add auto_vec
[official-gcc.git] / gcc / cfgloop.c
blob09029c9ac857c1fecb88f6e6abc28fa472a4f594
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "gimple-iterator.h"
33 #include "gimple-ssa.h"
34 #include "pointer-set.h"
35 #include "ggc.h"
36 #include "dumpfile.h"
38 static void flow_loops_cfg_dump (FILE *);
40 /* Dump loop related CFG information. */
42 static void
43 flow_loops_cfg_dump (FILE *file)
45 basic_block bb;
47 if (!file)
48 return;
50 FOR_EACH_BB (bb)
52 edge succ;
53 edge_iterator ei;
55 fprintf (file, ";; %d succs { ", bb->index);
56 FOR_EACH_EDGE (succ, ei, bb->succs)
57 fprintf (file, "%d ", succ->dest->index);
58 fprintf (file, "}\n");
62 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64 bool
65 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 unsigned odepth = loop_depth (outer);
69 return (loop_depth (loop) > odepth
70 && (*loop->superloops)[odepth] == outer);
73 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
74 loops within LOOP. */
76 struct loop *
77 superloop_at_depth (struct loop *loop, unsigned depth)
79 unsigned ldepth = loop_depth (loop);
81 gcc_assert (depth <= ldepth);
83 if (depth == ldepth)
84 return loop;
86 return (*loop->superloops)[depth];
89 /* Returns the list of the latch edges of LOOP. */
91 static vec<edge>
92 get_loop_latch_edges (const struct loop *loop)
94 edge_iterator ei;
95 edge e;
96 vec<edge> ret = vNULL;
98 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
101 ret.safe_push (e);
104 return ret;
107 /* Dump the loop information specified by LOOP to the stream FILE
108 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110 void
111 flow_loop_dump (const struct loop *loop, FILE *file,
112 void (*loop_dump_aux) (const struct loop *, FILE *, int),
113 int verbose)
115 basic_block *bbs;
116 unsigned i;
117 vec<edge> latches;
118 edge e;
120 if (! loop || ! loop->header)
121 return;
123 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125 fprintf (file, ";; header %d, ", loop->header->index);
126 if (loop->latch)
127 fprintf (file, "latch %d\n", loop->latch->index);
128 else
130 fprintf (file, "multiple latches:");
131 latches = get_loop_latch_edges (loop);
132 FOR_EACH_VEC_ELT (latches, i, e)
133 fprintf (file, " %d", e->src->index);
134 latches.release ();
135 fprintf (file, "\n");
138 fprintf (file, ";; depth %d, outer %ld\n",
139 loop_depth (loop), (long) (loop_outer (loop)
140 ? loop_outer (loop)->num : -1));
142 fprintf (file, ";; nodes:");
143 bbs = get_loop_body (loop);
144 for (i = 0; i < loop->num_nodes; i++)
145 fprintf (file, " %d", bbs[i]->index);
146 free (bbs);
147 fprintf (file, "\n");
149 if (loop_dump_aux)
150 loop_dump_aux (loop, file, verbose);
153 /* Dump the loop information about loops to the stream FILE,
154 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156 void
157 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 struct loop *loop;
161 if (!current_loops || ! file)
162 return;
164 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
166 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
168 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 if (verbose)
172 flow_loops_cfg_dump (file);
175 /* Free data allocated for LOOP. */
177 void
178 flow_loop_free (struct loop *loop)
180 struct loop_exit *exit, *next;
182 vec_free (loop->superloops);
184 /* Break the list of the loop exit records. They will be freed when the
185 corresponding edge is rescanned or removed, and this avoids
186 accessing the (already released) head of the list stored in the
187 loop structure. */
188 for (exit = loop->exits->next; exit != loop->exits; exit = next)
190 next = exit->next;
191 exit->next = exit;
192 exit->prev = exit;
195 ggc_free (loop->exits);
196 ggc_free (loop);
199 /* Free all the memory allocated for LOOPS. */
201 void
202 flow_loops_free (struct loops *loops)
204 if (loops->larray)
206 unsigned i;
207 loop_p loop;
209 /* Free the loop descriptors. */
210 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
212 if (!loop)
213 continue;
215 flow_loop_free (loop);
218 vec_free (loops->larray);
222 /* Find the nodes contained within the LOOP with header HEADER.
223 Return the number of nodes within the loop. */
226 flow_loop_nodes_find (basic_block header, struct loop *loop)
228 vec<basic_block> stack = vNULL;
229 int num_nodes = 1;
230 edge latch;
231 edge_iterator latch_ei;
233 header->loop_father = loop;
235 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
237 if (latch->src->loop_father == loop
238 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
239 continue;
241 num_nodes++;
242 stack.safe_push (latch->src);
243 latch->src->loop_father = loop;
245 while (!stack.is_empty ())
247 basic_block node;
248 edge e;
249 edge_iterator ei;
251 node = stack.pop ();
253 FOR_EACH_EDGE (e, ei, node->preds)
255 basic_block ancestor = e->src;
257 if (ancestor->loop_father != loop)
259 ancestor->loop_father = loop;
260 num_nodes++;
261 stack.safe_push (ancestor);
266 stack.release ();
268 return num_nodes;
271 /* Records the vector of superloops of the loop LOOP, whose immediate
272 superloop is FATHER. */
274 static void
275 establish_preds (struct loop *loop, struct loop *father)
277 loop_p ploop;
278 unsigned depth = loop_depth (father) + 1;
279 unsigned i;
281 loop->superloops = 0;
282 vec_alloc (loop->superloops, depth);
283 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
284 loop->superloops->quick_push (ploop);
285 loop->superloops->quick_push (father);
287 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 establish_preds (ploop, loop);
291 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
292 added loop. If LOOP has some children, take care of that their
293 pred field will be initialized correctly. */
295 void
296 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
298 loop->next = father->inner;
299 father->inner = loop;
301 establish_preds (loop, father);
304 /* Remove LOOP from the loop hierarchy tree. */
306 void
307 flow_loop_tree_node_remove (struct loop *loop)
309 struct loop *prev, *father;
311 father = loop_outer (loop);
313 /* Remove loop from the list of sons. */
314 if (father->inner == loop)
315 father->inner = loop->next;
316 else
318 for (prev = father->inner; prev->next != loop; prev = prev->next)
319 continue;
320 prev->next = loop->next;
323 loop->superloops = NULL;
326 /* Allocates and returns new loop structure. */
328 struct loop *
329 alloc_loop (void)
331 struct loop *loop = ggc_alloc_cleared_loop ();
333 loop->exits = ggc_alloc_cleared_loop_exit ();
334 loop->exits->next = loop->exits->prev = loop->exits;
335 loop->can_be_parallel = false;
337 return loop;
340 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
341 (including the root of the loop tree). */
343 void
344 init_loops_structure (struct function *fn,
345 struct loops *loops, unsigned num_loops)
347 struct loop *root;
349 memset (loops, 0, sizeof *loops);
350 vec_alloc (loops->larray, num_loops);
352 /* Dummy loop containing whole function. */
353 root = alloc_loop ();
354 root->num_nodes = n_basic_blocks_for_fn (fn);
355 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
356 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
357 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
358 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
360 loops->larray->quick_push (root);
361 loops->tree_root = root;
364 /* Returns whether HEADER is a loop header. */
366 bool
367 bb_loop_header_p (basic_block header)
369 edge_iterator ei;
370 edge e;
372 /* If we have an abnormal predecessor, do not consider the
373 loop (not worth the problems). */
374 if (bb_has_abnormal_pred (header))
375 return false;
377 /* Look for back edges where a predecessor is dominated
378 by this block. A natural loop has a single entry
379 node (header) that dominates all the nodes in the
380 loop. It also has single back edge to the header
381 from a latch node. */
382 FOR_EACH_EDGE (e, ei, header->preds)
384 basic_block latch = e->src;
385 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
386 && dominated_by_p (CDI_DOMINATORS, latch, header))
387 return true;
390 return false;
393 /* Find all the natural loops in the function and save in LOOPS structure and
394 recalculate loop_father information in basic block structures.
395 If LOOPS is non-NULL then the loop structures for already recorded loops
396 will be re-used and their number will not change. We assume that no
397 stale loops exist in LOOPS.
398 When LOOPS is NULL it is allocated and re-built from scratch.
399 Return the built LOOPS structure. */
401 struct loops *
402 flow_loops_find (struct loops *loops)
404 bool from_scratch = (loops == NULL);
405 int *rc_order;
406 int b;
407 unsigned i;
409 /* Ensure that the dominators are computed. */
410 calculate_dominance_info (CDI_DOMINATORS);
412 if (!loops)
414 loops = ggc_alloc_cleared_loops ();
415 init_loops_structure (cfun, loops, 1);
418 /* Ensure that loop exits were released. */
419 gcc_assert (loops->exits == NULL);
421 /* Taking care of this degenerate case makes the rest of
422 this code simpler. */
423 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
424 return loops;
426 /* The root loop node contains all basic-blocks. */
427 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
429 /* Compute depth first search order of the CFG so that outer
430 natural loops will be found before inner natural loops. */
431 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
432 pre_and_rev_post_order_compute (NULL, rc_order, false);
434 /* Gather all loop headers in reverse completion order and allocate
435 loop structures for loops that are not already present. */
436 auto_vec<loop_p> larray (loops->larray->length ());
437 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
439 basic_block header = BASIC_BLOCK (rc_order[b]);
440 if (bb_loop_header_p (header))
442 struct loop *loop;
444 /* The current active loop tree has valid loop-fathers for
445 header blocks. */
446 if (!from_scratch
447 && header->loop_father->header == header)
449 loop = header->loop_father;
450 /* If we found an existing loop remove it from the
451 loop tree. It is going to be inserted again
452 below. */
453 flow_loop_tree_node_remove (loop);
455 else
457 /* Otherwise allocate a new loop structure for the loop. */
458 loop = alloc_loop ();
459 /* ??? We could re-use unused loop slots here. */
460 loop->num = loops->larray->length ();
461 vec_safe_push (loops->larray, loop);
462 loop->header = header;
464 if (!from_scratch
465 && dump_file && (dump_flags & TDF_DETAILS))
466 fprintf (dump_file, "flow_loops_find: discovered new "
467 "loop %d with header %d\n",
468 loop->num, header->index);
470 /* Reset latch, we recompute it below. */
471 loop->latch = NULL;
472 larray.safe_push (loop);
475 /* Make blocks part of the loop root node at start. */
476 header->loop_father = loops->tree_root;
479 free (rc_order);
481 /* Now iterate over the loops found, insert them into the loop tree
482 and assign basic-block ownership. */
483 for (i = 0; i < larray.length (); ++i)
485 struct loop *loop = larray[i];
486 basic_block header = loop->header;
487 edge_iterator ei;
488 edge e;
490 flow_loop_tree_node_add (header->loop_father, loop);
491 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
493 /* Look for the latch for this header block, if it has just a
494 single one. */
495 FOR_EACH_EDGE (e, ei, header->preds)
497 basic_block latch = e->src;
499 if (flow_bb_inside_loop_p (loop, latch))
501 if (loop->latch != NULL)
503 /* More than one latch edge. */
504 loop->latch = NULL;
505 break;
507 loop->latch = latch;
512 return loops;
515 /* Ratio of frequencies of edges so that one of more latch edges is
516 considered to belong to inner loop with same header. */
517 #define HEAVY_EDGE_RATIO 8
519 /* Minimum number of samples for that we apply
520 find_subloop_latch_edge_by_profile heuristics. */
521 #define HEAVY_EDGE_MIN_SAMPLES 10
523 /* If the profile info is available, finds an edge in LATCHES that much more
524 frequent than the remaining edges. Returns such an edge, or NULL if we do
525 not find one.
527 We do not use guessed profile here, only the measured one. The guessed
528 profile is usually too flat and unreliable for this (and it is mostly based
529 on the loop structure of the program, so it does not make much sense to
530 derive the loop structure from it). */
532 static edge
533 find_subloop_latch_edge_by_profile (vec<edge> latches)
535 unsigned i;
536 edge e, me = NULL;
537 gcov_type mcount = 0, tcount = 0;
539 FOR_EACH_VEC_ELT (latches, i, e)
541 if (e->count > mcount)
543 me = e;
544 mcount = e->count;
546 tcount += e->count;
549 if (tcount < HEAVY_EDGE_MIN_SAMPLES
550 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
551 return NULL;
553 if (dump_file)
554 fprintf (dump_file,
555 "Found latch edge %d -> %d using profile information.\n",
556 me->src->index, me->dest->index);
557 return me;
560 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
561 on the structure of induction variables. Returns this edge, or NULL if we
562 do not find any.
564 We are quite conservative, and look just for an obvious simple innermost
565 loop (which is the case where we would lose the most performance by not
566 disambiguating the loop). More precisely, we look for the following
567 situation: The source of the chosen latch edge dominates sources of all
568 the other latch edges. Additionally, the header does not contain a phi node
569 such that the argument from the chosen edge is equal to the argument from
570 another edge. */
572 static edge
573 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
575 edge e, latch = latches[0];
576 unsigned i;
577 gimple phi;
578 gimple_stmt_iterator psi;
579 tree lop;
580 basic_block bb;
582 /* Find the candidate for the latch edge. */
583 for (i = 1; latches.iterate (i, &e); i++)
584 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
585 latch = e;
587 /* Verify that it dominates all the latch edges. */
588 FOR_EACH_VEC_ELT (latches, i, e)
589 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
590 return NULL;
592 /* Check for a phi node that would deny that this is a latch edge of
593 a subloop. */
594 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
596 phi = gsi_stmt (psi);
597 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
599 /* Ignore the values that are not changed inside the subloop. */
600 if (TREE_CODE (lop) != SSA_NAME
601 || SSA_NAME_DEF_STMT (lop) == phi)
602 continue;
603 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
604 if (!bb || !flow_bb_inside_loop_p (loop, bb))
605 continue;
607 FOR_EACH_VEC_ELT (latches, i, e)
608 if (e != latch
609 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
610 return NULL;
613 if (dump_file)
614 fprintf (dump_file,
615 "Found latch edge %d -> %d using iv structure.\n",
616 latch->src->index, latch->dest->index);
617 return latch;
620 /* If we can determine that one of the several latch edges of LOOP behaves
621 as a latch edge of a separate subloop, returns this edge. Otherwise
622 returns NULL. */
624 static edge
625 find_subloop_latch_edge (struct loop *loop)
627 vec<edge> latches = get_loop_latch_edges (loop);
628 edge latch = NULL;
630 if (latches.length () > 1)
632 latch = find_subloop_latch_edge_by_profile (latches);
634 if (!latch
635 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
636 should use cfghook for this, but it is hard to imagine it would
637 be useful elsewhere. */
638 && current_ir_type () == IR_GIMPLE)
639 latch = find_subloop_latch_edge_by_ivs (loop, latches);
642 latches.release ();
643 return latch;
646 /* Callback for make_forwarder_block. Returns true if the edge E is marked
647 in the set MFB_REIS_SET. */
649 static struct pointer_set_t *mfb_reis_set;
650 static bool
651 mfb_redirect_edges_in_set (edge e)
653 return pointer_set_contains (mfb_reis_set, e);
656 /* Creates a subloop of LOOP with latch edge LATCH. */
658 static void
659 form_subloop (struct loop *loop, edge latch)
661 edge_iterator ei;
662 edge e, new_entry;
663 struct loop *new_loop;
665 mfb_reis_set = pointer_set_create ();
666 FOR_EACH_EDGE (e, ei, loop->header->preds)
668 if (e != latch)
669 pointer_set_insert (mfb_reis_set, e);
671 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
672 NULL);
673 pointer_set_destroy (mfb_reis_set);
675 loop->header = new_entry->src;
677 /* Find the blocks and subloops that belong to the new loop, and add it to
678 the appropriate place in the loop tree. */
679 new_loop = alloc_loop ();
680 new_loop->header = new_entry->dest;
681 new_loop->latch = latch->src;
682 add_loop (new_loop, loop);
685 /* Make all the latch edges of LOOP to go to a single forwarder block --
686 a new latch of LOOP. */
688 static void
689 merge_latch_edges (struct loop *loop)
691 vec<edge> latches = get_loop_latch_edges (loop);
692 edge latch, e;
693 unsigned i;
695 gcc_assert (latches.length () > 0);
697 if (latches.length () == 1)
698 loop->latch = latches[0]->src;
699 else
701 if (dump_file)
702 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
704 mfb_reis_set = pointer_set_create ();
705 FOR_EACH_VEC_ELT (latches, i, e)
706 pointer_set_insert (mfb_reis_set, e);
707 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
708 NULL);
709 pointer_set_destroy (mfb_reis_set);
711 loop->header = latch->dest;
712 loop->latch = latch->src;
715 latches.release ();
718 /* LOOP may have several latch edges. Transform it into (possibly several)
719 loops with single latch edge. */
721 static void
722 disambiguate_multiple_latches (struct loop *loop)
724 edge e;
726 /* We eliminate the multiple latches by splitting the header to the forwarder
727 block F and the rest R, and redirecting the edges. There are two cases:
729 1) If there is a latch edge E that corresponds to a subloop (we guess
730 that based on profile -- if it is taken much more often than the
731 remaining edges; and on trees, using the information about induction
732 variables of the loops), we redirect E to R, all the remaining edges to
733 F, then rescan the loops and try again for the outer loop.
734 2) If there is no such edge, we redirect all latch edges to F, and the
735 entry edges to R, thus making F the single latch of the loop. */
737 if (dump_file)
738 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
739 loop->num);
741 /* During latch merging, we may need to redirect the entry edges to a new
742 block. This would cause problems if the entry edge was the one from the
743 entry block. To avoid having to handle this case specially, split
744 such entry edge. */
745 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
746 if (e)
747 split_edge (e);
749 while (1)
751 e = find_subloop_latch_edge (loop);
752 if (!e)
753 break;
755 form_subloop (loop, e);
758 merge_latch_edges (loop);
761 /* Split loops with multiple latch edges. */
763 void
764 disambiguate_loops_with_multiple_latches (void)
766 struct loop *loop;
768 FOR_EACH_LOOP (loop, 0)
770 if (!loop->latch)
771 disambiguate_multiple_latches (loop);
775 /* Return nonzero if basic block BB belongs to LOOP. */
776 bool
777 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
779 struct loop *source_loop;
781 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
782 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
783 return 0;
785 source_loop = bb->loop_father;
786 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
789 /* Enumeration predicate for get_loop_body_with_size. */
790 static bool
791 glb_enum_p (const_basic_block bb, const void *glb_loop)
793 const struct loop *const loop = (const struct loop *) glb_loop;
794 return (bb != loop->header
795 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
798 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
799 order against direction of edges from latch. Specially, if
800 header != latch, latch is the 1-st block. LOOP cannot be the fake
801 loop tree root, and its size must be at most MAX_SIZE. The blocks
802 in the LOOP body are stored to BODY, and the size of the LOOP is
803 returned. */
805 unsigned
806 get_loop_body_with_size (const struct loop *loop, basic_block *body,
807 unsigned max_size)
809 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
810 body, max_size, loop);
813 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
814 order against direction of edges from latch. Specially, if
815 header != latch, latch is the 1-st block. */
817 basic_block *
818 get_loop_body (const struct loop *loop)
820 basic_block *body, bb;
821 unsigned tv = 0;
823 gcc_assert (loop->num_nodes);
825 body = XNEWVEC (basic_block, loop->num_nodes);
827 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
829 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
830 special-case the fake loop that contains the whole function. */
831 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
832 body[tv++] = loop->header;
833 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
834 FOR_EACH_BB (bb)
835 body[tv++] = bb;
837 else
838 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
840 gcc_assert (tv == loop->num_nodes);
841 return body;
844 /* Fills dominance descendants inside LOOP of the basic block BB into
845 array TOVISIT from index *TV. */
847 static void
848 fill_sons_in_loop (const struct loop *loop, basic_block bb,
849 basic_block *tovisit, int *tv)
851 basic_block son, postpone = NULL;
853 tovisit[(*tv)++] = bb;
854 for (son = first_dom_son (CDI_DOMINATORS, bb);
855 son;
856 son = next_dom_son (CDI_DOMINATORS, son))
858 if (!flow_bb_inside_loop_p (loop, son))
859 continue;
861 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
863 postpone = son;
864 continue;
866 fill_sons_in_loop (loop, son, tovisit, tv);
869 if (postpone)
870 fill_sons_in_loop (loop, postpone, tovisit, tv);
873 /* Gets body of a LOOP (that must be different from the outermost loop)
874 sorted by dominance relation. Additionally, if a basic block s dominates
875 the latch, then only blocks dominated by s are be after it. */
877 basic_block *
878 get_loop_body_in_dom_order (const struct loop *loop)
880 basic_block *tovisit;
881 int tv;
883 gcc_assert (loop->num_nodes);
885 tovisit = XNEWVEC (basic_block, loop->num_nodes);
887 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
889 tv = 0;
890 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
892 gcc_assert (tv == (int) loop->num_nodes);
894 return tovisit;
897 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
899 basic_block *
900 get_loop_body_in_custom_order (const struct loop *loop,
901 int (*bb_comparator) (const void *, const void *))
903 basic_block *bbs = get_loop_body (loop);
905 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
907 return bbs;
910 /* Get body of a LOOP in breadth first sort order. */
912 basic_block *
913 get_loop_body_in_bfs_order (const struct loop *loop)
915 basic_block *blocks;
916 basic_block bb;
917 bitmap visited;
918 unsigned int i = 0;
919 unsigned int vc = 1;
921 gcc_assert (loop->num_nodes);
922 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
924 blocks = XNEWVEC (basic_block, loop->num_nodes);
925 visited = BITMAP_ALLOC (NULL);
927 bb = loop->header;
928 while (i < loop->num_nodes)
930 edge e;
931 edge_iterator ei;
933 if (bitmap_set_bit (visited, bb->index))
934 /* This basic block is now visited */
935 blocks[i++] = bb;
937 FOR_EACH_EDGE (e, ei, bb->succs)
939 if (flow_bb_inside_loop_p (loop, e->dest))
941 if (bitmap_set_bit (visited, e->dest->index))
942 blocks[i++] = e->dest;
946 gcc_assert (i >= vc);
948 bb = blocks[vc++];
951 BITMAP_FREE (visited);
952 return blocks;
955 /* Hash function for struct loop_exit. */
957 static hashval_t
958 loop_exit_hash (const void *ex)
960 const struct loop_exit *const exit = (const struct loop_exit *) ex;
962 return htab_hash_pointer (exit->e);
965 /* Equality function for struct loop_exit. Compares with edge. */
967 static int
968 loop_exit_eq (const void *ex, const void *e)
970 const struct loop_exit *const exit = (const struct loop_exit *) ex;
972 return exit->e == e;
975 /* Frees the list of loop exit descriptions EX. */
977 static void
978 loop_exit_free (void *ex)
980 struct loop_exit *exit = (struct loop_exit *) ex, *next;
982 for (; exit; exit = next)
984 next = exit->next_e;
986 exit->next->prev = exit->prev;
987 exit->prev->next = exit->next;
989 ggc_free (exit);
993 /* Returns the list of records for E as an exit of a loop. */
995 static struct loop_exit *
996 get_exit_descriptions (edge e)
998 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
999 htab_hash_pointer (e));
1002 /* Updates the lists of loop exits in that E appears.
1003 If REMOVED is true, E is being removed, and we
1004 just remove it from the lists of exits.
1005 If NEW_EDGE is true and E is not a loop exit, we
1006 do not try to remove it from loop exit lists. */
1008 void
1009 rescan_loop_exit (edge e, bool new_edge, bool removed)
1011 void **slot;
1012 struct loop_exit *exits = NULL, *exit;
1013 struct loop *aloop, *cloop;
1015 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1016 return;
1018 if (!removed
1019 && e->src->loop_father != NULL
1020 && e->dest->loop_father != NULL
1021 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1023 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1024 for (aloop = e->src->loop_father;
1025 aloop != cloop;
1026 aloop = loop_outer (aloop))
1028 exit = ggc_alloc_loop_exit ();
1029 exit->e = e;
1031 exit->next = aloop->exits->next;
1032 exit->prev = aloop->exits;
1033 exit->next->prev = exit;
1034 exit->prev->next = exit;
1036 exit->next_e = exits;
1037 exits = exit;
1041 if (!exits && new_edge)
1042 return;
1044 slot = htab_find_slot_with_hash (current_loops->exits, e,
1045 htab_hash_pointer (e),
1046 exits ? INSERT : NO_INSERT);
1047 if (!slot)
1048 return;
1050 if (exits)
1052 if (*slot)
1053 loop_exit_free (*slot);
1054 *slot = exits;
1056 else
1057 htab_clear_slot (current_loops->exits, slot);
1060 /* For each loop, record list of exit edges, and start maintaining these
1061 lists. */
1063 void
1064 record_loop_exits (void)
1066 basic_block bb;
1067 edge_iterator ei;
1068 edge e;
1070 if (!current_loops)
1071 return;
1073 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1074 return;
1075 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1077 gcc_assert (current_loops->exits == NULL);
1078 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1079 loop_exit_hash, loop_exit_eq,
1080 loop_exit_free);
1082 FOR_EACH_BB (bb)
1084 FOR_EACH_EDGE (e, ei, bb->succs)
1086 rescan_loop_exit (e, true, false);
1091 /* Dumps information about the exit in *SLOT to FILE.
1092 Callback for htab_traverse. */
1094 static int
1095 dump_recorded_exit (void **slot, void *file)
1097 struct loop_exit *exit = (struct loop_exit *) *slot;
1098 unsigned n = 0;
1099 edge e = exit->e;
1101 for (; exit != NULL; exit = exit->next_e)
1102 n++;
1104 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1105 e->src->index, e->dest->index, n);
1107 return 1;
1110 /* Dumps the recorded exits of loops to FILE. */
1112 extern void dump_recorded_exits (FILE *);
1113 void
1114 dump_recorded_exits (FILE *file)
1116 if (!current_loops->exits)
1117 return;
1118 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1121 /* Releases lists of loop exits. */
1123 void
1124 release_recorded_exits (void)
1126 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1127 htab_delete (current_loops->exits);
1128 current_loops->exits = NULL;
1129 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1132 /* Returns the list of the exit edges of a LOOP. */
1134 vec<edge>
1135 get_loop_exit_edges (const struct loop *loop)
1137 vec<edge> edges = vNULL;
1138 edge e;
1139 unsigned i;
1140 basic_block *body;
1141 edge_iterator ei;
1142 struct loop_exit *exit;
1144 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1146 /* If we maintain the lists of exits, use them. Otherwise we must
1147 scan the body of the loop. */
1148 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1150 for (exit = loop->exits->next; exit->e; exit = exit->next)
1151 edges.safe_push (exit->e);
1153 else
1155 body = get_loop_body (loop);
1156 for (i = 0; i < loop->num_nodes; i++)
1157 FOR_EACH_EDGE (e, ei, body[i]->succs)
1159 if (!flow_bb_inside_loop_p (loop, e->dest))
1160 edges.safe_push (e);
1162 free (body);
1165 return edges;
1168 /* Counts the number of conditional branches inside LOOP. */
1170 unsigned
1171 num_loop_branches (const struct loop *loop)
1173 unsigned i, n;
1174 basic_block * body;
1176 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1178 body = get_loop_body (loop);
1179 n = 0;
1180 for (i = 0; i < loop->num_nodes; i++)
1181 if (EDGE_COUNT (body[i]->succs) >= 2)
1182 n++;
1183 free (body);
1185 return n;
1188 /* Adds basic block BB to LOOP. */
1189 void
1190 add_bb_to_loop (basic_block bb, struct loop *loop)
1192 unsigned i;
1193 loop_p ploop;
1194 edge_iterator ei;
1195 edge e;
1197 gcc_assert (bb->loop_father == NULL);
1198 bb->loop_father = loop;
1199 loop->num_nodes++;
1200 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1201 ploop->num_nodes++;
1203 FOR_EACH_EDGE (e, ei, bb->succs)
1205 rescan_loop_exit (e, true, false);
1207 FOR_EACH_EDGE (e, ei, bb->preds)
1209 rescan_loop_exit (e, true, false);
1213 /* Remove basic block BB from loops. */
1214 void
1215 remove_bb_from_loops (basic_block bb)
1217 unsigned i;
1218 struct loop *loop = bb->loop_father;
1219 loop_p ploop;
1220 edge_iterator ei;
1221 edge e;
1223 gcc_assert (loop != NULL);
1224 loop->num_nodes--;
1225 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1226 ploop->num_nodes--;
1227 bb->loop_father = NULL;
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1231 rescan_loop_exit (e, false, true);
1233 FOR_EACH_EDGE (e, ei, bb->preds)
1235 rescan_loop_exit (e, false, true);
1239 /* Finds nearest common ancestor in loop tree for given loops. */
1240 struct loop *
1241 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1243 unsigned sdepth, ddepth;
1245 if (!loop_s) return loop_d;
1246 if (!loop_d) return loop_s;
1248 sdepth = loop_depth (loop_s);
1249 ddepth = loop_depth (loop_d);
1251 if (sdepth < ddepth)
1252 loop_d = (*loop_d->superloops)[sdepth];
1253 else if (sdepth > ddepth)
1254 loop_s = (*loop_s->superloops)[ddepth];
1256 while (loop_s != loop_d)
1258 loop_s = loop_outer (loop_s);
1259 loop_d = loop_outer (loop_d);
1261 return loop_s;
1264 /* Removes LOOP from structures and frees its data. */
1266 void
1267 delete_loop (struct loop *loop)
1269 /* Remove the loop from structure. */
1270 flow_loop_tree_node_remove (loop);
1272 /* Remove loop from loops array. */
1273 (*current_loops->larray)[loop->num] = NULL;
1275 /* Free loop data. */
1276 flow_loop_free (loop);
1279 /* Cancels the LOOP; it must be innermost one. */
1281 static void
1282 cancel_loop (struct loop *loop)
1284 basic_block *bbs;
1285 unsigned i;
1286 struct loop *outer = loop_outer (loop);
1288 gcc_assert (!loop->inner);
1290 /* Move blocks up one level (they should be removed as soon as possible). */
1291 bbs = get_loop_body (loop);
1292 for (i = 0; i < loop->num_nodes; i++)
1293 bbs[i]->loop_father = outer;
1295 free (bbs);
1296 delete_loop (loop);
1299 /* Cancels LOOP and all its subloops. */
1300 void
1301 cancel_loop_tree (struct loop *loop)
1303 while (loop->inner)
1304 cancel_loop_tree (loop->inner);
1305 cancel_loop (loop);
1308 /* Checks that information about loops is correct
1309 -- sizes of loops are all right
1310 -- results of get_loop_body really belong to the loop
1311 -- loop header have just single entry edge and single latch edge
1312 -- loop latches have only single successor that is header of their loop
1313 -- irreducible loops are correctly marked
1314 -- the cached loop depth and loop father of each bb is correct
1316 DEBUG_FUNCTION void
1317 verify_loop_structure (void)
1319 unsigned *sizes, i, j;
1320 sbitmap irreds;
1321 basic_block bb, *bbs;
1322 struct loop *loop;
1323 int err = 0;
1324 edge e;
1325 unsigned num = number_of_loops (cfun);
1326 struct loop_exit *exit, *mexit;
1327 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1328 sbitmap visited;
1330 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1332 error ("loop verification on loop tree that needs fixup");
1333 err = 1;
1336 /* We need up-to-date dominators, compute or verify them. */
1337 if (!dom_available)
1338 calculate_dominance_info (CDI_DOMINATORS);
1339 else
1340 verify_dominators (CDI_DOMINATORS);
1342 /* Check the headers. */
1343 FOR_EACH_BB (bb)
1344 if (bb_loop_header_p (bb))
1346 if (bb->loop_father->header == NULL)
1348 error ("loop with header %d marked for removal", bb->index);
1349 err = 1;
1351 else if (bb->loop_father->header != bb)
1353 error ("loop with header %d not in loop tree", bb->index);
1354 err = 1;
1357 else if (bb->loop_father->header == bb)
1359 error ("non-loop with header %d not marked for removal", bb->index);
1360 err = 1;
1363 /* Check the recorded loop father and sizes of loops. */
1364 visited = sbitmap_alloc (last_basic_block);
1365 bitmap_clear (visited);
1366 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1367 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1369 unsigned n;
1371 if (loop->header == NULL)
1373 error ("removed loop %d in loop tree", loop->num);
1374 err = 1;
1375 continue;
1378 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1379 if (loop->num_nodes != n)
1381 error ("size of loop %d should be %d, not %d",
1382 loop->num, n, loop->num_nodes);
1383 err = 1;
1386 for (j = 0; j < n; j++)
1388 bb = bbs[j];
1390 if (!flow_bb_inside_loop_p (loop, bb))
1392 error ("bb %d does not belong to loop %d",
1393 bb->index, loop->num);
1394 err = 1;
1397 /* Ignore this block if it is in an inner loop. */
1398 if (bitmap_bit_p (visited, bb->index))
1399 continue;
1400 bitmap_set_bit (visited, bb->index);
1402 if (bb->loop_father != loop)
1404 error ("bb %d has father loop %d, should be loop %d",
1405 bb->index, bb->loop_father->num, loop->num);
1406 err = 1;
1410 free (bbs);
1411 sbitmap_free (visited);
1413 /* Check headers and latches. */
1414 FOR_EACH_LOOP (loop, 0)
1416 i = loop->num;
1417 if (loop->header == NULL)
1418 continue;
1419 if (!bb_loop_header_p (loop->header))
1421 error ("loop %d%'s header is not a loop header", i);
1422 err = 1;
1424 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1425 && EDGE_COUNT (loop->header->preds) != 2)
1427 error ("loop %d%'s header does not have exactly 2 entries", i);
1428 err = 1;
1430 if (loop->latch)
1432 if (!find_edge (loop->latch, loop->header))
1434 error ("loop %d%'s latch does not have an edge to its header", i);
1435 err = 1;
1437 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1439 error ("loop %d%'s latch is not dominated by its header", i);
1440 err = 1;
1443 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1445 if (!single_succ_p (loop->latch))
1447 error ("loop %d%'s latch does not have exactly 1 successor", i);
1448 err = 1;
1450 if (single_succ (loop->latch) != loop->header)
1452 error ("loop %d%'s latch does not have header as successor", i);
1453 err = 1;
1455 if (loop->latch->loop_father != loop)
1457 error ("loop %d%'s latch does not belong directly to it", i);
1458 err = 1;
1461 if (loop->header->loop_father != loop)
1463 error ("loop %d%'s header does not belong directly to it", i);
1464 err = 1;
1466 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1467 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1469 error ("loop %d%'s latch is marked as part of irreducible region", i);
1470 err = 1;
1474 /* Check irreducible loops. */
1475 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1477 /* Record old info. */
1478 irreds = sbitmap_alloc (last_basic_block);
1479 FOR_EACH_BB (bb)
1481 edge_iterator ei;
1482 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1483 bitmap_set_bit (irreds, bb->index);
1484 else
1485 bitmap_clear_bit (irreds, bb->index);
1486 FOR_EACH_EDGE (e, ei, bb->succs)
1487 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1488 e->flags |= EDGE_ALL_FLAGS + 1;
1491 /* Recount it. */
1492 mark_irreducible_loops ();
1494 /* Compare. */
1495 FOR_EACH_BB (bb)
1497 edge_iterator ei;
1499 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1500 && !bitmap_bit_p (irreds, bb->index))
1502 error ("basic block %d should be marked irreducible", bb->index);
1503 err = 1;
1505 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1506 && bitmap_bit_p (irreds, bb->index))
1508 error ("basic block %d should not be marked irreducible", bb->index);
1509 err = 1;
1511 FOR_EACH_EDGE (e, ei, bb->succs)
1513 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1514 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1516 error ("edge from %d to %d should be marked irreducible",
1517 e->src->index, e->dest->index);
1518 err = 1;
1520 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1521 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1523 error ("edge from %d to %d should not be marked irreducible",
1524 e->src->index, e->dest->index);
1525 err = 1;
1527 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1530 free (irreds);
1533 /* Check the recorded loop exits. */
1534 FOR_EACH_LOOP (loop, 0)
1536 if (!loop->exits || loop->exits->e != NULL)
1538 error ("corrupted head of the exits list of loop %d",
1539 loop->num);
1540 err = 1;
1542 else
1544 /* Check that the list forms a cycle, and all elements except
1545 for the head are nonnull. */
1546 for (mexit = loop->exits, exit = mexit->next, i = 0;
1547 exit->e && exit != mexit;
1548 exit = exit->next)
1550 if (i++ & 1)
1551 mexit = mexit->next;
1554 if (exit != loop->exits)
1556 error ("corrupted exits list of loop %d", loop->num);
1557 err = 1;
1561 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1563 if (loop->exits->next != loop->exits)
1565 error ("nonempty exits list of loop %d, but exits are not recorded",
1566 loop->num);
1567 err = 1;
1572 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1574 unsigned n_exits = 0, eloops;
1576 sizes = XCNEWVEC (unsigned, num);
1577 memset (sizes, 0, sizeof (unsigned) * num);
1578 FOR_EACH_BB (bb)
1580 edge_iterator ei;
1581 if (bb->loop_father == current_loops->tree_root)
1582 continue;
1583 FOR_EACH_EDGE (e, ei, bb->succs)
1585 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1586 continue;
1588 n_exits++;
1589 exit = get_exit_descriptions (e);
1590 if (!exit)
1592 error ("exit %d->%d not recorded",
1593 e->src->index, e->dest->index);
1594 err = 1;
1596 eloops = 0;
1597 for (; exit; exit = exit->next_e)
1598 eloops++;
1600 for (loop = bb->loop_father;
1601 loop != e->dest->loop_father
1602 /* When a loop exit is also an entry edge which
1603 can happen when avoiding CFG manipulations
1604 then the last loop exited is the outer loop
1605 of the loop entered. */
1606 && loop != loop_outer (e->dest->loop_father);
1607 loop = loop_outer (loop))
1609 eloops--;
1610 sizes[loop->num]++;
1613 if (eloops != 0)
1615 error ("wrong list of exited loops for edge %d->%d",
1616 e->src->index, e->dest->index);
1617 err = 1;
1622 if (n_exits != htab_elements (current_loops->exits))
1624 error ("too many loop exits recorded");
1625 err = 1;
1628 FOR_EACH_LOOP (loop, 0)
1630 eloops = 0;
1631 for (exit = loop->exits->next; exit->e; exit = exit->next)
1632 eloops++;
1633 if (eloops != sizes[loop->num])
1635 error ("%d exits recorded for loop %d (having %d exits)",
1636 eloops, loop->num, sizes[loop->num]);
1637 err = 1;
1641 free (sizes);
1644 gcc_assert (!err);
1646 if (!dom_available)
1647 free_dominance_info (CDI_DOMINATORS);
1650 /* Returns latch edge of LOOP. */
1651 edge
1652 loop_latch_edge (const struct loop *loop)
1654 return find_edge (loop->latch, loop->header);
1657 /* Returns preheader edge of LOOP. */
1658 edge
1659 loop_preheader_edge (const struct loop *loop)
1661 edge e;
1662 edge_iterator ei;
1664 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1666 FOR_EACH_EDGE (e, ei, loop->header->preds)
1667 if (e->src != loop->latch)
1668 break;
1670 return e;
1673 /* Returns true if E is an exit of LOOP. */
1675 bool
1676 loop_exit_edge_p (const struct loop *loop, const_edge e)
1678 return (flow_bb_inside_loop_p (loop, e->src)
1679 && !flow_bb_inside_loop_p (loop, e->dest));
1682 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1683 or more than one exit. If loops do not have the exits recorded, NULL
1684 is returned always. */
1686 edge
1687 single_exit (const struct loop *loop)
1689 struct loop_exit *exit = loop->exits->next;
1691 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1692 return NULL;
1694 if (exit->e && exit->next == loop->exits)
1695 return exit->e;
1696 else
1697 return NULL;
1700 /* Returns true when BB has an incoming edge exiting LOOP. */
1702 bool
1703 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1705 edge e;
1706 edge_iterator ei;
1708 FOR_EACH_EDGE (e, ei, bb->preds)
1709 if (loop_exit_edge_p (loop, e))
1710 return true;
1712 return false;
1715 /* Returns true when BB has an outgoing edge exiting LOOP. */
1717 bool
1718 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1720 edge e;
1721 edge_iterator ei;
1723 FOR_EACH_EDGE (e, ei, bb->succs)
1724 if (loop_exit_edge_p (loop, e))
1725 return true;
1727 return false;
1730 /* Return location corresponding to the loop control condition if possible. */
1732 location_t
1733 get_loop_location (struct loop *loop)
1735 rtx insn = NULL;
1736 struct niter_desc *desc = NULL;
1737 edge exit;
1739 /* For a for or while loop, we would like to return the location
1740 of the for or while statement, if possible. To do this, look
1741 for the branch guarding the loop back-edge. */
1743 /* If this is a simple loop with an in_edge, then the loop control
1744 branch is typically at the end of its source. */
1745 desc = get_simple_loop_desc (loop);
1746 if (desc->in_edge)
1748 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1750 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1751 return INSN_LOCATION (insn);
1754 /* If loop has a single exit, then the loop control branch
1755 must be at the end of its source. */
1756 if ((exit = single_exit (loop)))
1758 FOR_BB_INSNS_REVERSE (exit->src, insn)
1760 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1761 return INSN_LOCATION (insn);
1764 /* Next check the latch, to see if it is non-empty. */
1765 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1767 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1768 return INSN_LOCATION (insn);
1770 /* Finally, if none of the above identifies the loop control branch,
1771 return the first location in the loop header. */
1772 FOR_BB_INSNS (loop->header, insn)
1774 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1775 return INSN_LOCATION (insn);
1777 /* If all else fails, simply return the current function location. */
1778 return DECL_SOURCE_LOCATION (current_function_decl);
1781 /* Records that every statement in LOOP is executed I_BOUND times.
1782 REALISTIC is true if I_BOUND is expected to be close to the real number
1783 of iterations. UPPER is true if we are sure the loop iterates at most
1784 I_BOUND times. */
1786 void
1787 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
1788 bool upper)
1790 /* Update the bounds only when there is no previous estimation, or when the
1791 current estimation is smaller. */
1792 if (upper
1793 && (!loop->any_upper_bound
1794 || i_bound.ult (loop->nb_iterations_upper_bound)))
1796 loop->any_upper_bound = true;
1797 loop->nb_iterations_upper_bound = i_bound;
1799 if (realistic
1800 && (!loop->any_estimate
1801 || i_bound.ult (loop->nb_iterations_estimate)))
1803 loop->any_estimate = true;
1804 loop->nb_iterations_estimate = i_bound;
1807 /* If an upper bound is smaller than the realistic estimate of the
1808 number of iterations, use the upper bound instead. */
1809 if (loop->any_upper_bound
1810 && loop->any_estimate
1811 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
1812 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1815 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1816 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1817 on the number of iterations of LOOP could not be derived, returns -1. */
1819 HOST_WIDE_INT
1820 get_estimated_loop_iterations_int (struct loop *loop)
1822 double_int nit;
1823 HOST_WIDE_INT hwi_nit;
1825 if (!get_estimated_loop_iterations (loop, &nit))
1826 return -1;
1828 if (!nit.fits_shwi ())
1829 return -1;
1830 hwi_nit = nit.to_shwi ();
1832 return hwi_nit < 0 ? -1 : hwi_nit;
1835 /* Returns an upper bound on the number of executions of statements
1836 in the LOOP. For statements before the loop exit, this exceeds
1837 the number of execution of the latch by one. */
1839 HOST_WIDE_INT
1840 max_stmt_executions_int (struct loop *loop)
1842 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1843 HOST_WIDE_INT snit;
1845 if (nit == -1)
1846 return -1;
1848 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1850 /* If the computation overflows, return -1. */
1851 return snit < 0 ? -1 : snit;
1854 /* Sets NIT to the estimated number of executions of the latch of the
1855 LOOP. If we have no reliable estimate, the function returns false, otherwise
1856 returns true. */
1858 bool
1859 get_estimated_loop_iterations (struct loop *loop, double_int *nit)
1861 /* Even if the bound is not recorded, possibly we can derrive one from
1862 profile. */
1863 if (!loop->any_estimate)
1865 if (loop->header->count)
1867 *nit = gcov_type_to_double_int
1868 (expected_loop_iterations_unbounded (loop) + 1);
1869 return true;
1871 return false;
1874 *nit = loop->nb_iterations_estimate;
1875 return true;
1878 /* Sets NIT to an upper bound for the maximum number of executions of the
1879 latch of the LOOP. If we have no reliable estimate, the function returns
1880 false, otherwise returns true. */
1882 bool
1883 get_max_loop_iterations (struct loop *loop, double_int *nit)
1885 if (!loop->any_upper_bound)
1886 return false;
1888 *nit = loop->nb_iterations_upper_bound;
1889 return true;
1892 /* Similar to get_max_loop_iterations, but returns the estimate only
1893 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1894 on the number of iterations of LOOP could not be derived, returns -1. */
1896 HOST_WIDE_INT
1897 get_max_loop_iterations_int (struct loop *loop)
1899 double_int nit;
1900 HOST_WIDE_INT hwi_nit;
1902 if (!get_max_loop_iterations (loop, &nit))
1903 return -1;
1905 if (!nit.fits_shwi ())
1906 return -1;
1907 hwi_nit = nit.to_shwi ();
1909 return hwi_nit < 0 ? -1 : hwi_nit;
1912 /* Returns the loop depth of the loop BB belongs to. */
1915 bb_loop_depth (const_basic_block bb)
1917 return bb->loop_father ? loop_depth (bb->loop_father) : 0;