1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
47 /* Type of value ranges. See value_range_d for a description of these
49 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
51 /* Range of values that can be associated with an SSA_NAME after VRP
55 /* Lattice value represented by this range. */
56 enum value_range_type type
;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
77 typedef struct value_range_d value_range_t
;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
83 /* Return true if the SSA name NAME is live on the edge E. */
86 live_on_edge (edge e
, tree name
)
88 return (live
[e
->dest
->index
]
89 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
92 /* Local functions. */
93 static int compare_values (tree val1
, tree val2
);
94 static int compare_values_warnv (tree val1
, tree val2
, bool *);
95 static void vrp_meet (value_range_t
*, value_range_t
*);
96 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
97 tree
, tree
, bool, bool *,
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si
;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code
;
120 /* Value being compared against. */
123 /* Expression to compare. */
126 /* Next node in the linked list. */
127 struct assert_locus_d
*next
;
130 typedef struct assert_locus_d
*assert_locus_t
;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for
;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t
*asserts_for
;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values
;
144 static value_range_t
**vr_value
;
145 static bool values_propagated
;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
150 static int *vr_phi_edge_counts
;
157 static VEC (edge
, heap
) *to_remove_edges
;
158 DEF_VEC_O(switch_update
);
159 DEF_VEC_ALLOC_O(switch_update
, heap
);
160 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
163 /* Return the maximum value for TYPE. */
166 vrp_val_max (const_tree type
)
168 if (!INTEGRAL_TYPE_P (type
))
171 return TYPE_MAX_VALUE (type
);
174 /* Return the minimum value for TYPE. */
177 vrp_val_min (const_tree type
)
179 if (!INTEGRAL_TYPE_P (type
))
182 return TYPE_MIN_VALUE (type
);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
192 vrp_val_is_max (const_tree val
)
194 tree type_max
= vrp_val_max (TREE_TYPE (val
));
195 return (val
== type_max
196 || (type_max
!= NULL_TREE
197 && operand_equal_p (val
, type_max
, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
204 vrp_val_is_min (const_tree val
)
206 tree type_min
= vrp_val_min (TREE_TYPE (val
));
207 return (val
== type_min
208 || (type_min
!= NULL_TREE
209 && operand_equal_p (val
, type_min
, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
220 needs_overflow_infinity (const_tree type
)
222 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
232 supports_overflow_infinity (const_tree type
)
234 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type
));
238 return (min
!= NULL_TREE
239 && CONSTANT_CLASS_P (min
)
241 && CONSTANT_CLASS_P (max
));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
248 make_overflow_infinity (tree val
)
250 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
251 val
= copy_node (val
);
252 TREE_OVERFLOW (val
) = 1;
256 /* Return a negative overflow infinity for TYPE. */
259 negative_overflow_infinity (tree type
)
261 gcc_checking_assert (supports_overflow_infinity (type
));
262 return make_overflow_infinity (vrp_val_min (type
));
265 /* Return a positive overflow infinity for TYPE. */
268 positive_overflow_infinity (tree type
)
270 gcc_checking_assert (supports_overflow_infinity (type
));
271 return make_overflow_infinity (vrp_val_max (type
));
274 /* Return whether VAL is a negative overflow infinity. */
277 is_negative_overflow_infinity (const_tree val
)
279 return (needs_overflow_infinity (TREE_TYPE (val
))
280 && CONSTANT_CLASS_P (val
)
281 && TREE_OVERFLOW (val
)
282 && vrp_val_is_min (val
));
285 /* Return whether VAL is a positive overflow infinity. */
288 is_positive_overflow_infinity (const_tree val
)
290 return (needs_overflow_infinity (TREE_TYPE (val
))
291 && CONSTANT_CLASS_P (val
)
292 && TREE_OVERFLOW (val
)
293 && vrp_val_is_max (val
));
296 /* Return whether VAL is a positive or negative overflow infinity. */
299 is_overflow_infinity (const_tree val
)
301 return (needs_overflow_infinity (TREE_TYPE (val
))
302 && CONSTANT_CLASS_P (val
)
303 && TREE_OVERFLOW (val
)
304 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
310 stmt_overflow_infinity (gimple stmt
)
312 if (is_gimple_assign (stmt
)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
324 avoid_overflow_infinity (tree val
)
326 if (!is_overflow_infinity (val
))
329 if (vrp_val_is_max (val
))
330 return vrp_val_max (TREE_TYPE (val
));
333 gcc_checking_assert (vrp_val_is_min (val
));
334 return vrp_val_min (TREE_TYPE (val
));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
343 nonnull_arg_p (const_tree arg
)
345 tree t
, attrs
, fntype
;
346 unsigned HOST_WIDE_INT arg_num
;
348 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
350 /* The static chain decl is always non null. */
351 if (arg
== cfun
->static_chain_decl
)
354 fntype
= TREE_TYPE (current_function_decl
);
355 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs
== NULL_TREE
)
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs
) == NULL_TREE
)
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
368 t
= DECL_CHAIN (t
), arg_num
++)
374 gcc_assert (t
== arg
);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
379 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
387 /* Set value range VR to VR_VARYING. */
390 set_value_range_to_varying (value_range_t
*vr
)
392 vr
->type
= VR_VARYING
;
393 vr
->min
= vr
->max
= NULL_TREE
;
395 bitmap_clear (vr
->equiv
);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
402 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
403 tree max
, bitmap equiv
)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
411 gcc_assert (min
&& max
);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
414 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
416 cmp
= compare_values (min
, max
);
417 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
419 if (needs_overflow_infinity (TREE_TYPE (min
)))
420 gcc_assert (!is_overflow_infinity (min
)
421 || !is_overflow_infinity (max
));
424 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
425 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
427 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
428 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr
->equiv
== NULL
439 vr
->equiv
= BITMAP_ALLOC (NULL
);
441 if (equiv
!= vr
->equiv
)
443 if (equiv
&& !bitmap_empty_p (equiv
))
444 bitmap_copy (vr
->equiv
, equiv
);
446 bitmap_clear (vr
->equiv
);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
461 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
462 tree min
, tree max
, bitmap equiv
)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
466 && t
!= VR_ANTI_RANGE
)
467 || TREE_CODE (min
) != INTEGER_CST
468 || TREE_CODE (max
) != INTEGER_CST
)
470 set_value_range (vr
, t
, min
, max
, equiv
);
474 /* Wrong order for min and max, to swap them and the VR type we need
476 if (tree_int_cst_lt (max
, min
))
478 tree one
= build_int_cst (TREE_TYPE (min
), 1);
479 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
480 max
= int_const_binop (MINUS_EXPR
, min
, one
);
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max
, min
))
488 set_value_range_to_varying (vr
);
492 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t
== VR_ANTI_RANGE
)
498 bool is_min
= vrp_val_is_min (min
);
499 bool is_max
= vrp_val_is_max (max
);
501 if (is_min
&& is_max
)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr
);
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
510 && integer_zerop (max
)))
512 tree one
= build_int_cst (TREE_TYPE (max
), 1);
513 min
= int_const_binop (PLUS_EXPR
, max
, one
);
514 max
= vrp_val_max (TREE_TYPE (max
));
519 tree one
= build_int_cst (TREE_TYPE (min
), 1);
520 max
= int_const_binop (MINUS_EXPR
, min
, one
);
521 min
= vrp_val_min (TREE_TYPE (min
));
526 set_value_range (vr
, t
, min
, max
, equiv
);
529 /* Copy value range FROM into value range TO. */
532 copy_value_range (value_range_t
*to
, value_range_t
*from
)
534 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
543 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
545 gcc_assert (is_gimple_min_invariant (val
));
546 val
= avoid_overflow_infinity (val
);
547 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
557 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
558 bool overflow_infinity
)
562 if (overflow_infinity
&& !supports_overflow_infinity (type
))
564 set_value_range_to_varying (vr
);
568 zero
= build_int_cst (type
, 0);
569 set_value_range (vr
, VR_RANGE
, zero
,
571 ? positive_overflow_infinity (type
)
572 : TYPE_MAX_VALUE (type
)),
576 /* Set value range VR to a non-NULL range of type TYPE. */
579 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
581 tree zero
= build_int_cst (type
, 0);
582 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
586 /* Set value range VR to a NULL range of type TYPE. */
589 set_value_range_to_null (value_range_t
*vr
, tree type
)
591 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
598 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
600 if (TYPE_PRECISION (type
) == 1)
601 set_value_range_to_varying (vr
);
603 set_value_range (vr
, VR_RANGE
,
604 build_int_cst (type
, 0), build_int_cst (type
, 1),
609 /* Set value range VR to VR_UNDEFINED. */
612 set_value_range_to_undefined (value_range_t
*vr
)
614 vr
->type
= VR_UNDEFINED
;
615 vr
->min
= vr
->max
= NULL_TREE
;
617 bitmap_clear (vr
->equiv
);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
625 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
629 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
630 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
633 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
634 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
635 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
637 set_value_range_to_varying (vr
);
640 cmp
= compare_values (min
, max
);
642 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
643 else if (cmp
== 0 || cmp
== 1)
646 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
650 set_value_range_to_varying (vr
);
653 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t
*
663 get_value_range (const_tree var
)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
669 unsigned ver
= SSA_NAME_VERSION (var
);
671 /* If we have no recorded ranges, then return NULL. */
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver
>= num_vr_values
)
679 return CONST_CAST (value_range_t
*, &vr_const_varying
);
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated
)
687 return CONST_CAST (value_range_t
*, &vr_const_varying
);
689 /* Create a default value range. */
690 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
692 /* Defer allocating the equivalence set. */
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym
= SSA_NAME_VAR (var
);
698 if (SSA_NAME_IS_DEFAULT_DEF (var
)
699 && TREE_CODE (sym
) == PARM_DECL
)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym
))
705 && nonnull_arg_p (sym
))
706 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
708 set_value_range_to_varying (vr
);
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
717 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
721 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
723 if (is_overflow_infinity (val1
))
724 return is_overflow_infinity (val2
);
728 /* Return true, if the bitmaps B1 and B2 are equal. */
731 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
734 || ((!b1
|| bitmap_empty_p (b1
))
735 && (!b2
|| bitmap_empty_p (b2
)))
737 && bitmap_equal_p (b1
, b2
)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
751 update_value_range (const_tree var
, value_range_t
*new_vr
)
753 value_range_t
*old_vr
;
756 /* Update the value range, if necessary. */
757 old_vr
= get_value_range (var
);
758 is_new
= old_vr
->type
!= new_vr
->type
759 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
760 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
761 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
764 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
767 BITMAP_FREE (new_vr
->equiv
);
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
777 add_equivalence (bitmap
*equiv
, const_tree var
)
779 unsigned ver
= SSA_NAME_VERSION (var
);
780 value_range_t
*vr
= vr_value
[ver
];
783 *equiv
= BITMAP_ALLOC (NULL
);
784 bitmap_set_bit (*equiv
, ver
);
786 bitmap_ior_into (*equiv
, vr
->equiv
);
790 /* Return true if VR is ~[0, 0]. */
793 range_is_nonnull (value_range_t
*vr
)
795 return vr
->type
== VR_ANTI_RANGE
796 && integer_zerop (vr
->min
)
797 && integer_zerop (vr
->max
);
801 /* Return true if VR is [0, 0]. */
804 range_is_null (value_range_t
*vr
)
806 return vr
->type
== VR_RANGE
807 && integer_zerop (vr
->min
)
808 && integer_zerop (vr
->max
);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
815 range_int_cst_p (value_range_t
*vr
)
817 return (vr
->type
== VR_RANGE
818 && TREE_CODE (vr
->max
) == INTEGER_CST
819 && TREE_CODE (vr
->min
) == INTEGER_CST
820 && !TREE_OVERFLOW (vr
->max
)
821 && !TREE_OVERFLOW (vr
->min
));
824 /* Return true if VR is a INTEGER_CST singleton. */
827 range_int_cst_singleton_p (value_range_t
*vr
)
829 return (range_int_cst_p (vr
)
830 && tree_int_cst_equal (vr
->min
, vr
->max
));
833 /* Return true if value range VR involves at least one symbol. */
836 symbolic_range_p (value_range_t
*vr
)
838 return (!is_gimple_min_invariant (vr
->min
)
839 || !is_gimple_min_invariant (vr
->max
));
842 /* Return true if value range VR uses an overflow infinity. */
845 overflow_infinity_range_p (value_range_t
*vr
)
847 return (vr
->type
== VR_RANGE
848 && (is_overflow_infinity (vr
->min
)
849 || is_overflow_infinity (vr
->max
)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
859 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
861 gcc_assert (vr
->type
== VR_RANGE
);
862 if (is_overflow_infinity (vr
->min
))
864 *strict_overflow_p
= true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
868 if (is_overflow_infinity (vr
->max
))
870 *strict_overflow_p
= true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
884 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
886 enum tree_code code
= gimple_assign_rhs_code (stmt
);
887 switch (get_gimple_rhs_class (code
))
889 case GIMPLE_UNARY_RHS
:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
891 gimple_expr_type (stmt
),
892 gimple_assign_rhs1 (stmt
),
894 case GIMPLE_BINARY_RHS
:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
896 gimple_expr_type (stmt
),
897 gimple_assign_rhs1 (stmt
),
898 gimple_assign_rhs2 (stmt
),
900 case GIMPLE_TERNARY_RHS
:
902 case GIMPLE_SINGLE_RHS
:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
905 case GIMPLE_INVALID_RHS
:
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
918 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
920 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
921 gimple_call_arg (stmt
, 0) : NULL_TREE
;
922 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
923 gimple_call_arg (stmt
, 1) : NULL_TREE
;
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
926 gimple_call_fndecl (stmt
),
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
938 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
940 switch (gimple_code (stmt
))
943 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
945 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
957 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
959 enum tree_code code
= gimple_assign_rhs_code (stmt
);
960 switch (get_gimple_rhs_class (code
))
962 case GIMPLE_UNARY_RHS
:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
964 gimple_expr_type (stmt
),
965 gimple_assign_rhs1 (stmt
),
967 case GIMPLE_BINARY_RHS
:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
969 gimple_expr_type (stmt
),
970 gimple_assign_rhs1 (stmt
),
971 gimple_assign_rhs2 (stmt
),
973 case GIMPLE_TERNARY_RHS
:
975 case GIMPLE_SINGLE_RHS
:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
978 case GIMPLE_INVALID_RHS
:
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
991 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
993 switch (gimple_code (stmt
))
996 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
998 return gimple_alloca_call_p (stmt
);
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1008 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1010 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt
)
1016 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1018 tree expr
= gimple_assign_rhs1 (stmt
);
1019 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1021 if (base
!= NULL_TREE
1022 && TREE_CODE (base
) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1025 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1026 if (range_is_nonnull (vr
))
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1038 valid_value_p (tree expr
)
1040 if (TREE_CODE (expr
) == SSA_NAME
)
1043 if (TREE_CODE (expr
) == PLUS_EXPR
1044 || TREE_CODE (expr
) == MINUS_EXPR
)
1045 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1048 return is_gimple_min_invariant (expr
);
1054 -2 if those are incomparable. */
1056 operand_less_p (tree val
, tree val2
)
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1061 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1062 return INT_CST_LT_UNSIGNED (val
, val2
);
1065 if (INT_CST_LT (val
, val2
))
1073 fold_defer_overflow_warnings ();
1075 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1077 fold_undefer_and_ignore_overflow_warnings ();
1080 || TREE_CODE (tcmp
) != INTEGER_CST
)
1083 if (!integer_zerop (tcmp
))
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val
))
1089 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2
))
1091 return is_positive_overflow_infinity (val
) ? 0 : 1;
1096 /* Compare two values VAL1 and VAL2. Return
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1101 +1 if VAL1 > VAL2, and
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1112 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1120 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1124 STRIP_USELESS_TYPE_CONVERSION (val2
);
1126 if ((TREE_CODE (val1
) == SSA_NAME
1127 || TREE_CODE (val1
) == PLUS_EXPR
1128 || TREE_CODE (val1
) == MINUS_EXPR
)
1129 && (TREE_CODE (val2
) == SSA_NAME
1130 || TREE_CODE (val2
) == PLUS_EXPR
1131 || TREE_CODE (val2
) == MINUS_EXPR
))
1133 tree n1
, c1
, n2
, c2
;
1134 enum tree_code code1
, code2
;
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1
) == SSA_NAME
)
1147 code1
= TREE_CODE (val1
);
1148 n1
= TREE_OPERAND (val1
, 0);
1149 c1
= TREE_OPERAND (val1
, 1);
1150 if (tree_int_cst_sgn (c1
) == -1)
1152 if (is_negative_overflow_infinity (c1
))
1154 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1157 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1161 if (TREE_CODE (val2
) == SSA_NAME
)
1169 code2
= TREE_CODE (val2
);
1170 n2
= TREE_OPERAND (val2
, 0);
1171 c2
= TREE_OPERAND (val2
, 1);
1172 if (tree_int_cst_sgn (c2
) == -1)
1174 if (is_negative_overflow_infinity (c2
))
1176 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1179 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1183 /* Both values must use the same name. */
1187 if (code1
== SSA_NAME
1188 && code2
== SSA_NAME
)
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1196 if (strict_overflow_p
!= NULL
1197 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1198 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1199 *strict_overflow_p
= true;
1201 if (code1
== SSA_NAME
)
1203 if (code2
== PLUS_EXPR
)
1204 /* NAME < NAME + CST */
1206 else if (code2
== MINUS_EXPR
)
1207 /* NAME > NAME - CST */
1210 else if (code1
== PLUS_EXPR
)
1212 if (code2
== SSA_NAME
)
1213 /* NAME + CST > NAME */
1215 else if (code2
== PLUS_EXPR
)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1218 else if (code2
== MINUS_EXPR
)
1219 /* NAME + CST1 > NAME - CST2 */
1222 else if (code1
== MINUS_EXPR
)
1224 if (code2
== SSA_NAME
)
1225 /* NAME - CST < NAME */
1227 else if (code2
== PLUS_EXPR
)
1228 /* NAME - CST1 < NAME + CST2 */
1230 else if (code2
== MINUS_EXPR
)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1245 /* We cannot compare overflowed values, except for overflow
1247 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1249 if (strict_overflow_p
!= NULL
)
1250 *strict_overflow_p
= true;
1251 if (is_negative_overflow_infinity (val1
))
1252 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2
))
1255 else if (is_positive_overflow_infinity (val1
))
1256 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2
))
1262 return tree_int_cst_compare (val1
, val2
);
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1
, val2
) == 1)
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2
, val1
) == 1)
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1
) != INTEGER_CST
1285 || TREE_CODE (val2
) != INTEGER_CST
)
1287 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1288 if (t
&& integer_onep (t
))
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1300 compare_values (tree val1
, tree val2
)
1306 ret
= compare_values_warnv (val1
, val2
, &sop
);
1308 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1334 Benchmark compile/20001226-1.c compilation time after changing this
1338 value_inside_range (tree val
, value_range_t
* vr
)
1342 cmp1
= operand_less_p (val
, vr
->min
);
1348 cmp2
= operand_less_p (vr
->max
, val
);
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1359 Benchmark compile/20001226-1.c compilation time after changing this
1364 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1371 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1384 range_includes_zero_p (value_range_t
*vr
)
1388 gcc_assert (vr
->type
!= VR_UNDEFINED
1389 && vr
->type
!= VR_VARYING
1390 && !symbolic_range_p (vr
));
1392 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1393 return (value_inside_range (zero
, vr
) == 1);
1396 /* Return true if *VR is know to only contain nonnegative values. */
1399 value_range_nonnegative_p (value_range_t
*vr
)
1401 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1402 which would return a useful value should be encoded as a
1404 if (vr
->type
== VR_RANGE
)
1406 int result
= compare_values (vr
->min
, integer_zero_node
);
1407 return (result
== 0 || result
== 1);
1413 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1414 false otherwise or if no value range information is available. */
1417 ssa_name_nonnegative_p (const_tree t
)
1419 value_range_t
*vr
= get_value_range (t
);
1421 if (INTEGRAL_TYPE_P (t
)
1422 && TYPE_UNSIGNED (t
))
1428 return value_range_nonnegative_p (vr
);
1431 /* If *VR has a value rante that is a single constant value return that,
1432 otherwise return NULL_TREE. */
1435 value_range_constant_singleton (value_range_t
*vr
)
1437 if (vr
->type
== VR_RANGE
1438 && operand_equal_p (vr
->min
, vr
->max
, 0)
1439 && is_gimple_min_invariant (vr
->min
))
1445 /* If OP has a value range with a single constant value return that,
1446 otherwise return NULL_TREE. This returns OP itself if OP is a
1450 op_with_constant_singleton_value_range (tree op
)
1452 if (is_gimple_min_invariant (op
))
1455 if (TREE_CODE (op
) != SSA_NAME
)
1458 return value_range_constant_singleton (get_value_range (op
));
1461 /* Return true if op is in a boolean [0, 1] value-range. */
1464 op_with_boolean_value_range_p (tree op
)
1468 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1471 if (integer_zerop (op
)
1472 || integer_onep (op
))
1475 if (TREE_CODE (op
) != SSA_NAME
)
1478 vr
= get_value_range (op
);
1479 return (vr
->type
== VR_RANGE
1480 && integer_zerop (vr
->min
)
1481 && integer_onep (vr
->max
));
1484 /* Extract value range information from an ASSERT_EXPR EXPR and store
1488 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1490 tree var
, cond
, limit
, min
, max
, type
;
1491 value_range_t
*var_vr
, *limit_vr
;
1492 enum tree_code cond_code
;
1494 var
= ASSERT_EXPR_VAR (expr
);
1495 cond
= ASSERT_EXPR_COND (expr
);
1497 gcc_assert (COMPARISON_CLASS_P (cond
));
1499 /* Find VAR in the ASSERT_EXPR conditional. */
1500 if (var
== TREE_OPERAND (cond
, 0)
1501 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1502 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1504 /* If the predicate is of the form VAR COMP LIMIT, then we just
1505 take LIMIT from the RHS and use the same comparison code. */
1506 cond_code
= TREE_CODE (cond
);
1507 limit
= TREE_OPERAND (cond
, 1);
1508 cond
= TREE_OPERAND (cond
, 0);
1512 /* If the predicate is of the form LIMIT COMP VAR, then we need
1513 to flip around the comparison code to create the proper range
1515 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1516 limit
= TREE_OPERAND (cond
, 0);
1517 cond
= TREE_OPERAND (cond
, 1);
1520 limit
= avoid_overflow_infinity (limit
);
1522 type
= TREE_TYPE (var
);
1523 gcc_assert (limit
!= var
);
1525 /* For pointer arithmetic, we only keep track of pointer equality
1527 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1529 set_value_range_to_varying (vr_p
);
1533 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1534 try to use LIMIT's range to avoid creating symbolic ranges
1536 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1538 /* LIMIT's range is only interesting if it has any useful information. */
1540 && (limit_vr
->type
== VR_UNDEFINED
1541 || limit_vr
->type
== VR_VARYING
1542 || symbolic_range_p (limit_vr
)))
1545 /* Initially, the new range has the same set of equivalences of
1546 VAR's range. This will be revised before returning the final
1547 value. Since assertions may be chained via mutually exclusive
1548 predicates, we will need to trim the set of equivalences before
1550 gcc_assert (vr_p
->equiv
== NULL
);
1551 add_equivalence (&vr_p
->equiv
, var
);
1553 /* Extract a new range based on the asserted comparison for VAR and
1554 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1555 will only use it for equality comparisons (EQ_EXPR). For any
1556 other kind of assertion, we cannot derive a range from LIMIT's
1557 anti-range that can be used to describe the new range. For
1558 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1559 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1560 no single range for x_2 that could describe LE_EXPR, so we might
1561 as well build the range [b_4, +INF] for it.
1562 One special case we handle is extracting a range from a
1563 range test encoded as (unsigned)var + CST <= limit. */
1564 if (TREE_CODE (cond
) == NOP_EXPR
1565 || TREE_CODE (cond
) == PLUS_EXPR
)
1567 if (TREE_CODE (cond
) == PLUS_EXPR
)
1569 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1570 TREE_OPERAND (cond
, 1));
1571 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1572 cond
= TREE_OPERAND (cond
, 0);
1576 min
= build_int_cst (TREE_TYPE (var
), 0);
1580 /* Make sure to not set TREE_OVERFLOW on the final type
1581 conversion. We are willingly interpreting large positive
1582 unsigned values as negative singed values here. */
1583 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1585 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1588 /* We can transform a max, min range to an anti-range or
1589 vice-versa. Use set_and_canonicalize_value_range which does
1591 if (cond_code
== LE_EXPR
)
1592 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1593 min
, max
, vr_p
->equiv
);
1594 else if (cond_code
== GT_EXPR
)
1595 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1596 min
, max
, vr_p
->equiv
);
1600 else if (cond_code
== EQ_EXPR
)
1602 enum value_range_type range_type
;
1606 range_type
= limit_vr
->type
;
1607 min
= limit_vr
->min
;
1608 max
= limit_vr
->max
;
1612 range_type
= VR_RANGE
;
1617 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1619 /* When asserting the equality VAR == LIMIT and LIMIT is another
1620 SSA name, the new range will also inherit the equivalence set
1622 if (TREE_CODE (limit
) == SSA_NAME
)
1623 add_equivalence (&vr_p
->equiv
, limit
);
1625 else if (cond_code
== NE_EXPR
)
1627 /* As described above, when LIMIT's range is an anti-range and
1628 this assertion is an inequality (NE_EXPR), then we cannot
1629 derive anything from the anti-range. For instance, if
1630 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1631 not imply that VAR's range is [0, 0]. So, in the case of
1632 anti-ranges, we just assert the inequality using LIMIT and
1635 If LIMIT_VR is a range, we can only use it to build a new
1636 anti-range if LIMIT_VR is a single-valued range. For
1637 instance, if LIMIT_VR is [0, 1], the predicate
1638 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1639 Rather, it means that for value 0 VAR should be ~[0, 0]
1640 and for value 1, VAR should be ~[1, 1]. We cannot
1641 represent these ranges.
1643 The only situation in which we can build a valid
1644 anti-range is when LIMIT_VR is a single-valued range
1645 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1646 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1648 && limit_vr
->type
== VR_RANGE
1649 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1651 min
= limit_vr
->min
;
1652 max
= limit_vr
->max
;
1656 /* In any other case, we cannot use LIMIT's range to build a
1657 valid anti-range. */
1661 /* If MIN and MAX cover the whole range for their type, then
1662 just use the original LIMIT. */
1663 if (INTEGRAL_TYPE_P (type
)
1664 && vrp_val_is_min (min
)
1665 && vrp_val_is_max (max
))
1668 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1670 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1672 min
= TYPE_MIN_VALUE (type
);
1674 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1678 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1679 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1681 max
= limit_vr
->max
;
1684 /* If the maximum value forces us to be out of bounds, simply punt.
1685 It would be pointless to try and do anything more since this
1686 all should be optimized away above us. */
1687 if ((cond_code
== LT_EXPR
1688 && compare_values (max
, min
) == 0)
1689 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1690 set_value_range_to_varying (vr_p
);
1693 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1694 if (cond_code
== LT_EXPR
)
1696 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1697 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1698 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1699 build_int_cst (TREE_TYPE (max
), -1));
1701 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1702 build_int_cst (TREE_TYPE (max
), 1));
1704 TREE_NO_WARNING (max
) = 1;
1707 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1710 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1712 max
= TYPE_MAX_VALUE (type
);
1714 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1718 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1719 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1721 min
= limit_vr
->min
;
1724 /* If the minimum value forces us to be out of bounds, simply punt.
1725 It would be pointless to try and do anything more since this
1726 all should be optimized away above us. */
1727 if ((cond_code
== GT_EXPR
1728 && compare_values (min
, max
) == 0)
1729 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1730 set_value_range_to_varying (vr_p
);
1733 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1734 if (cond_code
== GT_EXPR
)
1736 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1737 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1738 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1739 build_int_cst (TREE_TYPE (min
), -1));
1741 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1742 build_int_cst (TREE_TYPE (min
), 1));
1744 TREE_NO_WARNING (min
) = 1;
1747 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1753 /* If VAR already had a known range, it may happen that the new
1754 range we have computed and VAR's range are not compatible. For
1758 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1760 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1762 While the above comes from a faulty program, it will cause an ICE
1763 later because p_8 and p_6 will have incompatible ranges and at
1764 the same time will be considered equivalent. A similar situation
1768 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1770 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1772 Again i_6 and i_7 will have incompatible ranges. It would be
1773 pointless to try and do anything with i_7's range because
1774 anything dominated by 'if (i_5 < 5)' will be optimized away.
1775 Note, due to the wa in which simulation proceeds, the statement
1776 i_7 = ASSERT_EXPR <...> we would never be visited because the
1777 conditional 'if (i_5 < 5)' always evaluates to false. However,
1778 this extra check does not hurt and may protect against future
1779 changes to VRP that may get into a situation similar to the
1780 NULL pointer dereference example.
1782 Note that these compatibility tests are only needed when dealing
1783 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1784 are both anti-ranges, they will always be compatible, because two
1785 anti-ranges will always have a non-empty intersection. */
1787 var_vr
= get_value_range (var
);
1789 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1790 ranges or anti-ranges. */
1791 if (vr_p
->type
== VR_VARYING
1792 || vr_p
->type
== VR_UNDEFINED
1793 || var_vr
->type
== VR_VARYING
1794 || var_vr
->type
== VR_UNDEFINED
1795 || symbolic_range_p (vr_p
)
1796 || symbolic_range_p (var_vr
))
1799 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1801 /* If the two ranges have a non-empty intersection, we can
1802 refine the resulting range. Since the assert expression
1803 creates an equivalency and at the same time it asserts a
1804 predicate, we can take the intersection of the two ranges to
1805 get better precision. */
1806 if (value_ranges_intersect_p (var_vr
, vr_p
))
1808 /* Use the larger of the two minimums. */
1809 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1814 /* Use the smaller of the two maximums. */
1815 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1820 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1824 /* The two ranges do not intersect, set the new range to
1825 VARYING, because we will not be able to do anything
1826 meaningful with it. */
1827 set_value_range_to_varying (vr_p
);
1830 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1831 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1833 /* A range and an anti-range will cancel each other only if
1834 their ends are the same. For instance, in the example above,
1835 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1836 so VR_P should be set to VR_VARYING. */
1837 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1838 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1839 set_value_range_to_varying (vr_p
);
1842 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1845 /* We want to compute the logical AND of the two ranges;
1846 there are three cases to consider.
1849 1. The VR_ANTI_RANGE range is completely within the
1850 VR_RANGE and the endpoints of the ranges are
1851 different. In that case the resulting range
1852 should be whichever range is more precise.
1853 Typically that will be the VR_RANGE.
1855 2. The VR_ANTI_RANGE is completely disjoint from
1856 the VR_RANGE. In this case the resulting range
1857 should be the VR_RANGE.
1859 3. There is some overlap between the VR_ANTI_RANGE
1862 3a. If the high limit of the VR_ANTI_RANGE resides
1863 within the VR_RANGE, then the result is a new
1864 VR_RANGE starting at the high limit of the
1865 VR_ANTI_RANGE + 1 and extending to the
1866 high limit of the original VR_RANGE.
1868 3b. If the low limit of the VR_ANTI_RANGE resides
1869 within the VR_RANGE, then the result is a new
1870 VR_RANGE starting at the low limit of the original
1871 VR_RANGE and extending to the low limit of the
1872 VR_ANTI_RANGE - 1. */
1873 if (vr_p
->type
== VR_ANTI_RANGE
)
1875 anti_min
= vr_p
->min
;
1876 anti_max
= vr_p
->max
;
1877 real_min
= var_vr
->min
;
1878 real_max
= var_vr
->max
;
1882 anti_min
= var_vr
->min
;
1883 anti_max
= var_vr
->max
;
1884 real_min
= vr_p
->min
;
1885 real_max
= vr_p
->max
;
1889 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1890 not including any endpoints. */
1891 if (compare_values (anti_max
, real_max
) == -1
1892 && compare_values (anti_min
, real_min
) == 1)
1894 /* If the range is covering the whole valid range of
1895 the type keep the anti-range. */
1896 if (!vrp_val_is_min (real_min
)
1897 || !vrp_val_is_max (real_max
))
1898 set_value_range (vr_p
, VR_RANGE
, real_min
,
1899 real_max
, vr_p
->equiv
);
1901 /* Case 2, VR_ANTI_RANGE completely disjoint from
1903 else if (compare_values (anti_min
, real_max
) == 1
1904 || compare_values (anti_max
, real_min
) == -1)
1906 set_value_range (vr_p
, VR_RANGE
, real_min
,
1907 real_max
, vr_p
->equiv
);
1909 /* Case 3a, the anti-range extends into the low
1910 part of the real range. Thus creating a new
1911 low for the real range. */
1912 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1914 && compare_values (anti_max
, real_max
) == -1)
1916 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1917 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1918 && vrp_val_is_max (anti_max
))
1920 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1922 set_value_range_to_varying (vr_p
);
1925 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1927 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1929 if (TYPE_PRECISION (TREE_TYPE (var_vr
->min
)) == 1
1930 && !TYPE_UNSIGNED (TREE_TYPE (var_vr
->min
)))
1931 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1933 build_int_cst (TREE_TYPE (var_vr
->min
),
1936 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1938 build_int_cst (TREE_TYPE (var_vr
->min
),
1942 min
= fold_build_pointer_plus_hwi (anti_max
, 1);
1944 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1946 /* Case 3b, the anti-range extends into the high
1947 part of the real range. Thus creating a new
1948 higher for the real range. */
1949 else if (compare_values (anti_min
, real_min
) == 1
1950 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1953 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1954 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1955 && vrp_val_is_min (anti_min
))
1957 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1959 set_value_range_to_varying (vr_p
);
1962 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1964 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1966 if (TYPE_PRECISION (TREE_TYPE (var_vr
->min
)) == 1
1967 && !TYPE_UNSIGNED (TREE_TYPE (var_vr
->min
)))
1968 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1970 build_int_cst (TREE_TYPE (var_vr
->min
),
1973 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1975 build_int_cst (TREE_TYPE (var_vr
->min
),
1979 max
= fold_build_pointer_plus_hwi (anti_min
, -1);
1981 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1988 /* Extract range information from SSA name VAR and store it in VR. If
1989 VAR has an interesting range, use it. Otherwise, create the
1990 range [VAR, VAR] and return it. This is useful in situations where
1991 we may have conditionals testing values of VARYING names. For
1998 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
2002 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
2004 value_range_t
*var_vr
= get_value_range (var
);
2006 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
2007 copy_value_range (vr
, var_vr
);
2009 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
2011 add_equivalence (&vr
->equiv
, var
);
2015 /* Wrapper around int_const_binop. If the operation overflows and we
2016 are not using wrapping arithmetic, then adjust the result to be
2017 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
2018 NULL_TREE if we need to use an overflow infinity representation but
2019 the type does not support it. */
2022 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
2026 res
= int_const_binop (code
, val1
, val2
);
2028 /* If we are using unsigned arithmetic, operate symbolically
2029 on -INF and +INF as int_const_binop only handles signed overflow. */
2030 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
2032 int checkz
= compare_values (res
, val1
);
2033 bool overflow
= false;
2035 /* Ensure that res = val1 [+*] val2 >= val1
2036 or that res = val1 - val2 <= val1. */
2037 if ((code
== PLUS_EXPR
2038 && !(checkz
== 1 || checkz
== 0))
2039 || (code
== MINUS_EXPR
2040 && !(checkz
== 0 || checkz
== -1)))
2044 /* Checking for multiplication overflow is done by dividing the
2045 output of the multiplication by the first input of the
2046 multiplication. If the result of that division operation is
2047 not equal to the second input of the multiplication, then the
2048 multiplication overflowed. */
2049 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2051 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2054 int check
= compare_values (tmp
, val2
);
2062 res
= copy_node (res
);
2063 TREE_OVERFLOW (res
) = 1;
2067 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2068 /* If the singed operation wraps then int_const_binop has done
2069 everything we want. */
2071 else if ((TREE_OVERFLOW (res
)
2072 && !TREE_OVERFLOW (val1
)
2073 && !TREE_OVERFLOW (val2
))
2074 || is_overflow_infinity (val1
)
2075 || is_overflow_infinity (val2
))
2077 /* If the operation overflowed but neither VAL1 nor VAL2 are
2078 overflown, return -INF or +INF depending on the operation
2079 and the combination of signs of the operands. */
2080 int sgn1
= tree_int_cst_sgn (val1
);
2081 int sgn2
= tree_int_cst_sgn (val2
);
2083 if (needs_overflow_infinity (TREE_TYPE (res
))
2084 && !supports_overflow_infinity (TREE_TYPE (res
)))
2087 /* We have to punt on adding infinities of different signs,
2088 since we can't tell what the sign of the result should be.
2089 Likewise for subtracting infinities of the same sign. */
2090 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2091 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2092 && is_overflow_infinity (val1
)
2093 && is_overflow_infinity (val2
))
2096 /* Don't try to handle division or shifting of infinities. */
2097 if ((code
== TRUNC_DIV_EXPR
2098 || code
== FLOOR_DIV_EXPR
2099 || code
== CEIL_DIV_EXPR
2100 || code
== EXACT_DIV_EXPR
2101 || code
== ROUND_DIV_EXPR
2102 || code
== RSHIFT_EXPR
)
2103 && (is_overflow_infinity (val1
)
2104 || is_overflow_infinity (val2
)))
2107 /* Notice that we only need to handle the restricted set of
2108 operations handled by extract_range_from_binary_expr.
2109 Among them, only multiplication, addition and subtraction
2110 can yield overflow without overflown operands because we
2111 are working with integral types only... except in the
2112 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2113 for division too. */
2115 /* For multiplication, the sign of the overflow is given
2116 by the comparison of the signs of the operands. */
2117 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2118 /* For addition, the operands must be of the same sign
2119 to yield an overflow. Its sign is therefore that
2120 of one of the operands, for example the first. For
2121 infinite operands X + -INF is negative, not positive. */
2122 || (code
== PLUS_EXPR
2124 ? !is_negative_overflow_infinity (val2
)
2125 : is_positive_overflow_infinity (val2
)))
2126 /* For subtraction, non-infinite operands must be of
2127 different signs to yield an overflow. Its sign is
2128 therefore that of the first operand or the opposite of
2129 that of the second operand. A first operand of 0 counts
2130 as positive here, for the corner case 0 - (-INF), which
2131 overflows, but must yield +INF. For infinite operands 0
2132 - INF is negative, not positive. */
2133 || (code
== MINUS_EXPR
2135 ? !is_positive_overflow_infinity (val2
)
2136 : is_negative_overflow_infinity (val2
)))
2137 /* We only get in here with positive shift count, so the
2138 overflow direction is the same as the sign of val1.
2139 Actually rshift does not overflow at all, but we only
2140 handle the case of shifting overflowed -INF and +INF. */
2141 || (code
== RSHIFT_EXPR
2143 /* For division, the only case is -INF / -1 = +INF. */
2144 || code
== TRUNC_DIV_EXPR
2145 || code
== FLOOR_DIV_EXPR
2146 || code
== CEIL_DIV_EXPR
2147 || code
== EXACT_DIV_EXPR
2148 || code
== ROUND_DIV_EXPR
)
2149 return (needs_overflow_infinity (TREE_TYPE (res
))
2150 ? positive_overflow_infinity (TREE_TYPE (res
))
2151 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2153 return (needs_overflow_infinity (TREE_TYPE (res
))
2154 ? negative_overflow_infinity (TREE_TYPE (res
))
2155 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2162 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2163 bitmask if some bit is unset, it means for all numbers in the range
2164 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2165 bitmask if some bit is set, it means for all numbers in the range
2166 the bit is 1, otherwise it might be 0 or 1. */
2169 zero_nonzero_bits_from_vr (value_range_t
*vr
,
2170 double_int
*may_be_nonzero
,
2171 double_int
*must_be_nonzero
)
2173 *may_be_nonzero
= double_int_minus_one
;
2174 *must_be_nonzero
= double_int_zero
;
2175 if (!range_int_cst_p (vr
))
2178 if (range_int_cst_singleton_p (vr
))
2180 *may_be_nonzero
= tree_to_double_int (vr
->min
);
2181 *must_be_nonzero
= *may_be_nonzero
;
2183 else if (tree_int_cst_sgn (vr
->min
) >= 0
2184 || tree_int_cst_sgn (vr
->max
) < 0)
2186 double_int dmin
= tree_to_double_int (vr
->min
);
2187 double_int dmax
= tree_to_double_int (vr
->max
);
2188 double_int xor_mask
= double_int_xor (dmin
, dmax
);
2189 *may_be_nonzero
= double_int_ior (dmin
, dmax
);
2190 *must_be_nonzero
= double_int_and (dmin
, dmax
);
2191 if (xor_mask
.high
!= 0)
2193 unsigned HOST_WIDE_INT mask
2194 = ((unsigned HOST_WIDE_INT
) 1
2195 << floor_log2 (xor_mask
.high
)) - 1;
2196 may_be_nonzero
->low
= ALL_ONES
;
2197 may_be_nonzero
->high
|= mask
;
2198 must_be_nonzero
->low
= 0;
2199 must_be_nonzero
->high
&= ~mask
;
2201 else if (xor_mask
.low
!= 0)
2203 unsigned HOST_WIDE_INT mask
2204 = ((unsigned HOST_WIDE_INT
) 1
2205 << floor_log2 (xor_mask
.low
)) - 1;
2206 may_be_nonzero
->low
|= mask
;
2207 must_be_nonzero
->low
&= ~mask
;
2214 /* Helper to extract a value-range *VR for a multiplicative operation
2218 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2219 enum tree_code code
,
2220 value_range_t
*vr0
, value_range_t
*vr1
)
2222 enum value_range_type type
;
2229 /* Multiplications, divisions and shifts are a bit tricky to handle,
2230 depending on the mix of signs we have in the two ranges, we
2231 need to operate on different values to get the minimum and
2232 maximum values for the new range. One approach is to figure
2233 out all the variations of range combinations and do the
2236 However, this involves several calls to compare_values and it
2237 is pretty convoluted. It's simpler to do the 4 operations
2238 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2239 MAX1) and then figure the smallest and largest values to form
2241 gcc_assert (code
== MULT_EXPR
2242 || code
== TRUNC_DIV_EXPR
2243 || code
== FLOOR_DIV_EXPR
2244 || code
== CEIL_DIV_EXPR
2245 || code
== EXACT_DIV_EXPR
2246 || code
== ROUND_DIV_EXPR
2247 || code
== RSHIFT_EXPR
);
2248 gcc_assert ((vr0
->type
== VR_RANGE
2249 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2250 && vr0
->type
== vr1
->type
);
2254 /* Compute the 4 cross operations. */
2256 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2257 if (val
[0] == NULL_TREE
)
2260 if (vr1
->max
== vr1
->min
)
2264 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2265 if (val
[1] == NULL_TREE
)
2269 if (vr0
->max
== vr0
->min
)
2273 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2274 if (val
[2] == NULL_TREE
)
2278 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2282 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2283 if (val
[3] == NULL_TREE
)
2289 set_value_range_to_varying (vr
);
2293 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2297 for (i
= 1; i
< 4; i
++)
2299 if (!is_gimple_min_invariant (min
)
2300 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2301 || !is_gimple_min_invariant (max
)
2302 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2307 if (!is_gimple_min_invariant (val
[i
])
2308 || (TREE_OVERFLOW (val
[i
])
2309 && !is_overflow_infinity (val
[i
])))
2311 /* If we found an overflowed value, set MIN and MAX
2312 to it so that we set the resulting range to
2318 if (compare_values (val
[i
], min
) == -1)
2321 if (compare_values (val
[i
], max
) == 1)
2326 /* If either MIN or MAX overflowed, then set the resulting range to
2327 VARYING. But we do accept an overflow infinity
2329 if (min
== NULL_TREE
2330 || !is_gimple_min_invariant (min
)
2331 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2333 || !is_gimple_min_invariant (max
)
2334 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2336 set_value_range_to_varying (vr
);
2342 2) [-INF, +-INF(OVF)]
2343 3) [+-INF(OVF), +INF]
2344 4) [+-INF(OVF), +-INF(OVF)]
2345 We learn nothing when we have INF and INF(OVF) on both sides.
2346 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2348 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2349 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2351 set_value_range_to_varying (vr
);
2355 cmp
= compare_values (min
, max
);
2356 if (cmp
== -2 || cmp
== 1)
2358 /* If the new range has its limits swapped around (MIN > MAX),
2359 then the operation caused one of them to wrap around, mark
2360 the new range VARYING. */
2361 set_value_range_to_varying (vr
);
2364 set_value_range (vr
, type
, min
, max
, NULL
);
2367 /* Extract range information from a binary operation CODE based on
2368 the ranges of each of its operands, *VR0 and *VR1 with resulting
2369 type EXPR_TYPE. The resulting range is stored in *VR. */
2372 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2373 enum tree_code code
, tree expr_type
,
2374 value_range_t
*vr0_
, value_range_t
*vr1_
)
2376 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2377 enum value_range_type type
;
2378 tree min
= NULL_TREE
, max
= NULL_TREE
;
2381 if (!INTEGRAL_TYPE_P (expr_type
)
2382 && !POINTER_TYPE_P (expr_type
))
2384 set_value_range_to_varying (vr
);
2388 /* Not all binary expressions can be applied to ranges in a
2389 meaningful way. Handle only arithmetic operations. */
2390 if (code
!= PLUS_EXPR
2391 && code
!= MINUS_EXPR
2392 && code
!= POINTER_PLUS_EXPR
2393 && code
!= MULT_EXPR
2394 && code
!= TRUNC_DIV_EXPR
2395 && code
!= FLOOR_DIV_EXPR
2396 && code
!= CEIL_DIV_EXPR
2397 && code
!= EXACT_DIV_EXPR
2398 && code
!= ROUND_DIV_EXPR
2399 && code
!= TRUNC_MOD_EXPR
2400 && code
!= RSHIFT_EXPR
2403 && code
!= BIT_AND_EXPR
2404 && code
!= BIT_IOR_EXPR
2405 && code
!= BIT_XOR_EXPR
)
2407 set_value_range_to_varying (vr
);
2411 /* If both ranges are UNDEFINED, so is the result. */
2412 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2414 set_value_range_to_undefined (vr
);
2417 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2418 code. At some point we may want to special-case operations that
2419 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2421 else if (vr0
.type
== VR_UNDEFINED
)
2422 set_value_range_to_varying (&vr0
);
2423 else if (vr1
.type
== VR_UNDEFINED
)
2424 set_value_range_to_varying (&vr1
);
2426 /* The type of the resulting value range defaults to VR0.TYPE. */
2429 /* Refuse to operate on VARYING ranges, ranges of different kinds
2430 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2431 because we may be able to derive a useful range even if one of
2432 the operands is VR_VARYING or symbolic range. Similarly for
2433 divisions. TODO, we may be able to derive anti-ranges in
2435 if (code
!= BIT_AND_EXPR
2436 && code
!= BIT_IOR_EXPR
2437 && code
!= TRUNC_DIV_EXPR
2438 && code
!= FLOOR_DIV_EXPR
2439 && code
!= CEIL_DIV_EXPR
2440 && code
!= EXACT_DIV_EXPR
2441 && code
!= ROUND_DIV_EXPR
2442 && code
!= TRUNC_MOD_EXPR
2443 && (vr0
.type
== VR_VARYING
2444 || vr1
.type
== VR_VARYING
2445 || vr0
.type
!= vr1
.type
2446 || symbolic_range_p (&vr0
)
2447 || symbolic_range_p (&vr1
)))
2449 set_value_range_to_varying (vr
);
2453 /* Now evaluate the expression to determine the new range. */
2454 if (POINTER_TYPE_P (expr_type
))
2456 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2458 /* For MIN/MAX expressions with pointers, we only care about
2459 nullness, if both are non null, then the result is nonnull.
2460 If both are null, then the result is null. Otherwise they
2462 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2463 set_value_range_to_nonnull (vr
, expr_type
);
2464 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2465 set_value_range_to_null (vr
, expr_type
);
2467 set_value_range_to_varying (vr
);
2469 else if (code
== POINTER_PLUS_EXPR
)
2471 /* For pointer types, we are really only interested in asserting
2472 whether the expression evaluates to non-NULL. */
2473 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2474 set_value_range_to_nonnull (vr
, expr_type
);
2475 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2476 set_value_range_to_null (vr
, expr_type
);
2478 set_value_range_to_varying (vr
);
2480 else if (code
== BIT_AND_EXPR
)
2482 /* For pointer types, we are really only interested in asserting
2483 whether the expression evaluates to non-NULL. */
2484 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2485 set_value_range_to_nonnull (vr
, expr_type
);
2486 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2487 set_value_range_to_null (vr
, expr_type
);
2489 set_value_range_to_varying (vr
);
2492 set_value_range_to_varying (vr
);
2497 /* For integer ranges, apply the operation to each end of the
2498 range and see what we end up with. */
2499 if (code
== PLUS_EXPR
)
2501 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2502 VR_VARYING. It would take more effort to compute a precise
2503 range for such a case. For example, if we have op0 == 1 and
2504 op1 == -1 with their ranges both being ~[0,0], we would have
2505 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2506 Note that we are guaranteed to have vr0.type == vr1.type at
2508 if (vr0
.type
== VR_ANTI_RANGE
)
2510 set_value_range_to_varying (vr
);
2514 /* For operations that make the resulting range directly
2515 proportional to the original ranges, apply the operation to
2516 the same end of each range. */
2517 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2518 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2520 /* If both additions overflowed the range kind is still correct.
2521 This happens regularly with subtracting something in unsigned
2523 ??? See PR30318 for all the cases we do not handle. */
2524 if ((TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2525 && (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2527 min
= build_int_cst_wide (TREE_TYPE (min
),
2528 TREE_INT_CST_LOW (min
),
2529 TREE_INT_CST_HIGH (min
));
2530 max
= build_int_cst_wide (TREE_TYPE (max
),
2531 TREE_INT_CST_LOW (max
),
2532 TREE_INT_CST_HIGH (max
));
2535 else if (code
== MIN_EXPR
2536 || code
== MAX_EXPR
)
2538 if (vr0
.type
== VR_ANTI_RANGE
)
2540 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2541 the resulting VR_ANTI_RANGE is the same - intersection
2542 of the two ranges. */
2543 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2544 max
= vrp_int_const_binop (MIN_EXPR
, vr0
.max
, vr1
.max
);
2548 /* For operations that make the resulting range directly
2549 proportional to the original ranges, apply the operation to
2550 the same end of each range. */
2551 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2552 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2555 else if (code
== MULT_EXPR
)
2557 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2558 drop to VR_VARYING. It would take more effort to compute a
2559 precise range for such a case. For example, if we have
2560 op0 == 65536 and op1 == 65536 with their ranges both being
2561 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2562 we cannot claim that the product is in ~[0,0]. Note that we
2563 are guaranteed to have vr0.type == vr1.type at this
2565 if (vr0
.type
== VR_ANTI_RANGE
2566 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2568 set_value_range_to_varying (vr
);
2572 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2575 else if (code
== RSHIFT_EXPR
)
2577 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2578 then drop to VR_VARYING. Outside of this range we get undefined
2579 behavior from the shift operation. We cannot even trust
2580 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2581 shifts, and the operation at the tree level may be widened. */
2582 if (code
== RSHIFT_EXPR
)
2584 if (vr1
.type
!= VR_RANGE
2585 || !value_range_nonnegative_p (&vr1
)
2586 || TREE_CODE (vr1
.max
) != INTEGER_CST
2587 || compare_tree_int (vr1
.max
,
2588 TYPE_PRECISION (expr_type
) - 1) == 1)
2590 set_value_range_to_varying (vr
);
2595 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2598 else if (code
== TRUNC_DIV_EXPR
2599 || code
== FLOOR_DIV_EXPR
2600 || code
== CEIL_DIV_EXPR
2601 || code
== EXACT_DIV_EXPR
2602 || code
== ROUND_DIV_EXPR
)
2604 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2606 /* For division, if op1 has VR_RANGE but op0 does not, something
2607 can be deduced just from that range. Say [min, max] / [4, max]
2608 gives [min / 4, max / 4] range. */
2609 if (vr1
.type
== VR_RANGE
2610 && !symbolic_range_p (&vr1
)
2611 && !range_includes_zero_p (&vr1
))
2613 vr0
.type
= type
= VR_RANGE
;
2614 vr0
.min
= vrp_val_min (expr_type
);
2615 vr0
.max
= vrp_val_max (expr_type
);
2619 set_value_range_to_varying (vr
);
2624 /* For divisions, if flag_non_call_exceptions is true, we must
2625 not eliminate a division by zero. */
2626 if (cfun
->can_throw_non_call_exceptions
2627 && (vr1
.type
!= VR_RANGE
2628 || symbolic_range_p (&vr1
)
2629 || range_includes_zero_p (&vr1
)))
2631 set_value_range_to_varying (vr
);
2635 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2636 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2638 if (vr0
.type
== VR_RANGE
2639 && (vr1
.type
!= VR_RANGE
2640 || symbolic_range_p (&vr1
)
2641 || range_includes_zero_p (&vr1
)))
2643 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2648 if (TYPE_UNSIGNED (expr_type
)
2649 || value_range_nonnegative_p (&vr1
))
2651 /* For unsigned division or when divisor is known
2652 to be non-negative, the range has to cover
2653 all numbers from 0 to max for positive max
2654 and all numbers from min to 0 for negative min. */
2655 cmp
= compare_values (vr0
.max
, zero
);
2658 else if (cmp
== 0 || cmp
== 1)
2662 cmp
= compare_values (vr0
.min
, zero
);
2665 else if (cmp
== 0 || cmp
== -1)
2672 /* Otherwise the range is -max .. max or min .. -min
2673 depending on which bound is bigger in absolute value,
2674 as the division can change the sign. */
2675 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2678 if (type
== VR_VARYING
)
2680 set_value_range_to_varying (vr
);
2686 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2690 else if (code
== TRUNC_MOD_EXPR
)
2692 if (vr1
.type
!= VR_RANGE
2693 || symbolic_range_p (&vr1
)
2694 || range_includes_zero_p (&vr1
)
2695 || vrp_val_is_min (vr1
.min
))
2697 set_value_range_to_varying (vr
);
2701 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2702 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
2703 if (tree_int_cst_lt (max
, vr1
.max
))
2705 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
2706 /* If the dividend is non-negative the modulus will be
2707 non-negative as well. */
2708 if (TYPE_UNSIGNED (expr_type
)
2709 || value_range_nonnegative_p (&vr0
))
2710 min
= build_int_cst (TREE_TYPE (max
), 0);
2712 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
2714 else if (code
== MINUS_EXPR
)
2716 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2717 VR_VARYING. It would take more effort to compute a precise
2718 range for such a case. For example, if we have op0 == 1 and
2719 op1 == 1 with their ranges both being ~[0,0], we would have
2720 op0 - op1 == 0, so we cannot claim that the difference is in
2721 ~[0,0]. Note that we are guaranteed to have
2722 vr0.type == vr1.type at this point. */
2723 if (vr0
.type
== VR_ANTI_RANGE
)
2725 set_value_range_to_varying (vr
);
2729 /* For MINUS_EXPR, apply the operation to the opposite ends of
2731 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2732 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2734 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
2736 bool int_cst_range0
, int_cst_range1
;
2737 double_int may_be_nonzero0
, may_be_nonzero1
;
2738 double_int must_be_nonzero0
, must_be_nonzero1
;
2740 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2742 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2746 if (code
== BIT_AND_EXPR
)
2749 min
= double_int_to_tree (expr_type
,
2750 double_int_and (must_be_nonzero0
,
2752 dmax
= double_int_and (may_be_nonzero0
, may_be_nonzero1
);
2753 /* If both input ranges contain only negative values we can
2754 truncate the result range maximum to the minimum of the
2755 input range maxima. */
2756 if (int_cst_range0
&& int_cst_range1
2757 && tree_int_cst_sgn (vr0
.max
) < 0
2758 && tree_int_cst_sgn (vr1
.max
) < 0)
2760 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2761 TYPE_UNSIGNED (expr_type
));
2762 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2763 TYPE_UNSIGNED (expr_type
));
2765 /* If either input range contains only non-negative values
2766 we can truncate the result range maximum to the respective
2767 maximum of the input range. */
2768 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
2769 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2770 TYPE_UNSIGNED (expr_type
));
2771 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
2772 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2773 TYPE_UNSIGNED (expr_type
));
2774 max
= double_int_to_tree (expr_type
, dmax
);
2776 else if (code
== BIT_IOR_EXPR
)
2779 max
= double_int_to_tree (expr_type
,
2780 double_int_ior (may_be_nonzero0
,
2782 dmin
= double_int_ior (must_be_nonzero0
, must_be_nonzero1
);
2783 /* If the input ranges contain only positive values we can
2784 truncate the minimum of the result range to the maximum
2785 of the input range minima. */
2786 if (int_cst_range0
&& int_cst_range1
2787 && tree_int_cst_sgn (vr0
.min
) >= 0
2788 && tree_int_cst_sgn (vr1
.min
) >= 0)
2790 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2791 TYPE_UNSIGNED (expr_type
));
2792 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2793 TYPE_UNSIGNED (expr_type
));
2795 /* If either input range contains only negative values
2796 we can truncate the minimum of the result range to the
2797 respective minimum range. */
2798 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
2799 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2800 TYPE_UNSIGNED (expr_type
));
2801 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
2802 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2803 TYPE_UNSIGNED (expr_type
));
2804 min
= double_int_to_tree (expr_type
, dmin
);
2806 else if (code
== BIT_XOR_EXPR
)
2808 double_int result_zero_bits
, result_one_bits
;
2810 = double_int_ior (double_int_and (must_be_nonzero0
,
2813 (double_int_ior (may_be_nonzero0
,
2816 = double_int_ior (double_int_and
2818 double_int_not (may_be_nonzero1
)),
2821 double_int_not (may_be_nonzero0
)));
2822 max
= double_int_to_tree (expr_type
,
2823 double_int_not (result_zero_bits
));
2824 min
= double_int_to_tree (expr_type
, result_one_bits
);
2825 /* If the range has all positive or all negative values the
2826 result is better than VARYING. */
2827 if (tree_int_cst_sgn (min
) < 0
2828 || tree_int_cst_sgn (max
) >= 0)
2831 max
= min
= NULL_TREE
;
2837 /* If either MIN or MAX overflowed, then set the resulting range to
2838 VARYING. But we do accept an overflow infinity
2840 if (min
== NULL_TREE
2841 || !is_gimple_min_invariant (min
)
2842 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2844 || !is_gimple_min_invariant (max
)
2845 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2847 set_value_range_to_varying (vr
);
2853 2) [-INF, +-INF(OVF)]
2854 3) [+-INF(OVF), +INF]
2855 4) [+-INF(OVF), +-INF(OVF)]
2856 We learn nothing when we have INF and INF(OVF) on both sides.
2857 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2859 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2860 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2862 set_value_range_to_varying (vr
);
2866 cmp
= compare_values (min
, max
);
2867 if (cmp
== -2 || cmp
== 1)
2869 /* If the new range has its limits swapped around (MIN > MAX),
2870 then the operation caused one of them to wrap around, mark
2871 the new range VARYING. */
2872 set_value_range_to_varying (vr
);
2875 set_value_range (vr
, type
, min
, max
, NULL
);
2878 /* Extract range information from a binary expression OP0 CODE OP1 based on
2879 the ranges of each of its operands with resulting type EXPR_TYPE.
2880 The resulting range is stored in *VR. */
2883 extract_range_from_binary_expr (value_range_t
*vr
,
2884 enum tree_code code
,
2885 tree expr_type
, tree op0
, tree op1
)
2887 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2888 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2890 /* Get value ranges for each operand. For constant operands, create
2891 a new value range with the operand to simplify processing. */
2892 if (TREE_CODE (op0
) == SSA_NAME
)
2893 vr0
= *(get_value_range (op0
));
2894 else if (is_gimple_min_invariant (op0
))
2895 set_value_range_to_value (&vr0
, op0
, NULL
);
2897 set_value_range_to_varying (&vr0
);
2899 if (TREE_CODE (op1
) == SSA_NAME
)
2900 vr1
= *(get_value_range (op1
));
2901 else if (is_gimple_min_invariant (op1
))
2902 set_value_range_to_value (&vr1
, op1
, NULL
);
2904 set_value_range_to_varying (&vr1
);
2906 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
2909 /* Extract range information from a unary operation CODE based on
2910 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2911 The The resulting range is stored in *VR. */
2914 extract_range_from_unary_expr_1 (value_range_t
*vr
,
2915 enum tree_code code
, tree type
,
2916 value_range_t
*vr0_
, tree op0_type
)
2918 value_range_t vr0
= *vr0_
;
2920 /* VRP only operates on integral and pointer types. */
2921 if (!(INTEGRAL_TYPE_P (op0_type
)
2922 || POINTER_TYPE_P (op0_type
))
2923 || !(INTEGRAL_TYPE_P (type
)
2924 || POINTER_TYPE_P (type
)))
2926 set_value_range_to_varying (vr
);
2930 /* If VR0 is UNDEFINED, so is the result. */
2931 if (vr0
.type
== VR_UNDEFINED
)
2933 set_value_range_to_undefined (vr
);
2937 if (CONVERT_EXPR_CODE_P (code
))
2939 tree inner_type
= op0_type
;
2940 tree outer_type
= type
;
2942 /* If the expression evaluates to a pointer, we are only interested in
2943 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2944 if (POINTER_TYPE_P (type
))
2946 if (range_is_nonnull (&vr0
))
2947 set_value_range_to_nonnull (vr
, type
);
2948 else if (range_is_null (&vr0
))
2949 set_value_range_to_null (vr
, type
);
2951 set_value_range_to_varying (vr
);
2955 /* If VR0 is varying and we increase the type precision, assume
2956 a full range for the following transformation. */
2957 if (vr0
.type
== VR_VARYING
2958 && INTEGRAL_TYPE_P (inner_type
)
2959 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2961 vr0
.type
= VR_RANGE
;
2962 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2963 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2966 /* If VR0 is a constant range or anti-range and the conversion is
2967 not truncating we can convert the min and max values and
2968 canonicalize the resulting range. Otherwise we can do the
2969 conversion if the size of the range is less than what the
2970 precision of the target type can represent and the range is
2971 not an anti-range. */
2972 if ((vr0
.type
== VR_RANGE
2973 || vr0
.type
== VR_ANTI_RANGE
)
2974 && TREE_CODE (vr0
.min
) == INTEGER_CST
2975 && TREE_CODE (vr0
.max
) == INTEGER_CST
2976 && (!is_overflow_infinity (vr0
.min
)
2977 || (vr0
.type
== VR_RANGE
2978 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2979 && needs_overflow_infinity (outer_type
)
2980 && supports_overflow_infinity (outer_type
)))
2981 && (!is_overflow_infinity (vr0
.max
)
2982 || (vr0
.type
== VR_RANGE
2983 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2984 && needs_overflow_infinity (outer_type
)
2985 && supports_overflow_infinity (outer_type
)))
2986 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2987 || (vr0
.type
== VR_RANGE
2988 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2989 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
2990 size_int (TYPE_PRECISION (outer_type
)))))))
2992 tree new_min
, new_max
;
2993 new_min
= force_fit_type_double (outer_type
,
2994 tree_to_double_int (vr0
.min
),
2996 new_max
= force_fit_type_double (outer_type
,
2997 tree_to_double_int (vr0
.max
),
2999 if (is_overflow_infinity (vr0
.min
))
3000 new_min
= negative_overflow_infinity (outer_type
);
3001 if (is_overflow_infinity (vr0
.max
))
3002 new_max
= positive_overflow_infinity (outer_type
);
3003 set_and_canonicalize_value_range (vr
, vr0
.type
,
3004 new_min
, new_max
, NULL
);
3008 set_value_range_to_varying (vr
);
3011 else if (code
== NEGATE_EXPR
)
3013 /* -X is simply 0 - X, so re-use existing code that also handles
3014 anti-ranges fine. */
3015 value_range_t zero
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3016 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3017 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3020 else if (code
== ABS_EXPR
)
3025 /* Pass through vr0 in the easy cases. */
3026 if (TYPE_UNSIGNED (type
)
3027 || value_range_nonnegative_p (&vr0
))
3029 copy_value_range (vr
, &vr0
);
3033 /* For the remaining varying or symbolic ranges we can't do anything
3035 if (vr0
.type
== VR_VARYING
3036 || symbolic_range_p (&vr0
))
3038 set_value_range_to_varying (vr
);
3042 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3044 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3045 && ((vr0
.type
== VR_RANGE
3046 && vrp_val_is_min (vr0
.min
))
3047 || (vr0
.type
== VR_ANTI_RANGE
3048 && !vrp_val_is_min (vr0
.min
))))
3050 set_value_range_to_varying (vr
);
3054 /* ABS_EXPR may flip the range around, if the original range
3055 included negative values. */
3056 if (is_overflow_infinity (vr0
.min
))
3057 min
= positive_overflow_infinity (type
);
3058 else if (!vrp_val_is_min (vr0
.min
))
3059 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3060 else if (!needs_overflow_infinity (type
))
3061 min
= TYPE_MAX_VALUE (type
);
3062 else if (supports_overflow_infinity (type
))
3063 min
= positive_overflow_infinity (type
);
3066 set_value_range_to_varying (vr
);
3070 if (is_overflow_infinity (vr0
.max
))
3071 max
= positive_overflow_infinity (type
);
3072 else if (!vrp_val_is_min (vr0
.max
))
3073 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3074 else if (!needs_overflow_infinity (type
))
3075 max
= TYPE_MAX_VALUE (type
);
3076 else if (supports_overflow_infinity (type
)
3077 /* We shouldn't generate [+INF, +INF] as set_value_range
3078 doesn't like this and ICEs. */
3079 && !is_positive_overflow_infinity (min
))
3080 max
= positive_overflow_infinity (type
);
3083 set_value_range_to_varying (vr
);
3087 cmp
= compare_values (min
, max
);
3089 /* If a VR_ANTI_RANGEs contains zero, then we have
3090 ~[-INF, min(MIN, MAX)]. */
3091 if (vr0
.type
== VR_ANTI_RANGE
)
3093 if (range_includes_zero_p (&vr0
))
3095 /* Take the lower of the two values. */
3099 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3100 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3101 flag_wrapv is set and the original anti-range doesn't include
3102 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3103 if (TYPE_OVERFLOW_WRAPS (type
))
3105 tree type_min_value
= TYPE_MIN_VALUE (type
);
3107 min
= (vr0
.min
!= type_min_value
3108 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3114 if (overflow_infinity_range_p (&vr0
))
3115 min
= negative_overflow_infinity (type
);
3117 min
= TYPE_MIN_VALUE (type
);
3122 /* All else has failed, so create the range [0, INF], even for
3123 flag_wrapv since TYPE_MIN_VALUE is in the original
3125 vr0
.type
= VR_RANGE
;
3126 min
= build_int_cst (type
, 0);
3127 if (needs_overflow_infinity (type
))
3129 if (supports_overflow_infinity (type
))
3130 max
= positive_overflow_infinity (type
);
3133 set_value_range_to_varying (vr
);
3138 max
= TYPE_MAX_VALUE (type
);
3142 /* If the range contains zero then we know that the minimum value in the
3143 range will be zero. */
3144 else if (range_includes_zero_p (&vr0
))
3148 min
= build_int_cst (type
, 0);
3152 /* If the range was reversed, swap MIN and MAX. */
3161 cmp
= compare_values (min
, max
);
3162 if (cmp
== -2 || cmp
== 1)
3164 /* If the new range has its limits swapped around (MIN > MAX),
3165 then the operation caused one of them to wrap around, mark
3166 the new range VARYING. */
3167 set_value_range_to_varying (vr
);
3170 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3173 else if (code
== BIT_NOT_EXPR
)
3175 /* ~X is simply -1 - X, so re-use existing code that also handles
3176 anti-ranges fine. */
3177 value_range_t minusone
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3178 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3179 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3180 type
, &minusone
, &vr0
);
3183 else if (code
== PAREN_EXPR
)
3185 copy_value_range (vr
, &vr0
);
3189 /* For unhandled operations fall back to varying. */
3190 set_value_range_to_varying (vr
);
3195 /* Extract range information from a unary expression CODE OP0 based on
3196 the range of its operand with resulting type TYPE.
3197 The resulting range is stored in *VR. */
3200 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3201 tree type
, tree op0
)
3203 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3205 /* Get value ranges for the operand. For constant operands, create
3206 a new value range with the operand to simplify processing. */
3207 if (TREE_CODE (op0
) == SSA_NAME
)
3208 vr0
= *(get_value_range (op0
));
3209 else if (is_gimple_min_invariant (op0
))
3210 set_value_range_to_value (&vr0
, op0
, NULL
);
3212 set_value_range_to_varying (&vr0
);
3214 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3218 /* Extract range information from a conditional expression STMT based on
3219 the ranges of each of its operands and the expression code. */
3222 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3225 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3226 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3228 /* Get value ranges for each operand. For constant operands, create
3229 a new value range with the operand to simplify processing. */
3230 op0
= gimple_assign_rhs2 (stmt
);
3231 if (TREE_CODE (op0
) == SSA_NAME
)
3232 vr0
= *(get_value_range (op0
));
3233 else if (is_gimple_min_invariant (op0
))
3234 set_value_range_to_value (&vr0
, op0
, NULL
);
3236 set_value_range_to_varying (&vr0
);
3238 op1
= gimple_assign_rhs3 (stmt
);
3239 if (TREE_CODE (op1
) == SSA_NAME
)
3240 vr1
= *(get_value_range (op1
));
3241 else if (is_gimple_min_invariant (op1
))
3242 set_value_range_to_value (&vr1
, op1
, NULL
);
3244 set_value_range_to_varying (&vr1
);
3246 /* The resulting value range is the union of the operand ranges */
3247 vrp_meet (&vr0
, &vr1
);
3248 copy_value_range (vr
, &vr0
);
3252 /* Extract range information from a comparison expression EXPR based
3253 on the range of its operand and the expression code. */
3256 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3257 tree type
, tree op0
, tree op1
)
3262 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3265 /* A disadvantage of using a special infinity as an overflow
3266 representation is that we lose the ability to record overflow
3267 when we don't have an infinity. So we have to ignore a result
3268 which relies on overflow. */
3270 if (val
&& !is_overflow_infinity (val
) && !sop
)
3272 /* Since this expression was found on the RHS of an assignment,
3273 its type may be different from _Bool. Convert VAL to EXPR's
3275 val
= fold_convert (type
, val
);
3276 if (is_gimple_min_invariant (val
))
3277 set_value_range_to_value (vr
, val
, vr
->equiv
);
3279 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3282 /* The result of a comparison is always true or false. */
3283 set_value_range_to_truthvalue (vr
, type
);
3286 /* Try to derive a nonnegative or nonzero range out of STMT relying
3287 primarily on generic routines in fold in conjunction with range data.
3288 Store the result in *VR */
3291 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3294 tree type
= gimple_expr_type (stmt
);
3296 if (INTEGRAL_TYPE_P (type
)
3297 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3298 set_value_range_to_nonnegative (vr
, type
,
3299 sop
|| stmt_overflow_infinity (stmt
));
3300 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3302 set_value_range_to_nonnull (vr
, type
);
3304 set_value_range_to_varying (vr
);
3308 /* Try to compute a useful range out of assignment STMT and store it
3312 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3314 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3316 if (code
== ASSERT_EXPR
)
3317 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3318 else if (code
== SSA_NAME
)
3319 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3320 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3321 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3322 gimple_expr_type (stmt
),
3323 gimple_assign_rhs1 (stmt
),
3324 gimple_assign_rhs2 (stmt
));
3325 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3326 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3327 gimple_expr_type (stmt
),
3328 gimple_assign_rhs1 (stmt
));
3329 else if (code
== COND_EXPR
)
3330 extract_range_from_cond_expr (vr
, stmt
);
3331 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3332 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3333 gimple_expr_type (stmt
),
3334 gimple_assign_rhs1 (stmt
),
3335 gimple_assign_rhs2 (stmt
));
3336 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3337 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3338 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3340 set_value_range_to_varying (vr
);
3342 if (vr
->type
== VR_VARYING
)
3343 extract_range_basic (vr
, stmt
);
3346 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3347 would be profitable to adjust VR using scalar evolution information
3348 for VAR. If so, update VR with the new limits. */
3351 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3352 gimple stmt
, tree var
)
3354 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3355 enum ev_direction dir
;
3357 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3358 better opportunities than a regular range, but I'm not sure. */
3359 if (vr
->type
== VR_ANTI_RANGE
)
3362 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3364 /* Like in PR19590, scev can return a constant function. */
3365 if (is_gimple_min_invariant (chrec
))
3367 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3371 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3374 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3375 tem
= op_with_constant_singleton_value_range (init
);
3378 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3379 tem
= op_with_constant_singleton_value_range (step
);
3383 /* If STEP is symbolic, we can't know whether INIT will be the
3384 minimum or maximum value in the range. Also, unless INIT is
3385 a simple expression, compare_values and possibly other functions
3386 in tree-vrp won't be able to handle it. */
3387 if (step
== NULL_TREE
3388 || !is_gimple_min_invariant (step
)
3389 || !valid_value_p (init
))
3392 dir
= scev_direction (chrec
);
3393 if (/* Do not adjust ranges if we do not know whether the iv increases
3394 or decreases, ... */
3395 dir
== EV_DIR_UNKNOWN
3396 /* ... or if it may wrap. */
3397 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3401 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3402 negative_overflow_infinity and positive_overflow_infinity,
3403 because we have concluded that the loop probably does not
3406 type
= TREE_TYPE (var
);
3407 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3408 tmin
= lower_bound_in_type (type
, type
);
3410 tmin
= TYPE_MIN_VALUE (type
);
3411 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3412 tmax
= upper_bound_in_type (type
, type
);
3414 tmax
= TYPE_MAX_VALUE (type
);
3416 /* Try to use estimated number of iterations for the loop to constrain the
3417 final value in the evolution. */
3418 if (TREE_CODE (step
) == INTEGER_CST
3419 && is_gimple_val (init
)
3420 && (TREE_CODE (init
) != SSA_NAME
3421 || get_value_range (init
)->type
== VR_RANGE
))
3425 if (estimated_loop_iterations (loop
, true, &nit
))
3427 value_range_t maxvr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3429 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3432 dtmp
= double_int_mul_with_sign (tree_to_double_int (step
), nit
,
3433 unsigned_p
, &overflow
);
3434 /* If the multiplication overflowed we can't do a meaningful
3435 adjustment. Likewise if the result doesn't fit in the type
3436 of the induction variable. For a signed type we have to
3437 check whether the result has the expected signedness which
3438 is that of the step as number of iterations is unsigned. */
3440 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3442 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3444 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3445 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3446 TREE_TYPE (init
), init
, tem
);
3447 /* Likewise if the addition did. */
3448 if (maxvr
.type
== VR_RANGE
)
3457 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3462 /* For VARYING or UNDEFINED ranges, just about anything we get
3463 from scalar evolutions should be better. */
3465 if (dir
== EV_DIR_DECREASES
)
3470 /* If we would create an invalid range, then just assume we
3471 know absolutely nothing. This may be over-conservative,
3472 but it's clearly safe, and should happen only in unreachable
3473 parts of code, or for invalid programs. */
3474 if (compare_values (min
, max
) == 1)
3477 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3479 else if (vr
->type
== VR_RANGE
)
3484 if (dir
== EV_DIR_DECREASES
)
3486 /* INIT is the maximum value. If INIT is lower than VR->MAX
3487 but no smaller than VR->MIN, set VR->MAX to INIT. */
3488 if (compare_values (init
, max
) == -1)
3491 /* According to the loop information, the variable does not
3492 overflow. If we think it does, probably because of an
3493 overflow due to arithmetic on a different INF value,
3495 if (is_negative_overflow_infinity (min
)
3496 || compare_values (min
, tmin
) == -1)
3502 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3503 if (compare_values (init
, min
) == 1)
3506 if (is_positive_overflow_infinity (max
)
3507 || compare_values (tmax
, max
) == -1)
3511 /* If we just created an invalid range with the minimum
3512 greater than the maximum, we fail conservatively.
3513 This should happen only in unreachable
3514 parts of code, or for invalid programs. */
3515 if (compare_values (min
, max
) == 1)
3518 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3522 /* Return true if VAR may overflow at STMT. This checks any available
3523 loop information to see if we can determine that VAR does not
3527 vrp_var_may_overflow (tree var
, gimple stmt
)
3530 tree chrec
, init
, step
;
3532 if (current_loops
== NULL
)
3535 l
= loop_containing_stmt (stmt
);
3540 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3541 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3544 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3545 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3547 if (step
== NULL_TREE
3548 || !is_gimple_min_invariant (step
)
3549 || !valid_value_p (init
))
3552 /* If we get here, we know something useful about VAR based on the
3553 loop information. If it wraps, it may overflow. */
3555 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3559 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3561 print_generic_expr (dump_file
, var
, 0);
3562 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3569 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3571 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3572 all the values in the ranges.
3574 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3576 - Return NULL_TREE if it is not always possible to determine the
3577 value of the comparison.
3579 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3580 overflow infinity was used in the test. */
3584 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3585 bool *strict_overflow_p
)
3587 /* VARYING or UNDEFINED ranges cannot be compared. */
3588 if (vr0
->type
== VR_VARYING
3589 || vr0
->type
== VR_UNDEFINED
3590 || vr1
->type
== VR_VARYING
3591 || vr1
->type
== VR_UNDEFINED
)
3594 /* Anti-ranges need to be handled separately. */
3595 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3597 /* If both are anti-ranges, then we cannot compute any
3599 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3602 /* These comparisons are never statically computable. */
3609 /* Equality can be computed only between a range and an
3610 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3611 if (vr0
->type
== VR_RANGE
)
3613 /* To simplify processing, make VR0 the anti-range. */
3614 value_range_t
*tmp
= vr0
;
3619 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3621 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3622 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3623 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3628 if (!usable_range_p (vr0
, strict_overflow_p
)
3629 || !usable_range_p (vr1
, strict_overflow_p
))
3632 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3633 operands around and change the comparison code. */
3634 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3637 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3643 if (comp
== EQ_EXPR
)
3645 /* Equality may only be computed if both ranges represent
3646 exactly one value. */
3647 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3648 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3650 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3652 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3654 if (cmp_min
== 0 && cmp_max
== 0)
3655 return boolean_true_node
;
3656 else if (cmp_min
!= -2 && cmp_max
!= -2)
3657 return boolean_false_node
;
3659 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3660 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3661 strict_overflow_p
) == 1
3662 || compare_values_warnv (vr1
->min
, vr0
->max
,
3663 strict_overflow_p
) == 1)
3664 return boolean_false_node
;
3668 else if (comp
== NE_EXPR
)
3672 /* If VR0 is completely to the left or completely to the right
3673 of VR1, they are always different. Notice that we need to
3674 make sure that both comparisons yield similar results to
3675 avoid comparing values that cannot be compared at
3677 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3678 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3679 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3680 return boolean_true_node
;
3682 /* If VR0 and VR1 represent a single value and are identical,
3684 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3685 strict_overflow_p
) == 0
3686 && compare_values_warnv (vr1
->min
, vr1
->max
,
3687 strict_overflow_p
) == 0
3688 && compare_values_warnv (vr0
->min
, vr1
->min
,
3689 strict_overflow_p
) == 0
3690 && compare_values_warnv (vr0
->max
, vr1
->max
,
3691 strict_overflow_p
) == 0)
3692 return boolean_false_node
;
3694 /* Otherwise, they may or may not be different. */
3698 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3702 /* If VR0 is to the left of VR1, return true. */
3703 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3704 if ((comp
== LT_EXPR
&& tst
== -1)
3705 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3707 if (overflow_infinity_range_p (vr0
)
3708 || overflow_infinity_range_p (vr1
))
3709 *strict_overflow_p
= true;
3710 return boolean_true_node
;
3713 /* If VR0 is to the right of VR1, return false. */
3714 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3715 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3716 || (comp
== LE_EXPR
&& tst
== 1))
3718 if (overflow_infinity_range_p (vr0
)
3719 || overflow_infinity_range_p (vr1
))
3720 *strict_overflow_p
= true;
3721 return boolean_false_node
;
3724 /* Otherwise, we don't know. */
3732 /* Given a value range VR, a value VAL and a comparison code COMP, return
3733 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3734 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3735 always returns false. Return NULL_TREE if it is not always
3736 possible to determine the value of the comparison. Also set
3737 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3738 infinity was used in the test. */
3741 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3742 bool *strict_overflow_p
)
3744 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3747 /* Anti-ranges need to be handled separately. */
3748 if (vr
->type
== VR_ANTI_RANGE
)
3750 /* For anti-ranges, the only predicates that we can compute at
3751 compile time are equality and inequality. */
3758 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3759 if (value_inside_range (val
, vr
) == 1)
3760 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3765 if (!usable_range_p (vr
, strict_overflow_p
))
3768 if (comp
== EQ_EXPR
)
3770 /* EQ_EXPR may only be computed if VR represents exactly
3772 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3774 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3776 return boolean_true_node
;
3777 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3778 return boolean_false_node
;
3780 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3781 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3782 return boolean_false_node
;
3786 else if (comp
== NE_EXPR
)
3788 /* If VAL is not inside VR, then they are always different. */
3789 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3790 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3791 return boolean_true_node
;
3793 /* If VR represents exactly one value equal to VAL, then return
3795 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3796 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3797 return boolean_false_node
;
3799 /* Otherwise, they may or may not be different. */
3802 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3806 /* If VR is to the left of VAL, return true. */
3807 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3808 if ((comp
== LT_EXPR
&& tst
== -1)
3809 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3811 if (overflow_infinity_range_p (vr
))
3812 *strict_overflow_p
= true;
3813 return boolean_true_node
;
3816 /* If VR is to the right of VAL, return false. */
3817 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3818 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3819 || (comp
== LE_EXPR
&& tst
== 1))
3821 if (overflow_infinity_range_p (vr
))
3822 *strict_overflow_p
= true;
3823 return boolean_false_node
;
3826 /* Otherwise, we don't know. */
3829 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3833 /* If VR is to the right of VAL, return true. */
3834 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3835 if ((comp
== GT_EXPR
&& tst
== 1)
3836 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3838 if (overflow_infinity_range_p (vr
))
3839 *strict_overflow_p
= true;
3840 return boolean_true_node
;
3843 /* If VR is to the left of VAL, return false. */
3844 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3845 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3846 || (comp
== GE_EXPR
&& tst
== -1))
3848 if (overflow_infinity_range_p (vr
))
3849 *strict_overflow_p
= true;
3850 return boolean_false_node
;
3853 /* Otherwise, we don't know. */
3861 /* Debugging dumps. */
3863 void dump_value_range (FILE *, value_range_t
*);
3864 void debug_value_range (value_range_t
*);
3865 void dump_all_value_ranges (FILE *);
3866 void debug_all_value_ranges (void);
3867 void dump_vr_equiv (FILE *, bitmap
);
3868 void debug_vr_equiv (bitmap
);
3871 /* Dump value range VR to FILE. */
3874 dump_value_range (FILE *file
, value_range_t
*vr
)
3877 fprintf (file
, "[]");
3878 else if (vr
->type
== VR_UNDEFINED
)
3879 fprintf (file
, "UNDEFINED");
3880 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3882 tree type
= TREE_TYPE (vr
->min
);
3884 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3886 if (is_negative_overflow_infinity (vr
->min
))
3887 fprintf (file
, "-INF(OVF)");
3888 else if (INTEGRAL_TYPE_P (type
)
3889 && !TYPE_UNSIGNED (type
)
3890 && vrp_val_is_min (vr
->min
))
3891 fprintf (file
, "-INF");
3893 print_generic_expr (file
, vr
->min
, 0);
3895 fprintf (file
, ", ");
3897 if (is_positive_overflow_infinity (vr
->max
))
3898 fprintf (file
, "+INF(OVF)");
3899 else if (INTEGRAL_TYPE_P (type
)
3900 && vrp_val_is_max (vr
->max
))
3901 fprintf (file
, "+INF");
3903 print_generic_expr (file
, vr
->max
, 0);
3905 fprintf (file
, "]");
3912 fprintf (file
, " EQUIVALENCES: { ");
3914 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3916 print_generic_expr (file
, ssa_name (i
), 0);
3917 fprintf (file
, " ");
3921 fprintf (file
, "} (%u elements)", c
);
3924 else if (vr
->type
== VR_VARYING
)
3925 fprintf (file
, "VARYING");
3927 fprintf (file
, "INVALID RANGE");
3931 /* Dump value range VR to stderr. */
3934 debug_value_range (value_range_t
*vr
)
3936 dump_value_range (stderr
, vr
);
3937 fprintf (stderr
, "\n");
3941 /* Dump value ranges of all SSA_NAMEs to FILE. */
3944 dump_all_value_ranges (FILE *file
)
3948 for (i
= 0; i
< num_vr_values
; i
++)
3952 print_generic_expr (file
, ssa_name (i
), 0);
3953 fprintf (file
, ": ");
3954 dump_value_range (file
, vr_value
[i
]);
3955 fprintf (file
, "\n");
3959 fprintf (file
, "\n");
3963 /* Dump all value ranges to stderr. */
3966 debug_all_value_ranges (void)
3968 dump_all_value_ranges (stderr
);
3972 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3973 create a new SSA name N and return the assertion assignment
3974 'V = ASSERT_EXPR <V, V OP W>'. */
3977 build_assert_expr_for (tree cond
, tree v
)
3982 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3983 n
= duplicate_ssa_name (v
, NULL
);
3985 if (COMPARISON_CLASS_P (cond
))
3987 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3988 assertion
= gimple_build_assign (n
, a
);
3990 else if (TREE_CODE (cond
) == SSA_NAME
)
3992 /* Given V, build the assignment N = true. */
3993 gcc_assert (v
== cond
);
3994 assertion
= gimple_build_assign (n
, boolean_true_node
);
3999 SSA_NAME_DEF_STMT (n
) = assertion
;
4001 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4002 operand of the ASSERT_EXPR. Register the new name and the old one
4003 in the replacement table so that we can fix the SSA web after
4004 adding all the ASSERT_EXPRs. */
4005 register_new_name_mapping (n
, v
);
4011 /* Return false if EXPR is a predicate expression involving floating
4015 fp_predicate (gimple stmt
)
4017 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4019 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4023 /* If the range of values taken by OP can be inferred after STMT executes,
4024 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4025 describes the inferred range. Return true if a range could be
4029 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4032 *comp_code_p
= ERROR_MARK
;
4034 /* Do not attempt to infer anything in names that flow through
4036 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4039 /* Similarly, don't infer anything from statements that may throw
4041 if (stmt_could_throw_p (stmt
))
4044 /* If STMT is the last statement of a basic block with no
4045 successors, there is no point inferring anything about any of its
4046 operands. We would not be able to find a proper insertion point
4047 for the assertion, anyway. */
4048 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4051 /* We can only assume that a pointer dereference will yield
4052 non-NULL if -fdelete-null-pointer-checks is enabled. */
4053 if (flag_delete_null_pointer_checks
4054 && POINTER_TYPE_P (TREE_TYPE (op
))
4055 && gimple_code (stmt
) != GIMPLE_ASM
)
4057 unsigned num_uses
, num_loads
, num_stores
;
4059 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4060 if (num_loads
+ num_stores
> 0)
4062 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4063 *comp_code_p
= NE_EXPR
;
4072 void dump_asserts_for (FILE *, tree
);
4073 void debug_asserts_for (tree
);
4074 void dump_all_asserts (FILE *);
4075 void debug_all_asserts (void);
4077 /* Dump all the registered assertions for NAME to FILE. */
4080 dump_asserts_for (FILE *file
, tree name
)
4084 fprintf (file
, "Assertions to be inserted for ");
4085 print_generic_expr (file
, name
, 0);
4086 fprintf (file
, "\n");
4088 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4091 fprintf (file
, "\t");
4092 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4093 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4096 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4097 loc
->e
->dest
->index
);
4098 dump_edge_info (file
, loc
->e
, 0);
4100 fprintf (file
, "\n\tPREDICATE: ");
4101 print_generic_expr (file
, name
, 0);
4102 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4103 print_generic_expr (file
, loc
->val
, 0);
4104 fprintf (file
, "\n\n");
4108 fprintf (file
, "\n");
4112 /* Dump all the registered assertions for NAME to stderr. */
4115 debug_asserts_for (tree name
)
4117 dump_asserts_for (stderr
, name
);
4121 /* Dump all the registered assertions for all the names to FILE. */
4124 dump_all_asserts (FILE *file
)
4129 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4130 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4131 dump_asserts_for (file
, ssa_name (i
));
4132 fprintf (file
, "\n");
4136 /* Dump all the registered assertions for all the names to stderr. */
4139 debug_all_asserts (void)
4141 dump_all_asserts (stderr
);
4145 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4146 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4147 E->DEST, then register this location as a possible insertion point
4148 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4150 BB, E and SI provide the exact insertion point for the new
4151 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4152 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4153 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4154 must not be NULL. */
4157 register_new_assert_for (tree name
, tree expr
,
4158 enum tree_code comp_code
,
4162 gimple_stmt_iterator si
)
4164 assert_locus_t n
, loc
, last_loc
;
4165 basic_block dest_bb
;
4167 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4170 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4171 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4173 /* Never build an assert comparing against an integer constant with
4174 TREE_OVERFLOW set. This confuses our undefined overflow warning
4176 if (TREE_CODE (val
) == INTEGER_CST
4177 && TREE_OVERFLOW (val
))
4178 val
= build_int_cst_wide (TREE_TYPE (val
),
4179 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4181 /* The new assertion A will be inserted at BB or E. We need to
4182 determine if the new location is dominated by a previously
4183 registered location for A. If we are doing an edge insertion,
4184 assume that A will be inserted at E->DEST. Note that this is not
4187 If E is a critical edge, it will be split. But even if E is
4188 split, the new block will dominate the same set of blocks that
4191 The reverse, however, is not true, blocks dominated by E->DEST
4192 will not be dominated by the new block created to split E. So,
4193 if the insertion location is on a critical edge, we will not use
4194 the new location to move another assertion previously registered
4195 at a block dominated by E->DEST. */
4196 dest_bb
= (bb
) ? bb
: e
->dest
;
4198 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4199 VAL at a block dominating DEST_BB, then we don't need to insert a new
4200 one. Similarly, if the same assertion already exists at a block
4201 dominated by DEST_BB and the new location is not on a critical
4202 edge, then update the existing location for the assertion (i.e.,
4203 move the assertion up in the dominance tree).
4205 Note, this is implemented as a simple linked list because there
4206 should not be more than a handful of assertions registered per
4207 name. If this becomes a performance problem, a table hashed by
4208 COMP_CODE and VAL could be implemented. */
4209 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4213 if (loc
->comp_code
== comp_code
4215 || operand_equal_p (loc
->val
, val
, 0))
4216 && (loc
->expr
== expr
4217 || operand_equal_p (loc
->expr
, expr
, 0)))
4219 /* If the assertion NAME COMP_CODE VAL has already been
4220 registered at a basic block that dominates DEST_BB, then
4221 we don't need to insert the same assertion again. Note
4222 that we don't check strict dominance here to avoid
4223 replicating the same assertion inside the same basic
4224 block more than once (e.g., when a pointer is
4225 dereferenced several times inside a block).
4227 An exception to this rule are edge insertions. If the
4228 new assertion is to be inserted on edge E, then it will
4229 dominate all the other insertions that we may want to
4230 insert in DEST_BB. So, if we are doing an edge
4231 insertion, don't do this dominance check. */
4233 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
4236 /* Otherwise, if E is not a critical edge and DEST_BB
4237 dominates the existing location for the assertion, move
4238 the assertion up in the dominance tree by updating its
4239 location information. */
4240 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4241 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4250 /* Update the last node of the list and move to the next one. */
4255 /* If we didn't find an assertion already registered for
4256 NAME COMP_CODE VAL, add a new one at the end of the list of
4257 assertions associated with NAME. */
4258 n
= XNEW (struct assert_locus_d
);
4262 n
->comp_code
= comp_code
;
4270 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4272 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4275 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4276 Extract a suitable test code and value and store them into *CODE_P and
4277 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4279 If no extraction was possible, return FALSE, otherwise return TRUE.
4281 If INVERT is true, then we invert the result stored into *CODE_P. */
4284 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4285 tree cond_op0
, tree cond_op1
,
4286 bool invert
, enum tree_code
*code_p
,
4289 enum tree_code comp_code
;
4292 /* Otherwise, we have a comparison of the form NAME COMP VAL
4293 or VAL COMP NAME. */
4294 if (name
== cond_op1
)
4296 /* If the predicate is of the form VAL COMP NAME, flip
4297 COMP around because we need to register NAME as the
4298 first operand in the predicate. */
4299 comp_code
= swap_tree_comparison (cond_code
);
4304 /* The comparison is of the form NAME COMP VAL, so the
4305 comparison code remains unchanged. */
4306 comp_code
= cond_code
;
4310 /* Invert the comparison code as necessary. */
4312 comp_code
= invert_tree_comparison (comp_code
, 0);
4314 /* VRP does not handle float types. */
4315 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4318 /* Do not register always-false predicates.
4319 FIXME: this works around a limitation in fold() when dealing with
4320 enumerations. Given 'enum { N1, N2 } x;', fold will not
4321 fold 'if (x > N2)' to 'if (0)'. */
4322 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4323 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4325 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4326 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4328 if (comp_code
== GT_EXPR
4330 || compare_values (val
, max
) == 0))
4333 if (comp_code
== LT_EXPR
4335 || compare_values (val
, min
) == 0))
4338 *code_p
= comp_code
;
4343 /* Try to register an edge assertion for SSA name NAME on edge E for
4344 the condition COND contributing to the conditional jump pointed to by BSI.
4345 Invert the condition COND if INVERT is true.
4346 Return true if an assertion for NAME could be registered. */
4349 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4350 enum tree_code cond_code
,
4351 tree cond_op0
, tree cond_op1
, bool invert
)
4354 enum tree_code comp_code
;
4355 bool retval
= false;
4357 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4360 invert
, &comp_code
, &val
))
4363 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4364 reachable from E. */
4365 if (live_on_edge (e
, name
)
4366 && !has_single_use (name
))
4368 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4372 /* In the case of NAME <= CST and NAME being defined as
4373 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4374 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4375 This catches range and anti-range tests. */
4376 if ((comp_code
== LE_EXPR
4377 || comp_code
== GT_EXPR
)
4378 && TREE_CODE (val
) == INTEGER_CST
4379 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4381 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4382 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4384 /* Extract CST2 from the (optional) addition. */
4385 if (is_gimple_assign (def_stmt
)
4386 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4388 name2
= gimple_assign_rhs1 (def_stmt
);
4389 cst2
= gimple_assign_rhs2 (def_stmt
);
4390 if (TREE_CODE (name2
) == SSA_NAME
4391 && TREE_CODE (cst2
) == INTEGER_CST
)
4392 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4395 /* Extract NAME2 from the (optional) sign-changing cast. */
4396 if (gimple_assign_cast_p (def_stmt
))
4398 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4399 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4400 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4401 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4402 name3
= gimple_assign_rhs1 (def_stmt
);
4405 /* If name3 is used later, create an ASSERT_EXPR for it. */
4406 if (name3
!= NULL_TREE
4407 && TREE_CODE (name3
) == SSA_NAME
4408 && (cst2
== NULL_TREE
4409 || TREE_CODE (cst2
) == INTEGER_CST
)
4410 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4411 && live_on_edge (e
, name3
)
4412 && !has_single_use (name3
))
4416 /* Build an expression for the range test. */
4417 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4418 if (cst2
!= NULL_TREE
)
4419 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4423 fprintf (dump_file
, "Adding assert for ");
4424 print_generic_expr (dump_file
, name3
, 0);
4425 fprintf (dump_file
, " from ");
4426 print_generic_expr (dump_file
, tmp
, 0);
4427 fprintf (dump_file
, "\n");
4430 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4435 /* If name2 is used later, create an ASSERT_EXPR for it. */
4436 if (name2
!= NULL_TREE
4437 && TREE_CODE (name2
) == SSA_NAME
4438 && TREE_CODE (cst2
) == INTEGER_CST
4439 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4440 && live_on_edge (e
, name2
)
4441 && !has_single_use (name2
))
4445 /* Build an expression for the range test. */
4447 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4448 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4449 if (cst2
!= NULL_TREE
)
4450 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4454 fprintf (dump_file
, "Adding assert for ");
4455 print_generic_expr (dump_file
, name2
, 0);
4456 fprintf (dump_file
, " from ");
4457 print_generic_expr (dump_file
, tmp
, 0);
4458 fprintf (dump_file
, "\n");
4461 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4470 /* OP is an operand of a truth value expression which is known to have
4471 a particular value. Register any asserts for OP and for any
4472 operands in OP's defining statement.
4474 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4475 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4478 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4479 edge e
, gimple_stmt_iterator bsi
)
4481 bool retval
= false;
4484 enum tree_code rhs_code
;
4486 /* We only care about SSA_NAMEs. */
4487 if (TREE_CODE (op
) != SSA_NAME
)
4490 /* We know that OP will have a zero or nonzero value. If OP is used
4491 more than once go ahead and register an assert for OP.
4493 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4494 it will always be set for OP (because OP is used in a COND_EXPR in
4496 if (!has_single_use (op
))
4498 val
= build_int_cst (TREE_TYPE (op
), 0);
4499 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4503 /* Now look at how OP is set. If it's set from a comparison,
4504 a truth operation or some bit operations, then we may be able
4505 to register information about the operands of that assignment. */
4506 op_def
= SSA_NAME_DEF_STMT (op
);
4507 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4510 rhs_code
= gimple_assign_rhs_code (op_def
);
4512 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4514 bool invert
= (code
== EQ_EXPR
? true : false);
4515 tree op0
= gimple_assign_rhs1 (op_def
);
4516 tree op1
= gimple_assign_rhs2 (op_def
);
4518 if (TREE_CODE (op0
) == SSA_NAME
)
4519 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4521 if (TREE_CODE (op1
) == SSA_NAME
)
4522 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4525 else if ((code
== NE_EXPR
4526 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
4528 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
4530 /* Recurse on each operand. */
4531 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4533 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4536 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
4537 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
4539 /* Recurse, flipping CODE. */
4540 code
= invert_tree_comparison (code
, false);
4541 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4544 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4546 /* Recurse through the copy. */
4547 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4550 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4552 /* Recurse through the type conversion. */
4553 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4560 /* Try to register an edge assertion for SSA name NAME on edge E for
4561 the condition COND contributing to the conditional jump pointed to by SI.
4562 Return true if an assertion for NAME could be registered. */
4565 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4566 enum tree_code cond_code
, tree cond_op0
,
4570 enum tree_code comp_code
;
4571 bool retval
= false;
4572 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4574 /* Do not attempt to infer anything in names that flow through
4576 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4579 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4585 /* Register ASSERT_EXPRs for name. */
4586 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4587 cond_op1
, is_else_edge
);
4590 /* If COND is effectively an equality test of an SSA_NAME against
4591 the value zero or one, then we may be able to assert values
4592 for SSA_NAMEs which flow into COND. */
4594 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4595 statement of NAME we can assert both operands of the BIT_AND_EXPR
4596 have nonzero value. */
4597 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4598 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4600 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4602 if (is_gimple_assign (def_stmt
)
4603 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
4605 tree op0
= gimple_assign_rhs1 (def_stmt
);
4606 tree op1
= gimple_assign_rhs2 (def_stmt
);
4607 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4608 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4612 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4613 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4615 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4616 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4618 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4620 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4621 necessarily zero value, or if type-precision is one. */
4622 if (is_gimple_assign (def_stmt
)
4623 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
4624 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
4625 || comp_code
== EQ_EXPR
)))
4627 tree op0
= gimple_assign_rhs1 (def_stmt
);
4628 tree op1
= gimple_assign_rhs2 (def_stmt
);
4629 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4630 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4638 /* Determine whether the outgoing edges of BB should receive an
4639 ASSERT_EXPR for each of the operands of BB's LAST statement.
4640 The last statement of BB must be a COND_EXPR.
4642 If any of the sub-graphs rooted at BB have an interesting use of
4643 the predicate operands, an assert location node is added to the
4644 list of assertions for the corresponding operands. */
4647 find_conditional_asserts (basic_block bb
, gimple last
)
4650 gimple_stmt_iterator bsi
;
4656 need_assert
= false;
4657 bsi
= gsi_for_stmt (last
);
4659 /* Look for uses of the operands in each of the sub-graphs
4660 rooted at BB. We need to check each of the outgoing edges
4661 separately, so that we know what kind of ASSERT_EXPR to
4663 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4668 /* Register the necessary assertions for each operand in the
4669 conditional predicate. */
4670 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4672 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4673 gimple_cond_code (last
),
4674 gimple_cond_lhs (last
),
4675 gimple_cond_rhs (last
));
4688 /* Compare two case labels sorting first by the destination bb index
4689 and then by the case value. */
4692 compare_case_labels (const void *p1
, const void *p2
)
4694 const struct case_info
*ci1
= (const struct case_info
*) p1
;
4695 const struct case_info
*ci2
= (const struct case_info
*) p2
;
4696 int idx1
= ci1
->bb
->index
;
4697 int idx2
= ci2
->bb
->index
;
4701 else if (idx1
== idx2
)
4703 /* Make sure the default label is first in a group. */
4704 if (!CASE_LOW (ci1
->expr
))
4706 else if (!CASE_LOW (ci2
->expr
))
4709 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
4710 CASE_LOW (ci2
->expr
));
4716 /* Determine whether the outgoing edges of BB should receive an
4717 ASSERT_EXPR for each of the operands of BB's LAST statement.
4718 The last statement of BB must be a SWITCH_EXPR.
4720 If any of the sub-graphs rooted at BB have an interesting use of
4721 the predicate operands, an assert location node is added to the
4722 list of assertions for the corresponding operands. */
4725 find_switch_asserts (basic_block bb
, gimple last
)
4728 gimple_stmt_iterator bsi
;
4731 struct case_info
*ci
;
4732 size_t n
= gimple_switch_num_labels (last
);
4733 #if GCC_VERSION >= 4000
4736 /* Work around GCC 3.4 bug (PR 37086). */
4737 volatile unsigned int idx
;
4740 need_assert
= false;
4741 bsi
= gsi_for_stmt (last
);
4742 op
= gimple_switch_index (last
);
4743 if (TREE_CODE (op
) != SSA_NAME
)
4746 /* Build a vector of case labels sorted by destination label. */
4747 ci
= XNEWVEC (struct case_info
, n
);
4748 for (idx
= 0; idx
< n
; ++idx
)
4750 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
4751 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
4753 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
4755 for (idx
= 0; idx
< n
; ++idx
)
4758 tree cl
= ci
[idx
].expr
;
4759 basic_block cbb
= ci
[idx
].bb
;
4761 min
= CASE_LOW (cl
);
4762 max
= CASE_HIGH (cl
);
4764 /* If there are multiple case labels with the same destination
4765 we need to combine them to a single value range for the edge. */
4766 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
4768 /* Skip labels until the last of the group. */
4771 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
4774 /* Pick up the maximum of the case label range. */
4775 if (CASE_HIGH (ci
[idx
].expr
))
4776 max
= CASE_HIGH (ci
[idx
].expr
);
4778 max
= CASE_LOW (ci
[idx
].expr
);
4781 /* Nothing to do if the range includes the default label until we
4782 can register anti-ranges. */
4783 if (min
== NULL_TREE
)
4786 /* Find the edge to register the assert expr on. */
4787 e
= find_edge (bb
, cbb
);
4789 /* Register the necessary assertions for the operand in the
4791 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4792 max
? GE_EXPR
: EQ_EXPR
,
4794 fold_convert (TREE_TYPE (op
),
4798 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4800 fold_convert (TREE_TYPE (op
),
4810 /* Traverse all the statements in block BB looking for statements that
4811 may generate useful assertions for the SSA names in their operand.
4812 If a statement produces a useful assertion A for name N_i, then the
4813 list of assertions already generated for N_i is scanned to
4814 determine if A is actually needed.
4816 If N_i already had the assertion A at a location dominating the
4817 current location, then nothing needs to be done. Otherwise, the
4818 new location for A is recorded instead.
4820 1- For every statement S in BB, all the variables used by S are
4821 added to bitmap FOUND_IN_SUBGRAPH.
4823 2- If statement S uses an operand N in a way that exposes a known
4824 value range for N, then if N was not already generated by an
4825 ASSERT_EXPR, create a new assert location for N. For instance,
4826 if N is a pointer and the statement dereferences it, we can
4827 assume that N is not NULL.
4829 3- COND_EXPRs are a special case of #2. We can derive range
4830 information from the predicate but need to insert different
4831 ASSERT_EXPRs for each of the sub-graphs rooted at the
4832 conditional block. If the last statement of BB is a conditional
4833 expression of the form 'X op Y', then
4835 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4837 b) If the conditional is the only entry point to the sub-graph
4838 corresponding to the THEN_CLAUSE, recurse into it. On
4839 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4840 an ASSERT_EXPR is added for the corresponding variable.
4842 c) Repeat step (b) on the ELSE_CLAUSE.
4844 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4853 In this case, an assertion on the THEN clause is useful to
4854 determine that 'a' is always 9 on that edge. However, an assertion
4855 on the ELSE clause would be unnecessary.
4857 4- If BB does not end in a conditional expression, then we recurse
4858 into BB's dominator children.
4860 At the end of the recursive traversal, every SSA name will have a
4861 list of locations where ASSERT_EXPRs should be added. When a new
4862 location for name N is found, it is registered by calling
4863 register_new_assert_for. That function keeps track of all the
4864 registered assertions to prevent adding unnecessary assertions.
4865 For instance, if a pointer P_4 is dereferenced more than once in a
4866 dominator tree, only the location dominating all the dereference of
4867 P_4 will receive an ASSERT_EXPR.
4869 If this function returns true, then it means that there are names
4870 for which we need to generate ASSERT_EXPRs. Those assertions are
4871 inserted by process_assert_insertions. */
4874 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4876 gimple_stmt_iterator si
;
4881 need_assert
= false;
4882 last
= last_stmt (bb
);
4884 /* If BB's last statement is a conditional statement involving integer
4885 operands, determine if we need to add ASSERT_EXPRs. */
4887 && gimple_code (last
) == GIMPLE_COND
4888 && !fp_predicate (last
)
4889 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4890 need_assert
|= find_conditional_asserts (bb
, last
);
4892 /* If BB's last statement is a switch statement involving integer
4893 operands, determine if we need to add ASSERT_EXPRs. */
4895 && gimple_code (last
) == GIMPLE_SWITCH
4896 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4897 need_assert
|= find_switch_asserts (bb
, last
);
4899 /* Traverse all the statements in BB marking used names and looking
4900 for statements that may infer assertions for their used operands. */
4901 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4907 stmt
= gsi_stmt (si
);
4909 if (is_gimple_debug (stmt
))
4912 /* See if we can derive an assertion for any of STMT's operands. */
4913 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4916 enum tree_code comp_code
;
4918 /* Mark OP in our live bitmap. */
4919 SET_BIT (live
, SSA_NAME_VERSION (op
));
4921 /* If OP is used in such a way that we can infer a value
4922 range for it, and we don't find a previous assertion for
4923 it, create a new assertion location node for OP. */
4924 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4926 /* If we are able to infer a nonzero value range for OP,
4927 then walk backwards through the use-def chain to see if OP
4928 was set via a typecast.
4930 If so, then we can also infer a nonzero value range
4931 for the operand of the NOP_EXPR. */
4932 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4935 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4937 while (is_gimple_assign (def_stmt
)
4938 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4940 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4942 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4944 t
= gimple_assign_rhs1 (def_stmt
);
4945 def_stmt
= SSA_NAME_DEF_STMT (t
);
4947 /* Note we want to register the assert for the
4948 operand of the NOP_EXPR after SI, not after the
4950 if (! has_single_use (t
))
4952 register_new_assert_for (t
, t
, comp_code
, value
,
4959 /* If OP is used only once, namely in this STMT, don't
4960 bother creating an ASSERT_EXPR for it. Such an
4961 ASSERT_EXPR would do nothing but increase compile time. */
4962 if (!has_single_use (op
))
4964 register_new_assert_for (op
, op
, comp_code
, value
,
4972 /* Traverse all PHI nodes in BB marking used operands. */
4973 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4975 use_operand_p arg_p
;
4977 phi
= gsi_stmt (si
);
4979 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4981 tree arg
= USE_FROM_PTR (arg_p
);
4982 if (TREE_CODE (arg
) == SSA_NAME
)
4983 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4990 /* Do an RPO walk over the function computing SSA name liveness
4991 on-the-fly and deciding on assert expressions to insert.
4992 Returns true if there are assert expressions to be inserted. */
4995 find_assert_locations (void)
4997 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4998 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4999 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
5003 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
5004 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
5005 for (i
= 0; i
< rpo_cnt
; ++i
)
5008 need_asserts
= false;
5009 for (i
= rpo_cnt
-1; i
>= 0; --i
)
5011 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
5017 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
5018 sbitmap_zero (live
[rpo
[i
]]);
5021 /* Process BB and update the live information with uses in
5023 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
5025 /* Merge liveness into the predecessor blocks and free it. */
5026 if (!sbitmap_empty_p (live
[rpo
[i
]]))
5029 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5031 int pred
= e
->src
->index
;
5032 if (e
->flags
& EDGE_DFS_BACK
)
5037 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5038 sbitmap_zero (live
[pred
]);
5040 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5042 if (bb_rpo
[pred
] < pred_rpo
)
5043 pred_rpo
= bb_rpo
[pred
];
5046 /* Record the RPO number of the last visited block that needs
5047 live information from this block. */
5048 last_rpo
[rpo
[i
]] = pred_rpo
;
5052 sbitmap_free (live
[rpo
[i
]]);
5053 live
[rpo
[i
]] = NULL
;
5056 /* We can free all successors live bitmaps if all their
5057 predecessors have been visited already. */
5058 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5059 if (last_rpo
[e
->dest
->index
] == i
5060 && live
[e
->dest
->index
])
5062 sbitmap_free (live
[e
->dest
->index
]);
5063 live
[e
->dest
->index
] = NULL
;
5068 XDELETEVEC (bb_rpo
);
5069 XDELETEVEC (last_rpo
);
5070 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
5072 sbitmap_free (live
[i
]);
5075 return need_asserts
;
5078 /* Create an ASSERT_EXPR for NAME and insert it in the location
5079 indicated by LOC. Return true if we made any edge insertions. */
5082 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5084 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5091 /* If we have X <=> X do not insert an assert expr for that. */
5092 if (loc
->expr
== loc
->val
)
5095 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5096 assert_stmt
= build_assert_expr_for (cond
, name
);
5099 /* We have been asked to insert the assertion on an edge. This
5100 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5101 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5102 || (gimple_code (gsi_stmt (loc
->si
))
5105 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5109 /* Otherwise, we can insert right after LOC->SI iff the
5110 statement must not be the last statement in the block. */
5111 stmt
= gsi_stmt (loc
->si
);
5112 if (!stmt_ends_bb_p (stmt
))
5114 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5118 /* If STMT must be the last statement in BB, we can only insert new
5119 assertions on the non-abnormal edge out of BB. Note that since
5120 STMT is not control flow, there may only be one non-abnormal edge
5122 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5123 if (!(e
->flags
& EDGE_ABNORMAL
))
5125 gsi_insert_on_edge (e
, assert_stmt
);
5133 /* Process all the insertions registered for every name N_i registered
5134 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5135 found in ASSERTS_FOR[i]. */
5138 process_assert_insertions (void)
5142 bool update_edges_p
= false;
5143 int num_asserts
= 0;
5145 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5146 dump_all_asserts (dump_file
);
5148 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5150 assert_locus_t loc
= asserts_for
[i
];
5155 assert_locus_t next
= loc
->next
;
5156 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5164 gsi_commit_edge_inserts ();
5166 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5171 /* Traverse the flowgraph looking for conditional jumps to insert range
5172 expressions. These range expressions are meant to provide information
5173 to optimizations that need to reason in terms of value ranges. They
5174 will not be expanded into RTL. For instance, given:
5183 this pass will transform the code into:
5189 x = ASSERT_EXPR <x, x < y>
5194 y = ASSERT_EXPR <y, x <= y>
5198 The idea is that once copy and constant propagation have run, other
5199 optimizations will be able to determine what ranges of values can 'x'
5200 take in different paths of the code, simply by checking the reaching
5201 definition of 'x'. */
5204 insert_range_assertions (void)
5206 need_assert_for
= BITMAP_ALLOC (NULL
);
5207 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5209 calculate_dominance_info (CDI_DOMINATORS
);
5211 if (find_assert_locations ())
5213 process_assert_insertions ();
5214 update_ssa (TODO_update_ssa_no_phi
);
5217 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5219 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5220 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5224 BITMAP_FREE (need_assert_for
);
5227 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5228 and "struct" hacks. If VRP can determine that the
5229 array subscript is a constant, check if it is outside valid
5230 range. If the array subscript is a RANGE, warn if it is
5231 non-overlapping with valid range.
5232 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5235 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5237 value_range_t
* vr
= NULL
;
5238 tree low_sub
, up_sub
;
5239 tree low_bound
, up_bound
, up_bound_p1
;
5242 if (TREE_NO_WARNING (ref
))
5245 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5246 up_bound
= array_ref_up_bound (ref
);
5248 /* Can not check flexible arrays. */
5250 || TREE_CODE (up_bound
) != INTEGER_CST
)
5253 /* Accesses to trailing arrays via pointers may access storage
5254 beyond the types array bounds. */
5255 base
= get_base_address (ref
);
5256 if (base
&& TREE_CODE (base
) == MEM_REF
)
5258 tree cref
, next
= NULL_TREE
;
5260 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5263 cref
= TREE_OPERAND (ref
, 0);
5264 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5265 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5266 next
&& TREE_CODE (next
) != FIELD_DECL
;
5267 next
= DECL_CHAIN (next
))
5270 /* If this is the last field in a struct type or a field in a
5271 union type do not warn. */
5276 low_bound
= array_ref_low_bound (ref
);
5277 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
5279 if (TREE_CODE (low_sub
) == SSA_NAME
)
5281 vr
= get_value_range (low_sub
);
5282 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5284 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5285 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5289 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5291 if (TREE_CODE (up_sub
) == INTEGER_CST
5292 && tree_int_cst_lt (up_bound
, up_sub
)
5293 && TREE_CODE (low_sub
) == INTEGER_CST
5294 && tree_int_cst_lt (low_sub
, low_bound
))
5296 warning_at (location
, OPT_Warray_bounds
,
5297 "array subscript is outside array bounds");
5298 TREE_NO_WARNING (ref
) = 1;
5301 else if (TREE_CODE (up_sub
) == INTEGER_CST
5302 && (ignore_off_by_one
5303 ? (tree_int_cst_lt (up_bound
, up_sub
)
5304 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5305 : (tree_int_cst_lt (up_bound
, up_sub
)
5306 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5308 warning_at (location
, OPT_Warray_bounds
,
5309 "array subscript is above array bounds");
5310 TREE_NO_WARNING (ref
) = 1;
5312 else if (TREE_CODE (low_sub
) == INTEGER_CST
5313 && tree_int_cst_lt (low_sub
, low_bound
))
5315 warning_at (location
, OPT_Warray_bounds
,
5316 "array subscript is below array bounds");
5317 TREE_NO_WARNING (ref
) = 1;
5321 /* Searches if the expr T, located at LOCATION computes
5322 address of an ARRAY_REF, and call check_array_ref on it. */
5325 search_for_addr_array (tree t
, location_t location
)
5327 while (TREE_CODE (t
) == SSA_NAME
)
5329 gimple g
= SSA_NAME_DEF_STMT (t
);
5331 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5334 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5335 != GIMPLE_SINGLE_RHS
)
5338 t
= gimple_assign_rhs1 (g
);
5342 /* We are only interested in addresses of ARRAY_REF's. */
5343 if (TREE_CODE (t
) != ADDR_EXPR
)
5346 /* Check each ARRAY_REFs in the reference chain. */
5349 if (TREE_CODE (t
) == ARRAY_REF
)
5350 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5352 t
= TREE_OPERAND (t
, 0);
5354 while (handled_component_p (t
));
5356 if (TREE_CODE (t
) == MEM_REF
5357 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
5358 && !TREE_NO_WARNING (t
))
5360 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
5361 tree low_bound
, up_bound
, el_sz
;
5363 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
5364 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
5365 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
5368 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5369 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5370 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
5372 || TREE_CODE (low_bound
) != INTEGER_CST
5374 || TREE_CODE (up_bound
) != INTEGER_CST
5376 || TREE_CODE (el_sz
) != INTEGER_CST
)
5379 idx
= mem_ref_offset (t
);
5380 idx
= double_int_sdiv (idx
, tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
5381 if (double_int_scmp (idx
, double_int_zero
) < 0)
5383 warning_at (location
, OPT_Warray_bounds
,
5384 "array subscript is below array bounds");
5385 TREE_NO_WARNING (t
) = 1;
5387 else if (double_int_scmp (idx
,
5390 (tree_to_double_int (up_bound
),
5392 (tree_to_double_int (low_bound
))),
5393 double_int_one
)) > 0)
5395 warning_at (location
, OPT_Warray_bounds
,
5396 "array subscript is above array bounds");
5397 TREE_NO_WARNING (t
) = 1;
5402 /* walk_tree() callback that checks if *TP is
5403 an ARRAY_REF inside an ADDR_EXPR (in which an array
5404 subscript one outside the valid range is allowed). Call
5405 check_array_ref for each ARRAY_REF found. The location is
5409 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5412 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5413 location_t location
;
5415 if (EXPR_HAS_LOCATION (t
))
5416 location
= EXPR_LOCATION (t
);
5419 location_t
*locp
= (location_t
*) wi
->info
;
5423 *walk_subtree
= TRUE
;
5425 if (TREE_CODE (t
) == ARRAY_REF
)
5426 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
5428 if (TREE_CODE (t
) == MEM_REF
5429 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5430 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5432 if (TREE_CODE (t
) == ADDR_EXPR
)
5433 *walk_subtree
= FALSE
;
5438 /* Walk over all statements of all reachable BBs and call check_array_bounds
5442 check_all_array_refs (void)
5445 gimple_stmt_iterator si
;
5451 bool executable
= false;
5453 /* Skip blocks that were found to be unreachable. */
5454 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5455 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
5459 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5461 gimple stmt
= gsi_stmt (si
);
5462 struct walk_stmt_info wi
;
5463 if (!gimple_has_location (stmt
))
5466 if (is_gimple_call (stmt
))
5469 size_t n
= gimple_call_num_args (stmt
);
5470 for (i
= 0; i
< n
; i
++)
5472 tree arg
= gimple_call_arg (stmt
, i
);
5473 search_for_addr_array (arg
, gimple_location (stmt
));
5478 memset (&wi
, 0, sizeof (wi
));
5479 wi
.info
= CONST_CAST (void *, (const void *)
5480 gimple_location_ptr (stmt
));
5482 walk_gimple_op (gsi_stmt (si
),
5490 /* Convert range assertion expressions into the implied copies and
5491 copy propagate away the copies. Doing the trivial copy propagation
5492 here avoids the need to run the full copy propagation pass after
5495 FIXME, this will eventually lead to copy propagation removing the
5496 names that had useful range information attached to them. For
5497 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5498 then N_i will have the range [3, +INF].
5500 However, by converting the assertion into the implied copy
5501 operation N_i = N_j, we will then copy-propagate N_j into the uses
5502 of N_i and lose the range information. We may want to hold on to
5503 ASSERT_EXPRs a little while longer as the ranges could be used in
5504 things like jump threading.
5506 The problem with keeping ASSERT_EXPRs around is that passes after
5507 VRP need to handle them appropriately.
5509 Another approach would be to make the range information a first
5510 class property of the SSA_NAME so that it can be queried from
5511 any pass. This is made somewhat more complex by the need for
5512 multiple ranges to be associated with one SSA_NAME. */
5515 remove_range_assertions (void)
5518 gimple_stmt_iterator si
;
5520 /* Note that the BSI iterator bump happens at the bottom of the
5521 loop and no bump is necessary if we're removing the statement
5522 referenced by the current BSI. */
5524 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5526 gimple stmt
= gsi_stmt (si
);
5529 if (is_gimple_assign (stmt
)
5530 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5532 tree rhs
= gimple_assign_rhs1 (stmt
);
5534 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5535 use_operand_p use_p
;
5536 imm_use_iterator iter
;
5538 gcc_assert (cond
!= boolean_false_node
);
5540 /* Propagate the RHS into every use of the LHS. */
5541 var
= ASSERT_EXPR_VAR (rhs
);
5542 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5543 gimple_assign_lhs (stmt
))
5544 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5546 SET_USE (use_p
, var
);
5547 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5550 /* And finally, remove the copy, it is not needed. */
5551 gsi_remove (&si
, true);
5552 release_defs (stmt
);
5560 /* Return true if STMT is interesting for VRP. */
5563 stmt_interesting_for_vrp (gimple stmt
)
5565 if (gimple_code (stmt
) == GIMPLE_PHI
5566 && is_gimple_reg (gimple_phi_result (stmt
))
5567 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5568 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5570 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5572 tree lhs
= gimple_get_lhs (stmt
);
5574 /* In general, assignments with virtual operands are not useful
5575 for deriving ranges, with the obvious exception of calls to
5576 builtin functions. */
5577 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5578 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5579 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5580 && ((is_gimple_call (stmt
)
5581 && gimple_call_fndecl (stmt
) != NULL_TREE
5582 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
5583 || !gimple_vuse (stmt
)))
5586 else if (gimple_code (stmt
) == GIMPLE_COND
5587 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5594 /* Initialize local data structures for VRP. */
5597 vrp_initialize (void)
5601 values_propagated
= false;
5602 num_vr_values
= num_ssa_names
;
5603 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
5604 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5608 gimple_stmt_iterator si
;
5610 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5612 gimple phi
= gsi_stmt (si
);
5613 if (!stmt_interesting_for_vrp (phi
))
5615 tree lhs
= PHI_RESULT (phi
);
5616 set_value_range_to_varying (get_value_range (lhs
));
5617 prop_set_simulate_again (phi
, false);
5620 prop_set_simulate_again (phi
, true);
5623 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5625 gimple stmt
= gsi_stmt (si
);
5627 /* If the statement is a control insn, then we do not
5628 want to avoid simulating the statement once. Failure
5629 to do so means that those edges will never get added. */
5630 if (stmt_ends_bb_p (stmt
))
5631 prop_set_simulate_again (stmt
, true);
5632 else if (!stmt_interesting_for_vrp (stmt
))
5636 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5637 set_value_range_to_varying (get_value_range (def
));
5638 prop_set_simulate_again (stmt
, false);
5641 prop_set_simulate_again (stmt
, true);
5646 /* Return the singleton value-range for NAME or NAME. */
5649 vrp_valueize (tree name
)
5651 if (TREE_CODE (name
) == SSA_NAME
)
5653 value_range_t
*vr
= get_value_range (name
);
5654 if (vr
->type
== VR_RANGE
5655 && (vr
->min
== vr
->max
5656 || operand_equal_p (vr
->min
, vr
->max
, 0)))
5662 /* Visit assignment STMT. If it produces an interesting range, record
5663 the SSA name in *OUTPUT_P. */
5665 static enum ssa_prop_result
5666 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5670 enum gimple_code code
= gimple_code (stmt
);
5671 lhs
= gimple_get_lhs (stmt
);
5673 /* We only keep track of ranges in integral and pointer types. */
5674 if (TREE_CODE (lhs
) == SSA_NAME
5675 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5676 /* It is valid to have NULL MIN/MAX values on a type. See
5677 build_range_type. */
5678 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5679 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5680 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5682 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5684 /* Try folding the statement to a constant first. */
5685 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
5686 if (tem
&& !is_overflow_infinity (tem
))
5687 set_value_range (&new_vr
, VR_RANGE
, tem
, tem
, NULL
);
5688 /* Then dispatch to value-range extracting functions. */
5689 else if (code
== GIMPLE_CALL
)
5690 extract_range_basic (&new_vr
, stmt
);
5692 extract_range_from_assignment (&new_vr
, stmt
);
5694 if (update_value_range (lhs
, &new_vr
))
5698 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5700 fprintf (dump_file
, "Found new range for ");
5701 print_generic_expr (dump_file
, lhs
, 0);
5702 fprintf (dump_file
, ": ");
5703 dump_value_range (dump_file
, &new_vr
);
5704 fprintf (dump_file
, "\n\n");
5707 if (new_vr
.type
== VR_VARYING
)
5708 return SSA_PROP_VARYING
;
5710 return SSA_PROP_INTERESTING
;
5713 return SSA_PROP_NOT_INTERESTING
;
5716 /* Every other statement produces no useful ranges. */
5717 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5718 set_value_range_to_varying (get_value_range (def
));
5720 return SSA_PROP_VARYING
;
5723 /* Helper that gets the value range of the SSA_NAME with version I
5724 or a symbolic range containing the SSA_NAME only if the value range
5725 is varying or undefined. */
5727 static inline value_range_t
5728 get_vr_for_comparison (int i
)
5730 value_range_t vr
= *get_value_range (ssa_name (i
));
5732 /* If name N_i does not have a valid range, use N_i as its own
5733 range. This allows us to compare against names that may
5734 have N_i in their ranges. */
5735 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5738 vr
.min
= ssa_name (i
);
5739 vr
.max
= ssa_name (i
);
5745 /* Compare all the value ranges for names equivalent to VAR with VAL
5746 using comparison code COMP. Return the same value returned by
5747 compare_range_with_value, including the setting of
5748 *STRICT_OVERFLOW_P. */
5751 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5752 bool *strict_overflow_p
)
5758 int used_strict_overflow
;
5760 value_range_t equiv_vr
;
5762 /* Get the set of equivalences for VAR. */
5763 e
= get_value_range (var
)->equiv
;
5765 /* Start at -1. Set it to 0 if we do a comparison without relying
5766 on overflow, or 1 if all comparisons rely on overflow. */
5767 used_strict_overflow
= -1;
5769 /* Compare vars' value range with val. */
5770 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5772 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5774 used_strict_overflow
= sop
? 1 : 0;
5776 /* If the equiv set is empty we have done all work we need to do. */
5780 && used_strict_overflow
> 0)
5781 *strict_overflow_p
= true;
5785 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5787 equiv_vr
= get_vr_for_comparison (i
);
5789 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5792 /* If we get different answers from different members
5793 of the equivalence set this check must be in a dead
5794 code region. Folding it to a trap representation
5795 would be correct here. For now just return don't-know. */
5805 used_strict_overflow
= 0;
5806 else if (used_strict_overflow
< 0)
5807 used_strict_overflow
= 1;
5812 && used_strict_overflow
> 0)
5813 *strict_overflow_p
= true;
5819 /* Given a comparison code COMP and names N1 and N2, compare all the
5820 ranges equivalent to N1 against all the ranges equivalent to N2
5821 to determine the value of N1 COMP N2. Return the same value
5822 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5823 whether we relied on an overflow infinity in the comparison. */
5827 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5828 bool *strict_overflow_p
)
5832 bitmap_iterator bi1
, bi2
;
5834 int used_strict_overflow
;
5835 static bitmap_obstack
*s_obstack
= NULL
;
5836 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5838 /* Compare the ranges of every name equivalent to N1 against the
5839 ranges of every name equivalent to N2. */
5840 e1
= get_value_range (n1
)->equiv
;
5841 e2
= get_value_range (n2
)->equiv
;
5843 /* Use the fake bitmaps if e1 or e2 are not available. */
5844 if (s_obstack
== NULL
)
5846 s_obstack
= XNEW (bitmap_obstack
);
5847 bitmap_obstack_initialize (s_obstack
);
5848 s_e1
= BITMAP_ALLOC (s_obstack
);
5849 s_e2
= BITMAP_ALLOC (s_obstack
);
5856 /* Add N1 and N2 to their own set of equivalences to avoid
5857 duplicating the body of the loop just to check N1 and N2
5859 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5860 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5862 /* If the equivalence sets have a common intersection, then the two
5863 names can be compared without checking their ranges. */
5864 if (bitmap_intersect_p (e1
, e2
))
5866 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5867 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5869 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5871 : boolean_false_node
;
5874 /* Start at -1. Set it to 0 if we do a comparison without relying
5875 on overflow, or 1 if all comparisons rely on overflow. */
5876 used_strict_overflow
= -1;
5878 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5879 N2 to their own set of equivalences to avoid duplicating the body
5880 of the loop just to check N1 and N2 ranges. */
5881 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5883 value_range_t vr1
= get_vr_for_comparison (i1
);
5885 t
= retval
= NULL_TREE
;
5886 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5890 value_range_t vr2
= get_vr_for_comparison (i2
);
5892 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5895 /* If we get different answers from different members
5896 of the equivalence set this check must be in a dead
5897 code region. Folding it to a trap representation
5898 would be correct here. For now just return don't-know. */
5902 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5903 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5909 used_strict_overflow
= 0;
5910 else if (used_strict_overflow
< 0)
5911 used_strict_overflow
= 1;
5917 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5918 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5919 if (used_strict_overflow
> 0)
5920 *strict_overflow_p
= true;
5925 /* None of the equivalent ranges are useful in computing this
5927 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5928 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5932 /* Helper function for vrp_evaluate_conditional_warnv. */
5935 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5937 bool * strict_overflow_p
)
5939 value_range_t
*vr0
, *vr1
;
5941 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5942 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5945 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5946 else if (vr0
&& vr1
== NULL
)
5947 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5948 else if (vr0
== NULL
&& vr1
)
5949 return (compare_range_with_value
5950 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5954 /* Helper function for vrp_evaluate_conditional_warnv. */
5957 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5958 tree op1
, bool use_equiv_p
,
5959 bool *strict_overflow_p
, bool *only_ranges
)
5963 *only_ranges
= true;
5965 /* We only deal with integral and pointer types. */
5966 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5967 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5973 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5974 (code
, op0
, op1
, strict_overflow_p
)))
5976 *only_ranges
= false;
5977 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5978 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5979 else if (TREE_CODE (op0
) == SSA_NAME
)
5980 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5981 else if (TREE_CODE (op1
) == SSA_NAME
)
5982 return (compare_name_with_value
5983 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5986 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5991 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5992 information. Return NULL if the conditional can not be evaluated.
5993 The ranges of all the names equivalent with the operands in COND
5994 will be used when trying to compute the value. If the result is
5995 based on undefined signed overflow, issue a warning if
5999 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
6005 /* Some passes and foldings leak constants with overflow flag set
6006 into the IL. Avoid doing wrong things with these and bail out. */
6007 if ((TREE_CODE (op0
) == INTEGER_CST
6008 && TREE_OVERFLOW (op0
))
6009 || (TREE_CODE (op1
) == INTEGER_CST
6010 && TREE_OVERFLOW (op1
)))
6014 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
6019 enum warn_strict_overflow_code wc
;
6020 const char* warnmsg
;
6022 if (is_gimple_min_invariant (ret
))
6024 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
6025 warnmsg
= G_("assuming signed overflow does not occur when "
6026 "simplifying conditional to constant");
6030 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
6031 warnmsg
= G_("assuming signed overflow does not occur when "
6032 "simplifying conditional");
6035 if (issue_strict_overflow_warning (wc
))
6037 location_t location
;
6039 if (!gimple_has_location (stmt
))
6040 location
= input_location
;
6042 location
= gimple_location (stmt
);
6043 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
6047 if (warn_type_limits
6048 && ret
&& only_ranges
6049 && TREE_CODE_CLASS (code
) == tcc_comparison
6050 && TREE_CODE (op0
) == SSA_NAME
)
6052 /* If the comparison is being folded and the operand on the LHS
6053 is being compared against a constant value that is outside of
6054 the natural range of OP0's type, then the predicate will
6055 always fold regardless of the value of OP0. If -Wtype-limits
6056 was specified, emit a warning. */
6057 tree type
= TREE_TYPE (op0
);
6058 value_range_t
*vr0
= get_value_range (op0
);
6060 if (vr0
->type
!= VR_VARYING
6061 && INTEGRAL_TYPE_P (type
)
6062 && vrp_val_is_min (vr0
->min
)
6063 && vrp_val_is_max (vr0
->max
)
6064 && is_gimple_min_invariant (op1
))
6066 location_t location
;
6068 if (!gimple_has_location (stmt
))
6069 location
= input_location
;
6071 location
= gimple_location (stmt
);
6073 warning_at (location
, OPT_Wtype_limits
,
6075 ? G_("comparison always false "
6076 "due to limited range of data type")
6077 : G_("comparison always true "
6078 "due to limited range of data type"));
6086 /* Visit conditional statement STMT. If we can determine which edge
6087 will be taken out of STMT's basic block, record it in
6088 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6089 SSA_PROP_VARYING. */
6091 static enum ssa_prop_result
6092 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6097 *taken_edge_p
= NULL
;
6099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6104 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6105 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6106 fprintf (dump_file
, "\nWith known ranges\n");
6108 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6110 fprintf (dump_file
, "\t");
6111 print_generic_expr (dump_file
, use
, 0);
6112 fprintf (dump_file
, ": ");
6113 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6116 fprintf (dump_file
, "\n");
6119 /* Compute the value of the predicate COND by checking the known
6120 ranges of each of its operands.
6122 Note that we cannot evaluate all the equivalent ranges here
6123 because those ranges may not yet be final and with the current
6124 propagation strategy, we cannot determine when the value ranges
6125 of the names in the equivalence set have changed.
6127 For instance, given the following code fragment
6131 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6135 Assume that on the first visit to i_14, i_5 has the temporary
6136 range [8, 8] because the second argument to the PHI function is
6137 not yet executable. We derive the range ~[0, 0] for i_14 and the
6138 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6139 the first time, since i_14 is equivalent to the range [8, 8], we
6140 determine that the predicate is always false.
6142 On the next round of propagation, i_13 is determined to be
6143 VARYING, which causes i_5 to drop down to VARYING. So, another
6144 visit to i_14 is scheduled. In this second visit, we compute the
6145 exact same range and equivalence set for i_14, namely ~[0, 0] and
6146 { i_5 }. But we did not have the previous range for i_5
6147 registered, so vrp_visit_assignment thinks that the range for
6148 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6149 is not visited again, which stops propagation from visiting
6150 statements in the THEN clause of that if().
6152 To properly fix this we would need to keep the previous range
6153 value for the names in the equivalence set. This way we would've
6154 discovered that from one visit to the other i_5 changed from
6155 range [8, 8] to VR_VARYING.
6157 However, fixing this apparent limitation may not be worth the
6158 additional checking. Testing on several code bases (GCC, DLV,
6159 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6160 4 more predicates folded in SPEC. */
6163 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6164 gimple_cond_lhs (stmt
),
6165 gimple_cond_rhs (stmt
),
6170 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6173 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6175 "\nIgnoring predicate evaluation because "
6176 "it assumes that signed overflow is undefined");
6181 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6183 fprintf (dump_file
, "\nPredicate evaluates to: ");
6184 if (val
== NULL_TREE
)
6185 fprintf (dump_file
, "DON'T KNOW\n");
6187 print_generic_stmt (dump_file
, val
, 0);
6190 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6193 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6194 that includes the value VAL. The search is restricted to the range
6195 [START_IDX, n - 1] where n is the size of VEC.
6197 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6200 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6201 it is placed in IDX and false is returned.
6203 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6207 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6209 size_t n
= gimple_switch_num_labels (stmt
);
6212 /* Find case label for minimum of the value range or the next one.
6213 At each iteration we are searching in [low, high - 1]. */
6215 for (low
= start_idx
, high
= n
; high
!= low
; )
6219 /* Note that i != high, so we never ask for n. */
6220 size_t i
= (high
+ low
) / 2;
6221 t
= gimple_switch_label (stmt
, i
);
6223 /* Cache the result of comparing CASE_LOW and val. */
6224 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6228 /* Ranges cannot be empty. */
6237 if (CASE_HIGH (t
) != NULL
6238 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6250 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6251 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6252 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6253 then MAX_IDX < MIN_IDX.
6254 Returns true if the default label is not needed. */
6257 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6261 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6262 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6266 && max_take_default
)
6268 /* Only the default case label reached.
6269 Return an empty range. */
6276 bool take_default
= min_take_default
|| max_take_default
;
6280 if (max_take_default
)
6283 /* If the case label range is continuous, we do not need
6284 the default case label. Verify that. */
6285 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6286 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6287 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6288 for (k
= i
+ 1; k
<= j
; ++k
)
6290 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6291 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
6293 take_default
= true;
6297 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6298 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6303 return !take_default
;
6307 /* Visit switch statement STMT. If we can determine which edge
6308 will be taken out of STMT's basic block, record it in
6309 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6310 SSA_PROP_VARYING. */
6312 static enum ssa_prop_result
6313 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
6317 size_t i
= 0, j
= 0;
6320 *taken_edge_p
= NULL
;
6321 op
= gimple_switch_index (stmt
);
6322 if (TREE_CODE (op
) != SSA_NAME
)
6323 return SSA_PROP_VARYING
;
6325 vr
= get_value_range (op
);
6326 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6328 fprintf (dump_file
, "\nVisiting switch expression with operand ");
6329 print_generic_expr (dump_file
, op
, 0);
6330 fprintf (dump_file
, " with known range ");
6331 dump_value_range (dump_file
, vr
);
6332 fprintf (dump_file
, "\n");
6335 if (vr
->type
!= VR_RANGE
6336 || symbolic_range_p (vr
))
6337 return SSA_PROP_VARYING
;
6339 /* Find the single edge that is taken from the switch expression. */
6340 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6342 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6346 gcc_assert (take_default
);
6347 val
= gimple_switch_default_label (stmt
);
6351 /* Check if labels with index i to j and maybe the default label
6352 are all reaching the same label. */
6354 val
= gimple_switch_label (stmt
, i
);
6356 && CASE_LABEL (gimple_switch_default_label (stmt
))
6357 != CASE_LABEL (val
))
6359 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6360 fprintf (dump_file
, " not a single destination for this "
6362 return SSA_PROP_VARYING
;
6364 for (++i
; i
<= j
; ++i
)
6366 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6368 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6369 fprintf (dump_file
, " not a single destination for this "
6371 return SSA_PROP_VARYING
;
6376 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6377 label_to_block (CASE_LABEL (val
)));
6379 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6381 fprintf (dump_file
, " will take edge to ");
6382 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6385 return SSA_PROP_INTERESTING
;
6389 /* Evaluate statement STMT. If the statement produces a useful range,
6390 return SSA_PROP_INTERESTING and record the SSA name with the
6391 interesting range into *OUTPUT_P.
6393 If STMT is a conditional branch and we can determine its truth
6394 value, the taken edge is recorded in *TAKEN_EDGE_P.
6396 If STMT produces a varying value, return SSA_PROP_VARYING. */
6398 static enum ssa_prop_result
6399 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6404 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6406 fprintf (dump_file
, "\nVisiting statement:\n");
6407 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6408 fprintf (dump_file
, "\n");
6411 if (!stmt_interesting_for_vrp (stmt
))
6412 gcc_assert (stmt_ends_bb_p (stmt
));
6413 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6415 /* In general, assignments with virtual operands are not useful
6416 for deriving ranges, with the obvious exception of calls to
6417 builtin functions. */
6418 if ((is_gimple_call (stmt
)
6419 && gimple_call_fndecl (stmt
) != NULL_TREE
6420 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
6421 || !gimple_vuse (stmt
))
6422 return vrp_visit_assignment_or_call (stmt
, output_p
);
6424 else if (gimple_code (stmt
) == GIMPLE_COND
)
6425 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6426 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6427 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6429 /* All other statements produce nothing of interest for VRP, so mark
6430 their outputs varying and prevent further simulation. */
6431 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6432 set_value_range_to_varying (get_value_range (def
));
6434 return SSA_PROP_VARYING
;
6438 /* Meet operation for value ranges. Given two value ranges VR0 and
6439 VR1, store in VR0 a range that contains both VR0 and VR1. This
6440 may not be the smallest possible such range. */
6443 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6445 if (vr0
->type
== VR_UNDEFINED
)
6447 copy_value_range (vr0
, vr1
);
6451 if (vr1
->type
== VR_UNDEFINED
)
6453 /* Nothing to do. VR0 already has the resulting range. */
6457 if (vr0
->type
== VR_VARYING
)
6459 /* Nothing to do. VR0 already has the resulting range. */
6463 if (vr1
->type
== VR_VARYING
)
6465 set_value_range_to_varying (vr0
);
6469 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6474 /* Compute the convex hull of the ranges. The lower limit of
6475 the new range is the minimum of the two ranges. If they
6476 cannot be compared, then give up. */
6477 cmp
= compare_values (vr0
->min
, vr1
->min
);
6478 if (cmp
== 0 || cmp
== 1)
6485 /* Similarly, the upper limit of the new range is the maximum
6486 of the two ranges. If they cannot be compared, then
6488 cmp
= compare_values (vr0
->max
, vr1
->max
);
6489 if (cmp
== 0 || cmp
== -1)
6496 /* Check for useless ranges. */
6497 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6498 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6499 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6502 /* The resulting set of equivalences is the intersection of
6504 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6505 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6506 else if (vr0
->equiv
&& !vr1
->equiv
)
6507 bitmap_clear (vr0
->equiv
);
6509 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6511 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6513 /* Two anti-ranges meet only if their complements intersect.
6514 Only handle the case of identical ranges. */
6515 if (compare_values (vr0
->min
, vr1
->min
) == 0
6516 && compare_values (vr0
->max
, vr1
->max
) == 0
6517 && compare_values (vr0
->min
, vr0
->max
) == 0)
6519 /* The resulting set of equivalences is the intersection of
6521 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6522 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6523 else if (vr0
->equiv
&& !vr1
->equiv
)
6524 bitmap_clear (vr0
->equiv
);
6529 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6531 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6532 only handle the case where the ranges have an empty intersection.
6533 The result of the meet operation is the anti-range. */
6534 if (!symbolic_range_p (vr0
)
6535 && !symbolic_range_p (vr1
)
6536 && !value_ranges_intersect_p (vr0
, vr1
))
6538 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6539 set. We need to compute the intersection of the two
6540 equivalence sets. */
6541 if (vr1
->type
== VR_ANTI_RANGE
)
6542 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6544 /* The resulting set of equivalences is the intersection of
6546 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6547 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6548 else if (vr0
->equiv
&& !vr1
->equiv
)
6549 bitmap_clear (vr0
->equiv
);
6560 /* Failed to find an efficient meet. Before giving up and setting
6561 the result to VARYING, see if we can at least derive a useful
6562 anti-range. FIXME, all this nonsense about distinguishing
6563 anti-ranges from ranges is necessary because of the odd
6564 semantics of range_includes_zero_p and friends. */
6565 if (!symbolic_range_p (vr0
)
6566 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6567 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6568 && !symbolic_range_p (vr1
)
6569 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6570 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6572 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6574 /* Since this meet operation did not result from the meeting of
6575 two equivalent names, VR0 cannot have any equivalences. */
6577 bitmap_clear (vr0
->equiv
);
6580 set_value_range_to_varying (vr0
);
6584 /* Visit all arguments for PHI node PHI that flow through executable
6585 edges. If a valid value range can be derived from all the incoming
6586 value ranges, set a new range for the LHS of PHI. */
6588 static enum ssa_prop_result
6589 vrp_visit_phi_node (gimple phi
)
6592 tree lhs
= PHI_RESULT (phi
);
6593 value_range_t
*lhs_vr
= get_value_range (lhs
);
6594 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6595 int edges
, old_edges
;
6598 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6600 fprintf (dump_file
, "\nVisiting PHI node: ");
6601 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6605 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6607 edge e
= gimple_phi_arg_edge (phi
, i
);
6609 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6612 "\n Argument #%d (%d -> %d %sexecutable)\n",
6613 (int) i
, e
->src
->index
, e
->dest
->index
,
6614 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6617 if (e
->flags
& EDGE_EXECUTABLE
)
6619 tree arg
= PHI_ARG_DEF (phi
, i
);
6620 value_range_t vr_arg
;
6624 if (TREE_CODE (arg
) == SSA_NAME
)
6626 vr_arg
= *(get_value_range (arg
));
6630 if (is_overflow_infinity (arg
))
6632 arg
= copy_node (arg
);
6633 TREE_OVERFLOW (arg
) = 0;
6636 vr_arg
.type
= VR_RANGE
;
6639 vr_arg
.equiv
= NULL
;
6642 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6644 fprintf (dump_file
, "\t");
6645 print_generic_expr (dump_file
, arg
, dump_flags
);
6646 fprintf (dump_file
, "\n\tValue: ");
6647 dump_value_range (dump_file
, &vr_arg
);
6648 fprintf (dump_file
, "\n");
6651 vrp_meet (&vr_result
, &vr_arg
);
6653 if (vr_result
.type
== VR_VARYING
)
6658 if (vr_result
.type
== VR_VARYING
)
6660 else if (vr_result
.type
== VR_UNDEFINED
)
6663 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6664 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6666 /* To prevent infinite iterations in the algorithm, derive ranges
6667 when the new value is slightly bigger or smaller than the
6668 previous one. We don't do this if we have seen a new executable
6669 edge; this helps us avoid an overflow infinity for conditionals
6670 which are not in a loop. */
6672 && gimple_phi_num_args (phi
) > 1
6673 && edges
== old_edges
)
6675 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6676 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6678 /* For non VR_RANGE or for pointers fall back to varying if
6679 the range changed. */
6680 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
6681 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6682 && (cmp_min
!= 0 || cmp_max
!= 0))
6685 /* If the new minimum is smaller or larger than the previous
6686 one, go all the way to -INF. In the first case, to avoid
6687 iterating millions of times to reach -INF, and in the
6688 other case to avoid infinite bouncing between different
6690 if (cmp_min
> 0 || cmp_min
< 0)
6692 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6693 || !vrp_var_may_overflow (lhs
, phi
))
6694 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6695 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6697 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6700 /* Similarly, if the new maximum is smaller or larger than
6701 the previous one, go all the way to +INF. */
6702 if (cmp_max
< 0 || cmp_max
> 0)
6704 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6705 || !vrp_var_may_overflow (lhs
, phi
))
6706 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6707 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6709 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6712 /* If we dropped either bound to +-INF then if this is a loop
6713 PHI node SCEV may known more about its value-range. */
6714 if ((cmp_min
> 0 || cmp_min
< 0
6715 || cmp_max
< 0 || cmp_max
> 0)
6717 && (l
= loop_containing_stmt (phi
))
6718 && l
->header
== gimple_bb (phi
))
6719 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
6721 /* If we will end up with a (-INF, +INF) range, set it to
6722 VARYING. Same if the previous max value was invalid for
6723 the type and we end up with vr_result.min > vr_result.max. */
6724 if ((vrp_val_is_max (vr_result
.max
)
6725 && vrp_val_is_min (vr_result
.min
))
6726 || compare_values (vr_result
.min
,
6731 /* If the new range is different than the previous value, keep
6734 if (update_value_range (lhs
, &vr_result
))
6736 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6738 fprintf (dump_file
, "Found new range for ");
6739 print_generic_expr (dump_file
, lhs
, 0);
6740 fprintf (dump_file
, ": ");
6741 dump_value_range (dump_file
, &vr_result
);
6742 fprintf (dump_file
, "\n\n");
6745 return SSA_PROP_INTERESTING
;
6748 /* Nothing changed, don't add outgoing edges. */
6749 return SSA_PROP_NOT_INTERESTING
;
6751 /* No match found. Set the LHS to VARYING. */
6753 set_value_range_to_varying (lhs_vr
);
6754 return SSA_PROP_VARYING
;
6757 /* Simplify boolean operations if the source is known
6758 to be already a boolean. */
6760 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6762 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6764 bool need_conversion
;
6766 /* We handle only !=/== case here. */
6767 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
6769 op0
= gimple_assign_rhs1 (stmt
);
6770 if (!op_with_boolean_value_range_p (op0
))
6773 op1
= gimple_assign_rhs2 (stmt
);
6774 if (!op_with_boolean_value_range_p (op1
))
6777 /* Reduce number of cases to handle to NE_EXPR. As there is no
6778 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6779 if (rhs_code
== EQ_EXPR
)
6781 if (TREE_CODE (op1
) == INTEGER_CST
)
6782 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
6787 lhs
= gimple_assign_lhs (stmt
);
6789 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
6791 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6793 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6794 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
6795 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
6798 /* For A != 0 we can substitute A itself. */
6799 if (integer_zerop (op1
))
6800 gimple_assign_set_rhs_with_ops (gsi
,
6802 ? NOP_EXPR
: TREE_CODE (op0
),
6804 /* For A != B we substitute A ^ B. Either with conversion. */
6805 else if (need_conversion
)
6808 tree tem
= create_tmp_reg (TREE_TYPE (op0
), NULL
);
6809 newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
6810 tem
= make_ssa_name (tem
, newop
);
6811 gimple_assign_set_lhs (newop
, tem
);
6812 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
6813 update_stmt (newop
);
6814 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
6818 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
6819 update_stmt (gsi_stmt (*gsi
));
6824 /* Simplify a division or modulo operator to a right shift or
6825 bitwise and if the first operand is unsigned or is greater
6826 than zero and the second operand is an exact power of two. */
6829 simplify_div_or_mod_using_ranges (gimple stmt
)
6831 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6833 tree op0
= gimple_assign_rhs1 (stmt
);
6834 tree op1
= gimple_assign_rhs2 (stmt
);
6835 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6837 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6839 val
= integer_one_node
;
6845 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6849 && integer_onep (val
)
6850 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6852 location_t location
;
6854 if (!gimple_has_location (stmt
))
6855 location
= input_location
;
6857 location
= gimple_location (stmt
);
6858 warning_at (location
, OPT_Wstrict_overflow
,
6859 "assuming signed overflow does not occur when "
6860 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6864 if (val
&& integer_onep (val
))
6868 if (rhs_code
== TRUNC_DIV_EXPR
)
6870 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
6871 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6872 gimple_assign_set_rhs1 (stmt
, op0
);
6873 gimple_assign_set_rhs2 (stmt
, t
);
6877 t
= build_int_cst (TREE_TYPE (op1
), 1);
6878 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
6879 t
= fold_convert (TREE_TYPE (op0
), t
);
6881 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6882 gimple_assign_set_rhs1 (stmt
, op0
);
6883 gimple_assign_set_rhs2 (stmt
, t
);
6893 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6894 ABS_EXPR. If the operand is <= 0, then simplify the
6895 ABS_EXPR into a NEGATE_EXPR. */
6898 simplify_abs_using_ranges (gimple stmt
)
6901 tree op
= gimple_assign_rhs1 (stmt
);
6902 tree type
= TREE_TYPE (op
);
6903 value_range_t
*vr
= get_value_range (op
);
6905 if (TYPE_UNSIGNED (type
))
6907 val
= integer_zero_node
;
6913 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6917 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6922 if (integer_zerop (val
))
6923 val
= integer_one_node
;
6924 else if (integer_onep (val
))
6925 val
= integer_zero_node
;
6930 && (integer_onep (val
) || integer_zerop (val
)))
6932 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6934 location_t location
;
6936 if (!gimple_has_location (stmt
))
6937 location
= input_location
;
6939 location
= gimple_location (stmt
);
6940 warning_at (location
, OPT_Wstrict_overflow
,
6941 "assuming signed overflow does not occur when "
6942 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6945 gimple_assign_set_rhs1 (stmt
, op
);
6946 if (integer_onep (val
))
6947 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6949 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6958 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6959 If all the bits that are being cleared by & are already
6960 known to be zero from VR, or all the bits that are being
6961 set by | are already known to be one from VR, the bit
6962 operation is redundant. */
6965 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6967 tree op0
= gimple_assign_rhs1 (stmt
);
6968 tree op1
= gimple_assign_rhs2 (stmt
);
6969 tree op
= NULL_TREE
;
6970 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6971 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6972 double_int may_be_nonzero0
, may_be_nonzero1
;
6973 double_int must_be_nonzero0
, must_be_nonzero1
;
6976 if (TREE_CODE (op0
) == SSA_NAME
)
6977 vr0
= *(get_value_range (op0
));
6978 else if (is_gimple_min_invariant (op0
))
6979 set_value_range_to_value (&vr0
, op0
, NULL
);
6983 if (TREE_CODE (op1
) == SSA_NAME
)
6984 vr1
= *(get_value_range (op1
));
6985 else if (is_gimple_min_invariant (op1
))
6986 set_value_range_to_value (&vr1
, op1
, NULL
);
6990 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
6992 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
6995 switch (gimple_assign_rhs_code (stmt
))
6998 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
6999 if (double_int_zero_p (mask
))
7004 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7005 if (double_int_zero_p (mask
))
7012 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
7013 if (double_int_zero_p (mask
))
7018 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7019 if (double_int_zero_p (mask
))
7029 if (op
== NULL_TREE
)
7032 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
7033 update_stmt (gsi_stmt (*gsi
));
7037 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7038 a known value range VR.
7040 If there is one and only one value which will satisfy the
7041 conditional, then return that value. Else return NULL. */
7044 test_for_singularity (enum tree_code cond_code
, tree op0
,
7045 tree op1
, value_range_t
*vr
)
7050 /* Extract minimum/maximum values which satisfy the
7051 the conditional as it was written. */
7052 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
7054 /* This should not be negative infinity; there is no overflow
7056 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
7059 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
7061 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7062 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
7064 TREE_NO_WARNING (max
) = 1;
7067 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
7069 /* This should not be positive infinity; there is no overflow
7071 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
7074 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
7076 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7077 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
7079 TREE_NO_WARNING (min
) = 1;
7083 /* Now refine the minimum and maximum values using any
7084 value range information we have for op0. */
7087 if (compare_values (vr
->min
, min
) == 1)
7089 if (compare_values (vr
->max
, max
) == -1)
7092 /* If the new min/max values have converged to a single value,
7093 then there is only one value which can satisfy the condition,
7094 return that value. */
7095 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
7101 /* Simplify a conditional using a relational operator to an equality
7102 test if the range information indicates only one value can satisfy
7103 the original conditional. */
7106 simplify_cond_using_ranges (gimple stmt
)
7108 tree op0
= gimple_cond_lhs (stmt
);
7109 tree op1
= gimple_cond_rhs (stmt
);
7110 enum tree_code cond_code
= gimple_cond_code (stmt
);
7112 if (cond_code
!= NE_EXPR
7113 && cond_code
!= EQ_EXPR
7114 && TREE_CODE (op0
) == SSA_NAME
7115 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7116 && is_gimple_min_invariant (op1
))
7118 value_range_t
*vr
= get_value_range (op0
);
7120 /* If we have range information for OP0, then we might be
7121 able to simplify this conditional. */
7122 if (vr
->type
== VR_RANGE
)
7124 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7130 fprintf (dump_file
, "Simplified relational ");
7131 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7132 fprintf (dump_file
, " into ");
7135 gimple_cond_set_code (stmt
, EQ_EXPR
);
7136 gimple_cond_set_lhs (stmt
, op0
);
7137 gimple_cond_set_rhs (stmt
, new_tree
);
7143 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7144 fprintf (dump_file
, "\n");
7150 /* Try again after inverting the condition. We only deal
7151 with integral types here, so no need to worry about
7152 issues with inverting FP comparisons. */
7153 cond_code
= invert_tree_comparison (cond_code
, false);
7154 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7160 fprintf (dump_file
, "Simplified relational ");
7161 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7162 fprintf (dump_file
, " into ");
7165 gimple_cond_set_code (stmt
, NE_EXPR
);
7166 gimple_cond_set_lhs (stmt
, op0
);
7167 gimple_cond_set_rhs (stmt
, new_tree
);
7173 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7174 fprintf (dump_file
, "\n");
7185 /* Simplify a switch statement using the value range of the switch
7189 simplify_switch_using_ranges (gimple stmt
)
7191 tree op
= gimple_switch_index (stmt
);
7196 size_t i
= 0, j
= 0, n
, n2
;
7200 if (TREE_CODE (op
) == SSA_NAME
)
7202 vr
= get_value_range (op
);
7204 /* We can only handle integer ranges. */
7205 if (vr
->type
!= VR_RANGE
7206 || symbolic_range_p (vr
))
7209 /* Find case label for min/max of the value range. */
7210 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
7212 else if (TREE_CODE (op
) == INTEGER_CST
)
7214 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
7228 n
= gimple_switch_num_labels (stmt
);
7230 /* Bail out if this is just all edges taken. */
7236 /* Build a new vector of taken case labels. */
7237 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
7240 /* Add the default edge, if necessary. */
7242 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
7244 for (; i
<= j
; ++i
, ++n2
)
7245 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
7247 /* Mark needed edges. */
7248 for (i
= 0; i
< n2
; ++i
)
7250 e
= find_edge (gimple_bb (stmt
),
7251 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
7252 e
->aux
= (void *)-1;
7255 /* Queue not needed edges for later removal. */
7256 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
7258 if (e
->aux
== (void *)-1)
7264 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7266 fprintf (dump_file
, "removing unreachable case label\n");
7268 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
7269 e
->flags
&= ~EDGE_EXECUTABLE
;
7272 /* And queue an update for the stmt. */
7275 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
7279 /* Simplify an integral conversion from an SSA name in STMT. */
7282 simplify_conversion_using_ranges (gimple stmt
)
7284 tree innerop
, middleop
, finaltype
;
7286 value_range_t
*innervr
;
7287 bool inner_unsigned_p
, middle_unsigned_p
, final_unsigned_p
;
7288 unsigned inner_prec
, middle_prec
, final_prec
;
7289 double_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
7291 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
7292 if (!INTEGRAL_TYPE_P (finaltype
))
7294 middleop
= gimple_assign_rhs1 (stmt
);
7295 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
7296 if (!is_gimple_assign (def_stmt
)
7297 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
7299 innerop
= gimple_assign_rhs1 (def_stmt
);
7300 if (TREE_CODE (innerop
) != SSA_NAME
)
7303 /* Get the value-range of the inner operand. */
7304 innervr
= get_value_range (innerop
);
7305 if (innervr
->type
!= VR_RANGE
7306 || TREE_CODE (innervr
->min
) != INTEGER_CST
7307 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
7310 /* Simulate the conversion chain to check if the result is equal if
7311 the middle conversion is removed. */
7312 innermin
= tree_to_double_int (innervr
->min
);
7313 innermax
= tree_to_double_int (innervr
->max
);
7315 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
7316 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
7317 final_prec
= TYPE_PRECISION (finaltype
);
7319 /* If the first conversion is not injective, the second must not
7321 if (double_int_cmp (double_int_sub (innermax
, innermin
),
7322 double_int_mask (middle_prec
), true) > 0
7323 && middle_prec
< final_prec
)
7325 /* We also want a medium value so that we can track the effect that
7326 narrowing conversions with sign change have. */
7327 inner_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (innerop
));
7328 if (inner_unsigned_p
)
7329 innermed
= double_int_rshift (double_int_mask (inner_prec
),
7330 1, inner_prec
, false);
7332 innermed
= double_int_zero
;
7333 if (double_int_cmp (innermin
, innermed
, inner_unsigned_p
) >= 0
7334 || double_int_cmp (innermed
, innermax
, inner_unsigned_p
) >= 0)
7335 innermed
= innermin
;
7337 middle_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (middleop
));
7338 middlemin
= double_int_ext (innermin
, middle_prec
, middle_unsigned_p
);
7339 middlemed
= double_int_ext (innermed
, middle_prec
, middle_unsigned_p
);
7340 middlemax
= double_int_ext (innermax
, middle_prec
, middle_unsigned_p
);
7342 /* Require that the final conversion applied to both the original
7343 and the intermediate range produces the same result. */
7344 final_unsigned_p
= TYPE_UNSIGNED (finaltype
);
7345 if (!double_int_equal_p (double_int_ext (middlemin
,
7346 final_prec
, final_unsigned_p
),
7347 double_int_ext (innermin
,
7348 final_prec
, final_unsigned_p
))
7349 || !double_int_equal_p (double_int_ext (middlemed
,
7350 final_prec
, final_unsigned_p
),
7351 double_int_ext (innermed
,
7352 final_prec
, final_unsigned_p
))
7353 || !double_int_equal_p (double_int_ext (middlemax
,
7354 final_prec
, final_unsigned_p
),
7355 double_int_ext (innermax
,
7356 final_prec
, final_unsigned_p
)))
7359 gimple_assign_set_rhs1 (stmt
, innerop
);
7364 /* Return whether the value range *VR fits in an integer type specified
7365 by PRECISION and UNSIGNED_P. */
7368 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
7371 unsigned src_precision
;
7374 /* We can only handle integral and pointer types. */
7375 src_type
= TREE_TYPE (vr
->min
);
7376 if (!INTEGRAL_TYPE_P (src_type
)
7377 && !POINTER_TYPE_P (src_type
))
7380 /* An extension is always fine, so is an identity transform. */
7381 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
7382 if (src_precision
< precision
7383 || (src_precision
== precision
7384 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
7387 /* Now we can only handle ranges with constant bounds. */
7388 if (vr
->type
!= VR_RANGE
7389 || TREE_CODE (vr
->min
) != INTEGER_CST
7390 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7393 /* For precision-preserving sign-changes the MSB of the double-int
7395 if (src_precision
== precision
7396 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
7399 /* Then we can perform the conversion on both ends and compare
7400 the result for equality. */
7401 tem
= double_int_ext (tree_to_double_int (vr
->min
), precision
, unsigned_p
);
7402 if (!double_int_equal_p (tree_to_double_int (vr
->min
), tem
))
7404 tem
= double_int_ext (tree_to_double_int (vr
->max
), precision
, unsigned_p
);
7405 if (!double_int_equal_p (tree_to_double_int (vr
->max
), tem
))
7411 /* Simplify a conversion from integral SSA name to float in STMT. */
7414 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
7416 tree rhs1
= gimple_assign_rhs1 (stmt
);
7417 value_range_t
*vr
= get_value_range (rhs1
);
7418 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
7419 enum machine_mode mode
;
7423 /* We can only handle constant ranges. */
7424 if (vr
->type
!= VR_RANGE
7425 || TREE_CODE (vr
->min
) != INTEGER_CST
7426 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7429 /* First check if we can use a signed type in place of an unsigned. */
7430 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
7431 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
7432 != CODE_FOR_nothing
)
7433 && range_fits_type_p (vr
, GET_MODE_PRECISION
7434 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
7435 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
7436 /* If we can do the conversion in the current input mode do nothing. */
7437 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
7438 TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
7440 /* Otherwise search for a mode we can use, starting from the narrowest
7441 integer mode available. */
7444 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
7447 /* If we cannot do a signed conversion to float from mode
7448 or if the value-range does not fit in the signed type
7449 try with a wider mode. */
7450 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
7451 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
7454 mode
= GET_MODE_WIDER_MODE (mode
);
7455 /* But do not widen the input. Instead leave that to the
7456 optabs expansion code. */
7457 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
7460 while (mode
!= VOIDmode
);
7461 if (mode
== VOIDmode
)
7465 /* It works, insert a truncation or sign-change before the
7466 float conversion. */
7467 tem
= create_tmp_var (build_nonstandard_integer_type
7468 (GET_MODE_PRECISION (mode
), 0), NULL
);
7469 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
7470 tem
= make_ssa_name (tem
, conv
);
7471 gimple_assign_set_lhs (conv
, tem
);
7472 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
7473 gimple_assign_set_rhs1 (stmt
, tem
);
7479 /* Simplify STMT using ranges if possible. */
7482 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
7484 gimple stmt
= gsi_stmt (*gsi
);
7485 if (is_gimple_assign (stmt
))
7487 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
7488 tree rhs1
= gimple_assign_rhs1 (stmt
);
7494 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7495 if the RHS is zero or one, and the LHS are known to be boolean
7497 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7498 return simplify_truth_ops_using_ranges (gsi
, stmt
);
7501 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7502 and BIT_AND_EXPR respectively if the first operand is greater
7503 than zero and the second operand is an exact power of two. */
7504 case TRUNC_DIV_EXPR
:
7505 case TRUNC_MOD_EXPR
:
7506 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
7507 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
7508 return simplify_div_or_mod_using_ranges (stmt
);
7511 /* Transform ABS (X) into X or -X as appropriate. */
7513 if (TREE_CODE (rhs1
) == SSA_NAME
7514 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7515 return simplify_abs_using_ranges (stmt
);
7520 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7521 if all the bits being cleared are already cleared or
7522 all the bits being set are already set. */
7523 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7524 return simplify_bit_ops_using_ranges (gsi
, stmt
);
7528 if (TREE_CODE (rhs1
) == SSA_NAME
7529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7530 return simplify_conversion_using_ranges (stmt
);
7534 if (TREE_CODE (rhs1
) == SSA_NAME
7535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7536 return simplify_float_conversion_using_ranges (gsi
, stmt
);
7543 else if (gimple_code (stmt
) == GIMPLE_COND
)
7544 return simplify_cond_using_ranges (stmt
);
7545 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7546 return simplify_switch_using_ranges (stmt
);
7551 /* If the statement pointed by SI has a predicate whose value can be
7552 computed using the value range information computed by VRP, compute
7553 its value and return true. Otherwise, return false. */
7556 fold_predicate_in (gimple_stmt_iterator
*si
)
7558 bool assignment_p
= false;
7560 gimple stmt
= gsi_stmt (*si
);
7562 if (is_gimple_assign (stmt
)
7563 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
7565 assignment_p
= true;
7566 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
7567 gimple_assign_rhs1 (stmt
),
7568 gimple_assign_rhs2 (stmt
),
7571 else if (gimple_code (stmt
) == GIMPLE_COND
)
7572 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
7573 gimple_cond_lhs (stmt
),
7574 gimple_cond_rhs (stmt
),
7582 val
= fold_convert (gimple_expr_type (stmt
), val
);
7586 fprintf (dump_file
, "Folding predicate ");
7587 print_gimple_expr (dump_file
, stmt
, 0, 0);
7588 fprintf (dump_file
, " to ");
7589 print_generic_expr (dump_file
, val
, 0);
7590 fprintf (dump_file
, "\n");
7593 if (is_gimple_assign (stmt
))
7594 gimple_assign_set_rhs_from_tree (si
, val
);
7597 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
7598 if (integer_zerop (val
))
7599 gimple_cond_make_false (stmt
);
7600 else if (integer_onep (val
))
7601 gimple_cond_make_true (stmt
);
7612 /* Callback for substitute_and_fold folding the stmt at *SI. */
7615 vrp_fold_stmt (gimple_stmt_iterator
*si
)
7617 if (fold_predicate_in (si
))
7620 return simplify_stmt_using_ranges (si
);
7623 /* Stack of dest,src equivalency pairs that need to be restored after
7624 each attempt to thread a block's incoming edge to an outgoing edge.
7626 A NULL entry is used to mark the end of pairs which need to be
7628 static VEC(tree
,heap
) *stack
;
7630 /* A trivial wrapper so that we can present the generic jump threading
7631 code with a simple API for simplifying statements. STMT is the
7632 statement we want to simplify, WITHIN_STMT provides the location
7633 for any overflow warnings. */
7636 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
7638 /* We only use VRP information to simplify conditionals. This is
7639 overly conservative, but it's unclear if doing more would be
7640 worth the compile time cost. */
7641 if (gimple_code (stmt
) != GIMPLE_COND
)
7644 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7645 gimple_cond_lhs (stmt
),
7646 gimple_cond_rhs (stmt
), within_stmt
);
7649 /* Blocks which have more than one predecessor and more than
7650 one successor present jump threading opportunities, i.e.,
7651 when the block is reached from a specific predecessor, we
7652 may be able to determine which of the outgoing edges will
7653 be traversed. When this optimization applies, we are able
7654 to avoid conditionals at runtime and we may expose secondary
7655 optimization opportunities.
7657 This routine is effectively a driver for the generic jump
7658 threading code. It basically just presents the generic code
7659 with edges that may be suitable for jump threading.
7661 Unlike DOM, we do not iterate VRP if jump threading was successful.
7662 While iterating may expose new opportunities for VRP, it is expected
7663 those opportunities would be very limited and the compile time cost
7664 to expose those opportunities would be significant.
7666 As jump threading opportunities are discovered, they are registered
7667 for later realization. */
7670 identify_jump_threads (void)
7677 /* Ugh. When substituting values earlier in this pass we can
7678 wipe the dominance information. So rebuild the dominator
7679 information as we need it within the jump threading code. */
7680 calculate_dominance_info (CDI_DOMINATORS
);
7682 /* We do not allow VRP information to be used for jump threading
7683 across a back edge in the CFG. Otherwise it becomes too
7684 difficult to avoid eliminating loop exit tests. Of course
7685 EDGE_DFS_BACK is not accurate at this time so we have to
7687 mark_dfs_back_edges ();
7689 /* Do not thread across edges we are about to remove. Just marking
7690 them as EDGE_DFS_BACK will do. */
7691 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7692 e
->flags
|= EDGE_DFS_BACK
;
7694 /* Allocate our unwinder stack to unwind any temporary equivalences
7695 that might be recorded. */
7696 stack
= VEC_alloc (tree
, heap
, 20);
7698 /* To avoid lots of silly node creation, we create a single
7699 conditional and just modify it in-place when attempting to
7701 dummy
= gimple_build_cond (EQ_EXPR
,
7702 integer_zero_node
, integer_zero_node
,
7705 /* Walk through all the blocks finding those which present a
7706 potential jump threading opportunity. We could set this up
7707 as a dominator walker and record data during the walk, but
7708 I doubt it's worth the effort for the classes of jump
7709 threading opportunities we are trying to identify at this
7710 point in compilation. */
7715 /* If the generic jump threading code does not find this block
7716 interesting, then there is nothing to do. */
7717 if (! potentially_threadable_block (bb
))
7720 /* We only care about blocks ending in a COND_EXPR. While there
7721 may be some value in handling SWITCH_EXPR here, I doubt it's
7722 terribly important. */
7723 last
= gsi_stmt (gsi_last_bb (bb
));
7725 /* We're basically looking for a switch or any kind of conditional with
7726 integral or pointer type arguments. Note the type of the second
7727 argument will be the same as the first argument, so no need to
7728 check it explicitly. */
7729 if (gimple_code (last
) == GIMPLE_SWITCH
7730 || (gimple_code (last
) == GIMPLE_COND
7731 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7732 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7733 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
7734 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7735 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
7739 /* We've got a block with multiple predecessors and multiple
7740 successors which also ends in a suitable conditional or
7741 switch statement. For each predecessor, see if we can thread
7742 it to a specific successor. */
7743 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7745 /* Do not thread across back edges or abnormal edges
7747 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7750 thread_across_edge (dummy
, e
, true, &stack
,
7751 simplify_stmt_for_jump_threading
);
7756 /* We do not actually update the CFG or SSA graphs at this point as
7757 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7758 handle ASSERT_EXPRs gracefully. */
7761 /* We identified all the jump threading opportunities earlier, but could
7762 not transform the CFG at that time. This routine transforms the
7763 CFG and arranges for the dominator tree to be rebuilt if necessary.
7765 Note the SSA graph update will occur during the normal TODO
7766 processing by the pass manager. */
7768 finalize_jump_threads (void)
7770 thread_through_all_blocks (false);
7771 VEC_free (tree
, heap
, stack
);
7775 /* Traverse all the blocks folding conditionals with known ranges. */
7782 values_propagated
= true;
7786 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7787 dump_all_value_ranges (dump_file
);
7788 fprintf (dump_file
, "\n");
7791 substitute_and_fold (op_with_constant_singleton_value_range
,
7792 vrp_fold_stmt
, false);
7794 if (warn_array_bounds
)
7795 check_all_array_refs ();
7797 /* We must identify jump threading opportunities before we release
7798 the datastructures built by VRP. */
7799 identify_jump_threads ();
7801 /* Free allocated memory. */
7802 for (i
= 0; i
< num_vr_values
; i
++)
7805 BITMAP_FREE (vr_value
[i
]->equiv
);
7810 free (vr_phi_edge_counts
);
7812 /* So that we can distinguish between VRP data being available
7813 and not available. */
7815 vr_phi_edge_counts
= NULL
;
7819 /* Main entry point to VRP (Value Range Propagation). This pass is
7820 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7821 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7822 Programming Language Design and Implementation, pp. 67-78, 1995.
7823 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7825 This is essentially an SSA-CCP pass modified to deal with ranges
7826 instead of constants.
7828 While propagating ranges, we may find that two or more SSA name
7829 have equivalent, though distinct ranges. For instance,
7832 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7834 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7838 In the code above, pointer p_5 has range [q_2, q_2], but from the
7839 code we can also determine that p_5 cannot be NULL and, if q_2 had
7840 a non-varying range, p_5's range should also be compatible with it.
7842 These equivalences are created by two expressions: ASSERT_EXPR and
7843 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7844 result of another assertion, then we can use the fact that p_5 and
7845 p_4 are equivalent when evaluating p_5's range.
7847 Together with value ranges, we also propagate these equivalences
7848 between names so that we can take advantage of information from
7849 multiple ranges when doing final replacement. Note that this
7850 equivalency relation is transitive but not symmetric.
7852 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7853 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7854 in contexts where that assertion does not hold (e.g., in line 6).
7856 TODO, the main difference between this pass and Patterson's is that
7857 we do not propagate edge probabilities. We only compute whether
7858 edges can be taken or not. That is, instead of having a spectrum
7859 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7860 DON'T KNOW. In the future, it may be worthwhile to propagate
7861 probabilities to aid branch prediction. */
7870 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7871 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7874 insert_range_assertions ();
7876 /* Estimate number of iterations - but do not use undefined behavior
7877 for this. We can't do this lazily as other functions may compute
7878 this using undefined behavior. */
7879 free_numbers_of_iterations_estimates ();
7880 estimate_numbers_of_iterations (false);
7882 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7883 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7884 threadedge_initialize_values ();
7887 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7890 free_numbers_of_iterations_estimates ();
7892 /* ASSERT_EXPRs must be removed before finalizing jump threads
7893 as finalizing jump threads calls the CFG cleanup code which
7894 does not properly handle ASSERT_EXPRs. */
7895 remove_range_assertions ();
7897 /* If we exposed any new variables, go ahead and put them into
7898 SSA form now, before we handle jump threading. This simplifies
7899 interactions between rewriting of _DECL nodes into SSA form
7900 and rewriting SSA_NAME nodes into SSA form after block
7901 duplication and CFG manipulation. */
7902 update_ssa (TODO_update_ssa
);
7904 finalize_jump_threads ();
7906 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7907 CFG in a broken state and requires a cfg_cleanup run. */
7908 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7910 /* Update SWITCH_EXPR case label vector. */
7911 FOR_EACH_VEC_ELT (switch_update
, to_update_switch_stmts
, i
, su
)
7914 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7916 gimple_switch_set_num_labels (su
->stmt
, n
);
7917 for (j
= 0; j
< n
; j
++)
7918 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7919 /* As we may have replaced the default label with a regular one
7920 make sure to make it a real default label again. This ensures
7921 optimal expansion. */
7922 label
= gimple_switch_default_label (su
->stmt
);
7923 CASE_LOW (label
) = NULL_TREE
;
7924 CASE_HIGH (label
) = NULL_TREE
;
7927 if (VEC_length (edge
, to_remove_edges
) > 0)
7928 free_dominance_info (CDI_DOMINATORS
);
7930 VEC_free (edge
, heap
, to_remove_edges
);
7931 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7932 threadedge_finalize_values ();
7935 loop_optimizer_finalize ();
7942 return flag_tree_vrp
!= 0;
7945 struct gimple_opt_pass pass_vrp
=
7950 gate_vrp
, /* gate */
7951 execute_vrp
, /* execute */
7954 0, /* static_pass_number */
7955 TV_TREE_VRP
, /* tv_id */
7956 PROP_ssa
, /* properties_required */
7957 0, /* properties_provided */
7958 0, /* properties_destroyed */
7959 0, /* todo_flags_start */
7964 | TODO_ggc_collect
/* todo_flags_finish */