1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
30 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
38 #include "sched-int.h"
40 #include "cfglayout.h"
48 #include "tree-pass.h"
52 #ifdef INSN_SCHEDULING
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
87 SMS works with countable loops (1) whose control part can be easily
88 decoupled from the rest of the loop and (2) whose loop count can
89 be easily adjusted. This is because we peel a constant number of
90 iterations into a prologue and epilogue for which we want to avoid
91 emitting the control part, and a kernel which is to iterate that
92 constant number of iterations less than the original loop. So the
93 control part should be a set of insns clearly identified and having
94 its own iv, not otherwise used in the loop (at-least for now), which
95 initializes a register before the loop to the number of iterations.
96 Currently SMS relies on the do-loop pattern to recognize such loops,
97 where (1) the control part comprises of all insns defining and/or
98 using a certain 'count' register and (2) the loop count can be
99 adjusted by modifying this register prior to the loop.
100 TODO: Rely on cfgloop analysis instead. */
102 /* This page defines partial-schedule structures and functions for
103 modulo scheduling. */
105 typedef struct partial_schedule
*partial_schedule_ptr
;
106 typedef struct ps_insn
*ps_insn_ptr
;
108 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
111 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
114 /* Perform signed modulo, always returning a non-negative value. */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
117 /* The number of different iterations the nodes in ps span, assuming
118 the stage boundaries are placed efficiently. */
119 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
121 /* The stage count of ps. */
122 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
124 /* A single instruction in the partial schedule. */
127 /* Identifies the instruction to be scheduled. Values smaller than
128 the ddg's num_nodes refer directly to ddg nodes. A value of
129 X - num_nodes refers to register move X. */
132 /* The (absolute) cycle in which the PS instruction is scheduled.
133 Same as SCHED_TIME (node). */
136 /* The next/prev PS_INSN in the same row. */
137 ps_insn_ptr next_in_row
,
142 /* Information about a register move that has been added to a partial
144 struct ps_reg_move_info
146 /* The source of the move is defined by the ps_insn with id DEF.
147 The destination is used by the ps_insns with the ids in USES. */
151 /* The original form of USES' instructions used OLD_REG, but they
152 should now use NEW_REG. */
156 /* The number of consecutive stages that the move occupies. */
157 int num_consecutive_stages
;
159 /* An instruction that sets NEW_REG to the correct value. The first
160 move associated with DEF will have an rhs of OLD_REG; later moves
161 use the result of the previous move. */
165 typedef struct ps_reg_move_info ps_reg_move_info
;
166 DEF_VEC_O (ps_reg_move_info
);
167 DEF_VEC_ALLOC_O (ps_reg_move_info
, heap
);
169 /* Holds the partial schedule as an array of II rows. Each entry of the
170 array points to a linked list of PS_INSNs, which represents the
171 instructions that are scheduled for that row. */
172 struct partial_schedule
174 int ii
; /* Number of rows in the partial schedule. */
175 int history
; /* Threshold for conflict checking using DFA. */
177 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
180 /* All the moves added for this partial schedule. Index X has
181 a ps_insn id of X + g->num_nodes. */
182 VEC (ps_reg_move_info
, heap
) *reg_moves
;
184 /* rows_length[i] holds the number of instructions in the row.
185 It is used only (as an optimization) to back off quickly from
186 trying to schedule a node in a full row; that is, to avoid running
187 through futile DFA state transitions. */
190 /* The earliest absolute cycle of an insn in the partial schedule. */
193 /* The latest absolute cycle of an insn in the partial schedule. */
196 ddg_ptr g
; /* The DDG of the insns in the partial schedule. */
198 int stage_count
; /* The stage count of the partial schedule. */
202 static partial_schedule_ptr
create_partial_schedule (int ii
, ddg_ptr
, int history
);
203 static void free_partial_schedule (partial_schedule_ptr
);
204 static void reset_partial_schedule (partial_schedule_ptr
, int new_ii
);
205 void print_partial_schedule (partial_schedule_ptr
, FILE *);
206 static void verify_partial_schedule (partial_schedule_ptr
, sbitmap
);
207 static ps_insn_ptr
ps_add_node_check_conflicts (partial_schedule_ptr
,
208 int, int, sbitmap
, sbitmap
);
209 static void rotate_partial_schedule (partial_schedule_ptr
, int);
210 void set_row_column_for_ps (partial_schedule_ptr
);
211 static void ps_insert_empty_row (partial_schedule_ptr
, int, sbitmap
);
212 static int compute_split_row (sbitmap
, int, int, int, ddg_node_ptr
);
215 /* This page defines constants and structures for the modulo scheduling
218 static int sms_order_nodes (ddg_ptr
, int, int *, int *);
219 static void set_node_sched_params (ddg_ptr
);
220 static partial_schedule_ptr
sms_schedule_by_order (ddg_ptr
, int, int, int *);
221 static void permute_partial_schedule (partial_schedule_ptr
, rtx
);
222 static void generate_prolog_epilog (partial_schedule_ptr
, struct loop
*,
224 static int calculate_stage_count (partial_schedule_ptr
, int);
225 static void calculate_must_precede_follow (ddg_node_ptr
, int, int,
226 int, int, sbitmap
, sbitmap
, sbitmap
);
227 static int get_sched_window (partial_schedule_ptr
, ddg_node_ptr
,
228 sbitmap
, int, int *, int *, int *);
229 static bool try_scheduling_node_in_cycle (partial_schedule_ptr
, int, int,
230 sbitmap
, int *, sbitmap
, sbitmap
);
231 static void remove_node_from_ps (partial_schedule_ptr
, ps_insn_ptr
);
233 #define NODE_ASAP(node) ((node)->aux.count)
235 #define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
236 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
237 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
238 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
239 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
241 /* The scheduling parameters held for each node. */
242 typedef struct node_sched_params
244 int time
; /* The absolute scheduling cycle. */
246 int row
; /* Holds time % ii. */
247 int stage
; /* Holds time / ii. */
249 /* The column of a node inside the ps. If nodes u, v are on the same row,
250 u will precede v if column (u) < column (v). */
252 } *node_sched_params_ptr
;
254 typedef struct node_sched_params node_sched_params
;
255 DEF_VEC_O (node_sched_params
);
256 DEF_VEC_ALLOC_O (node_sched_params
, heap
);
258 /* The following three functions are copied from the current scheduler
259 code in order to use sched_analyze() for computing the dependencies.
260 They are used when initializing the sched_info structure. */
262 sms_print_insn (const_rtx insn
, int aligned ATTRIBUTE_UNUSED
)
266 sprintf (tmp
, "i%4d", INSN_UID (insn
));
271 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED
,
272 regset used ATTRIBUTE_UNUSED
)
276 static struct common_sched_info_def sms_common_sched_info
;
278 static struct sched_deps_info_def sms_sched_deps_info
=
280 compute_jump_reg_dependencies
,
281 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
286 static struct haifa_sched_info sms_sched_info
=
295 NULL
, /* insn_finishes_block_p */
300 NULL
, NULL
, NULL
, NULL
,
305 /* Partial schedule instruction ID in PS is a register move. Return
306 information about it. */
307 static struct ps_reg_move_info
*
308 ps_reg_move (partial_schedule_ptr ps
, int id
)
310 gcc_checking_assert (id
>= ps
->g
->num_nodes
);
311 return VEC_index (ps_reg_move_info
, ps
->reg_moves
, id
- ps
->g
->num_nodes
);
314 /* Return the rtl instruction that is being scheduled by partial schedule
315 instruction ID, which belongs to schedule PS. */
317 ps_rtl_insn (partial_schedule_ptr ps
, int id
)
319 if (id
< ps
->g
->num_nodes
)
320 return ps
->g
->nodes
[id
].insn
;
322 return ps_reg_move (ps
, id
)->insn
;
325 /* Partial schedule instruction ID, which belongs to PS, occured in
326 the original (unscheduled) loop. Return the first instruction
327 in the loop that was associated with ps_rtl_insn (PS, ID).
328 If the instruction had some notes before it, this is the first
331 ps_first_note (partial_schedule_ptr ps
, int id
)
333 gcc_assert (id
< ps
->g
->num_nodes
);
334 return ps
->g
->nodes
[id
].first_note
;
337 /* Return the number of consecutive stages that are occupied by
338 partial schedule instruction ID in PS. */
340 ps_num_consecutive_stages (partial_schedule_ptr ps
, int id
)
342 if (id
< ps
->g
->num_nodes
)
345 return ps_reg_move (ps
, id
)->num_consecutive_stages
;
348 /* Given HEAD and TAIL which are the first and last insns in a loop;
349 return the register which controls the loop. Return zero if it has
350 more than one occurrence in the loop besides the control part or the
351 do-loop pattern is not of the form we expect. */
353 doloop_register_get (rtx head ATTRIBUTE_UNUSED
, rtx tail ATTRIBUTE_UNUSED
)
355 #ifdef HAVE_doloop_end
356 rtx reg
, condition
, insn
, first_insn_not_to_check
;
361 /* TODO: Free SMS's dependence on doloop_condition_get. */
362 condition
= doloop_condition_get (tail
);
366 if (REG_P (XEXP (condition
, 0)))
367 reg
= XEXP (condition
, 0);
368 else if (GET_CODE (XEXP (condition
, 0)) == PLUS
369 && REG_P (XEXP (XEXP (condition
, 0), 0)))
370 reg
= XEXP (XEXP (condition
, 0), 0);
374 /* Check that the COUNT_REG has no other occurrences in the loop
375 until the decrement. We assume the control part consists of
376 either a single (parallel) branch-on-count or a (non-parallel)
377 branch immediately preceded by a single (decrement) insn. */
378 first_insn_not_to_check
= (GET_CODE (PATTERN (tail
)) == PARALLEL
? tail
379 : prev_nondebug_insn (tail
));
381 for (insn
= head
; insn
!= first_insn_not_to_check
; insn
= NEXT_INSN (insn
))
382 if (!DEBUG_INSN_P (insn
) && reg_mentioned_p (reg
, insn
))
386 fprintf (dump_file
, "SMS count_reg found ");
387 print_rtl_single (dump_file
, reg
);
388 fprintf (dump_file
, " outside control in insn:\n");
389 print_rtl_single (dump_file
, insn
);
401 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
402 that the number of iterations is a compile-time constant. If so,
403 return the rtx that sets COUNT_REG to a constant, and set COUNT to
404 this constant. Otherwise return 0. */
406 const_iteration_count (rtx count_reg
, basic_block pre_header
,
407 HOST_WIDEST_INT
* count
)
415 get_ebb_head_tail (pre_header
, pre_header
, &head
, &tail
);
417 for (insn
= tail
; insn
!= PREV_INSN (head
); insn
= PREV_INSN (insn
))
418 if (NONDEBUG_INSN_P (insn
) && single_set (insn
) &&
419 rtx_equal_p (count_reg
, SET_DEST (single_set (insn
))))
421 rtx pat
= single_set (insn
);
423 if (CONST_INT_P (SET_SRC (pat
)))
425 *count
= INTVAL (SET_SRC (pat
));
435 /* A very simple resource-based lower bound on the initiation interval.
436 ??? Improve the accuracy of this bound by considering the
437 utilization of various units. */
441 if (targetm
.sched
.sms_res_mii
)
442 return targetm
.sched
.sms_res_mii (g
);
444 return ((g
->num_nodes
- g
->num_debug
) / issue_rate
);
448 /* A vector that contains the sched data for each ps_insn. */
449 static VEC (node_sched_params
, heap
) *node_sched_param_vec
;
451 /* Allocate sched_params for each node and initialize it. */
453 set_node_sched_params (ddg_ptr g
)
455 VEC_truncate (node_sched_params
, node_sched_param_vec
, 0);
456 VEC_safe_grow_cleared (node_sched_params
, heap
,
457 node_sched_param_vec
, g
->num_nodes
);
460 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
462 extend_node_sched_params (partial_schedule_ptr ps
)
464 VEC_safe_grow_cleared (node_sched_params
, heap
, node_sched_param_vec
,
465 ps
->g
->num_nodes
+ VEC_length (ps_reg_move_info
,
469 /* Update the sched_params (time, row and stage) for node U using the II,
470 the CYCLE of U and MIN_CYCLE.
471 We're not simply taking the following
472 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
473 because the stages may not be aligned on cycle 0. */
475 update_node_sched_params (int u
, int ii
, int cycle
, int min_cycle
)
477 int sc_until_cycle_zero
;
480 SCHED_TIME (u
) = cycle
;
481 SCHED_ROW (u
) = SMODULO (cycle
, ii
);
483 /* The calculation of stage count is done adding the number
484 of stages before cycle zero and after cycle zero. */
485 sc_until_cycle_zero
= CALC_STAGE_COUNT (-1, min_cycle
, ii
);
487 if (SCHED_TIME (u
) < 0)
489 stage
= CALC_STAGE_COUNT (-1, SCHED_TIME (u
), ii
);
490 SCHED_STAGE (u
) = sc_until_cycle_zero
- stage
;
494 stage
= CALC_STAGE_COUNT (SCHED_TIME (u
), 0, ii
);
495 SCHED_STAGE (u
) = sc_until_cycle_zero
+ stage
- 1;
500 print_node_sched_params (FILE *file
, int num_nodes
, partial_schedule_ptr ps
)
506 for (i
= 0; i
< num_nodes
; i
++)
508 node_sched_params_ptr nsp
= SCHED_PARAMS (i
);
510 fprintf (file
, "Node = %d; INSN = %d\n", i
,
511 INSN_UID (ps_rtl_insn (ps
, i
)));
512 fprintf (file
, " asap = %d:\n", NODE_ASAP (&ps
->g
->nodes
[i
]));
513 fprintf (file
, " time = %d:\n", nsp
->time
);
514 fprintf (file
, " stage = %d:\n", nsp
->stage
);
518 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
520 set_columns_for_row (partial_schedule_ptr ps
, int row
)
522 ps_insn_ptr cur_insn
;
526 for (cur_insn
= ps
->rows
[row
]; cur_insn
; cur_insn
= cur_insn
->next_in_row
)
527 SCHED_COLUMN (cur_insn
->id
) = column
++;
530 /* Set SCHED_COLUMN for each instruction in PS. */
532 set_columns_for_ps (partial_schedule_ptr ps
)
536 for (row
= 0; row
< ps
->ii
; row
++)
537 set_columns_for_row (ps
, row
);
540 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
541 Its single predecessor has already been scheduled, as has its
542 ddg node successors. (The move may have also another move as its
543 successor, in which case that successor will be scheduled later.)
545 The move is part of a chain that satisfies register dependencies
546 between a producing ddg node and various consuming ddg nodes.
547 If some of these dependencies have a distance of 1 (meaning that
548 the use is upward-exposed) then DISTANCE1_USES is nonnull and
549 contains the set of uses with distance-1 dependencies.
550 DISTANCE1_USES is null otherwise.
552 MUST_FOLLOW is a scratch bitmap that is big enough to hold
553 all current ps_insn ids.
555 Return true on success. */
557 schedule_reg_move (partial_schedule_ptr ps
, int i_reg_move
,
558 sbitmap distance1_uses
, sbitmap must_follow
)
561 int this_time
, this_distance
, this_start
, this_end
, this_latency
;
562 int start
, end
, c
, ii
;
563 sbitmap_iterator sbi
;
564 ps_reg_move_info
*move
;
568 move
= ps_reg_move (ps
, i_reg_move
);
572 fprintf (dump_file
, "Scheduling register move INSN %d; ii = %d"
573 ", min cycle = %d\n\n", INSN_UID (move
->insn
), ii
,
575 print_rtl_single (dump_file
, move
->insn
);
576 fprintf (dump_file
, "\n%11s %11s %5s\n", "start", "end", "time");
577 fprintf (dump_file
, "=========== =========== =====\n");
583 /* For dependencies of distance 1 between a producer ddg node A
584 and consumer ddg node B, we have a chain of dependencies:
586 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
588 where Mi is the ith move. For dependencies of distance 0 between
589 a producer ddg node A and consumer ddg node C, we have a chain of
592 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
594 where Mi' occupies the same position as Mi but occurs a stage later.
595 We can only schedule each move once, so if we have both types of
596 chain, we model the second as:
598 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
600 First handle the dependencies between the previously-scheduled
601 predecessor and the move. */
602 this_insn
= ps_rtl_insn (ps
, move
->def
);
603 this_latency
= insn_latency (this_insn
, move
->insn
);
604 this_distance
= distance1_uses
&& move
->def
< ps
->g
->num_nodes
? 1 : 0;
605 this_time
= SCHED_TIME (move
->def
) - this_distance
* ii
;
606 this_start
= this_time
+ this_latency
;
607 this_end
= this_time
+ ii
;
609 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
610 this_start
, this_end
, SCHED_TIME (move
->def
),
611 INSN_UID (this_insn
), this_latency
, this_distance
,
612 INSN_UID (move
->insn
));
614 if (start
< this_start
)
619 /* Handle the dependencies between the move and previously-scheduled
621 EXECUTE_IF_SET_IN_SBITMAP (move
->uses
, 0, u
, sbi
)
623 this_insn
= ps_rtl_insn (ps
, u
);
624 this_latency
= insn_latency (move
->insn
, this_insn
);
625 if (distance1_uses
&& !TEST_BIT (distance1_uses
, u
))
629 this_time
= SCHED_TIME (u
) + this_distance
* ii
;
630 this_start
= this_time
- ii
;
631 this_end
= this_time
- this_latency
;
633 fprintf (dump_file
, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
634 this_start
, this_end
, SCHED_TIME (u
), INSN_UID (move
->insn
),
635 this_latency
, this_distance
, INSN_UID (this_insn
));
637 if (start
< this_start
)
645 fprintf (dump_file
, "----------- ----------- -----\n");
646 fprintf (dump_file
, "%11d %11d %5s %s\n", start
, end
, "", "(max, min)");
649 sbitmap_zero (must_follow
);
650 SET_BIT (must_follow
, move
->def
);
652 start
= MAX (start
, end
- (ii
- 1));
653 for (c
= end
; c
>= start
; c
--)
655 psi
= ps_add_node_check_conflicts (ps
, i_reg_move
, c
,
656 move
->uses
, must_follow
);
659 update_node_sched_params (i_reg_move
, ii
, c
, PS_MIN_CYCLE (ps
));
661 fprintf (dump_file
, "\nScheduled register move INSN %d at"
662 " time %d, row %d\n\n", INSN_UID (move
->insn
), c
,
663 SCHED_ROW (i_reg_move
));
669 fprintf (dump_file
, "\nNo available slot\n\n");
675 Breaking intra-loop register anti-dependences:
676 Each intra-loop register anti-dependence implies a cross-iteration true
677 dependence of distance 1. Therefore, we can remove such false dependencies
678 and figure out if the partial schedule broke them by checking if (for a
679 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
680 if so generate a register move. The number of such moves is equal to:
681 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
682 nreg_moves = ----------------------------------- + 1 - { dependence.
686 schedule_reg_moves (partial_schedule_ptr ps
)
692 for (i
= 0; i
< g
->num_nodes
; i
++)
694 ddg_node_ptr u
= &g
->nodes
[i
];
696 int nreg_moves
= 0, i_reg_move
;
697 rtx prev_reg
, old_reg
;
701 sbitmap distance1_uses
;
702 rtx set
= single_set (u
->insn
);
704 /* Skip instructions that do not set a register. */
705 if ((set
&& !REG_P (SET_DEST (set
))))
708 /* Compute the number of reg_moves needed for u, by looking at life
709 ranges started at u (excluding self-loops). */
710 distances
[0] = distances
[1] = false;
711 for (e
= u
->out
; e
; e
= e
->next_out
)
712 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
714 int nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
715 - SCHED_TIME (e
->src
->cuid
)) / ii
;
717 if (e
->distance
== 1)
718 nreg_moves4e
= (SCHED_TIME (e
->dest
->cuid
)
719 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
721 /* If dest precedes src in the schedule of the kernel, then dest
722 will read before src writes and we can save one reg_copy. */
723 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
724 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
727 if (nreg_moves4e
>= 1)
729 /* !single_set instructions are not supported yet and
730 thus we do not except to encounter them in the loop
731 except from the doloop part. For the latter case
732 we assume no regmoves are generated as the doloop
733 instructions are tied to the branch with an edge. */
735 /* If the instruction contains auto-inc register then
736 validate that the regmov is being generated for the
737 target regsiter rather then the inc'ed register. */
738 gcc_assert (!autoinc_var_is_used_p (u
->insn
, e
->dest
->insn
));
743 gcc_assert (e
->distance
< 2);
744 distances
[e
->distance
] = true;
746 nreg_moves
= MAX (nreg_moves
, nreg_moves4e
);
752 /* Create NREG_MOVES register moves. */
753 first_move
= VEC_length (ps_reg_move_info
, ps
->reg_moves
);
754 VEC_safe_grow_cleared (ps_reg_move_info
, heap
, ps
->reg_moves
,
755 first_move
+ nreg_moves
);
756 extend_node_sched_params (ps
);
758 /* Record the moves associated with this node. */
759 first_move
+= ps
->g
->num_nodes
;
761 /* Generate each move. */
762 old_reg
= prev_reg
= SET_DEST (single_set (u
->insn
));
763 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
765 ps_reg_move_info
*move
= ps_reg_move (ps
, first_move
+ i_reg_move
);
767 move
->def
= i_reg_move
> 0 ? first_move
+ i_reg_move
- 1 : i
;
768 move
->uses
= sbitmap_alloc (first_move
+ nreg_moves
);
769 move
->old_reg
= old_reg
;
770 move
->new_reg
= gen_reg_rtx (GET_MODE (prev_reg
));
771 move
->num_consecutive_stages
= distances
[0] && distances
[1] ? 2 : 1;
772 move
->insn
= gen_move_insn (move
->new_reg
, copy_rtx (prev_reg
));
773 sbitmap_zero (move
->uses
);
775 prev_reg
= move
->new_reg
;
778 distance1_uses
= distances
[1] ? sbitmap_alloc (g
->num_nodes
) : NULL
;
780 /* Every use of the register defined by node may require a different
781 copy of this register, depending on the time the use is scheduled.
782 Record which uses require which move results. */
783 for (e
= u
->out
; e
; e
= e
->next_out
)
784 if (e
->type
== TRUE_DEP
&& e
->dest
!= e
->src
)
786 int dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
787 - SCHED_TIME (e
->src
->cuid
)) / ii
;
789 if (e
->distance
== 1)
790 dest_copy
= (SCHED_TIME (e
->dest
->cuid
)
791 - SCHED_TIME (e
->src
->cuid
) + ii
) / ii
;
793 if (SCHED_ROW (e
->dest
->cuid
) == SCHED_ROW (e
->src
->cuid
)
794 && SCHED_COLUMN (e
->dest
->cuid
) < SCHED_COLUMN (e
->src
->cuid
))
799 ps_reg_move_info
*move
;
801 move
= ps_reg_move (ps
, first_move
+ dest_copy
- 1);
802 SET_BIT (move
->uses
, e
->dest
->cuid
);
803 if (e
->distance
== 1)
804 SET_BIT (distance1_uses
, e
->dest
->cuid
);
808 must_follow
= sbitmap_alloc (first_move
+ nreg_moves
);
809 for (i_reg_move
= 0; i_reg_move
< nreg_moves
; i_reg_move
++)
810 if (!schedule_reg_move (ps
, first_move
+ i_reg_move
,
811 distance1_uses
, must_follow
))
813 sbitmap_free (must_follow
);
815 sbitmap_free (distance1_uses
);
816 if (i_reg_move
< nreg_moves
)
822 /* Emit the moves associatied with PS. Apply the substitutions
823 associated with them. */
825 apply_reg_moves (partial_schedule_ptr ps
)
827 ps_reg_move_info
*move
;
830 FOR_EACH_VEC_ELT (ps_reg_move_info
, ps
->reg_moves
, i
, move
)
833 sbitmap_iterator sbi
;
835 EXECUTE_IF_SET_IN_SBITMAP (move
->uses
, 0, i_use
, sbi
)
837 replace_rtx (ps
->g
->nodes
[i_use
].insn
, move
->old_reg
, move
->new_reg
);
838 df_insn_rescan (ps
->g
->nodes
[i_use
].insn
);
843 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
844 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
845 will move to cycle zero. */
847 reset_sched_times (partial_schedule_ptr ps
, int amount
)
851 ps_insn_ptr crr_insn
;
853 for (row
= 0; row
< ii
; row
++)
854 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
856 int u
= crr_insn
->id
;
857 int normalized_time
= SCHED_TIME (u
) - amount
;
858 int new_min_cycle
= PS_MIN_CYCLE (ps
) - amount
;
862 /* Print the scheduling times after the rotation. */
863 rtx insn
= ps_rtl_insn (ps
, u
);
865 fprintf (dump_file
, "crr_insn->node=%d (insn id %d), "
866 "crr_insn->cycle=%d, min_cycle=%d", u
,
867 INSN_UID (insn
), normalized_time
, new_min_cycle
);
869 fprintf (dump_file
, " (branch)");
870 fprintf (dump_file
, "\n");
873 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
874 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
876 crr_insn
->cycle
= normalized_time
;
877 update_node_sched_params (u
, ii
, normalized_time
, new_min_cycle
);
881 /* Permute the insns according to their order in PS, from row 0 to
882 row ii-1, and position them right before LAST. This schedules
883 the insns of the loop kernel. */
885 permute_partial_schedule (partial_schedule_ptr ps
, rtx last
)
891 for (row
= 0; row
< ii
; row
++)
892 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
894 rtx insn
= ps_rtl_insn (ps
, ps_ij
->id
);
896 if (PREV_INSN (last
) != insn
)
898 if (ps_ij
->id
< ps
->g
->num_nodes
)
899 reorder_insns_nobb (ps_first_note (ps
, ps_ij
->id
), insn
,
902 add_insn_before (insn
, last
, NULL
);
907 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
908 respectively only if cycle C falls on the border of the scheduling
909 window boundaries marked by START and END cycles. STEP is the
910 direction of the window. */
912 set_must_precede_follow (sbitmap
*tmp_follow
, sbitmap must_follow
,
913 sbitmap
*tmp_precede
, sbitmap must_precede
, int c
,
914 int start
, int end
, int step
)
922 *tmp_precede
= must_precede
;
923 else /* step == -1. */
924 *tmp_follow
= must_follow
;
929 *tmp_follow
= must_follow
;
930 else /* step == -1. */
931 *tmp_precede
= must_precede
;
936 /* Return True if the branch can be moved to row ii-1 while
937 normalizing the partial schedule PS to start from cycle zero and thus
938 optimize the SC. Otherwise return False. */
940 optimize_sc (partial_schedule_ptr ps
, ddg_ptr g
)
942 int amount
= PS_MIN_CYCLE (ps
);
943 sbitmap sched_nodes
= sbitmap_alloc (g
->num_nodes
);
944 int start
, end
, step
;
947 int stage_count
, stage_count_curr
;
949 /* Compare the SC after normalization and SC after bringing the branch
950 to row ii-1. If they are equal just bail out. */
951 stage_count
= calculate_stage_count (ps
, amount
);
953 calculate_stage_count (ps
, SCHED_TIME (g
->closing_branch
->cuid
) - (ii
- 1));
955 if (stage_count
== stage_count_curr
)
958 fprintf (dump_file
, "SMS SC already optimized.\n");
966 fprintf (dump_file
, "SMS Trying to optimize branch location\n");
967 fprintf (dump_file
, "SMS partial schedule before trial:\n");
968 print_partial_schedule (ps
, dump_file
);
971 /* First, normalize the partial scheduling. */
972 reset_sched_times (ps
, amount
);
973 rotate_partial_schedule (ps
, amount
);
977 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
979 print_partial_schedule (ps
, dump_file
);
982 if (SMODULO (SCHED_TIME (g
->closing_branch
->cuid
), ii
) == ii
- 1)
988 sbitmap_ones (sched_nodes
);
990 /* Calculate the new placement of the branch. It should be in row
991 ii-1 and fall into it's scheduling window. */
992 if (get_sched_window (ps
, g
->closing_branch
, sched_nodes
, ii
, &start
,
996 ps_insn_ptr next_ps_i
;
997 int branch_cycle
= SCHED_TIME (g
->closing_branch
->cuid
);
998 int row
= SMODULO (branch_cycle
, ps
->ii
);
1000 sbitmap must_precede
, must_follow
, tmp_precede
, tmp_follow
;
1004 fprintf (dump_file
, "\nTrying to schedule node %d "
1005 "INSN = %d in (%d .. %d) step %d\n",
1006 g
->closing_branch
->cuid
,
1007 (INSN_UID (g
->closing_branch
->insn
)), start
, end
, step
);
1009 gcc_assert ((step
> 0 && start
< end
) || (step
< 0 && start
> end
));
1012 c
= start
+ ii
- SMODULO (start
, ii
) - 1;
1013 gcc_assert (c
>= start
);
1019 "SMS failed to schedule branch at cycle: %d\n", c
);
1025 c
= start
- SMODULO (start
, ii
) - 1;
1026 gcc_assert (c
<= start
);
1032 "SMS failed to schedule branch at cycle: %d\n", c
);
1038 must_precede
= sbitmap_alloc (g
->num_nodes
);
1039 must_follow
= sbitmap_alloc (g
->num_nodes
);
1041 /* Try to schedule the branch is it's new cycle. */
1042 calculate_must_precede_follow (g
->closing_branch
, start
, end
,
1043 step
, ii
, sched_nodes
,
1044 must_precede
, must_follow
);
1046 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1047 must_precede
, c
, start
, end
, step
);
1049 /* Find the element in the partial schedule related to the closing
1050 branch so we can remove it from it's current cycle. */
1051 for (next_ps_i
= ps
->rows
[row
];
1052 next_ps_i
; next_ps_i
= next_ps_i
->next_in_row
)
1053 if (next_ps_i
->id
== g
->closing_branch
->cuid
)
1056 remove_node_from_ps (ps
, next_ps_i
);
1058 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
, c
,
1059 sched_nodes
, &num_splits
,
1060 tmp_precede
, tmp_follow
);
1061 gcc_assert (num_splits
== 0);
1066 "SMS failed to schedule branch at cycle: %d, "
1067 "bringing it back to cycle %d\n", c
, branch_cycle
);
1069 /* The branch was failed to be placed in row ii - 1.
1070 Put it back in it's original place in the partial
1072 set_must_precede_follow (&tmp_follow
, must_follow
, &tmp_precede
,
1073 must_precede
, branch_cycle
, start
, end
,
1076 try_scheduling_node_in_cycle (ps
, g
->closing_branch
->cuid
,
1077 branch_cycle
, sched_nodes
,
1078 &num_splits
, tmp_precede
,
1080 gcc_assert (success
&& (num_splits
== 0));
1085 /* The branch is placed in row ii - 1. */
1088 "SMS success in moving branch to cycle %d\n", c
);
1090 update_node_sched_params (g
->closing_branch
->cuid
, ii
, c
,
1095 free (must_precede
);
1105 duplicate_insns_of_cycles (partial_schedule_ptr ps
, int from_stage
,
1106 int to_stage
, rtx count_reg
)
1111 for (row
= 0; row
< ps
->ii
; row
++)
1112 for (ps_ij
= ps
->rows
[row
]; ps_ij
; ps_ij
= ps_ij
->next_in_row
)
1115 int first_u
, last_u
;
1118 /* Do not duplicate any insn which refers to count_reg as it
1119 belongs to the control part.
1120 The closing branch is scheduled as well and thus should
1122 TODO: This should be done by analyzing the control part of
1124 u_insn
= ps_rtl_insn (ps
, u
);
1125 if (reg_mentioned_p (count_reg
, u_insn
)
1129 first_u
= SCHED_STAGE (u
);
1130 last_u
= first_u
+ ps_num_consecutive_stages (ps
, u
) - 1;
1131 if (from_stage
<= last_u
&& to_stage
>= first_u
)
1133 if (u
< ps
->g
->num_nodes
)
1134 duplicate_insn_chain (ps_first_note (ps
, u
), u_insn
);
1136 emit_insn (copy_rtx (PATTERN (u_insn
)));
1142 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1144 generate_prolog_epilog (partial_schedule_ptr ps
, struct loop
*loop
,
1145 rtx count_reg
, rtx count_init
)
1148 int last_stage
= PS_STAGE_COUNT (ps
) - 1;
1151 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1156 /* Generate instructions at the beginning of the prolog to
1157 adjust the loop count by STAGE_COUNT. If loop count is constant
1158 (count_init), this constant is adjusted by STAGE_COUNT in
1159 generate_prolog_epilog function. */
1160 rtx sub_reg
= NULL_RTX
;
1162 sub_reg
= expand_simple_binop (GET_MODE (count_reg
), MINUS
,
1163 count_reg
, GEN_INT (last_stage
),
1164 count_reg
, 1, OPTAB_DIRECT
);
1165 gcc_assert (REG_P (sub_reg
));
1166 if (REGNO (sub_reg
) != REGNO (count_reg
))
1167 emit_move_insn (count_reg
, sub_reg
);
1170 for (i
= 0; i
< last_stage
; i
++)
1171 duplicate_insns_of_cycles (ps
, 0, i
, count_reg
);
1173 /* Put the prolog on the entry edge. */
1174 e
= loop_preheader_edge (loop
);
1175 split_edge_and_insert (e
, get_insns ());
1176 if (!flag_resched_modulo_sched
)
1177 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1181 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1184 for (i
= 0; i
< last_stage
; i
++)
1185 duplicate_insns_of_cycles (ps
, i
+ 1, last_stage
, count_reg
);
1187 /* Put the epilogue on the exit edge. */
1188 gcc_assert (single_exit (loop
));
1189 e
= single_exit (loop
);
1190 split_edge_and_insert (e
, get_insns ());
1191 if (!flag_resched_modulo_sched
)
1192 e
->dest
->flags
|= BB_DISABLE_SCHEDULE
;
1197 /* Mark LOOP as software pipelined so the later
1198 scheduling passes don't touch it. */
1200 mark_loop_unsched (struct loop
*loop
)
1203 basic_block
*bbs
= get_loop_body (loop
);
1205 for (i
= 0; i
< loop
->num_nodes
; i
++)
1206 bbs
[i
]->flags
|= BB_DISABLE_SCHEDULE
;
1209 /* Return true if all the BBs of the loop are empty except the
1212 loop_single_full_bb_p (struct loop
*loop
)
1215 basic_block
*bbs
= get_loop_body (loop
);
1217 for (i
= 0; i
< loop
->num_nodes
; i
++)
1220 bool empty_bb
= true;
1222 if (bbs
[i
] == loop
->header
)
1225 /* Make sure that basic blocks other than the header
1226 have only notes labels or jumps. */
1227 get_ebb_head_tail (bbs
[i
], bbs
[i
], &head
, &tail
);
1228 for (; head
!= NEXT_INSN (tail
); head
= NEXT_INSN (head
))
1230 if (NOTE_P (head
) || LABEL_P (head
)
1231 || (INSN_P (head
) && (DEBUG_INSN_P (head
) || JUMP_P (head
))))
1247 /* A simple loop from SMS point of view; it is a loop that is composed of
1248 either a single basic block or two BBs - a header and a latch. */
1249 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1250 && (EDGE_COUNT (loop->latch->preds) == 1) \
1251 && (EDGE_COUNT (loop->latch->succs) == 1))
1253 /* Return true if the loop is in its canonical form and false if not.
1254 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1256 loop_canon_p (struct loop
*loop
)
1259 if (loop
->inner
|| !loop_outer (loop
))
1262 fprintf (dump_file
, "SMS loop inner or !loop_outer\n");
1266 if (!single_exit (loop
))
1270 rtx insn
= BB_END (loop
->header
);
1272 fprintf (dump_file
, "SMS loop many exits ");
1273 fprintf (dump_file
, " %s %d (file, line)\n",
1274 insn_file (insn
), insn_line (insn
));
1279 if (! SIMPLE_SMS_LOOP_P (loop
) && ! loop_single_full_bb_p (loop
))
1283 rtx insn
= BB_END (loop
->header
);
1285 fprintf (dump_file
, "SMS loop many BBs. ");
1286 fprintf (dump_file
, " %s %d (file, line)\n",
1287 insn_file (insn
), insn_line (insn
));
1295 /* If there are more than one entry for the loop,
1296 make it one by splitting the first entry edge and
1297 redirecting the others to the new BB. */
1299 canon_loop (struct loop
*loop
)
1304 /* Avoid annoying special cases of edges going to exit
1306 FOR_EACH_EDGE (e
, i
, EXIT_BLOCK_PTR
->preds
)
1307 if ((e
->flags
& EDGE_FALLTHRU
) && (EDGE_COUNT (e
->src
->succs
) > 1))
1310 if (loop
->latch
== loop
->header
1311 || EDGE_COUNT (loop
->latch
->succs
) > 1)
1313 FOR_EACH_EDGE (e
, i
, loop
->header
->preds
)
1314 if (e
->src
== loop
->latch
)
1322 setup_sched_infos (void)
1324 memcpy (&sms_common_sched_info
, &haifa_common_sched_info
,
1325 sizeof (sms_common_sched_info
));
1326 sms_common_sched_info
.sched_pass_id
= SCHED_SMS_PASS
;
1327 common_sched_info
= &sms_common_sched_info
;
1329 sched_deps_info
= &sms_sched_deps_info
;
1330 current_sched_info
= &sms_sched_info
;
1333 /* Probability in % that the sms-ed loop rolls enough so that optimized
1334 version may be entered. Just a guess. */
1335 #define PROB_SMS_ENOUGH_ITERATIONS 80
1337 /* Used to calculate the upper bound of ii. */
1338 #define MAXII_FACTOR 2
1340 /* Main entry point, perform SMS scheduling on the loops of the function
1341 that consist of single basic blocks. */
1348 int maxii
, max_asap
;
1350 partial_schedule_ptr ps
;
1351 basic_block bb
= NULL
;
1353 basic_block condition_bb
= NULL
;
1355 gcov_type trip_count
= 0;
1357 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1358 | LOOPS_HAVE_RECORDED_EXITS
);
1359 if (number_of_loops () <= 1)
1361 loop_optimizer_finalize ();
1362 return; /* There are no loops to schedule. */
1365 /* Initialize issue_rate. */
1366 if (targetm
.sched
.issue_rate
)
1368 int temp
= reload_completed
;
1370 reload_completed
= 1;
1371 issue_rate
= targetm
.sched
.issue_rate ();
1372 reload_completed
= temp
;
1377 /* Initialize the scheduler. */
1378 setup_sched_infos ();
1379 haifa_sched_init ();
1381 /* Allocate memory to hold the DDG array one entry for each loop.
1382 We use loop->num as index into this array. */
1383 g_arr
= XCNEWVEC (ddg_ptr
, number_of_loops ());
1387 fprintf (dump_file
, "\n\nSMS analysis phase\n");
1388 fprintf (dump_file
, "===================\n\n");
1391 /* Build DDGs for all the relevant loops and hold them in G_ARR
1392 indexed by the loop index. */
1393 FOR_EACH_LOOP (li
, loop
, 0)
1398 /* For debugging. */
1399 if (dbg_cnt (sms_sched_loop
) == false)
1402 fprintf (dump_file
, "SMS reached max limit... \n");
1409 rtx insn
= BB_END (loop
->header
);
1411 fprintf (dump_file
, "SMS loop num: %d, file: %s, line: %d\n",
1412 loop
->num
, insn_file (insn
), insn_line (insn
));
1416 if (! loop_canon_p (loop
))
1419 if (! loop_single_full_bb_p (loop
))
1422 fprintf (dump_file
, "SMS not loop_single_full_bb_p\n");
1428 get_ebb_head_tail (bb
, bb
, &head
, &tail
);
1429 latch_edge
= loop_latch_edge (loop
);
1430 gcc_assert (single_exit (loop
));
1431 if (single_exit (loop
)->count
)
1432 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1434 /* Perform SMS only on loops that their average count is above threshold. */
1436 if ( latch_edge
->count
1437 && (latch_edge
->count
< single_exit (loop
)->count
* SMS_LOOP_AVERAGE_COUNT_THRESHOLD
))
1441 fprintf (dump_file
, " %s %d (file, line)\n",
1442 insn_file (tail
), insn_line (tail
));
1443 fprintf (dump_file
, "SMS single-bb-loop\n");
1444 if (profile_info
&& flag_branch_probabilities
)
1446 fprintf (dump_file
, "SMS loop-count ");
1447 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1448 (HOST_WIDEST_INT
) bb
->count
);
1449 fprintf (dump_file
, "\n");
1450 fprintf (dump_file
, "SMS trip-count ");
1451 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1452 (HOST_WIDEST_INT
) trip_count
);
1453 fprintf (dump_file
, "\n");
1454 fprintf (dump_file
, "SMS profile-sum-max ");
1455 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1456 (HOST_WIDEST_INT
) profile_info
->sum_max
);
1457 fprintf (dump_file
, "\n");
1463 /* Make sure this is a doloop. */
1464 if ( !(count_reg
= doloop_register_get (head
, tail
)))
1467 fprintf (dump_file
, "SMS doloop_register_get failed\n");
1471 /* Don't handle BBs with calls or barriers
1472 or !single_set with the exception of instructions that include
1473 count_reg---these instructions are part of the control part
1474 that do-loop recognizes.
1475 ??? Should handle insns defining subregs. */
1476 for (insn
= head
; insn
!= NEXT_INSN (tail
); insn
= NEXT_INSN (insn
))
1482 || (NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1483 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
1484 && !reg_mentioned_p (count_reg
, insn
))
1485 || (INSN_P (insn
) && (set
= single_set (insn
))
1486 && GET_CODE (SET_DEST (set
)) == SUBREG
))
1490 if (insn
!= NEXT_INSN (tail
))
1495 fprintf (dump_file
, "SMS loop-with-call\n");
1496 else if (BARRIER_P (insn
))
1497 fprintf (dump_file
, "SMS loop-with-barrier\n");
1498 else if ((NONDEBUG_INSN_P (insn
) && !JUMP_P (insn
)
1499 && !single_set (insn
) && GET_CODE (PATTERN (insn
)) != USE
))
1500 fprintf (dump_file
, "SMS loop-with-not-single-set\n");
1502 fprintf (dump_file
, "SMS loop with subreg in lhs\n");
1503 print_rtl_single (dump_file
, insn
);
1509 /* Always schedule the closing branch with the rest of the
1510 instructions. The branch is rotated to be in row ii-1 at the
1511 end of the scheduling procedure to make sure it's the last
1512 instruction in the iteration. */
1513 if (! (g
= create_ddg (bb
, 1)))
1516 fprintf (dump_file
, "SMS create_ddg failed\n");
1520 g_arr
[loop
->num
] = g
;
1522 fprintf (dump_file
, "...OK\n");
1527 fprintf (dump_file
, "\nSMS transformation phase\n");
1528 fprintf (dump_file
, "=========================\n\n");
1531 /* We don't want to perform SMS on new loops - created by versioning. */
1532 FOR_EACH_LOOP (li
, loop
, 0)
1535 rtx count_reg
, count_init
;
1536 int mii
, rec_mii
, stage_count
, min_cycle
;
1537 HOST_WIDEST_INT loop_count
= 0;
1540 if (! (g
= g_arr
[loop
->num
]))
1545 rtx insn
= BB_END (loop
->header
);
1547 fprintf (dump_file
, "SMS loop num: %d, file: %s, line: %d\n",
1548 loop
->num
, insn_file (insn
), insn_line (insn
));
1550 print_ddg (dump_file
, g
);
1553 get_ebb_head_tail (loop
->header
, loop
->header
, &head
, &tail
);
1555 latch_edge
= loop_latch_edge (loop
);
1556 gcc_assert (single_exit (loop
));
1557 if (single_exit (loop
)->count
)
1558 trip_count
= latch_edge
->count
/ single_exit (loop
)->count
;
1562 fprintf (dump_file
, " %s %d (file, line)\n",
1563 insn_file (tail
), insn_line (tail
));
1564 fprintf (dump_file
, "SMS single-bb-loop\n");
1565 if (profile_info
&& flag_branch_probabilities
)
1567 fprintf (dump_file
, "SMS loop-count ");
1568 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1569 (HOST_WIDEST_INT
) bb
->count
);
1570 fprintf (dump_file
, "\n");
1571 fprintf (dump_file
, "SMS profile-sum-max ");
1572 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1573 (HOST_WIDEST_INT
) profile_info
->sum_max
);
1574 fprintf (dump_file
, "\n");
1576 fprintf (dump_file
, "SMS doloop\n");
1577 fprintf (dump_file
, "SMS built-ddg %d\n", g
->num_nodes
);
1578 fprintf (dump_file
, "SMS num-loads %d\n", g
->num_loads
);
1579 fprintf (dump_file
, "SMS num-stores %d\n", g
->num_stores
);
1583 /* In case of th loop have doloop register it gets special
1585 count_init
= NULL_RTX
;
1586 if ((count_reg
= doloop_register_get (head
, tail
)))
1588 basic_block pre_header
;
1590 pre_header
= loop_preheader_edge (loop
)->src
;
1591 count_init
= const_iteration_count (count_reg
, pre_header
,
1594 gcc_assert (count_reg
);
1596 if (dump_file
&& count_init
)
1598 fprintf (dump_file
, "SMS const-doloop ");
1599 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1601 fprintf (dump_file
, "\n");
1604 node_order
= XNEWVEC (int, g
->num_nodes
);
1606 mii
= 1; /* Need to pass some estimate of mii. */
1607 rec_mii
= sms_order_nodes (g
, mii
, node_order
, &max_asap
);
1608 mii
= MAX (res_MII (g
), rec_mii
);
1609 maxii
= MAX (max_asap
, MAXII_FACTOR
* mii
);
1612 fprintf (dump_file
, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1613 rec_mii
, mii
, maxii
);
1617 set_node_sched_params (g
);
1621 ps
= sms_schedule_by_order (g
, mii
, maxii
, node_order
);
1625 /* Try to achieve optimized SC by normalizing the partial
1626 schedule (having the cycles start from cycle zero).
1627 The branch location must be placed in row ii-1 in the
1628 final scheduling. If failed, shift all instructions to
1629 position the branch in row ii-1. */
1630 opt_sc_p
= optimize_sc (ps
, g
);
1632 stage_count
= calculate_stage_count (ps
, 0);
1635 /* Bring the branch to cycle ii-1. */
1636 int amount
= (SCHED_TIME (g
->closing_branch
->cuid
)
1640 fprintf (dump_file
, "SMS schedule branch at cycle ii-1\n");
1642 stage_count
= calculate_stage_count (ps
, amount
);
1645 gcc_assert (stage_count
>= 1);
1648 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1649 1 means that there is no interleaving between iterations thus
1650 we let the scheduling passes do the job in this case. */
1651 if (stage_count
< PARAM_VALUE (PARAM_SMS_MIN_SC
)
1652 || (count_init
&& (loop_count
<= stage_count
))
1653 || (flag_branch_probabilities
&& (trip_count
<= stage_count
)))
1657 fprintf (dump_file
, "SMS failed... \n");
1658 fprintf (dump_file
, "SMS sched-failed (stage-count=%d,"
1659 " loop-count=", stage_count
);
1660 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, loop_count
);
1661 fprintf (dump_file
, ", trip-count=");
1662 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, trip_count
);
1663 fprintf (dump_file
, ")\n");
1670 /* Rotate the partial schedule to have the branch in row ii-1. */
1671 int amount
= SCHED_TIME (g
->closing_branch
->cuid
) - (ps
->ii
- 1);
1673 reset_sched_times (ps
, amount
);
1674 rotate_partial_schedule (ps
, amount
);
1677 set_columns_for_ps (ps
);
1679 min_cycle
= PS_MIN_CYCLE (ps
) - SMODULO (PS_MIN_CYCLE (ps
), ps
->ii
);
1680 if (!schedule_reg_moves (ps
))
1683 free_partial_schedule (ps
);
1687 /* Moves that handle incoming values might have been added
1688 to a new first stage. Bump the stage count if so.
1690 ??? Perhaps we could consider rotating the schedule here
1692 if (PS_MIN_CYCLE (ps
) < min_cycle
)
1694 reset_sched_times (ps
, 0);
1698 /* The stage count should now be correct without rotation. */
1699 gcc_checking_assert (stage_count
== calculate_stage_count (ps
, 0));
1700 PS_STAGE_COUNT (ps
) = stage_count
;
1707 "%s:%d SMS succeeded %d %d (with ii, sc)\n",
1708 insn_file (tail
), insn_line (tail
), ps
->ii
, stage_count
);
1709 print_partial_schedule (ps
, dump_file
);
1712 /* case the BCT count is not known , Do loop-versioning */
1713 if (count_reg
&& ! count_init
)
1715 rtx comp_rtx
= gen_rtx_fmt_ee (GT
, VOIDmode
, count_reg
,
1716 GEN_INT(stage_count
));
1717 unsigned prob
= (PROB_SMS_ENOUGH_ITERATIONS
1718 * REG_BR_PROB_BASE
) / 100;
1720 loop_version (loop
, comp_rtx
, &condition_bb
,
1721 prob
, prob
, REG_BR_PROB_BASE
- prob
,
1725 /* Set new iteration count of loop kernel. */
1726 if (count_reg
&& count_init
)
1727 SET_SRC (single_set (count_init
)) = GEN_INT (loop_count
1730 /* Now apply the scheduled kernel to the RTL of the loop. */
1731 permute_partial_schedule (ps
, g
->closing_branch
->first_note
);
1733 /* Mark this loop as software pipelined so the later
1734 scheduling passes don't touch it. */
1735 if (! flag_resched_modulo_sched
)
1736 mark_loop_unsched (loop
);
1738 /* The life-info is not valid any more. */
1739 df_set_bb_dirty (g
->bb
);
1741 apply_reg_moves (ps
);
1743 print_node_sched_params (dump_file
, g
->num_nodes
, ps
);
1744 /* Generate prolog and epilog. */
1745 generate_prolog_epilog (ps
, loop
, count_reg
, count_init
);
1749 free_partial_schedule (ps
);
1750 VEC_free (node_sched_params
, heap
, node_sched_param_vec
);
1757 /* Release scheduler data, needed until now because of DFA. */
1758 haifa_sched_finish ();
1759 loop_optimizer_finalize ();
1762 /* The SMS scheduling algorithm itself
1763 -----------------------------------
1764 Input: 'O' an ordered list of insns of a loop.
1765 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1767 'Q' is the empty Set
1768 'PS' is the partial schedule; it holds the currently scheduled nodes with
1770 'PSP' previously scheduled predecessors.
1771 'PSS' previously scheduled successors.
1772 't(u)' the cycle where u is scheduled.
1773 'l(u)' is the latency of u.
1774 'd(v,u)' is the dependence distance from v to u.
1775 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1776 the node ordering phase.
1777 'check_hardware_resources_conflicts(u, PS, c)'
1778 run a trace around cycle/slot through DFA model
1779 to check resource conflicts involving instruction u
1780 at cycle c given the partial schedule PS.
1781 'add_to_partial_schedule_at_time(u, PS, c)'
1782 Add the node/instruction u to the partial schedule
1784 'calculate_register_pressure(PS)'
1785 Given a schedule of instructions, calculate the register
1786 pressure it implies. One implementation could be the
1787 maximum number of overlapping live ranges.
1788 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1789 registers available in the hardware.
1793 3. for each node u in O in pre-computed order
1794 4. if (PSP(u) != Q && PSS(u) == Q) then
1795 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 6. start = Early_start; end = Early_start + II - 1; step = 1
1797 11. else if (PSP(u) == Q && PSS(u) != Q) then
1798 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1799 13. start = Late_start; end = Late_start - II + 1; step = -1
1800 14. else if (PSP(u) != Q && PSS(u) != Q) then
1801 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1802 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1803 17. start = Early_start;
1804 18. end = min(Early_start + II - 1 , Late_start);
1806 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1807 21. start = ASAP(u); end = start + II - 1; step = 1
1811 24. for (c = start ; c != end ; c += step)
1812 25. if check_hardware_resources_conflicts(u, PS, c) then
1813 26. add_to_partial_schedule_at_time(u, PS, c)
1818 31. if (success == false) then
1820 33. if (II > maxII) then
1821 34. finish - failed to schedule
1826 39. if (calculate_register_pressure(PS) > maxRP) then
1829 42. compute epilogue & prologue
1830 43. finish - succeeded to schedule
1832 ??? The algorithm restricts the scheduling window to II cycles.
1833 In rare cases, it may be better to allow windows of II+1 cycles.
1834 The window would then start and end on the same row, but with
1835 different "must precede" and "must follow" requirements. */
1837 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1838 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1839 set to 0 to save compile time. */
1840 #define DFA_HISTORY SMS_DFA_HISTORY
1842 /* A threshold for the number of repeated unsuccessful attempts to insert
1843 an empty row, before we flush the partial schedule and start over. */
1844 #define MAX_SPLIT_NUM 10
1845 /* Given the partial schedule PS, this function calculates and returns the
1846 cycles in which we can schedule the node with the given index I.
1847 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1848 noticed that there are several cases in which we fail to SMS the loop
1849 because the sched window of a node is empty due to tight data-deps. In
1850 such cases we want to unschedule some of the predecessors/successors
1851 until we get non-empty scheduling window. It returns -1 if the
1852 scheduling window is empty and zero otherwise. */
1855 get_sched_window (partial_schedule_ptr ps
, ddg_node_ptr u_node
,
1856 sbitmap sched_nodes
, int ii
, int *start_p
, int *step_p
,
1859 int start
, step
, end
;
1860 int early_start
, late_start
;
1862 sbitmap psp
= sbitmap_alloc (ps
->g
->num_nodes
);
1863 sbitmap pss
= sbitmap_alloc (ps
->g
->num_nodes
);
1864 sbitmap u_node_preds
= NODE_PREDECESSORS (u_node
);
1865 sbitmap u_node_succs
= NODE_SUCCESSORS (u_node
);
1871 /* 1. compute sched window for u (start, end, step). */
1874 psp_not_empty
= sbitmap_a_and_b_cg (psp
, u_node_preds
, sched_nodes
);
1875 pss_not_empty
= sbitmap_a_and_b_cg (pss
, u_node_succs
, sched_nodes
);
1877 /* We first compute a forward range (start <= end), then decide whether
1879 early_start
= INT_MIN
;
1880 late_start
= INT_MAX
;
1888 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1890 fprintf (dump_file
, "\nAnalyzing dependencies for node %d (INSN %d)"
1891 "; ii = %d\n\n", u_node
->cuid
, INSN_UID (u_node
->insn
), ii
);
1892 fprintf (dump_file
, "%11s %11s %11s %11s %5s\n",
1893 "start", "early start", "late start", "end", "time");
1894 fprintf (dump_file
, "=========== =========== =========== ==========="
1897 /* Calculate early_start and limit end. Both bounds are inclusive. */
1899 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
1901 int v
= e
->src
->cuid
;
1903 if (TEST_BIT (sched_nodes
, v
))
1905 int p_st
= SCHED_TIME (v
);
1906 int earliest
= p_st
+ e
->latency
- (e
->distance
* ii
);
1907 int latest
= (e
->data_type
== MEM_DEP
? p_st
+ ii
- 1 : INT_MAX
);
1911 fprintf (dump_file
, "%11s %11d %11s %11d %5d",
1912 "", earliest
, "", latest
, p_st
);
1913 print_ddg_edge (dump_file
, e
);
1914 fprintf (dump_file
, "\n");
1917 early_start
= MAX (early_start
, earliest
);
1918 end
= MIN (end
, latest
);
1920 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1925 /* Calculate late_start and limit start. Both bounds are inclusive. */
1927 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
1929 int v
= e
->dest
->cuid
;
1931 if (TEST_BIT (sched_nodes
, v
))
1933 int s_st
= SCHED_TIME (v
);
1934 int earliest
= (e
->data_type
== MEM_DEP
? s_st
- ii
+ 1 : INT_MIN
);
1935 int latest
= s_st
- e
->latency
+ (e
->distance
* ii
);
1939 fprintf (dump_file
, "%11d %11s %11d %11s %5d",
1940 earliest
, "", latest
, "", s_st
);
1941 print_ddg_edge (dump_file
, e
);
1942 fprintf (dump_file
, "\n");
1945 start
= MAX (start
, earliest
);
1946 late_start
= MIN (late_start
, latest
);
1948 if (e
->type
== TRUE_DEP
&& e
->data_type
== REG_DEP
)
1953 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1955 fprintf (dump_file
, "----------- ----------- ----------- -----------"
1957 fprintf (dump_file
, "%11d %11d %11d %11d %5s %s\n",
1958 start
, early_start
, late_start
, end
, "",
1959 "(max, max, min, min)");
1962 /* Get a target scheduling window no bigger than ii. */
1963 if (early_start
== INT_MIN
&& late_start
== INT_MAX
)
1964 early_start
= NODE_ASAP (u_node
);
1965 else if (early_start
== INT_MIN
)
1966 early_start
= late_start
- (ii
- 1);
1967 late_start
= MIN (late_start
, early_start
+ (ii
- 1));
1969 /* Apply memory dependence limits. */
1970 start
= MAX (start
, early_start
);
1971 end
= MIN (end
, late_start
);
1973 if (dump_file
&& (psp_not_empty
|| pss_not_empty
))
1974 fprintf (dump_file
, "%11s %11d %11d %11s %5s final window\n",
1975 "", start
, end
, "", "");
1977 /* If there are at least as many successors as predecessors, schedule the
1978 node close to its successors. */
1979 if (pss_not_empty
&& count_succs
>= count_preds
)
1987 /* Now that we've finalized the window, make END an exclusive rather
1988 than an inclusive bound. */
1997 if ((start
>= end
&& step
== 1) || (start
<= end
&& step
== -1))
2000 fprintf (dump_file
, "\nEmpty window: start=%d, end=%d, step=%d\n",
2008 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2009 node currently been scheduled. At the end of the calculation
2010 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2011 U_NODE which are (1) already scheduled in the first/last row of
2012 U_NODE's scheduling window, (2) whose dependence inequality with U
2013 becomes an equality when U is scheduled in this same row, and (3)
2014 whose dependence latency is zero.
2016 The first and last rows are calculated using the following parameters:
2017 START/END rows - The cycles that begins/ends the traversal on the window;
2018 searching for an empty cycle to schedule U_NODE.
2019 STEP - The direction in which we traverse the window.
2020 II - The initiation interval. */
2023 calculate_must_precede_follow (ddg_node_ptr u_node
, int start
, int end
,
2024 int step
, int ii
, sbitmap sched_nodes
,
2025 sbitmap must_precede
, sbitmap must_follow
)
2028 int first_cycle_in_window
, last_cycle_in_window
;
2030 gcc_assert (must_precede
&& must_follow
);
2032 /* Consider the following scheduling window:
2033 {first_cycle_in_window, first_cycle_in_window+1, ...,
2034 last_cycle_in_window}. If step is 1 then the following will be
2035 the order we traverse the window: {start=first_cycle_in_window,
2036 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2037 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2038 end=first_cycle_in_window-1} if step is -1. */
2039 first_cycle_in_window
= (step
== 1) ? start
: end
- step
;
2040 last_cycle_in_window
= (step
== 1) ? end
- step
: start
;
2042 sbitmap_zero (must_precede
);
2043 sbitmap_zero (must_follow
);
2046 fprintf (dump_file
, "\nmust_precede: ");
2048 /* Instead of checking if:
2049 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2050 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2051 first_cycle_in_window)
2053 we use the fact that latency is non-negative:
2054 SCHED_TIME (e->src) - (e->distance * ii) <=
2055 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2056 first_cycle_in_window
2058 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2059 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2060 if (TEST_BIT (sched_nodes
, e
->src
->cuid
)
2061 && ((SCHED_TIME (e
->src
->cuid
) - (e
->distance
* ii
)) ==
2062 first_cycle_in_window
))
2065 fprintf (dump_file
, "%d ", e
->src
->cuid
);
2067 SET_BIT (must_precede
, e
->src
->cuid
);
2071 fprintf (dump_file
, "\nmust_follow: ");
2073 /* Instead of checking if:
2074 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2075 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2076 last_cycle_in_window)
2078 we use the fact that latency is non-negative:
2079 SCHED_TIME (e->dest) + (e->distance * ii) >=
2080 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2081 last_cycle_in_window
2083 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2084 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2085 if (TEST_BIT (sched_nodes
, e
->dest
->cuid
)
2086 && ((SCHED_TIME (e
->dest
->cuid
) + (e
->distance
* ii
)) ==
2087 last_cycle_in_window
))
2090 fprintf (dump_file
, "%d ", e
->dest
->cuid
);
2092 SET_BIT (must_follow
, e
->dest
->cuid
);
2096 fprintf (dump_file
, "\n");
2099 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2100 parameters to decide if that's possible:
2101 PS - The partial schedule.
2102 U - The serial number of U_NODE.
2103 NUM_SPLITS - The number of row splits made so far.
2104 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2105 the first row of the scheduling window)
2106 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2107 last row of the scheduling window) */
2110 try_scheduling_node_in_cycle (partial_schedule_ptr ps
,
2111 int u
, int cycle
, sbitmap sched_nodes
,
2112 int *num_splits
, sbitmap must_precede
,
2113 sbitmap must_follow
)
2118 verify_partial_schedule (ps
, sched_nodes
);
2119 psi
= ps_add_node_check_conflicts (ps
, u
, cycle
, must_precede
, must_follow
);
2122 SCHED_TIME (u
) = cycle
;
2123 SET_BIT (sched_nodes
, u
);
2127 fprintf (dump_file
, "Scheduled w/o split in %d\n", cycle
);
2134 /* This function implements the scheduling algorithm for SMS according to the
2136 static partial_schedule_ptr
2137 sms_schedule_by_order (ddg_ptr g
, int mii
, int maxii
, int *nodes_order
)
2140 int i
, c
, success
, num_splits
= 0;
2141 int flush_and_start_over
= true;
2142 int num_nodes
= g
->num_nodes
;
2143 int start
, end
, step
; /* Place together into one struct? */
2144 sbitmap sched_nodes
= sbitmap_alloc (num_nodes
);
2145 sbitmap must_precede
= sbitmap_alloc (num_nodes
);
2146 sbitmap must_follow
= sbitmap_alloc (num_nodes
);
2147 sbitmap tobe_scheduled
= sbitmap_alloc (num_nodes
);
2149 partial_schedule_ptr ps
= create_partial_schedule (ii
, g
, DFA_HISTORY
);
2151 sbitmap_ones (tobe_scheduled
);
2152 sbitmap_zero (sched_nodes
);
2154 while (flush_and_start_over
&& (ii
< maxii
))
2158 fprintf (dump_file
, "Starting with ii=%d\n", ii
);
2159 flush_and_start_over
= false;
2160 sbitmap_zero (sched_nodes
);
2162 for (i
= 0; i
< num_nodes
; i
++)
2164 int u
= nodes_order
[i
];
2165 ddg_node_ptr u_node
= &ps
->g
->nodes
[u
];
2166 rtx insn
= u_node
->insn
;
2168 if (!NONDEBUG_INSN_P (insn
))
2170 RESET_BIT (tobe_scheduled
, u
);
2174 if (TEST_BIT (sched_nodes
, u
))
2177 /* Try to get non-empty scheduling window. */
2179 if (get_sched_window (ps
, u_node
, sched_nodes
, ii
, &start
,
2183 fprintf (dump_file
, "\nTrying to schedule node %d "
2184 "INSN = %d in (%d .. %d) step %d\n", u
, (INSN_UID
2185 (g
->nodes
[u
].insn
)), start
, end
, step
);
2187 gcc_assert ((step
> 0 && start
< end
)
2188 || (step
< 0 && start
> end
));
2190 calculate_must_precede_follow (u_node
, start
, end
, step
, ii
,
2191 sched_nodes
, must_precede
,
2194 for (c
= start
; c
!= end
; c
+= step
)
2196 sbitmap tmp_precede
, tmp_follow
;
2198 set_must_precede_follow (&tmp_follow
, must_follow
,
2199 &tmp_precede
, must_precede
,
2200 c
, start
, end
, step
);
2202 try_scheduling_node_in_cycle (ps
, u
, c
,
2204 &num_splits
, tmp_precede
,
2210 verify_partial_schedule (ps
, sched_nodes
);
2219 if (num_splits
>= MAX_SPLIT_NUM
)
2222 flush_and_start_over
= true;
2223 verify_partial_schedule (ps
, sched_nodes
);
2224 reset_partial_schedule (ps
, ii
);
2225 verify_partial_schedule (ps
, sched_nodes
);
2230 /* The scheduling window is exclusive of 'end'
2231 whereas compute_split_window() expects an inclusive,
2234 split_row
= compute_split_row (sched_nodes
, start
, end
- 1,
2237 split_row
= compute_split_row (sched_nodes
, end
+ 1, start
,
2240 ps_insert_empty_row (ps
, split_row
, sched_nodes
);
2241 i
--; /* Go back and retry node i. */
2244 fprintf (dump_file
, "num_splits=%d\n", num_splits
);
2247 /* ??? If (success), check register pressure estimates. */
2248 } /* Continue with next node. */
2249 } /* While flush_and_start_over. */
2252 free_partial_schedule (ps
);
2256 gcc_assert (sbitmap_equal (tobe_scheduled
, sched_nodes
));
2258 sbitmap_free (sched_nodes
);
2259 sbitmap_free (must_precede
);
2260 sbitmap_free (must_follow
);
2261 sbitmap_free (tobe_scheduled
);
2266 /* This function inserts a new empty row into PS at the position
2267 according to SPLITROW, keeping all already scheduled instructions
2268 intact and updating their SCHED_TIME and cycle accordingly. */
2270 ps_insert_empty_row (partial_schedule_ptr ps
, int split_row
,
2271 sbitmap sched_nodes
)
2273 ps_insn_ptr crr_insn
;
2274 ps_insn_ptr
*rows_new
;
2276 int new_ii
= ii
+ 1;
2278 int *rows_length_new
;
2280 verify_partial_schedule (ps
, sched_nodes
);
2282 /* We normalize sched_time and rotate ps to have only non-negative sched
2283 times, for simplicity of updating cycles after inserting new row. */
2284 split_row
-= ps
->min_cycle
;
2285 split_row
= SMODULO (split_row
, ii
);
2287 fprintf (dump_file
, "split_row=%d\n", split_row
);
2289 reset_sched_times (ps
, PS_MIN_CYCLE (ps
));
2290 rotate_partial_schedule (ps
, PS_MIN_CYCLE (ps
));
2292 rows_new
= (ps_insn_ptr
*) xcalloc (new_ii
, sizeof (ps_insn_ptr
));
2293 rows_length_new
= (int *) xcalloc (new_ii
, sizeof (int));
2294 for (row
= 0; row
< split_row
; row
++)
2296 rows_new
[row
] = ps
->rows
[row
];
2297 rows_length_new
[row
] = ps
->rows_length
[row
];
2298 ps
->rows
[row
] = NULL
;
2299 for (crr_insn
= rows_new
[row
];
2300 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2302 int u
= crr_insn
->id
;
2303 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
);
2305 SCHED_TIME (u
) = new_time
;
2306 crr_insn
->cycle
= new_time
;
2307 SCHED_ROW (u
) = new_time
% new_ii
;
2308 SCHED_STAGE (u
) = new_time
/ new_ii
;
2313 rows_new
[split_row
] = NULL
;
2315 for (row
= split_row
; row
< ii
; row
++)
2317 rows_new
[row
+ 1] = ps
->rows
[row
];
2318 rows_length_new
[row
+ 1] = ps
->rows_length
[row
];
2319 ps
->rows
[row
] = NULL
;
2320 for (crr_insn
= rows_new
[row
+ 1];
2321 crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2323 int u
= crr_insn
->id
;
2324 int new_time
= SCHED_TIME (u
) + (SCHED_TIME (u
) / ii
) + 1;
2326 SCHED_TIME (u
) = new_time
;
2327 crr_insn
->cycle
= new_time
;
2328 SCHED_ROW (u
) = new_time
% new_ii
;
2329 SCHED_STAGE (u
) = new_time
/ new_ii
;
2334 ps
->min_cycle
= ps
->min_cycle
+ ps
->min_cycle
/ ii
2335 + (SMODULO (ps
->min_cycle
, ii
) >= split_row
? 1 : 0);
2336 ps
->max_cycle
= ps
->max_cycle
+ ps
->max_cycle
/ ii
2337 + (SMODULO (ps
->max_cycle
, ii
) >= split_row
? 1 : 0);
2339 ps
->rows
= rows_new
;
2340 free (ps
->rows_length
);
2341 ps
->rows_length
= rows_length_new
;
2343 gcc_assert (ps
->min_cycle
>= 0);
2345 verify_partial_schedule (ps
, sched_nodes
);
2348 fprintf (dump_file
, "min_cycle=%d, max_cycle=%d\n", ps
->min_cycle
,
2352 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2353 UP which are the boundaries of it's scheduling window; compute using
2354 SCHED_NODES and II a row in the partial schedule that can be split
2355 which will separate a critical predecessor from a critical successor
2356 thereby expanding the window, and return it. */
2358 compute_split_row (sbitmap sched_nodes
, int low
, int up
, int ii
,
2359 ddg_node_ptr u_node
)
2362 int lower
= INT_MIN
, upper
= INT_MAX
;
2367 for (e
= u_node
->in
; e
!= 0; e
= e
->next_in
)
2369 int v
= e
->src
->cuid
;
2371 if (TEST_BIT (sched_nodes
, v
)
2372 && (low
== SCHED_TIME (v
) + e
->latency
- (e
->distance
* ii
)))
2373 if (SCHED_TIME (v
) > lower
)
2376 lower
= SCHED_TIME (v
);
2382 crit_cycle
= SCHED_TIME (crit_pred
) + 1;
2383 return SMODULO (crit_cycle
, ii
);
2386 for (e
= u_node
->out
; e
!= 0; e
= e
->next_out
)
2388 int v
= e
->dest
->cuid
;
2390 if (TEST_BIT (sched_nodes
, v
)
2391 && (up
== SCHED_TIME (v
) - e
->latency
+ (e
->distance
* ii
)))
2392 if (SCHED_TIME (v
) < upper
)
2395 upper
= SCHED_TIME (v
);
2401 crit_cycle
= SCHED_TIME (crit_succ
);
2402 return SMODULO (crit_cycle
, ii
);
2406 fprintf (dump_file
, "Both crit_pred and crit_succ are NULL\n");
2408 return SMODULO ((low
+ up
+ 1) / 2, ii
);
2412 verify_partial_schedule (partial_schedule_ptr ps
, sbitmap sched_nodes
)
2415 ps_insn_ptr crr_insn
;
2417 for (row
= 0; row
< ps
->ii
; row
++)
2421 for (crr_insn
= ps
->rows
[row
]; crr_insn
; crr_insn
= crr_insn
->next_in_row
)
2423 int u
= crr_insn
->id
;
2426 gcc_assert (TEST_BIT (sched_nodes
, u
));
2427 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2428 popcount (sched_nodes) == number of insns in ps. */
2429 gcc_assert (SCHED_TIME (u
) >= ps
->min_cycle
);
2430 gcc_assert (SCHED_TIME (u
) <= ps
->max_cycle
);
2433 gcc_assert (ps
->rows_length
[row
] == length
);
2438 /* This page implements the algorithm for ordering the nodes of a DDG
2439 for modulo scheduling, activated through the
2440 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2442 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2443 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2444 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2445 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2446 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2447 #define DEPTH(x) (ASAP ((x)))
2449 typedef struct node_order_params
* nopa
;
2451 static void order_nodes_of_sccs (ddg_all_sccs_ptr
, int * result
);
2452 static int order_nodes_in_scc (ddg_ptr
, sbitmap
, sbitmap
, int*, int);
2453 static nopa
calculate_order_params (ddg_ptr
, int, int *);
2454 static int find_max_asap (ddg_ptr
, sbitmap
);
2455 static int find_max_hv_min_mob (ddg_ptr
, sbitmap
);
2456 static int find_max_dv_min_mob (ddg_ptr
, sbitmap
);
2458 enum sms_direction
{BOTTOMUP
, TOPDOWN
};
2460 struct node_order_params
2467 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2469 check_nodes_order (int *node_order
, int num_nodes
)
2472 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2477 fprintf (dump_file
, "SMS final nodes order: \n");
2479 for (i
= 0; i
< num_nodes
; i
++)
2481 int u
= node_order
[i
];
2484 fprintf (dump_file
, "%d ", u
);
2485 gcc_assert (u
< num_nodes
&& u
>= 0 && !TEST_BIT (tmp
, u
));
2491 fprintf (dump_file
, "\n");
2496 /* Order the nodes of G for scheduling and pass the result in
2497 NODE_ORDER. Also set aux.count of each node to ASAP.
2498 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2500 sms_order_nodes (ddg_ptr g
, int mii
, int * node_order
, int *pmax_asap
)
2504 ddg_all_sccs_ptr sccs
= create_ddg_all_sccs (g
);
2506 nopa nops
= calculate_order_params (g
, mii
, pmax_asap
);
2509 print_sccs (dump_file
, sccs
, g
);
2511 order_nodes_of_sccs (sccs
, node_order
);
2513 if (sccs
->num_sccs
> 0)
2514 /* First SCC has the largest recurrence_length. */
2515 rec_mii
= sccs
->sccs
[0]->recurrence_length
;
2517 /* Save ASAP before destroying node_order_params. */
2518 for (i
= 0; i
< g
->num_nodes
; i
++)
2520 ddg_node_ptr v
= &g
->nodes
[i
];
2521 v
->aux
.count
= ASAP (v
);
2525 free_ddg_all_sccs (sccs
);
2526 check_nodes_order (node_order
, g
->num_nodes
);
2532 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs
, int * node_order
)
2535 ddg_ptr g
= all_sccs
->ddg
;
2536 int num_nodes
= g
->num_nodes
;
2537 sbitmap prev_sccs
= sbitmap_alloc (num_nodes
);
2538 sbitmap on_path
= sbitmap_alloc (num_nodes
);
2539 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2540 sbitmap ones
= sbitmap_alloc (num_nodes
);
2542 sbitmap_zero (prev_sccs
);
2543 sbitmap_ones (ones
);
2545 /* Perform the node ordering starting from the SCC with the highest recMII.
2546 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2547 for (i
= 0; i
< all_sccs
->num_sccs
; i
++)
2549 ddg_scc_ptr scc
= all_sccs
->sccs
[i
];
2551 /* Add nodes on paths from previous SCCs to the current SCC. */
2552 find_nodes_on_paths (on_path
, g
, prev_sccs
, scc
->nodes
);
2553 sbitmap_a_or_b (tmp
, scc
->nodes
, on_path
);
2555 /* Add nodes on paths from the current SCC to previous SCCs. */
2556 find_nodes_on_paths (on_path
, g
, scc
->nodes
, prev_sccs
);
2557 sbitmap_a_or_b (tmp
, tmp
, on_path
);
2559 /* Remove nodes of previous SCCs from current extended SCC. */
2560 sbitmap_difference (tmp
, tmp
, prev_sccs
);
2562 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2563 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2566 /* Handle the remaining nodes that do not belong to any scc. Each call
2567 to order_nodes_in_scc handles a single connected component. */
2568 while (pos
< g
->num_nodes
)
2570 sbitmap_difference (tmp
, ones
, prev_sccs
);
2571 pos
= order_nodes_in_scc (g
, prev_sccs
, tmp
, node_order
, pos
);
2573 sbitmap_free (prev_sccs
);
2574 sbitmap_free (on_path
);
2576 sbitmap_free (ones
);
2579 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2580 static struct node_order_params
*
2581 calculate_order_params (ddg_ptr g
, int mii ATTRIBUTE_UNUSED
, int *pmax_asap
)
2585 int num_nodes
= g
->num_nodes
;
2587 /* Allocate a place to hold ordering params for each node in the DDG. */
2588 nopa node_order_params_arr
;
2590 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2591 node_order_params_arr
= (nopa
) xcalloc (num_nodes
,
2592 sizeof (struct node_order_params
));
2594 /* Set the aux pointer of each node to point to its order_params structure. */
2595 for (u
= 0; u
< num_nodes
; u
++)
2596 g
->nodes
[u
].aux
.info
= &node_order_params_arr
[u
];
2598 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2599 calculate ASAP, ALAP, mobility, distance, and height for each node
2600 in the dependence (direct acyclic) graph. */
2602 /* We assume that the nodes in the array are in topological order. */
2605 for (u
= 0; u
< num_nodes
; u
++)
2607 ddg_node_ptr u_node
= &g
->nodes
[u
];
2610 for (e
= u_node
->in
; e
; e
= e
->next_in
)
2611 if (e
->distance
== 0)
2612 ASAP (u_node
) = MAX (ASAP (u_node
),
2613 ASAP (e
->src
) + e
->latency
);
2614 max_asap
= MAX (max_asap
, ASAP (u_node
));
2617 for (u
= num_nodes
- 1; u
> -1; u
--)
2619 ddg_node_ptr u_node
= &g
->nodes
[u
];
2621 ALAP (u_node
) = max_asap
;
2622 HEIGHT (u_node
) = 0;
2623 for (e
= u_node
->out
; e
; e
= e
->next_out
)
2624 if (e
->distance
== 0)
2626 ALAP (u_node
) = MIN (ALAP (u_node
),
2627 ALAP (e
->dest
) - e
->latency
);
2628 HEIGHT (u_node
) = MAX (HEIGHT (u_node
),
2629 HEIGHT (e
->dest
) + e
->latency
);
2634 fprintf (dump_file
, "\nOrder params\n");
2635 for (u
= 0; u
< num_nodes
; u
++)
2637 ddg_node_ptr u_node
= &g
->nodes
[u
];
2639 fprintf (dump_file
, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u
,
2640 ASAP (u_node
), ALAP (u_node
), HEIGHT (u_node
));
2644 *pmax_asap
= max_asap
;
2645 return node_order_params_arr
;
2649 find_max_asap (ddg_ptr g
, sbitmap nodes
)
2654 sbitmap_iterator sbi
;
2656 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, u
, sbi
)
2658 ddg_node_ptr u_node
= &g
->nodes
[u
];
2660 if (max_asap
< ASAP (u_node
))
2662 max_asap
= ASAP (u_node
);
2670 find_max_hv_min_mob (ddg_ptr g
, sbitmap nodes
)
2674 int min_mob
= INT_MAX
;
2676 sbitmap_iterator sbi
;
2678 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, u
, sbi
)
2680 ddg_node_ptr u_node
= &g
->nodes
[u
];
2682 if (max_hv
< HEIGHT (u_node
))
2684 max_hv
= HEIGHT (u_node
);
2685 min_mob
= MOB (u_node
);
2688 else if ((max_hv
== HEIGHT (u_node
))
2689 && (min_mob
> MOB (u_node
)))
2691 min_mob
= MOB (u_node
);
2699 find_max_dv_min_mob (ddg_ptr g
, sbitmap nodes
)
2703 int min_mob
= INT_MAX
;
2705 sbitmap_iterator sbi
;
2707 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, u
, sbi
)
2709 ddg_node_ptr u_node
= &g
->nodes
[u
];
2711 if (max_dv
< DEPTH (u_node
))
2713 max_dv
= DEPTH (u_node
);
2714 min_mob
= MOB (u_node
);
2717 else if ((max_dv
== DEPTH (u_node
))
2718 && (min_mob
> MOB (u_node
)))
2720 min_mob
= MOB (u_node
);
2727 /* Places the nodes of SCC into the NODE_ORDER array starting
2728 at position POS, according to the SMS ordering algorithm.
2729 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2730 the NODE_ORDER array, starting from position zero. */
2732 order_nodes_in_scc (ddg_ptr g
, sbitmap nodes_ordered
, sbitmap scc
,
2733 int * node_order
, int pos
)
2735 enum sms_direction dir
;
2736 int num_nodes
= g
->num_nodes
;
2737 sbitmap workset
= sbitmap_alloc (num_nodes
);
2738 sbitmap tmp
= sbitmap_alloc (num_nodes
);
2739 sbitmap zero_bitmap
= sbitmap_alloc (num_nodes
);
2740 sbitmap predecessors
= sbitmap_alloc (num_nodes
);
2741 sbitmap successors
= sbitmap_alloc (num_nodes
);
2743 sbitmap_zero (predecessors
);
2744 find_predecessors (predecessors
, g
, nodes_ordered
);
2746 sbitmap_zero (successors
);
2747 find_successors (successors
, g
, nodes_ordered
);
2750 if (sbitmap_a_and_b_cg (tmp
, predecessors
, scc
))
2752 sbitmap_copy (workset
, tmp
);
2755 else if (sbitmap_a_and_b_cg (tmp
, successors
, scc
))
2757 sbitmap_copy (workset
, tmp
);
2764 sbitmap_zero (workset
);
2765 if ((u
= find_max_asap (g
, scc
)) >= 0)
2766 SET_BIT (workset
, u
);
2770 sbitmap_zero (zero_bitmap
);
2771 while (!sbitmap_equal (workset
, zero_bitmap
))
2774 ddg_node_ptr v_node
;
2775 sbitmap v_node_preds
;
2776 sbitmap v_node_succs
;
2780 while (!sbitmap_equal (workset
, zero_bitmap
))
2782 v
= find_max_hv_min_mob (g
, workset
);
2783 v_node
= &g
->nodes
[v
];
2784 node_order
[pos
++] = v
;
2785 v_node_succs
= NODE_SUCCESSORS (v_node
);
2786 sbitmap_a_and_b (tmp
, v_node_succs
, scc
);
2788 /* Don't consider the already ordered successors again. */
2789 sbitmap_difference (tmp
, tmp
, nodes_ordered
);
2790 sbitmap_a_or_b (workset
, workset
, tmp
);
2791 RESET_BIT (workset
, v
);
2792 SET_BIT (nodes_ordered
, v
);
2795 sbitmap_zero (predecessors
);
2796 find_predecessors (predecessors
, g
, nodes_ordered
);
2797 sbitmap_a_and_b (workset
, predecessors
, scc
);
2801 while (!sbitmap_equal (workset
, zero_bitmap
))
2803 v
= find_max_dv_min_mob (g
, workset
);
2804 v_node
= &g
->nodes
[v
];
2805 node_order
[pos
++] = v
;
2806 v_node_preds
= NODE_PREDECESSORS (v_node
);
2807 sbitmap_a_and_b (tmp
, v_node_preds
, scc
);
2809 /* Don't consider the already ordered predecessors again. */
2810 sbitmap_difference (tmp
, tmp
, nodes_ordered
);
2811 sbitmap_a_or_b (workset
, workset
, tmp
);
2812 RESET_BIT (workset
, v
);
2813 SET_BIT (nodes_ordered
, v
);
2816 sbitmap_zero (successors
);
2817 find_successors (successors
, g
, nodes_ordered
);
2818 sbitmap_a_and_b (workset
, successors
, scc
);
2822 sbitmap_free (workset
);
2823 sbitmap_free (zero_bitmap
);
2824 sbitmap_free (predecessors
);
2825 sbitmap_free (successors
);
2830 /* This page contains functions for manipulating partial-schedules during
2831 modulo scheduling. */
2833 /* Create a partial schedule and allocate a memory to hold II rows. */
2835 static partial_schedule_ptr
2836 create_partial_schedule (int ii
, ddg_ptr g
, int history
)
2838 partial_schedule_ptr ps
= XNEW (struct partial_schedule
);
2839 ps
->rows
= (ps_insn_ptr
*) xcalloc (ii
, sizeof (ps_insn_ptr
));
2840 ps
->rows_length
= (int *) xcalloc (ii
, sizeof (int));
2841 ps
->reg_moves
= NULL
;
2843 ps
->history
= history
;
2844 ps
->min_cycle
= INT_MAX
;
2845 ps
->max_cycle
= INT_MIN
;
2851 /* Free the PS_INSNs in rows array of the given partial schedule.
2852 ??? Consider caching the PS_INSN's. */
2854 free_ps_insns (partial_schedule_ptr ps
)
2858 for (i
= 0; i
< ps
->ii
; i
++)
2862 ps_insn_ptr ps_insn
= ps
->rows
[i
]->next_in_row
;
2865 ps
->rows
[i
] = ps_insn
;
2871 /* Free all the memory allocated to the partial schedule. */
2874 free_partial_schedule (partial_schedule_ptr ps
)
2876 ps_reg_move_info
*move
;
2882 FOR_EACH_VEC_ELT (ps_reg_move_info
, ps
->reg_moves
, i
, move
)
2883 sbitmap_free (move
->uses
);
2884 VEC_free (ps_reg_move_info
, heap
, ps
->reg_moves
);
2888 free (ps
->rows_length
);
2892 /* Clear the rows array with its PS_INSNs, and create a new one with
2896 reset_partial_schedule (partial_schedule_ptr ps
, int new_ii
)
2901 if (new_ii
== ps
->ii
)
2903 ps
->rows
= (ps_insn_ptr
*) xrealloc (ps
->rows
, new_ii
2904 * sizeof (ps_insn_ptr
));
2905 memset (ps
->rows
, 0, new_ii
* sizeof (ps_insn_ptr
));
2906 ps
->rows_length
= (int *) xrealloc (ps
->rows_length
, new_ii
* sizeof (int));
2907 memset (ps
->rows_length
, 0, new_ii
* sizeof (int));
2909 ps
->min_cycle
= INT_MAX
;
2910 ps
->max_cycle
= INT_MIN
;
2913 /* Prints the partial schedule as an ii rows array, for each rows
2914 print the ids of the insns in it. */
2916 print_partial_schedule (partial_schedule_ptr ps
, FILE *dump
)
2920 for (i
= 0; i
< ps
->ii
; i
++)
2922 ps_insn_ptr ps_i
= ps
->rows
[i
];
2924 fprintf (dump
, "\n[ROW %d ]: ", i
);
2927 rtx insn
= ps_rtl_insn (ps
, ps_i
->id
);
2930 fprintf (dump
, "%d (branch), ", INSN_UID (insn
));
2932 fprintf (dump
, "%d, ", INSN_UID (insn
));
2934 ps_i
= ps_i
->next_in_row
;
2939 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2941 create_ps_insn (int id
, int cycle
)
2943 ps_insn_ptr ps_i
= XNEW (struct ps_insn
);
2946 ps_i
->next_in_row
= NULL
;
2947 ps_i
->prev_in_row
= NULL
;
2948 ps_i
->cycle
= cycle
;
2954 /* Removes the given PS_INSN from the partial schedule. */
2956 remove_node_from_ps (partial_schedule_ptr ps
, ps_insn_ptr ps_i
)
2960 gcc_assert (ps
&& ps_i
);
2962 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
2963 if (! ps_i
->prev_in_row
)
2965 gcc_assert (ps_i
== ps
->rows
[row
]);
2966 ps
->rows
[row
] = ps_i
->next_in_row
;
2968 ps
->rows
[row
]->prev_in_row
= NULL
;
2972 ps_i
->prev_in_row
->next_in_row
= ps_i
->next_in_row
;
2973 if (ps_i
->next_in_row
)
2974 ps_i
->next_in_row
->prev_in_row
= ps_i
->prev_in_row
;
2977 ps
->rows_length
[row
] -= 1;
2982 /* Unlike what literature describes for modulo scheduling (which focuses
2983 on VLIW machines) the order of the instructions inside a cycle is
2984 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2985 where the current instruction should go relative to the already
2986 scheduled instructions in the given cycle. Go over these
2987 instructions and find the first possible column to put it in. */
2989 ps_insn_find_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
2990 sbitmap must_precede
, sbitmap must_follow
)
2992 ps_insn_ptr next_ps_i
;
2993 ps_insn_ptr first_must_follow
= NULL
;
2994 ps_insn_ptr last_must_precede
= NULL
;
2995 ps_insn_ptr last_in_row
= NULL
;
3001 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3003 /* Find the first must follow and the last must precede
3004 and insert the node immediately after the must precede
3005 but make sure that it there is no must follow after it. */
3006 for (next_ps_i
= ps
->rows
[row
];
3008 next_ps_i
= next_ps_i
->next_in_row
)
3011 && TEST_BIT (must_follow
, next_ps_i
->id
)
3012 && ! first_must_follow
)
3013 first_must_follow
= next_ps_i
;
3014 if (must_precede
&& TEST_BIT (must_precede
, next_ps_i
->id
))
3016 /* If we have already met a node that must follow, then
3017 there is no possible column. */
3018 if (first_must_follow
)
3021 last_must_precede
= next_ps_i
;
3023 /* The closing branch must be the last in the row. */
3025 && TEST_BIT (must_precede
, next_ps_i
->id
)
3026 && JUMP_P (ps_rtl_insn (ps
, next_ps_i
->id
)))
3029 last_in_row
= next_ps_i
;
3032 /* The closing branch is scheduled as well. Make sure there is no
3033 dependent instruction after it as the branch should be the last
3034 instruction in the row. */
3035 if (JUMP_P (ps_rtl_insn (ps
, ps_i
->id
)))
3037 if (first_must_follow
)
3041 /* Make the branch the last in the row. New instructions
3042 will be inserted at the beginning of the row or after the
3043 last must_precede instruction thus the branch is guaranteed
3044 to remain the last instruction in the row. */
3045 last_in_row
->next_in_row
= ps_i
;
3046 ps_i
->prev_in_row
= last_in_row
;
3047 ps_i
->next_in_row
= NULL
;
3050 ps
->rows
[row
] = ps_i
;
3054 /* Now insert the node after INSERT_AFTER_PSI. */
3056 if (! last_must_precede
)
3058 ps_i
->next_in_row
= ps
->rows
[row
];
3059 ps_i
->prev_in_row
= NULL
;
3060 if (ps_i
->next_in_row
)
3061 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3062 ps
->rows
[row
] = ps_i
;
3066 ps_i
->next_in_row
= last_must_precede
->next_in_row
;
3067 last_must_precede
->next_in_row
= ps_i
;
3068 ps_i
->prev_in_row
= last_must_precede
;
3069 if (ps_i
->next_in_row
)
3070 ps_i
->next_in_row
->prev_in_row
= ps_i
;
3076 /* Advances the PS_INSN one column in its current row; returns false
3077 in failure and true in success. Bit N is set in MUST_FOLLOW if
3078 the node with cuid N must be come after the node pointed to by
3079 PS_I when scheduled in the same cycle. */
3081 ps_insn_advance_column (partial_schedule_ptr ps
, ps_insn_ptr ps_i
,
3082 sbitmap must_follow
)
3084 ps_insn_ptr prev
, next
;
3090 row
= SMODULO (ps_i
->cycle
, ps
->ii
);
3092 if (! ps_i
->next_in_row
)
3095 /* Check if next_in_row is dependent on ps_i, both having same sched
3096 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3097 if (must_follow
&& TEST_BIT (must_follow
, ps_i
->next_in_row
->id
))
3100 /* Advance PS_I over its next_in_row in the doubly linked list. */
3101 prev
= ps_i
->prev_in_row
;
3102 next
= ps_i
->next_in_row
;
3104 if (ps_i
== ps
->rows
[row
])
3105 ps
->rows
[row
] = next
;
3107 ps_i
->next_in_row
= next
->next_in_row
;
3109 if (next
->next_in_row
)
3110 next
->next_in_row
->prev_in_row
= ps_i
;
3112 next
->next_in_row
= ps_i
;
3113 ps_i
->prev_in_row
= next
;
3115 next
->prev_in_row
= prev
;
3117 prev
->next_in_row
= next
;
3122 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3123 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3124 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3125 before/after (respectively) the node pointed to by PS_I when scheduled
3126 in the same cycle. */
3128 add_node_to_ps (partial_schedule_ptr ps
, int id
, int cycle
,
3129 sbitmap must_precede
, sbitmap must_follow
)
3132 int row
= SMODULO (cycle
, ps
->ii
);
3134 if (ps
->rows_length
[row
] >= issue_rate
)
3137 ps_i
= create_ps_insn (id
, cycle
);
3139 /* Finds and inserts PS_I according to MUST_FOLLOW and
3141 if (! ps_insn_find_column (ps
, ps_i
, must_precede
, must_follow
))
3147 ps
->rows_length
[row
] += 1;
3151 /* Advance time one cycle. Assumes DFA is being used. */
3153 advance_one_cycle (void)
3155 if (targetm
.sched
.dfa_pre_cycle_insn
)
3156 state_transition (curr_state
,
3157 targetm
.sched
.dfa_pre_cycle_insn ());
3159 state_transition (curr_state
, NULL
);
3161 if (targetm
.sched
.dfa_post_cycle_insn
)
3162 state_transition (curr_state
,
3163 targetm
.sched
.dfa_post_cycle_insn ());
3168 /* Checks if PS has resource conflicts according to DFA, starting from
3169 FROM cycle to TO cycle; returns true if there are conflicts and false
3170 if there are no conflicts. Assumes DFA is being used. */
3172 ps_has_conflicts (partial_schedule_ptr ps
, int from
, int to
)
3176 state_reset (curr_state
);
3178 for (cycle
= from
; cycle
<= to
; cycle
++)
3180 ps_insn_ptr crr_insn
;
3181 /* Holds the remaining issue slots in the current row. */
3182 int can_issue_more
= issue_rate
;
3184 /* Walk through the DFA for the current row. */
3185 for (crr_insn
= ps
->rows
[SMODULO (cycle
, ps
->ii
)];
3187 crr_insn
= crr_insn
->next_in_row
)
3189 rtx insn
= ps_rtl_insn (ps
, crr_insn
->id
);
3191 if (!NONDEBUG_INSN_P (insn
))
3194 /* Check if there is room for the current insn. */
3195 if (!can_issue_more
|| state_dead_lock_p (curr_state
))
3198 /* Update the DFA state and return with failure if the DFA found
3199 resource conflicts. */
3200 if (state_transition (curr_state
, insn
) >= 0)
3203 if (targetm
.sched
.variable_issue
)
3205 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
3206 insn
, can_issue_more
);
3207 /* A naked CLOBBER or USE generates no instruction, so don't
3208 let them consume issue slots. */
3209 else if (GET_CODE (PATTERN (insn
)) != USE
3210 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3214 /* Advance the DFA to the next cycle. */
3215 advance_one_cycle ();
3220 /* Checks if the given node causes resource conflicts when added to PS at
3221 cycle C. If not the node is added to PS and returned; otherwise zero
3222 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3223 cuid N must be come before/after (respectively) the node pointed to by
3224 PS_I when scheduled in the same cycle. */
3226 ps_add_node_check_conflicts (partial_schedule_ptr ps
, int n
,
3227 int c
, sbitmap must_precede
,
3228 sbitmap must_follow
)
3230 int has_conflicts
= 0;
3233 /* First add the node to the PS, if this succeeds check for
3234 conflicts, trying different issue slots in the same row. */
3235 if (! (ps_i
= add_node_to_ps (ps
, n
, c
, must_precede
, must_follow
)))
3236 return NULL
; /* Failed to insert the node at the given cycle. */
3238 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3240 && ps_has_conflicts (ps
,
3244 /* Try different issue slots to find one that the given node can be
3245 scheduled in without conflicts. */
3246 while (has_conflicts
)
3248 if (! ps_insn_advance_column (ps
, ps_i
, must_follow
))
3250 has_conflicts
= ps_has_conflicts (ps
, c
, c
)
3252 && ps_has_conflicts (ps
,
3259 remove_node_from_ps (ps
, ps_i
);
3263 ps
->min_cycle
= MIN (ps
->min_cycle
, c
);
3264 ps
->max_cycle
= MAX (ps
->max_cycle
, c
);
3268 /* Calculate the stage count of the partial schedule PS. The calculation
3269 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3271 calculate_stage_count (partial_schedule_ptr ps
, int rotation_amount
)
3273 int new_min_cycle
= PS_MIN_CYCLE (ps
) - rotation_amount
;
3274 int new_max_cycle
= PS_MAX_CYCLE (ps
) - rotation_amount
;
3275 int stage_count
= CALC_STAGE_COUNT (-1, new_min_cycle
, ps
->ii
);
3277 /* The calculation of stage count is done adding the number of stages
3278 before cycle zero and after cycle zero. */
3279 stage_count
+= CALC_STAGE_COUNT (new_max_cycle
, 0, ps
->ii
);
3284 /* Rotate the rows of PS such that insns scheduled at time
3285 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3287 rotate_partial_schedule (partial_schedule_ptr ps
, int start_cycle
)
3289 int i
, row
, backward_rotates
;
3290 int last_row
= ps
->ii
- 1;
3292 if (start_cycle
== 0)
3295 backward_rotates
= SMODULO (start_cycle
, ps
->ii
);
3297 /* Revisit later and optimize this into a single loop. */
3298 for (i
= 0; i
< backward_rotates
; i
++)
3300 ps_insn_ptr first_row
= ps
->rows
[0];
3301 int first_row_length
= ps
->rows_length
[0];
3303 for (row
= 0; row
< last_row
; row
++)
3305 ps
->rows
[row
] = ps
->rows
[row
+ 1];
3306 ps
->rows_length
[row
] = ps
->rows_length
[row
+ 1];
3309 ps
->rows
[last_row
] = first_row
;
3310 ps
->rows_length
[last_row
] = first_row_length
;
3313 ps
->max_cycle
-= start_cycle
;
3314 ps
->min_cycle
-= start_cycle
;
3317 #endif /* INSN_SCHEDULING */
3320 gate_handle_sms (void)
3322 return (optimize
> 0 && flag_modulo_sched
);
3326 /* Run instruction scheduler. */
3327 /* Perform SMS module scheduling. */
3329 rest_of_handle_sms (void)
3331 #ifdef INSN_SCHEDULING
3334 /* Collect loop information to be used in SMS. */
3335 cfg_layout_initialize (0);
3338 /* Update the life information, because we add pseudos. */
3339 max_regno
= max_reg_num ();
3341 /* Finalize layout changes. */
3343 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
3344 bb
->aux
= bb
->next_bb
;
3345 free_dominance_info (CDI_DOMINATORS
);
3346 cfg_layout_finalize ();
3347 #endif /* INSN_SCHEDULING */
3351 struct rtl_opt_pass pass_sms
=
3356 gate_handle_sms
, /* gate */
3357 rest_of_handle_sms
, /* execute */
3360 0, /* static_pass_number */
3362 0, /* properties_required */
3363 0, /* properties_provided */
3364 0, /* properties_destroyed */
3365 0, /* todo_flags_start */
3368 | TODO_verify_rtl_sharing
3369 | TODO_ggc_collect
/* todo_flags_finish */