_P (loc[n_var_parts])
8673 && GET_CODE (XEXP (loc2, 0)) == PLUS
8674 && REG_P (XEXP (XEXP (loc2, 0), 0))
8675 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8677 if ((REG_P (XEXP (loc[n_var_parts], 0))
8678 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8679 XEXP (XEXP (loc2, 0), 0))
8680 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8681 == GET_MODE_SIZE (mode))
8682 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8683 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8684 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8685 XEXP (XEXP (loc2, 0), 0))
8686 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8687 + GET_MODE_SIZE (mode)
8688 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8689 new_loc = adjust_address_nv (loc[n_var_parts],
8690 wider_mode, 0);
8693 if (new_loc)
8695 loc[n_var_parts] = new_loc;
8696 mode = wider_mode;
8697 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8698 i = j;
8701 ++n_var_parts;
8703 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8704 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8705 complete = false;
8707 if (! flag_var_tracking_uninit)
8708 initialized = VAR_INIT_STATUS_INITIALIZED;
8710 note_vl = NULL_RTX;
8711 if (!complete)
8712 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8713 (int) initialized);
8714 else if (n_var_parts == 1)
8716 rtx expr_list;
8718 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8719 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8720 else
8721 expr_list = loc[0];
8723 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8724 (int) initialized);
8726 else if (n_var_parts)
8728 rtx parallel;
8730 for (i = 0; i < n_var_parts; i++)
8731 loc[i]
8732 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8734 parallel = gen_rtx_PARALLEL (VOIDmode,
8735 gen_rtvec_v (n_var_parts, loc));
8736 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8737 parallel, (int) initialized);
8740 if (where != EMIT_NOTE_BEFORE_INSN)
8742 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8743 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8744 NOTE_DURING_CALL_P (note) = true;
8746 else
8748 /* Make sure that the call related notes come first. */
8749 while (NEXT_INSN (insn)
8750 && NOTE_P (insn)
8751 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8752 && NOTE_DURING_CALL_P (insn))
8753 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8754 insn = NEXT_INSN (insn);
8755 if (NOTE_P (insn)
8756 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8757 && NOTE_DURING_CALL_P (insn))
8758 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8759 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8760 else
8761 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8763 NOTE_VAR_LOCATION (note) = note_vl;
8765 set_dv_changed (var->dv, false);
8766 gcc_assert (var->in_changed_variables);
8767 var->in_changed_variables = false;
8768 changed_variables.clear_slot (varp);
8770 /* Continue traversing the hash table. */
8771 return 1;
8774 /* While traversing changed_variables, push onto DATA (a stack of RTX
8775 values) entries that aren't user variables. */
8778 var_track_values_to_stack (variable_def **slot,
8779 vec<rtx, va_heap> *changed_values_stack)
8781 variable var = *slot;
8783 if (var->onepart == ONEPART_VALUE)
8784 changed_values_stack->safe_push (dv_as_value (var->dv));
8785 else if (var->onepart == ONEPART_DEXPR)
8786 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8788 return 1;
8791 /* Remove from changed_variables the entry whose DV corresponds to
8792 value or debug_expr VAL. */
8793 static void
8794 remove_value_from_changed_variables (rtx val)
8796 decl_or_value dv = dv_from_rtx (val);
8797 variable_def **slot;
8798 variable var;
8800 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8801 NO_INSERT);
8802 var = *slot;
8803 var->in_changed_variables = false;
8804 changed_variables.clear_slot (slot);
8807 /* If VAL (a value or debug_expr) has backlinks to variables actively
8808 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8809 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8810 have dependencies of their own to notify. */
8812 static void
8813 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8814 vec<rtx, va_heap> *changed_values_stack)
8816 variable_def **slot;
8817 variable var;
8818 loc_exp_dep *led;
8819 decl_or_value dv = dv_from_rtx (val);
8821 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8822 NO_INSERT);
8823 if (!slot)
8824 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8825 if (!slot)
8826 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8827 NO_INSERT);
8828 var = *slot;
8830 while ((led = VAR_LOC_DEP_LST (var)))
8832 decl_or_value ldv = led->dv;
8833 variable ivar;
8835 /* Deactivate and remove the backlink, as it was “used up”. It
8836 makes no sense to attempt to notify the same entity again:
8837 either it will be recomputed and re-register an active
8838 dependency, or it will still have the changed mark. */
8839 if (led->next)
8840 led->next->pprev = led->pprev;
8841 if (led->pprev)
8842 *led->pprev = led->next;
8843 led->next = NULL;
8844 led->pprev = NULL;
8846 if (dv_changed_p (ldv))
8847 continue;
8849 switch (dv_onepart_p (ldv))
8851 case ONEPART_VALUE:
8852 case ONEPART_DEXPR:
8853 set_dv_changed (ldv, true);
8854 changed_values_stack->safe_push (dv_as_rtx (ldv));
8855 break;
8857 case ONEPART_VDECL:
8858 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8859 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8860 variable_was_changed (ivar, NULL);
8861 break;
8863 case NOT_ONEPART:
8864 pool_free (loc_exp_dep_pool, led);
8865 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8866 if (ivar)
8868 int i = ivar->n_var_parts;
8869 while (i--)
8871 rtx loc = ivar->var_part[i].cur_loc;
8873 if (loc && GET_CODE (loc) == MEM
8874 && XEXP (loc, 0) == val)
8876 variable_was_changed (ivar, NULL);
8877 break;
8881 break;
8883 default:
8884 gcc_unreachable ();
8889 /* Take out of changed_variables any entries that don't refer to use
8890 variables. Back-propagate change notifications from values and
8891 debug_exprs to their active dependencies in HTAB or in
8892 CHANGED_VARIABLES. */
8894 static void
8895 process_changed_values (variable_table_type htab)
8897 int i, n;
8898 rtx val;
8899 auto_vec<rtx, 20> changed_values_stack;
8901 /* Move values from changed_variables to changed_values_stack. */
8902 changed_variables
8903 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8904 (&changed_values_stack);
8906 /* Back-propagate change notifications in values while popping
8907 them from the stack. */
8908 for (n = i = changed_values_stack.length ();
8909 i > 0; i = changed_values_stack.length ())
8911 val = changed_values_stack.pop ();
8912 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8914 /* This condition will hold when visiting each of the entries
8915 originally in changed_variables. We can't remove them
8916 earlier because this could drop the backlinks before we got a
8917 chance to use them. */
8918 if (i == n)
8920 remove_value_from_changed_variables (val);
8921 n--;
8926 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8927 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8928 the notes shall be emitted before of after instruction INSN. */
8930 static void
8931 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8932 shared_hash vars)
8934 emit_note_data data;
8935 variable_table_type htab = shared_hash_htab (vars);
8937 if (!changed_variables.elements ())
8938 return;
8940 if (MAY_HAVE_DEBUG_INSNS)
8941 process_changed_values (htab);
8943 data.insn = insn;
8944 data.where = where;
8945 data.vars = htab;
8947 changed_variables
8948 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8951 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8952 same variable in hash table DATA or is not there at all. */
8955 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8957 variable old_var, new_var;
8959 old_var = *slot;
8960 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8962 if (!new_var)
8964 /* Variable has disappeared. */
8965 variable empty_var = NULL;
8967 if (old_var->onepart == ONEPART_VALUE
8968 || old_var->onepart == ONEPART_DEXPR)
8970 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8971 if (empty_var)
8973 gcc_checking_assert (!empty_var->in_changed_variables);
8974 if (!VAR_LOC_1PAUX (old_var))
8976 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8977 VAR_LOC_1PAUX (empty_var) = NULL;
8979 else
8980 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8984 if (!empty_var)
8986 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8987 empty_var->dv = old_var->dv;
8988 empty_var->refcount = 0;
8989 empty_var->n_var_parts = 0;
8990 empty_var->onepart = old_var->onepart;
8991 empty_var->in_changed_variables = false;
8994 if (empty_var->onepart)
8996 /* Propagate the auxiliary data to (ultimately)
8997 changed_variables. */
8998 empty_var->var_part[0].loc_chain = NULL;
8999 empty_var->var_part[0].cur_loc = NULL;
9000 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9001 VAR_LOC_1PAUX (old_var) = NULL;
9003 variable_was_changed (empty_var, NULL);
9004 /* Continue traversing the hash table. */
9005 return 1;
9007 /* Update cur_loc and one-part auxiliary data, before new_var goes
9008 through variable_was_changed. */
9009 if (old_var != new_var && new_var->onepart)
9011 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9012 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9013 VAR_LOC_1PAUX (old_var) = NULL;
9014 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9016 if (variable_different_p (old_var, new_var))
9017 variable_was_changed (new_var, NULL);
9019 /* Continue traversing the hash table. */
9020 return 1;
9023 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9024 table DATA. */
9027 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9029 variable old_var, new_var;
9031 new_var = *slot;
9032 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9033 if (!old_var)
9035 int i;
9036 for (i = 0; i < new_var->n_var_parts; i++)
9037 new_var->var_part[i].cur_loc = NULL;
9038 variable_was_changed (new_var, NULL);
9041 /* Continue traversing the hash table. */
9042 return 1;
9045 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9046 NEW_SET. */
9048 static void
9049 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9050 dataflow_set *new_set)
9052 shared_hash_htab (old_set->vars)
9053 .traverse <variable_table_type, emit_notes_for_differences_1>
9054 (shared_hash_htab (new_set->vars));
9055 shared_hash_htab (new_set->vars)
9056 .traverse <variable_table_type, emit_notes_for_differences_2>
9057 (shared_hash_htab (old_set->vars));
9058 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9061 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9063 static rtx
9064 next_non_note_insn_var_location (rtx insn)
9066 while (insn)
9068 insn = NEXT_INSN (insn);
9069 if (insn == 0
9070 || !NOTE_P (insn)
9071 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9072 break;
9075 return insn;
9078 /* Emit the notes for changes of location parts in the basic block BB. */
9080 static void
9081 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9083 unsigned int i;
9084 micro_operation *mo;
9086 dataflow_set_clear (set);
9087 dataflow_set_copy (set, &VTI (bb)->in);
9089 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9091 rtx insn = mo->insn;
9092 rtx next_insn = next_non_note_insn_var_location (insn);
9094 switch (mo->type)
9096 case MO_CALL:
9097 dataflow_set_clear_at_call (set);
9098 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9100 rtx arguments = mo->u.loc, *p = &arguments, note;
9101 while (*p)
9103 XEXP (XEXP (*p, 0), 1)
9104 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9105 shared_hash_htab (set->vars));
9106 /* If expansion is successful, keep it in the list. */
9107 if (XEXP (XEXP (*p, 0), 1))
9108 p = &XEXP (*p, 1);
9109 /* Otherwise, if the following item is data_value for it,
9110 drop it too too. */
9111 else if (XEXP (*p, 1)
9112 && REG_P (XEXP (XEXP (*p, 0), 0))
9113 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9114 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9116 && REGNO (XEXP (XEXP (*p, 0), 0))
9117 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9118 0), 0)))
9119 *p = XEXP (XEXP (*p, 1), 1);
9120 /* Just drop this item. */
9121 else
9122 *p = XEXP (*p, 1);
9124 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9125 NOTE_VAR_LOCATION (note) = arguments;
9127 break;
9129 case MO_USE:
9131 rtx loc = mo->u.loc;
9133 if (REG_P (loc))
9134 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9135 else
9136 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9138 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9140 break;
9142 case MO_VAL_LOC:
9144 rtx loc = mo->u.loc;
9145 rtx val, vloc;
9146 tree var;
9148 if (GET_CODE (loc) == CONCAT)
9150 val = XEXP (loc, 0);
9151 vloc = XEXP (loc, 1);
9153 else
9155 val = NULL_RTX;
9156 vloc = loc;
9159 var = PAT_VAR_LOCATION_DECL (vloc);
9161 clobber_variable_part (set, NULL_RTX,
9162 dv_from_decl (var), 0, NULL_RTX);
9163 if (val)
9165 if (VAL_NEEDS_RESOLUTION (loc))
9166 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9167 set_variable_part (set, val, dv_from_decl (var), 0,
9168 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9169 INSERT);
9171 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9172 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9173 dv_from_decl (var), 0,
9174 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9175 INSERT);
9177 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9179 break;
9181 case MO_VAL_USE:
9183 rtx loc = mo->u.loc;
9184 rtx val, vloc, uloc;
9186 vloc = uloc = XEXP (loc, 1);
9187 val = XEXP (loc, 0);
9189 if (GET_CODE (val) == CONCAT)
9191 uloc = XEXP (val, 1);
9192 val = XEXP (val, 0);
9195 if (VAL_NEEDS_RESOLUTION (loc))
9196 val_resolve (set, val, vloc, insn);
9197 else
9198 val_store (set, val, uloc, insn, false);
9200 if (VAL_HOLDS_TRACK_EXPR (loc))
9202 if (GET_CODE (uloc) == REG)
9203 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9204 NULL);
9205 else if (GET_CODE (uloc) == MEM)
9206 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9207 NULL);
9210 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9212 break;
9214 case MO_VAL_SET:
9216 rtx loc = mo->u.loc;
9217 rtx val, vloc, uloc;
9218 rtx dstv, srcv;
9220 vloc = loc;
9221 uloc = XEXP (vloc, 1);
9222 val = XEXP (vloc, 0);
9223 vloc = uloc;
9225 if (GET_CODE (uloc) == SET)
9227 dstv = SET_DEST (uloc);
9228 srcv = SET_SRC (uloc);
9230 else
9232 dstv = uloc;
9233 srcv = NULL;
9236 if (GET_CODE (val) == CONCAT)
9238 dstv = vloc = XEXP (val, 1);
9239 val = XEXP (val, 0);
9242 if (GET_CODE (vloc) == SET)
9244 srcv = SET_SRC (vloc);
9246 gcc_assert (val != srcv);
9247 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9249 dstv = vloc = SET_DEST (vloc);
9251 if (VAL_NEEDS_RESOLUTION (loc))
9252 val_resolve (set, val, srcv, insn);
9254 else if (VAL_NEEDS_RESOLUTION (loc))
9256 gcc_assert (GET_CODE (uloc) == SET
9257 && GET_CODE (SET_SRC (uloc)) == REG);
9258 val_resolve (set, val, SET_SRC (uloc), insn);
9261 if (VAL_HOLDS_TRACK_EXPR (loc))
9263 if (VAL_EXPR_IS_CLOBBERED (loc))
9265 if (REG_P (uloc))
9266 var_reg_delete (set, uloc, true);
9267 else if (MEM_P (uloc))
9269 gcc_assert (MEM_P (dstv));
9270 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9271 var_mem_delete (set, dstv, true);
9274 else
9276 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9277 rtx src = NULL, dst = uloc;
9278 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9280 if (GET_CODE (uloc) == SET)
9282 src = SET_SRC (uloc);
9283 dst = SET_DEST (uloc);
9286 if (copied_p)
9288 status = find_src_status (set, src);
9290 src = find_src_set_src (set, src);
9293 if (REG_P (dst))
9294 var_reg_delete_and_set (set, dst, !copied_p,
9295 status, srcv);
9296 else if (MEM_P (dst))
9298 gcc_assert (MEM_P (dstv));
9299 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9300 var_mem_delete_and_set (set, dstv, !copied_p,
9301 status, srcv);
9305 else if (REG_P (uloc))
9306 var_regno_delete (set, REGNO (uloc));
9307 else if (MEM_P (uloc))
9309 gcc_checking_assert (GET_CODE (vloc) == MEM);
9310 gcc_checking_assert (vloc == dstv);
9311 if (vloc != dstv)
9312 clobber_overlapping_mems (set, vloc);
9315 val_store (set, val, dstv, insn, true);
9317 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9318 set->vars);
9320 break;
9322 case MO_SET:
9324 rtx loc = mo->u.loc;
9325 rtx set_src = NULL;
9327 if (GET_CODE (loc) == SET)
9329 set_src = SET_SRC (loc);
9330 loc = SET_DEST (loc);
9333 if (REG_P (loc))
9334 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9335 set_src);
9336 else
9337 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9338 set_src);
9340 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9341 set->vars);
9343 break;
9345 case MO_COPY:
9347 rtx loc = mo->u.loc;
9348 enum var_init_status src_status;
9349 rtx set_src = NULL;
9351 if (GET_CODE (loc) == SET)
9353 set_src = SET_SRC (loc);
9354 loc = SET_DEST (loc);
9357 src_status = find_src_status (set, set_src);
9358 set_src = find_src_set_src (set, set_src);
9360 if (REG_P (loc))
9361 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9362 else
9363 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9365 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9366 set->vars);
9368 break;
9370 case MO_USE_NO_VAR:
9372 rtx loc = mo->u.loc;
9374 if (REG_P (loc))
9375 var_reg_delete (set, loc, false);
9376 else
9377 var_mem_delete (set, loc, false);
9379 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9381 break;
9383 case MO_CLOBBER:
9385 rtx loc = mo->u.loc;
9387 if (REG_P (loc))
9388 var_reg_delete (set, loc, true);
9389 else
9390 var_mem_delete (set, loc, true);
9392 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9393 set->vars);
9395 break;
9397 case MO_ADJUST:
9398 set->stack_adjust += mo->u.adjust;
9399 break;
9404 /* Emit notes for the whole function. */
9406 static void
9407 vt_emit_notes (void)
9409 basic_block bb;
9410 dataflow_set cur;
9412 gcc_assert (!changed_variables.elements ());
9414 /* Free memory occupied by the out hash tables, as they aren't used
9415 anymore. */
9416 FOR_EACH_BB_FN (bb, cfun)
9417 dataflow_set_clear (&VTI (bb)->out);
9419 /* Enable emitting notes by functions (mainly by set_variable_part and
9420 delete_variable_part). */
9421 emit_notes = true;
9423 if (MAY_HAVE_DEBUG_INSNS)
9425 dropped_values.create (cselib_get_next_uid () * 2);
9426 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9427 sizeof (loc_exp_dep), 64);
9430 dataflow_set_init (&cur);
9432 FOR_EACH_BB_FN (bb, cfun)
9434 /* Emit the notes for changes of variable locations between two
9435 subsequent basic blocks. */
9436 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9438 if (MAY_HAVE_DEBUG_INSNS)
9439 local_get_addr_cache = pointer_map_create ();
9441 /* Emit the notes for the changes in the basic block itself. */
9442 emit_notes_in_bb (bb, &cur);
9444 if (MAY_HAVE_DEBUG_INSNS)
9445 pointer_map_destroy (local_get_addr_cache);
9446 local_get_addr_cache = NULL;
9448 /* Free memory occupied by the in hash table, we won't need it
9449 again. */
9450 dataflow_set_clear (&VTI (bb)->in);
9452 #ifdef ENABLE_CHECKING
9453 shared_hash_htab (cur.vars)
9454 .traverse <variable_table_type, emit_notes_for_differences_1>
9455 (shared_hash_htab (empty_shared_hash));
9456 #endif
9457 dataflow_set_destroy (&cur);
9459 if (MAY_HAVE_DEBUG_INSNS)
9460 dropped_values.dispose ();
9462 emit_notes = false;
9465 /* If there is a declaration and offset associated with register/memory RTL
9466 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9468 static bool
9469 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9471 if (REG_P (rtl))
9473 if (REG_ATTRS (rtl))
9475 *declp = REG_EXPR (rtl);
9476 *offsetp = REG_OFFSET (rtl);
9477 return true;
9480 else if (GET_CODE (rtl) == PARALLEL)
9482 tree decl = NULL_TREE;
9483 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9484 int len = XVECLEN (rtl, 0), i;
9486 for (i = 0; i < len; i++)
9488 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9489 if (!REG_P (reg) || !REG_ATTRS (reg))
9490 break;
9491 if (!decl)
9492 decl = REG_EXPR (reg);
9493 if (REG_EXPR (reg) != decl)
9494 break;
9495 if (REG_OFFSET (reg) < offset)
9496 offset = REG_OFFSET (reg);
9499 if (i == len)
9501 *declp = decl;
9502 *offsetp = offset;
9503 return true;
9506 else if (MEM_P (rtl))
9508 if (MEM_ATTRS (rtl))
9510 *declp = MEM_EXPR (rtl);
9511 *offsetp = INT_MEM_OFFSET (rtl);
9512 return true;
9515 return false;
9518 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9519 of VAL. */
9521 static void
9522 record_entry_value (cselib_val *val, rtx rtl)
9524 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9526 ENTRY_VALUE_EXP (ev) = rtl;
9528 cselib_add_permanent_equiv (val, ev, get_insns ());
9531 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9533 static void
9534 vt_add_function_parameter (tree parm)
9536 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9537 rtx incoming = DECL_INCOMING_RTL (parm);
9538 tree decl;
9539 enum machine_mode mode;
9540 HOST_WIDE_INT offset;
9541 dataflow_set *out;
9542 decl_or_value dv;
9544 if (TREE_CODE (parm) != PARM_DECL)
9545 return;
9547 if (!decl_rtl || !incoming)
9548 return;
9550 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9551 return;
9553 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9554 rewrite the incoming location of parameters passed on the stack
9555 into MEMs based on the argument pointer, so that incoming doesn't
9556 depend on a pseudo. */
9557 if (MEM_P (incoming)
9558 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9559 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9560 && XEXP (XEXP (incoming, 0), 0)
9561 == crtl->args.internal_arg_pointer
9562 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9564 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9565 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9566 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9567 incoming
9568 = replace_equiv_address_nv (incoming,
9569 plus_constant (Pmode,
9570 arg_pointer_rtx, off));
9573 #ifdef HAVE_window_save
9574 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9575 If the target machine has an explicit window save instruction, the
9576 actual entry value is the corresponding OUTGOING_REGNO instead. */
9577 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9579 if (REG_P (incoming)
9580 && HARD_REGISTER_P (incoming)
9581 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9583 parm_reg_t p;
9584 p.incoming = incoming;
9585 incoming
9586 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9587 OUTGOING_REGNO (REGNO (incoming)), 0);
9588 p.outgoing = incoming;
9589 vec_safe_push (windowed_parm_regs, p);
9591 else if (GET_CODE (incoming) == PARALLEL)
9593 rtx outgoing
9594 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9595 int i;
9597 for (i = 0; i < XVECLEN (incoming, 0); i++)
9599 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9600 parm_reg_t p;
9601 p.incoming = reg;
9602 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9603 OUTGOING_REGNO (REGNO (reg)), 0);
9604 p.outgoing = reg;
9605 XVECEXP (outgoing, 0, i)
9606 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9607 XEXP (XVECEXP (incoming, 0, i), 1));
9608 vec_safe_push (windowed_parm_regs, p);
9611 incoming = outgoing;
9613 else if (MEM_P (incoming)
9614 && REG_P (XEXP (incoming, 0))
9615 && HARD_REGISTER_P (XEXP (incoming, 0)))
9617 rtx reg = XEXP (incoming, 0);
9618 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9620 parm_reg_t p;
9621 p.incoming = reg;
9622 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9623 p.outgoing = reg;
9624 vec_safe_push (windowed_parm_regs, p);
9625 incoming = replace_equiv_address_nv (incoming, reg);
9629 #endif
9631 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9633 if (MEM_P (incoming))
9635 /* This means argument is passed by invisible reference. */
9636 offset = 0;
9637 decl = parm;
9639 else
9641 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9642 return;
9643 offset += byte_lowpart_offset (GET_MODE (incoming),
9644 GET_MODE (decl_rtl));
9648 if (!decl)
9649 return;
9651 if (parm != decl)
9653 /* If that DECL_RTL wasn't a pseudo that got spilled to
9654 memory, bail out. Otherwise, the spill slot sharing code
9655 will force the memory to reference spill_slot_decl (%sfp),
9656 so we don't match above. That's ok, the pseudo must have
9657 referenced the entire parameter, so just reset OFFSET. */
9658 if (decl != get_spill_slot_decl (false))
9659 return;
9660 offset = 0;
9663 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9664 return;
9666 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9668 dv = dv_from_decl (parm);
9670 if (target_for_debug_bind (parm)
9671 /* We can't deal with these right now, because this kind of
9672 variable is single-part. ??? We could handle parallels
9673 that describe multiple locations for the same single
9674 value, but ATM we don't. */
9675 && GET_CODE (incoming) != PARALLEL)
9677 cselib_val *val;
9678 rtx lowpart;
9680 /* ??? We shouldn't ever hit this, but it may happen because
9681 arguments passed by invisible reference aren't dealt with
9682 above: incoming-rtl will have Pmode rather than the
9683 expected mode for the type. */
9684 if (offset)
9685 return;
9687 lowpart = var_lowpart (mode, incoming);
9688 if (!lowpart)
9689 return;
9691 val = cselib_lookup_from_insn (lowpart, mode, true,
9692 VOIDmode, get_insns ());
9694 /* ??? Float-typed values in memory are not handled by
9695 cselib. */
9696 if (val)
9698 preserve_value (val);
9699 set_variable_part (out, val->val_rtx, dv, offset,
9700 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9701 dv = dv_from_value (val->val_rtx);
9704 if (MEM_P (incoming))
9706 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9707 VOIDmode, get_insns ());
9708 if (val)
9710 preserve_value (val);
9711 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9716 if (REG_P (incoming))
9718 incoming = var_lowpart (mode, incoming);
9719 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9720 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9721 incoming);
9722 set_variable_part (out, incoming, dv, offset,
9723 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9724 if (dv_is_value_p (dv))
9726 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9727 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9728 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9730 enum machine_mode indmode
9731 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9732 rtx mem = gen_rtx_MEM (indmode, incoming);
9733 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9734 VOIDmode,
9735 get_insns ());
9736 if (val)
9738 preserve_value (val);
9739 record_entry_value (val, mem);
9740 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9741 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9746 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9748 int i;
9750 for (i = 0; i < XVECLEN (incoming, 0); i++)
9752 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9753 offset = REG_OFFSET (reg);
9754 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9755 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9756 set_variable_part (out, reg, dv, offset,
9757 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9760 else if (MEM_P (incoming))
9762 incoming = var_lowpart (mode, incoming);
9763 set_variable_part (out, incoming, dv, offset,
9764 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9768 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9770 static void
9771 vt_add_function_parameters (void)
9773 tree parm;
9775 for (parm = DECL_ARGUMENTS (current_function_decl);
9776 parm; parm = DECL_CHAIN (parm))
9777 vt_add_function_parameter (parm);
9779 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9781 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9783 if (TREE_CODE (vexpr) == INDIRECT_REF)
9784 vexpr = TREE_OPERAND (vexpr, 0);
9786 if (TREE_CODE (vexpr) == PARM_DECL
9787 && DECL_ARTIFICIAL (vexpr)
9788 && !DECL_IGNORED_P (vexpr)
9789 && DECL_NAMELESS (vexpr))
9790 vt_add_function_parameter (vexpr);
9794 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9795 ensure it isn't flushed during cselib_reset_table.
9796 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9797 has been eliminated. */
9799 static void
9800 vt_init_cfa_base (void)
9802 cselib_val *val;
9804 #ifdef FRAME_POINTER_CFA_OFFSET
9805 cfa_base_rtx = frame_pointer_rtx;
9806 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9807 #else
9808 cfa_base_rtx = arg_pointer_rtx;
9809 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9810 #endif
9811 if (cfa_base_rtx == hard_frame_pointer_rtx
9812 || !fixed_regs[REGNO (cfa_base_rtx)])
9814 cfa_base_rtx = NULL_RTX;
9815 return;
9817 if (!MAY_HAVE_DEBUG_INSNS)
9818 return;
9820 /* Tell alias analysis that cfa_base_rtx should share
9821 find_base_term value with stack pointer or hard frame pointer. */
9822 if (!frame_pointer_needed)
9823 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9824 else if (!crtl->stack_realign_tried)
9825 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9827 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9828 VOIDmode, get_insns ());
9829 preserve_value (val);
9830 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9833 /* Allocate and initialize the data structures for variable tracking
9834 and parse the RTL to get the micro operations. */
9836 static bool
9837 vt_initialize (void)
9839 basic_block bb;
9840 HOST_WIDE_INT fp_cfa_offset = -1;
9842 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9844 attrs_pool = create_alloc_pool ("attrs_def pool",
9845 sizeof (struct attrs_def), 1024);
9846 var_pool = create_alloc_pool ("variable_def pool",
9847 sizeof (struct variable_def)
9848 + (MAX_VAR_PARTS - 1)
9849 * sizeof (((variable)NULL)->var_part[0]), 64);
9850 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9851 sizeof (struct location_chain_def),
9852 1024);
9853 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9854 sizeof (struct shared_hash_def), 256);
9855 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9856 empty_shared_hash->refcount = 1;
9857 empty_shared_hash->htab.create (1);
9858 changed_variables.create (10);
9860 /* Init the IN and OUT sets. */
9861 FOR_ALL_BB_FN (bb, cfun)
9863 VTI (bb)->visited = false;
9864 VTI (bb)->flooded = false;
9865 dataflow_set_init (&VTI (bb)->in);
9866 dataflow_set_init (&VTI (bb)->out);
9867 VTI (bb)->permp = NULL;
9870 if (MAY_HAVE_DEBUG_INSNS)
9872 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9873 scratch_regs = BITMAP_ALLOC (NULL);
9874 valvar_pool = create_alloc_pool ("small variable_def pool",
9875 sizeof (struct variable_def), 256);
9876 preserved_values.create (256);
9877 global_get_addr_cache = pointer_map_create ();
9879 else
9881 scratch_regs = NULL;
9882 valvar_pool = NULL;
9883 global_get_addr_cache = NULL;
9886 if (MAY_HAVE_DEBUG_INSNS)
9888 rtx reg, expr;
9889 int ofst;
9890 cselib_val *val;
9892 #ifdef FRAME_POINTER_CFA_OFFSET
9893 reg = frame_pointer_rtx;
9894 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9895 #else
9896 reg = arg_pointer_rtx;
9897 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9898 #endif
9900 ofst -= INCOMING_FRAME_SP_OFFSET;
9902 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9903 VOIDmode, get_insns ());
9904 preserve_value (val);
9905 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9906 cselib_preserve_cfa_base_value (val, REGNO (reg));
9907 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9908 stack_pointer_rtx, -ofst);
9909 cselib_add_permanent_equiv (val, expr, get_insns ());
9911 if (ofst)
9913 val = cselib_lookup_from_insn (stack_pointer_rtx,
9914 GET_MODE (stack_pointer_rtx), 1,
9915 VOIDmode, get_insns ());
9916 preserve_value (val);
9917 expr = plus_constant (GET_MODE (reg), reg, ofst);
9918 cselib_add_permanent_equiv (val, expr, get_insns ());
9922 /* In order to factor out the adjustments made to the stack pointer or to
9923 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9924 instead of individual location lists, we're going to rewrite MEMs based
9925 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9926 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9927 resp. arg_pointer_rtx. We can do this either when there is no frame
9928 pointer in the function and stack adjustments are consistent for all
9929 basic blocks or when there is a frame pointer and no stack realignment.
9930 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9931 has been eliminated. */
9932 if (!frame_pointer_needed)
9934 rtx reg, elim;
9936 if (!vt_stack_adjustments ())
9937 return false;
9939 #ifdef FRAME_POINTER_CFA_OFFSET
9940 reg = frame_pointer_rtx;
9941 #else
9942 reg = arg_pointer_rtx;
9943 #endif
9944 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9945 if (elim != reg)
9947 if (GET_CODE (elim) == PLUS)
9948 elim = XEXP (elim, 0);
9949 if (elim == stack_pointer_rtx)
9950 vt_init_cfa_base ();
9953 else if (!crtl->stack_realign_tried)
9955 rtx reg, elim;
9957 #ifdef FRAME_POINTER_CFA_OFFSET
9958 reg = frame_pointer_rtx;
9959 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9960 #else
9961 reg = arg_pointer_rtx;
9962 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9963 #endif
9964 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9965 if (elim != reg)
9967 if (GET_CODE (elim) == PLUS)
9969 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9970 elim = XEXP (elim, 0);
9972 if (elim != hard_frame_pointer_rtx)
9973 fp_cfa_offset = -1;
9975 else
9976 fp_cfa_offset = -1;
9979 /* If the stack is realigned and a DRAP register is used, we're going to
9980 rewrite MEMs based on it representing incoming locations of parameters
9981 passed on the stack into MEMs based on the argument pointer. Although
9982 we aren't going to rewrite other MEMs, we still need to initialize the
9983 virtual CFA pointer in order to ensure that the argument pointer will
9984 be seen as a constant throughout the function.
9986 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9987 else if (stack_realign_drap)
9989 rtx reg, elim;
9991 #ifdef FRAME_POINTER_CFA_OFFSET
9992 reg = frame_pointer_rtx;
9993 #else
9994 reg = arg_pointer_rtx;
9995 #endif
9996 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9997 if (elim != reg)
9999 if (GET_CODE (elim) == PLUS)
10000 elim = XEXP (elim, 0);
10001 if (elim == hard_frame_pointer_rtx)
10002 vt_init_cfa_base ();
10006 hard_frame_pointer_adjustment = -1;
10008 vt_add_function_parameters ();
10010 FOR_EACH_BB_FN (bb, cfun)
10012 rtx insn;
10013 HOST_WIDE_INT pre, post = 0;
10014 basic_block first_bb, last_bb;
10016 if (MAY_HAVE_DEBUG_INSNS)
10018 cselib_record_sets_hook = add_with_sets;
10019 if (dump_file && (dump_flags & TDF_DETAILS))
10020 fprintf (dump_file, "first value: %i\n",
10021 cselib_get_next_uid ());
10024 first_bb = bb;
10025 for (;;)
10027 edge e;
10028 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10029 || ! single_pred_p (bb->next_bb))
10030 break;
10031 e = find_edge (bb, bb->next_bb);
10032 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10033 break;
10034 bb = bb->next_bb;
10036 last_bb = bb;
10038 /* Add the micro-operations to the vector. */
10039 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10041 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10042 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10043 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10044 insn = NEXT_INSN (insn))
10046 if (INSN_P (insn))
10048 if (!frame_pointer_needed)
10050 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10051 if (pre)
10053 micro_operation mo;
10054 mo.type = MO_ADJUST;
10055 mo.u.adjust = pre;
10056 mo.insn = insn;
10057 if (dump_file && (dump_flags & TDF_DETAILS))
10058 log_op_type (PATTERN (insn), bb, insn,
10059 MO_ADJUST, dump_file);
10060 VTI (bb)->mos.safe_push (mo);
10061 VTI (bb)->out.stack_adjust += pre;
10065 cselib_hook_called = false;
10066 adjust_insn (bb, insn);
10067 if (MAY_HAVE_DEBUG_INSNS)
10069 if (CALL_P (insn))
10070 prepare_call_arguments (bb, insn);
10071 cselib_process_insn (insn);
10072 if (dump_file && (dump_flags & TDF_DETAILS))
10074 print_rtl_single (dump_file, insn);
10075 dump_cselib_table (dump_file);
10078 if (!cselib_hook_called)
10079 add_with_sets (insn, 0, 0);
10080 cancel_changes (0);
10082 if (!frame_pointer_needed && post)
10084 micro_operation mo;
10085 mo.type = MO_ADJUST;
10086 mo.u.adjust = post;
10087 mo.insn = insn;
10088 if (dump_file && (dump_flags & TDF_DETAILS))
10089 log_op_type (PATTERN (insn), bb, insn,
10090 MO_ADJUST, dump_file);
10091 VTI (bb)->mos.safe_push (mo);
10092 VTI (bb)->out.stack_adjust += post;
10095 if (fp_cfa_offset != -1
10096 && hard_frame_pointer_adjustment == -1
10097 && fp_setter_insn (insn))
10099 vt_init_cfa_base ();
10100 hard_frame_pointer_adjustment = fp_cfa_offset;
10101 /* Disassociate sp from fp now. */
10102 if (MAY_HAVE_DEBUG_INSNS)
10104 cselib_val *v;
10105 cselib_invalidate_rtx (stack_pointer_rtx);
10106 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10107 VOIDmode);
10108 if (v && !cselib_preserved_value_p (v))
10110 cselib_set_value_sp_based (v);
10111 preserve_value (v);
10117 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10120 bb = last_bb;
10122 if (MAY_HAVE_DEBUG_INSNS)
10124 cselib_preserve_only_values ();
10125 cselib_reset_table (cselib_get_next_uid ());
10126 cselib_record_sets_hook = NULL;
10130 hard_frame_pointer_adjustment = -1;
10131 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10132 cfa_base_rtx = NULL_RTX;
10133 return true;
10136 /* This is *not* reset after each function. It gives each
10137 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10138 a unique label number. */
10140 static int debug_label_num = 1;
10142 /* Get rid of all debug insns from the insn stream. */
10144 static void
10145 delete_debug_insns (void)
10147 basic_block bb;
10148 rtx insn, next;
10150 if (!MAY_HAVE_DEBUG_INSNS)
10151 return;
10153 FOR_EACH_BB_FN (bb, cfun)
10155 FOR_BB_INSNS_SAFE (bb, insn, next)
10156 if (DEBUG_INSN_P (insn))
10158 tree decl = INSN_VAR_LOCATION_DECL (insn);
10159 if (TREE_CODE (decl) == LABEL_DECL
10160 && DECL_NAME (decl)
10161 && !DECL_RTL_SET_P (decl))
10163 PUT_CODE (insn, NOTE);
10164 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10165 NOTE_DELETED_LABEL_NAME (insn)
10166 = IDENTIFIER_POINTER (DECL_NAME (decl));
10167 SET_DECL_RTL (decl, insn);
10168 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10170 else
10171 delete_insn (insn);
10176 /* Run a fast, BB-local only version of var tracking, to take care of
10177 information that we don't do global analysis on, such that not all
10178 information is lost. If SKIPPED holds, we're skipping the global
10179 pass entirely, so we should try to use information it would have
10180 handled as well.. */
10182 static void
10183 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10185 /* ??? Just skip it all for now. */
10186 delete_debug_insns ();
10189 /* Free the data structures needed for variable tracking. */
10191 static void
10192 vt_finalize (void)
10194 basic_block bb;
10196 FOR_EACH_BB_FN (bb, cfun)
10198 VTI (bb)->mos.release ();
10201 FOR_ALL_BB_FN (bb, cfun)
10203 dataflow_set_destroy (&VTI (bb)->in);
10204 dataflow_set_destroy (&VTI (bb)->out);
10205 if (VTI (bb)->permp)
10207 dataflow_set_destroy (VTI (bb)->permp);
10208 XDELETE (VTI (bb)->permp);
10211 free_aux_for_blocks ();
10212 empty_shared_hash->htab.dispose ();
10213 changed_variables.dispose ();
10214 free_alloc_pool (attrs_pool);
10215 free_alloc_pool (var_pool);
10216 free_alloc_pool (loc_chain_pool);
10217 free_alloc_pool (shared_hash_pool);
10219 if (MAY_HAVE_DEBUG_INSNS)
10221 if (global_get_addr_cache)
10222 pointer_map_destroy (global_get_addr_cache);
10223 global_get_addr_cache = NULL;
10224 if (loc_exp_dep_pool)
10225 free_alloc_pool (loc_exp_dep_pool);
10226 loc_exp_dep_pool = NULL;
10227 free_alloc_pool (valvar_pool);
10228 preserved_values.release ();
10229 cselib_finish ();
10230 BITMAP_FREE (scratch_regs);
10231 scratch_regs = NULL;
10234 #ifdef HAVE_window_save
10235 vec_free (windowed_parm_regs);
10236 #endif
10238 if (vui_vec)
10239 XDELETEVEC (vui_vec);
10240 vui_vec = NULL;
10241 vui_allocated = 0;
10244 /* The entry point to variable tracking pass. */
10246 static inline unsigned int
10247 variable_tracking_main_1 (void)
10249 bool success;
10251 if (flag_var_tracking_assignments < 0)
10253 delete_debug_insns ();
10254 return 0;
10257 if (n_basic_blocks_for_fn (cfun) > 500 &&
10258 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10260 vt_debug_insns_local (true);
10261 return 0;
10264 mark_dfs_back_edges ();
10265 if (!vt_initialize ())
10267 vt_finalize ();
10268 vt_debug_insns_local (true);
10269 return 0;
10272 success = vt_find_locations ();
10274 if (!success && flag_var_tracking_assignments > 0)
10276 vt_finalize ();
10278 delete_debug_insns ();
10280 /* This is later restored by our caller. */
10281 flag_var_tracking_assignments = 0;
10283 success = vt_initialize ();
10284 gcc_assert (success);
10286 success = vt_find_locations ();
10289 if (!success)
10291 vt_finalize ();
10292 vt_debug_insns_local (false);
10293 return 0;
10296 if (dump_file && (dump_flags & TDF_DETAILS))
10298 dump_dataflow_sets ();
10299 dump_reg_info (dump_file);
10300 dump_flow_info (dump_file, dump_flags);
10303 timevar_push (TV_VAR_TRACKING_EMIT);
10304 vt_emit_notes ();
10305 timevar_pop (TV_VAR_TRACKING_EMIT);
10307 vt_finalize ();
10308 vt_debug_insns_local (false);
10309 return 0;
10312 unsigned int
10313 variable_tracking_main (void)
10315 unsigned int ret;
10316 int save = flag_var_tracking_assignments;
10318 ret = variable_tracking_main_1 ();
10320 flag_var_tracking_assignments = save;
10322 return ret;
10325 static bool
10326 gate_handle_var_tracking (void)
10328 return (flag_var_tracking && !targetm.delay_vartrack);
10333 namespace {
10335 const pass_data pass_data_variable_tracking =
10337 RTL_PASS, /* type */
10338 "vartrack", /* name */
10339 OPTGROUP_NONE, /* optinfo_flags */
10340 true, /* has_gate */
10341 true, /* has_execute */
10342 TV_VAR_TRACKING, /* tv_id */
10343 0, /* properties_required */
10344 0, /* properties_provided */
10345 0, /* properties_destroyed */
10346 0, /* todo_flags_start */
10347 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10350 class pass_variable_tracking : public rtl_opt_pass
10352 public:
10353 pass_variable_tracking (gcc::context *ctxt)
10354 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10357 /* opt_pass methods: */
10358 bool gate () { return gate_handle_var_tracking (); }
10359 unsigned int execute () { return variable_tracking_main (); }
10361 }; // class pass_variable_tracking
10363 } // anon namespace
10365 rtl_opt_pass *
10366 make_pass_variable_tracking (gcc::context *ctxt)
10368 return new pass_variable_tracking (ctxt);