re PR bootstrap/51346 (LTO bootstrap failed with bootstrap-profiled)
[official-gcc.git] / gcc / modulo-sched.c
blob0ea9a4d9a6281a416d3584e365b5955e470607a7
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "cfghooks.h"
43 #include "expr.h"
44 #include "params.h"
45 #include "gcov-io.h"
46 #include "ddg.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "dbgcnt.h"
50 #include "df.h"
52 #ifdef INSN_SCHEDULING
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
78 up).
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
87 SMS works with countable loops (1) whose control part can be easily
88 decoupled from the rest of the loop and (2) whose loop count can
89 be easily adjusted. This is because we peel a constant number of
90 iterations into a prologue and epilogue for which we want to avoid
91 emitting the control part, and a kernel which is to iterate that
92 constant number of iterations less than the original loop. So the
93 control part should be a set of insns clearly identified and having
94 its own iv, not otherwise used in the loop (at-least for now), which
95 initializes a register before the loop to the number of iterations.
96 Currently SMS relies on the do-loop pattern to recognize such loops,
97 where (1) the control part comprises of all insns defining and/or
98 using a certain 'count' register and (2) the loop count can be
99 adjusted by modifying this register prior to the loop.
100 TODO: Rely on cfgloop analysis instead. */
102 /* This page defines partial-schedule structures and functions for
103 modulo scheduling. */
105 typedef struct partial_schedule *partial_schedule_ptr;
106 typedef struct ps_insn *ps_insn_ptr;
108 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
111 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
114 /* Perform signed modulo, always returning a non-negative value. */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
117 /* The number of different iterations the nodes in ps span, assuming
118 the stage boundaries are placed efficiently. */
119 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
120 + 1 + ii - 1) / ii)
121 /* The stage count of ps. */
122 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
124 /* A single instruction in the partial schedule. */
125 struct ps_insn
127 /* Identifies the instruction to be scheduled. Values smaller than
128 the ddg's num_nodes refer directly to ddg nodes. A value of
129 X - num_nodes refers to register move X. */
130 int id;
132 /* The (absolute) cycle in which the PS instruction is scheduled.
133 Same as SCHED_TIME (node). */
134 int cycle;
136 /* The next/prev PS_INSN in the same row. */
137 ps_insn_ptr next_in_row,
138 prev_in_row;
142 /* Information about a register move that has been added to a partial
143 schedule. */
144 struct ps_reg_move_info
146 /* The source of the move is defined by the ps_insn with id DEF.
147 The destination is used by the ps_insns with the ids in USES. */
148 int def;
149 sbitmap uses;
151 /* The original form of USES' instructions used OLD_REG, but they
152 should now use NEW_REG. */
153 rtx old_reg;
154 rtx new_reg;
156 /* The number of consecutive stages that the move occupies. */
157 int num_consecutive_stages;
159 /* An instruction that sets NEW_REG to the correct value. The first
160 move associated with DEF will have an rhs of OLD_REG; later moves
161 use the result of the previous move. */
162 rtx insn;
165 typedef struct ps_reg_move_info ps_reg_move_info;
166 DEF_VEC_O (ps_reg_move_info);
167 DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
169 /* Holds the partial schedule as an array of II rows. Each entry of the
170 array points to a linked list of PS_INSNs, which represents the
171 instructions that are scheduled for that row. */
172 struct partial_schedule
174 int ii; /* Number of rows in the partial schedule. */
175 int history; /* Threshold for conflict checking using DFA. */
177 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
178 ps_insn_ptr *rows;
180 /* All the moves added for this partial schedule. Index X has
181 a ps_insn id of X + g->num_nodes. */
182 VEC (ps_reg_move_info, heap) *reg_moves;
184 /* rows_length[i] holds the number of instructions in the row.
185 It is used only (as an optimization) to back off quickly from
186 trying to schedule a node in a full row; that is, to avoid running
187 through futile DFA state transitions. */
188 int *rows_length;
190 /* The earliest absolute cycle of an insn in the partial schedule. */
191 int min_cycle;
193 /* The latest absolute cycle of an insn in the partial schedule. */
194 int max_cycle;
196 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
198 int stage_count; /* The stage count of the partial schedule. */
202 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
203 static void free_partial_schedule (partial_schedule_ptr);
204 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
205 void print_partial_schedule (partial_schedule_ptr, FILE *);
206 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
207 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
208 int, int, sbitmap, sbitmap);
209 static void rotate_partial_schedule (partial_schedule_ptr, int);
210 void set_row_column_for_ps (partial_schedule_ptr);
211 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
212 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
215 /* This page defines constants and structures for the modulo scheduling
216 driver. */
218 static int sms_order_nodes (ddg_ptr, int, int *, int *);
219 static void set_node_sched_params (ddg_ptr);
220 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
221 static void permute_partial_schedule (partial_schedule_ptr, rtx);
222 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
223 rtx, rtx);
224 static int calculate_stage_count (partial_schedule_ptr, int);
225 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
226 int, int, sbitmap, sbitmap, sbitmap);
227 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
228 sbitmap, int, int *, int *, int *);
229 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
230 sbitmap, int *, sbitmap, sbitmap);
231 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
233 #define NODE_ASAP(node) ((node)->aux.count)
235 #define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
236 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
237 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
238 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
239 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
241 /* The scheduling parameters held for each node. */
242 typedef struct node_sched_params
244 int time; /* The absolute scheduling cycle. */
246 int row; /* Holds time % ii. */
247 int stage; /* Holds time / ii. */
249 /* The column of a node inside the ps. If nodes u, v are on the same row,
250 u will precede v if column (u) < column (v). */
251 int column;
252 } *node_sched_params_ptr;
254 typedef struct node_sched_params node_sched_params;
255 DEF_VEC_O (node_sched_params);
256 DEF_VEC_ALLOC_O (node_sched_params, heap);
258 /* The following three functions are copied from the current scheduler
259 code in order to use sched_analyze() for computing the dependencies.
260 They are used when initializing the sched_info structure. */
261 static const char *
262 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
264 static char tmp[80];
266 sprintf (tmp, "i%4d", INSN_UID (insn));
267 return tmp;
270 static void
271 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
272 regset used ATTRIBUTE_UNUSED)
276 static struct common_sched_info_def sms_common_sched_info;
278 static struct sched_deps_info_def sms_sched_deps_info =
280 compute_jump_reg_dependencies,
281 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
282 NULL,
283 0, 0, 0
286 static struct haifa_sched_info sms_sched_info =
288 NULL,
289 NULL,
290 NULL,
291 NULL,
292 NULL,
293 sms_print_insn,
294 NULL,
295 NULL, /* insn_finishes_block_p */
296 NULL, NULL,
297 NULL, NULL,
298 0, 0,
300 NULL, NULL, NULL, NULL,
301 NULL, NULL,
305 /* Partial schedule instruction ID in PS is a register move. Return
306 information about it. */
307 static struct ps_reg_move_info *
308 ps_reg_move (partial_schedule_ptr ps, int id)
310 gcc_checking_assert (id >= ps->g->num_nodes);
311 return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
314 /* Return the rtl instruction that is being scheduled by partial schedule
315 instruction ID, which belongs to schedule PS. */
316 static rtx
317 ps_rtl_insn (partial_schedule_ptr ps, int id)
319 if (id < ps->g->num_nodes)
320 return ps->g->nodes[id].insn;
321 else
322 return ps_reg_move (ps, id)->insn;
325 /* Partial schedule instruction ID, which belongs to PS, occured in
326 the original (unscheduled) loop. Return the first instruction
327 in the loop that was associated with ps_rtl_insn (PS, ID).
328 If the instruction had some notes before it, this is the first
329 of those notes. */
330 static rtx
331 ps_first_note (partial_schedule_ptr ps, int id)
333 gcc_assert (id < ps->g->num_nodes);
334 return ps->g->nodes[id].first_note;
337 /* Return the number of consecutive stages that are occupied by
338 partial schedule instruction ID in PS. */
339 static int
340 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
342 if (id < ps->g->num_nodes)
343 return 1;
344 else
345 return ps_reg_move (ps, id)->num_consecutive_stages;
348 /* Given HEAD and TAIL which are the first and last insns in a loop;
349 return the register which controls the loop. Return zero if it has
350 more than one occurrence in the loop besides the control part or the
351 do-loop pattern is not of the form we expect. */
352 static rtx
353 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
355 #ifdef HAVE_doloop_end
356 rtx reg, condition, insn, first_insn_not_to_check;
358 if (!JUMP_P (tail))
359 return NULL_RTX;
361 /* TODO: Free SMS's dependence on doloop_condition_get. */
362 condition = doloop_condition_get (tail);
363 if (! condition)
364 return NULL_RTX;
366 if (REG_P (XEXP (condition, 0)))
367 reg = XEXP (condition, 0);
368 else if (GET_CODE (XEXP (condition, 0)) == PLUS
369 && REG_P (XEXP (XEXP (condition, 0), 0)))
370 reg = XEXP (XEXP (condition, 0), 0);
371 else
372 gcc_unreachable ();
374 /* Check that the COUNT_REG has no other occurrences in the loop
375 until the decrement. We assume the control part consists of
376 either a single (parallel) branch-on-count or a (non-parallel)
377 branch immediately preceded by a single (decrement) insn. */
378 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
379 : prev_nondebug_insn (tail));
381 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
382 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
384 if (dump_file)
386 fprintf (dump_file, "SMS count_reg found ");
387 print_rtl_single (dump_file, reg);
388 fprintf (dump_file, " outside control in insn:\n");
389 print_rtl_single (dump_file, insn);
392 return NULL_RTX;
395 return reg;
396 #else
397 return NULL_RTX;
398 #endif
401 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
402 that the number of iterations is a compile-time constant. If so,
403 return the rtx that sets COUNT_REG to a constant, and set COUNT to
404 this constant. Otherwise return 0. */
405 static rtx
406 const_iteration_count (rtx count_reg, basic_block pre_header,
407 HOST_WIDEST_INT * count)
409 rtx insn;
410 rtx head, tail;
412 if (! pre_header)
413 return NULL_RTX;
415 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
417 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
418 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
419 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
421 rtx pat = single_set (insn);
423 if (CONST_INT_P (SET_SRC (pat)))
425 *count = INTVAL (SET_SRC (pat));
426 return insn;
429 return NULL_RTX;
432 return NULL_RTX;
435 /* A very simple resource-based lower bound on the initiation interval.
436 ??? Improve the accuracy of this bound by considering the
437 utilization of various units. */
438 static int
439 res_MII (ddg_ptr g)
441 if (targetm.sched.sms_res_mii)
442 return targetm.sched.sms_res_mii (g);
444 return ((g->num_nodes - g->num_debug) / issue_rate);
448 /* A vector that contains the sched data for each ps_insn. */
449 static VEC (node_sched_params, heap) *node_sched_param_vec;
451 /* Allocate sched_params for each node and initialize it. */
452 static void
453 set_node_sched_params (ddg_ptr g)
455 VEC_truncate (node_sched_params, node_sched_param_vec, 0);
456 VEC_safe_grow_cleared (node_sched_params, heap,
457 node_sched_param_vec, g->num_nodes);
460 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
461 static void
462 extend_node_sched_params (partial_schedule_ptr ps)
464 VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
465 ps->g->num_nodes + VEC_length (ps_reg_move_info,
466 ps->reg_moves));
469 /* Update the sched_params (time, row and stage) for node U using the II,
470 the CYCLE of U and MIN_CYCLE.
471 We're not simply taking the following
472 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
473 because the stages may not be aligned on cycle 0. */
474 static void
475 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
477 int sc_until_cycle_zero;
478 int stage;
480 SCHED_TIME (u) = cycle;
481 SCHED_ROW (u) = SMODULO (cycle, ii);
483 /* The calculation of stage count is done adding the number
484 of stages before cycle zero and after cycle zero. */
485 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
487 if (SCHED_TIME (u) < 0)
489 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
490 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
492 else
494 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
495 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
499 static void
500 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
502 int i;
504 if (! file)
505 return;
506 for (i = 0; i < num_nodes; i++)
508 node_sched_params_ptr nsp = SCHED_PARAMS (i);
510 fprintf (file, "Node = %d; INSN = %d\n", i,
511 INSN_UID (ps_rtl_insn (ps, i)));
512 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
513 fprintf (file, " time = %d:\n", nsp->time);
514 fprintf (file, " stage = %d:\n", nsp->stage);
518 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
519 static void
520 set_columns_for_row (partial_schedule_ptr ps, int row)
522 ps_insn_ptr cur_insn;
523 int column;
525 column = 0;
526 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
527 SCHED_COLUMN (cur_insn->id) = column++;
530 /* Set SCHED_COLUMN for each instruction in PS. */
531 static void
532 set_columns_for_ps (partial_schedule_ptr ps)
534 int row;
536 for (row = 0; row < ps->ii; row++)
537 set_columns_for_row (ps, row);
540 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
541 Its single predecessor has already been scheduled, as has its
542 ddg node successors. (The move may have also another move as its
543 successor, in which case that successor will be scheduled later.)
545 The move is part of a chain that satisfies register dependencies
546 between a producing ddg node and various consuming ddg nodes.
547 If some of these dependencies have a distance of 1 (meaning that
548 the use is upward-exposed) then DISTANCE1_USES is nonnull and
549 contains the set of uses with distance-1 dependencies.
550 DISTANCE1_USES is null otherwise.
552 MUST_FOLLOW is a scratch bitmap that is big enough to hold
553 all current ps_insn ids.
555 Return true on success. */
556 static bool
557 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
558 sbitmap distance1_uses, sbitmap must_follow)
560 unsigned int u;
561 int this_time, this_distance, this_start, this_end, this_latency;
562 int start, end, c, ii;
563 sbitmap_iterator sbi;
564 ps_reg_move_info *move;
565 rtx this_insn;
566 ps_insn_ptr psi;
568 move = ps_reg_move (ps, i_reg_move);
569 ii = ps->ii;
570 if (dump_file)
572 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
573 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
574 PS_MIN_CYCLE (ps));
575 print_rtl_single (dump_file, move->insn);
576 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
577 fprintf (dump_file, "=========== =========== =====\n");
580 start = INT_MIN;
581 end = INT_MAX;
583 /* For dependencies of distance 1 between a producer ddg node A
584 and consumer ddg node B, we have a chain of dependencies:
586 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
588 where Mi is the ith move. For dependencies of distance 0 between
589 a producer ddg node A and consumer ddg node C, we have a chain of
590 dependencies:
592 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
594 where Mi' occupies the same position as Mi but occurs a stage later.
595 We can only schedule each move once, so if we have both types of
596 chain, we model the second as:
598 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
600 First handle the dependencies between the previously-scheduled
601 predecessor and the move. */
602 this_insn = ps_rtl_insn (ps, move->def);
603 this_latency = insn_latency (this_insn, move->insn);
604 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
605 this_time = SCHED_TIME (move->def) - this_distance * ii;
606 this_start = this_time + this_latency;
607 this_end = this_time + ii;
608 if (dump_file)
609 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
610 this_start, this_end, SCHED_TIME (move->def),
611 INSN_UID (this_insn), this_latency, this_distance,
612 INSN_UID (move->insn));
614 if (start < this_start)
615 start = this_start;
616 if (end > this_end)
617 end = this_end;
619 /* Handle the dependencies between the move and previously-scheduled
620 successors. */
621 EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
623 this_insn = ps_rtl_insn (ps, u);
624 this_latency = insn_latency (move->insn, this_insn);
625 if (distance1_uses && !TEST_BIT (distance1_uses, u))
626 this_distance = -1;
627 else
628 this_distance = 0;
629 this_time = SCHED_TIME (u) + this_distance * ii;
630 this_start = this_time - ii;
631 this_end = this_time - this_latency;
632 if (dump_file)
633 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
634 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
635 this_latency, this_distance, INSN_UID (this_insn));
637 if (start < this_start)
638 start = this_start;
639 if (end > this_end)
640 end = this_end;
643 if (dump_file)
645 fprintf (dump_file, "----------- ----------- -----\n");
646 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
649 sbitmap_zero (must_follow);
650 SET_BIT (must_follow, move->def);
652 start = MAX (start, end - (ii - 1));
653 for (c = end; c >= start; c--)
655 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
656 move->uses, must_follow);
657 if (psi)
659 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
660 if (dump_file)
661 fprintf (dump_file, "\nScheduled register move INSN %d at"
662 " time %d, row %d\n\n", INSN_UID (move->insn), c,
663 SCHED_ROW (i_reg_move));
664 return true;
668 if (dump_file)
669 fprintf (dump_file, "\nNo available slot\n\n");
671 return false;
675 Breaking intra-loop register anti-dependences:
676 Each intra-loop register anti-dependence implies a cross-iteration true
677 dependence of distance 1. Therefore, we can remove such false dependencies
678 and figure out if the partial schedule broke them by checking if (for a
679 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
680 if so generate a register move. The number of such moves is equal to:
681 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
682 nreg_moves = ----------------------------------- + 1 - { dependence.
683 ii { 1 if not.
685 static bool
686 schedule_reg_moves (partial_schedule_ptr ps)
688 ddg_ptr g = ps->g;
689 int ii = ps->ii;
690 int i;
692 for (i = 0; i < g->num_nodes; i++)
694 ddg_node_ptr u = &g->nodes[i];
695 ddg_edge_ptr e;
696 int nreg_moves = 0, i_reg_move;
697 rtx prev_reg, old_reg;
698 int first_move;
699 int distances[2];
700 sbitmap must_follow;
701 sbitmap distance1_uses;
702 rtx set = single_set (u->insn);
704 /* Skip instructions that do not set a register. */
705 if ((set && !REG_P (SET_DEST (set))))
706 continue;
708 /* Compute the number of reg_moves needed for u, by looking at life
709 ranges started at u (excluding self-loops). */
710 distances[0] = distances[1] = false;
711 for (e = u->out; e; e = e->next_out)
712 if (e->type == TRUE_DEP && e->dest != e->src)
714 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
715 - SCHED_TIME (e->src->cuid)) / ii;
717 if (e->distance == 1)
718 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
719 - SCHED_TIME (e->src->cuid) + ii) / ii;
721 /* If dest precedes src in the schedule of the kernel, then dest
722 will read before src writes and we can save one reg_copy. */
723 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
724 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
725 nreg_moves4e--;
727 if (nreg_moves4e >= 1)
729 /* !single_set instructions are not supported yet and
730 thus we do not except to encounter them in the loop
731 except from the doloop part. For the latter case
732 we assume no regmoves are generated as the doloop
733 instructions are tied to the branch with an edge. */
734 gcc_assert (set);
735 /* If the instruction contains auto-inc register then
736 validate that the regmov is being generated for the
737 target regsiter rather then the inc'ed register. */
738 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
741 if (nreg_moves4e)
743 gcc_assert (e->distance < 2);
744 distances[e->distance] = true;
746 nreg_moves = MAX (nreg_moves, nreg_moves4e);
749 if (nreg_moves == 0)
750 continue;
752 /* Create NREG_MOVES register moves. */
753 first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
754 VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
755 first_move + nreg_moves);
756 extend_node_sched_params (ps);
758 /* Record the moves associated with this node. */
759 first_move += ps->g->num_nodes;
761 /* Generate each move. */
762 old_reg = prev_reg = SET_DEST (single_set (u->insn));
763 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
765 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
767 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
768 move->uses = sbitmap_alloc (first_move + nreg_moves);
769 move->old_reg = old_reg;
770 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
771 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
772 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
773 sbitmap_zero (move->uses);
775 prev_reg = move->new_reg;
778 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
780 /* Every use of the register defined by node may require a different
781 copy of this register, depending on the time the use is scheduled.
782 Record which uses require which move results. */
783 for (e = u->out; e; e = e->next_out)
784 if (e->type == TRUE_DEP && e->dest != e->src)
786 int dest_copy = (SCHED_TIME (e->dest->cuid)
787 - SCHED_TIME (e->src->cuid)) / ii;
789 if (e->distance == 1)
790 dest_copy = (SCHED_TIME (e->dest->cuid)
791 - SCHED_TIME (e->src->cuid) + ii) / ii;
793 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
794 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
795 dest_copy--;
797 if (dest_copy)
799 ps_reg_move_info *move;
801 move = ps_reg_move (ps, first_move + dest_copy - 1);
802 SET_BIT (move->uses, e->dest->cuid);
803 if (e->distance == 1)
804 SET_BIT (distance1_uses, e->dest->cuid);
808 must_follow = sbitmap_alloc (first_move + nreg_moves);
809 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
810 if (!schedule_reg_move (ps, first_move + i_reg_move,
811 distance1_uses, must_follow))
812 break;
813 sbitmap_free (must_follow);
814 if (distance1_uses)
815 sbitmap_free (distance1_uses);
816 if (i_reg_move < nreg_moves)
817 return false;
819 return true;
822 /* Emit the moves associatied with PS. Apply the substitutions
823 associated with them. */
824 static void
825 apply_reg_moves (partial_schedule_ptr ps)
827 ps_reg_move_info *move;
828 int i;
830 FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
832 unsigned int i_use;
833 sbitmap_iterator sbi;
835 EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
837 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
838 df_insn_rescan (ps->g->nodes[i_use].insn);
843 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
844 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
845 will move to cycle zero. */
846 static void
847 reset_sched_times (partial_schedule_ptr ps, int amount)
849 int row;
850 int ii = ps->ii;
851 ps_insn_ptr crr_insn;
853 for (row = 0; row < ii; row++)
854 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
856 int u = crr_insn->id;
857 int normalized_time = SCHED_TIME (u) - amount;
858 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
860 if (dump_file)
862 /* Print the scheduling times after the rotation. */
863 rtx insn = ps_rtl_insn (ps, u);
865 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
866 "crr_insn->cycle=%d, min_cycle=%d", u,
867 INSN_UID (insn), normalized_time, new_min_cycle);
868 if (JUMP_P (insn))
869 fprintf (dump_file, " (branch)");
870 fprintf (dump_file, "\n");
873 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
874 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
876 crr_insn->cycle = normalized_time;
877 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
881 /* Permute the insns according to their order in PS, from row 0 to
882 row ii-1, and position them right before LAST. This schedules
883 the insns of the loop kernel. */
884 static void
885 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
887 int ii = ps->ii;
888 int row;
889 ps_insn_ptr ps_ij;
891 for (row = 0; row < ii ; row++)
892 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
894 rtx insn = ps_rtl_insn (ps, ps_ij->id);
896 if (PREV_INSN (last) != insn)
898 if (ps_ij->id < ps->g->num_nodes)
899 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
900 PREV_INSN (last));
901 else
902 add_insn_before (insn, last, NULL);
907 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
908 respectively only if cycle C falls on the border of the scheduling
909 window boundaries marked by START and END cycles. STEP is the
910 direction of the window. */
911 static inline void
912 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
913 sbitmap *tmp_precede, sbitmap must_precede, int c,
914 int start, int end, int step)
916 *tmp_precede = NULL;
917 *tmp_follow = NULL;
919 if (c == start)
921 if (step == 1)
922 *tmp_precede = must_precede;
923 else /* step == -1. */
924 *tmp_follow = must_follow;
926 if (c == end - step)
928 if (step == 1)
929 *tmp_follow = must_follow;
930 else /* step == -1. */
931 *tmp_precede = must_precede;
936 /* Return True if the branch can be moved to row ii-1 while
937 normalizing the partial schedule PS to start from cycle zero and thus
938 optimize the SC. Otherwise return False. */
939 static bool
940 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
942 int amount = PS_MIN_CYCLE (ps);
943 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
944 int start, end, step;
945 int ii = ps->ii;
946 bool ok = false;
947 int stage_count, stage_count_curr;
949 /* Compare the SC after normalization and SC after bringing the branch
950 to row ii-1. If they are equal just bail out. */
951 stage_count = calculate_stage_count (ps, amount);
952 stage_count_curr =
953 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
955 if (stage_count == stage_count_curr)
957 if (dump_file)
958 fprintf (dump_file, "SMS SC already optimized.\n");
960 ok = false;
961 goto clear;
964 if (dump_file)
966 fprintf (dump_file, "SMS Trying to optimize branch location\n");
967 fprintf (dump_file, "SMS partial schedule before trial:\n");
968 print_partial_schedule (ps, dump_file);
971 /* First, normalize the partial scheduling. */
972 reset_sched_times (ps, amount);
973 rotate_partial_schedule (ps, amount);
974 if (dump_file)
976 fprintf (dump_file,
977 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
978 ii, stage_count);
979 print_partial_schedule (ps, dump_file);
982 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
984 ok = true;
985 goto clear;
988 sbitmap_ones (sched_nodes);
990 /* Calculate the new placement of the branch. It should be in row
991 ii-1 and fall into it's scheduling window. */
992 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
993 &step, &end) == 0)
995 bool success;
996 ps_insn_ptr next_ps_i;
997 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
998 int row = SMODULO (branch_cycle, ps->ii);
999 int num_splits = 0;
1000 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
1001 int c;
1003 if (dump_file)
1004 fprintf (dump_file, "\nTrying to schedule node %d "
1005 "INSN = %d in (%d .. %d) step %d\n",
1006 g->closing_branch->cuid,
1007 (INSN_UID (g->closing_branch->insn)), start, end, step);
1009 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1010 if (step == 1)
1012 c = start + ii - SMODULO (start, ii) - 1;
1013 gcc_assert (c >= start);
1014 if (c >= end)
1016 ok = false;
1017 if (dump_file)
1018 fprintf (dump_file,
1019 "SMS failed to schedule branch at cycle: %d\n", c);
1020 goto clear;
1023 else
1025 c = start - SMODULO (start, ii) - 1;
1026 gcc_assert (c <= start);
1028 if (c <= end)
1030 if (dump_file)
1031 fprintf (dump_file,
1032 "SMS failed to schedule branch at cycle: %d\n", c);
1033 ok = false;
1034 goto clear;
1038 must_precede = sbitmap_alloc (g->num_nodes);
1039 must_follow = sbitmap_alloc (g->num_nodes);
1041 /* Try to schedule the branch is it's new cycle. */
1042 calculate_must_precede_follow (g->closing_branch, start, end,
1043 step, ii, sched_nodes,
1044 must_precede, must_follow);
1046 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1047 must_precede, c, start, end, step);
1049 /* Find the element in the partial schedule related to the closing
1050 branch so we can remove it from it's current cycle. */
1051 for (next_ps_i = ps->rows[row];
1052 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1053 if (next_ps_i->id == g->closing_branch->cuid)
1054 break;
1056 remove_node_from_ps (ps, next_ps_i);
1057 success =
1058 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1059 sched_nodes, &num_splits,
1060 tmp_precede, tmp_follow);
1061 gcc_assert (num_splits == 0);
1062 if (!success)
1064 if (dump_file)
1065 fprintf (dump_file,
1066 "SMS failed to schedule branch at cycle: %d, "
1067 "bringing it back to cycle %d\n", c, branch_cycle);
1069 /* The branch was failed to be placed in row ii - 1.
1070 Put it back in it's original place in the partial
1071 schedualing. */
1072 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1073 must_precede, branch_cycle, start, end,
1074 step);
1075 success =
1076 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1077 branch_cycle, sched_nodes,
1078 &num_splits, tmp_precede,
1079 tmp_follow);
1080 gcc_assert (success && (num_splits == 0));
1081 ok = false;
1083 else
1085 /* The branch is placed in row ii - 1. */
1086 if (dump_file)
1087 fprintf (dump_file,
1088 "SMS success in moving branch to cycle %d\n", c);
1090 update_node_sched_params (g->closing_branch->cuid, ii, c,
1091 PS_MIN_CYCLE (ps));
1092 ok = true;
1095 free (must_precede);
1096 free (must_follow);
1099 clear:
1100 free (sched_nodes);
1101 return ok;
1104 static void
1105 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1106 int to_stage, rtx count_reg)
1108 int row;
1109 ps_insn_ptr ps_ij;
1111 for (row = 0; row < ps->ii; row++)
1112 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1114 int u = ps_ij->id;
1115 int first_u, last_u;
1116 rtx u_insn;
1118 /* Do not duplicate any insn which refers to count_reg as it
1119 belongs to the control part.
1120 The closing branch is scheduled as well and thus should
1121 be ignored.
1122 TODO: This should be done by analyzing the control part of
1123 the loop. */
1124 u_insn = ps_rtl_insn (ps, u);
1125 if (reg_mentioned_p (count_reg, u_insn)
1126 || JUMP_P (u_insn))
1127 continue;
1129 first_u = SCHED_STAGE (u);
1130 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1131 if (from_stage <= last_u && to_stage >= first_u)
1133 if (u < ps->g->num_nodes)
1134 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1135 else
1136 emit_insn (copy_rtx (PATTERN (u_insn)));
1142 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1143 static void
1144 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1145 rtx count_reg, rtx count_init)
1147 int i;
1148 int last_stage = PS_STAGE_COUNT (ps) - 1;
1149 edge e;
1151 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1152 start_sequence ();
1154 if (!count_init)
1156 /* Generate instructions at the beginning of the prolog to
1157 adjust the loop count by STAGE_COUNT. If loop count is constant
1158 (count_init), this constant is adjusted by STAGE_COUNT in
1159 generate_prolog_epilog function. */
1160 rtx sub_reg = NULL_RTX;
1162 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
1163 count_reg, GEN_INT (last_stage),
1164 count_reg, 1, OPTAB_DIRECT);
1165 gcc_assert (REG_P (sub_reg));
1166 if (REGNO (sub_reg) != REGNO (count_reg))
1167 emit_move_insn (count_reg, sub_reg);
1170 for (i = 0; i < last_stage; i++)
1171 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1173 /* Put the prolog on the entry edge. */
1174 e = loop_preheader_edge (loop);
1175 split_edge_and_insert (e, get_insns ());
1176 if (!flag_resched_modulo_sched)
1177 e->dest->flags |= BB_DISABLE_SCHEDULE;
1179 end_sequence ();
1181 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1182 start_sequence ();
1184 for (i = 0; i < last_stage; i++)
1185 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1187 /* Put the epilogue on the exit edge. */
1188 gcc_assert (single_exit (loop));
1189 e = single_exit (loop);
1190 split_edge_and_insert (e, get_insns ());
1191 if (!flag_resched_modulo_sched)
1192 e->dest->flags |= BB_DISABLE_SCHEDULE;
1194 end_sequence ();
1197 /* Mark LOOP as software pipelined so the later
1198 scheduling passes don't touch it. */
1199 static void
1200 mark_loop_unsched (struct loop *loop)
1202 unsigned i;
1203 basic_block *bbs = get_loop_body (loop);
1205 for (i = 0; i < loop->num_nodes; i++)
1206 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1209 /* Return true if all the BBs of the loop are empty except the
1210 loop header. */
1211 static bool
1212 loop_single_full_bb_p (struct loop *loop)
1214 unsigned i;
1215 basic_block *bbs = get_loop_body (loop);
1217 for (i = 0; i < loop->num_nodes ; i++)
1219 rtx head, tail;
1220 bool empty_bb = true;
1222 if (bbs[i] == loop->header)
1223 continue;
1225 /* Make sure that basic blocks other than the header
1226 have only notes labels or jumps. */
1227 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1228 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1230 if (NOTE_P (head) || LABEL_P (head)
1231 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1232 continue;
1233 empty_bb = false;
1234 break;
1237 if (! empty_bb)
1239 free (bbs);
1240 return false;
1243 free (bbs);
1244 return true;
1247 /* A simple loop from SMS point of view; it is a loop that is composed of
1248 either a single basic block or two BBs - a header and a latch. */
1249 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1250 && (EDGE_COUNT (loop->latch->preds) == 1) \
1251 && (EDGE_COUNT (loop->latch->succs) == 1))
1253 /* Return true if the loop is in its canonical form and false if not.
1254 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1255 static bool
1256 loop_canon_p (struct loop *loop)
1259 if (loop->inner || !loop_outer (loop))
1261 if (dump_file)
1262 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1263 return false;
1266 if (!single_exit (loop))
1268 if (dump_file)
1270 rtx insn = BB_END (loop->header);
1272 fprintf (dump_file, "SMS loop many exits ");
1273 fprintf (dump_file, " %s %d (file, line)\n",
1274 insn_file (insn), insn_line (insn));
1276 return false;
1279 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1281 if (dump_file)
1283 rtx insn = BB_END (loop->header);
1285 fprintf (dump_file, "SMS loop many BBs. ");
1286 fprintf (dump_file, " %s %d (file, line)\n",
1287 insn_file (insn), insn_line (insn));
1289 return false;
1292 return true;
1295 /* If there are more than one entry for the loop,
1296 make it one by splitting the first entry edge and
1297 redirecting the others to the new BB. */
1298 static void
1299 canon_loop (struct loop *loop)
1301 edge e;
1302 edge_iterator i;
1304 /* Avoid annoying special cases of edges going to exit
1305 block. */
1306 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1307 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1308 split_edge (e);
1310 if (loop->latch == loop->header
1311 || EDGE_COUNT (loop->latch->succs) > 1)
1313 FOR_EACH_EDGE (e, i, loop->header->preds)
1314 if (e->src == loop->latch)
1315 break;
1316 split_edge (e);
1320 /* Setup infos. */
1321 static void
1322 setup_sched_infos (void)
1324 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1325 sizeof (sms_common_sched_info));
1326 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1327 common_sched_info = &sms_common_sched_info;
1329 sched_deps_info = &sms_sched_deps_info;
1330 current_sched_info = &sms_sched_info;
1333 /* Probability in % that the sms-ed loop rolls enough so that optimized
1334 version may be entered. Just a guess. */
1335 #define PROB_SMS_ENOUGH_ITERATIONS 80
1337 /* Used to calculate the upper bound of ii. */
1338 #define MAXII_FACTOR 2
1340 /* Main entry point, perform SMS scheduling on the loops of the function
1341 that consist of single basic blocks. */
1342 static void
1343 sms_schedule (void)
1345 rtx insn;
1346 ddg_ptr *g_arr, g;
1347 int * node_order;
1348 int maxii, max_asap;
1349 loop_iterator li;
1350 partial_schedule_ptr ps;
1351 basic_block bb = NULL;
1352 struct loop *loop;
1353 basic_block condition_bb = NULL;
1354 edge latch_edge;
1355 gcov_type trip_count = 0;
1357 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1358 | LOOPS_HAVE_RECORDED_EXITS);
1359 if (number_of_loops () <= 1)
1361 loop_optimizer_finalize ();
1362 return; /* There are no loops to schedule. */
1365 /* Initialize issue_rate. */
1366 if (targetm.sched.issue_rate)
1368 int temp = reload_completed;
1370 reload_completed = 1;
1371 issue_rate = targetm.sched.issue_rate ();
1372 reload_completed = temp;
1374 else
1375 issue_rate = 1;
1377 /* Initialize the scheduler. */
1378 setup_sched_infos ();
1379 haifa_sched_init ();
1381 /* Allocate memory to hold the DDG array one entry for each loop.
1382 We use loop->num as index into this array. */
1383 g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
1385 if (dump_file)
1387 fprintf (dump_file, "\n\nSMS analysis phase\n");
1388 fprintf (dump_file, "===================\n\n");
1391 /* Build DDGs for all the relevant loops and hold them in G_ARR
1392 indexed by the loop index. */
1393 FOR_EACH_LOOP (li, loop, 0)
1395 rtx head, tail;
1396 rtx count_reg;
1398 /* For debugging. */
1399 if (dbg_cnt (sms_sched_loop) == false)
1401 if (dump_file)
1402 fprintf (dump_file, "SMS reached max limit... \n");
1404 break;
1407 if (dump_file)
1409 rtx insn = BB_END (loop->header);
1411 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1412 loop->num, insn_file (insn), insn_line (insn));
1416 if (! loop_canon_p (loop))
1417 continue;
1419 if (! loop_single_full_bb_p (loop))
1421 if (dump_file)
1422 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1423 continue;
1426 bb = loop->header;
1428 get_ebb_head_tail (bb, bb, &head, &tail);
1429 latch_edge = loop_latch_edge (loop);
1430 gcc_assert (single_exit (loop));
1431 if (single_exit (loop)->count)
1432 trip_count = latch_edge->count / single_exit (loop)->count;
1434 /* Perform SMS only on loops that their average count is above threshold. */
1436 if ( latch_edge->count
1437 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1439 if (dump_file)
1441 fprintf (dump_file, " %s %d (file, line)\n",
1442 insn_file (tail), insn_line (tail));
1443 fprintf (dump_file, "SMS single-bb-loop\n");
1444 if (profile_info && flag_branch_probabilities)
1446 fprintf (dump_file, "SMS loop-count ");
1447 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1448 (HOST_WIDEST_INT) bb->count);
1449 fprintf (dump_file, "\n");
1450 fprintf (dump_file, "SMS trip-count ");
1451 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1452 (HOST_WIDEST_INT) trip_count);
1453 fprintf (dump_file, "\n");
1454 fprintf (dump_file, "SMS profile-sum-max ");
1455 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1456 (HOST_WIDEST_INT) profile_info->sum_max);
1457 fprintf (dump_file, "\n");
1460 continue;
1463 /* Make sure this is a doloop. */
1464 if ( !(count_reg = doloop_register_get (head, tail)))
1466 if (dump_file)
1467 fprintf (dump_file, "SMS doloop_register_get failed\n");
1468 continue;
1471 /* Don't handle BBs with calls or barriers
1472 or !single_set with the exception of instructions that include
1473 count_reg---these instructions are part of the control part
1474 that do-loop recognizes.
1475 ??? Should handle insns defining subregs. */
1476 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1478 rtx set;
1480 if (CALL_P (insn)
1481 || BARRIER_P (insn)
1482 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1483 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1484 && !reg_mentioned_p (count_reg, insn))
1485 || (INSN_P (insn) && (set = single_set (insn))
1486 && GET_CODE (SET_DEST (set)) == SUBREG))
1487 break;
1490 if (insn != NEXT_INSN (tail))
1492 if (dump_file)
1494 if (CALL_P (insn))
1495 fprintf (dump_file, "SMS loop-with-call\n");
1496 else if (BARRIER_P (insn))
1497 fprintf (dump_file, "SMS loop-with-barrier\n");
1498 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1499 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1500 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1501 else
1502 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1503 print_rtl_single (dump_file, insn);
1506 continue;
1509 /* Always schedule the closing branch with the rest of the
1510 instructions. The branch is rotated to be in row ii-1 at the
1511 end of the scheduling procedure to make sure it's the last
1512 instruction in the iteration. */
1513 if (! (g = create_ddg (bb, 1)))
1515 if (dump_file)
1516 fprintf (dump_file, "SMS create_ddg failed\n");
1517 continue;
1520 g_arr[loop->num] = g;
1521 if (dump_file)
1522 fprintf (dump_file, "...OK\n");
1525 if (dump_file)
1527 fprintf (dump_file, "\nSMS transformation phase\n");
1528 fprintf (dump_file, "=========================\n\n");
1531 /* We don't want to perform SMS on new loops - created by versioning. */
1532 FOR_EACH_LOOP (li, loop, 0)
1534 rtx head, tail;
1535 rtx count_reg, count_init;
1536 int mii, rec_mii, stage_count, min_cycle;
1537 HOST_WIDEST_INT loop_count = 0;
1538 bool opt_sc_p;
1540 if (! (g = g_arr[loop->num]))
1541 continue;
1543 if (dump_file)
1545 rtx insn = BB_END (loop->header);
1547 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1548 loop->num, insn_file (insn), insn_line (insn));
1550 print_ddg (dump_file, g);
1553 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1555 latch_edge = loop_latch_edge (loop);
1556 gcc_assert (single_exit (loop));
1557 if (single_exit (loop)->count)
1558 trip_count = latch_edge->count / single_exit (loop)->count;
1560 if (dump_file)
1562 fprintf (dump_file, " %s %d (file, line)\n",
1563 insn_file (tail), insn_line (tail));
1564 fprintf (dump_file, "SMS single-bb-loop\n");
1565 if (profile_info && flag_branch_probabilities)
1567 fprintf (dump_file, "SMS loop-count ");
1568 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1569 (HOST_WIDEST_INT) bb->count);
1570 fprintf (dump_file, "\n");
1571 fprintf (dump_file, "SMS profile-sum-max ");
1572 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1573 (HOST_WIDEST_INT) profile_info->sum_max);
1574 fprintf (dump_file, "\n");
1576 fprintf (dump_file, "SMS doloop\n");
1577 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1578 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1579 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1583 /* In case of th loop have doloop register it gets special
1584 handling. */
1585 count_init = NULL_RTX;
1586 if ((count_reg = doloop_register_get (head, tail)))
1588 basic_block pre_header;
1590 pre_header = loop_preheader_edge (loop)->src;
1591 count_init = const_iteration_count (count_reg, pre_header,
1592 &loop_count);
1594 gcc_assert (count_reg);
1596 if (dump_file && count_init)
1598 fprintf (dump_file, "SMS const-doloop ");
1599 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1600 loop_count);
1601 fprintf (dump_file, "\n");
1604 node_order = XNEWVEC (int, g->num_nodes);
1606 mii = 1; /* Need to pass some estimate of mii. */
1607 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1608 mii = MAX (res_MII (g), rec_mii);
1609 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1611 if (dump_file)
1612 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1613 rec_mii, mii, maxii);
1615 for (;;)
1617 set_node_sched_params (g);
1619 stage_count = 0;
1620 opt_sc_p = false;
1621 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1623 if (ps)
1625 /* Try to achieve optimized SC by normalizing the partial
1626 schedule (having the cycles start from cycle zero).
1627 The branch location must be placed in row ii-1 in the
1628 final scheduling. If failed, shift all instructions to
1629 position the branch in row ii-1. */
1630 opt_sc_p = optimize_sc (ps, g);
1631 if (opt_sc_p)
1632 stage_count = calculate_stage_count (ps, 0);
1633 else
1635 /* Bring the branch to cycle ii-1. */
1636 int amount = (SCHED_TIME (g->closing_branch->cuid)
1637 - (ps->ii - 1));
1639 if (dump_file)
1640 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1642 stage_count = calculate_stage_count (ps, amount);
1645 gcc_assert (stage_count >= 1);
1648 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1649 1 means that there is no interleaving between iterations thus
1650 we let the scheduling passes do the job in this case. */
1651 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1652 || (count_init && (loop_count <= stage_count))
1653 || (flag_branch_probabilities && (trip_count <= stage_count)))
1655 if (dump_file)
1657 fprintf (dump_file, "SMS failed... \n");
1658 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1659 " loop-count=", stage_count);
1660 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1661 fprintf (dump_file, ", trip-count=");
1662 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1663 fprintf (dump_file, ")\n");
1665 break;
1668 if (!opt_sc_p)
1670 /* Rotate the partial schedule to have the branch in row ii-1. */
1671 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1673 reset_sched_times (ps, amount);
1674 rotate_partial_schedule (ps, amount);
1677 set_columns_for_ps (ps);
1679 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1680 if (!schedule_reg_moves (ps))
1682 mii = ps->ii + 1;
1683 free_partial_schedule (ps);
1684 continue;
1687 /* Moves that handle incoming values might have been added
1688 to a new first stage. Bump the stage count if so.
1690 ??? Perhaps we could consider rotating the schedule here
1691 instead? */
1692 if (PS_MIN_CYCLE (ps) < min_cycle)
1694 reset_sched_times (ps, 0);
1695 stage_count++;
1698 /* The stage count should now be correct without rotation. */
1699 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1700 PS_STAGE_COUNT (ps) = stage_count;
1702 canon_loop (loop);
1704 if (dump_file)
1706 fprintf (dump_file,
1707 "%s:%d SMS succeeded %d %d (with ii, sc)\n",
1708 insn_file (tail), insn_line (tail), ps->ii, stage_count);
1709 print_partial_schedule (ps, dump_file);
1712 /* case the BCT count is not known , Do loop-versioning */
1713 if (count_reg && ! count_init)
1715 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1716 GEN_INT(stage_count));
1717 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1718 * REG_BR_PROB_BASE) / 100;
1720 loop_version (loop, comp_rtx, &condition_bb,
1721 prob, prob, REG_BR_PROB_BASE - prob,
1722 true);
1725 /* Set new iteration count of loop kernel. */
1726 if (count_reg && count_init)
1727 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1728 - stage_count + 1);
1730 /* Now apply the scheduled kernel to the RTL of the loop. */
1731 permute_partial_schedule (ps, g->closing_branch->first_note);
1733 /* Mark this loop as software pipelined so the later
1734 scheduling passes don't touch it. */
1735 if (! flag_resched_modulo_sched)
1736 mark_loop_unsched (loop);
1738 /* The life-info is not valid any more. */
1739 df_set_bb_dirty (g->bb);
1741 apply_reg_moves (ps);
1742 if (dump_file)
1743 print_node_sched_params (dump_file, g->num_nodes, ps);
1744 /* Generate prolog and epilog. */
1745 generate_prolog_epilog (ps, loop, count_reg, count_init);
1746 break;
1749 free_partial_schedule (ps);
1750 VEC_free (node_sched_params, heap, node_sched_param_vec);
1751 free (node_order);
1752 free_ddg (g);
1755 free (g_arr);
1757 /* Release scheduler data, needed until now because of DFA. */
1758 haifa_sched_finish ();
1759 loop_optimizer_finalize ();
1762 /* The SMS scheduling algorithm itself
1763 -----------------------------------
1764 Input: 'O' an ordered list of insns of a loop.
1765 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1767 'Q' is the empty Set
1768 'PS' is the partial schedule; it holds the currently scheduled nodes with
1769 their cycle/slot.
1770 'PSP' previously scheduled predecessors.
1771 'PSS' previously scheduled successors.
1772 't(u)' the cycle where u is scheduled.
1773 'l(u)' is the latency of u.
1774 'd(v,u)' is the dependence distance from v to u.
1775 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1776 the node ordering phase.
1777 'check_hardware_resources_conflicts(u, PS, c)'
1778 run a trace around cycle/slot through DFA model
1779 to check resource conflicts involving instruction u
1780 at cycle c given the partial schedule PS.
1781 'add_to_partial_schedule_at_time(u, PS, c)'
1782 Add the node/instruction u to the partial schedule
1783 PS at time c.
1784 'calculate_register_pressure(PS)'
1785 Given a schedule of instructions, calculate the register
1786 pressure it implies. One implementation could be the
1787 maximum number of overlapping live ranges.
1788 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1789 registers available in the hardware.
1791 1. II = MII.
1792 2. PS = empty list
1793 3. for each node u in O in pre-computed order
1794 4. if (PSP(u) != Q && PSS(u) == Q) then
1795 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1796 6. start = Early_start; end = Early_start + II - 1; step = 1
1797 11. else if (PSP(u) == Q && PSS(u) != Q) then
1798 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1799 13. start = Late_start; end = Late_start - II + 1; step = -1
1800 14. else if (PSP(u) != Q && PSS(u) != Q) then
1801 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1802 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1803 17. start = Early_start;
1804 18. end = min(Early_start + II - 1 , Late_start);
1805 19. step = 1
1806 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1807 21. start = ASAP(u); end = start + II - 1; step = 1
1808 22. endif
1810 23. success = false
1811 24. for (c = start ; c != end ; c += step)
1812 25. if check_hardware_resources_conflicts(u, PS, c) then
1813 26. add_to_partial_schedule_at_time(u, PS, c)
1814 27. success = true
1815 28. break
1816 29. endif
1817 30. endfor
1818 31. if (success == false) then
1819 32. II = II + 1
1820 33. if (II > maxII) then
1821 34. finish - failed to schedule
1822 35. endif
1823 36. goto 2.
1824 37. endif
1825 38. endfor
1826 39. if (calculate_register_pressure(PS) > maxRP) then
1827 40. goto 32.
1828 41. endif
1829 42. compute epilogue & prologue
1830 43. finish - succeeded to schedule
1832 ??? The algorithm restricts the scheduling window to II cycles.
1833 In rare cases, it may be better to allow windows of II+1 cycles.
1834 The window would then start and end on the same row, but with
1835 different "must precede" and "must follow" requirements. */
1837 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1838 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1839 set to 0 to save compile time. */
1840 #define DFA_HISTORY SMS_DFA_HISTORY
1842 /* A threshold for the number of repeated unsuccessful attempts to insert
1843 an empty row, before we flush the partial schedule and start over. */
1844 #define MAX_SPLIT_NUM 10
1845 /* Given the partial schedule PS, this function calculates and returns the
1846 cycles in which we can schedule the node with the given index I.
1847 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1848 noticed that there are several cases in which we fail to SMS the loop
1849 because the sched window of a node is empty due to tight data-deps. In
1850 such cases we want to unschedule some of the predecessors/successors
1851 until we get non-empty scheduling window. It returns -1 if the
1852 scheduling window is empty and zero otherwise. */
1854 static int
1855 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1856 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1857 int *end_p)
1859 int start, step, end;
1860 int early_start, late_start;
1861 ddg_edge_ptr e;
1862 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1863 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1864 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1865 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1866 int psp_not_empty;
1867 int pss_not_empty;
1868 int count_preds;
1869 int count_succs;
1871 /* 1. compute sched window for u (start, end, step). */
1872 sbitmap_zero (psp);
1873 sbitmap_zero (pss);
1874 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1875 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1877 /* We first compute a forward range (start <= end), then decide whether
1878 to reverse it. */
1879 early_start = INT_MIN;
1880 late_start = INT_MAX;
1881 start = INT_MIN;
1882 end = INT_MAX;
1883 step = 1;
1885 count_preds = 0;
1886 count_succs = 0;
1888 if (dump_file && (psp_not_empty || pss_not_empty))
1890 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1891 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1892 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1893 "start", "early start", "late start", "end", "time");
1894 fprintf (dump_file, "=========== =========== =========== ==========="
1895 " =====\n");
1897 /* Calculate early_start and limit end. Both bounds are inclusive. */
1898 if (psp_not_empty)
1899 for (e = u_node->in; e != 0; e = e->next_in)
1901 int v = e->src->cuid;
1903 if (TEST_BIT (sched_nodes, v))
1905 int p_st = SCHED_TIME (v);
1906 int earliest = p_st + e->latency - (e->distance * ii);
1907 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1909 if (dump_file)
1911 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1912 "", earliest, "", latest, p_st);
1913 print_ddg_edge (dump_file, e);
1914 fprintf (dump_file, "\n");
1917 early_start = MAX (early_start, earliest);
1918 end = MIN (end, latest);
1920 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1921 count_preds++;
1925 /* Calculate late_start and limit start. Both bounds are inclusive. */
1926 if (pss_not_empty)
1927 for (e = u_node->out; e != 0; e = e->next_out)
1929 int v = e->dest->cuid;
1931 if (TEST_BIT (sched_nodes, v))
1933 int s_st = SCHED_TIME (v);
1934 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1935 int latest = s_st - e->latency + (e->distance * ii);
1937 if (dump_file)
1939 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1940 earliest, "", latest, "", s_st);
1941 print_ddg_edge (dump_file, e);
1942 fprintf (dump_file, "\n");
1945 start = MAX (start, earliest);
1946 late_start = MIN (late_start, latest);
1948 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1949 count_succs++;
1953 if (dump_file && (psp_not_empty || pss_not_empty))
1955 fprintf (dump_file, "----------- ----------- ----------- -----------"
1956 " -----\n");
1957 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1958 start, early_start, late_start, end, "",
1959 "(max, max, min, min)");
1962 /* Get a target scheduling window no bigger than ii. */
1963 if (early_start == INT_MIN && late_start == INT_MAX)
1964 early_start = NODE_ASAP (u_node);
1965 else if (early_start == INT_MIN)
1966 early_start = late_start - (ii - 1);
1967 late_start = MIN (late_start, early_start + (ii - 1));
1969 /* Apply memory dependence limits. */
1970 start = MAX (start, early_start);
1971 end = MIN (end, late_start);
1973 if (dump_file && (psp_not_empty || pss_not_empty))
1974 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1975 "", start, end, "", "");
1977 /* If there are at least as many successors as predecessors, schedule the
1978 node close to its successors. */
1979 if (pss_not_empty && count_succs >= count_preds)
1981 int tmp = end;
1982 end = start;
1983 start = tmp;
1984 step = -1;
1987 /* Now that we've finalized the window, make END an exclusive rather
1988 than an inclusive bound. */
1989 end += step;
1991 *start_p = start;
1992 *step_p = step;
1993 *end_p = end;
1994 sbitmap_free (psp);
1995 sbitmap_free (pss);
1997 if ((start >= end && step == 1) || (start <= end && step == -1))
1999 if (dump_file)
2000 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2001 start, end, step);
2002 return -1;
2005 return 0;
2008 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2009 node currently been scheduled. At the end of the calculation
2010 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2011 U_NODE which are (1) already scheduled in the first/last row of
2012 U_NODE's scheduling window, (2) whose dependence inequality with U
2013 becomes an equality when U is scheduled in this same row, and (3)
2014 whose dependence latency is zero.
2016 The first and last rows are calculated using the following parameters:
2017 START/END rows - The cycles that begins/ends the traversal on the window;
2018 searching for an empty cycle to schedule U_NODE.
2019 STEP - The direction in which we traverse the window.
2020 II - The initiation interval. */
2022 static void
2023 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2024 int step, int ii, sbitmap sched_nodes,
2025 sbitmap must_precede, sbitmap must_follow)
2027 ddg_edge_ptr e;
2028 int first_cycle_in_window, last_cycle_in_window;
2030 gcc_assert (must_precede && must_follow);
2032 /* Consider the following scheduling window:
2033 {first_cycle_in_window, first_cycle_in_window+1, ...,
2034 last_cycle_in_window}. If step is 1 then the following will be
2035 the order we traverse the window: {start=first_cycle_in_window,
2036 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2037 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2038 end=first_cycle_in_window-1} if step is -1. */
2039 first_cycle_in_window = (step == 1) ? start : end - step;
2040 last_cycle_in_window = (step == 1) ? end - step : start;
2042 sbitmap_zero (must_precede);
2043 sbitmap_zero (must_follow);
2045 if (dump_file)
2046 fprintf (dump_file, "\nmust_precede: ");
2048 /* Instead of checking if:
2049 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2050 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2051 first_cycle_in_window)
2052 && e->latency == 0
2053 we use the fact that latency is non-negative:
2054 SCHED_TIME (e->src) - (e->distance * ii) <=
2055 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2056 first_cycle_in_window
2057 and check only if
2058 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2059 for (e = u_node->in; e != 0; e = e->next_in)
2060 if (TEST_BIT (sched_nodes, e->src->cuid)
2061 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2062 first_cycle_in_window))
2064 if (dump_file)
2065 fprintf (dump_file, "%d ", e->src->cuid);
2067 SET_BIT (must_precede, e->src->cuid);
2070 if (dump_file)
2071 fprintf (dump_file, "\nmust_follow: ");
2073 /* Instead of checking if:
2074 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2075 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2076 last_cycle_in_window)
2077 && e->latency == 0
2078 we use the fact that latency is non-negative:
2079 SCHED_TIME (e->dest) + (e->distance * ii) >=
2080 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2081 last_cycle_in_window
2082 and check only if
2083 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2084 for (e = u_node->out; e != 0; e = e->next_out)
2085 if (TEST_BIT (sched_nodes, e->dest->cuid)
2086 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2087 last_cycle_in_window))
2089 if (dump_file)
2090 fprintf (dump_file, "%d ", e->dest->cuid);
2092 SET_BIT (must_follow, e->dest->cuid);
2095 if (dump_file)
2096 fprintf (dump_file, "\n");
2099 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2100 parameters to decide if that's possible:
2101 PS - The partial schedule.
2102 U - The serial number of U_NODE.
2103 NUM_SPLITS - The number of row splits made so far.
2104 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2105 the first row of the scheduling window)
2106 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2107 last row of the scheduling window) */
2109 static bool
2110 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2111 int u, int cycle, sbitmap sched_nodes,
2112 int *num_splits, sbitmap must_precede,
2113 sbitmap must_follow)
2115 ps_insn_ptr psi;
2116 bool success = 0;
2118 verify_partial_schedule (ps, sched_nodes);
2119 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2120 if (psi)
2122 SCHED_TIME (u) = cycle;
2123 SET_BIT (sched_nodes, u);
2124 success = 1;
2125 *num_splits = 0;
2126 if (dump_file)
2127 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2131 return success;
2134 /* This function implements the scheduling algorithm for SMS according to the
2135 above algorithm. */
2136 static partial_schedule_ptr
2137 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2139 int ii = mii;
2140 int i, c, success, num_splits = 0;
2141 int flush_and_start_over = true;
2142 int num_nodes = g->num_nodes;
2143 int start, end, step; /* Place together into one struct? */
2144 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2145 sbitmap must_precede = sbitmap_alloc (num_nodes);
2146 sbitmap must_follow = sbitmap_alloc (num_nodes);
2147 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2149 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2151 sbitmap_ones (tobe_scheduled);
2152 sbitmap_zero (sched_nodes);
2154 while (flush_and_start_over && (ii < maxii))
2157 if (dump_file)
2158 fprintf (dump_file, "Starting with ii=%d\n", ii);
2159 flush_and_start_over = false;
2160 sbitmap_zero (sched_nodes);
2162 for (i = 0; i < num_nodes; i++)
2164 int u = nodes_order[i];
2165 ddg_node_ptr u_node = &ps->g->nodes[u];
2166 rtx insn = u_node->insn;
2168 if (!NONDEBUG_INSN_P (insn))
2170 RESET_BIT (tobe_scheduled, u);
2171 continue;
2174 if (TEST_BIT (sched_nodes, u))
2175 continue;
2177 /* Try to get non-empty scheduling window. */
2178 success = 0;
2179 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2180 &step, &end) == 0)
2182 if (dump_file)
2183 fprintf (dump_file, "\nTrying to schedule node %d "
2184 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2185 (g->nodes[u].insn)), start, end, step);
2187 gcc_assert ((step > 0 && start < end)
2188 || (step < 0 && start > end));
2190 calculate_must_precede_follow (u_node, start, end, step, ii,
2191 sched_nodes, must_precede,
2192 must_follow);
2194 for (c = start; c != end; c += step)
2196 sbitmap tmp_precede, tmp_follow;
2198 set_must_precede_follow (&tmp_follow, must_follow,
2199 &tmp_precede, must_precede,
2200 c, start, end, step);
2201 success =
2202 try_scheduling_node_in_cycle (ps, u, c,
2203 sched_nodes,
2204 &num_splits, tmp_precede,
2205 tmp_follow);
2206 if (success)
2207 break;
2210 verify_partial_schedule (ps, sched_nodes);
2212 if (!success)
2214 int split_row;
2216 if (ii++ == maxii)
2217 break;
2219 if (num_splits >= MAX_SPLIT_NUM)
2221 num_splits = 0;
2222 flush_and_start_over = true;
2223 verify_partial_schedule (ps, sched_nodes);
2224 reset_partial_schedule (ps, ii);
2225 verify_partial_schedule (ps, sched_nodes);
2226 break;
2229 num_splits++;
2230 /* The scheduling window is exclusive of 'end'
2231 whereas compute_split_window() expects an inclusive,
2232 ordered range. */
2233 if (step == 1)
2234 split_row = compute_split_row (sched_nodes, start, end - 1,
2235 ps->ii, u_node);
2236 else
2237 split_row = compute_split_row (sched_nodes, end + 1, start,
2238 ps->ii, u_node);
2240 ps_insert_empty_row (ps, split_row, sched_nodes);
2241 i--; /* Go back and retry node i. */
2243 if (dump_file)
2244 fprintf (dump_file, "num_splits=%d\n", num_splits);
2247 /* ??? If (success), check register pressure estimates. */
2248 } /* Continue with next node. */
2249 } /* While flush_and_start_over. */
2250 if (ii >= maxii)
2252 free_partial_schedule (ps);
2253 ps = NULL;
2255 else
2256 gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
2258 sbitmap_free (sched_nodes);
2259 sbitmap_free (must_precede);
2260 sbitmap_free (must_follow);
2261 sbitmap_free (tobe_scheduled);
2263 return ps;
2266 /* This function inserts a new empty row into PS at the position
2267 according to SPLITROW, keeping all already scheduled instructions
2268 intact and updating their SCHED_TIME and cycle accordingly. */
2269 static void
2270 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2271 sbitmap sched_nodes)
2273 ps_insn_ptr crr_insn;
2274 ps_insn_ptr *rows_new;
2275 int ii = ps->ii;
2276 int new_ii = ii + 1;
2277 int row;
2278 int *rows_length_new;
2280 verify_partial_schedule (ps, sched_nodes);
2282 /* We normalize sched_time and rotate ps to have only non-negative sched
2283 times, for simplicity of updating cycles after inserting new row. */
2284 split_row -= ps->min_cycle;
2285 split_row = SMODULO (split_row, ii);
2286 if (dump_file)
2287 fprintf (dump_file, "split_row=%d\n", split_row);
2289 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2290 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2292 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2293 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2294 for (row = 0; row < split_row; row++)
2296 rows_new[row] = ps->rows[row];
2297 rows_length_new[row] = ps->rows_length[row];
2298 ps->rows[row] = NULL;
2299 for (crr_insn = rows_new[row];
2300 crr_insn; crr_insn = crr_insn->next_in_row)
2302 int u = crr_insn->id;
2303 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2305 SCHED_TIME (u) = new_time;
2306 crr_insn->cycle = new_time;
2307 SCHED_ROW (u) = new_time % new_ii;
2308 SCHED_STAGE (u) = new_time / new_ii;
2313 rows_new[split_row] = NULL;
2315 for (row = split_row; row < ii; row++)
2317 rows_new[row + 1] = ps->rows[row];
2318 rows_length_new[row + 1] = ps->rows_length[row];
2319 ps->rows[row] = NULL;
2320 for (crr_insn = rows_new[row + 1];
2321 crr_insn; crr_insn = crr_insn->next_in_row)
2323 int u = crr_insn->id;
2324 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2326 SCHED_TIME (u) = new_time;
2327 crr_insn->cycle = new_time;
2328 SCHED_ROW (u) = new_time % new_ii;
2329 SCHED_STAGE (u) = new_time / new_ii;
2333 /* Updating ps. */
2334 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2335 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2336 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2337 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2338 free (ps->rows);
2339 ps->rows = rows_new;
2340 free (ps->rows_length);
2341 ps->rows_length = rows_length_new;
2342 ps->ii = new_ii;
2343 gcc_assert (ps->min_cycle >= 0);
2345 verify_partial_schedule (ps, sched_nodes);
2347 if (dump_file)
2348 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2349 ps->max_cycle);
2352 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2353 UP which are the boundaries of it's scheduling window; compute using
2354 SCHED_NODES and II a row in the partial schedule that can be split
2355 which will separate a critical predecessor from a critical successor
2356 thereby expanding the window, and return it. */
2357 static int
2358 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2359 ddg_node_ptr u_node)
2361 ddg_edge_ptr e;
2362 int lower = INT_MIN, upper = INT_MAX;
2363 int crit_pred = -1;
2364 int crit_succ = -1;
2365 int crit_cycle;
2367 for (e = u_node->in; e != 0; e = e->next_in)
2369 int v = e->src->cuid;
2371 if (TEST_BIT (sched_nodes, v)
2372 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2373 if (SCHED_TIME (v) > lower)
2375 crit_pred = v;
2376 lower = SCHED_TIME (v);
2380 if (crit_pred >= 0)
2382 crit_cycle = SCHED_TIME (crit_pred) + 1;
2383 return SMODULO (crit_cycle, ii);
2386 for (e = u_node->out; e != 0; e = e->next_out)
2388 int v = e->dest->cuid;
2390 if (TEST_BIT (sched_nodes, v)
2391 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2392 if (SCHED_TIME (v) < upper)
2394 crit_succ = v;
2395 upper = SCHED_TIME (v);
2399 if (crit_succ >= 0)
2401 crit_cycle = SCHED_TIME (crit_succ);
2402 return SMODULO (crit_cycle, ii);
2405 if (dump_file)
2406 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2408 return SMODULO ((low + up + 1) / 2, ii);
2411 static void
2412 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2414 int row;
2415 ps_insn_ptr crr_insn;
2417 for (row = 0; row < ps->ii; row++)
2419 int length = 0;
2421 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2423 int u = crr_insn->id;
2425 length++;
2426 gcc_assert (TEST_BIT (sched_nodes, u));
2427 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2428 popcount (sched_nodes) == number of insns in ps. */
2429 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2430 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2433 gcc_assert (ps->rows_length[row] == length);
2438 /* This page implements the algorithm for ordering the nodes of a DDG
2439 for modulo scheduling, activated through the
2440 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2442 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2443 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2444 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2445 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2446 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2447 #define DEPTH(x) (ASAP ((x)))
2449 typedef struct node_order_params * nopa;
2451 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2452 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2453 static nopa calculate_order_params (ddg_ptr, int, int *);
2454 static int find_max_asap (ddg_ptr, sbitmap);
2455 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2456 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2458 enum sms_direction {BOTTOMUP, TOPDOWN};
2460 struct node_order_params
2462 int asap;
2463 int alap;
2464 int height;
2467 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2468 static void
2469 check_nodes_order (int *node_order, int num_nodes)
2471 int i;
2472 sbitmap tmp = sbitmap_alloc (num_nodes);
2474 sbitmap_zero (tmp);
2476 if (dump_file)
2477 fprintf (dump_file, "SMS final nodes order: \n");
2479 for (i = 0; i < num_nodes; i++)
2481 int u = node_order[i];
2483 if (dump_file)
2484 fprintf (dump_file, "%d ", u);
2485 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
2487 SET_BIT (tmp, u);
2490 if (dump_file)
2491 fprintf (dump_file, "\n");
2493 sbitmap_free (tmp);
2496 /* Order the nodes of G for scheduling and pass the result in
2497 NODE_ORDER. Also set aux.count of each node to ASAP.
2498 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2499 static int
2500 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2502 int i;
2503 int rec_mii = 0;
2504 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2506 nopa nops = calculate_order_params (g, mii, pmax_asap);
2508 if (dump_file)
2509 print_sccs (dump_file, sccs, g);
2511 order_nodes_of_sccs (sccs, node_order);
2513 if (sccs->num_sccs > 0)
2514 /* First SCC has the largest recurrence_length. */
2515 rec_mii = sccs->sccs[0]->recurrence_length;
2517 /* Save ASAP before destroying node_order_params. */
2518 for (i = 0; i < g->num_nodes; i++)
2520 ddg_node_ptr v = &g->nodes[i];
2521 v->aux.count = ASAP (v);
2524 free (nops);
2525 free_ddg_all_sccs (sccs);
2526 check_nodes_order (node_order, g->num_nodes);
2528 return rec_mii;
2531 static void
2532 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2534 int i, pos = 0;
2535 ddg_ptr g = all_sccs->ddg;
2536 int num_nodes = g->num_nodes;
2537 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2538 sbitmap on_path = sbitmap_alloc (num_nodes);
2539 sbitmap tmp = sbitmap_alloc (num_nodes);
2540 sbitmap ones = sbitmap_alloc (num_nodes);
2542 sbitmap_zero (prev_sccs);
2543 sbitmap_ones (ones);
2545 /* Perform the node ordering starting from the SCC with the highest recMII.
2546 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2547 for (i = 0; i < all_sccs->num_sccs; i++)
2549 ddg_scc_ptr scc = all_sccs->sccs[i];
2551 /* Add nodes on paths from previous SCCs to the current SCC. */
2552 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2553 sbitmap_a_or_b (tmp, scc->nodes, on_path);
2555 /* Add nodes on paths from the current SCC to previous SCCs. */
2556 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2557 sbitmap_a_or_b (tmp, tmp, on_path);
2559 /* Remove nodes of previous SCCs from current extended SCC. */
2560 sbitmap_difference (tmp, tmp, prev_sccs);
2562 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2563 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2566 /* Handle the remaining nodes that do not belong to any scc. Each call
2567 to order_nodes_in_scc handles a single connected component. */
2568 while (pos < g->num_nodes)
2570 sbitmap_difference (tmp, ones, prev_sccs);
2571 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2573 sbitmap_free (prev_sccs);
2574 sbitmap_free (on_path);
2575 sbitmap_free (tmp);
2576 sbitmap_free (ones);
2579 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2580 static struct node_order_params *
2581 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2583 int u;
2584 int max_asap;
2585 int num_nodes = g->num_nodes;
2586 ddg_edge_ptr e;
2587 /* Allocate a place to hold ordering params for each node in the DDG. */
2588 nopa node_order_params_arr;
2590 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2591 node_order_params_arr = (nopa) xcalloc (num_nodes,
2592 sizeof (struct node_order_params));
2594 /* Set the aux pointer of each node to point to its order_params structure. */
2595 for (u = 0; u < num_nodes; u++)
2596 g->nodes[u].aux.info = &node_order_params_arr[u];
2598 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2599 calculate ASAP, ALAP, mobility, distance, and height for each node
2600 in the dependence (direct acyclic) graph. */
2602 /* We assume that the nodes in the array are in topological order. */
2604 max_asap = 0;
2605 for (u = 0; u < num_nodes; u++)
2607 ddg_node_ptr u_node = &g->nodes[u];
2609 ASAP (u_node) = 0;
2610 for (e = u_node->in; e; e = e->next_in)
2611 if (e->distance == 0)
2612 ASAP (u_node) = MAX (ASAP (u_node),
2613 ASAP (e->src) + e->latency);
2614 max_asap = MAX (max_asap, ASAP (u_node));
2617 for (u = num_nodes - 1; u > -1; u--)
2619 ddg_node_ptr u_node = &g->nodes[u];
2621 ALAP (u_node) = max_asap;
2622 HEIGHT (u_node) = 0;
2623 for (e = u_node->out; e; e = e->next_out)
2624 if (e->distance == 0)
2626 ALAP (u_node) = MIN (ALAP (u_node),
2627 ALAP (e->dest) - e->latency);
2628 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2629 HEIGHT (e->dest) + e->latency);
2632 if (dump_file)
2634 fprintf (dump_file, "\nOrder params\n");
2635 for (u = 0; u < num_nodes; u++)
2637 ddg_node_ptr u_node = &g->nodes[u];
2639 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2640 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2644 *pmax_asap = max_asap;
2645 return node_order_params_arr;
2648 static int
2649 find_max_asap (ddg_ptr g, sbitmap nodes)
2651 unsigned int u = 0;
2652 int max_asap = -1;
2653 int result = -1;
2654 sbitmap_iterator sbi;
2656 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2658 ddg_node_ptr u_node = &g->nodes[u];
2660 if (max_asap < ASAP (u_node))
2662 max_asap = ASAP (u_node);
2663 result = u;
2666 return result;
2669 static int
2670 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2672 unsigned int u = 0;
2673 int max_hv = -1;
2674 int min_mob = INT_MAX;
2675 int result = -1;
2676 sbitmap_iterator sbi;
2678 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2680 ddg_node_ptr u_node = &g->nodes[u];
2682 if (max_hv < HEIGHT (u_node))
2684 max_hv = HEIGHT (u_node);
2685 min_mob = MOB (u_node);
2686 result = u;
2688 else if ((max_hv == HEIGHT (u_node))
2689 && (min_mob > MOB (u_node)))
2691 min_mob = MOB (u_node);
2692 result = u;
2695 return result;
2698 static int
2699 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2701 unsigned int u = 0;
2702 int max_dv = -1;
2703 int min_mob = INT_MAX;
2704 int result = -1;
2705 sbitmap_iterator sbi;
2707 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2709 ddg_node_ptr u_node = &g->nodes[u];
2711 if (max_dv < DEPTH (u_node))
2713 max_dv = DEPTH (u_node);
2714 min_mob = MOB (u_node);
2715 result = u;
2717 else if ((max_dv == DEPTH (u_node))
2718 && (min_mob > MOB (u_node)))
2720 min_mob = MOB (u_node);
2721 result = u;
2724 return result;
2727 /* Places the nodes of SCC into the NODE_ORDER array starting
2728 at position POS, according to the SMS ordering algorithm.
2729 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2730 the NODE_ORDER array, starting from position zero. */
2731 static int
2732 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2733 int * node_order, int pos)
2735 enum sms_direction dir;
2736 int num_nodes = g->num_nodes;
2737 sbitmap workset = sbitmap_alloc (num_nodes);
2738 sbitmap tmp = sbitmap_alloc (num_nodes);
2739 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2740 sbitmap predecessors = sbitmap_alloc (num_nodes);
2741 sbitmap successors = sbitmap_alloc (num_nodes);
2743 sbitmap_zero (predecessors);
2744 find_predecessors (predecessors, g, nodes_ordered);
2746 sbitmap_zero (successors);
2747 find_successors (successors, g, nodes_ordered);
2749 sbitmap_zero (tmp);
2750 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
2752 sbitmap_copy (workset, tmp);
2753 dir = BOTTOMUP;
2755 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
2757 sbitmap_copy (workset, tmp);
2758 dir = TOPDOWN;
2760 else
2762 int u;
2764 sbitmap_zero (workset);
2765 if ((u = find_max_asap (g, scc)) >= 0)
2766 SET_BIT (workset, u);
2767 dir = BOTTOMUP;
2770 sbitmap_zero (zero_bitmap);
2771 while (!sbitmap_equal (workset, zero_bitmap))
2773 int v;
2774 ddg_node_ptr v_node;
2775 sbitmap v_node_preds;
2776 sbitmap v_node_succs;
2778 if (dir == TOPDOWN)
2780 while (!sbitmap_equal (workset, zero_bitmap))
2782 v = find_max_hv_min_mob (g, workset);
2783 v_node = &g->nodes[v];
2784 node_order[pos++] = v;
2785 v_node_succs = NODE_SUCCESSORS (v_node);
2786 sbitmap_a_and_b (tmp, v_node_succs, scc);
2788 /* Don't consider the already ordered successors again. */
2789 sbitmap_difference (tmp, tmp, nodes_ordered);
2790 sbitmap_a_or_b (workset, workset, tmp);
2791 RESET_BIT (workset, v);
2792 SET_BIT (nodes_ordered, v);
2794 dir = BOTTOMUP;
2795 sbitmap_zero (predecessors);
2796 find_predecessors (predecessors, g, nodes_ordered);
2797 sbitmap_a_and_b (workset, predecessors, scc);
2799 else
2801 while (!sbitmap_equal (workset, zero_bitmap))
2803 v = find_max_dv_min_mob (g, workset);
2804 v_node = &g->nodes[v];
2805 node_order[pos++] = v;
2806 v_node_preds = NODE_PREDECESSORS (v_node);
2807 sbitmap_a_and_b (tmp, v_node_preds, scc);
2809 /* Don't consider the already ordered predecessors again. */
2810 sbitmap_difference (tmp, tmp, nodes_ordered);
2811 sbitmap_a_or_b (workset, workset, tmp);
2812 RESET_BIT (workset, v);
2813 SET_BIT (nodes_ordered, v);
2815 dir = TOPDOWN;
2816 sbitmap_zero (successors);
2817 find_successors (successors, g, nodes_ordered);
2818 sbitmap_a_and_b (workset, successors, scc);
2821 sbitmap_free (tmp);
2822 sbitmap_free (workset);
2823 sbitmap_free (zero_bitmap);
2824 sbitmap_free (predecessors);
2825 sbitmap_free (successors);
2826 return pos;
2830 /* This page contains functions for manipulating partial-schedules during
2831 modulo scheduling. */
2833 /* Create a partial schedule and allocate a memory to hold II rows. */
2835 static partial_schedule_ptr
2836 create_partial_schedule (int ii, ddg_ptr g, int history)
2838 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2839 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2840 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2841 ps->reg_moves = NULL;
2842 ps->ii = ii;
2843 ps->history = history;
2844 ps->min_cycle = INT_MAX;
2845 ps->max_cycle = INT_MIN;
2846 ps->g = g;
2848 return ps;
2851 /* Free the PS_INSNs in rows array of the given partial schedule.
2852 ??? Consider caching the PS_INSN's. */
2853 static void
2854 free_ps_insns (partial_schedule_ptr ps)
2856 int i;
2858 for (i = 0; i < ps->ii; i++)
2860 while (ps->rows[i])
2862 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2864 free (ps->rows[i]);
2865 ps->rows[i] = ps_insn;
2867 ps->rows[i] = NULL;
2871 /* Free all the memory allocated to the partial schedule. */
2873 static void
2874 free_partial_schedule (partial_schedule_ptr ps)
2876 ps_reg_move_info *move;
2877 unsigned int i;
2879 if (!ps)
2880 return;
2882 FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
2883 sbitmap_free (move->uses);
2884 VEC_free (ps_reg_move_info, heap, ps->reg_moves);
2886 free_ps_insns (ps);
2887 free (ps->rows);
2888 free (ps->rows_length);
2889 free (ps);
2892 /* Clear the rows array with its PS_INSNs, and create a new one with
2893 NEW_II rows. */
2895 static void
2896 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2898 if (!ps)
2899 return;
2900 free_ps_insns (ps);
2901 if (new_ii == ps->ii)
2902 return;
2903 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2904 * sizeof (ps_insn_ptr));
2905 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2906 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2907 memset (ps->rows_length, 0, new_ii * sizeof (int));
2908 ps->ii = new_ii;
2909 ps->min_cycle = INT_MAX;
2910 ps->max_cycle = INT_MIN;
2913 /* Prints the partial schedule as an ii rows array, for each rows
2914 print the ids of the insns in it. */
2915 void
2916 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2918 int i;
2920 for (i = 0; i < ps->ii; i++)
2922 ps_insn_ptr ps_i = ps->rows[i];
2924 fprintf (dump, "\n[ROW %d ]: ", i);
2925 while (ps_i)
2927 rtx insn = ps_rtl_insn (ps, ps_i->id);
2929 if (JUMP_P (insn))
2930 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2931 else
2932 fprintf (dump, "%d, ", INSN_UID (insn));
2934 ps_i = ps_i->next_in_row;
2939 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2940 static ps_insn_ptr
2941 create_ps_insn (int id, int cycle)
2943 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2945 ps_i->id = id;
2946 ps_i->next_in_row = NULL;
2947 ps_i->prev_in_row = NULL;
2948 ps_i->cycle = cycle;
2950 return ps_i;
2954 /* Removes the given PS_INSN from the partial schedule. */
2955 static void
2956 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2958 int row;
2960 gcc_assert (ps && ps_i);
2962 row = SMODULO (ps_i->cycle, ps->ii);
2963 if (! ps_i->prev_in_row)
2965 gcc_assert (ps_i == ps->rows[row]);
2966 ps->rows[row] = ps_i->next_in_row;
2967 if (ps->rows[row])
2968 ps->rows[row]->prev_in_row = NULL;
2970 else
2972 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2973 if (ps_i->next_in_row)
2974 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2977 ps->rows_length[row] -= 1;
2978 free (ps_i);
2979 return;
2982 /* Unlike what literature describes for modulo scheduling (which focuses
2983 on VLIW machines) the order of the instructions inside a cycle is
2984 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2985 where the current instruction should go relative to the already
2986 scheduled instructions in the given cycle. Go over these
2987 instructions and find the first possible column to put it in. */
2988 static bool
2989 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2990 sbitmap must_precede, sbitmap must_follow)
2992 ps_insn_ptr next_ps_i;
2993 ps_insn_ptr first_must_follow = NULL;
2994 ps_insn_ptr last_must_precede = NULL;
2995 ps_insn_ptr last_in_row = NULL;
2996 int row;
2998 if (! ps_i)
2999 return false;
3001 row = SMODULO (ps_i->cycle, ps->ii);
3003 /* Find the first must follow and the last must precede
3004 and insert the node immediately after the must precede
3005 but make sure that it there is no must follow after it. */
3006 for (next_ps_i = ps->rows[row];
3007 next_ps_i;
3008 next_ps_i = next_ps_i->next_in_row)
3010 if (must_follow
3011 && TEST_BIT (must_follow, next_ps_i->id)
3012 && ! first_must_follow)
3013 first_must_follow = next_ps_i;
3014 if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
3016 /* If we have already met a node that must follow, then
3017 there is no possible column. */
3018 if (first_must_follow)
3019 return false;
3020 else
3021 last_must_precede = next_ps_i;
3023 /* The closing branch must be the last in the row. */
3024 if (must_precede
3025 && TEST_BIT (must_precede, next_ps_i->id)
3026 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3027 return false;
3029 last_in_row = next_ps_i;
3032 /* The closing branch is scheduled as well. Make sure there is no
3033 dependent instruction after it as the branch should be the last
3034 instruction in the row. */
3035 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3037 if (first_must_follow)
3038 return false;
3039 if (last_in_row)
3041 /* Make the branch the last in the row. New instructions
3042 will be inserted at the beginning of the row or after the
3043 last must_precede instruction thus the branch is guaranteed
3044 to remain the last instruction in the row. */
3045 last_in_row->next_in_row = ps_i;
3046 ps_i->prev_in_row = last_in_row;
3047 ps_i->next_in_row = NULL;
3049 else
3050 ps->rows[row] = ps_i;
3051 return true;
3054 /* Now insert the node after INSERT_AFTER_PSI. */
3056 if (! last_must_precede)
3058 ps_i->next_in_row = ps->rows[row];
3059 ps_i->prev_in_row = NULL;
3060 if (ps_i->next_in_row)
3061 ps_i->next_in_row->prev_in_row = ps_i;
3062 ps->rows[row] = ps_i;
3064 else
3066 ps_i->next_in_row = last_must_precede->next_in_row;
3067 last_must_precede->next_in_row = ps_i;
3068 ps_i->prev_in_row = last_must_precede;
3069 if (ps_i->next_in_row)
3070 ps_i->next_in_row->prev_in_row = ps_i;
3073 return true;
3076 /* Advances the PS_INSN one column in its current row; returns false
3077 in failure and true in success. Bit N is set in MUST_FOLLOW if
3078 the node with cuid N must be come after the node pointed to by
3079 PS_I when scheduled in the same cycle. */
3080 static int
3081 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3082 sbitmap must_follow)
3084 ps_insn_ptr prev, next;
3085 int row;
3087 if (!ps || !ps_i)
3088 return false;
3090 row = SMODULO (ps_i->cycle, ps->ii);
3092 if (! ps_i->next_in_row)
3093 return false;
3095 /* Check if next_in_row is dependent on ps_i, both having same sched
3096 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3097 if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
3098 return false;
3100 /* Advance PS_I over its next_in_row in the doubly linked list. */
3101 prev = ps_i->prev_in_row;
3102 next = ps_i->next_in_row;
3104 if (ps_i == ps->rows[row])
3105 ps->rows[row] = next;
3107 ps_i->next_in_row = next->next_in_row;
3109 if (next->next_in_row)
3110 next->next_in_row->prev_in_row = ps_i;
3112 next->next_in_row = ps_i;
3113 ps_i->prev_in_row = next;
3115 next->prev_in_row = prev;
3116 if (prev)
3117 prev->next_in_row = next;
3119 return true;
3122 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3123 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3124 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3125 before/after (respectively) the node pointed to by PS_I when scheduled
3126 in the same cycle. */
3127 static ps_insn_ptr
3128 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3129 sbitmap must_precede, sbitmap must_follow)
3131 ps_insn_ptr ps_i;
3132 int row = SMODULO (cycle, ps->ii);
3134 if (ps->rows_length[row] >= issue_rate)
3135 return NULL;
3137 ps_i = create_ps_insn (id, cycle);
3139 /* Finds and inserts PS_I according to MUST_FOLLOW and
3140 MUST_PRECEDE. */
3141 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3143 free (ps_i);
3144 return NULL;
3147 ps->rows_length[row] += 1;
3148 return ps_i;
3151 /* Advance time one cycle. Assumes DFA is being used. */
3152 static void
3153 advance_one_cycle (void)
3155 if (targetm.sched.dfa_pre_cycle_insn)
3156 state_transition (curr_state,
3157 targetm.sched.dfa_pre_cycle_insn ());
3159 state_transition (curr_state, NULL);
3161 if (targetm.sched.dfa_post_cycle_insn)
3162 state_transition (curr_state,
3163 targetm.sched.dfa_post_cycle_insn ());
3168 /* Checks if PS has resource conflicts according to DFA, starting from
3169 FROM cycle to TO cycle; returns true if there are conflicts and false
3170 if there are no conflicts. Assumes DFA is being used. */
3171 static int
3172 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3174 int cycle;
3176 state_reset (curr_state);
3178 for (cycle = from; cycle <= to; cycle++)
3180 ps_insn_ptr crr_insn;
3181 /* Holds the remaining issue slots in the current row. */
3182 int can_issue_more = issue_rate;
3184 /* Walk through the DFA for the current row. */
3185 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3186 crr_insn;
3187 crr_insn = crr_insn->next_in_row)
3189 rtx insn = ps_rtl_insn (ps, crr_insn->id);
3191 if (!NONDEBUG_INSN_P (insn))
3192 continue;
3194 /* Check if there is room for the current insn. */
3195 if (!can_issue_more || state_dead_lock_p (curr_state))
3196 return true;
3198 /* Update the DFA state and return with failure if the DFA found
3199 resource conflicts. */
3200 if (state_transition (curr_state, insn) >= 0)
3201 return true;
3203 if (targetm.sched.variable_issue)
3204 can_issue_more =
3205 targetm.sched.variable_issue (sched_dump, sched_verbose,
3206 insn, can_issue_more);
3207 /* A naked CLOBBER or USE generates no instruction, so don't
3208 let them consume issue slots. */
3209 else if (GET_CODE (PATTERN (insn)) != USE
3210 && GET_CODE (PATTERN (insn)) != CLOBBER)
3211 can_issue_more--;
3214 /* Advance the DFA to the next cycle. */
3215 advance_one_cycle ();
3217 return false;
3220 /* Checks if the given node causes resource conflicts when added to PS at
3221 cycle C. If not the node is added to PS and returned; otherwise zero
3222 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3223 cuid N must be come before/after (respectively) the node pointed to by
3224 PS_I when scheduled in the same cycle. */
3225 ps_insn_ptr
3226 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3227 int c, sbitmap must_precede,
3228 sbitmap must_follow)
3230 int has_conflicts = 0;
3231 ps_insn_ptr ps_i;
3233 /* First add the node to the PS, if this succeeds check for
3234 conflicts, trying different issue slots in the same row. */
3235 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3236 return NULL; /* Failed to insert the node at the given cycle. */
3238 has_conflicts = ps_has_conflicts (ps, c, c)
3239 || (ps->history > 0
3240 && ps_has_conflicts (ps,
3241 c - ps->history,
3242 c + ps->history));
3244 /* Try different issue slots to find one that the given node can be
3245 scheduled in without conflicts. */
3246 while (has_conflicts)
3248 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3249 break;
3250 has_conflicts = ps_has_conflicts (ps, c, c)
3251 || (ps->history > 0
3252 && ps_has_conflicts (ps,
3253 c - ps->history,
3254 c + ps->history));
3257 if (has_conflicts)
3259 remove_node_from_ps (ps, ps_i);
3260 return NULL;
3263 ps->min_cycle = MIN (ps->min_cycle, c);
3264 ps->max_cycle = MAX (ps->max_cycle, c);
3265 return ps_i;
3268 /* Calculate the stage count of the partial schedule PS. The calculation
3269 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3271 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3273 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3274 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3275 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3277 /* The calculation of stage count is done adding the number of stages
3278 before cycle zero and after cycle zero. */
3279 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3281 return stage_count;
3284 /* Rotate the rows of PS such that insns scheduled at time
3285 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3286 void
3287 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3289 int i, row, backward_rotates;
3290 int last_row = ps->ii - 1;
3292 if (start_cycle == 0)
3293 return;
3295 backward_rotates = SMODULO (start_cycle, ps->ii);
3297 /* Revisit later and optimize this into a single loop. */
3298 for (i = 0; i < backward_rotates; i++)
3300 ps_insn_ptr first_row = ps->rows[0];
3301 int first_row_length = ps->rows_length[0];
3303 for (row = 0; row < last_row; row++)
3305 ps->rows[row] = ps->rows[row + 1];
3306 ps->rows_length[row] = ps->rows_length[row + 1];
3309 ps->rows[last_row] = first_row;
3310 ps->rows_length[last_row] = first_row_length;
3313 ps->max_cycle -= start_cycle;
3314 ps->min_cycle -= start_cycle;
3317 #endif /* INSN_SCHEDULING */
3319 static bool
3320 gate_handle_sms (void)
3322 return (optimize > 0 && flag_modulo_sched);
3326 /* Run instruction scheduler. */
3327 /* Perform SMS module scheduling. */
3328 static unsigned int
3329 rest_of_handle_sms (void)
3331 #ifdef INSN_SCHEDULING
3332 basic_block bb;
3334 /* Collect loop information to be used in SMS. */
3335 cfg_layout_initialize (0);
3336 sms_schedule ();
3338 /* Update the life information, because we add pseudos. */
3339 max_regno = max_reg_num ();
3341 /* Finalize layout changes. */
3342 FOR_EACH_BB (bb)
3343 if (bb->next_bb != EXIT_BLOCK_PTR)
3344 bb->aux = bb->next_bb;
3345 free_dominance_info (CDI_DOMINATORS);
3346 cfg_layout_finalize ();
3347 #endif /* INSN_SCHEDULING */
3348 return 0;
3351 struct rtl_opt_pass pass_sms =
3354 RTL_PASS,
3355 "sms", /* name */
3356 gate_handle_sms, /* gate */
3357 rest_of_handle_sms, /* execute */
3358 NULL, /* sub */
3359 NULL, /* next */
3360 0, /* static_pass_number */
3361 TV_SMS, /* tv_id */
3362 0, /* properties_required */
3363 0, /* properties_provided */
3364 0, /* properties_destroyed */
3365 0, /* todo_flags_start */
3366 TODO_df_finish
3367 | TODO_verify_flow
3368 | TODO_verify_rtl_sharing
3369 | TODO_ggc_collect /* todo_flags_finish */