Fix typos in comment
[official-gcc.git] / gcc / function.c
blobfc8be4ccd7a88d4d59a7df799cebab6b4c0e0970
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register.
37 Call `put_var_into_stack' when you learn, belatedly, that a variable
38 previously given a pseudo-register must in fact go in the stack.
39 This function changes the DECL_RTL to be a stack slot instead of a reg
40 then scans all the RTL instructions so far generated to correct them. */
42 #include "config.h"
43 #include "system.h"
44 #include "rtl.h"
45 #include "tree.h"
46 #include "flags.h"
47 #include "except.h"
48 #include "function.h"
49 #include "insn-flags.h"
50 #include "expr.h"
51 #include "insn-codes.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "obstack.h"
59 #include "toplev.h"
60 #include "hash.h"
61 #include "ggc.h"
62 #include "tm_p.h"
64 #ifndef ACCUMULATE_OUTGOING_ARGS
65 #define ACCUMULATE_OUTGOING_ARGS 0
66 #endif
68 #ifndef TRAMPOLINE_ALIGNMENT
69 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
70 #endif
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
76 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
77 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
78 #endif
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82 give the same symbol without quotes for an alternative entry point. You
83 must define both, or neither. */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #define SYMBOL__MAIN __main
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
131 static int virtuals_instantiated;
133 /* These variables hold pointers to functions to
134 save and restore machine-specific data,
135 in push_function_context and pop_function_context. */
136 void (*init_machine_status) PARAMS ((struct function *));
137 void (*save_machine_status) PARAMS ((struct function *));
138 void (*restore_machine_status) PARAMS ((struct function *));
139 void (*mark_machine_status) PARAMS ((struct function *));
140 void (*free_machine_status) PARAMS ((struct function *));
142 /* Likewise, but for language-specific data. */
143 void (*init_lang_status) PARAMS ((struct function *));
144 void (*save_lang_status) PARAMS ((struct function *));
145 void (*restore_lang_status) PARAMS ((struct function *));
146 void (*mark_lang_status) PARAMS ((struct function *));
147 void (*free_lang_status) PARAMS ((struct function *));
149 /* The FUNCTION_DECL for an inline function currently being expanded. */
150 tree inline_function_decl;
152 /* The currently compiled function. */
153 struct function *cfun = 0;
155 /* Global list of all compiled functions. */
156 struct function *all_functions = 0;
158 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
159 static varray_type prologue;
160 static varray_type epilogue;
162 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
163 in this function. */
164 static varray_type sibcall_epilogue;
166 /* In order to evaluate some expressions, such as function calls returning
167 structures in memory, we need to temporarily allocate stack locations.
168 We record each allocated temporary in the following structure.
170 Associated with each temporary slot is a nesting level. When we pop up
171 one level, all temporaries associated with the previous level are freed.
172 Normally, all temporaries are freed after the execution of the statement
173 in which they were created. However, if we are inside a ({...}) grouping,
174 the result may be in a temporary and hence must be preserved. If the
175 result could be in a temporary, we preserve it if we can determine which
176 one it is in. If we cannot determine which temporary may contain the
177 result, all temporaries are preserved. A temporary is preserved by
178 pretending it was allocated at the previous nesting level.
180 Automatic variables are also assigned temporary slots, at the nesting
181 level where they are defined. They are marked a "kept" so that
182 free_temp_slots will not free them. */
184 struct temp_slot
186 /* Points to next temporary slot. */
187 struct temp_slot *next;
188 /* The rtx to used to reference the slot. */
189 rtx slot;
190 /* The rtx used to represent the address if not the address of the
191 slot above. May be an EXPR_LIST if multiple addresses exist. */
192 rtx address;
193 /* The alignment (in bits) of the slot. */
194 int align;
195 /* The size, in units, of the slot. */
196 HOST_WIDE_INT size;
197 /* The alias set for the slot. If the alias set is zero, we don't
198 know anything about the alias set of the slot. We must only
199 reuse a slot if it is assigned an object of the same alias set.
200 Otherwise, the rest of the compiler may assume that the new use
201 of the slot cannot alias the old use of the slot, which is
202 false. If the slot has alias set zero, then we can't reuse the
203 slot at all, since we have no idea what alias set may have been
204 imposed on the memory. For example, if the stack slot is the
205 call frame for an inline functioned, we have no idea what alias
206 sets will be assigned to various pieces of the call frame. */
207 HOST_WIDE_INT alias_set;
208 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
209 tree rtl_expr;
210 /* Non-zero if this temporary is currently in use. */
211 char in_use;
212 /* Non-zero if this temporary has its address taken. */
213 char addr_taken;
214 /* Nesting level at which this slot is being used. */
215 int level;
216 /* Non-zero if this should survive a call to free_temp_slots. */
217 int keep;
218 /* The offset of the slot from the frame_pointer, including extra space
219 for alignment. This info is for combine_temp_slots. */
220 HOST_WIDE_INT base_offset;
221 /* The size of the slot, including extra space for alignment. This
222 info is for combine_temp_slots. */
223 HOST_WIDE_INT full_size;
226 /* This structure is used to record MEMs or pseudos used to replace VAR, any
227 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
228 maintain this list in case two operands of an insn were required to match;
229 in that case we must ensure we use the same replacement. */
231 struct fixup_replacement
233 rtx old;
234 rtx new;
235 struct fixup_replacement *next;
238 struct insns_for_mem_entry {
239 /* The KEY in HE will be a MEM. */
240 struct hash_entry he;
241 /* These are the INSNS which reference the MEM. */
242 rtx insns;
245 /* Forward declarations. */
247 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
248 int, struct function *));
249 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
250 HOST_WIDE_INT, int, tree));
251 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
252 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
253 enum machine_mode, enum machine_mode,
254 int, unsigned int, int,
255 struct hash_table *));
256 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
257 struct hash_table *));
258 static struct fixup_replacement
259 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
260 static void fixup_var_refs_insns PARAMS ((rtx, enum machine_mode, int,
261 rtx, int, struct hash_table *));
262 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
263 struct fixup_replacement **));
264 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
265 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
266 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
267 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
268 static void instantiate_decls PARAMS ((tree, int));
269 static void instantiate_decls_1 PARAMS ((tree, int));
270 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
271 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
272 static void delete_handlers PARAMS ((void));
273 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
274 struct args_size *));
275 #ifndef ARGS_GROW_DOWNWARD
276 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
277 tree));
278 #endif
279 static rtx round_trampoline_addr PARAMS ((rtx));
280 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
281 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
282 static tree blocks_nreverse PARAMS ((tree));
283 static int all_blocks PARAMS ((tree, tree *));
284 static tree *get_block_vector PARAMS ((tree, int *));
285 /* We always define `record_insns' even if its not used so that we
286 can always export `prologue_epilogue_contains'. */
287 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
288 static int contains PARAMS ((rtx, varray_type));
289 #ifdef HAVE_return
290 static void emit_return_into_block PARAMS ((basic_block, rtx));
291 #endif
292 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
293 static boolean purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
294 struct hash_table *));
295 static int is_addressof PARAMS ((rtx *, void *));
296 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
297 struct hash_table *,
298 hash_table_key));
299 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
300 static boolean insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
301 static int insns_for_mem_walk PARAMS ((rtx *, void *));
302 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
303 static void mark_temp_slot PARAMS ((struct temp_slot *));
304 static void mark_function_status PARAMS ((struct function *));
305 static void mark_function_chain PARAMS ((void *));
306 static void prepare_function_start PARAMS ((void));
307 static void do_clobber_return_reg PARAMS ((rtx, void *));
308 static void do_use_return_reg PARAMS ((rtx, void *));
310 /* Pointer to chain of `struct function' for containing functions. */
311 struct function *outer_function_chain;
313 /* Given a function decl for a containing function,
314 return the `struct function' for it. */
316 struct function *
317 find_function_data (decl)
318 tree decl;
320 struct function *p;
322 for (p = outer_function_chain; p; p = p->next)
323 if (p->decl == decl)
324 return p;
326 abort ();
329 /* Save the current context for compilation of a nested function.
330 This is called from language-specific code. The caller should use
331 the save_lang_status callback to save any language-specific state,
332 since this function knows only about language-independent
333 variables. */
335 void
336 push_function_context_to (context)
337 tree context;
339 struct function *p, *context_data;
341 if (context)
343 context_data = (context == current_function_decl
344 ? cfun
345 : find_function_data (context));
346 context_data->contains_functions = 1;
349 if (cfun == 0)
350 init_dummy_function_start ();
351 p = cfun;
353 p->next = outer_function_chain;
354 outer_function_chain = p;
355 p->fixup_var_refs_queue = 0;
357 save_tree_status (p);
358 if (save_lang_status)
359 (*save_lang_status) (p);
360 if (save_machine_status)
361 (*save_machine_status) (p);
363 cfun = 0;
366 void
367 push_function_context ()
369 push_function_context_to (current_function_decl);
372 /* Restore the last saved context, at the end of a nested function.
373 This function is called from language-specific code. */
375 void
376 pop_function_context_from (context)
377 tree context ATTRIBUTE_UNUSED;
379 struct function *p = outer_function_chain;
380 struct var_refs_queue *queue;
381 struct var_refs_queue *next;
383 cfun = p;
384 outer_function_chain = p->next;
386 current_function_decl = p->decl;
387 reg_renumber = 0;
389 restore_tree_status (p);
390 restore_emit_status (p);
392 if (restore_machine_status)
393 (*restore_machine_status) (p);
394 if (restore_lang_status)
395 (*restore_lang_status) (p);
397 /* Finish doing put_var_into_stack for any of our variables
398 which became addressable during the nested function. */
399 for (queue = p->fixup_var_refs_queue; queue; queue = next)
401 next = queue->next;
402 fixup_var_refs (queue->modified, queue->promoted_mode,
403 queue->unsignedp, 0);
404 free (queue);
406 p->fixup_var_refs_queue = 0;
408 /* Reset variables that have known state during rtx generation. */
409 rtx_equal_function_value_matters = 1;
410 virtuals_instantiated = 0;
413 void
414 pop_function_context ()
416 pop_function_context_from (current_function_decl);
419 /* Clear out all parts of the state in F that can safely be discarded
420 after the function has been parsed, but not compiled, to let
421 garbage collection reclaim the memory. */
423 void
424 free_after_parsing (f)
425 struct function *f;
427 /* f->expr->forced_labels is used by code generation. */
428 /* f->emit->regno_reg_rtx is used by code generation. */
429 /* f->varasm is used by code generation. */
430 /* f->eh->eh_return_stub_label is used by code generation. */
432 if (free_lang_status)
433 (*free_lang_status) (f);
434 free_stmt_status (f);
437 /* Clear out all parts of the state in F that can safely be discarded
438 after the function has been compiled, to let garbage collection
439 reclaim the memory. */
441 void
442 free_after_compilation (f)
443 struct function *f;
445 struct temp_slot *ts;
446 struct temp_slot *next;
448 free_eh_status (f);
449 free_expr_status (f);
450 free_emit_status (f);
451 free_varasm_status (f);
453 if (free_machine_status)
454 (*free_machine_status) (f);
456 if (f->x_parm_reg_stack_loc)
457 free (f->x_parm_reg_stack_loc);
459 for (ts = f->x_temp_slots; ts; ts = next)
461 next = ts->next;
462 free (ts);
464 f->x_temp_slots = NULL;
466 f->arg_offset_rtx = NULL;
467 f->return_rtx = NULL;
468 f->internal_arg_pointer = NULL;
469 f->x_nonlocal_labels = NULL;
470 f->x_nonlocal_goto_handler_slots = NULL;
471 f->x_nonlocal_goto_handler_labels = NULL;
472 f->x_nonlocal_goto_stack_level = NULL;
473 f->x_cleanup_label = NULL;
474 f->x_return_label = NULL;
475 f->x_save_expr_regs = NULL;
476 f->x_stack_slot_list = NULL;
477 f->x_rtl_expr_chain = NULL;
478 f->x_tail_recursion_label = NULL;
479 f->x_tail_recursion_reentry = NULL;
480 f->x_arg_pointer_save_area = NULL;
481 f->x_context_display = NULL;
482 f->x_trampoline_list = NULL;
483 f->x_parm_birth_insn = NULL;
484 f->x_last_parm_insn = NULL;
485 f->x_parm_reg_stack_loc = NULL;
486 f->fixup_var_refs_queue = NULL;
487 f->original_arg_vector = NULL;
488 f->original_decl_initial = NULL;
489 f->inl_last_parm_insn = NULL;
490 f->epilogue_delay_list = NULL;
494 /* Allocate fixed slots in the stack frame of the current function. */
496 /* Return size needed for stack frame based on slots so far allocated in
497 function F.
498 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
499 the caller may have to do that. */
501 HOST_WIDE_INT
502 get_func_frame_size (f)
503 struct function *f;
505 #ifdef FRAME_GROWS_DOWNWARD
506 return -f->x_frame_offset;
507 #else
508 return f->x_frame_offset;
509 #endif
512 /* Return size needed for stack frame based on slots so far allocated.
513 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
514 the caller may have to do that. */
515 HOST_WIDE_INT
516 get_frame_size ()
518 return get_func_frame_size (cfun);
521 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
522 with machine mode MODE.
524 ALIGN controls the amount of alignment for the address of the slot:
525 0 means according to MODE,
526 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
527 positive specifies alignment boundary in bits.
529 We do not round to stack_boundary here.
531 FUNCTION specifies the function to allocate in. */
533 static rtx
534 assign_stack_local_1 (mode, size, align, function)
535 enum machine_mode mode;
536 HOST_WIDE_INT size;
537 int align;
538 struct function *function;
540 register rtx x, addr;
541 int bigend_correction = 0;
542 int alignment;
544 /* Allocate in the memory associated with the function in whose frame
545 we are assigning. */
546 if (function != cfun)
547 push_obstacks (function->function_obstack,
548 function->function_maybepermanent_obstack);
550 if (align == 0)
552 tree type;
554 alignment = GET_MODE_ALIGNMENT (mode);
555 if (mode == BLKmode)
556 alignment = BIGGEST_ALIGNMENT;
558 /* Allow the target to (possibly) increase the alignment of this
559 stack slot. */
560 type = type_for_mode (mode, 0);
561 if (type)
562 alignment = LOCAL_ALIGNMENT (type, alignment);
564 alignment /= BITS_PER_UNIT;
566 else if (align == -1)
568 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
569 size = CEIL_ROUND (size, alignment);
571 else
572 alignment = align / BITS_PER_UNIT;
574 #ifdef FRAME_GROWS_DOWNWARD
575 function->x_frame_offset -= size;
576 #endif
578 /* Ignore alignment we can't do with expected alignment of the boundary. */
579 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
580 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
582 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
583 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
585 /* Round frame offset to that alignment.
586 We must be careful here, since FRAME_OFFSET might be negative and
587 division with a negative dividend isn't as well defined as we might
588 like. So we instead assume that ALIGNMENT is a power of two and
589 use logical operations which are unambiguous. */
590 #ifdef FRAME_GROWS_DOWNWARD
591 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
592 #else
593 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
594 #endif
596 /* On a big-endian machine, if we are allocating more space than we will use,
597 use the least significant bytes of those that are allocated. */
598 if (BYTES_BIG_ENDIAN && mode != BLKmode)
599 bigend_correction = size - GET_MODE_SIZE (mode);
601 /* If we have already instantiated virtual registers, return the actual
602 address relative to the frame pointer. */
603 if (function == cfun && virtuals_instantiated)
604 addr = plus_constant (frame_pointer_rtx,
605 (frame_offset + bigend_correction
606 + STARTING_FRAME_OFFSET));
607 else
608 addr = plus_constant (virtual_stack_vars_rtx,
609 function->x_frame_offset + bigend_correction);
611 #ifndef FRAME_GROWS_DOWNWARD
612 function->x_frame_offset += size;
613 #endif
615 x = gen_rtx_MEM (mode, addr);
617 function->x_stack_slot_list
618 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
620 if (function != cfun)
621 pop_obstacks ();
623 return x;
626 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
627 current function. */
630 assign_stack_local (mode, size, align)
631 enum machine_mode mode;
632 HOST_WIDE_INT size;
633 int align;
635 return assign_stack_local_1 (mode, size, align, cfun);
638 /* Allocate a temporary stack slot and record it for possible later
639 reuse.
641 MODE is the machine mode to be given to the returned rtx.
643 SIZE is the size in units of the space required. We do no rounding here
644 since assign_stack_local will do any required rounding.
646 KEEP is 1 if this slot is to be retained after a call to
647 free_temp_slots. Automatic variables for a block are allocated
648 with this flag. KEEP is 2 if we allocate a longer term temporary,
649 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
650 if we are to allocate something at an inner level to be treated as
651 a variable in the block (e.g., a SAVE_EXPR).
653 TYPE is the type that will be used for the stack slot. */
655 static rtx
656 assign_stack_temp_for_type (mode, size, keep, type)
657 enum machine_mode mode;
658 HOST_WIDE_INT size;
659 int keep;
660 tree type;
662 int align;
663 HOST_WIDE_INT alias_set;
664 struct temp_slot *p, *best_p = 0;
666 /* If SIZE is -1 it means that somebody tried to allocate a temporary
667 of a variable size. */
668 if (size == -1)
669 abort ();
671 /* If we know the alias set for the memory that will be used, use
672 it. If there's no TYPE, then we don't know anything about the
673 alias set for the memory. */
674 if (type)
675 alias_set = get_alias_set (type);
676 else
677 alias_set = 0;
679 align = GET_MODE_ALIGNMENT (mode);
680 if (mode == BLKmode)
681 align = BIGGEST_ALIGNMENT;
683 if (! type)
684 type = type_for_mode (mode, 0);
686 if (type)
687 align = LOCAL_ALIGNMENT (type, align);
689 /* Try to find an available, already-allocated temporary of the proper
690 mode which meets the size and alignment requirements. Choose the
691 smallest one with the closest alignment. */
692 for (p = temp_slots; p; p = p->next)
693 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
694 && ! p->in_use
695 && (! flag_strict_aliasing
696 || (alias_set && p->alias_set == alias_set))
697 && (best_p == 0 || best_p->size > p->size
698 || (best_p->size == p->size && best_p->align > p->align)))
700 if (p->align == align && p->size == size)
702 best_p = 0;
703 break;
705 best_p = p;
708 /* Make our best, if any, the one to use. */
709 if (best_p)
711 /* If there are enough aligned bytes left over, make them into a new
712 temp_slot so that the extra bytes don't get wasted. Do this only
713 for BLKmode slots, so that we can be sure of the alignment. */
714 if (GET_MODE (best_p->slot) == BLKmode)
716 int alignment = best_p->align / BITS_PER_UNIT;
717 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
719 if (best_p->size - rounded_size >= alignment)
721 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
722 p->in_use = p->addr_taken = 0;
723 p->size = best_p->size - rounded_size;
724 p->base_offset = best_p->base_offset + rounded_size;
725 p->full_size = best_p->full_size - rounded_size;
726 p->slot = gen_rtx_MEM (BLKmode,
727 plus_constant (XEXP (best_p->slot, 0),
728 rounded_size));
729 p->align = best_p->align;
730 p->address = 0;
731 p->rtl_expr = 0;
732 p->alias_set = best_p->alias_set;
733 p->next = temp_slots;
734 temp_slots = p;
736 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
737 stack_slot_list);
739 best_p->size = rounded_size;
740 best_p->full_size = rounded_size;
744 p = best_p;
747 /* If we still didn't find one, make a new temporary. */
748 if (p == 0)
750 HOST_WIDE_INT frame_offset_old = frame_offset;
752 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
754 /* We are passing an explicit alignment request to assign_stack_local.
755 One side effect of that is assign_stack_local will not round SIZE
756 to ensure the frame offset remains suitably aligned.
758 So for requests which depended on the rounding of SIZE, we go ahead
759 and round it now. We also make sure ALIGNMENT is at least
760 BIGGEST_ALIGNMENT. */
761 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
762 abort();
763 p->slot = assign_stack_local (mode,
764 (mode == BLKmode
765 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
766 : size),
767 align);
769 p->align = align;
770 p->alias_set = alias_set;
772 /* The following slot size computation is necessary because we don't
773 know the actual size of the temporary slot until assign_stack_local
774 has performed all the frame alignment and size rounding for the
775 requested temporary. Note that extra space added for alignment
776 can be either above or below this stack slot depending on which
777 way the frame grows. We include the extra space if and only if it
778 is above this slot. */
779 #ifdef FRAME_GROWS_DOWNWARD
780 p->size = frame_offset_old - frame_offset;
781 #else
782 p->size = size;
783 #endif
785 /* Now define the fields used by combine_temp_slots. */
786 #ifdef FRAME_GROWS_DOWNWARD
787 p->base_offset = frame_offset;
788 p->full_size = frame_offset_old - frame_offset;
789 #else
790 p->base_offset = frame_offset_old;
791 p->full_size = frame_offset - frame_offset_old;
792 #endif
793 p->address = 0;
794 p->next = temp_slots;
795 temp_slots = p;
798 p->in_use = 1;
799 p->addr_taken = 0;
800 p->rtl_expr = seq_rtl_expr;
802 if (keep == 2)
804 p->level = target_temp_slot_level;
805 p->keep = 0;
807 else if (keep == 3)
809 p->level = var_temp_slot_level;
810 p->keep = 0;
812 else
814 p->level = temp_slot_level;
815 p->keep = keep;
818 /* We may be reusing an old slot, so clear any MEM flags that may have been
819 set from before. */
820 RTX_UNCHANGING_P (p->slot) = 0;
821 MEM_IN_STRUCT_P (p->slot) = 0;
822 MEM_SCALAR_P (p->slot) = 0;
823 MEM_ALIAS_SET (p->slot) = alias_set;
825 if (type != 0)
826 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
828 return p->slot;
831 /* Allocate a temporary stack slot and record it for possible later
832 reuse. First three arguments are same as in preceding function. */
835 assign_stack_temp (mode, size, keep)
836 enum machine_mode mode;
837 HOST_WIDE_INT size;
838 int keep;
840 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
843 /* Assign a temporary of given TYPE.
844 KEEP is as for assign_stack_temp.
845 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
846 it is 0 if a register is OK.
847 DONT_PROMOTE is 1 if we should not promote values in register
848 to wider modes. */
851 assign_temp (type, keep, memory_required, dont_promote)
852 tree type;
853 int keep;
854 int memory_required;
855 int dont_promote ATTRIBUTE_UNUSED;
857 enum machine_mode mode = TYPE_MODE (type);
858 #ifndef PROMOTE_FOR_CALL_ONLY
859 int unsignedp = TREE_UNSIGNED (type);
860 #endif
862 if (mode == BLKmode || memory_required)
864 HOST_WIDE_INT size = int_size_in_bytes (type);
865 rtx tmp;
867 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
868 problems with allocating the stack space. */
869 if (size == 0)
870 size = 1;
872 /* Unfortunately, we don't yet know how to allocate variable-sized
873 temporaries. However, sometimes we have a fixed upper limit on
874 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
875 instead. This is the case for Chill variable-sized strings. */
876 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
877 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
878 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
879 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
881 tmp = assign_stack_temp_for_type (mode, size, keep, type);
882 return tmp;
885 #ifndef PROMOTE_FOR_CALL_ONLY
886 if (! dont_promote)
887 mode = promote_mode (type, mode, &unsignedp, 0);
888 #endif
890 return gen_reg_rtx (mode);
893 /* Combine temporary stack slots which are adjacent on the stack.
895 This allows for better use of already allocated stack space. This is only
896 done for BLKmode slots because we can be sure that we won't have alignment
897 problems in this case. */
899 void
900 combine_temp_slots ()
902 struct temp_slot *p, *q;
903 struct temp_slot *prev_p, *prev_q;
904 int num_slots;
906 /* We can't combine slots, because the information about which slot
907 is in which alias set will be lost. */
908 if (flag_strict_aliasing)
909 return;
911 /* If there are a lot of temp slots, don't do anything unless
912 high levels of optimizaton. */
913 if (! flag_expensive_optimizations)
914 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
915 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
916 return;
918 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
920 int delete_p = 0;
922 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
923 for (q = p->next, prev_q = p; q; q = prev_q->next)
925 int delete_q = 0;
926 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
928 if (p->base_offset + p->full_size == q->base_offset)
930 /* Q comes after P; combine Q into P. */
931 p->size += q->size;
932 p->full_size += q->full_size;
933 delete_q = 1;
935 else if (q->base_offset + q->full_size == p->base_offset)
937 /* P comes after Q; combine P into Q. */
938 q->size += p->size;
939 q->full_size += p->full_size;
940 delete_p = 1;
941 break;
944 /* Either delete Q or advance past it. */
945 if (delete_q)
947 prev_q->next = q->next;
948 free (q);
950 else
951 prev_q = q;
953 /* Either delete P or advance past it. */
954 if (delete_p)
956 if (prev_p)
957 prev_p->next = p->next;
958 else
959 temp_slots = p->next;
961 else
962 prev_p = p;
966 /* Find the temp slot corresponding to the object at address X. */
968 static struct temp_slot *
969 find_temp_slot_from_address (x)
970 rtx x;
972 struct temp_slot *p;
973 rtx next;
975 for (p = temp_slots; p; p = p->next)
977 if (! p->in_use)
978 continue;
980 else if (XEXP (p->slot, 0) == x
981 || p->address == x
982 || (GET_CODE (x) == PLUS
983 && XEXP (x, 0) == virtual_stack_vars_rtx
984 && GET_CODE (XEXP (x, 1)) == CONST_INT
985 && INTVAL (XEXP (x, 1)) >= p->base_offset
986 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
987 return p;
989 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
990 for (next = p->address; next; next = XEXP (next, 1))
991 if (XEXP (next, 0) == x)
992 return p;
995 /* If we have a sum involving a register, see if it points to a temp
996 slot. */
997 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
998 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
999 return p;
1000 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1002 return p;
1004 return 0;
1007 /* Indicate that NEW is an alternate way of referring to the temp slot
1008 that previously was known by OLD. */
1010 void
1011 update_temp_slot_address (old, new)
1012 rtx old, new;
1014 struct temp_slot *p;
1016 if (rtx_equal_p (old, new))
1017 return;
1019 p = find_temp_slot_from_address (old);
1021 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1022 is a register, see if one operand of the PLUS is a temporary
1023 location. If so, NEW points into it. Otherwise, if both OLD and
1024 NEW are a PLUS and if there is a register in common between them.
1025 If so, try a recursive call on those values. */
1026 if (p == 0)
1028 if (GET_CODE (old) != PLUS)
1029 return;
1031 if (GET_CODE (new) == REG)
1033 update_temp_slot_address (XEXP (old, 0), new);
1034 update_temp_slot_address (XEXP (old, 1), new);
1035 return;
1037 else if (GET_CODE (new) != PLUS)
1038 return;
1040 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1041 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1042 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1043 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1044 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1045 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1046 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1047 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1049 return;
1052 /* Otherwise add an alias for the temp's address. */
1053 else if (p->address == 0)
1054 p->address = new;
1055 else
1057 if (GET_CODE (p->address) != EXPR_LIST)
1058 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1060 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1064 /* If X could be a reference to a temporary slot, mark the fact that its
1065 address was taken. */
1067 void
1068 mark_temp_addr_taken (x)
1069 rtx x;
1071 struct temp_slot *p;
1073 if (x == 0)
1074 return;
1076 /* If X is not in memory or is at a constant address, it cannot be in
1077 a temporary slot. */
1078 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1079 return;
1081 p = find_temp_slot_from_address (XEXP (x, 0));
1082 if (p != 0)
1083 p->addr_taken = 1;
1086 /* If X could be a reference to a temporary slot, mark that slot as
1087 belonging to the to one level higher than the current level. If X
1088 matched one of our slots, just mark that one. Otherwise, we can't
1089 easily predict which it is, so upgrade all of them. Kept slots
1090 need not be touched.
1092 This is called when an ({...}) construct occurs and a statement
1093 returns a value in memory. */
1095 void
1096 preserve_temp_slots (x)
1097 rtx x;
1099 struct temp_slot *p = 0;
1101 /* If there is no result, we still might have some objects whose address
1102 were taken, so we need to make sure they stay around. */
1103 if (x == 0)
1105 for (p = temp_slots; p; p = p->next)
1106 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1107 p->level--;
1109 return;
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. To be consistent with
1114 the code below, we really should preserve all non-kept slots
1115 if we can't find a match, but that seems to be much too costly. */
1116 if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
1117 p = find_temp_slot_from_address (x);
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot, but it can contain something whose address was
1121 taken. */
1122 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1124 for (p = temp_slots; p; p = p->next)
1125 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1126 p->level--;
1128 return;
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1135 if (p != 0)
1137 /* Move everything at our level whose address was taken to our new
1138 level in case we used its address. */
1139 struct temp_slot *q;
1141 if (p->level == temp_slot_level)
1143 for (q = temp_slots; q; q = q->next)
1144 if (q != p && q->addr_taken && q->level == p->level)
1145 q->level--;
1147 p->level--;
1148 p->addr_taken = 0;
1150 return;
1153 /* Otherwise, preserve all non-kept slots at this level. */
1154 for (p = temp_slots; p; p = p->next)
1155 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1156 p->level--;
1159 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1160 with that RTL_EXPR, promote it into a temporary slot at the present
1161 level so it will not be freed when we free slots made in the
1162 RTL_EXPR. */
1164 void
1165 preserve_rtl_expr_result (x)
1166 rtx x;
1168 struct temp_slot *p;
1170 /* If X is not in memory or is at a constant address, it cannot be in
1171 a temporary slot. */
1172 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1173 return;
1175 /* If we can find a match, move it to our level unless it is already at
1176 an upper level. */
1177 p = find_temp_slot_from_address (XEXP (x, 0));
1178 if (p != 0)
1180 p->level = MIN (p->level, temp_slot_level);
1181 p->rtl_expr = 0;
1184 return;
1187 /* Free all temporaries used so far. This is normally called at the end
1188 of generating code for a statement. Don't free any temporaries
1189 currently in use for an RTL_EXPR that hasn't yet been emitted.
1190 We could eventually do better than this since it can be reused while
1191 generating the same RTL_EXPR, but this is complex and probably not
1192 worthwhile. */
1194 void
1195 free_temp_slots ()
1197 struct temp_slot *p;
1199 for (p = temp_slots; p; p = p->next)
1200 if (p->in_use && p->level == temp_slot_level && ! p->keep
1201 && p->rtl_expr == 0)
1202 p->in_use = 0;
1204 combine_temp_slots ();
1207 /* Free all temporary slots used in T, an RTL_EXPR node. */
1209 void
1210 free_temps_for_rtl_expr (t)
1211 tree t;
1213 struct temp_slot *p;
1215 for (p = temp_slots; p; p = p->next)
1216 if (p->rtl_expr == t)
1218 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1219 needs to be preserved. This can happen if a temporary in
1220 the RTL_EXPR was addressed; preserve_temp_slots will move
1221 the temporary into a higher level. */
1222 if (temp_slot_level <= p->level)
1223 p->in_use = 0;
1224 else
1225 p->rtl_expr = NULL_TREE;
1228 combine_temp_slots ();
1231 /* Mark all temporaries ever allocated in this function as not suitable
1232 for reuse until the current level is exited. */
1234 void
1235 mark_all_temps_used ()
1237 struct temp_slot *p;
1239 for (p = temp_slots; p; p = p->next)
1241 p->in_use = p->keep = 1;
1242 p->level = MIN (p->level, temp_slot_level);
1246 /* Push deeper into the nesting level for stack temporaries. */
1248 void
1249 push_temp_slots ()
1251 temp_slot_level++;
1254 /* Likewise, but save the new level as the place to allocate variables
1255 for blocks. */
1257 #if 0
1258 void
1259 push_temp_slots_for_block ()
1261 push_temp_slots ();
1263 var_temp_slot_level = temp_slot_level;
1266 /* Likewise, but save the new level as the place to allocate temporaries
1267 for TARGET_EXPRs. */
1269 void
1270 push_temp_slots_for_target ()
1272 push_temp_slots ();
1274 target_temp_slot_level = temp_slot_level;
1277 /* Set and get the value of target_temp_slot_level. The only
1278 permitted use of these functions is to save and restore this value. */
1281 get_target_temp_slot_level ()
1283 return target_temp_slot_level;
1286 void
1287 set_target_temp_slot_level (level)
1288 int level;
1290 target_temp_slot_level = level;
1292 #endif
1294 /* Pop a temporary nesting level. All slots in use in the current level
1295 are freed. */
1297 void
1298 pop_temp_slots ()
1300 struct temp_slot *p;
1302 for (p = temp_slots; p; p = p->next)
1303 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1304 p->in_use = 0;
1306 combine_temp_slots ();
1308 temp_slot_level--;
1311 /* Initialize temporary slots. */
1313 void
1314 init_temp_slots ()
1316 /* We have not allocated any temporaries yet. */
1317 temp_slots = 0;
1318 temp_slot_level = 0;
1319 var_temp_slot_level = 0;
1320 target_temp_slot_level = 0;
1323 /* Retroactively move an auto variable from a register to a stack slot.
1324 This is done when an address-reference to the variable is seen. */
1326 void
1327 put_var_into_stack (decl)
1328 tree decl;
1330 register rtx reg;
1331 enum machine_mode promoted_mode, decl_mode;
1332 struct function *function = 0;
1333 tree context;
1334 int can_use_addressof;
1335 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1336 int usedp = (TREE_USED (decl)
1337 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1339 context = decl_function_context (decl);
1341 /* Get the current rtl used for this object and its original mode. */
1342 reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);
1344 /* No need to do anything if decl has no rtx yet
1345 since in that case caller is setting TREE_ADDRESSABLE
1346 and a stack slot will be assigned when the rtl is made. */
1347 if (reg == 0)
1348 return;
1350 /* Get the declared mode for this object. */
1351 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1352 : DECL_MODE (decl));
1353 /* Get the mode it's actually stored in. */
1354 promoted_mode = GET_MODE (reg);
1356 /* If this variable comes from an outer function,
1357 find that function's saved context. */
1358 if (context != current_function_decl && context != inline_function_decl)
1359 for (function = outer_function_chain; function; function = function->next)
1360 if (function->decl == context)
1361 break;
1363 /* If this is a variable-size object with a pseudo to address it,
1364 put that pseudo into the stack, if the var is nonlocal. */
1365 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1366 && GET_CODE (reg) == MEM
1367 && GET_CODE (XEXP (reg, 0)) == REG
1368 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1370 reg = XEXP (reg, 0);
1371 decl_mode = promoted_mode = GET_MODE (reg);
1374 can_use_addressof
1375 = (function == 0
1376 && optimize > 0
1377 /* FIXME make it work for promoted modes too */
1378 && decl_mode == promoted_mode
1379 #ifdef NON_SAVING_SETJMP
1380 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1381 #endif
1384 /* If we can't use ADDRESSOF, make sure we see through one we already
1385 generated. */
1386 if (! can_use_addressof && GET_CODE (reg) == MEM
1387 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1388 reg = XEXP (XEXP (reg, 0), 0);
1390 /* Now we should have a value that resides in one or more pseudo regs. */
1392 if (GET_CODE (reg) == REG)
1394 /* If this variable lives in the current function and we don't need
1395 to put things in the stack for the sake of setjmp, try to keep it
1396 in a register until we know we actually need the address. */
1397 if (can_use_addressof)
1398 gen_mem_addressof (reg, decl);
1399 else
1400 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1401 decl_mode, volatilep, 0, usedp, 0);
1403 else if (GET_CODE (reg) == CONCAT)
1405 /* A CONCAT contains two pseudos; put them both in the stack.
1406 We do it so they end up consecutive. */
1407 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1408 tree part_type = type_for_mode (part_mode, 0);
1409 #ifdef FRAME_GROWS_DOWNWARD
1410 /* Since part 0 should have a lower address, do it second. */
1411 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1412 part_mode, volatilep, 0, usedp, 0);
1413 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1414 part_mode, volatilep, 0, usedp, 0);
1415 #else
1416 put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
1417 part_mode, volatilep, 0, usedp, 0);
1418 put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
1419 part_mode, volatilep, 0, usedp, 0);
1420 #endif
1422 /* Change the CONCAT into a combined MEM for both parts. */
1423 PUT_CODE (reg, MEM);
1424 set_mem_attributes (reg, decl, 1);
1426 /* The two parts are in memory order already.
1427 Use the lower parts address as ours. */
1428 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1429 /* Prevent sharing of rtl that might lose. */
1430 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1431 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1433 else
1434 return;
1436 if (current_function_check_memory_usage)
1437 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
1438 XEXP (reg, 0), Pmode,
1439 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1440 TYPE_MODE (sizetype),
1441 GEN_INT (MEMORY_USE_RW),
1442 TYPE_MODE (integer_type_node));
1445 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1446 into the stack frame of FUNCTION (0 means the current function).
1447 DECL_MODE is the machine mode of the user-level data type.
1448 PROMOTED_MODE is the machine mode of the register.
1449 VOLATILE_P is nonzero if this is for a "volatile" decl.
1450 USED_P is nonzero if this reg might have already been used in an insn. */
1452 static void
1453 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1454 original_regno, used_p, ht)
1455 struct function *function;
1456 rtx reg;
1457 tree type;
1458 enum machine_mode promoted_mode, decl_mode;
1459 int volatile_p;
1460 unsigned int original_regno;
1461 int used_p;
1462 struct hash_table *ht;
1464 struct function *func = function ? function : cfun;
1465 rtx new = 0;
1466 unsigned int regno = original_regno;
1468 if (regno == 0)
1469 regno = REGNO (reg);
1471 if (regno < func->x_max_parm_reg)
1472 new = func->x_parm_reg_stack_loc[regno];
1474 if (new == 0)
1475 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1477 PUT_CODE (reg, MEM);
1478 PUT_MODE (reg, decl_mode);
1479 XEXP (reg, 0) = XEXP (new, 0);
1480 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1481 MEM_VOLATILE_P (reg) = volatile_p;
1483 /* If this is a memory ref that contains aggregate components,
1484 mark it as such for cse and loop optimize. If we are reusing a
1485 previously generated stack slot, then we need to copy the bit in
1486 case it was set for other reasons. For instance, it is set for
1487 __builtin_va_alist. */
1488 MEM_SET_IN_STRUCT_P (reg,
1489 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1490 MEM_ALIAS_SET (reg) = get_alias_set (type);
1492 /* Now make sure that all refs to the variable, previously made
1493 when it was a register, are fixed up to be valid again. */
1495 if (used_p && function != 0)
1497 struct var_refs_queue *temp;
1499 temp
1500 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1501 temp->modified = reg;
1502 temp->promoted_mode = promoted_mode;
1503 temp->unsignedp = TREE_UNSIGNED (type);
1504 temp->next = function->fixup_var_refs_queue;
1505 function->fixup_var_refs_queue = temp;
1507 else if (used_p)
1508 /* Variable is local; fix it up now. */
1509 fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type), ht);
1512 static void
1513 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1514 rtx var;
1515 enum machine_mode promoted_mode;
1516 int unsignedp;
1517 struct hash_table *ht;
1519 tree pending;
1520 rtx first_insn = get_insns ();
1521 struct sequence_stack *stack = seq_stack;
1522 tree rtl_exps = rtl_expr_chain;
1523 rtx insn;
1525 /* Must scan all insns for stack-refs that exceed the limit. */
1526 fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn,
1527 stack == 0, ht);
1528 /* If there's a hash table, it must record all uses of VAR. */
1529 if (ht)
1530 return;
1532 /* Scan all pending sequences too. */
1533 for (; stack; stack = stack->next)
1535 push_to_sequence (stack->first);
1536 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1537 stack->first, stack->next != 0, 0);
1538 /* Update remembered end of sequence
1539 in case we added an insn at the end. */
1540 stack->last = get_last_insn ();
1541 end_sequence ();
1544 /* Scan all waiting RTL_EXPRs too. */
1545 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1547 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1548 if (seq != const0_rtx && seq != 0)
1550 push_to_sequence (seq);
1551 fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0,
1553 end_sequence ();
1557 /* Scan the catch clauses for exception handling too. */
1558 push_to_full_sequence (catch_clauses, catch_clauses_last);
1559 fixup_var_refs_insns (var, promoted_mode, unsignedp, catch_clauses,
1560 0, 0);
1561 end_full_sequence (&catch_clauses, &catch_clauses_last);
1563 /* Scan sequences saved in CALL_PLACEHOLDERS too. */
1564 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1566 if (GET_CODE (insn) == CALL_INSN
1567 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1569 int i;
1571 /* Look at the Normal call, sibling call and tail recursion
1572 sequences attached to the CALL_PLACEHOLDER. */
1573 for (i = 0; i < 3; i++)
1575 rtx seq = XEXP (PATTERN (insn), i);
1576 if (seq)
1578 push_to_sequence (seq);
1579 fixup_var_refs_insns (var, promoted_mode, unsignedp,
1580 seq, 0, 0);
1581 XEXP (PATTERN (insn), i) = get_insns ();
1582 end_sequence ();
1589 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1590 some part of an insn. Return a struct fixup_replacement whose OLD
1591 value is equal to X. Allocate a new structure if no such entry exists. */
1593 static struct fixup_replacement *
1594 find_fixup_replacement (replacements, x)
1595 struct fixup_replacement **replacements;
1596 rtx x;
1598 struct fixup_replacement *p;
1600 /* See if we have already replaced this. */
1601 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1604 if (p == 0)
1606 p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
1607 p->old = x;
1608 p->new = 0;
1609 p->next = *replacements;
1610 *replacements = p;
1613 return p;
1616 /* Scan the insn-chain starting with INSN for refs to VAR
1617 and fix them up. TOPLEVEL is nonzero if this chain is the
1618 main chain of insns for the current function. */
1620 static void
1621 fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel, ht)
1622 rtx var;
1623 enum machine_mode promoted_mode;
1624 int unsignedp;
1625 rtx insn;
1626 int toplevel;
1627 struct hash_table *ht;
1629 rtx call_dest = 0;
1630 rtx insn_list = NULL_RTX;
1632 /* If we already know which INSNs reference VAR there's no need
1633 to walk the entire instruction chain. */
1634 if (ht)
1636 insn_list = ((struct insns_for_mem_entry *)
1637 hash_lookup (ht, var, /*create=*/0, /*copy=*/0))->insns;
1638 insn = insn_list ? XEXP (insn_list, 0) : NULL_RTX;
1639 insn_list = XEXP (insn_list, 1);
1642 while (insn)
1644 rtx next = NEXT_INSN (insn);
1645 rtx set, prev, prev_set;
1646 rtx note;
1648 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1650 /* Remember the notes in case we delete the insn. */
1651 note = REG_NOTES (insn);
1653 /* If this is a CLOBBER of VAR, delete it.
1655 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1656 and REG_RETVAL notes too. */
1657 if (GET_CODE (PATTERN (insn)) == CLOBBER
1658 && (XEXP (PATTERN (insn), 0) == var
1659 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1660 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1661 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1663 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1664 /* The REG_LIBCALL note will go away since we are going to
1665 turn INSN into a NOTE, so just delete the
1666 corresponding REG_RETVAL note. */
1667 remove_note (XEXP (note, 0),
1668 find_reg_note (XEXP (note, 0), REG_RETVAL,
1669 NULL_RTX));
1671 /* In unoptimized compilation, we shouldn't call delete_insn
1672 except in jump.c doing warnings. */
1673 PUT_CODE (insn, NOTE);
1674 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1675 NOTE_SOURCE_FILE (insn) = 0;
1678 /* The insn to load VAR from a home in the arglist
1679 is now a no-op. When we see it, just delete it.
1680 Similarly if this is storing VAR from a register from which
1681 it was loaded in the previous insn. This will occur
1682 when an ADDRESSOF was made for an arglist slot. */
1683 else if (toplevel
1684 && (set = single_set (insn)) != 0
1685 && SET_DEST (set) == var
1686 /* If this represents the result of an insn group,
1687 don't delete the insn. */
1688 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1689 && (rtx_equal_p (SET_SRC (set), var)
1690 || (GET_CODE (SET_SRC (set)) == REG
1691 && (prev = prev_nonnote_insn (insn)) != 0
1692 && (prev_set = single_set (prev)) != 0
1693 && SET_DEST (prev_set) == SET_SRC (set)
1694 && rtx_equal_p (SET_SRC (prev_set), var))))
1696 /* In unoptimized compilation, we shouldn't call delete_insn
1697 except in jump.c doing warnings. */
1698 PUT_CODE (insn, NOTE);
1699 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1700 NOTE_SOURCE_FILE (insn) = 0;
1701 if (insn == last_parm_insn)
1702 last_parm_insn = PREV_INSN (next);
1704 else
1706 struct fixup_replacement *replacements = 0;
1707 rtx next_insn = NEXT_INSN (insn);
1709 if (SMALL_REGISTER_CLASSES)
1711 /* If the insn that copies the results of a CALL_INSN
1712 into a pseudo now references VAR, we have to use an
1713 intermediate pseudo since we want the life of the
1714 return value register to be only a single insn.
1716 If we don't use an intermediate pseudo, such things as
1717 address computations to make the address of VAR valid
1718 if it is not can be placed between the CALL_INSN and INSN.
1720 To make sure this doesn't happen, we record the destination
1721 of the CALL_INSN and see if the next insn uses both that
1722 and VAR. */
1724 if (call_dest != 0 && GET_CODE (insn) == INSN
1725 && reg_mentioned_p (var, PATTERN (insn))
1726 && reg_mentioned_p (call_dest, PATTERN (insn)))
1728 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1730 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1732 PATTERN (insn) = replace_rtx (PATTERN (insn),
1733 call_dest, temp);
1736 if (GET_CODE (insn) == CALL_INSN
1737 && GET_CODE (PATTERN (insn)) == SET)
1738 call_dest = SET_DEST (PATTERN (insn));
1739 else if (GET_CODE (insn) == CALL_INSN
1740 && GET_CODE (PATTERN (insn)) == PARALLEL
1741 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1742 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1743 else
1744 call_dest = 0;
1747 /* See if we have to do anything to INSN now that VAR is in
1748 memory. If it needs to be loaded into a pseudo, use a single
1749 pseudo for the entire insn in case there is a MATCH_DUP
1750 between two operands. We pass a pointer to the head of
1751 a list of struct fixup_replacements. If fixup_var_refs_1
1752 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1753 it will record them in this list.
1755 If it allocated a pseudo for any replacement, we copy into
1756 it here. */
1758 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1759 &replacements);
1761 /* If this is last_parm_insn, and any instructions were output
1762 after it to fix it up, then we must set last_parm_insn to
1763 the last such instruction emitted. */
1764 if (insn == last_parm_insn)
1765 last_parm_insn = PREV_INSN (next_insn);
1767 while (replacements)
1769 if (GET_CODE (replacements->new) == REG)
1771 rtx insert_before;
1772 rtx seq;
1774 /* OLD might be a (subreg (mem)). */
1775 if (GET_CODE (replacements->old) == SUBREG)
1776 replacements->old
1777 = fixup_memory_subreg (replacements->old, insn, 0);
1778 else
1779 replacements->old
1780 = fixup_stack_1 (replacements->old, insn);
1782 insert_before = insn;
1784 /* If we are changing the mode, do a conversion.
1785 This might be wasteful, but combine.c will
1786 eliminate much of the waste. */
1788 if (GET_MODE (replacements->new)
1789 != GET_MODE (replacements->old))
1791 start_sequence ();
1792 convert_move (replacements->new,
1793 replacements->old, unsignedp);
1794 seq = gen_sequence ();
1795 end_sequence ();
1797 else
1798 seq = gen_move_insn (replacements->new,
1799 replacements->old);
1801 emit_insn_before (seq, insert_before);
1804 replacements = replacements->next;
1808 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1809 But don't touch other insns referred to by reg-notes;
1810 we will get them elsewhere. */
1811 while (note)
1813 if (GET_CODE (note) != INSN_LIST)
1814 XEXP (note, 0)
1815 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1816 note = XEXP (note, 1);
1820 if (!ht)
1821 insn = next;
1822 else if (insn_list)
1824 insn = XEXP (insn_list, 0);
1825 insn_list = XEXP (insn_list, 1);
1827 else
1828 insn = NULL_RTX;
1832 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1833 See if the rtx expression at *LOC in INSN needs to be changed.
1835 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1836 contain a list of original rtx's and replacements. If we find that we need
1837 to modify this insn by replacing a memory reference with a pseudo or by
1838 making a new MEM to implement a SUBREG, we consult that list to see if
1839 we have already chosen a replacement. If none has already been allocated,
1840 we allocate it and update the list. fixup_var_refs_insns will copy VAR
1841 or the SUBREG, as appropriate, to the pseudo. */
1843 static void
1844 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1845 register rtx var;
1846 enum machine_mode promoted_mode;
1847 register rtx *loc;
1848 rtx insn;
1849 struct fixup_replacement **replacements;
1851 register int i;
1852 register rtx x = *loc;
1853 RTX_CODE code = GET_CODE (x);
1854 register const char *fmt;
1855 register rtx tem, tem1;
1856 struct fixup_replacement *replacement;
1858 switch (code)
1860 case ADDRESSOF:
1861 if (XEXP (x, 0) == var)
1863 /* Prevent sharing of rtl that might lose. */
1864 rtx sub = copy_rtx (XEXP (var, 0));
1866 if (! validate_change (insn, loc, sub, 0))
1868 rtx y = gen_reg_rtx (GET_MODE (sub));
1869 rtx seq, new_insn;
1871 /* We should be able to replace with a register or all is lost.
1872 Note that we can't use validate_change to verify this, since
1873 we're not caring for replacing all dups simultaneously. */
1874 if (! validate_replace_rtx (*loc, y, insn))
1875 abort ();
1877 /* Careful! First try to recognize a direct move of the
1878 value, mimicking how things are done in gen_reload wrt
1879 PLUS. Consider what happens when insn is a conditional
1880 move instruction and addsi3 clobbers flags. */
1882 start_sequence ();
1883 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1884 seq = gen_sequence ();
1885 end_sequence ();
1887 if (recog_memoized (new_insn) < 0)
1889 /* That failed. Fall back on force_operand and hope. */
1891 start_sequence ();
1892 force_operand (sub, y);
1893 seq = gen_sequence ();
1894 end_sequence ();
1897 #ifdef HAVE_cc0
1898 /* Don't separate setter from user. */
1899 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1900 insn = PREV_INSN (insn);
1901 #endif
1903 emit_insn_before (seq, insn);
1906 return;
1908 case MEM:
1909 if (var == x)
1911 /* If we already have a replacement, use it. Otherwise,
1912 try to fix up this address in case it is invalid. */
1914 replacement = find_fixup_replacement (replacements, var);
1915 if (replacement->new)
1917 *loc = replacement->new;
1918 return;
1921 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1923 /* Unless we are forcing memory to register or we changed the mode,
1924 we can leave things the way they are if the insn is valid. */
1926 INSN_CODE (insn) = -1;
1927 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1928 && recog_memoized (insn) >= 0)
1929 return;
1931 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1932 return;
1935 /* If X contains VAR, we need to unshare it here so that we update
1936 each occurrence separately. But all identical MEMs in one insn
1937 must be replaced with the same rtx because of the possibility of
1938 MATCH_DUPs. */
1940 if (reg_mentioned_p (var, x))
1942 replacement = find_fixup_replacement (replacements, x);
1943 if (replacement->new == 0)
1944 replacement->new = copy_most_rtx (x, var);
1946 *loc = x = replacement->new;
1948 break;
1950 case REG:
1951 case CC0:
1952 case PC:
1953 case CONST_INT:
1954 case CONST:
1955 case SYMBOL_REF:
1956 case LABEL_REF:
1957 case CONST_DOUBLE:
1958 return;
1960 case SIGN_EXTRACT:
1961 case ZERO_EXTRACT:
1962 /* Note that in some cases those types of expressions are altered
1963 by optimize_bit_field, and do not survive to get here. */
1964 if (XEXP (x, 0) == var
1965 || (GET_CODE (XEXP (x, 0)) == SUBREG
1966 && SUBREG_REG (XEXP (x, 0)) == var))
1968 /* Get TEM as a valid MEM in the mode presently in the insn.
1970 We don't worry about the possibility of MATCH_DUP here; it
1971 is highly unlikely and would be tricky to handle. */
1973 tem = XEXP (x, 0);
1974 if (GET_CODE (tem) == SUBREG)
1976 if (GET_MODE_BITSIZE (GET_MODE (tem))
1977 > GET_MODE_BITSIZE (GET_MODE (var)))
1979 replacement = find_fixup_replacement (replacements, var);
1980 if (replacement->new == 0)
1981 replacement->new = gen_reg_rtx (GET_MODE (var));
1982 SUBREG_REG (tem) = replacement->new;
1984 else
1985 tem = fixup_memory_subreg (tem, insn, 0);
1987 else
1988 tem = fixup_stack_1 (tem, insn);
1990 /* Unless we want to load from memory, get TEM into the proper mode
1991 for an extract from memory. This can only be done if the
1992 extract is at a constant position and length. */
1994 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1995 && GET_CODE (XEXP (x, 2)) == CONST_INT
1996 && ! mode_dependent_address_p (XEXP (tem, 0))
1997 && ! MEM_VOLATILE_P (tem))
1999 enum machine_mode wanted_mode = VOIDmode;
2000 enum machine_mode is_mode = GET_MODE (tem);
2001 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2003 #ifdef HAVE_extzv
2004 if (GET_CODE (x) == ZERO_EXTRACT)
2006 wanted_mode
2007 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2008 if (wanted_mode == VOIDmode)
2009 wanted_mode = word_mode;
2011 #endif
2012 #ifdef HAVE_extv
2013 if (GET_CODE (x) == SIGN_EXTRACT)
2015 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2016 if (wanted_mode == VOIDmode)
2017 wanted_mode = word_mode;
2019 #endif
2020 /* If we have a narrower mode, we can do something. */
2021 if (wanted_mode != VOIDmode
2022 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2024 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2025 rtx old_pos = XEXP (x, 2);
2026 rtx newmem;
2028 /* If the bytes and bits are counted differently, we
2029 must adjust the offset. */
2030 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2031 offset = (GET_MODE_SIZE (is_mode)
2032 - GET_MODE_SIZE (wanted_mode) - offset);
2034 pos %= GET_MODE_BITSIZE (wanted_mode);
2036 newmem = gen_rtx_MEM (wanted_mode,
2037 plus_constant (XEXP (tem, 0), offset));
2038 MEM_COPY_ATTRIBUTES (newmem, tem);
2040 /* Make the change and see if the insn remains valid. */
2041 INSN_CODE (insn) = -1;
2042 XEXP (x, 0) = newmem;
2043 XEXP (x, 2) = GEN_INT (pos);
2045 if (recog_memoized (insn) >= 0)
2046 return;
2048 /* Otherwise, restore old position. XEXP (x, 0) will be
2049 restored later. */
2050 XEXP (x, 2) = old_pos;
2054 /* If we get here, the bitfield extract insn can't accept a memory
2055 reference. Copy the input into a register. */
2057 tem1 = gen_reg_rtx (GET_MODE (tem));
2058 emit_insn_before (gen_move_insn (tem1, tem), insn);
2059 XEXP (x, 0) = tem1;
2060 return;
2062 break;
2064 case SUBREG:
2065 if (SUBREG_REG (x) == var)
2067 /* If this is a special SUBREG made because VAR was promoted
2068 from a wider mode, replace it with VAR and call ourself
2069 recursively, this time saying that the object previously
2070 had its current mode (by virtue of the SUBREG). */
2072 if (SUBREG_PROMOTED_VAR_P (x))
2074 *loc = var;
2075 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2076 return;
2079 /* If this SUBREG makes VAR wider, it has become a paradoxical
2080 SUBREG with VAR in memory, but these aren't allowed at this
2081 stage of the compilation. So load VAR into a pseudo and take
2082 a SUBREG of that pseudo. */
2083 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2085 replacement = find_fixup_replacement (replacements, var);
2086 if (replacement->new == 0)
2087 replacement->new = gen_reg_rtx (GET_MODE (var));
2088 SUBREG_REG (x) = replacement->new;
2089 return;
2092 /* See if we have already found a replacement for this SUBREG.
2093 If so, use it. Otherwise, make a MEM and see if the insn
2094 is recognized. If not, or if we should force MEM into a register,
2095 make a pseudo for this SUBREG. */
2096 replacement = find_fixup_replacement (replacements, x);
2097 if (replacement->new)
2099 *loc = replacement->new;
2100 return;
2103 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2105 INSN_CODE (insn) = -1;
2106 if (! flag_force_mem && recog_memoized (insn) >= 0)
2107 return;
2109 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2110 return;
2112 break;
2114 case SET:
2115 /* First do special simplification of bit-field references. */
2116 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2117 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2118 optimize_bit_field (x, insn, 0);
2119 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2120 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2121 optimize_bit_field (x, insn, NULL_PTR);
2123 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2124 into a register and then store it back out. */
2125 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2126 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2127 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2128 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2129 > GET_MODE_SIZE (GET_MODE (var))))
2131 replacement = find_fixup_replacement (replacements, var);
2132 if (replacement->new == 0)
2133 replacement->new = gen_reg_rtx (GET_MODE (var));
2135 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2136 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2139 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2140 insn into a pseudo and store the low part of the pseudo into VAR. */
2141 if (GET_CODE (SET_DEST (x)) == SUBREG
2142 && SUBREG_REG (SET_DEST (x)) == var
2143 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2144 > GET_MODE_SIZE (GET_MODE (var))))
2146 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2147 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2148 tem)),
2149 insn);
2150 break;
2154 rtx dest = SET_DEST (x);
2155 rtx src = SET_SRC (x);
2156 #ifdef HAVE_insv
2157 rtx outerdest = dest;
2158 #endif
2160 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2161 || GET_CODE (dest) == SIGN_EXTRACT
2162 || GET_CODE (dest) == ZERO_EXTRACT)
2163 dest = XEXP (dest, 0);
2165 if (GET_CODE (src) == SUBREG)
2166 src = XEXP (src, 0);
2168 /* If VAR does not appear at the top level of the SET
2169 just scan the lower levels of the tree. */
2171 if (src != var && dest != var)
2172 break;
2174 /* We will need to rerecognize this insn. */
2175 INSN_CODE (insn) = -1;
2177 #ifdef HAVE_insv
2178 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2180 /* Since this case will return, ensure we fixup all the
2181 operands here. */
2182 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2183 insn, replacements);
2184 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2185 insn, replacements);
2186 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2187 insn, replacements);
2189 tem = XEXP (outerdest, 0);
2191 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2192 that may appear inside a ZERO_EXTRACT.
2193 This was legitimate when the MEM was a REG. */
2194 if (GET_CODE (tem) == SUBREG
2195 && SUBREG_REG (tem) == var)
2196 tem = fixup_memory_subreg (tem, insn, 0);
2197 else
2198 tem = fixup_stack_1 (tem, insn);
2200 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2201 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2202 && ! mode_dependent_address_p (XEXP (tem, 0))
2203 && ! MEM_VOLATILE_P (tem))
2205 enum machine_mode wanted_mode;
2206 enum machine_mode is_mode = GET_MODE (tem);
2207 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2209 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2210 if (wanted_mode == VOIDmode)
2211 wanted_mode = word_mode;
2213 /* If we have a narrower mode, we can do something. */
2214 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2216 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2217 rtx old_pos = XEXP (outerdest, 2);
2218 rtx newmem;
2220 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2221 offset = (GET_MODE_SIZE (is_mode)
2222 - GET_MODE_SIZE (wanted_mode) - offset);
2224 pos %= GET_MODE_BITSIZE (wanted_mode);
2226 newmem = gen_rtx_MEM (wanted_mode,
2227 plus_constant (XEXP (tem, 0),
2228 offset));
2229 MEM_COPY_ATTRIBUTES (newmem, tem);
2231 /* Make the change and see if the insn remains valid. */
2232 INSN_CODE (insn) = -1;
2233 XEXP (outerdest, 0) = newmem;
2234 XEXP (outerdest, 2) = GEN_INT (pos);
2236 if (recog_memoized (insn) >= 0)
2237 return;
2239 /* Otherwise, restore old position. XEXP (x, 0) will be
2240 restored later. */
2241 XEXP (outerdest, 2) = old_pos;
2245 /* If we get here, the bit-field store doesn't allow memory
2246 or isn't located at a constant position. Load the value into
2247 a register, do the store, and put it back into memory. */
2249 tem1 = gen_reg_rtx (GET_MODE (tem));
2250 emit_insn_before (gen_move_insn (tem1, tem), insn);
2251 emit_insn_after (gen_move_insn (tem, tem1), insn);
2252 XEXP (outerdest, 0) = tem1;
2253 return;
2255 #endif
2257 /* STRICT_LOW_PART is a no-op on memory references
2258 and it can cause combinations to be unrecognizable,
2259 so eliminate it. */
2261 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2262 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2264 /* A valid insn to copy VAR into or out of a register
2265 must be left alone, to avoid an infinite loop here.
2266 If the reference to VAR is by a subreg, fix that up,
2267 since SUBREG is not valid for a memref.
2268 Also fix up the address of the stack slot.
2270 Note that we must not try to recognize the insn until
2271 after we know that we have valid addresses and no
2272 (subreg (mem ...) ...) constructs, since these interfere
2273 with determining the validity of the insn. */
2275 if ((SET_SRC (x) == var
2276 || (GET_CODE (SET_SRC (x)) == SUBREG
2277 && SUBREG_REG (SET_SRC (x)) == var))
2278 && (GET_CODE (SET_DEST (x)) == REG
2279 || (GET_CODE (SET_DEST (x)) == SUBREG
2280 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2281 && GET_MODE (var) == promoted_mode
2282 && x == single_set (insn))
2284 rtx pat;
2286 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2287 if (replacement->new)
2288 SET_SRC (x) = replacement->new;
2289 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2290 SET_SRC (x) = replacement->new
2291 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2292 else
2293 SET_SRC (x) = replacement->new
2294 = fixup_stack_1 (SET_SRC (x), insn);
2296 if (recog_memoized (insn) >= 0)
2297 return;
2299 /* INSN is not valid, but we know that we want to
2300 copy SET_SRC (x) to SET_DEST (x) in some way. So
2301 we generate the move and see whether it requires more
2302 than one insn. If it does, we emit those insns and
2303 delete INSN. Otherwise, we an just replace the pattern
2304 of INSN; we have already verified above that INSN has
2305 no other function that to do X. */
2307 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2308 if (GET_CODE (pat) == SEQUENCE)
2310 emit_insn_after (pat, insn);
2311 PUT_CODE (insn, NOTE);
2312 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2313 NOTE_SOURCE_FILE (insn) = 0;
2315 else
2316 PATTERN (insn) = pat;
2318 return;
2321 if ((SET_DEST (x) == var
2322 || (GET_CODE (SET_DEST (x)) == SUBREG
2323 && SUBREG_REG (SET_DEST (x)) == var))
2324 && (GET_CODE (SET_SRC (x)) == REG
2325 || (GET_CODE (SET_SRC (x)) == SUBREG
2326 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2327 && GET_MODE (var) == promoted_mode
2328 && x == single_set (insn))
2330 rtx pat;
2332 if (GET_CODE (SET_DEST (x)) == SUBREG)
2333 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2334 else
2335 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2337 if (recog_memoized (insn) >= 0)
2338 return;
2340 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2341 if (GET_CODE (pat) == SEQUENCE)
2343 emit_insn_after (pat, insn);
2344 PUT_CODE (insn, NOTE);
2345 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2346 NOTE_SOURCE_FILE (insn) = 0;
2348 else
2349 PATTERN (insn) = pat;
2351 return;
2354 /* Otherwise, storing into VAR must be handled specially
2355 by storing into a temporary and copying that into VAR
2356 with a new insn after this one. Note that this case
2357 will be used when storing into a promoted scalar since
2358 the insn will now have different modes on the input
2359 and output and hence will be invalid (except for the case
2360 of setting it to a constant, which does not need any
2361 change if it is valid). We generate extra code in that case,
2362 but combine.c will eliminate it. */
2364 if (dest == var)
2366 rtx temp;
2367 rtx fixeddest = SET_DEST (x);
2369 /* STRICT_LOW_PART can be discarded, around a MEM. */
2370 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2371 fixeddest = XEXP (fixeddest, 0);
2372 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2373 if (GET_CODE (fixeddest) == SUBREG)
2375 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2376 promoted_mode = GET_MODE (fixeddest);
2378 else
2379 fixeddest = fixup_stack_1 (fixeddest, insn);
2381 temp = gen_reg_rtx (promoted_mode);
2383 emit_insn_after (gen_move_insn (fixeddest,
2384 gen_lowpart (GET_MODE (fixeddest),
2385 temp)),
2386 insn);
2388 SET_DEST (x) = temp;
2392 default:
2393 break;
2396 /* Nothing special about this RTX; fix its operands. */
2398 fmt = GET_RTX_FORMAT (code);
2399 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2401 if (fmt[i] == 'e')
2402 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2403 else if (fmt[i] == 'E')
2405 register int j;
2406 for (j = 0; j < XVECLEN (x, i); j++)
2407 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2408 insn, replacements);
2413 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2414 return an rtx (MEM:m1 newaddr) which is equivalent.
2415 If any insns must be emitted to compute NEWADDR, put them before INSN.
2417 UNCRITICAL nonzero means accept paradoxical subregs.
2418 This is used for subregs found inside REG_NOTES. */
2420 static rtx
2421 fixup_memory_subreg (x, insn, uncritical)
2422 rtx x;
2423 rtx insn;
2424 int uncritical;
2426 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2427 rtx addr = XEXP (SUBREG_REG (x), 0);
2428 enum machine_mode mode = GET_MODE (x);
2429 rtx result;
2431 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2432 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2433 && ! uncritical)
2434 abort ();
2436 if (BYTES_BIG_ENDIAN)
2437 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2438 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2439 addr = plus_constant (addr, offset);
2440 if (!flag_force_addr && memory_address_p (mode, addr))
2441 /* Shortcut if no insns need be emitted. */
2442 return change_address (SUBREG_REG (x), mode, addr);
2443 start_sequence ();
2444 result = change_address (SUBREG_REG (x), mode, addr);
2445 emit_insn_before (gen_sequence (), insn);
2446 end_sequence ();
2447 return result;
2450 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2451 Replace subexpressions of X in place.
2452 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2453 Otherwise return X, with its contents possibly altered.
2455 If any insns must be emitted to compute NEWADDR, put them before INSN.
2457 UNCRITICAL is as in fixup_memory_subreg. */
2459 static rtx
2460 walk_fixup_memory_subreg (x, insn, uncritical)
2461 register rtx x;
2462 rtx insn;
2463 int uncritical;
2465 register enum rtx_code code;
2466 register const char *fmt;
2467 register int i;
2469 if (x == 0)
2470 return 0;
2472 code = GET_CODE (x);
2474 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2475 return fixup_memory_subreg (x, insn, uncritical);
2477 /* Nothing special about this RTX; fix its operands. */
2479 fmt = GET_RTX_FORMAT (code);
2480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2482 if (fmt[i] == 'e')
2483 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2484 else if (fmt[i] == 'E')
2486 register int j;
2487 for (j = 0; j < XVECLEN (x, i); j++)
2488 XVECEXP (x, i, j)
2489 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2492 return x;
2495 /* For each memory ref within X, if it refers to a stack slot
2496 with an out of range displacement, put the address in a temp register
2497 (emitting new insns before INSN to load these registers)
2498 and alter the memory ref to use that register.
2499 Replace each such MEM rtx with a copy, to avoid clobberage. */
2501 static rtx
2502 fixup_stack_1 (x, insn)
2503 rtx x;
2504 rtx insn;
2506 register int i;
2507 register RTX_CODE code = GET_CODE (x);
2508 register const char *fmt;
2510 if (code == MEM)
2512 register rtx ad = XEXP (x, 0);
2513 /* If we have address of a stack slot but it's not valid
2514 (displacement is too large), compute the sum in a register. */
2515 if (GET_CODE (ad) == PLUS
2516 && GET_CODE (XEXP (ad, 0)) == REG
2517 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2518 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2519 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2520 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2521 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2522 #endif
2523 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2524 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2525 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2526 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2528 rtx temp, seq;
2529 if (memory_address_p (GET_MODE (x), ad))
2530 return x;
2532 start_sequence ();
2533 temp = copy_to_reg (ad);
2534 seq = gen_sequence ();
2535 end_sequence ();
2536 emit_insn_before (seq, insn);
2537 return change_address (x, VOIDmode, temp);
2539 return x;
2542 fmt = GET_RTX_FORMAT (code);
2543 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2545 if (fmt[i] == 'e')
2546 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2547 else if (fmt[i] == 'E')
2549 register int j;
2550 for (j = 0; j < XVECLEN (x, i); j++)
2551 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2554 return x;
2557 /* Optimization: a bit-field instruction whose field
2558 happens to be a byte or halfword in memory
2559 can be changed to a move instruction.
2561 We call here when INSN is an insn to examine or store into a bit-field.
2562 BODY is the SET-rtx to be altered.
2564 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2565 (Currently this is called only from function.c, and EQUIV_MEM
2566 is always 0.) */
2568 static void
2569 optimize_bit_field (body, insn, equiv_mem)
2570 rtx body;
2571 rtx insn;
2572 rtx *equiv_mem;
2574 register rtx bitfield;
2575 int destflag;
2576 rtx seq = 0;
2577 enum machine_mode mode;
2579 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2580 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2581 bitfield = SET_DEST (body), destflag = 1;
2582 else
2583 bitfield = SET_SRC (body), destflag = 0;
2585 /* First check that the field being stored has constant size and position
2586 and is in fact a byte or halfword suitably aligned. */
2588 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2589 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2590 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2591 != BLKmode)
2592 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2594 register rtx memref = 0;
2596 /* Now check that the containing word is memory, not a register,
2597 and that it is safe to change the machine mode. */
2599 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2600 memref = XEXP (bitfield, 0);
2601 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2602 && equiv_mem != 0)
2603 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2604 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2605 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2606 memref = SUBREG_REG (XEXP (bitfield, 0));
2607 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2608 && equiv_mem != 0
2609 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2610 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2612 if (memref
2613 && ! mode_dependent_address_p (XEXP (memref, 0))
2614 && ! MEM_VOLATILE_P (memref))
2616 /* Now adjust the address, first for any subreg'ing
2617 that we are now getting rid of,
2618 and then for which byte of the word is wanted. */
2620 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2621 rtx insns;
2623 /* Adjust OFFSET to count bits from low-address byte. */
2624 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2625 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2626 - offset - INTVAL (XEXP (bitfield, 1)));
2628 /* Adjust OFFSET to count bytes from low-address byte. */
2629 offset /= BITS_PER_UNIT;
2630 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2632 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2633 if (BYTES_BIG_ENDIAN)
2634 offset -= (MIN (UNITS_PER_WORD,
2635 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2636 - MIN (UNITS_PER_WORD,
2637 GET_MODE_SIZE (GET_MODE (memref))));
2640 start_sequence ();
2641 memref = change_address (memref, mode,
2642 plus_constant (XEXP (memref, 0), offset));
2643 insns = get_insns ();
2644 end_sequence ();
2645 emit_insns_before (insns, insn);
2647 /* Store this memory reference where
2648 we found the bit field reference. */
2650 if (destflag)
2652 validate_change (insn, &SET_DEST (body), memref, 1);
2653 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2655 rtx src = SET_SRC (body);
2656 while (GET_CODE (src) == SUBREG
2657 && SUBREG_WORD (src) == 0)
2658 src = SUBREG_REG (src);
2659 if (GET_MODE (src) != GET_MODE (memref))
2660 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2661 validate_change (insn, &SET_SRC (body), src, 1);
2663 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2664 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2665 /* This shouldn't happen because anything that didn't have
2666 one of these modes should have got converted explicitly
2667 and then referenced through a subreg.
2668 This is so because the original bit-field was
2669 handled by agg_mode and so its tree structure had
2670 the same mode that memref now has. */
2671 abort ();
2673 else
2675 rtx dest = SET_DEST (body);
2677 while (GET_CODE (dest) == SUBREG
2678 && SUBREG_WORD (dest) == 0
2679 && (GET_MODE_CLASS (GET_MODE (dest))
2680 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2681 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2682 <= UNITS_PER_WORD))
2683 dest = SUBREG_REG (dest);
2685 validate_change (insn, &SET_DEST (body), dest, 1);
2687 if (GET_MODE (dest) == GET_MODE (memref))
2688 validate_change (insn, &SET_SRC (body), memref, 1);
2689 else
2691 /* Convert the mem ref to the destination mode. */
2692 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2694 start_sequence ();
2695 convert_move (newreg, memref,
2696 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2697 seq = get_insns ();
2698 end_sequence ();
2700 validate_change (insn, &SET_SRC (body), newreg, 1);
2704 /* See if we can convert this extraction or insertion into
2705 a simple move insn. We might not be able to do so if this
2706 was, for example, part of a PARALLEL.
2708 If we succeed, write out any needed conversions. If we fail,
2709 it is hard to guess why we failed, so don't do anything
2710 special; just let the optimization be suppressed. */
2712 if (apply_change_group () && seq)
2713 emit_insns_before (seq, insn);
2718 /* These routines are responsible for converting virtual register references
2719 to the actual hard register references once RTL generation is complete.
2721 The following four variables are used for communication between the
2722 routines. They contain the offsets of the virtual registers from their
2723 respective hard registers. */
2725 static int in_arg_offset;
2726 static int var_offset;
2727 static int dynamic_offset;
2728 static int out_arg_offset;
2729 static int cfa_offset;
2731 /* In most machines, the stack pointer register is equivalent to the bottom
2732 of the stack. */
2734 #ifndef STACK_POINTER_OFFSET
2735 #define STACK_POINTER_OFFSET 0
2736 #endif
2738 /* If not defined, pick an appropriate default for the offset of dynamically
2739 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2740 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2742 #ifndef STACK_DYNAMIC_OFFSET
2744 /* The bottom of the stack points to the actual arguments. If
2745 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2746 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2747 stack space for register parameters is not pushed by the caller, but
2748 rather part of the fixed stack areas and hence not included in
2749 `current_function_outgoing_args_size'. Nevertheless, we must allow
2750 for it when allocating stack dynamic objects. */
2752 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2753 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2754 ((ACCUMULATE_OUTGOING_ARGS \
2755 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2756 + (STACK_POINTER_OFFSET)) \
2758 #else
2759 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2760 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2761 + (STACK_POINTER_OFFSET))
2762 #endif
2763 #endif
2765 /* On most machines, the CFA coincides with the first incoming parm. */
2767 #ifndef ARG_POINTER_CFA_OFFSET
2768 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2769 #endif
2772 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2773 its address taken. DECL is the decl for the object stored in the
2774 register, for later use if we do need to force REG into the stack.
2775 REG is overwritten by the MEM like in put_reg_into_stack. */
2778 gen_mem_addressof (reg, decl)
2779 rtx reg;
2780 tree decl;
2782 tree type = TREE_TYPE (decl);
2783 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2784 REGNO (reg), decl);
2786 /* If the original REG was a user-variable, then so is the REG whose
2787 address is being taken. Likewise for unchanging. */
2788 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2789 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2791 PUT_CODE (reg, MEM);
2792 PUT_MODE (reg, DECL_MODE (decl));
2793 XEXP (reg, 0) = r;
2794 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2795 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2796 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2798 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2799 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2801 return reg;
2804 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2806 void
2807 flush_addressof (decl)
2808 tree decl;
2810 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2811 && DECL_RTL (decl) != 0
2812 && GET_CODE (DECL_RTL (decl)) == MEM
2813 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2814 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2815 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2818 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2820 static void
2821 put_addressof_into_stack (r, ht)
2822 rtx r;
2823 struct hash_table *ht;
2825 tree decl = ADDRESSOF_DECL (r);
2826 rtx reg = XEXP (r, 0);
2828 if (GET_CODE (reg) != REG)
2829 abort ();
2831 put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
2832 GET_MODE (reg),
2833 (TREE_CODE (decl) != SAVE_EXPR
2834 && TREE_THIS_VOLATILE (decl)),
2835 ADDRESSOF_REGNO (r),
2836 (TREE_USED (decl)
2837 || (TREE_CODE (decl) != SAVE_EXPR
2838 && DECL_INITIAL (decl) != 0)),
2839 ht);
2842 /* List of replacements made below in purge_addressof_1 when creating
2843 bitfield insertions. */
2844 static rtx purge_bitfield_addressof_replacements;
2846 /* List of replacements made below in purge_addressof_1 for patterns
2847 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2848 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2849 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2850 enough in complex cases, e.g. when some field values can be
2851 extracted by usage MEM with narrower mode. */
2852 static rtx purge_addressof_replacements;
2854 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2855 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2856 the stack. If the function returns FALSE then the replacement could not
2857 be made. */
2859 static boolean
2860 purge_addressof_1 (loc, insn, force, store, ht)
2861 rtx *loc;
2862 rtx insn;
2863 int force, store;
2864 struct hash_table *ht;
2866 rtx x;
2867 RTX_CODE code;
2868 int i, j;
2869 const char *fmt;
2870 boolean result = true;
2872 /* Re-start here to avoid recursion in common cases. */
2873 restart:
2875 x = *loc;
2876 if (x == 0)
2877 return true;
2879 code = GET_CODE (x);
2881 /* If we don't return in any of the cases below, we will recurse inside
2882 the RTX, which will normally result in any ADDRESSOF being forced into
2883 memory. */
2884 if (code == SET)
2886 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2887 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2888 return result;
2891 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2893 /* We must create a copy of the rtx because it was created by
2894 overwriting a REG rtx which is always shared. */
2895 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2896 rtx insns;
2898 if (validate_change (insn, loc, sub, 0)
2899 || validate_replace_rtx (x, sub, insn))
2900 return true;
2902 start_sequence ();
2903 sub = force_operand (sub, NULL_RTX);
2904 if (! validate_change (insn, loc, sub, 0)
2905 && ! validate_replace_rtx (x, sub, insn))
2906 abort ();
2908 insns = gen_sequence ();
2909 end_sequence ();
2910 emit_insn_before (insns, insn);
2911 return true;
2914 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2916 rtx sub = XEXP (XEXP (x, 0), 0);
2917 rtx sub2;
2919 if (GET_CODE (sub) == MEM)
2921 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
2922 MEM_COPY_ATTRIBUTES (sub2, sub);
2923 sub = sub2;
2925 else if (GET_CODE (sub) == REG
2926 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2928 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2930 int size_x, size_sub;
2932 if (!insn)
2934 /* When processing REG_NOTES look at the list of
2935 replacements done on the insn to find the register that X
2936 was replaced by. */
2937 rtx tem;
2939 for (tem = purge_bitfield_addressof_replacements;
2940 tem != NULL_RTX;
2941 tem = XEXP (XEXP (tem, 1), 1))
2942 if (rtx_equal_p (x, XEXP (tem, 0)))
2944 *loc = XEXP (XEXP (tem, 1), 0);
2945 return true;
2948 /* See comment for purge_addressof_replacements. */
2949 for (tem = purge_addressof_replacements;
2950 tem != NULL_RTX;
2951 tem = XEXP (XEXP (tem, 1), 1))
2952 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
2954 rtx z = XEXP (XEXP (tem, 1), 0);
2956 if (GET_MODE (x) == GET_MODE (z)
2957 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
2958 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
2959 abort ();
2961 /* It can happen that the note may speak of things
2962 in a wider (or just different) mode than the
2963 code did. This is especially true of
2964 REG_RETVAL. */
2966 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
2967 z = SUBREG_REG (z);
2969 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2970 && (GET_MODE_SIZE (GET_MODE (x))
2971 > GET_MODE_SIZE (GET_MODE (z))))
2973 /* This can occur as a result in invalid
2974 pointer casts, e.g. float f; ...
2975 *(long long int *)&f.
2976 ??? We could emit a warning here, but
2977 without a line number that wouldn't be
2978 very helpful. */
2979 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
2981 else
2982 z = gen_lowpart (GET_MODE (x), z);
2984 *loc = z;
2985 return true;
2988 /* Sometimes we may not be able to find the replacement. For
2989 example when the original insn was a MEM in a wider mode,
2990 and the note is part of a sign extension of a narrowed
2991 version of that MEM. Gcc testcase compile/990829-1.c can
2992 generate an example of this siutation. Rather than complain
2993 we return false, which will prompt our caller to remove the
2994 offending note. */
2995 return false;
2998 size_x = GET_MODE_BITSIZE (GET_MODE (x));
2999 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3001 /* Don't even consider working with paradoxical subregs,
3002 or the moral equivalent seen here. */
3003 if (size_x <= size_sub
3004 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3006 /* Do a bitfield insertion to mirror what would happen
3007 in memory. */
3009 rtx val, seq;
3011 if (store)
3013 rtx p = PREV_INSN (insn);
3015 start_sequence ();
3016 val = gen_reg_rtx (GET_MODE (x));
3017 if (! validate_change (insn, loc, val, 0))
3019 /* Discard the current sequence and put the
3020 ADDRESSOF on stack. */
3021 end_sequence ();
3022 goto give_up;
3024 seq = gen_sequence ();
3025 end_sequence ();
3026 emit_insn_before (seq, insn);
3027 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3028 insn, ht);
3030 start_sequence ();
3031 store_bit_field (sub, size_x, 0, GET_MODE (x),
3032 val, GET_MODE_SIZE (GET_MODE (sub)),
3033 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3035 /* Make sure to unshare any shared rtl that store_bit_field
3036 might have created. */
3037 unshare_all_rtl_again (get_insns ());
3039 seq = gen_sequence ();
3040 end_sequence ();
3041 p = emit_insn_after (seq, insn);
3042 if (NEXT_INSN (insn))
3043 compute_insns_for_mem (NEXT_INSN (insn),
3044 p ? NEXT_INSN (p) : NULL_RTX,
3045 ht);
3047 else
3049 rtx p = PREV_INSN (insn);
3051 start_sequence ();
3052 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3053 GET_MODE (x), GET_MODE (x),
3054 GET_MODE_SIZE (GET_MODE (sub)),
3055 GET_MODE_SIZE (GET_MODE (sub)));
3057 if (! validate_change (insn, loc, val, 0))
3059 /* Discard the current sequence and put the
3060 ADDRESSOF on stack. */
3061 end_sequence ();
3062 goto give_up;
3065 seq = gen_sequence ();
3066 end_sequence ();
3067 emit_insn_before (seq, insn);
3068 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3069 insn, ht);
3072 /* Remember the replacement so that the same one can be done
3073 on the REG_NOTES. */
3074 purge_bitfield_addressof_replacements
3075 = gen_rtx_EXPR_LIST (VOIDmode, x,
3076 gen_rtx_EXPR_LIST
3077 (VOIDmode, val,
3078 purge_bitfield_addressof_replacements));
3080 /* We replaced with a reg -- all done. */
3081 return true;
3085 else if (validate_change (insn, loc, sub, 0))
3087 /* Remember the replacement so that the same one can be done
3088 on the REG_NOTES. */
3089 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3091 rtx tem;
3093 for (tem = purge_addressof_replacements;
3094 tem != NULL_RTX;
3095 tem = XEXP (XEXP (tem, 1), 1))
3096 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3098 XEXP (XEXP (tem, 1), 0) = sub;
3099 return true;
3101 purge_addressof_replacements
3102 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3103 gen_rtx_EXPR_LIST (VOIDmode, sub,
3104 purge_addressof_replacements));
3105 return true;
3107 goto restart;
3109 give_up:;
3110 /* else give up and put it into the stack */
3113 else if (code == ADDRESSOF)
3115 put_addressof_into_stack (x, ht);
3116 return true;
3118 else if (code == SET)
3120 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3121 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3122 return result;
3125 /* Scan all subexpressions. */
3126 fmt = GET_RTX_FORMAT (code);
3127 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3129 if (*fmt == 'e')
3130 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3131 else if (*fmt == 'E')
3132 for (j = 0; j < XVECLEN (x, i); j++)
3133 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3136 return result;
3139 /* Return a new hash table entry in HT. */
3141 static struct hash_entry *
3142 insns_for_mem_newfunc (he, ht, k)
3143 struct hash_entry *he;
3144 struct hash_table *ht;
3145 hash_table_key k ATTRIBUTE_UNUSED;
3147 struct insns_for_mem_entry *ifmhe;
3148 if (he)
3149 return he;
3151 ifmhe = ((struct insns_for_mem_entry *)
3152 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3153 ifmhe->insns = NULL_RTX;
3155 return &ifmhe->he;
3158 /* Return a hash value for K, a REG. */
3160 static unsigned long
3161 insns_for_mem_hash (k)
3162 hash_table_key k;
3164 /* K is really a RTX. Just use the address as the hash value. */
3165 return (unsigned long) k;
3168 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3170 static boolean
3171 insns_for_mem_comp (k1, k2)
3172 hash_table_key k1;
3173 hash_table_key k2;
3175 return k1 == k2;
3178 struct insns_for_mem_walk_info {
3179 /* The hash table that we are using to record which INSNs use which
3180 MEMs. */
3181 struct hash_table *ht;
3183 /* The INSN we are currently proessing. */
3184 rtx insn;
3186 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3187 to find the insns that use the REGs in the ADDRESSOFs. */
3188 int pass;
3191 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3192 that might be used in an ADDRESSOF expression, record this INSN in
3193 the hash table given by DATA (which is really a pointer to an
3194 insns_for_mem_walk_info structure). */
3196 static int
3197 insns_for_mem_walk (r, data)
3198 rtx *r;
3199 void *data;
3201 struct insns_for_mem_walk_info *ifmwi
3202 = (struct insns_for_mem_walk_info *) data;
3204 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3205 && GET_CODE (XEXP (*r, 0)) == REG)
3206 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3207 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3209 /* Lookup this MEM in the hashtable, creating it if necessary. */
3210 struct insns_for_mem_entry *ifme
3211 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3213 /*create=*/0,
3214 /*copy=*/0);
3216 /* If we have not already recorded this INSN, do so now. Since
3217 we process the INSNs in order, we know that if we have
3218 recorded it it must be at the front of the list. */
3219 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3221 /* We do the allocation on the same obstack as is used for
3222 the hash table since this memory will not be used once
3223 the hash table is deallocated. */
3224 push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory);
3225 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3226 ifme->insns);
3227 pop_obstacks ();
3231 return 0;
3234 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3235 which REGs in HT. */
3237 static void
3238 compute_insns_for_mem (insns, last_insn, ht)
3239 rtx insns;
3240 rtx last_insn;
3241 struct hash_table *ht;
3243 rtx insn;
3244 struct insns_for_mem_walk_info ifmwi;
3245 ifmwi.ht = ht;
3247 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3248 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3249 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3251 ifmwi.insn = insn;
3252 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3256 /* Helper function for purge_addressof called through for_each_rtx.
3257 Returns true iff the rtl is an ADDRESSOF. */
3258 static int
3259 is_addressof (rtl, data)
3260 rtx * rtl;
3261 void * data ATTRIBUTE_UNUSED;
3263 return GET_CODE (* rtl) == ADDRESSOF;
3266 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3267 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3268 stack. */
3270 void
3271 purge_addressof (insns)
3272 rtx insns;
3274 rtx insn;
3275 struct hash_table ht;
3277 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3278 requires a fixup pass over the instruction stream to correct
3279 INSNs that depended on the REG being a REG, and not a MEM. But,
3280 these fixup passes are slow. Furthermore, most MEMs are not
3281 mentioned in very many instructions. So, we speed up the process
3282 by pre-calculating which REGs occur in which INSNs; that allows
3283 us to perform the fixup passes much more quickly. */
3284 hash_table_init (&ht,
3285 insns_for_mem_newfunc,
3286 insns_for_mem_hash,
3287 insns_for_mem_comp);
3288 compute_insns_for_mem (insns, NULL_RTX, &ht);
3290 for (insn = insns; insn; insn = NEXT_INSN (insn))
3291 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3292 || GET_CODE (insn) == CALL_INSN)
3294 if (! purge_addressof_1 (&PATTERN (insn), insn,
3295 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3296 /* If we could not replace the ADDRESSOFs in the insn,
3297 something is wrong. */
3298 abort ();
3300 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3302 /* If we could not replace the ADDRESSOFs in the insn's notes,
3303 we can just remove the offending notes instead. */
3304 rtx note;
3306 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3308 /* If we find a REG_RETVAL note then the insn is a libcall.
3309 Such insns must have REG_EQUAL notes as well, in order
3310 for later passes of the compiler to work. So it is not
3311 safe to delete the notes here, and instead we abort. */
3312 if (REG_NOTE_KIND (note) == REG_RETVAL)
3313 abort ();
3314 if (for_each_rtx (& note, is_addressof, NULL))
3315 remove_note (insn, note);
3320 /* Clean up. */
3321 hash_table_free (&ht);
3322 purge_bitfield_addressof_replacements = 0;
3323 purge_addressof_replacements = 0;
3325 /* REGs are shared. purge_addressof will destructively replace a REG
3326 with a MEM, which creates shared MEMs.
3328 Unfortunately, the children of put_reg_into_stack assume that MEMs
3329 referring to the same stack slot are shared (fixup_var_refs and
3330 the associated hash table code).
3332 So, we have to do another unsharing pass after we have flushed any
3333 REGs that had their address taken into the stack.
3335 It may be worth tracking whether or not we converted any REGs into
3336 MEMs to avoid this overhead when it is not needed. */
3337 unshare_all_rtl_again (get_insns ());
3340 /* Pass through the INSNS of function FNDECL and convert virtual register
3341 references to hard register references. */
3343 void
3344 instantiate_virtual_regs (fndecl, insns)
3345 tree fndecl;
3346 rtx insns;
3348 rtx insn;
3349 unsigned int i;
3351 /* Compute the offsets to use for this function. */
3352 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3353 var_offset = STARTING_FRAME_OFFSET;
3354 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3355 out_arg_offset = STACK_POINTER_OFFSET;
3356 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3358 /* Scan all variables and parameters of this function. For each that is
3359 in memory, instantiate all virtual registers if the result is a valid
3360 address. If not, we do it later. That will handle most uses of virtual
3361 regs on many machines. */
3362 instantiate_decls (fndecl, 1);
3364 /* Initialize recognition, indicating that volatile is OK. */
3365 init_recog ();
3367 /* Scan through all the insns, instantiating every virtual register still
3368 present. */
3369 for (insn = insns; insn; insn = NEXT_INSN (insn))
3370 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3371 || GET_CODE (insn) == CALL_INSN)
3373 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3374 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3377 /* Instantiate the stack slots for the parm registers, for later use in
3378 addressof elimination. */
3379 for (i = 0; i < max_parm_reg; ++i)
3380 if (parm_reg_stack_loc[i])
3381 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3383 /* Now instantiate the remaining register equivalences for debugging info.
3384 These will not be valid addresses. */
3385 instantiate_decls (fndecl, 0);
3387 /* Indicate that, from now on, assign_stack_local should use
3388 frame_pointer_rtx. */
3389 virtuals_instantiated = 1;
3392 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3393 all virtual registers in their DECL_RTL's.
3395 If VALID_ONLY, do this only if the resulting address is still valid.
3396 Otherwise, always do it. */
3398 static void
3399 instantiate_decls (fndecl, valid_only)
3400 tree fndecl;
3401 int valid_only;
3403 tree decl;
3405 if (DECL_SAVED_INSNS (fndecl))
3406 /* When compiling an inline function, the obstack used for
3407 rtl allocation is the maybepermanent_obstack. Calling
3408 `resume_temporary_allocation' switches us back to that
3409 obstack while we process this function's parameters. */
3410 resume_temporary_allocation ();
3412 /* Process all parameters of the function. */
3413 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3415 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3417 instantiate_decl (DECL_RTL (decl), size, valid_only);
3419 /* If the parameter was promoted, then the incoming RTL mode may be
3420 larger than the declared type size. We must use the larger of
3421 the two sizes. */
3422 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3423 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3426 /* Now process all variables defined in the function or its subblocks. */
3427 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3429 if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
3431 /* Save all rtl allocated for this function by raising the
3432 high-water mark on the maybepermanent_obstack. */
3433 preserve_data ();
3434 /* All further rtl allocation is now done in the current_obstack. */
3435 rtl_in_current_obstack ();
3439 /* Subroutine of instantiate_decls: Process all decls in the given
3440 BLOCK node and all its subblocks. */
3442 static void
3443 instantiate_decls_1 (let, valid_only)
3444 tree let;
3445 int valid_only;
3447 tree t;
3449 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3450 instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
3451 valid_only);
3453 /* Process all subblocks. */
3454 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3455 instantiate_decls_1 (t, valid_only);
3458 /* Subroutine of the preceding procedures: Given RTL representing a
3459 decl and the size of the object, do any instantiation required.
3461 If VALID_ONLY is non-zero, it means that the RTL should only be
3462 changed if the new address is valid. */
3464 static void
3465 instantiate_decl (x, size, valid_only)
3466 rtx x;
3467 HOST_WIDE_INT size;
3468 int valid_only;
3470 enum machine_mode mode;
3471 rtx addr;
3473 /* If this is not a MEM, no need to do anything. Similarly if the
3474 address is a constant or a register that is not a virtual register. */
3476 if (x == 0 || GET_CODE (x) != MEM)
3477 return;
3479 addr = XEXP (x, 0);
3480 if (CONSTANT_P (addr)
3481 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3482 || (GET_CODE (addr) == REG
3483 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3484 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3485 return;
3487 /* If we should only do this if the address is valid, copy the address.
3488 We need to do this so we can undo any changes that might make the
3489 address invalid. This copy is unfortunate, but probably can't be
3490 avoided. */
3492 if (valid_only)
3493 addr = copy_rtx (addr);
3495 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3497 if (valid_only && size >= 0)
3499 unsigned HOST_WIDE_INT decl_size = size;
3501 /* Now verify that the resulting address is valid for every integer or
3502 floating-point mode up to and including SIZE bytes long. We do this
3503 since the object might be accessed in any mode and frame addresses
3504 are shared. */
3506 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3507 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3508 mode = GET_MODE_WIDER_MODE (mode))
3509 if (! memory_address_p (mode, addr))
3510 return;
3512 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3513 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3514 mode = GET_MODE_WIDER_MODE (mode))
3515 if (! memory_address_p (mode, addr))
3516 return;
3519 /* Put back the address now that we have updated it and we either know
3520 it is valid or we don't care whether it is valid. */
3522 XEXP (x, 0) = addr;
3525 /* Given a pointer to a piece of rtx and an optional pointer to the
3526 containing object, instantiate any virtual registers present in it.
3528 If EXTRA_INSNS, we always do the replacement and generate
3529 any extra insns before OBJECT. If it zero, we do nothing if replacement
3530 is not valid.
3532 Return 1 if we either had nothing to do or if we were able to do the
3533 needed replacement. Return 0 otherwise; we only return zero if
3534 EXTRA_INSNS is zero.
3536 We first try some simple transformations to avoid the creation of extra
3537 pseudos. */
3539 static int
3540 instantiate_virtual_regs_1 (loc, object, extra_insns)
3541 rtx *loc;
3542 rtx object;
3543 int extra_insns;
3545 rtx x;
3546 RTX_CODE code;
3547 rtx new = 0;
3548 HOST_WIDE_INT offset = 0;
3549 rtx temp;
3550 rtx seq;
3551 int i, j;
3552 const char *fmt;
3554 /* Re-start here to avoid recursion in common cases. */
3555 restart:
3557 x = *loc;
3558 if (x == 0)
3559 return 1;
3561 code = GET_CODE (x);
3563 /* Check for some special cases. */
3564 switch (code)
3566 case CONST_INT:
3567 case CONST_DOUBLE:
3568 case CONST:
3569 case SYMBOL_REF:
3570 case CODE_LABEL:
3571 case PC:
3572 case CC0:
3573 case ASM_INPUT:
3574 case ADDR_VEC:
3575 case ADDR_DIFF_VEC:
3576 case RETURN:
3577 return 1;
3579 case SET:
3580 /* We are allowed to set the virtual registers. This means that
3581 the actual register should receive the source minus the
3582 appropriate offset. This is used, for example, in the handling
3583 of non-local gotos. */
3584 if (SET_DEST (x) == virtual_incoming_args_rtx)
3585 new = arg_pointer_rtx, offset = - in_arg_offset;
3586 else if (SET_DEST (x) == virtual_stack_vars_rtx)
3587 new = frame_pointer_rtx, offset = - var_offset;
3588 else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
3589 new = stack_pointer_rtx, offset = - dynamic_offset;
3590 else if (SET_DEST (x) == virtual_outgoing_args_rtx)
3591 new = stack_pointer_rtx, offset = - out_arg_offset;
3592 else if (SET_DEST (x) == virtual_cfa_rtx)
3593 new = arg_pointer_rtx, offset = - cfa_offset;
3595 if (new)
3597 rtx src = SET_SRC (x);
3599 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3601 /* The only valid sources here are PLUS or REG. Just do
3602 the simplest possible thing to handle them. */
3603 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3604 abort ();
3606 start_sequence ();
3607 if (GET_CODE (src) != REG)
3608 temp = force_operand (src, NULL_RTX);
3609 else
3610 temp = src;
3611 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3612 seq = get_insns ();
3613 end_sequence ();
3615 emit_insns_before (seq, object);
3616 SET_DEST (x) = new;
3618 if (! validate_change (object, &SET_SRC (x), temp, 0)
3619 || ! extra_insns)
3620 abort ();
3622 return 1;
3625 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3626 loc = &SET_SRC (x);
3627 goto restart;
3629 case PLUS:
3630 /* Handle special case of virtual register plus constant. */
3631 if (CONSTANT_P (XEXP (x, 1)))
3633 rtx old, new_offset;
3635 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3636 if (GET_CODE (XEXP (x, 0)) == PLUS)
3638 rtx inner = XEXP (XEXP (x, 0), 0);
3640 if (inner == virtual_incoming_args_rtx)
3641 new = arg_pointer_rtx, offset = in_arg_offset;
3642 else if (inner == virtual_stack_vars_rtx)
3643 new = frame_pointer_rtx, offset = var_offset;
3644 else if (inner == virtual_stack_dynamic_rtx)
3645 new = stack_pointer_rtx, offset = dynamic_offset;
3646 else if (inner == virtual_outgoing_args_rtx)
3647 new = stack_pointer_rtx, offset = out_arg_offset;
3648 else if (inner == virtual_cfa_rtx)
3649 new = arg_pointer_rtx, offset = cfa_offset;
3650 else
3652 loc = &XEXP (x, 0);
3653 goto restart;
3656 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3657 extra_insns);
3658 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3661 else if (XEXP (x, 0) == virtual_incoming_args_rtx)
3662 new = arg_pointer_rtx, offset = in_arg_offset;
3663 else if (XEXP (x, 0) == virtual_stack_vars_rtx)
3664 new = frame_pointer_rtx, offset = var_offset;
3665 else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
3666 new = stack_pointer_rtx, offset = dynamic_offset;
3667 else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
3668 new = stack_pointer_rtx, offset = out_arg_offset;
3669 else if (XEXP (x, 0) == virtual_cfa_rtx)
3670 new = arg_pointer_rtx, offset = cfa_offset;
3671 else
3673 /* We know the second operand is a constant. Unless the
3674 first operand is a REG (which has been already checked),
3675 it needs to be checked. */
3676 if (GET_CODE (XEXP (x, 0)) != REG)
3678 loc = &XEXP (x, 0);
3679 goto restart;
3681 return 1;
3684 new_offset = plus_constant (XEXP (x, 1), offset);
3686 /* If the new constant is zero, try to replace the sum with just
3687 the register. */
3688 if (new_offset == const0_rtx
3689 && validate_change (object, loc, new, 0))
3690 return 1;
3692 /* Next try to replace the register and new offset.
3693 There are two changes to validate here and we can't assume that
3694 in the case of old offset equals new just changing the register
3695 will yield a valid insn. In the interests of a little efficiency,
3696 however, we only call validate change once (we don't queue up the
3697 changes and then call apply_change_group). */
3699 old = XEXP (x, 0);
3700 if (offset == 0
3701 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3702 : (XEXP (x, 0) = new,
3703 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3705 if (! extra_insns)
3707 XEXP (x, 0) = old;
3708 return 0;
3711 /* Otherwise copy the new constant into a register and replace
3712 constant with that register. */
3713 temp = gen_reg_rtx (Pmode);
3714 XEXP (x, 0) = new;
3715 if (validate_change (object, &XEXP (x, 1), temp, 0))
3716 emit_insn_before (gen_move_insn (temp, new_offset), object);
3717 else
3719 /* If that didn't work, replace this expression with a
3720 register containing the sum. */
3722 XEXP (x, 0) = old;
3723 new = gen_rtx_PLUS (Pmode, new, new_offset);
3725 start_sequence ();
3726 temp = force_operand (new, NULL_RTX);
3727 seq = get_insns ();
3728 end_sequence ();
3730 emit_insns_before (seq, object);
3731 if (! validate_change (object, loc, temp, 0)
3732 && ! validate_replace_rtx (x, temp, object))
3733 abort ();
3737 return 1;
3740 /* Fall through to generic two-operand expression case. */
3741 case EXPR_LIST:
3742 case CALL:
3743 case COMPARE:
3744 case MINUS:
3745 case MULT:
3746 case DIV: case UDIV:
3747 case MOD: case UMOD:
3748 case AND: case IOR: case XOR:
3749 case ROTATERT: case ROTATE:
3750 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3751 case NE: case EQ:
3752 case GE: case GT: case GEU: case GTU:
3753 case LE: case LT: case LEU: case LTU:
3754 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3755 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3756 loc = &XEXP (x, 0);
3757 goto restart;
3759 case MEM:
3760 /* Most cases of MEM that convert to valid addresses have already been
3761 handled by our scan of decls. The only special handling we
3762 need here is to make a copy of the rtx to ensure it isn't being
3763 shared if we have to change it to a pseudo.
3765 If the rtx is a simple reference to an address via a virtual register,
3766 it can potentially be shared. In such cases, first try to make it
3767 a valid address, which can also be shared. Otherwise, copy it and
3768 proceed normally.
3770 First check for common cases that need no processing. These are
3771 usually due to instantiation already being done on a previous instance
3772 of a shared rtx. */
3774 temp = XEXP (x, 0);
3775 if (CONSTANT_ADDRESS_P (temp)
3776 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3777 || temp == arg_pointer_rtx
3778 #endif
3779 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3780 || temp == hard_frame_pointer_rtx
3781 #endif
3782 || temp == frame_pointer_rtx)
3783 return 1;
3785 if (GET_CODE (temp) == PLUS
3786 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3787 && (XEXP (temp, 0) == frame_pointer_rtx
3788 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3789 || XEXP (temp, 0) == hard_frame_pointer_rtx
3790 #endif
3791 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3792 || XEXP (temp, 0) == arg_pointer_rtx
3793 #endif
3795 return 1;
3797 if (temp == virtual_stack_vars_rtx
3798 || temp == virtual_incoming_args_rtx
3799 || (GET_CODE (temp) == PLUS
3800 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3801 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3802 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3804 /* This MEM may be shared. If the substitution can be done without
3805 the need to generate new pseudos, we want to do it in place
3806 so all copies of the shared rtx benefit. The call below will
3807 only make substitutions if the resulting address is still
3808 valid.
3810 Note that we cannot pass X as the object in the recursive call
3811 since the insn being processed may not allow all valid
3812 addresses. However, if we were not passed on object, we can
3813 only modify X without copying it if X will have a valid
3814 address.
3816 ??? Also note that this can still lose if OBJECT is an insn that
3817 has less restrictions on an address that some other insn.
3818 In that case, we will modify the shared address. This case
3819 doesn't seem very likely, though. One case where this could
3820 happen is in the case of a USE or CLOBBER reference, but we
3821 take care of that below. */
3823 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3824 object ? object : x, 0))
3825 return 1;
3827 /* Otherwise make a copy and process that copy. We copy the entire
3828 RTL expression since it might be a PLUS which could also be
3829 shared. */
3830 *loc = x = copy_rtx (x);
3833 /* Fall through to generic unary operation case. */
3834 case SUBREG:
3835 case STRICT_LOW_PART:
3836 case NEG: case NOT:
3837 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
3838 case SIGN_EXTEND: case ZERO_EXTEND:
3839 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3840 case FLOAT: case FIX:
3841 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3842 case ABS:
3843 case SQRT:
3844 case FFS:
3845 /* These case either have just one operand or we know that we need not
3846 check the rest of the operands. */
3847 loc = &XEXP (x, 0);
3848 goto restart;
3850 case USE:
3851 case CLOBBER:
3852 /* If the operand is a MEM, see if the change is a valid MEM. If not,
3853 go ahead and make the invalid one, but do it to a copy. For a REG,
3854 just make the recursive call, since there's no chance of a problem. */
3856 if ((GET_CODE (XEXP (x, 0)) == MEM
3857 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
3859 || (GET_CODE (XEXP (x, 0)) == REG
3860 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
3861 return 1;
3863 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
3864 loc = &XEXP (x, 0);
3865 goto restart;
3867 case REG:
3868 /* Try to replace with a PLUS. If that doesn't work, compute the sum
3869 in front of this insn and substitute the temporary. */
3870 if (x == virtual_incoming_args_rtx)
3871 new = arg_pointer_rtx, offset = in_arg_offset;
3872 else if (x == virtual_stack_vars_rtx)
3873 new = frame_pointer_rtx, offset = var_offset;
3874 else if (x == virtual_stack_dynamic_rtx)
3875 new = stack_pointer_rtx, offset = dynamic_offset;
3876 else if (x == virtual_outgoing_args_rtx)
3877 new = stack_pointer_rtx, offset = out_arg_offset;
3878 else if (x == virtual_cfa_rtx)
3879 new = arg_pointer_rtx, offset = cfa_offset;
3881 if (new)
3883 temp = plus_constant (new, offset);
3884 if (!validate_change (object, loc, temp, 0))
3886 if (! extra_insns)
3887 return 0;
3889 start_sequence ();
3890 temp = force_operand (temp, NULL_RTX);
3891 seq = get_insns ();
3892 end_sequence ();
3894 emit_insns_before (seq, object);
3895 if (! validate_change (object, loc, temp, 0)
3896 && ! validate_replace_rtx (x, temp, object))
3897 abort ();
3901 return 1;
3903 case ADDRESSOF:
3904 if (GET_CODE (XEXP (x, 0)) == REG)
3905 return 1;
3907 else if (GET_CODE (XEXP (x, 0)) == MEM)
3909 /* If we have a (addressof (mem ..)), do any instantiation inside
3910 since we know we'll be making the inside valid when we finally
3911 remove the ADDRESSOF. */
3912 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
3913 return 1;
3915 break;
3917 default:
3918 break;
3921 /* Scan all subexpressions. */
3922 fmt = GET_RTX_FORMAT (code);
3923 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3924 if (*fmt == 'e')
3926 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
3927 return 0;
3929 else if (*fmt == 'E')
3930 for (j = 0; j < XVECLEN (x, i); j++)
3931 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
3932 extra_insns))
3933 return 0;
3935 return 1;
3938 /* Optimization: assuming this function does not receive nonlocal gotos,
3939 delete the handlers for such, as well as the insns to establish
3940 and disestablish them. */
3942 static void
3943 delete_handlers ()
3945 rtx insn;
3946 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3948 /* Delete the handler by turning off the flag that would
3949 prevent jump_optimize from deleting it.
3950 Also permit deletion of the nonlocal labels themselves
3951 if nothing local refers to them. */
3952 if (GET_CODE (insn) == CODE_LABEL)
3954 tree t, last_t;
3956 LABEL_PRESERVE_P (insn) = 0;
3958 /* Remove it from the nonlocal_label list, to avoid confusing
3959 flow. */
3960 for (t = nonlocal_labels, last_t = 0; t;
3961 last_t = t, t = TREE_CHAIN (t))
3962 if (DECL_RTL (TREE_VALUE (t)) == insn)
3963 break;
3964 if (t)
3966 if (! last_t)
3967 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
3968 else
3969 TREE_CHAIN (last_t) = TREE_CHAIN (t);
3972 if (GET_CODE (insn) == INSN)
3974 int can_delete = 0;
3975 rtx t;
3976 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
3977 if (reg_mentioned_p (t, PATTERN (insn)))
3979 can_delete = 1;
3980 break;
3982 if (can_delete
3983 || (nonlocal_goto_stack_level != 0
3984 && reg_mentioned_p (nonlocal_goto_stack_level,
3985 PATTERN (insn))))
3986 delete_insn (insn);
3992 max_parm_reg_num ()
3994 return max_parm_reg;
3997 /* Return the first insn following those generated by `assign_parms'. */
4000 get_first_nonparm_insn ()
4002 if (last_parm_insn)
4003 return NEXT_INSN (last_parm_insn);
4004 return get_insns ();
4007 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4008 Crash if there is none. */
4011 get_first_block_beg ()
4013 register rtx searcher;
4014 register rtx insn = get_first_nonparm_insn ();
4016 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4017 if (GET_CODE (searcher) == NOTE
4018 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4019 return searcher;
4021 abort (); /* Invalid call to this function. (See comments above.) */
4022 return NULL_RTX;
4025 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4026 This means a type for which function calls must pass an address to the
4027 function or get an address back from the function.
4028 EXP may be a type node or an expression (whose type is tested). */
4031 aggregate_value_p (exp)
4032 tree exp;
4034 int i, regno, nregs;
4035 rtx reg;
4037 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4039 if (TREE_CODE (type) == VOID_TYPE)
4040 return 0;
4041 if (RETURN_IN_MEMORY (type))
4042 return 1;
4043 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4044 and thus can't be returned in registers. */
4045 if (TREE_ADDRESSABLE (type))
4046 return 1;
4047 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4048 return 1;
4049 /* Make sure we have suitable call-clobbered regs to return
4050 the value in; if not, we must return it in memory. */
4051 reg = hard_function_value (type, 0, 0);
4053 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4054 it is OK. */
4055 if (GET_CODE (reg) != REG)
4056 return 0;
4058 regno = REGNO (reg);
4059 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4060 for (i = 0; i < nregs; i++)
4061 if (! call_used_regs[regno + i])
4062 return 1;
4063 return 0;
4066 /* Assign RTL expressions to the function's parameters.
4067 This may involve copying them into registers and using
4068 those registers as the RTL for them. */
4070 void
4071 assign_parms (fndecl)
4072 tree fndecl;
4074 register tree parm;
4075 register rtx entry_parm = 0;
4076 register rtx stack_parm = 0;
4077 CUMULATIVE_ARGS args_so_far;
4078 enum machine_mode promoted_mode, passed_mode;
4079 enum machine_mode nominal_mode, promoted_nominal_mode;
4080 int unsignedp;
4081 /* Total space needed so far for args on the stack,
4082 given as a constant and a tree-expression. */
4083 struct args_size stack_args_size;
4084 tree fntype = TREE_TYPE (fndecl);
4085 tree fnargs = DECL_ARGUMENTS (fndecl);
4086 /* This is used for the arg pointer when referring to stack args. */
4087 rtx internal_arg_pointer;
4088 /* This is a dummy PARM_DECL that we used for the function result if
4089 the function returns a structure. */
4090 tree function_result_decl = 0;
4091 #ifdef SETUP_INCOMING_VARARGS
4092 int varargs_setup = 0;
4093 #endif
4094 rtx conversion_insns = 0;
4095 struct args_size alignment_pad;
4097 /* Nonzero if the last arg is named `__builtin_va_alist',
4098 which is used on some machines for old-fashioned non-ANSI varargs.h;
4099 this should be stuck onto the stack as if it had arrived there. */
4100 int hide_last_arg
4101 = (current_function_varargs
4102 && fnargs
4103 && (parm = tree_last (fnargs)) != 0
4104 && DECL_NAME (parm)
4105 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4106 "__builtin_va_alist")));
4108 /* Nonzero if function takes extra anonymous args.
4109 This means the last named arg must be on the stack
4110 right before the anonymous ones. */
4111 int stdarg
4112 = (TYPE_ARG_TYPES (fntype) != 0
4113 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4114 != void_type_node));
4116 current_function_stdarg = stdarg;
4118 /* If the reg that the virtual arg pointer will be translated into is
4119 not a fixed reg or is the stack pointer, make a copy of the virtual
4120 arg pointer, and address parms via the copy. The frame pointer is
4121 considered fixed even though it is not marked as such.
4123 The second time through, simply use ap to avoid generating rtx. */
4125 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4126 || ! (fixed_regs[ARG_POINTER_REGNUM]
4127 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4128 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4129 else
4130 internal_arg_pointer = virtual_incoming_args_rtx;
4131 current_function_internal_arg_pointer = internal_arg_pointer;
4133 stack_args_size.constant = 0;
4134 stack_args_size.var = 0;
4136 /* If struct value address is treated as the first argument, make it so. */
4137 if (aggregate_value_p (DECL_RESULT (fndecl))
4138 && ! current_function_returns_pcc_struct
4139 && struct_value_incoming_rtx == 0)
4141 tree type = build_pointer_type (TREE_TYPE (fntype));
4143 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4145 DECL_ARG_TYPE (function_result_decl) = type;
4146 TREE_CHAIN (function_result_decl) = fnargs;
4147 fnargs = function_result_decl;
4150 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4151 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4153 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4154 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4155 #else
4156 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4157 #endif
4159 /* We haven't yet found an argument that we must push and pretend the
4160 caller did. */
4161 current_function_pretend_args_size = 0;
4163 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4165 struct args_size stack_offset;
4166 struct args_size arg_size;
4167 int passed_pointer = 0;
4168 int did_conversion = 0;
4169 tree passed_type = DECL_ARG_TYPE (parm);
4170 tree nominal_type = TREE_TYPE (parm);
4171 int pretend_named;
4173 /* Set LAST_NAMED if this is last named arg before some
4174 anonymous args. */
4175 int last_named = ((TREE_CHAIN (parm) == 0
4176 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4177 && (stdarg || current_function_varargs));
4178 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4179 most machines, if this is a varargs/stdarg function, then we treat
4180 the last named arg as if it were anonymous too. */
4181 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4183 if (TREE_TYPE (parm) == error_mark_node
4184 /* This can happen after weird syntax errors
4185 or if an enum type is defined among the parms. */
4186 || TREE_CODE (parm) != PARM_DECL
4187 || passed_type == NULL)
4189 DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
4190 = gen_rtx_MEM (BLKmode, const0_rtx);
4191 TREE_USED (parm) = 1;
4192 continue;
4195 /* For varargs.h function, save info about regs and stack space
4196 used by the individual args, not including the va_alist arg. */
4197 if (hide_last_arg && last_named)
4198 current_function_args_info = args_so_far;
4200 /* Find mode of arg as it is passed, and mode of arg
4201 as it should be during execution of this function. */
4202 passed_mode = TYPE_MODE (passed_type);
4203 nominal_mode = TYPE_MODE (nominal_type);
4205 /* If the parm's mode is VOID, its value doesn't matter,
4206 and avoid the usual things like emit_move_insn that could crash. */
4207 if (nominal_mode == VOIDmode)
4209 DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
4210 continue;
4213 /* If the parm is to be passed as a transparent union, use the
4214 type of the first field for the tests below. We have already
4215 verified that the modes are the same. */
4216 if (DECL_TRANSPARENT_UNION (parm)
4217 || (TREE_CODE (passed_type) == UNION_TYPE
4218 && TYPE_TRANSPARENT_UNION (passed_type)))
4219 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4221 /* See if this arg was passed by invisible reference. It is if
4222 it is an object whose size depends on the contents of the
4223 object itself or if the machine requires these objects be passed
4224 that way. */
4226 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4227 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4228 || TREE_ADDRESSABLE (passed_type)
4229 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4230 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4231 passed_type, named_arg)
4232 #endif
4235 passed_type = nominal_type = build_pointer_type (passed_type);
4236 passed_pointer = 1;
4237 passed_mode = nominal_mode = Pmode;
4240 promoted_mode = passed_mode;
4242 #ifdef PROMOTE_FUNCTION_ARGS
4243 /* Compute the mode in which the arg is actually extended to. */
4244 unsignedp = TREE_UNSIGNED (passed_type);
4245 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4246 #endif
4248 /* Let machine desc say which reg (if any) the parm arrives in.
4249 0 means it arrives on the stack. */
4250 #ifdef FUNCTION_INCOMING_ARG
4251 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4252 passed_type, named_arg);
4253 #else
4254 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4255 passed_type, named_arg);
4256 #endif
4258 if (entry_parm == 0)
4259 promoted_mode = passed_mode;
4261 #ifdef SETUP_INCOMING_VARARGS
4262 /* If this is the last named parameter, do any required setup for
4263 varargs or stdargs. We need to know about the case of this being an
4264 addressable type, in which case we skip the registers it
4265 would have arrived in.
4267 For stdargs, LAST_NAMED will be set for two parameters, the one that
4268 is actually the last named, and the dummy parameter. We only
4269 want to do this action once.
4271 Also, indicate when RTL generation is to be suppressed. */
4272 if (last_named && !varargs_setup)
4274 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4275 current_function_pretend_args_size, 0);
4276 varargs_setup = 1;
4278 #endif
4280 /* Determine parm's home in the stack,
4281 in case it arrives in the stack or we should pretend it did.
4283 Compute the stack position and rtx where the argument arrives
4284 and its size.
4286 There is one complexity here: If this was a parameter that would
4287 have been passed in registers, but wasn't only because it is
4288 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4289 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4290 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4291 0 as it was the previous time. */
4293 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4294 locate_and_pad_parm (promoted_mode, passed_type,
4295 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4297 #else
4298 #ifdef FUNCTION_INCOMING_ARG
4299 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4300 passed_type,
4301 pretend_named) != 0,
4302 #else
4303 FUNCTION_ARG (args_so_far, promoted_mode,
4304 passed_type,
4305 pretend_named) != 0,
4306 #endif
4307 #endif
4308 fndecl, &stack_args_size, &stack_offset, &arg_size,
4309 &alignment_pad);
4312 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4314 if (offset_rtx == const0_rtx)
4315 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4316 else
4317 stack_parm = gen_rtx_MEM (promoted_mode,
4318 gen_rtx_PLUS (Pmode,
4319 internal_arg_pointer,
4320 offset_rtx));
4322 set_mem_attributes (stack_parm, parm, 1);
4325 /* If this parameter was passed both in registers and in the stack,
4326 use the copy on the stack. */
4327 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4328 entry_parm = 0;
4330 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4331 /* If this parm was passed part in regs and part in memory,
4332 pretend it arrived entirely in memory
4333 by pushing the register-part onto the stack.
4335 In the special case of a DImode or DFmode that is split,
4336 we could put it together in a pseudoreg directly,
4337 but for now that's not worth bothering with. */
4339 if (entry_parm)
4341 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4342 passed_type, named_arg);
4344 if (nregs > 0)
4346 current_function_pretend_args_size
4347 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4348 / (PARM_BOUNDARY / BITS_PER_UNIT)
4349 * (PARM_BOUNDARY / BITS_PER_UNIT));
4351 /* Handle calls that pass values in multiple non-contiguous
4352 locations. The Irix 6 ABI has examples of this. */
4353 if (GET_CODE (entry_parm) == PARALLEL)
4354 emit_group_store (validize_mem (stack_parm), entry_parm,
4355 int_size_in_bytes (TREE_TYPE (parm)),
4356 TYPE_ALIGN (TREE_TYPE (parm)));
4358 else
4359 move_block_from_reg (REGNO (entry_parm),
4360 validize_mem (stack_parm), nregs,
4361 int_size_in_bytes (TREE_TYPE (parm)));
4363 entry_parm = stack_parm;
4366 #endif
4368 /* If we didn't decide this parm came in a register,
4369 by default it came on the stack. */
4370 if (entry_parm == 0)
4371 entry_parm = stack_parm;
4373 /* Record permanently how this parm was passed. */
4374 DECL_INCOMING_RTL (parm) = entry_parm;
4376 /* If there is actually space on the stack for this parm,
4377 count it in stack_args_size; otherwise set stack_parm to 0
4378 to indicate there is no preallocated stack slot for the parm. */
4380 if (entry_parm == stack_parm
4381 || (GET_CODE (entry_parm) == PARALLEL
4382 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4383 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4384 /* On some machines, even if a parm value arrives in a register
4385 there is still an (uninitialized) stack slot allocated for it.
4387 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4388 whether this parameter already has a stack slot allocated,
4389 because an arg block exists only if current_function_args_size
4390 is larger than some threshold, and we haven't calculated that
4391 yet. So, for now, we just assume that stack slots never exist
4392 in this case. */
4393 || REG_PARM_STACK_SPACE (fndecl) > 0
4394 #endif
4397 stack_args_size.constant += arg_size.constant;
4398 if (arg_size.var)
4399 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4401 else
4402 /* No stack slot was pushed for this parm. */
4403 stack_parm = 0;
4405 /* Update info on where next arg arrives in registers. */
4407 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4408 passed_type, named_arg);
4410 /* If we can't trust the parm stack slot to be aligned enough
4411 for its ultimate type, don't use that slot after entry.
4412 We'll make another stack slot, if we need one. */
4414 unsigned int thisparm_boundary
4415 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4417 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4418 stack_parm = 0;
4421 /* If parm was passed in memory, and we need to convert it on entry,
4422 don't store it back in that same slot. */
4423 if (entry_parm != 0
4424 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4425 stack_parm = 0;
4427 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4428 in the mode in which it arrives.
4429 STACK_PARM is an RTX for a stack slot where the parameter can live
4430 during the function (in case we want to put it there).
4431 STACK_PARM is 0 if no stack slot was pushed for it.
4433 Now output code if necessary to convert ENTRY_PARM to
4434 the type in which this function declares it,
4435 and store that result in an appropriate place,
4436 which may be a pseudo reg, may be STACK_PARM,
4437 or may be a local stack slot if STACK_PARM is 0.
4439 Set DECL_RTL to that place. */
4441 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4443 /* If a BLKmode arrives in registers, copy it to a stack slot.
4444 Handle calls that pass values in multiple non-contiguous
4445 locations. The Irix 6 ABI has examples of this. */
4446 if (GET_CODE (entry_parm) == REG
4447 || GET_CODE (entry_parm) == PARALLEL)
4449 int size_stored
4450 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4451 UNITS_PER_WORD);
4453 /* Note that we will be storing an integral number of words.
4454 So we have to be careful to ensure that we allocate an
4455 integral number of words. We do this below in the
4456 assign_stack_local if space was not allocated in the argument
4457 list. If it was, this will not work if PARM_BOUNDARY is not
4458 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4459 if it becomes a problem. */
4461 if (stack_parm == 0)
4463 stack_parm
4464 = assign_stack_local (GET_MODE (entry_parm),
4465 size_stored, 0);
4466 set_mem_attributes (stack_parm, parm, 1);
4469 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4470 abort ();
4472 /* Handle calls that pass values in multiple non-contiguous
4473 locations. The Irix 6 ABI has examples of this. */
4474 if (GET_CODE (entry_parm) == PARALLEL)
4475 emit_group_store (validize_mem (stack_parm), entry_parm,
4476 int_size_in_bytes (TREE_TYPE (parm)),
4477 TYPE_ALIGN (TREE_TYPE (parm)));
4478 else
4479 move_block_from_reg (REGNO (entry_parm),
4480 validize_mem (stack_parm),
4481 size_stored / UNITS_PER_WORD,
4482 int_size_in_bytes (TREE_TYPE (parm)));
4484 DECL_RTL (parm) = stack_parm;
4486 else if (! ((! optimize
4487 && ! DECL_REGISTER (parm)
4488 && ! DECL_INLINE (fndecl))
4489 /* layout_decl may set this. */
4490 || TREE_ADDRESSABLE (parm)
4491 || TREE_SIDE_EFFECTS (parm)
4492 /* If -ffloat-store specified, don't put explicit
4493 float variables into registers. */
4494 || (flag_float_store
4495 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4496 /* Always assign pseudo to structure return or item passed
4497 by invisible reference. */
4498 || passed_pointer || parm == function_result_decl)
4500 /* Store the parm in a pseudoregister during the function, but we
4501 may need to do it in a wider mode. */
4503 register rtx parmreg;
4504 unsigned int regno, regnoi = 0, regnor = 0;
4506 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4508 promoted_nominal_mode
4509 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4511 parmreg = gen_reg_rtx (promoted_nominal_mode);
4512 mark_user_reg (parmreg);
4514 /* If this was an item that we received a pointer to, set DECL_RTL
4515 appropriately. */
4516 if (passed_pointer)
4518 DECL_RTL (parm)
4519 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
4520 set_mem_attributes (DECL_RTL (parm), parm, 1);
4522 else
4523 DECL_RTL (parm) = parmreg;
4525 /* Copy the value into the register. */
4526 if (nominal_mode != passed_mode
4527 || promoted_nominal_mode != promoted_mode)
4529 int save_tree_used;
4530 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4531 mode, by the caller. We now have to convert it to
4532 NOMINAL_MODE, if different. However, PARMREG may be in
4533 a different mode than NOMINAL_MODE if it is being stored
4534 promoted.
4536 If ENTRY_PARM is a hard register, it might be in a register
4537 not valid for operating in its mode (e.g., an odd-numbered
4538 register for a DFmode). In that case, moves are the only
4539 thing valid, so we can't do a convert from there. This
4540 occurs when the calling sequence allow such misaligned
4541 usages.
4543 In addition, the conversion may involve a call, which could
4544 clobber parameters which haven't been copied to pseudo
4545 registers yet. Therefore, we must first copy the parm to
4546 a pseudo reg here, and save the conversion until after all
4547 parameters have been moved. */
4549 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4551 emit_move_insn (tempreg, validize_mem (entry_parm));
4553 push_to_sequence (conversion_insns);
4554 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4556 /* TREE_USED gets set erroneously during expand_assignment. */
4557 save_tree_used = TREE_USED (parm);
4558 expand_assignment (parm,
4559 make_tree (nominal_type, tempreg), 0, 0);
4560 TREE_USED (parm) = save_tree_used;
4561 conversion_insns = get_insns ();
4562 did_conversion = 1;
4563 end_sequence ();
4565 else
4566 emit_move_insn (parmreg, validize_mem (entry_parm));
4568 /* If we were passed a pointer but the actual value
4569 can safely live in a register, put it in one. */
4570 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4571 && ! ((! optimize
4572 && ! DECL_REGISTER (parm)
4573 && ! DECL_INLINE (fndecl))
4574 /* layout_decl may set this. */
4575 || TREE_ADDRESSABLE (parm)
4576 || TREE_SIDE_EFFECTS (parm)
4577 /* If -ffloat-store specified, don't put explicit
4578 float variables into registers. */
4579 || (flag_float_store
4580 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4582 /* We can't use nominal_mode, because it will have been set to
4583 Pmode above. We must use the actual mode of the parm. */
4584 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4585 mark_user_reg (parmreg);
4586 emit_move_insn (parmreg, DECL_RTL (parm));
4587 DECL_RTL (parm) = parmreg;
4588 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4589 now the parm. */
4590 stack_parm = 0;
4592 #ifdef FUNCTION_ARG_CALLEE_COPIES
4593 /* If we are passed an arg by reference and it is our responsibility
4594 to make a copy, do it now.
4595 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4596 original argument, so we must recreate them in the call to
4597 FUNCTION_ARG_CALLEE_COPIES. */
4598 /* ??? Later add code to handle the case that if the argument isn't
4599 modified, don't do the copy. */
4601 else if (passed_pointer
4602 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4603 TYPE_MODE (DECL_ARG_TYPE (parm)),
4604 DECL_ARG_TYPE (parm),
4605 named_arg)
4606 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4608 rtx copy;
4609 tree type = DECL_ARG_TYPE (parm);
4611 /* This sequence may involve a library call perhaps clobbering
4612 registers that haven't been copied to pseudos yet. */
4614 push_to_sequence (conversion_insns);
4616 if (!COMPLETE_TYPE_P (type)
4617 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4618 /* This is a variable sized object. */
4619 copy = gen_rtx_MEM (BLKmode,
4620 allocate_dynamic_stack_space
4621 (expr_size (parm), NULL_RTX,
4622 TYPE_ALIGN (type)));
4623 else
4624 copy = assign_stack_temp (TYPE_MODE (type),
4625 int_size_in_bytes (type), 1);
4626 set_mem_attributes (copy, parm, 1);
4628 store_expr (parm, copy, 0);
4629 emit_move_insn (parmreg, XEXP (copy, 0));
4630 if (current_function_check_memory_usage)
4631 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4632 XEXP (copy, 0), Pmode,
4633 GEN_INT (int_size_in_bytes (type)),
4634 TYPE_MODE (sizetype),
4635 GEN_INT (MEMORY_USE_RW),
4636 TYPE_MODE (integer_type_node));
4637 conversion_insns = get_insns ();
4638 did_conversion = 1;
4639 end_sequence ();
4641 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4643 /* In any case, record the parm's desired stack location
4644 in case we later discover it must live in the stack.
4646 If it is a COMPLEX value, store the stack location for both
4647 halves. */
4649 if (GET_CODE (parmreg) == CONCAT)
4650 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4651 else
4652 regno = REGNO (parmreg);
4654 if (regno >= max_parm_reg)
4656 rtx *new;
4657 int old_max_parm_reg = max_parm_reg;
4659 /* It's slow to expand this one register at a time,
4660 but it's also rare and we need max_parm_reg to be
4661 precisely correct. */
4662 max_parm_reg = regno + 1;
4663 new = (rtx *) xrealloc (parm_reg_stack_loc,
4664 max_parm_reg * sizeof (rtx));
4665 bzero ((char *) (new + old_max_parm_reg),
4666 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4667 parm_reg_stack_loc = new;
4670 if (GET_CODE (parmreg) == CONCAT)
4672 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4674 regnor = REGNO (gen_realpart (submode, parmreg));
4675 regnoi = REGNO (gen_imagpart (submode, parmreg));
4677 if (stack_parm != 0)
4679 parm_reg_stack_loc[regnor]
4680 = gen_realpart (submode, stack_parm);
4681 parm_reg_stack_loc[regnoi]
4682 = gen_imagpart (submode, stack_parm);
4684 else
4686 parm_reg_stack_loc[regnor] = 0;
4687 parm_reg_stack_loc[regnoi] = 0;
4690 else
4691 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4693 /* Mark the register as eliminable if we did no conversion
4694 and it was copied from memory at a fixed offset,
4695 and the arg pointer was not copied to a pseudo-reg.
4696 If the arg pointer is a pseudo reg or the offset formed
4697 an invalid address, such memory-equivalences
4698 as we make here would screw up life analysis for it. */
4699 if (nominal_mode == passed_mode
4700 && ! did_conversion
4701 && stack_parm != 0
4702 && GET_CODE (stack_parm) == MEM
4703 && stack_offset.var == 0
4704 && reg_mentioned_p (virtual_incoming_args_rtx,
4705 XEXP (stack_parm, 0)))
4707 rtx linsn = get_last_insn ();
4708 rtx sinsn, set;
4710 /* Mark complex types separately. */
4711 if (GET_CODE (parmreg) == CONCAT)
4712 /* Scan backwards for the set of the real and
4713 imaginary parts. */
4714 for (sinsn = linsn; sinsn != 0;
4715 sinsn = prev_nonnote_insn (sinsn))
4717 set = single_set (sinsn);
4718 if (set != 0
4719 && SET_DEST (set) == regno_reg_rtx [regnoi])
4720 REG_NOTES (sinsn)
4721 = gen_rtx_EXPR_LIST (REG_EQUIV,
4722 parm_reg_stack_loc[regnoi],
4723 REG_NOTES (sinsn));
4724 else if (set != 0
4725 && SET_DEST (set) == regno_reg_rtx [regnor])
4726 REG_NOTES (sinsn)
4727 = gen_rtx_EXPR_LIST (REG_EQUIV,
4728 parm_reg_stack_loc[regnor],
4729 REG_NOTES (sinsn));
4731 else if ((set = single_set (linsn)) != 0
4732 && SET_DEST (set) == parmreg)
4733 REG_NOTES (linsn)
4734 = gen_rtx_EXPR_LIST (REG_EQUIV,
4735 stack_parm, REG_NOTES (linsn));
4738 /* For pointer data type, suggest pointer register. */
4739 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4740 mark_reg_pointer (parmreg,
4741 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4744 else
4746 /* Value must be stored in the stack slot STACK_PARM
4747 during function execution. */
4749 if (promoted_mode != nominal_mode)
4751 /* Conversion is required. */
4752 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4754 emit_move_insn (tempreg, validize_mem (entry_parm));
4756 push_to_sequence (conversion_insns);
4757 entry_parm = convert_to_mode (nominal_mode, tempreg,
4758 TREE_UNSIGNED (TREE_TYPE (parm)));
4759 if (stack_parm)
4761 /* ??? This may need a big-endian conversion on sparc64. */
4762 stack_parm = change_address (stack_parm, nominal_mode,
4763 NULL_RTX);
4765 conversion_insns = get_insns ();
4766 did_conversion = 1;
4767 end_sequence ();
4770 if (entry_parm != stack_parm)
4772 if (stack_parm == 0)
4774 stack_parm
4775 = assign_stack_local (GET_MODE (entry_parm),
4776 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4777 set_mem_attributes (stack_parm, parm, 1);
4780 if (promoted_mode != nominal_mode)
4782 push_to_sequence (conversion_insns);
4783 emit_move_insn (validize_mem (stack_parm),
4784 validize_mem (entry_parm));
4785 conversion_insns = get_insns ();
4786 end_sequence ();
4788 else
4789 emit_move_insn (validize_mem (stack_parm),
4790 validize_mem (entry_parm));
4792 if (current_function_check_memory_usage)
4794 push_to_sequence (conversion_insns);
4795 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
4796 XEXP (stack_parm, 0), Pmode,
4797 GEN_INT (GET_MODE_SIZE (GET_MODE
4798 (entry_parm))),
4799 TYPE_MODE (sizetype),
4800 GEN_INT (MEMORY_USE_RW),
4801 TYPE_MODE (integer_type_node));
4803 conversion_insns = get_insns ();
4804 end_sequence ();
4806 DECL_RTL (parm) = stack_parm;
4809 /* If this "parameter" was the place where we are receiving the
4810 function's incoming structure pointer, set up the result. */
4811 if (parm == function_result_decl)
4813 tree result = DECL_RESULT (fndecl);
4815 DECL_RTL (result)
4816 = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm));
4818 set_mem_attributes (DECL_RTL (result), result, 1);
4822 /* Output all parameter conversion instructions (possibly including calls)
4823 now that all parameters have been copied out of hard registers. */
4824 emit_insns (conversion_insns);
4826 last_parm_insn = get_last_insn ();
4828 current_function_args_size = stack_args_size.constant;
4830 /* Adjust function incoming argument size for alignment and
4831 minimum length. */
4833 #ifdef REG_PARM_STACK_SPACE
4834 #ifndef MAYBE_REG_PARM_STACK_SPACE
4835 current_function_args_size = MAX (current_function_args_size,
4836 REG_PARM_STACK_SPACE (fndecl));
4837 #endif
4838 #endif
4840 #ifdef STACK_BOUNDARY
4841 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
4843 current_function_args_size
4844 = ((current_function_args_size + STACK_BYTES - 1)
4845 / STACK_BYTES) * STACK_BYTES;
4846 #endif
4848 #ifdef ARGS_GROW_DOWNWARD
4849 current_function_arg_offset_rtx
4850 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
4851 : expand_expr (size_diffop (stack_args_size.var,
4852 size_int (-stack_args_size.constant)),
4853 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
4854 #else
4855 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
4856 #endif
4858 /* See how many bytes, if any, of its args a function should try to pop
4859 on return. */
4861 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
4862 current_function_args_size);
4864 /* For stdarg.h function, save info about
4865 regs and stack space used by the named args. */
4867 if (!hide_last_arg)
4868 current_function_args_info = args_so_far;
4870 /* Set the rtx used for the function return value. Put this in its
4871 own variable so any optimizers that need this information don't have
4872 to include tree.h. Do this here so it gets done when an inlined
4873 function gets output. */
4875 current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl));
4878 /* Indicate whether REGNO is an incoming argument to the current function
4879 that was promoted to a wider mode. If so, return the RTX for the
4880 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
4881 that REGNO is promoted from and whether the promotion was signed or
4882 unsigned. */
4884 #ifdef PROMOTE_FUNCTION_ARGS
4887 promoted_input_arg (regno, pmode, punsignedp)
4888 unsigned int regno;
4889 enum machine_mode *pmode;
4890 int *punsignedp;
4892 tree arg;
4894 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
4895 arg = TREE_CHAIN (arg))
4896 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
4897 && REGNO (DECL_INCOMING_RTL (arg)) == regno
4898 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
4900 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
4901 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
4903 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
4904 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
4905 && mode != DECL_MODE (arg))
4907 *pmode = DECL_MODE (arg);
4908 *punsignedp = unsignedp;
4909 return DECL_INCOMING_RTL (arg);
4913 return 0;
4916 #endif
4918 /* Compute the size and offset from the start of the stacked arguments for a
4919 parm passed in mode PASSED_MODE and with type TYPE.
4921 INITIAL_OFFSET_PTR points to the current offset into the stacked
4922 arguments.
4924 The starting offset and size for this parm are returned in *OFFSET_PTR
4925 and *ARG_SIZE_PTR, respectively.
4927 IN_REGS is non-zero if the argument will be passed in registers. It will
4928 never be set if REG_PARM_STACK_SPACE is not defined.
4930 FNDECL is the function in which the argument was defined.
4932 There are two types of rounding that are done. The first, controlled by
4933 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
4934 list to be aligned to the specific boundary (in bits). This rounding
4935 affects the initial and starting offsets, but not the argument size.
4937 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4938 optionally rounds the size of the parm to PARM_BOUNDARY. The
4939 initial offset is not affected by this rounding, while the size always
4940 is and the starting offset may be. */
4942 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
4943 initial_offset_ptr is positive because locate_and_pad_parm's
4944 callers pass in the total size of args so far as
4945 initial_offset_ptr. arg_size_ptr is always positive.*/
4947 void
4948 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
4949 initial_offset_ptr, offset_ptr, arg_size_ptr,
4950 alignment_pad)
4951 enum machine_mode passed_mode;
4952 tree type;
4953 int in_regs ATTRIBUTE_UNUSED;
4954 tree fndecl ATTRIBUTE_UNUSED;
4955 struct args_size *initial_offset_ptr;
4956 struct args_size *offset_ptr;
4957 struct args_size *arg_size_ptr;
4958 struct args_size *alignment_pad;
4961 tree sizetree
4962 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4963 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4964 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
4966 #ifdef REG_PARM_STACK_SPACE
4967 /* If we have found a stack parm before we reach the end of the
4968 area reserved for registers, skip that area. */
4969 if (! in_regs)
4971 int reg_parm_stack_space = 0;
4973 #ifdef MAYBE_REG_PARM_STACK_SPACE
4974 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4975 #else
4976 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4977 #endif
4978 if (reg_parm_stack_space > 0)
4980 if (initial_offset_ptr->var)
4982 initial_offset_ptr->var
4983 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4984 ssize_int (reg_parm_stack_space));
4985 initial_offset_ptr->constant = 0;
4987 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4988 initial_offset_ptr->constant = reg_parm_stack_space;
4991 #endif /* REG_PARM_STACK_SPACE */
4993 arg_size_ptr->var = 0;
4994 arg_size_ptr->constant = 0;
4996 #ifdef ARGS_GROW_DOWNWARD
4997 if (initial_offset_ptr->var)
4999 offset_ptr->constant = 0;
5000 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5001 initial_offset_ptr->var);
5003 else
5005 offset_ptr->constant = - initial_offset_ptr->constant;
5006 offset_ptr->var = 0;
5008 if (where_pad != none
5009 && (TREE_CODE (sizetree) != INTEGER_CST
5010 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5011 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5012 SUB_PARM_SIZE (*offset_ptr, sizetree);
5013 if (where_pad != downward)
5014 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5015 if (initial_offset_ptr->var)
5016 arg_size_ptr->var = size_binop (MINUS_EXPR,
5017 size_binop (MINUS_EXPR,
5018 ssize_int (0),
5019 initial_offset_ptr->var),
5020 offset_ptr->var);
5022 else
5023 arg_size_ptr->constant = (- initial_offset_ptr->constant
5024 - offset_ptr->constant);
5026 #else /* !ARGS_GROW_DOWNWARD */
5027 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5028 *offset_ptr = *initial_offset_ptr;
5030 #ifdef PUSH_ROUNDING
5031 if (passed_mode != BLKmode)
5032 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5033 #endif
5035 /* Pad_below needs the pre-rounded size to know how much to pad below
5036 so this must be done before rounding up. */
5037 if (where_pad == downward
5038 /* However, BLKmode args passed in regs have their padding done elsewhere.
5039 The stack slot must be able to hold the entire register. */
5040 && !(in_regs && passed_mode == BLKmode))
5041 pad_below (offset_ptr, passed_mode, sizetree);
5043 if (where_pad != none
5044 && (TREE_CODE (sizetree) != INTEGER_CST
5045 || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)))
5046 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5048 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5049 #endif /* ARGS_GROW_DOWNWARD */
5052 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5053 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5055 static void
5056 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5057 struct args_size *offset_ptr;
5058 int boundary;
5059 struct args_size *alignment_pad;
5061 tree save_var = NULL_TREE;
5062 HOST_WIDE_INT save_constant = 0;
5064 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5066 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5068 save_var = offset_ptr->var;
5069 save_constant = offset_ptr->constant;
5072 alignment_pad->var = NULL_TREE;
5073 alignment_pad->constant = 0;
5075 if (boundary > BITS_PER_UNIT)
5077 if (offset_ptr->var)
5079 offset_ptr->var =
5080 #ifdef ARGS_GROW_DOWNWARD
5081 round_down
5082 #else
5083 round_up
5084 #endif
5085 (ARGS_SIZE_TREE (*offset_ptr),
5086 boundary / BITS_PER_UNIT);
5087 offset_ptr->constant = 0; /*?*/
5088 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5089 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5090 save_var);
5092 else
5094 offset_ptr->constant =
5095 #ifdef ARGS_GROW_DOWNWARD
5096 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5097 #else
5098 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5099 #endif
5100 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5101 alignment_pad->constant = offset_ptr->constant - save_constant;
5106 #ifndef ARGS_GROW_DOWNWARD
5107 static void
5108 pad_below (offset_ptr, passed_mode, sizetree)
5109 struct args_size *offset_ptr;
5110 enum machine_mode passed_mode;
5111 tree sizetree;
5113 if (passed_mode != BLKmode)
5115 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5116 offset_ptr->constant
5117 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5118 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5119 - GET_MODE_SIZE (passed_mode));
5121 else
5123 if (TREE_CODE (sizetree) != INTEGER_CST
5124 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5126 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5127 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5128 /* Add it in. */
5129 ADD_PARM_SIZE (*offset_ptr, s2);
5130 SUB_PARM_SIZE (*offset_ptr, sizetree);
5134 #endif
5136 /* Walk the tree of blocks describing the binding levels within a function
5137 and warn about uninitialized variables.
5138 This is done after calling flow_analysis and before global_alloc
5139 clobbers the pseudo-regs to hard regs. */
5141 void
5142 uninitialized_vars_warning (block)
5143 tree block;
5145 register tree decl, sub;
5146 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5148 if (warn_uninitialized
5149 && TREE_CODE (decl) == VAR_DECL
5150 /* These warnings are unreliable for and aggregates
5151 because assigning the fields one by one can fail to convince
5152 flow.c that the entire aggregate was initialized.
5153 Unions are troublesome because members may be shorter. */
5154 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5155 && DECL_RTL (decl) != 0
5156 && GET_CODE (DECL_RTL (decl)) == REG
5157 /* Global optimizations can make it difficult to determine if a
5158 particular variable has been initialized. However, a VAR_DECL
5159 with a nonzero DECL_INITIAL had an initializer, so do not
5160 claim it is potentially uninitialized.
5162 We do not care about the actual value in DECL_INITIAL, so we do
5163 not worry that it may be a dangling pointer. */
5164 && DECL_INITIAL (decl) == NULL_TREE
5165 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5166 warning_with_decl (decl,
5167 "`%s' might be used uninitialized in this function");
5168 if (extra_warnings
5169 && TREE_CODE (decl) == VAR_DECL
5170 && DECL_RTL (decl) != 0
5171 && GET_CODE (DECL_RTL (decl)) == REG
5172 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5173 warning_with_decl (decl,
5174 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5176 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5177 uninitialized_vars_warning (sub);
5180 /* Do the appropriate part of uninitialized_vars_warning
5181 but for arguments instead of local variables. */
5183 void
5184 setjmp_args_warning ()
5186 register tree decl;
5187 for (decl = DECL_ARGUMENTS (current_function_decl);
5188 decl; decl = TREE_CHAIN (decl))
5189 if (DECL_RTL (decl) != 0
5190 && GET_CODE (DECL_RTL (decl)) == REG
5191 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5192 warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'");
5195 /* If this function call setjmp, put all vars into the stack
5196 unless they were declared `register'. */
5198 void
5199 setjmp_protect (block)
5200 tree block;
5202 register tree decl, sub;
5203 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5204 if ((TREE_CODE (decl) == VAR_DECL
5205 || TREE_CODE (decl) == PARM_DECL)
5206 && DECL_RTL (decl) != 0
5207 && (GET_CODE (DECL_RTL (decl)) == REG
5208 || (GET_CODE (DECL_RTL (decl)) == MEM
5209 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5210 /* If this variable came from an inline function, it must be
5211 that its life doesn't overlap the setjmp. If there was a
5212 setjmp in the function, it would already be in memory. We
5213 must exclude such variable because their DECL_RTL might be
5214 set to strange things such as virtual_stack_vars_rtx. */
5215 && ! DECL_FROM_INLINE (decl)
5216 && (
5217 #ifdef NON_SAVING_SETJMP
5218 /* If longjmp doesn't restore the registers,
5219 don't put anything in them. */
5220 NON_SAVING_SETJMP
5222 #endif
5223 ! DECL_REGISTER (decl)))
5224 put_var_into_stack (decl);
5225 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5226 setjmp_protect (sub);
5229 /* Like the previous function, but for args instead of local variables. */
5231 void
5232 setjmp_protect_args ()
5234 register tree decl;
5235 for (decl = DECL_ARGUMENTS (current_function_decl);
5236 decl; decl = TREE_CHAIN (decl))
5237 if ((TREE_CODE (decl) == VAR_DECL
5238 || TREE_CODE (decl) == PARM_DECL)
5239 && DECL_RTL (decl) != 0
5240 && (GET_CODE (DECL_RTL (decl)) == REG
5241 || (GET_CODE (DECL_RTL (decl)) == MEM
5242 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5243 && (
5244 /* If longjmp doesn't restore the registers,
5245 don't put anything in them. */
5246 #ifdef NON_SAVING_SETJMP
5247 NON_SAVING_SETJMP
5249 #endif
5250 ! DECL_REGISTER (decl)))
5251 put_var_into_stack (decl);
5254 /* Return the context-pointer register corresponding to DECL,
5255 or 0 if it does not need one. */
5258 lookup_static_chain (decl)
5259 tree decl;
5261 tree context = decl_function_context (decl);
5262 tree link;
5264 if (context == 0
5265 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5266 return 0;
5268 /* We treat inline_function_decl as an alias for the current function
5269 because that is the inline function whose vars, types, etc.
5270 are being merged into the current function.
5271 See expand_inline_function. */
5272 if (context == current_function_decl || context == inline_function_decl)
5273 return virtual_stack_vars_rtx;
5275 for (link = context_display; link; link = TREE_CHAIN (link))
5276 if (TREE_PURPOSE (link) == context)
5277 return RTL_EXPR_RTL (TREE_VALUE (link));
5279 abort ();
5282 /* Convert a stack slot address ADDR for variable VAR
5283 (from a containing function)
5284 into an address valid in this function (using a static chain). */
5287 fix_lexical_addr (addr, var)
5288 rtx addr;
5289 tree var;
5291 rtx basereg;
5292 HOST_WIDE_INT displacement;
5293 tree context = decl_function_context (var);
5294 struct function *fp;
5295 rtx base = 0;
5297 /* If this is the present function, we need not do anything. */
5298 if (context == current_function_decl || context == inline_function_decl)
5299 return addr;
5301 for (fp = outer_function_chain; fp; fp = fp->next)
5302 if (fp->decl == context)
5303 break;
5305 if (fp == 0)
5306 abort ();
5308 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5309 addr = XEXP (XEXP (addr, 0), 0);
5311 /* Decode given address as base reg plus displacement. */
5312 if (GET_CODE (addr) == REG)
5313 basereg = addr, displacement = 0;
5314 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5315 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5316 else
5317 abort ();
5319 /* We accept vars reached via the containing function's
5320 incoming arg pointer and via its stack variables pointer. */
5321 if (basereg == fp->internal_arg_pointer)
5323 /* If reached via arg pointer, get the arg pointer value
5324 out of that function's stack frame.
5326 There are two cases: If a separate ap is needed, allocate a
5327 slot in the outer function for it and dereference it that way.
5328 This is correct even if the real ap is actually a pseudo.
5329 Otherwise, just adjust the offset from the frame pointer to
5330 compensate. */
5332 #ifdef NEED_SEPARATE_AP
5333 rtx addr;
5335 if (fp->x_arg_pointer_save_area == 0)
5336 fp->x_arg_pointer_save_area
5337 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5339 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5340 addr = memory_address (Pmode, addr);
5342 base = gen_rtx_MEM (Pmode, addr);
5343 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5344 base = copy_to_reg (base);
5345 #else
5346 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5347 base = lookup_static_chain (var);
5348 #endif
5351 else if (basereg == virtual_stack_vars_rtx)
5353 /* This is the same code as lookup_static_chain, duplicated here to
5354 avoid an extra call to decl_function_context. */
5355 tree link;
5357 for (link = context_display; link; link = TREE_CHAIN (link))
5358 if (TREE_PURPOSE (link) == context)
5360 base = RTL_EXPR_RTL (TREE_VALUE (link));
5361 break;
5365 if (base == 0)
5366 abort ();
5368 /* Use same offset, relative to appropriate static chain or argument
5369 pointer. */
5370 return plus_constant (base, displacement);
5373 /* Return the address of the trampoline for entering nested fn FUNCTION.
5374 If necessary, allocate a trampoline (in the stack frame)
5375 and emit rtl to initialize its contents (at entry to this function). */
5378 trampoline_address (function)
5379 tree function;
5381 tree link;
5382 tree rtlexp;
5383 rtx tramp;
5384 struct function *fp;
5385 tree fn_context;
5387 /* Find an existing trampoline and return it. */
5388 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5389 if (TREE_PURPOSE (link) == function)
5390 return
5391 round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5393 for (fp = outer_function_chain; fp; fp = fp->next)
5394 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5395 if (TREE_PURPOSE (link) == function)
5397 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5398 function);
5399 return round_trampoline_addr (tramp);
5402 /* None exists; we must make one. */
5404 /* Find the `struct function' for the function containing FUNCTION. */
5405 fp = 0;
5406 fn_context = decl_function_context (function);
5407 if (fn_context != current_function_decl
5408 && fn_context != inline_function_decl)
5409 for (fp = outer_function_chain; fp; fp = fp->next)
5410 if (fp->decl == fn_context)
5411 break;
5413 /* Allocate run-time space for this trampoline
5414 (usually in the defining function's stack frame). */
5415 #ifdef ALLOCATE_TRAMPOLINE
5416 tramp = ALLOCATE_TRAMPOLINE (fp);
5417 #else
5418 /* If rounding needed, allocate extra space
5419 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5420 #ifdef TRAMPOLINE_ALIGNMENT
5421 #define TRAMPOLINE_REAL_SIZE \
5422 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5423 #else
5424 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5425 #endif
5426 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5427 fp ? fp : cfun);
5428 #endif
5430 /* Record the trampoline for reuse and note it for later initialization
5431 by expand_function_end. */
5432 if (fp != 0)
5434 push_obstacks (fp->function_maybepermanent_obstack,
5435 fp->function_maybepermanent_obstack);
5436 rtlexp = make_node (RTL_EXPR);
5437 RTL_EXPR_RTL (rtlexp) = tramp;
5438 fp->x_trampoline_list = tree_cons (function, rtlexp,
5439 fp->x_trampoline_list);
5440 pop_obstacks ();
5442 else
5444 /* Make the RTL_EXPR node temporary, not momentary, so that the
5445 trampoline_list doesn't become garbage. */
5446 int momentary = suspend_momentary ();
5447 rtlexp = make_node (RTL_EXPR);
5448 resume_momentary (momentary);
5450 RTL_EXPR_RTL (rtlexp) = tramp;
5451 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5454 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5455 return round_trampoline_addr (tramp);
5458 /* Given a trampoline address,
5459 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5461 static rtx
5462 round_trampoline_addr (tramp)
5463 rtx tramp;
5465 #ifdef TRAMPOLINE_ALIGNMENT
5466 /* Round address up to desired boundary. */
5467 rtx temp = gen_reg_rtx (Pmode);
5468 temp = expand_binop (Pmode, add_optab, tramp,
5469 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5470 temp, 0, OPTAB_LIB_WIDEN);
5471 tramp = expand_binop (Pmode, and_optab, temp,
5472 GEN_INT (- TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5473 temp, 0, OPTAB_LIB_WIDEN);
5474 #endif
5475 return tramp;
5478 /* Put all this function's BLOCK nodes including those that are chained
5479 onto the first block into a vector, and return it.
5480 Also store in each NOTE for the beginning or end of a block
5481 the index of that block in the vector.
5482 The arguments are BLOCK, the chain of top-level blocks of the function,
5483 and INSNS, the insn chain of the function. */
5485 void
5486 identify_blocks ()
5488 int n_blocks;
5489 tree *block_vector, *last_block_vector;
5490 tree *block_stack;
5491 tree block = DECL_INITIAL (current_function_decl);
5493 if (block == 0)
5494 return;
5496 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5497 depth-first order. */
5498 block_vector = get_block_vector (block, &n_blocks);
5499 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5501 last_block_vector = identify_blocks_1 (get_insns (),
5502 block_vector + 1,
5503 block_vector + n_blocks,
5504 block_stack);
5506 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5507 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5508 if (0 && last_block_vector != block_vector + n_blocks)
5509 abort ();
5511 free (block_vector);
5512 free (block_stack);
5515 /* Subroutine of identify_blocks. Do the block substitution on the
5516 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5518 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5519 BLOCK_VECTOR is incremented for each block seen. */
5521 static tree *
5522 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5523 rtx insns;
5524 tree *block_vector;
5525 tree *end_block_vector;
5526 tree *orig_block_stack;
5528 rtx insn;
5529 tree *block_stack = orig_block_stack;
5531 for (insn = insns; insn; insn = NEXT_INSN (insn))
5533 if (GET_CODE (insn) == NOTE)
5535 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5537 tree b;
5539 /* If there are more block notes than BLOCKs, something
5540 is badly wrong. */
5541 if (block_vector == end_block_vector)
5542 abort ();
5544 b = *block_vector++;
5545 NOTE_BLOCK (insn) = b;
5546 *block_stack++ = b;
5548 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5550 /* If there are more NOTE_INSN_BLOCK_ENDs than
5551 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5552 if (block_stack == orig_block_stack)
5553 abort ();
5555 NOTE_BLOCK (insn) = *--block_stack;
5558 else if (GET_CODE (insn) == CALL_INSN
5559 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5561 rtx cp = PATTERN (insn);
5563 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5564 end_block_vector, block_stack);
5565 if (XEXP (cp, 1))
5566 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5567 end_block_vector, block_stack);
5568 if (XEXP (cp, 2))
5569 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5570 end_block_vector, block_stack);
5574 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5575 something is badly wrong. */
5576 if (block_stack != orig_block_stack)
5577 abort ();
5579 return block_vector;
5582 /* Identify BLOCKs referenced by more than one
5583 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5585 void
5586 reorder_blocks ()
5588 tree block = DECL_INITIAL (current_function_decl);
5589 varray_type block_stack;
5591 if (block == NULL_TREE)
5592 return;
5594 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5596 /* Prune the old trees away, so that they don't get in the way. */
5597 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5598 BLOCK_CHAIN (block) = NULL_TREE;
5600 reorder_blocks_1 (get_insns (), block, &block_stack);
5602 BLOCK_SUBBLOCKS (block)
5603 = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5605 VARRAY_FREE (block_stack);
5608 /* Helper function for reorder_blocks. Process the insn chain beginning
5609 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5611 static void
5612 reorder_blocks_1 (insns, current_block, p_block_stack)
5613 rtx insns;
5614 tree current_block;
5615 varray_type *p_block_stack;
5617 rtx insn;
5619 for (insn = insns; insn; insn = NEXT_INSN (insn))
5621 if (GET_CODE (insn) == NOTE)
5623 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5625 tree block = NOTE_BLOCK (insn);
5626 /* If we have seen this block before, copy it. */
5627 if (TREE_ASM_WRITTEN (block))
5629 block = copy_node (block);
5630 NOTE_BLOCK (insn) = block;
5632 BLOCK_SUBBLOCKS (block) = 0;
5633 TREE_ASM_WRITTEN (block) = 1;
5634 BLOCK_SUPERCONTEXT (block) = current_block;
5635 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5636 BLOCK_SUBBLOCKS (current_block) = block;
5637 current_block = block;
5638 VARRAY_PUSH_TREE (*p_block_stack, block);
5640 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5642 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5643 VARRAY_POP (*p_block_stack);
5644 BLOCK_SUBBLOCKS (current_block)
5645 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5646 current_block = BLOCK_SUPERCONTEXT (current_block);
5649 else if (GET_CODE (insn) == CALL_INSN
5650 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5652 rtx cp = PATTERN (insn);
5653 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5654 if (XEXP (cp, 1))
5655 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5656 if (XEXP (cp, 2))
5657 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5662 /* Reverse the order of elements in the chain T of blocks,
5663 and return the new head of the chain (old last element). */
5665 static tree
5666 blocks_nreverse (t)
5667 tree t;
5669 register tree prev = 0, decl, next;
5670 for (decl = t; decl; decl = next)
5672 next = BLOCK_CHAIN (decl);
5673 BLOCK_CHAIN (decl) = prev;
5674 prev = decl;
5676 return prev;
5679 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5680 non-NULL, list them all into VECTOR, in a depth-first preorder
5681 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5682 blocks. */
5684 static int
5685 all_blocks (block, vector)
5686 tree block;
5687 tree *vector;
5689 int n_blocks = 0;
5691 while (block)
5693 TREE_ASM_WRITTEN (block) = 0;
5695 /* Record this block. */
5696 if (vector)
5697 vector[n_blocks] = block;
5699 ++n_blocks;
5701 /* Record the subblocks, and their subblocks... */
5702 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5703 vector ? vector + n_blocks : 0);
5704 block = BLOCK_CHAIN (block);
5707 return n_blocks;
5710 /* Return a vector containing all the blocks rooted at BLOCK. The
5711 number of elements in the vector is stored in N_BLOCKS_P. The
5712 vector is dynamically allocated; it is the caller's responsibility
5713 to call `free' on the pointer returned. */
5715 static tree *
5716 get_block_vector (block, n_blocks_p)
5717 tree block;
5718 int *n_blocks_p;
5720 tree *block_vector;
5722 *n_blocks_p = all_blocks (block, NULL);
5723 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5724 all_blocks (block, block_vector);
5726 return block_vector;
5729 static int next_block_index = 2;
5731 /* Set BLOCK_NUMBER for all the blocks in FN. */
5733 void
5734 number_blocks (fn)
5735 tree fn;
5737 int i;
5738 int n_blocks;
5739 tree *block_vector;
5741 /* For SDB and XCOFF debugging output, we start numbering the blocks
5742 from 1 within each function, rather than keeping a running
5743 count. */
5744 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
5745 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
5746 next_block_index = 1;
5747 #endif
5749 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
5751 /* The top-level BLOCK isn't numbered at all. */
5752 for (i = 1; i < n_blocks; ++i)
5753 /* We number the blocks from two. */
5754 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
5756 free (block_vector);
5758 return;
5762 /* Allocate a function structure and reset its contents to the defaults. */
5763 static void
5764 prepare_function_start ()
5766 cfun = (struct function *) xcalloc (1, sizeof (struct function));
5768 init_stmt_for_function ();
5769 init_eh_for_function ();
5771 cse_not_expected = ! optimize;
5773 /* Caller save not needed yet. */
5774 caller_save_needed = 0;
5776 /* No stack slots have been made yet. */
5777 stack_slot_list = 0;
5779 current_function_has_nonlocal_label = 0;
5780 current_function_has_nonlocal_goto = 0;
5782 /* There is no stack slot for handling nonlocal gotos. */
5783 nonlocal_goto_handler_slots = 0;
5784 nonlocal_goto_stack_level = 0;
5786 /* No labels have been declared for nonlocal use. */
5787 nonlocal_labels = 0;
5788 nonlocal_goto_handler_labels = 0;
5790 /* No function calls so far in this function. */
5791 function_call_count = 0;
5793 /* No parm regs have been allocated.
5794 (This is important for output_inline_function.) */
5795 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
5797 /* Initialize the RTL mechanism. */
5798 init_emit ();
5800 /* Initialize the queue of pending postincrement and postdecrements,
5801 and some other info in expr.c. */
5802 init_expr ();
5804 /* We haven't done register allocation yet. */
5805 reg_renumber = 0;
5807 init_varasm_status (cfun);
5809 /* Clear out data used for inlining. */
5810 cfun->inlinable = 0;
5811 cfun->original_decl_initial = 0;
5812 cfun->original_arg_vector = 0;
5814 #ifdef STACK_BOUNDARY
5815 cfun->stack_alignment_needed = STACK_BOUNDARY;
5816 cfun->preferred_stack_boundary = STACK_BOUNDARY;
5817 #else
5818 cfun->stack_alignment_needed = 0;
5819 cfun->preferred_stack_boundary = 0;
5820 #endif
5822 /* Set if a call to setjmp is seen. */
5823 current_function_calls_setjmp = 0;
5825 /* Set if a call to longjmp is seen. */
5826 current_function_calls_longjmp = 0;
5828 current_function_calls_alloca = 0;
5829 current_function_contains_functions = 0;
5830 current_function_is_leaf = 0;
5831 current_function_nothrow = 0;
5832 current_function_sp_is_unchanging = 0;
5833 current_function_uses_only_leaf_regs = 0;
5834 current_function_has_computed_jump = 0;
5835 current_function_is_thunk = 0;
5837 current_function_returns_pcc_struct = 0;
5838 current_function_returns_struct = 0;
5839 current_function_epilogue_delay_list = 0;
5840 current_function_uses_const_pool = 0;
5841 current_function_uses_pic_offset_table = 0;
5842 current_function_cannot_inline = 0;
5844 /* We have not yet needed to make a label to jump to for tail-recursion. */
5845 tail_recursion_label = 0;
5847 /* We haven't had a need to make a save area for ap yet. */
5848 arg_pointer_save_area = 0;
5850 /* No stack slots allocated yet. */
5851 frame_offset = 0;
5853 /* No SAVE_EXPRs in this function yet. */
5854 save_expr_regs = 0;
5856 /* No RTL_EXPRs in this function yet. */
5857 rtl_expr_chain = 0;
5859 /* Set up to allocate temporaries. */
5860 init_temp_slots ();
5862 /* Indicate that we need to distinguish between the return value of the
5863 present function and the return value of a function being called. */
5864 rtx_equal_function_value_matters = 1;
5866 /* Indicate that we have not instantiated virtual registers yet. */
5867 virtuals_instantiated = 0;
5869 /* Indicate we have no need of a frame pointer yet. */
5870 frame_pointer_needed = 0;
5872 /* By default assume not varargs or stdarg. */
5873 current_function_varargs = 0;
5874 current_function_stdarg = 0;
5876 /* We haven't made any trampolines for this function yet. */
5877 trampoline_list = 0;
5879 init_pending_stack_adjust ();
5880 inhibit_defer_pop = 0;
5882 current_function_outgoing_args_size = 0;
5884 if (init_lang_status)
5885 (*init_lang_status) (cfun);
5886 if (init_machine_status)
5887 (*init_machine_status) (cfun);
5890 /* Initialize the rtl expansion mechanism so that we can do simple things
5891 like generate sequences. This is used to provide a context during global
5892 initialization of some passes. */
5893 void
5894 init_dummy_function_start ()
5896 prepare_function_start ();
5899 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5900 and initialize static variables for generating RTL for the statements
5901 of the function. */
5903 void
5904 init_function_start (subr, filename, line)
5905 tree subr;
5906 const char *filename;
5907 int line;
5909 prepare_function_start ();
5911 /* Remember this function for later. */
5912 cfun->next_global = all_functions;
5913 all_functions = cfun;
5915 current_function_name = (*decl_printable_name) (subr, 2);
5916 cfun->decl = subr;
5918 /* Nonzero if this is a nested function that uses a static chain. */
5920 current_function_needs_context
5921 = (decl_function_context (current_function_decl) != 0
5922 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
5924 /* Within function body, compute a type's size as soon it is laid out. */
5925 immediate_size_expand++;
5927 /* Prevent ever trying to delete the first instruction of a function.
5928 Also tell final how to output a linenum before the function prologue.
5929 Note linenums could be missing, e.g. when compiling a Java .class file. */
5930 if (line > 0)
5931 emit_line_note (filename, line);
5933 /* Make sure first insn is a note even if we don't want linenums.
5934 This makes sure the first insn will never be deleted.
5935 Also, final expects a note to appear there. */
5936 emit_note (NULL_PTR, NOTE_INSN_DELETED);
5938 /* Set flags used by final.c. */
5939 if (aggregate_value_p (DECL_RESULT (subr)))
5941 #ifdef PCC_STATIC_STRUCT_RETURN
5942 current_function_returns_pcc_struct = 1;
5943 #endif
5944 current_function_returns_struct = 1;
5947 /* Warn if this value is an aggregate type,
5948 regardless of which calling convention we are using for it. */
5949 if (warn_aggregate_return
5950 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5951 warning ("function returns an aggregate");
5953 current_function_returns_pointer
5954 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
5957 /* Make sure all values used by the optimization passes have sane
5958 defaults. */
5959 void
5960 init_function_for_compilation ()
5962 reg_renumber = 0;
5964 /* No prologue/epilogue insns yet. */
5965 VARRAY_GROW (prologue, 0);
5966 VARRAY_GROW (epilogue, 0);
5967 VARRAY_GROW (sibcall_epilogue, 0);
5970 /* Indicate that the current function uses extra args
5971 not explicitly mentioned in the argument list in any fashion. */
5973 void
5974 mark_varargs ()
5976 current_function_varargs = 1;
5979 /* Expand a call to __main at the beginning of a possible main function. */
5981 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
5982 #undef HAS_INIT_SECTION
5983 #define HAS_INIT_SECTION
5984 #endif
5986 void
5987 expand_main_function ()
5989 #if !defined (HAS_INIT_SECTION)
5990 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
5991 VOIDmode, 0);
5992 #endif /* not HAS_INIT_SECTION */
5995 extern struct obstack permanent_obstack;
5997 /* Start the RTL for a new function, and set variables used for
5998 emitting RTL.
5999 SUBR is the FUNCTION_DECL node.
6000 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6001 the function's parameters, which must be run at any return statement. */
6003 void
6004 expand_function_start (subr, parms_have_cleanups)
6005 tree subr;
6006 int parms_have_cleanups;
6008 tree tem;
6009 rtx last_ptr = NULL_RTX;
6011 /* Make sure volatile mem refs aren't considered
6012 valid operands of arithmetic insns. */
6013 init_recog_no_volatile ();
6015 /* Set this before generating any memory accesses. */
6016 current_function_check_memory_usage
6017 = (flag_check_memory_usage
6018 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6020 current_function_instrument_entry_exit
6021 = (flag_instrument_function_entry_exit
6022 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6024 current_function_limit_stack
6025 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6027 /* If function gets a static chain arg, store it in the stack frame.
6028 Do this first, so it gets the first stack slot offset. */
6029 if (current_function_needs_context)
6031 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6033 /* Delay copying static chain if it is not a register to avoid
6034 conflicts with regs used for parameters. */
6035 if (! SMALL_REGISTER_CLASSES
6036 || GET_CODE (static_chain_incoming_rtx) == REG)
6037 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6040 /* If the parameters of this function need cleaning up, get a label
6041 for the beginning of the code which executes those cleanups. This must
6042 be done before doing anything with return_label. */
6043 if (parms_have_cleanups)
6044 cleanup_label = gen_label_rtx ();
6045 else
6046 cleanup_label = 0;
6048 /* Make the label for return statements to jump to, if this machine
6049 does not have a one-instruction return and uses an epilogue,
6050 or if it returns a structure, or if it has parm cleanups. */
6051 #ifdef HAVE_return
6052 if (cleanup_label == 0 && HAVE_return
6053 && ! current_function_instrument_entry_exit
6054 && ! current_function_returns_pcc_struct
6055 && ! (current_function_returns_struct && ! optimize))
6056 return_label = 0;
6057 else
6058 return_label = gen_label_rtx ();
6059 #else
6060 return_label = gen_label_rtx ();
6061 #endif
6063 /* Initialize rtx used to return the value. */
6064 /* Do this before assign_parms so that we copy the struct value address
6065 before any library calls that assign parms might generate. */
6067 /* Decide whether to return the value in memory or in a register. */
6068 if (aggregate_value_p (DECL_RESULT (subr)))
6070 /* Returning something that won't go in a register. */
6071 register rtx value_address = 0;
6073 #ifdef PCC_STATIC_STRUCT_RETURN
6074 if (current_function_returns_pcc_struct)
6076 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6077 value_address = assemble_static_space (size);
6079 else
6080 #endif
6082 /* Expect to be passed the address of a place to store the value.
6083 If it is passed as an argument, assign_parms will take care of
6084 it. */
6085 if (struct_value_incoming_rtx)
6087 value_address = gen_reg_rtx (Pmode);
6088 emit_move_insn (value_address, struct_value_incoming_rtx);
6091 if (value_address)
6093 DECL_RTL (DECL_RESULT (subr))
6094 = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6095 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6096 DECL_RESULT (subr), 1);
6099 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6100 /* If return mode is void, this decl rtl should not be used. */
6101 DECL_RTL (DECL_RESULT (subr)) = 0;
6102 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6104 /* If function will end with cleanup code for parms,
6105 compute the return values into a pseudo reg,
6106 which we will copy into the true return register
6107 after the cleanups are done. */
6109 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6111 #ifdef PROMOTE_FUNCTION_RETURN
6112 tree type = TREE_TYPE (DECL_RESULT (subr));
6113 int unsignedp = TREE_UNSIGNED (type);
6115 mode = promote_mode (type, mode, &unsignedp, 1);
6116 #endif
6118 DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode);
6120 else
6121 /* Scalar, returned in a register. */
6123 DECL_RTL (DECL_RESULT (subr))
6124 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1);
6126 /* Mark this reg as the function's return value. */
6127 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6129 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6130 /* Needed because we may need to move this to memory
6131 in case it's a named return value whose address is taken. */
6132 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6136 /* Initialize rtx for parameters and local variables.
6137 In some cases this requires emitting insns. */
6139 assign_parms (subr);
6141 /* Copy the static chain now if it wasn't a register. The delay is to
6142 avoid conflicts with the parameter passing registers. */
6144 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6145 if (GET_CODE (static_chain_incoming_rtx) != REG)
6146 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6148 /* The following was moved from init_function_start.
6149 The move is supposed to make sdb output more accurate. */
6150 /* Indicate the beginning of the function body,
6151 as opposed to parm setup. */
6152 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6154 if (GET_CODE (get_last_insn ()) != NOTE)
6155 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6156 parm_birth_insn = get_last_insn ();
6158 context_display = 0;
6159 if (current_function_needs_context)
6161 /* Fetch static chain values for containing functions. */
6162 tem = decl_function_context (current_function_decl);
6163 /* Copy the static chain pointer into a pseudo. If we have
6164 small register classes, copy the value from memory if
6165 static_chain_incoming_rtx is a REG. */
6166 if (tem)
6168 /* If the static chain originally came in a register, put it back
6169 there, then move it out in the next insn. The reason for
6170 this peculiar code is to satisfy function integration. */
6171 if (SMALL_REGISTER_CLASSES
6172 && GET_CODE (static_chain_incoming_rtx) == REG)
6173 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6174 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6177 while (tem)
6179 tree rtlexp = make_node (RTL_EXPR);
6181 RTL_EXPR_RTL (rtlexp) = last_ptr;
6182 context_display = tree_cons (tem, rtlexp, context_display);
6183 tem = decl_function_context (tem);
6184 if (tem == 0)
6185 break;
6186 /* Chain thru stack frames, assuming pointer to next lexical frame
6187 is found at the place we always store it. */
6188 #ifdef FRAME_GROWS_DOWNWARD
6189 last_ptr = plus_constant (last_ptr, - GET_MODE_SIZE (Pmode));
6190 #endif
6191 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6192 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6193 last_ptr = copy_to_reg (last_ptr);
6195 /* If we are not optimizing, ensure that we know that this
6196 piece of context is live over the entire function. */
6197 if (! optimize)
6198 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6199 save_expr_regs);
6203 if (current_function_instrument_entry_exit)
6205 rtx fun = DECL_RTL (current_function_decl);
6206 if (GET_CODE (fun) == MEM)
6207 fun = XEXP (fun, 0);
6208 else
6209 abort ();
6210 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6211 fun, Pmode,
6212 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6214 hard_frame_pointer_rtx),
6215 Pmode);
6218 /* After the display initializations is where the tail-recursion label
6219 should go, if we end up needing one. Ensure we have a NOTE here
6220 since some things (like trampolines) get placed before this. */
6221 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6223 /* Evaluate now the sizes of any types declared among the arguments. */
6224 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6226 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6227 EXPAND_MEMORY_USE_BAD);
6228 /* Flush the queue in case this parameter declaration has
6229 side-effects. */
6230 emit_queue ();
6233 /* Make sure there is a line number after the function entry setup code. */
6234 force_next_line_note ();
6237 /* Undo the effects of init_dummy_function_start. */
6238 void
6239 expand_dummy_function_end ()
6241 /* End any sequences that failed to be closed due to syntax errors. */
6242 while (in_sequence_p ())
6243 end_sequence ();
6245 /* Outside function body, can't compute type's actual size
6246 until next function's body starts. */
6248 free_after_parsing (cfun);
6249 free_after_compilation (cfun);
6250 free (cfun);
6251 cfun = 0;
6254 /* Call DOIT for each hard register used as a return value from
6255 the current function. */
6257 void
6258 diddle_return_value (doit, arg)
6259 void (*doit) PARAMS ((rtx, void *));
6260 void *arg;
6262 rtx outgoing = current_function_return_rtx;
6263 int pcc;
6265 if (! outgoing)
6266 return;
6268 pcc = (current_function_returns_struct
6269 || current_function_returns_pcc_struct);
6271 if ((GET_CODE (outgoing) == REG
6272 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6273 || pcc)
6275 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6277 /* A PCC-style return returns a pointer to the memory in which
6278 the structure is stored. */
6279 if (pcc)
6280 type = build_pointer_type (type);
6282 #ifdef FUNCTION_OUTGOING_VALUE
6283 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6284 #else
6285 outgoing = FUNCTION_VALUE (type, current_function_decl);
6286 #endif
6287 /* If this is a BLKmode structure being returned in registers, then use
6288 the mode computed in expand_return. */
6289 if (GET_MODE (outgoing) == BLKmode)
6290 PUT_MODE (outgoing,
6291 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6292 REG_FUNCTION_VALUE_P (outgoing) = 1;
6295 if (GET_CODE (outgoing) == REG)
6296 (*doit) (outgoing, arg);
6297 else if (GET_CODE (outgoing) == PARALLEL)
6299 int i;
6301 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6303 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6305 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6306 (*doit) (x, arg);
6311 static void
6312 do_clobber_return_reg (reg, arg)
6313 rtx reg;
6314 void *arg ATTRIBUTE_UNUSED;
6316 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6319 void
6320 clobber_return_register ()
6322 diddle_return_value (do_clobber_return_reg, NULL);
6325 static void
6326 do_use_return_reg (reg, arg)
6327 rtx reg;
6328 void *arg ATTRIBUTE_UNUSED;
6330 emit_insn (gen_rtx_USE (VOIDmode, reg));
6333 void
6334 use_return_register ()
6336 diddle_return_value (do_use_return_reg, NULL);
6339 /* Generate RTL for the end of the current function.
6340 FILENAME and LINE are the current position in the source file.
6342 It is up to language-specific callers to do cleanups for parameters--
6343 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6345 void
6346 expand_function_end (filename, line, end_bindings)
6347 const char *filename;
6348 int line;
6349 int end_bindings;
6351 tree link;
6353 #ifdef TRAMPOLINE_TEMPLATE
6354 static rtx initial_trampoline;
6355 #endif
6357 finish_expr_for_function ();
6359 #ifdef NON_SAVING_SETJMP
6360 /* Don't put any variables in registers if we call setjmp
6361 on a machine that fails to restore the registers. */
6362 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6364 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6365 setjmp_protect (DECL_INITIAL (current_function_decl));
6367 setjmp_protect_args ();
6369 #endif
6371 /* Save the argument pointer if a save area was made for it. */
6372 if (arg_pointer_save_area)
6374 /* arg_pointer_save_area may not be a valid memory address, so we
6375 have to check it and fix it if necessary. */
6376 rtx seq;
6377 start_sequence ();
6378 emit_move_insn (validize_mem (arg_pointer_save_area),
6379 virtual_incoming_args_rtx);
6380 seq = gen_sequence ();
6381 end_sequence ();
6382 emit_insn_before (seq, tail_recursion_reentry);
6385 /* Initialize any trampolines required by this function. */
6386 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6388 tree function = TREE_PURPOSE (link);
6389 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6390 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6391 #ifdef TRAMPOLINE_TEMPLATE
6392 rtx blktramp;
6393 #endif
6394 rtx seq;
6396 #ifdef TRAMPOLINE_TEMPLATE
6397 /* First make sure this compilation has a template for
6398 initializing trampolines. */
6399 if (initial_trampoline == 0)
6401 end_temporary_allocation ();
6402 initial_trampoline
6403 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6404 resume_temporary_allocation ();
6406 ggc_add_rtx_root (&initial_trampoline, 1);
6408 #endif
6410 /* Generate insns to initialize the trampoline. */
6411 start_sequence ();
6412 tramp = round_trampoline_addr (XEXP (tramp, 0));
6413 #ifdef TRAMPOLINE_TEMPLATE
6414 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6415 emit_block_move (blktramp, initial_trampoline,
6416 GEN_INT (TRAMPOLINE_SIZE),
6417 TRAMPOLINE_ALIGNMENT);
6418 #endif
6419 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6420 seq = get_insns ();
6421 end_sequence ();
6423 /* Put those insns at entry to the containing function (this one). */
6424 emit_insns_before (seq, tail_recursion_reentry);
6427 /* If we are doing stack checking and this function makes calls,
6428 do a stack probe at the start of the function to ensure we have enough
6429 space for another stack frame. */
6430 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6432 rtx insn, seq;
6434 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6435 if (GET_CODE (insn) == CALL_INSN)
6437 start_sequence ();
6438 probe_stack_range (STACK_CHECK_PROTECT,
6439 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6440 seq = get_insns ();
6441 end_sequence ();
6442 emit_insns_before (seq, tail_recursion_reentry);
6443 break;
6447 /* Warn about unused parms if extra warnings were specified. */
6448 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6449 warning. WARN_UNUSED_PARAMETER is negative when set by
6450 -Wunused. */
6451 if (warn_unused_parameter > 0
6452 || (warn_unused_parameter < 0 && extra_warnings))
6454 tree decl;
6456 for (decl = DECL_ARGUMENTS (current_function_decl);
6457 decl; decl = TREE_CHAIN (decl))
6458 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6459 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6460 warning_with_decl (decl, "unused parameter `%s'");
6463 /* Delete handlers for nonlocal gotos if nothing uses them. */
6464 if (nonlocal_goto_handler_slots != 0
6465 && ! current_function_has_nonlocal_label)
6466 delete_handlers ();
6468 /* End any sequences that failed to be closed due to syntax errors. */
6469 while (in_sequence_p ())
6470 end_sequence ();
6472 /* Outside function body, can't compute type's actual size
6473 until next function's body starts. */
6474 immediate_size_expand--;
6476 clear_pending_stack_adjust ();
6477 do_pending_stack_adjust ();
6479 /* Mark the end of the function body.
6480 If control reaches this insn, the function can drop through
6481 without returning a value. */
6482 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6484 /* Must mark the last line number note in the function, so that the test
6485 coverage code can avoid counting the last line twice. This just tells
6486 the code to ignore the immediately following line note, since there
6487 already exists a copy of this note somewhere above. This line number
6488 note is still needed for debugging though, so we can't delete it. */
6489 if (flag_test_coverage)
6490 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6492 /* Output a linenumber for the end of the function.
6493 SDB depends on this. */
6494 emit_line_note_force (filename, line);
6496 /* Output the label for the actual return from the function,
6497 if one is expected. This happens either because a function epilogue
6498 is used instead of a return instruction, or because a return was done
6499 with a goto in order to run local cleanups, or because of pcc-style
6500 structure returning. */
6502 if (return_label)
6504 /* Before the return label, clobber the return registers so that
6505 they are not propogated live to the rest of the function. This
6506 can only happen with functions that drop through; if there had
6507 been a return statement, there would have either been a return
6508 rtx, or a jump to the return label. */
6509 clobber_return_register ();
6511 emit_label (return_label);
6514 /* C++ uses this. */
6515 if (end_bindings)
6516 expand_end_bindings (0, 0, 0);
6518 /* Now handle any leftover exception regions that may have been
6519 created for the parameters. */
6521 rtx last = get_last_insn ();
6522 rtx label;
6524 expand_leftover_cleanups ();
6526 /* If there are any catch_clauses remaining, output them now. */
6527 emit_insns (catch_clauses);
6528 catch_clauses = catch_clauses_last = NULL_RTX;
6529 /* If the above emitted any code, may sure we jump around it. */
6530 if (last != get_last_insn ())
6532 label = gen_label_rtx ();
6533 last = emit_jump_insn_after (gen_jump (label), last);
6534 last = emit_barrier_after (last);
6535 emit_label (label);
6539 if (current_function_instrument_entry_exit)
6541 rtx fun = DECL_RTL (current_function_decl);
6542 if (GET_CODE (fun) == MEM)
6543 fun = XEXP (fun, 0);
6544 else
6545 abort ();
6546 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6547 fun, Pmode,
6548 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6550 hard_frame_pointer_rtx),
6551 Pmode);
6554 /* If we had calls to alloca, and this machine needs
6555 an accurate stack pointer to exit the function,
6556 insert some code to save and restore the stack pointer. */
6557 #ifdef EXIT_IGNORE_STACK
6558 if (! EXIT_IGNORE_STACK)
6559 #endif
6560 if (current_function_calls_alloca)
6562 rtx tem = 0;
6564 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6565 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6568 /* If scalar return value was computed in a pseudo-reg,
6569 copy that to the hard return register. */
6570 if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0
6571 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG
6572 && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl)))
6573 >= FIRST_PSEUDO_REGISTER))
6575 rtx real_decl_result;
6577 #ifdef FUNCTION_OUTGOING_VALUE
6578 real_decl_result
6579 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6580 current_function_decl);
6581 #else
6582 real_decl_result
6583 = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)),
6584 current_function_decl);
6585 #endif
6586 REG_FUNCTION_VALUE_P (real_decl_result) = 1;
6587 /* If this is a BLKmode structure being returned in registers, then use
6588 the mode computed in expand_return. */
6589 if (GET_MODE (real_decl_result) == BLKmode)
6590 PUT_MODE (real_decl_result,
6591 GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl))));
6592 emit_move_insn (real_decl_result,
6593 DECL_RTL (DECL_RESULT (current_function_decl)));
6595 /* The delay slot scheduler assumes that current_function_return_rtx
6596 holds the hard register containing the return value, not a temporary
6597 pseudo. */
6598 current_function_return_rtx = real_decl_result;
6601 /* If returning a structure, arrange to return the address of the value
6602 in a place where debuggers expect to find it.
6604 If returning a structure PCC style,
6605 the caller also depends on this value.
6606 And current_function_returns_pcc_struct is not necessarily set. */
6607 if (current_function_returns_struct
6608 || current_function_returns_pcc_struct)
6610 rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6611 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6612 #ifdef FUNCTION_OUTGOING_VALUE
6613 rtx outgoing
6614 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6615 current_function_decl);
6616 #else
6617 rtx outgoing
6618 = FUNCTION_VALUE (build_pointer_type (type),
6619 current_function_decl);
6620 #endif
6622 /* Mark this as a function return value so integrate will delete the
6623 assignment and USE below when inlining this function. */
6624 REG_FUNCTION_VALUE_P (outgoing) = 1;
6626 emit_move_insn (outgoing, value_address);
6629 /* ??? This should no longer be necessary since stupid is no longer with
6630 us, but there are some parts of the compiler (eg reload_combine, and
6631 sh mach_dep_reorg) that still try and compute their own lifetime info
6632 instead of using the general framework. */
6633 use_return_register ();
6635 /* If this is an implementation of __throw, do what's necessary to
6636 communicate between __builtin_eh_return and the epilogue. */
6637 expand_eh_return ();
6639 /* Output a return insn if we are using one.
6640 Otherwise, let the rtl chain end here, to drop through
6641 into the epilogue. */
6643 #ifdef HAVE_return
6644 if (HAVE_return)
6646 emit_jump_insn (gen_return ());
6647 emit_barrier ();
6649 #endif
6651 /* Fix up any gotos that jumped out to the outermost
6652 binding level of the function.
6653 Must follow emitting RETURN_LABEL. */
6655 /* If you have any cleanups to do at this point,
6656 and they need to create temporary variables,
6657 then you will lose. */
6658 expand_fixups (get_insns ());
6661 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6662 sequence or a single insn). */
6664 static void
6665 record_insns (insns, vecp)
6666 rtx insns;
6667 varray_type *vecp;
6669 if (GET_CODE (insns) == SEQUENCE)
6671 int len = XVECLEN (insns, 0);
6672 int i = VARRAY_SIZE (*vecp);
6674 VARRAY_GROW (*vecp, i + len);
6675 while (--len >= 0)
6677 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6678 ++i;
6681 else
6683 int i = VARRAY_SIZE (*vecp);
6684 VARRAY_GROW (*vecp, i + 1);
6685 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6689 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6691 static int
6692 contains (insn, vec)
6693 rtx insn;
6694 varray_type vec;
6696 register int i, j;
6698 if (GET_CODE (insn) == INSN
6699 && GET_CODE (PATTERN (insn)) == SEQUENCE)
6701 int count = 0;
6702 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6703 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6704 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
6705 count++;
6706 return count;
6708 else
6710 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
6711 if (INSN_UID (insn) == VARRAY_INT (vec, j))
6712 return 1;
6714 return 0;
6718 prologue_epilogue_contains (insn)
6719 rtx insn;
6721 if (contains (insn, prologue))
6722 return 1;
6723 if (contains (insn, epilogue))
6724 return 1;
6725 return 0;
6729 sibcall_epilogue_contains (insn)
6730 rtx insn;
6732 if (sibcall_epilogue)
6733 return contains (insn, sibcall_epilogue);
6734 return 0;
6737 #ifdef HAVE_return
6738 /* Insert gen_return at the end of block BB. This also means updating
6739 block_for_insn appropriately. */
6741 static void
6742 emit_return_into_block (bb, line_note)
6743 basic_block bb;
6744 rtx line_note;
6746 rtx p, end;
6748 p = NEXT_INSN (bb->end);
6749 end = emit_jump_insn_after (gen_return (), bb->end);
6750 if (line_note)
6751 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
6752 NOTE_LINE_NUMBER (line_note), bb->end);
6754 while (1)
6756 set_block_for_insn (p, bb);
6757 if (p == bb->end)
6758 break;
6759 p = PREV_INSN (p);
6761 bb->end = end;
6763 #endif /* HAVE_return */
6765 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6766 this into place with notes indicating where the prologue ends and where
6767 the epilogue begins. Update the basic block information when possible. */
6769 void
6770 thread_prologue_and_epilogue_insns (f)
6771 rtx f ATTRIBUTE_UNUSED;
6773 int inserted = 0;
6774 edge e;
6775 rtx seq;
6776 #ifdef HAVE_prologue
6777 rtx prologue_end = NULL_RTX;
6778 #endif
6779 #if defined (HAVE_epilogue) || defined(HAVE_return)
6780 rtx epilogue_end = NULL_RTX;
6781 #endif
6783 #ifdef HAVE_prologue
6784 if (HAVE_prologue)
6786 start_sequence ();
6787 seq = gen_prologue();
6788 emit_insn (seq);
6790 /* Retain a map of the prologue insns. */
6791 if (GET_CODE (seq) != SEQUENCE)
6792 seq = get_insns ();
6793 record_insns (seq, &prologue);
6794 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
6796 seq = gen_sequence ();
6797 end_sequence ();
6799 /* If optimization is off, and perhaps in an empty function,
6800 the entry block will have no successors. */
6801 if (ENTRY_BLOCK_PTR->succ)
6803 /* Can't deal with multiple successsors of the entry block. */
6804 if (ENTRY_BLOCK_PTR->succ->succ_next)
6805 abort ();
6807 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
6808 inserted = 1;
6810 else
6811 emit_insn_after (seq, f);
6813 #endif
6815 /* If the exit block has no non-fake predecessors, we don't need
6816 an epilogue. */
6817 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6818 if ((e->flags & EDGE_FAKE) == 0)
6819 break;
6820 if (e == NULL)
6821 goto epilogue_done;
6823 #ifdef HAVE_return
6824 if (optimize && HAVE_return)
6826 /* If we're allowed to generate a simple return instruction,
6827 then by definition we don't need a full epilogue. Examine
6828 the block that falls through to EXIT. If it does not
6829 contain any code, examine its predecessors and try to
6830 emit (conditional) return instructions. */
6832 basic_block last;
6833 edge e_next;
6834 rtx label;
6836 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6837 if (e->flags & EDGE_FALLTHRU)
6838 break;
6839 if (e == NULL)
6840 goto epilogue_done;
6841 last = e->src;
6843 /* Verify that there are no active instructions in the last block. */
6844 label = last->end;
6845 while (label && GET_CODE (label) != CODE_LABEL)
6847 if (active_insn_p (label))
6848 break;
6849 label = PREV_INSN (label);
6852 if (last->head == label && GET_CODE (label) == CODE_LABEL)
6854 rtx epilogue_line_note = NULL_RTX;
6856 /* Locate the line number associated with the closing brace,
6857 if we can find one. */
6858 for (seq = get_last_insn ();
6859 seq && ! active_insn_p (seq);
6860 seq = PREV_INSN (seq))
6861 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
6863 epilogue_line_note = seq;
6864 break;
6867 for (e = last->pred; e ; e = e_next)
6869 basic_block bb = e->src;
6870 rtx jump;
6872 e_next = e->pred_next;
6873 if (bb == ENTRY_BLOCK_PTR)
6874 continue;
6876 jump = bb->end;
6877 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
6878 continue;
6880 /* If we have an unconditional jump, we can replace that
6881 with a simple return instruction. */
6882 if (simplejump_p (jump))
6884 emit_return_into_block (bb, epilogue_line_note);
6885 flow_delete_insn (jump);
6888 /* If we have a conditional jump, we can try to replace
6889 that with a conditional return instruction. */
6890 else if (condjump_p (jump))
6892 rtx ret, *loc;
6894 ret = SET_SRC (PATTERN (jump));
6895 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
6896 loc = &XEXP (ret, 1);
6897 else
6898 loc = &XEXP (ret, 2);
6899 ret = gen_rtx_RETURN (VOIDmode);
6901 if (! validate_change (jump, loc, ret, 0))
6902 continue;
6903 if (JUMP_LABEL (jump))
6904 LABEL_NUSES (JUMP_LABEL (jump))--;
6906 /* If this block has only one successor, it both jumps
6907 and falls through to the fallthru block, so we can't
6908 delete the edge. */
6909 if (bb->succ->succ_next == NULL)
6910 continue;
6912 else
6913 continue;
6915 /* Fix up the CFG for the successful change we just made. */
6916 redirect_edge_succ (e, EXIT_BLOCK_PTR);
6919 /* Emit a return insn for the exit fallthru block. Whether
6920 this is still reachable will be determined later. */
6922 emit_barrier_after (last->end);
6923 emit_return_into_block (last, epilogue_line_note);
6924 epilogue_end = last->end;
6925 goto epilogue_done;
6928 #endif
6929 #ifdef HAVE_epilogue
6930 if (HAVE_epilogue)
6932 /* Find the edge that falls through to EXIT. Other edges may exist
6933 due to RETURN instructions, but those don't need epilogues.
6934 There really shouldn't be a mixture -- either all should have
6935 been converted or none, however... */
6937 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6938 if (e->flags & EDGE_FALLTHRU)
6939 break;
6940 if (e == NULL)
6941 goto epilogue_done;
6943 start_sequence ();
6944 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
6946 seq = gen_epilogue ();
6947 emit_jump_insn (seq);
6949 /* Retain a map of the epilogue insns. */
6950 if (GET_CODE (seq) != SEQUENCE)
6951 seq = get_insns ();
6952 record_insns (seq, &epilogue);
6954 seq = gen_sequence ();
6955 end_sequence();
6957 insert_insn_on_edge (seq, e);
6958 inserted = 1;
6960 #endif
6961 epilogue_done:
6963 if (inserted)
6964 commit_edge_insertions ();
6966 #ifdef HAVE_sibcall_epilogue
6967 /* Emit sibling epilogues before any sibling call sites. */
6968 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
6970 basic_block bb = e->src;
6971 rtx insn = bb->end;
6972 rtx i;
6973 rtx newinsn;
6975 if (GET_CODE (insn) != CALL_INSN
6976 || ! SIBLING_CALL_P (insn))
6977 continue;
6979 start_sequence ();
6980 seq = gen_sibcall_epilogue ();
6981 end_sequence ();
6983 i = PREV_INSN (insn);
6984 newinsn = emit_insn_before (seq, insn);
6986 /* Update the UID to basic block map. */
6987 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
6988 set_block_for_insn (i, bb);
6990 /* Retain a map of the epilogue insns. Used in life analysis to
6991 avoid getting rid of sibcall epilogue insns. */
6992 record_insns (GET_CODE (seq) == SEQUENCE
6993 ? seq : newinsn, &sibcall_epilogue);
6995 #endif
6997 #ifdef HAVE_prologue
6998 if (prologue_end)
7000 rtx insn, prev;
7002 /* GDB handles `break f' by setting a breakpoint on the first
7003 line note after the prologue. Which means (1) that if
7004 there are line number notes before where we inserted the
7005 prologue we should move them, and (2) we should generate a
7006 note before the end of the first basic block, if there isn't
7007 one already there. */
7009 for (insn = prologue_end; insn ; insn = prev)
7011 prev = PREV_INSN (insn);
7012 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7014 /* Note that we cannot reorder the first insn in the
7015 chain, since rest_of_compilation relies on that
7016 remaining constant. */
7017 if (prev == NULL)
7018 break;
7019 reorder_insns (insn, insn, prologue_end);
7023 /* Find the last line number note in the first block. */
7024 for (insn = BASIC_BLOCK (0)->end;
7025 insn != prologue_end;
7026 insn = PREV_INSN (insn))
7027 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7028 break;
7030 /* If we didn't find one, make a copy of the first line number
7031 we run across. */
7032 if (! insn)
7034 for (insn = next_active_insn (prologue_end);
7035 insn;
7036 insn = PREV_INSN (insn))
7037 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7039 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7040 NOTE_LINE_NUMBER (insn),
7041 prologue_end);
7042 break;
7046 #endif
7047 #ifdef HAVE_epilogue
7048 if (epilogue_end)
7050 rtx insn, next;
7052 /* Similarly, move any line notes that appear after the epilogue.
7053 There is no need, however, to be quite so anal about the existance
7054 of such a note. */
7055 for (insn = epilogue_end; insn ; insn = next)
7057 next = NEXT_INSN (insn);
7058 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7059 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7062 #endif
7065 /* Reposition the prologue-end and epilogue-begin notes after instruction
7066 scheduling and delayed branch scheduling. */
7068 void
7069 reposition_prologue_and_epilogue_notes (f)
7070 rtx f ATTRIBUTE_UNUSED;
7072 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7073 int len;
7075 if ((len = VARRAY_SIZE (prologue)) > 0)
7077 register rtx insn, note = 0;
7079 /* Scan from the beginning until we reach the last prologue insn.
7080 We apparently can't depend on basic_block_{head,end} after
7081 reorg has run. */
7082 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7084 if (GET_CODE (insn) == NOTE)
7086 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7087 note = insn;
7089 else if ((len -= contains (insn, prologue)) == 0)
7091 rtx next;
7092 /* Find the prologue-end note if we haven't already, and
7093 move it to just after the last prologue insn. */
7094 if (note == 0)
7096 for (note = insn; (note = NEXT_INSN (note));)
7097 if (GET_CODE (note) == NOTE
7098 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7099 break;
7102 next = NEXT_INSN (note);
7104 /* Whether or not we can depend on BLOCK_HEAD,
7105 attempt to keep it up-to-date. */
7106 if (BLOCK_HEAD (0) == note)
7107 BLOCK_HEAD (0) = next;
7109 remove_insn (note);
7110 add_insn_after (note, insn);
7115 if ((len = VARRAY_SIZE (epilogue)) > 0)
7117 register rtx insn, note = 0;
7119 /* Scan from the end until we reach the first epilogue insn.
7120 We apparently can't depend on basic_block_{head,end} after
7121 reorg has run. */
7122 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7124 if (GET_CODE (insn) == NOTE)
7126 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7127 note = insn;
7129 else if ((len -= contains (insn, epilogue)) == 0)
7131 /* Find the epilogue-begin note if we haven't already, and
7132 move it to just before the first epilogue insn. */
7133 if (note == 0)
7135 for (note = insn; (note = PREV_INSN (note));)
7136 if (GET_CODE (note) == NOTE
7137 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7138 break;
7141 /* Whether or not we can depend on BLOCK_HEAD,
7142 attempt to keep it up-to-date. */
7143 if (n_basic_blocks
7144 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7145 BLOCK_HEAD (n_basic_blocks-1) = note;
7147 remove_insn (note);
7148 add_insn_before (note, insn);
7152 #endif /* HAVE_prologue or HAVE_epilogue */
7155 /* Mark T for GC. */
7157 static void
7158 mark_temp_slot (t)
7159 struct temp_slot *t;
7161 while (t)
7163 ggc_mark_rtx (t->slot);
7164 ggc_mark_rtx (t->address);
7165 ggc_mark_tree (t->rtl_expr);
7167 t = t->next;
7171 /* Mark P for GC. */
7173 static void
7174 mark_function_status (p)
7175 struct function *p;
7177 int i;
7178 rtx *r;
7180 if (p == 0)
7181 return;
7183 ggc_mark_rtx (p->arg_offset_rtx);
7185 if (p->x_parm_reg_stack_loc)
7186 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7187 i > 0; --i, ++r)
7188 ggc_mark_rtx (*r);
7190 ggc_mark_rtx (p->return_rtx);
7191 ggc_mark_rtx (p->x_cleanup_label);
7192 ggc_mark_rtx (p->x_return_label);
7193 ggc_mark_rtx (p->x_save_expr_regs);
7194 ggc_mark_rtx (p->x_stack_slot_list);
7195 ggc_mark_rtx (p->x_parm_birth_insn);
7196 ggc_mark_rtx (p->x_tail_recursion_label);
7197 ggc_mark_rtx (p->x_tail_recursion_reentry);
7198 ggc_mark_rtx (p->internal_arg_pointer);
7199 ggc_mark_rtx (p->x_arg_pointer_save_area);
7200 ggc_mark_tree (p->x_rtl_expr_chain);
7201 ggc_mark_rtx (p->x_last_parm_insn);
7202 ggc_mark_tree (p->x_context_display);
7203 ggc_mark_tree (p->x_trampoline_list);
7204 ggc_mark_rtx (p->epilogue_delay_list);
7206 mark_temp_slot (p->x_temp_slots);
7209 struct var_refs_queue *q = p->fixup_var_refs_queue;
7210 while (q)
7212 ggc_mark_rtx (q->modified);
7213 q = q->next;
7217 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7218 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7219 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7220 ggc_mark_tree (p->x_nonlocal_labels);
7223 /* Mark the function chain ARG (which is really a struct function **)
7224 for GC. */
7226 static void
7227 mark_function_chain (arg)
7228 void *arg;
7230 struct function *f = *(struct function **) arg;
7232 for (; f; f = f->next_global)
7234 ggc_mark_tree (f->decl);
7236 mark_function_status (f);
7237 mark_eh_status (f->eh);
7238 mark_stmt_status (f->stmt);
7239 mark_expr_status (f->expr);
7240 mark_emit_status (f->emit);
7241 mark_varasm_status (f->varasm);
7243 if (mark_machine_status)
7244 (*mark_machine_status) (f);
7245 if (mark_lang_status)
7246 (*mark_lang_status) (f);
7248 if (f->original_arg_vector)
7249 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7250 if (f->original_decl_initial)
7251 ggc_mark_tree (f->original_decl_initial);
7255 /* Called once, at initialization, to initialize function.c. */
7257 void
7258 init_function_once ()
7260 ggc_add_root (&all_functions, 1, sizeof all_functions,
7261 mark_function_chain);
7263 VARRAY_INT_INIT (prologue, 0, "prologue");
7264 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7265 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");