1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
172 /* Propagate flow information through back edges and thus enable PRE's
173 moving loop invariant calculations out of loops.
175 Originally this tended to create worse overall code, but several
176 improvements during the development of PRE seem to have made following
177 back edges generally a win.
179 Note much of the loop invariant code motion done here would normally
180 be done by loop.c, which has more heuristics for when to move invariants
181 out of loops. At some point we might need to move some of those
182 heuristics into gcse.c. */
184 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
185 are a superset of those done by GCSE.
187 We perform the following steps:
189 1) Compute basic block information.
191 2) Compute table of places where registers are set.
193 3) Perform copy/constant propagation.
195 4) Perform global cse.
197 5) Perform another pass of copy/constant propagation.
199 Two passes of copy/constant propagation are done because the first one
200 enables more GCSE and the second one helps to clean up the copies that
201 GCSE creates. This is needed more for PRE than for Classic because Classic
202 GCSE will try to use an existing register containing the common
203 subexpression rather than create a new one. This is harder to do for PRE
204 because of the code motion (which Classic GCSE doesn't do).
206 Expressions we are interested in GCSE-ing are of the form
207 (set (pseudo-reg) (expression)).
208 Function want_to_gcse_p says what these are.
210 PRE handles moving invariant expressions out of loops (by treating them as
211 partially redundant).
213 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
214 assignment) based GVN (global value numbering). L. T. Simpson's paper
215 (Rice University) on value numbering is a useful reference for this.
217 **********************
219 We used to support multiple passes but there are diminishing returns in
220 doing so. The first pass usually makes 90% of the changes that are doable.
221 A second pass can make a few more changes made possible by the first pass.
222 Experiments show any further passes don't make enough changes to justify
225 A study of spec92 using an unlimited number of passes:
226 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
227 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
228 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
230 It was found doing copy propagation between each pass enables further
233 PRE is quite expensive in complicated functions because the DFA can take
234 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
235 be modified if one wants to experiment.
237 **********************
239 The steps for PRE are:
241 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
243 2) Perform the data flow analysis for PRE.
245 3) Delete the redundant instructions
247 4) Insert the required copies [if any] that make the partially
248 redundant instructions fully redundant.
250 5) For other reaching expressions, insert an instruction to copy the value
251 to a newly created pseudo that will reach the redundant instruction.
253 The deletion is done first so that when we do insertions we
254 know which pseudo reg to use.
256 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
257 argue it is not. The number of iterations for the algorithm to converge
258 is typically 2-4 so I don't view it as that expensive (relatively speaking).
260 PRE GCSE depends heavily on the second CSE pass to clean up the copies
261 we create. To make an expression reach the place where it's redundant,
262 the result of the expression is copied to a new register, and the redundant
263 expression is deleted by replacing it with this new register. Classic GCSE
264 doesn't have this problem as much as it computes the reaching defs of
265 each register in each block and thus can try to use an existing register.
267 **********************
269 A fair bit of simplicity is created by creating small functions for simple
270 tasks, even when the function is only called in one place. This may
271 measurably slow things down [or may not] by creating more function call
272 overhead than is necessary. The source is laid out so that it's trivial
273 to make the affected functions inline so that one can measure what speed
274 up, if any, can be achieved, and maybe later when things settle things can
277 Help stamp out big monolithic functions! */
279 /* GCSE global vars. */
282 static FILE *gcse_file
;
284 /* Note whether or not we should run jump optimization after gcse. We
285 want to do this for two cases.
287 * If we changed any jumps via cprop.
289 * If we added any labels via edge splitting. */
291 static int run_jump_opt_after_gcse
;
293 /* Bitmaps are normally not included in debugging dumps.
294 However it's useful to be able to print them from GDB.
295 We could create special functions for this, but it's simpler to
296 just allow passing stderr to the dump_foo fns. Since stderr can
297 be a macro, we store a copy here. */
298 static FILE *debug_stderr
;
300 /* An obstack for our working variables. */
301 static struct obstack gcse_obstack
;
303 struct reg_use
{rtx reg_rtx
; };
305 /* Hash table of expressions. */
309 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 /* Index in the available expression bitmaps. */
313 /* Next entry with the same hash. */
314 struct expr
*next_same_hash
;
315 /* List of anticipatable occurrences in basic blocks in the function.
316 An "anticipatable occurrence" is one that is the first occurrence in the
317 basic block, the operands are not modified in the basic block prior
318 to the occurrence and the output is not used between the start of
319 the block and the occurrence. */
320 struct occr
*antic_occr
;
321 /* List of available occurrence in basic blocks in the function.
322 An "available occurrence" is one that is the last occurrence in the
323 basic block and the operands are not modified by following statements in
324 the basic block [including this insn]. */
325 struct occr
*avail_occr
;
326 /* Non-null if the computation is PRE redundant.
327 The value is the newly created pseudo-reg to record a copy of the
328 expression in all the places that reach the redundant copy. */
332 /* Occurrence of an expression.
333 There is one per basic block. If a pattern appears more than once the
334 last appearance is used [or first for anticipatable expressions]. */
338 /* Next occurrence of this expression. */
340 /* The insn that computes the expression. */
342 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 /* Nonzero if this [available] occurrence has been copied to
346 /* ??? This is mutually exclusive with deleted_p, so they could share
351 /* Expression and copy propagation hash tables.
352 Each hash table is an array of buckets.
353 ??? It is known that if it were an array of entries, structure elements
354 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
355 not clear whether in the final analysis a sufficient amount of memory would
356 be saved as the size of the available expression bitmaps would be larger
357 [one could build a mapping table without holes afterwards though].
358 Someday I'll perform the computation and figure it out. */
363 This is an array of `expr_hash_table_size' elements. */
366 /* Size of the hash table, in elements. */
369 /* Number of hash table elements. */
370 unsigned int n_elems
;
372 /* Whether the table is expression of copy propagation one. */
376 /* Expression hash table. */
377 static struct hash_table expr_hash_table
;
379 /* Copy propagation hash table. */
380 static struct hash_table set_hash_table
;
382 /* Mapping of uids to cuids.
383 Only real insns get cuids. */
384 static int *uid_cuid
;
386 /* Highest UID in UID_CUID. */
389 /* Get the cuid of an insn. */
390 #ifdef ENABLE_CHECKING
391 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
393 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 /* Number of cuids. */
399 /* Mapping of cuids to insns. */
400 static rtx
*cuid_insn
;
402 /* Get insn from cuid. */
403 #define CUID_INSN(CUID) (cuid_insn[CUID])
405 /* Maximum register number in function prior to doing gcse + 1.
406 Registers created during this pass have regno >= max_gcse_regno.
407 This is named with "gcse" to not collide with global of same name. */
408 static unsigned int max_gcse_regno
;
410 /* Table of registers that are modified.
412 For each register, each element is a list of places where the pseudo-reg
415 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
416 requires knowledge of which blocks kill which regs [and thus could use
417 a bitmap instead of the lists `reg_set_table' uses].
419 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
420 num-regs) [however perhaps it may be useful to keep the data as is]. One
421 advantage of recording things this way is that `reg_set_table' is fairly
422 sparse with respect to pseudo regs but for hard regs could be fairly dense
423 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
424 up functions like compute_transp since in the case of pseudo-regs we only
425 need to iterate over the number of times a pseudo-reg is set, not over the
426 number of basic blocks [clearly there is a bit of a slow down in the cases
427 where a pseudo is set more than once in a block, however it is believed
428 that the net effect is to speed things up]. This isn't done for hard-regs
429 because recording call-clobbered hard-regs in `reg_set_table' at each
430 function call can consume a fair bit of memory, and iterating over
431 hard-regs stored this way in compute_transp will be more expensive. */
433 typedef struct reg_set
435 /* The next setting of this register. */
436 struct reg_set
*next
;
437 /* The insn where it was set. */
441 static reg_set
**reg_set_table
;
443 /* Size of `reg_set_table'.
444 The table starts out at max_gcse_regno + slop, and is enlarged as
446 static int reg_set_table_size
;
448 /* Amount to grow `reg_set_table' by when it's full. */
449 #define REG_SET_TABLE_SLOP 100
451 /* This is a list of expressions which are MEMs and will be used by load
453 Load motion tracks MEMs which aren't killed by
454 anything except itself. (ie, loads and stores to a single location).
455 We can then allow movement of these MEM refs with a little special
456 allowance. (all stores copy the same value to the reaching reg used
457 for the loads). This means all values used to store into memory must have
458 no side effects so we can re-issue the setter value.
459 Store Motion uses this structure as an expression table to track stores
460 which look interesting, and might be moveable towards the exit block. */
464 struct expr
* expr
; /* Gcse expression reference for LM. */
465 rtx pattern
; /* Pattern of this mem. */
466 rtx pattern_regs
; /* List of registers mentioned by the mem. */
467 rtx loads
; /* INSN list of loads seen. */
468 rtx stores
; /* INSN list of stores seen. */
469 struct ls_expr
* next
; /* Next in the list. */
470 int invalid
; /* Invalid for some reason. */
471 int index
; /* If it maps to a bitmap index. */
472 unsigned int hash_index
; /* Index when in a hash table. */
473 rtx reaching_reg
; /* Register to use when re-writing. */
476 /* Array of implicit set patterns indexed by basic block index. */
477 static rtx
*implicit_sets
;
479 /* Head of the list of load/store memory refs. */
480 static struct ls_expr
* pre_ldst_mems
= NULL
;
482 /* Bitmap containing one bit for each register in the program.
483 Used when performing GCSE to track which registers have been set since
484 the start of the basic block. */
485 static regset reg_set_bitmap
;
487 /* For each block, a bitmap of registers set in the block.
488 This is used by expr_killed_p and compute_transp.
489 It is computed during hash table computation and not by compute_sets
490 as it includes registers added since the last pass (or between cprop and
491 gcse) and it's currently not easy to realloc sbitmap vectors. */
492 static sbitmap
*reg_set_in_block
;
494 /* Array, indexed by basic block number for a list of insns which modify
495 memory within that block. */
496 static rtx
* modify_mem_list
;
497 bitmap modify_mem_list_set
;
499 /* This array parallels modify_mem_list, but is kept canonicalized. */
500 static rtx
* canon_modify_mem_list
;
501 bitmap canon_modify_mem_list_set
;
502 /* Various variables for statistics gathering. */
504 /* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507 static int bytes_used
;
509 /* GCSE substitutions made. */
510 static int gcse_subst_count
;
511 /* Number of copy instructions created. */
512 static int gcse_create_count
;
513 /* Number of constants propagated. */
514 static int const_prop_count
;
515 /* Number of copys propagated. */
516 static int copy_prop_count
;
518 /* These variables are used by classic GCSE.
519 Normally they'd be defined a bit later, but `rd_gen' needs to
520 be declared sooner. */
522 /* Each block has a bitmap of each type.
523 The length of each blocks bitmap is:
525 max_cuid - for reaching definitions
526 n_exprs - for available expressions
528 Thus we view the bitmaps as 2 dimensional arrays. i.e.
529 rd_kill[block_num][cuid_num]
530 ae_kill[block_num][expr_num] */
532 /* For reaching defs */
533 static sbitmap
*rd_kill
, *rd_gen
, *reaching_defs
, *rd_out
;
535 /* for available exprs */
536 static sbitmap
*ae_kill
, *ae_gen
, *ae_in
, *ae_out
;
538 /* Objects of this type are passed around by the null-pointer check
540 struct null_pointer_info
542 /* The basic block being processed. */
543 basic_block current_block
;
544 /* The first register to be handled in this pass. */
545 unsigned int min_reg
;
546 /* One greater than the last register to be handled in this pass. */
547 unsigned int max_reg
;
548 sbitmap
*nonnull_local
;
549 sbitmap
*nonnull_killed
;
552 static void compute_can_copy (void);
553 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
554 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
555 static void *grealloc (void *, size_t);
556 static void *gcse_alloc (unsigned long);
557 static void alloc_gcse_mem (rtx
);
558 static void free_gcse_mem (void);
559 static void alloc_reg_set_mem (int);
560 static void free_reg_set_mem (void);
561 static int get_bitmap_width (int, int, int);
562 static void record_one_set (int, rtx
);
563 static void replace_one_set (int, rtx
, rtx
);
564 static void record_set_info (rtx
, rtx
, void *);
565 static void compute_sets (rtx
);
566 static void hash_scan_insn (rtx
, struct hash_table
*, int);
567 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
568 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
569 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
570 static int want_to_gcse_p (rtx
);
571 static bool can_assign_to_reg_p (rtx
);
572 static bool gcse_constant_p (rtx
);
573 static int oprs_unchanged_p (rtx
, rtx
, int);
574 static int oprs_anticipatable_p (rtx
, rtx
);
575 static int oprs_available_p (rtx
, rtx
);
576 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
577 struct hash_table
*);
578 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
579 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
580 static unsigned int hash_expr_1 (rtx
, enum machine_mode
, int *);
581 static unsigned int hash_string_1 (const char *);
582 static unsigned int hash_set (int, int);
583 static int expr_equiv_p (rtx
, rtx
);
584 static void record_last_reg_set_info (rtx
, int);
585 static void record_last_mem_set_info (rtx
);
586 static void record_last_set_info (rtx
, rtx
, void *);
587 static void compute_hash_table (struct hash_table
*);
588 static void alloc_hash_table (int, struct hash_table
*, int);
589 static void free_hash_table (struct hash_table
*);
590 static void compute_hash_table_work (struct hash_table
*);
591 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
592 static struct expr
*lookup_expr (rtx
, struct hash_table
*);
593 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
594 static struct expr
*next_set (unsigned int, struct expr
*);
595 static void reset_opr_set_tables (void);
596 static int oprs_not_set_p (rtx
, rtx
);
597 static void mark_call (rtx
);
598 static void mark_set (rtx
, rtx
);
599 static void mark_clobber (rtx
, rtx
);
600 static void mark_oprs_set (rtx
);
601 static void alloc_cprop_mem (int, int);
602 static void free_cprop_mem (void);
603 static void compute_transp (rtx
, int, sbitmap
*, int);
604 static void compute_transpout (void);
605 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
606 struct hash_table
*);
607 static void compute_cprop_data (void);
608 static void find_used_regs (rtx
*, void *);
609 static int try_replace_reg (rtx
, rtx
, rtx
);
610 static struct expr
*find_avail_set (int, rtx
);
611 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
612 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
613 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
614 static void canon_list_insert (rtx
, rtx
, void *);
615 static int cprop_insn (rtx
, int);
616 static int cprop (int);
617 static void find_implicit_sets (void);
618 static int one_cprop_pass (int, int, int);
619 static bool constprop_register (rtx
, rtx
, rtx
, int);
620 static struct expr
*find_bypass_set (int, int);
621 static bool reg_killed_on_edge (rtx
, edge
);
622 static int bypass_block (basic_block
, rtx
, rtx
);
623 static int bypass_conditional_jumps (void);
624 static void alloc_pre_mem (int, int);
625 static void free_pre_mem (void);
626 static void compute_pre_data (void);
627 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
629 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
630 static void pre_insert_copy_insn (struct expr
*, rtx
);
631 static void pre_insert_copies (void);
632 static int pre_delete (void);
633 static int pre_gcse (void);
634 static int one_pre_gcse_pass (int);
635 static void add_label_notes (rtx
, rtx
);
636 static void alloc_code_hoist_mem (int, int);
637 static void free_code_hoist_mem (void);
638 static void compute_code_hoist_vbeinout (void);
639 static void compute_code_hoist_data (void);
640 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
641 static void hoist_code (void);
642 static int one_code_hoisting_pass (void);
643 static void alloc_rd_mem (int, int);
644 static void free_rd_mem (void);
645 static void handle_rd_kill_set (rtx
, int, basic_block
);
646 static void compute_kill_rd (void);
647 static void compute_rd (void);
648 static void alloc_avail_expr_mem (int, int);
649 static void free_avail_expr_mem (void);
650 static void compute_ae_gen (struct hash_table
*);
651 static int expr_killed_p (rtx
, basic_block
);
652 static void compute_ae_kill (sbitmap
*, sbitmap
*, struct hash_table
*);
653 static int expr_reaches_here_p (struct occr
*, struct expr
*, basic_block
,
655 static rtx
computing_insn (struct expr
*, rtx
);
656 static int def_reaches_here_p (rtx
, rtx
);
657 static int can_disregard_other_sets (struct reg_set
**, rtx
, int);
658 static int handle_avail_expr (rtx
, struct expr
*);
659 static int classic_gcse (void);
660 static int one_classic_gcse_pass (int);
661 static void invalidate_nonnull_info (rtx
, rtx
, void *);
662 static int delete_null_pointer_checks_1 (unsigned int *, sbitmap
*, sbitmap
*,
663 struct null_pointer_info
*);
664 static rtx
process_insert_insn (struct expr
*);
665 static int pre_edge_insert (struct edge_list
*, struct expr
**);
666 static int expr_reaches_here_p_work (struct occr
*, struct expr
*,
667 basic_block
, int, char *);
668 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
669 basic_block
, char *);
670 static struct ls_expr
* ldst_entry (rtx
);
671 static void free_ldst_entry (struct ls_expr
*);
672 static void free_ldst_mems (void);
673 static void print_ldst_list (FILE *);
674 static struct ls_expr
* find_rtx_in_ldst (rtx
);
675 static int enumerate_ldsts (void);
676 static inline struct ls_expr
* first_ls_expr (void);
677 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
678 static int simple_mem (rtx
);
679 static void invalidate_any_buried_refs (rtx
);
680 static void compute_ld_motion_mems (void);
681 static void trim_ld_motion_mems (void);
682 static void update_ld_motion_stores (struct expr
*);
683 static void reg_set_info (rtx
, rtx
, void *);
684 static void reg_clear_last_set (rtx
, rtx
, void *);
685 static bool store_ops_ok (rtx
, int *);
686 static rtx
extract_mentioned_regs (rtx
);
687 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
688 static void find_moveable_store (rtx
, int *, int *);
689 static int compute_store_table (void);
690 static bool load_kills_store (rtx
, rtx
, int);
691 static bool find_loads (rtx
, rtx
, int);
692 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
693 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
694 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
695 static void build_store_vectors (void);
696 static void insert_insn_start_bb (rtx
, basic_block
);
697 static int insert_store (struct ls_expr
*, edge
);
698 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
699 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
700 static void delete_store (struct ls_expr
*, basic_block
);
701 static void free_store_memory (void);
702 static void store_motion (void);
703 static void free_insn_expr_list_list (rtx
*);
704 static void clear_modify_mem_tables (void);
705 static void free_modify_mem_tables (void);
706 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
707 static void local_cprop_find_used_regs (rtx
*, void *);
708 static bool do_local_cprop (rtx
, rtx
, int, rtx
*);
709 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
710 static void local_cprop_pass (int);
711 static bool is_too_expensive (const char *);
714 /* Entry point for global common subexpression elimination.
715 F is the first instruction in the function. */
718 gcse_main (rtx f
, FILE *file
)
721 /* Bytes used at start of pass. */
722 int initial_bytes_used
;
723 /* Maximum number of bytes used by a pass. */
725 /* Point to release obstack data from for each pass. */
726 char *gcse_obstack_bottom
;
728 /* We do not construct an accurate cfg in functions which call
729 setjmp, so just punt to be safe. */
730 if (current_function_calls_setjmp
)
733 /* Assume that we do not need to run jump optimizations after gcse. */
734 run_jump_opt_after_gcse
= 0;
736 /* For calling dump_foo fns from gdb. */
737 debug_stderr
= stderr
;
740 /* Identify the basic block information for this function, including
741 successors and predecessors. */
742 max_gcse_regno
= max_reg_num ();
745 dump_flow_info (file
);
747 /* Return if there's nothing to do, or it is too expensive. */
748 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
751 gcc_obstack_init (&gcse_obstack
);
755 init_alias_analysis ();
756 /* Record where pseudo-registers are set. This data is kept accurate
757 during each pass. ??? We could also record hard-reg information here
758 [since it's unchanging], however it is currently done during hash table
761 It may be tempting to compute MEM set information here too, but MEM sets
762 will be subject to code motion one day and thus we need to compute
763 information about memory sets when we build the hash tables. */
765 alloc_reg_set_mem (max_gcse_regno
);
769 initial_bytes_used
= bytes_used
;
771 gcse_obstack_bottom
= gcse_alloc (1);
773 while (changed
&& pass
< MAX_GCSE_PASSES
)
777 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
779 /* Initialize bytes_used to the space for the pred/succ lists,
780 and the reg_set_table data. */
781 bytes_used
= initial_bytes_used
;
783 /* Each pass may create new registers, so recalculate each time. */
784 max_gcse_regno
= max_reg_num ();
788 /* Don't allow constant propagation to modify jumps
790 changed
= one_cprop_pass (pass
+ 1, 0, 0);
793 changed
|= one_classic_gcse_pass (pass
+ 1);
796 changed
|= one_pre_gcse_pass (pass
+ 1);
797 /* We may have just created new basic blocks. Release and
798 recompute various things which are sized on the number of
802 free_modify_mem_tables ();
803 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
804 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
807 alloc_reg_set_mem (max_reg_num ());
809 run_jump_opt_after_gcse
= 1;
812 if (max_pass_bytes
< bytes_used
)
813 max_pass_bytes
= bytes_used
;
815 /* Free up memory, then reallocate for code hoisting. We can
816 not re-use the existing allocated memory because the tables
817 will not have info for the insns or registers created by
818 partial redundancy elimination. */
821 /* It does not make sense to run code hoisting unless we are optimizing
822 for code size -- it rarely makes programs faster, and can make
823 them bigger if we did partial redundancy elimination (when optimizing
824 for space, we use a classic gcse algorithm instead of partial
825 redundancy algorithms). */
828 max_gcse_regno
= max_reg_num ();
830 changed
|= one_code_hoisting_pass ();
833 if (max_pass_bytes
< bytes_used
)
834 max_pass_bytes
= bytes_used
;
839 fprintf (file
, "\n");
843 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
847 /* Do one last pass of copy propagation, including cprop into
848 conditional jumps. */
850 max_gcse_regno
= max_reg_num ();
852 /* This time, go ahead and allow cprop to alter jumps. */
853 one_cprop_pass (pass
+ 1, 1, 0);
858 fprintf (file
, "GCSE of %s: %d basic blocks, ",
859 current_function_name (), n_basic_blocks
);
860 fprintf (file
, "%d pass%s, %d bytes\n\n",
861 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
864 obstack_free (&gcse_obstack
, NULL
);
866 /* We are finished with alias. */
867 end_alias_analysis ();
868 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
870 if (!optimize_size
&& flag_gcse_sm
)
873 /* Record where pseudo-registers are set. */
874 return run_jump_opt_after_gcse
;
877 /* Misc. utilities. */
879 /* Nonzero for each mode that supports (set (reg) (reg)).
880 This is trivially true for integer and floating point values.
881 It may or may not be true for condition codes. */
882 static char can_copy
[(int) NUM_MACHINE_MODES
];
884 /* Compute which modes support reg/reg copy operations. */
887 compute_can_copy (void)
890 #ifndef AVOID_CCMODE_COPIES
893 memset (can_copy
, 0, NUM_MACHINE_MODES
);
896 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
897 if (GET_MODE_CLASS (i
) == MODE_CC
)
899 #ifdef AVOID_CCMODE_COPIES
902 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
903 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
904 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
914 /* Returns whether the mode supports reg/reg copy operations. */
917 can_copy_p (enum machine_mode mode
)
919 static bool can_copy_init_p
= false;
921 if (! can_copy_init_p
)
924 can_copy_init_p
= true;
927 return can_copy
[mode
] != 0;
930 /* Cover function to xmalloc to record bytes allocated. */
933 gmalloc (size_t size
)
936 return xmalloc (size
);
939 /* Cover function to xcalloc to record bytes allocated. */
942 gcalloc (size_t nelem
, size_t elsize
)
944 bytes_used
+= nelem
* elsize
;
945 return xcalloc (nelem
, elsize
);
948 /* Cover function to xrealloc.
949 We don't record the additional size since we don't know it.
950 It won't affect memory usage stats much anyway. */
953 grealloc (void *ptr
, size_t size
)
955 return xrealloc (ptr
, size
);
958 /* Cover function to obstack_alloc. */
961 gcse_alloc (unsigned long size
)
964 return obstack_alloc (&gcse_obstack
, size
);
967 /* Allocate memory for the cuid mapping array,
968 and reg/memory set tracking tables.
970 This is called at the start of each pass. */
973 alloc_gcse_mem (rtx f
)
978 /* Find the largest UID and create a mapping from UIDs to CUIDs.
979 CUIDs are like UIDs except they increase monotonically, have no gaps,
980 and only apply to real insns. */
982 max_uid
= get_max_uid ();
983 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
984 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
987 uid_cuid
[INSN_UID (insn
)] = i
++;
989 uid_cuid
[INSN_UID (insn
)] = i
;
992 /* Create a table mapping cuids to insns. */
995 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
996 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
998 CUID_INSN (i
++) = insn
;
1000 /* Allocate vars to track sets of regs. */
1001 reg_set_bitmap
= BITMAP_XMALLOC ();
1003 /* Allocate vars to track sets of regs, memory per block. */
1004 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
1005 /* Allocate array to keep a list of insns which modify memory in each
1007 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
1008 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
1009 modify_mem_list_set
= BITMAP_XMALLOC ();
1010 canon_modify_mem_list_set
= BITMAP_XMALLOC ();
1013 /* Free memory allocated by alloc_gcse_mem. */
1016 free_gcse_mem (void)
1021 BITMAP_XFREE (reg_set_bitmap
);
1023 sbitmap_vector_free (reg_set_in_block
);
1024 free_modify_mem_tables ();
1025 BITMAP_XFREE (modify_mem_list_set
);
1026 BITMAP_XFREE (canon_modify_mem_list_set
);
1029 /* Many of the global optimization algorithms work by solving dataflow
1030 equations for various expressions. Initially, some local value is
1031 computed for each expression in each block. Then, the values across the
1032 various blocks are combined (by following flow graph edges) to arrive at
1033 global values. Conceptually, each set of equations is independent. We
1034 may therefore solve all the equations in parallel, solve them one at a
1035 time, or pick any intermediate approach.
1037 When you're going to need N two-dimensional bitmaps, each X (say, the
1038 number of blocks) by Y (say, the number of expressions), call this
1039 function. It's not important what X and Y represent; only that Y
1040 correspond to the things that can be done in parallel. This function will
1041 return an appropriate chunking factor C; you should solve C sets of
1042 equations in parallel. By going through this function, we can easily
1043 trade space against time; by solving fewer equations in parallel we use
1047 get_bitmap_width (int n
, int x
, int y
)
1049 /* It's not really worth figuring out *exactly* how much memory will
1050 be used by a particular choice. The important thing is to get
1051 something approximately right. */
1052 size_t max_bitmap_memory
= 10 * 1024 * 1024;
1054 /* The number of bytes we'd use for a single column of minimum
1056 size_t column_size
= n
* x
* sizeof (SBITMAP_ELT_TYPE
);
1058 /* Often, it's reasonable just to solve all the equations in
1060 if (column_size
* SBITMAP_SET_SIZE (y
) <= max_bitmap_memory
)
1063 /* Otherwise, pick the largest width we can, without going over the
1065 return SBITMAP_ELT_BITS
* ((max_bitmap_memory
+ column_size
- 1)
1069 /* Compute the local properties of each recorded expression.
1071 Local properties are those that are defined by the block, irrespective of
1074 An expression is transparent in a block if its operands are not modified
1077 An expression is computed (locally available) in a block if it is computed
1078 at least once and expression would contain the same value if the
1079 computation was moved to the end of the block.
1081 An expression is locally anticipatable in a block if it is computed at
1082 least once and expression would contain the same value if the computation
1083 was moved to the beginning of the block.
1085 We call this routine for cprop, pre and code hoisting. They all compute
1086 basically the same information and thus can easily share this code.
1088 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1089 properties. If NULL, then it is not necessary to compute or record that
1090 particular property.
1092 TABLE controls which hash table to look at. If it is set hash table,
1093 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1097 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
, struct hash_table
*table
)
1101 /* Initialize any bitmaps that were passed in. */
1105 sbitmap_vector_zero (transp
, last_basic_block
);
1107 sbitmap_vector_ones (transp
, last_basic_block
);
1111 sbitmap_vector_zero (comp
, last_basic_block
);
1113 sbitmap_vector_zero (antloc
, last_basic_block
);
1115 for (i
= 0; i
< table
->size
; i
++)
1119 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1121 int indx
= expr
->bitmap_index
;
1124 /* The expression is transparent in this block if it is not killed.
1125 We start by assuming all are transparent [none are killed], and
1126 then reset the bits for those that are. */
1128 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1130 /* The occurrences recorded in antic_occr are exactly those that
1131 we want to set to nonzero in ANTLOC. */
1133 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1135 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1137 /* While we're scanning the table, this is a good place to
1139 occr
->deleted_p
= 0;
1142 /* The occurrences recorded in avail_occr are exactly those that
1143 we want to set to nonzero in COMP. */
1145 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1147 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1149 /* While we're scanning the table, this is a good place to
1154 /* While we're scanning the table, this is a good place to
1156 expr
->reaching_reg
= 0;
1161 /* Register set information.
1163 `reg_set_table' records where each register is set or otherwise
1166 static struct obstack reg_set_obstack
;
1169 alloc_reg_set_mem (int n_regs
)
1171 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1172 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1174 gcc_obstack_init (®_set_obstack
);
1178 free_reg_set_mem (void)
1180 free (reg_set_table
);
1181 obstack_free (®_set_obstack
, NULL
);
1184 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1185 Update the corresponding `reg_set_table' entry accordingly.
1186 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1189 replace_one_set (int regno
, rtx old_insn
, rtx new_insn
)
1191 struct reg_set
*reg_info
;
1192 if (regno
>= reg_set_table_size
)
1194 for (reg_info
= reg_set_table
[regno
]; reg_info
; reg_info
= reg_info
->next
)
1195 if (reg_info
->insn
== old_insn
)
1197 reg_info
->insn
= new_insn
;
1202 /* Record REGNO in the reg_set table. */
1205 record_one_set (int regno
, rtx insn
)
1207 /* Allocate a new reg_set element and link it onto the list. */
1208 struct reg_set
*new_reg_info
;
1210 /* If the table isn't big enough, enlarge it. */
1211 if (regno
>= reg_set_table_size
)
1213 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1215 reg_set_table
= grealloc (reg_set_table
,
1216 new_size
* sizeof (struct reg_set
*));
1217 memset (reg_set_table
+ reg_set_table_size
, 0,
1218 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1219 reg_set_table_size
= new_size
;
1222 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1223 bytes_used
+= sizeof (struct reg_set
);
1224 new_reg_info
->insn
= insn
;
1225 new_reg_info
->next
= reg_set_table
[regno
];
1226 reg_set_table
[regno
] = new_reg_info
;
1229 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1230 an insn. The DATA is really the instruction in which the SET is
1234 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1236 rtx record_set_insn
= (rtx
) data
;
1238 if (GET_CODE (dest
) == REG
&& REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1239 record_one_set (REGNO (dest
), record_set_insn
);
1242 /* Scan the function and record each set of each pseudo-register.
1244 This is called once, at the start of the gcse pass. See the comments for
1245 `reg_set_table' for further documentation. */
1248 compute_sets (rtx f
)
1252 for (insn
= f
; insn
!= 0; insn
= NEXT_INSN (insn
))
1254 note_stores (PATTERN (insn
), record_set_info
, insn
);
1257 /* Hash table support. */
1259 struct reg_avail_info
1261 basic_block last_bb
;
1266 static struct reg_avail_info
*reg_avail_info
;
1267 static basic_block current_bb
;
1270 /* See whether X, the source of a set, is something we want to consider for
1274 want_to_gcse_p (rtx x
)
1276 switch (GET_CODE (x
))
1284 case CONSTANT_P_RTX
:
1288 return can_assign_to_reg_p (x
);
1292 /* Used internally by can_assign_to_reg_p. */
1294 static GTY(()) rtx test_insn
;
1296 /* Return true if we can assign X to a pseudo register. */
1299 can_assign_to_reg_p (rtx x
)
1301 int num_clobbers
= 0;
1304 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1305 if (general_operand (x
, GET_MODE (x
)))
1307 else if (GET_MODE (x
) == VOIDmode
)
1310 /* Otherwise, check if we can make a valid insn from it. First initialize
1311 our test insn if we haven't already. */
1315 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1316 gen_rtx_REG (word_mode
,
1317 FIRST_PSEUDO_REGISTER
* 2),
1319 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1322 /* Now make an insn like the one we would make when GCSE'ing and see if
1324 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1325 SET_SRC (PATTERN (test_insn
)) = x
;
1326 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1327 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1330 /* Return nonzero if the operands of expression X are unchanged from the
1331 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1332 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1335 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1344 code
= GET_CODE (x
);
1349 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1351 if (info
->last_bb
!= current_bb
)
1354 return info
->last_set
< INSN_CUID (insn
);
1356 return info
->first_set
>= INSN_CUID (insn
);
1360 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1364 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1390 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1394 /* If we are about to do the last recursive call needed at this
1395 level, change it into iteration. This function is called enough
1398 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1400 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1403 else if (fmt
[i
] == 'E')
1404 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1405 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1412 /* Used for communication between mems_conflict_for_gcse_p and
1413 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1414 conflict between two memory references. */
1415 static int gcse_mems_conflict_p
;
1417 /* Used for communication between mems_conflict_for_gcse_p and
1418 load_killed_in_block_p. A memory reference for a load instruction,
1419 mems_conflict_for_gcse_p will see if a memory store conflicts with
1420 this memory load. */
1421 static rtx gcse_mem_operand
;
1423 /* DEST is the output of an instruction. If it is a memory reference, and
1424 possibly conflicts with the load found in gcse_mem_operand, then set
1425 gcse_mems_conflict_p to a nonzero value. */
1428 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1429 void *data ATTRIBUTE_UNUSED
)
1431 while (GET_CODE (dest
) == SUBREG
1432 || GET_CODE (dest
) == ZERO_EXTRACT
1433 || GET_CODE (dest
) == SIGN_EXTRACT
1434 || GET_CODE (dest
) == STRICT_LOW_PART
)
1435 dest
= XEXP (dest
, 0);
1437 /* If DEST is not a MEM, then it will not conflict with the load. Note
1438 that function calls are assumed to clobber memory, but are handled
1440 if (GET_CODE (dest
) != MEM
)
1443 /* If we are setting a MEM in our list of specially recognized MEMs,
1444 don't mark as killed this time. */
1446 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1448 if (!find_rtx_in_ldst (dest
))
1449 gcse_mems_conflict_p
= 1;
1453 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1455 gcse_mems_conflict_p
= 1;
1458 /* Return nonzero if the expression in X (a memory reference) is killed
1459 in block BB before or after the insn with the CUID in UID_LIMIT.
1460 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1463 To check the entire block, set UID_LIMIT to max_uid + 1 and
1467 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1469 rtx list_entry
= modify_mem_list
[bb
->index
];
1473 /* Ignore entries in the list that do not apply. */
1475 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1477 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1479 list_entry
= XEXP (list_entry
, 1);
1483 setter
= XEXP (list_entry
, 0);
1485 /* If SETTER is a call everything is clobbered. Note that calls
1486 to pure functions are never put on the list, so we need not
1487 worry about them. */
1488 if (GET_CODE (setter
) == CALL_INSN
)
1491 /* SETTER must be an INSN of some kind that sets memory. Call
1492 note_stores to examine each hunk of memory that is modified.
1494 The note_stores interface is pretty limited, so we have to
1495 communicate via global variables. Yuk. */
1496 gcse_mem_operand
= x
;
1497 gcse_mems_conflict_p
= 0;
1498 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1499 if (gcse_mems_conflict_p
)
1501 list_entry
= XEXP (list_entry
, 1);
1506 /* Return nonzero if the operands of expression X are unchanged from
1507 the start of INSN's basic block up to but not including INSN. */
1510 oprs_anticipatable_p (rtx x
, rtx insn
)
1512 return oprs_unchanged_p (x
, insn
, 0);
1515 /* Return nonzero if the operands of expression X are unchanged from
1516 INSN to the end of INSN's basic block. */
1519 oprs_available_p (rtx x
, rtx insn
)
1521 return oprs_unchanged_p (x
, insn
, 1);
1524 /* Hash expression X.
1526 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1527 indicating if a volatile operand is found or if the expression contains
1528 something we don't want to insert in the table. HASH_TABLE_SIZE is
1529 the current size of the hash table to be probed.
1531 ??? One might want to merge this with canon_hash. Later. */
1534 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1535 int hash_table_size
)
1539 *do_not_record_p
= 0;
1541 hash
= hash_expr_1 (x
, mode
, do_not_record_p
);
1542 return hash
% hash_table_size
;
1545 /* Hash a string. Just add its bytes up. */
1547 static inline unsigned
1548 hash_string_1 (const char *ps
)
1551 const unsigned char *p
= (const unsigned char *) ps
;
1560 /* Subroutine of hash_expr to do the actual work. */
1563 hash_expr_1 (rtx x
, enum machine_mode mode
, int *do_not_record_p
)
1570 /* Used to turn recursion into iteration. We can't rely on GCC's
1571 tail-recursion elimination since we need to keep accumulating values
1578 code
= GET_CODE (x
);
1582 hash
+= ((unsigned int) REG
<< 7) + REGNO (x
);
1586 hash
+= (((unsigned int) CONST_INT
<< 7) + (unsigned int) mode
1587 + (unsigned int) INTVAL (x
));
1591 /* This is like the general case, except that it only counts
1592 the integers representing the constant. */
1593 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1594 if (GET_MODE (x
) != VOIDmode
)
1595 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1596 hash
+= (unsigned int) XWINT (x
, i
);
1598 hash
+= ((unsigned int) CONST_DOUBLE_LOW (x
)
1599 + (unsigned int) CONST_DOUBLE_HIGH (x
));
1607 units
= CONST_VECTOR_NUNITS (x
);
1609 for (i
= 0; i
< units
; ++i
)
1611 elt
= CONST_VECTOR_ELT (x
, i
);
1612 hash
+= hash_expr_1 (elt
, GET_MODE (elt
), do_not_record_p
);
1618 /* Assume there is only one rtx object for any given label. */
1620 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1621 differences and differences between each stage's debugging dumps. */
1622 hash
+= (((unsigned int) LABEL_REF
<< 7)
1623 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
1628 /* Don't hash on the symbol's address to avoid bootstrap differences.
1629 Different hash values may cause expressions to be recorded in
1630 different orders and thus different registers to be used in the
1631 final assembler. This also avoids differences in the dump files
1632 between various stages. */
1634 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1637 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1639 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1644 if (MEM_VOLATILE_P (x
))
1646 *do_not_record_p
= 1;
1650 hash
+= (unsigned int) MEM
;
1651 /* We used alias set for hashing, but this is not good, since the alias
1652 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1653 causing the profiles to fail to match. */
1664 case UNSPEC_VOLATILE
:
1665 *do_not_record_p
= 1;
1669 if (MEM_VOLATILE_P (x
))
1671 *do_not_record_p
= 1;
1676 /* We don't want to take the filename and line into account. */
1677 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
1678 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x
))
1679 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
1680 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
1682 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1684 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
1686 hash
+= (hash_expr_1 (ASM_OPERANDS_INPUT (x
, i
),
1687 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)),
1689 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1693 hash
+= hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
1694 x
= ASM_OPERANDS_INPUT (x
, 0);
1695 mode
= GET_MODE (x
);
1705 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1706 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1710 /* If we are about to do the last recursive call
1711 needed at this level, change it into iteration.
1712 This function is called enough to be worth it. */
1719 hash
+= hash_expr_1 (XEXP (x
, i
), 0, do_not_record_p
);
1720 if (*do_not_record_p
)
1724 else if (fmt
[i
] == 'E')
1725 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1727 hash
+= hash_expr_1 (XVECEXP (x
, i
, j
), 0, do_not_record_p
);
1728 if (*do_not_record_p
)
1732 else if (fmt
[i
] == 's')
1733 hash
+= hash_string_1 (XSTR (x
, i
));
1734 else if (fmt
[i
] == 'i')
1735 hash
+= (unsigned int) XINT (x
, i
);
1743 /* Hash a set of register REGNO.
1745 Sets are hashed on the register that is set. This simplifies the PRE copy
1748 ??? May need to make things more elaborate. Later, as necessary. */
1751 hash_set (int regno
, int hash_table_size
)
1756 return hash
% hash_table_size
;
1759 /* Return nonzero if exp1 is equivalent to exp2.
1760 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1763 expr_equiv_p (rtx x
, rtx y
)
1772 if (x
== 0 || y
== 0)
1775 code
= GET_CODE (x
);
1776 if (code
!= GET_CODE (y
))
1779 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1780 if (GET_MODE (x
) != GET_MODE (y
))
1791 return XEXP (x
, 0) == XEXP (y
, 0);
1794 return XSTR (x
, 0) == XSTR (y
, 0);
1797 return REGNO (x
) == REGNO (y
);
1800 /* Can't merge two expressions in different alias sets, since we can
1801 decide that the expression is transparent in a block when it isn't,
1802 due to it being set with the different alias set. */
1803 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
1806 /* A volatile mem should not be considered equivalent to any other. */
1807 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
1811 /* For commutative operations, check both orders. */
1819 return ((expr_equiv_p (XEXP (x
, 0), XEXP (y
, 0))
1820 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 1)))
1821 || (expr_equiv_p (XEXP (x
, 0), XEXP (y
, 1))
1822 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 0))));
1825 /* We don't use the generic code below because we want to
1826 disregard filename and line numbers. */
1828 /* A volatile asm isn't equivalent to any other. */
1829 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
1832 if (GET_MODE (x
) != GET_MODE (y
)
1833 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
1834 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
1835 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
1836 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
1837 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
1840 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1842 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
1843 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
1844 ASM_OPERANDS_INPUT (y
, i
))
1845 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
1846 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
1856 /* Compare the elements. If any pair of corresponding elements
1857 fail to match, return 0 for the whole thing. */
1859 fmt
= GET_RTX_FORMAT (code
);
1860 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1865 if (! expr_equiv_p (XEXP (x
, i
), XEXP (y
, i
)))
1870 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1872 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1873 if (! expr_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1878 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1883 if (XINT (x
, i
) != XINT (y
, i
))
1888 if (XWINT (x
, i
) != XWINT (y
, i
))
1903 /* Insert expression X in INSN in the hash TABLE.
1904 If it is already present, record it as the last occurrence in INSN's
1907 MODE is the mode of the value X is being stored into.
1908 It is only used if X is a CONST_INT.
1910 ANTIC_P is nonzero if X is an anticipatable expression.
1911 AVAIL_P is nonzero if X is an available expression. */
1914 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1915 int avail_p
, struct hash_table
*table
)
1917 int found
, do_not_record_p
;
1919 struct expr
*cur_expr
, *last_expr
= NULL
;
1920 struct occr
*antic_occr
, *avail_occr
;
1921 struct occr
*last_occr
= NULL
;
1923 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1925 /* Do not insert expression in table if it contains volatile operands,
1926 or if hash_expr determines the expression is something we don't want
1927 to or can't handle. */
1928 if (do_not_record_p
)
1931 cur_expr
= table
->table
[hash
];
1934 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1936 /* If the expression isn't found, save a pointer to the end of
1938 last_expr
= cur_expr
;
1939 cur_expr
= cur_expr
->next_same_hash
;
1944 cur_expr
= gcse_alloc (sizeof (struct expr
));
1945 bytes_used
+= sizeof (struct expr
);
1946 if (table
->table
[hash
] == NULL
)
1947 /* This is the first pattern that hashed to this index. */
1948 table
->table
[hash
] = cur_expr
;
1950 /* Add EXPR to end of this hash chain. */
1951 last_expr
->next_same_hash
= cur_expr
;
1953 /* Set the fields of the expr element. */
1955 cur_expr
->bitmap_index
= table
->n_elems
++;
1956 cur_expr
->next_same_hash
= NULL
;
1957 cur_expr
->antic_occr
= NULL
;
1958 cur_expr
->avail_occr
= NULL
;
1961 /* Now record the occurrence(s). */
1964 antic_occr
= cur_expr
->antic_occr
;
1966 /* Search for another occurrence in the same basic block. */
1967 while (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1969 /* If an occurrence isn't found, save a pointer to the end of
1971 last_occr
= antic_occr
;
1972 antic_occr
= antic_occr
->next
;
1976 /* Found another instance of the expression in the same basic block.
1977 Prefer the currently recorded one. We want the first one in the
1978 block and the block is scanned from start to end. */
1979 ; /* nothing to do */
1982 /* First occurrence of this expression in this basic block. */
1983 antic_occr
= gcse_alloc (sizeof (struct occr
));
1984 bytes_used
+= sizeof (struct occr
);
1985 /* First occurrence of this expression in any block? */
1986 if (cur_expr
->antic_occr
== NULL
)
1987 cur_expr
->antic_occr
= antic_occr
;
1989 last_occr
->next
= antic_occr
;
1991 antic_occr
->insn
= insn
;
1992 antic_occr
->next
= NULL
;
1993 antic_occr
->deleted_p
= 0;
1999 avail_occr
= cur_expr
->avail_occr
;
2001 /* Search for another occurrence in the same basic block. */
2002 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
2004 /* If an occurrence isn't found, save a pointer to the end of
2006 last_occr
= avail_occr
;
2007 avail_occr
= avail_occr
->next
;
2011 /* Found another instance of the expression in the same basic block.
2012 Prefer this occurrence to the currently recorded one. We want
2013 the last one in the block and the block is scanned from start
2015 avail_occr
->insn
= insn
;
2018 /* First occurrence of this expression in this basic block. */
2019 avail_occr
= gcse_alloc (sizeof (struct occr
));
2020 bytes_used
+= sizeof (struct occr
);
2022 /* First occurrence of this expression in any block? */
2023 if (cur_expr
->avail_occr
== NULL
)
2024 cur_expr
->avail_occr
= avail_occr
;
2026 last_occr
->next
= avail_occr
;
2028 avail_occr
->insn
= insn
;
2029 avail_occr
->next
= NULL
;
2030 avail_occr
->deleted_p
= 0;
2035 /* Insert pattern X in INSN in the hash table.
2036 X is a SET of a reg to either another reg or a constant.
2037 If it is already present, record it as the last occurrence in INSN's
2041 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
2045 struct expr
*cur_expr
, *last_expr
= NULL
;
2046 struct occr
*cur_occr
, *last_occr
= NULL
;
2048 if (GET_CODE (x
) != SET
2049 || GET_CODE (SET_DEST (x
)) != REG
)
2052 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
2054 cur_expr
= table
->table
[hash
];
2057 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
2059 /* If the expression isn't found, save a pointer to the end of
2061 last_expr
= cur_expr
;
2062 cur_expr
= cur_expr
->next_same_hash
;
2067 cur_expr
= gcse_alloc (sizeof (struct expr
));
2068 bytes_used
+= sizeof (struct expr
);
2069 if (table
->table
[hash
] == NULL
)
2070 /* This is the first pattern that hashed to this index. */
2071 table
->table
[hash
] = cur_expr
;
2073 /* Add EXPR to end of this hash chain. */
2074 last_expr
->next_same_hash
= cur_expr
;
2076 /* Set the fields of the expr element.
2077 We must copy X because it can be modified when copy propagation is
2078 performed on its operands. */
2079 cur_expr
->expr
= copy_rtx (x
);
2080 cur_expr
->bitmap_index
= table
->n_elems
++;
2081 cur_expr
->next_same_hash
= NULL
;
2082 cur_expr
->antic_occr
= NULL
;
2083 cur_expr
->avail_occr
= NULL
;
2086 /* Now record the occurrence. */
2087 cur_occr
= cur_expr
->avail_occr
;
2089 /* Search for another occurrence in the same basic block. */
2090 while (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) != BLOCK_NUM (insn
))
2092 /* If an occurrence isn't found, save a pointer to the end of
2094 last_occr
= cur_occr
;
2095 cur_occr
= cur_occr
->next
;
2099 /* Found another instance of the expression in the same basic block.
2100 Prefer this occurrence to the currently recorded one. We want the
2101 last one in the block and the block is scanned from start to end. */
2102 cur_occr
->insn
= insn
;
2105 /* First occurrence of this expression in this basic block. */
2106 cur_occr
= gcse_alloc (sizeof (struct occr
));
2107 bytes_used
+= sizeof (struct occr
);
2109 /* First occurrence of this expression in any block? */
2110 if (cur_expr
->avail_occr
== NULL
)
2111 cur_expr
->avail_occr
= cur_occr
;
2113 last_occr
->next
= cur_occr
;
2115 cur_occr
->insn
= insn
;
2116 cur_occr
->next
= NULL
;
2117 cur_occr
->deleted_p
= 0;
2121 /* Determine whether the rtx X should be treated as a constant for
2122 the purposes of GCSE's constant propagation. */
2125 gcse_constant_p (rtx x
)
2127 /* Consider a COMPARE of two integers constant. */
2128 if (GET_CODE (x
) == COMPARE
2129 && GET_CODE (XEXP (x
, 0)) == CONST_INT
2130 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
2134 /* Consider a COMPARE of the same registers is a constant
2135 if they are not floating point registers. */
2136 if (GET_CODE(x
) == COMPARE
2137 && GET_CODE (XEXP (x
, 0)) == REG
2138 && GET_CODE (XEXP (x
, 1)) == REG
2139 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
2140 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
2141 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
2144 if (GET_CODE (x
) == CONSTANT_P_RTX
)
2147 return CONSTANT_P (x
);
2150 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2154 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
2156 rtx src
= SET_SRC (pat
);
2157 rtx dest
= SET_DEST (pat
);
2160 if (GET_CODE (src
) == CALL
)
2161 hash_scan_call (src
, insn
, table
);
2163 else if (GET_CODE (dest
) == REG
)
2165 unsigned int regno
= REGNO (dest
);
2168 /* If this is a single set and we are doing constant propagation,
2169 see if a REG_NOTE shows this equivalent to a constant. */
2170 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
2171 && gcse_constant_p (XEXP (note
, 0)))
2172 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
2174 /* Only record sets of pseudo-regs in the hash table. */
2176 && regno
>= FIRST_PSEUDO_REGISTER
2177 /* Don't GCSE something if we can't do a reg/reg copy. */
2178 && can_copy_p (GET_MODE (dest
))
2179 /* GCSE commonly inserts instruction after the insn. We can't
2180 do that easily for EH_REGION notes so disable GCSE on these
2182 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
2183 /* Is SET_SRC something we want to gcse? */
2184 && want_to_gcse_p (src
)
2185 /* Don't CSE a nop. */
2186 && ! set_noop_p (pat
)
2187 /* Don't GCSE if it has attached REG_EQUIV note.
2188 At this point this only function parameters should have
2189 REG_EQUIV notes and if the argument slot is used somewhere
2190 explicitly, it means address of parameter has been taken,
2191 so we should not extend the lifetime of the pseudo. */
2192 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
2193 || GET_CODE (XEXP (note
, 0)) != MEM
))
2195 /* An expression is not anticipatable if its operands are
2196 modified before this insn or if this is not the only SET in
2198 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
2199 /* An expression is not available if its operands are
2200 subsequently modified, including this insn. It's also not
2201 available if this is a branch, because we can't insert
2202 a set after the branch. */
2203 int avail_p
= (oprs_available_p (src
, insn
)
2204 && ! JUMP_P (insn
));
2206 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
2209 /* Record sets for constant/copy propagation. */
2210 else if (table
->set_p
2211 && regno
>= FIRST_PSEUDO_REGISTER
2212 && ((GET_CODE (src
) == REG
2213 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2214 && can_copy_p (GET_MODE (dest
))
2215 && REGNO (src
) != regno
)
2216 || gcse_constant_p (src
))
2217 /* A copy is not available if its src or dest is subsequently
2218 modified. Here we want to search from INSN+1 on, but
2219 oprs_available_p searches from INSN on. */
2220 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
2221 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
2222 && oprs_available_p (pat
, tmp
))))
2223 insert_set_in_table (pat
, insn
, table
);
2225 /* In case of store we want to consider the memory value as available in
2226 the REG stored in that memory. This makes it possible to remove
2227 redundant loads from due to stores to the same location. */
2228 else if (flag_gcse_las
&& GET_CODE (src
) == REG
&& GET_CODE (dest
) == MEM
)
2230 unsigned int regno
= REGNO (src
);
2232 /* Do not do this for constant/copy propagation. */
2234 /* Only record sets of pseudo-regs in the hash table. */
2235 && regno
>= FIRST_PSEUDO_REGISTER
2236 /* Don't GCSE something if we can't do a reg/reg copy. */
2237 && can_copy_p (GET_MODE (src
))
2238 /* GCSE commonly inserts instruction after the insn. We can't
2239 do that easily for EH_REGION notes so disable GCSE on these
2241 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
2242 /* Is SET_DEST something we want to gcse? */
2243 && want_to_gcse_p (dest
)
2244 /* Don't CSE a nop. */
2245 && ! set_noop_p (pat
)
2246 /* Don't GCSE if it has attached REG_EQUIV note.
2247 At this point this only function parameters should have
2248 REG_EQUIV notes and if the argument slot is used somewhere
2249 explicitly, it means address of parameter has been taken,
2250 so we should not extend the lifetime of the pseudo. */
2251 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
2252 || GET_CODE (XEXP (note
, 0)) != MEM
))
2254 /* Stores are never anticipatable. */
2256 /* An expression is not available if its operands are
2257 subsequently modified, including this insn. It's also not
2258 available if this is a branch, because we can't insert
2259 a set after the branch. */
2260 int avail_p
= oprs_available_p (dest
, insn
)
2263 /* Record the memory expression (DEST) in the hash table. */
2264 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
2265 antic_p
, avail_p
, table
);
2271 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
2272 struct hash_table
*table ATTRIBUTE_UNUSED
)
2274 /* Currently nothing to do. */
2278 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
2279 struct hash_table
*table ATTRIBUTE_UNUSED
)
2281 /* Currently nothing to do. */
2284 /* Process INSN and add hash table entries as appropriate.
2286 Only available expressions that set a single pseudo-reg are recorded.
2288 Single sets in a PARALLEL could be handled, but it's an extra complication
2289 that isn't dealt with right now. The trick is handling the CLOBBERs that
2290 are also in the PARALLEL. Later.
2292 If SET_P is nonzero, this is for the assignment hash table,
2293 otherwise it is for the expression hash table.
2294 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2295 not record any expressions. */
2298 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
2300 rtx pat
= PATTERN (insn
);
2303 if (in_libcall_block
)
2306 /* Pick out the sets of INSN and for other forms of instructions record
2307 what's been modified. */
2309 if (GET_CODE (pat
) == SET
)
2310 hash_scan_set (pat
, insn
, table
);
2311 else if (GET_CODE (pat
) == PARALLEL
)
2312 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2314 rtx x
= XVECEXP (pat
, 0, i
);
2316 if (GET_CODE (x
) == SET
)
2317 hash_scan_set (x
, insn
, table
);
2318 else if (GET_CODE (x
) == CLOBBER
)
2319 hash_scan_clobber (x
, insn
, table
);
2320 else if (GET_CODE (x
) == CALL
)
2321 hash_scan_call (x
, insn
, table
);
2324 else if (GET_CODE (pat
) == CLOBBER
)
2325 hash_scan_clobber (pat
, insn
, table
);
2326 else if (GET_CODE (pat
) == CALL
)
2327 hash_scan_call (pat
, insn
, table
);
2331 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
2334 /* Flattened out table, so it's printed in proper order. */
2335 struct expr
**flat_table
;
2336 unsigned int *hash_val
;
2339 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
2340 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
2342 for (i
= 0; i
< (int) table
->size
; i
++)
2343 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2345 flat_table
[expr
->bitmap_index
] = expr
;
2346 hash_val
[expr
->bitmap_index
] = i
;
2349 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
2350 name
, table
->size
, table
->n_elems
);
2352 for (i
= 0; i
< (int) table
->n_elems
; i
++)
2353 if (flat_table
[i
] != 0)
2355 expr
= flat_table
[i
];
2356 fprintf (file
, "Index %d (hash value %d)\n ",
2357 expr
->bitmap_index
, hash_val
[i
]);
2358 print_rtl (file
, expr
->expr
);
2359 fprintf (file
, "\n");
2362 fprintf (file
, "\n");
2368 /* Record register first/last/block set information for REGNO in INSN.
2370 first_set records the first place in the block where the register
2371 is set and is used to compute "anticipatability".
2373 last_set records the last place in the block where the register
2374 is set and is used to compute "availability".
2376 last_bb records the block for which first_set and last_set are
2377 valid, as a quick test to invalidate them.
2379 reg_set_in_block records whether the register is set in the block
2380 and is used to compute "transparency". */
2383 record_last_reg_set_info (rtx insn
, int regno
)
2385 struct reg_avail_info
*info
= ®_avail_info
[regno
];
2386 int cuid
= INSN_CUID (insn
);
2388 info
->last_set
= cuid
;
2389 if (info
->last_bb
!= current_bb
)
2391 info
->last_bb
= current_bb
;
2392 info
->first_set
= cuid
;
2393 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
2398 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2399 Note we store a pair of elements in the list, so they have to be
2400 taken off pairwise. */
2403 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
2406 rtx dest_addr
, insn
;
2409 while (GET_CODE (dest
) == SUBREG
2410 || GET_CODE (dest
) == ZERO_EXTRACT
2411 || GET_CODE (dest
) == SIGN_EXTRACT
2412 || GET_CODE (dest
) == STRICT_LOW_PART
)
2413 dest
= XEXP (dest
, 0);
2415 /* If DEST is not a MEM, then it will not conflict with a load. Note
2416 that function calls are assumed to clobber memory, but are handled
2419 if (GET_CODE (dest
) != MEM
)
2422 dest_addr
= get_addr (XEXP (dest
, 0));
2423 dest_addr
= canon_rtx (dest_addr
);
2424 insn
= (rtx
) v_insn
;
2425 bb
= BLOCK_NUM (insn
);
2427 canon_modify_mem_list
[bb
] =
2428 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
2429 canon_modify_mem_list
[bb
] =
2430 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
2431 bitmap_set_bit (canon_modify_mem_list_set
, bb
);
2434 /* Record memory modification information for INSN. We do not actually care
2435 about the memory location(s) that are set, or even how they are set (consider
2436 a CALL_INSN). We merely need to record which insns modify memory. */
2439 record_last_mem_set_info (rtx insn
)
2441 int bb
= BLOCK_NUM (insn
);
2443 /* load_killed_in_block_p will handle the case of calls clobbering
2445 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
2446 bitmap_set_bit (modify_mem_list_set
, bb
);
2448 if (GET_CODE (insn
) == CALL_INSN
)
2450 /* Note that traversals of this loop (other than for free-ing)
2451 will break after encountering a CALL_INSN. So, there's no
2452 need to insert a pair of items, as canon_list_insert does. */
2453 canon_modify_mem_list
[bb
] =
2454 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
2455 bitmap_set_bit (canon_modify_mem_list_set
, bb
);
2458 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
2461 /* Called from compute_hash_table via note_stores to handle one
2462 SET or CLOBBER in an insn. DATA is really the instruction in which
2463 the SET is taking place. */
2466 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
2468 rtx last_set_insn
= (rtx
) data
;
2470 if (GET_CODE (dest
) == SUBREG
)
2471 dest
= SUBREG_REG (dest
);
2473 if (GET_CODE (dest
) == REG
)
2474 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2475 else if (GET_CODE (dest
) == MEM
2476 /* Ignore pushes, they clobber nothing. */
2477 && ! push_operand (dest
, GET_MODE (dest
)))
2478 record_last_mem_set_info (last_set_insn
);
2481 /* Top level function to create an expression or assignment hash table.
2483 Expression entries are placed in the hash table if
2484 - they are of the form (set (pseudo-reg) src),
2485 - src is something we want to perform GCSE on,
2486 - none of the operands are subsequently modified in the block
2488 Assignment entries are placed in the hash table if
2489 - they are of the form (set (pseudo-reg) src),
2490 - src is something we want to perform const/copy propagation on,
2491 - none of the operands or target are subsequently modified in the block
2493 Currently src must be a pseudo-reg or a const_int.
2495 TABLE is the table computed. */
2498 compute_hash_table_work (struct hash_table
*table
)
2502 /* While we compute the hash table we also compute a bit array of which
2503 registers are set in which blocks.
2504 ??? This isn't needed during const/copy propagation, but it's cheap to
2506 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2508 /* re-Cache any INSN_LIST nodes we have allocated. */
2509 clear_modify_mem_tables ();
2510 /* Some working arrays used to track first and last set in each block. */
2511 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2513 for (i
= 0; i
< max_gcse_regno
; ++i
)
2514 reg_avail_info
[i
].last_bb
= NULL
;
2516 FOR_EACH_BB (current_bb
)
2520 int in_libcall_block
;
2522 /* First pass over the instructions records information used to
2523 determine when registers and memory are first and last set.
2524 ??? hard-reg reg_set_in_block computation
2525 could be moved to compute_sets since they currently don't change. */
2527 for (insn
= BB_HEAD (current_bb
);
2528 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2529 insn
= NEXT_INSN (insn
))
2531 if (! INSN_P (insn
))
2534 if (GET_CODE (insn
) == CALL_INSN
)
2536 bool clobbers_all
= false;
2537 #ifdef NON_SAVING_SETJMP
2538 if (NON_SAVING_SETJMP
2539 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
2540 clobbers_all
= true;
2543 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2545 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2546 record_last_reg_set_info (insn
, regno
);
2551 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2554 /* Insert implicit sets in the hash table. */
2556 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2557 hash_scan_set (implicit_sets
[current_bb
->index
],
2558 BB_HEAD (current_bb
), table
);
2560 /* The next pass builds the hash table. */
2562 for (insn
= BB_HEAD (current_bb
), in_libcall_block
= 0;
2563 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2564 insn
= NEXT_INSN (insn
))
2567 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2568 in_libcall_block
= 1;
2569 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2570 in_libcall_block
= 0;
2571 hash_scan_insn (insn
, table
, in_libcall_block
);
2572 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2573 in_libcall_block
= 0;
2577 free (reg_avail_info
);
2578 reg_avail_info
= NULL
;
2581 /* Allocate space for the set/expr hash TABLE.
2582 N_INSNS is the number of instructions in the function.
2583 It is used to determine the number of buckets to use.
2584 SET_P determines whether set or expression table will
2588 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2592 table
->size
= n_insns
/ 4;
2593 if (table
->size
< 11)
2596 /* Attempt to maintain efficient use of hash table.
2597 Making it an odd number is simplest for now.
2598 ??? Later take some measurements. */
2600 n
= table
->size
* sizeof (struct expr
*);
2601 table
->table
= gmalloc (n
);
2602 table
->set_p
= set_p
;
2605 /* Free things allocated by alloc_hash_table. */
2608 free_hash_table (struct hash_table
*table
)
2610 free (table
->table
);
2613 /* Compute the hash TABLE for doing copy/const propagation or
2614 expression hash table. */
2617 compute_hash_table (struct hash_table
*table
)
2619 /* Initialize count of number of entries in hash table. */
2621 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2623 compute_hash_table_work (table
);
2626 /* Expression tracking support. */
2628 /* Lookup pattern PAT in the expression TABLE.
2629 The result is a pointer to the table entry, or NULL if not found. */
2631 static struct expr
*
2632 lookup_expr (rtx pat
, struct hash_table
*table
)
2634 int do_not_record_p
;
2635 unsigned int hash
= hash_expr (pat
, GET_MODE (pat
), &do_not_record_p
,
2639 if (do_not_record_p
)
2642 expr
= table
->table
[hash
];
2644 while (expr
&& ! expr_equiv_p (expr
->expr
, pat
))
2645 expr
= expr
->next_same_hash
;
2650 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2651 table entry, or NULL if not found. */
2653 static struct expr
*
2654 lookup_set (unsigned int regno
, struct hash_table
*table
)
2656 unsigned int hash
= hash_set (regno
, table
->size
);
2659 expr
= table
->table
[hash
];
2661 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2662 expr
= expr
->next_same_hash
;
2667 /* Return the next entry for REGNO in list EXPR. */
2669 static struct expr
*
2670 next_set (unsigned int regno
, struct expr
*expr
)
2673 expr
= expr
->next_same_hash
;
2674 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2679 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2680 types may be mixed. */
2683 free_insn_expr_list_list (rtx
*listp
)
2687 for (list
= *listp
; list
; list
= next
)
2689 next
= XEXP (list
, 1);
2690 if (GET_CODE (list
) == EXPR_LIST
)
2691 free_EXPR_LIST_node (list
);
2693 free_INSN_LIST_node (list
);
2699 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2701 clear_modify_mem_tables (void)
2705 EXECUTE_IF_SET_IN_BITMAP
2706 (modify_mem_list_set
, 0, i
, free_INSN_LIST_list (modify_mem_list
+ i
));
2707 bitmap_clear (modify_mem_list_set
);
2709 EXECUTE_IF_SET_IN_BITMAP
2710 (canon_modify_mem_list_set
, 0, i
,
2711 free_insn_expr_list_list (canon_modify_mem_list
+ i
));
2712 bitmap_clear (canon_modify_mem_list_set
);
2715 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2718 free_modify_mem_tables (void)
2720 clear_modify_mem_tables ();
2721 free (modify_mem_list
);
2722 free (canon_modify_mem_list
);
2723 modify_mem_list
= 0;
2724 canon_modify_mem_list
= 0;
2727 /* Reset tables used to keep track of what's still available [since the
2728 start of the block]. */
2731 reset_opr_set_tables (void)
2733 /* Maintain a bitmap of which regs have been set since beginning of
2735 CLEAR_REG_SET (reg_set_bitmap
);
2737 /* Also keep a record of the last instruction to modify memory.
2738 For now this is very trivial, we only record whether any memory
2739 location has been modified. */
2740 clear_modify_mem_tables ();
2743 /* Return nonzero if the operands of X are not set before INSN in
2744 INSN's basic block. */
2747 oprs_not_set_p (rtx x
, rtx insn
)
2756 code
= GET_CODE (x
);
2772 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2773 INSN_CUID (insn
), x
, 0))
2776 return oprs_not_set_p (XEXP (x
, 0), insn
);
2779 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2785 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2789 /* If we are about to do the last recursive call
2790 needed at this level, change it into iteration.
2791 This function is called enough to be worth it. */
2793 return oprs_not_set_p (XEXP (x
, i
), insn
);
2795 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2798 else if (fmt
[i
] == 'E')
2799 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2800 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2807 /* Mark things set by a CALL. */
2810 mark_call (rtx insn
)
2812 if (! CONST_OR_PURE_CALL_P (insn
))
2813 record_last_mem_set_info (insn
);
2816 /* Mark things set by a SET. */
2819 mark_set (rtx pat
, rtx insn
)
2821 rtx dest
= SET_DEST (pat
);
2823 while (GET_CODE (dest
) == SUBREG
2824 || GET_CODE (dest
) == ZERO_EXTRACT
2825 || GET_CODE (dest
) == SIGN_EXTRACT
2826 || GET_CODE (dest
) == STRICT_LOW_PART
)
2827 dest
= XEXP (dest
, 0);
2829 if (GET_CODE (dest
) == REG
)
2830 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2831 else if (GET_CODE (dest
) == MEM
)
2832 record_last_mem_set_info (insn
);
2834 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2838 /* Record things set by a CLOBBER. */
2841 mark_clobber (rtx pat
, rtx insn
)
2843 rtx clob
= XEXP (pat
, 0);
2845 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2846 clob
= XEXP (clob
, 0);
2848 if (GET_CODE (clob
) == REG
)
2849 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2851 record_last_mem_set_info (insn
);
2854 /* Record things set by INSN.
2855 This data is used by oprs_not_set_p. */
2858 mark_oprs_set (rtx insn
)
2860 rtx pat
= PATTERN (insn
);
2863 if (GET_CODE (pat
) == SET
)
2864 mark_set (pat
, insn
);
2865 else if (GET_CODE (pat
) == PARALLEL
)
2866 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2868 rtx x
= XVECEXP (pat
, 0, i
);
2870 if (GET_CODE (x
) == SET
)
2872 else if (GET_CODE (x
) == CLOBBER
)
2873 mark_clobber (x
, insn
);
2874 else if (GET_CODE (x
) == CALL
)
2878 else if (GET_CODE (pat
) == CLOBBER
)
2879 mark_clobber (pat
, insn
);
2880 else if (GET_CODE (pat
) == CALL
)
2885 /* Classic GCSE reaching definition support. */
2887 /* Allocate reaching def variables. */
2890 alloc_rd_mem (int n_blocks
, int n_insns
)
2892 rd_kill
= sbitmap_vector_alloc (n_blocks
, n_insns
);
2893 sbitmap_vector_zero (rd_kill
, n_blocks
);
2895 rd_gen
= sbitmap_vector_alloc (n_blocks
, n_insns
);
2896 sbitmap_vector_zero (rd_gen
, n_blocks
);
2898 reaching_defs
= sbitmap_vector_alloc (n_blocks
, n_insns
);
2899 sbitmap_vector_zero (reaching_defs
, n_blocks
);
2901 rd_out
= sbitmap_vector_alloc (n_blocks
, n_insns
);
2902 sbitmap_vector_zero (rd_out
, n_blocks
);
2905 /* Free reaching def variables. */
2910 sbitmap_vector_free (rd_kill
);
2911 sbitmap_vector_free (rd_gen
);
2912 sbitmap_vector_free (reaching_defs
);
2913 sbitmap_vector_free (rd_out
);
2916 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2919 handle_rd_kill_set (rtx insn
, int regno
, basic_block bb
)
2921 struct reg_set
*this_reg
;
2923 for (this_reg
= reg_set_table
[regno
]; this_reg
; this_reg
= this_reg
->next
)
2924 if (BLOCK_NUM (this_reg
->insn
) != BLOCK_NUM (insn
))
2925 SET_BIT (rd_kill
[bb
->index
], INSN_CUID (this_reg
->insn
));
2928 /* Compute the set of kill's for reaching definitions. */
2931 compute_kill_rd (void)
2939 For each set bit in `gen' of the block (i.e each insn which
2940 generates a definition in the block)
2941 Call the reg set by the insn corresponding to that bit regx
2942 Look at the linked list starting at reg_set_table[regx]
2943 For each setting of regx in the linked list, which is not in
2945 Set the bit in `kill' corresponding to that insn. */
2947 for (cuid
= 0; cuid
< max_cuid
; cuid
++)
2948 if (TEST_BIT (rd_gen
[bb
->index
], cuid
))
2950 rtx insn
= CUID_INSN (cuid
);
2951 rtx pat
= PATTERN (insn
);
2953 if (GET_CODE (insn
) == CALL_INSN
)
2955 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2957 handle_rd_kill_set (insn
, regno
, bb
);
2960 if (GET_CODE (pat
) == PARALLEL
)
2962 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
2964 enum rtx_code code
= GET_CODE (XVECEXP (pat
, 0, i
));
2966 if ((code
== SET
|| code
== CLOBBER
)
2967 && GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0)) == REG
)
2968 handle_rd_kill_set (insn
,
2969 REGNO (XEXP (XVECEXP (pat
, 0, i
), 0)),
2973 else if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == REG
)
2974 /* Each setting of this register outside of this block
2975 must be marked in the set of kills in this block. */
2976 handle_rd_kill_set (insn
, REGNO (SET_DEST (pat
)), bb
);
2980 /* Compute the reaching definitions as in
2981 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2982 Chapter 10. It is the same algorithm as used for computing available
2983 expressions but applied to the gens and kills of reaching definitions. */
2988 int changed
, passes
;
2992 sbitmap_copy (rd_out
[bb
->index
] /*dst*/, rd_gen
[bb
->index
] /*src*/);
3001 sbitmap_union_of_preds (reaching_defs
[bb
->index
], rd_out
, bb
->index
);
3002 changed
|= sbitmap_union_of_diff_cg (rd_out
[bb
->index
], rd_gen
[bb
->index
],
3003 reaching_defs
[bb
->index
], rd_kill
[bb
->index
]);
3009 fprintf (gcse_file
, "reaching def computation: %d passes\n", passes
);
3012 /* Classic GCSE available expression support. */
3014 /* Allocate memory for available expression computation. */
3017 alloc_avail_expr_mem (int n_blocks
, int n_exprs
)
3019 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3020 sbitmap_vector_zero (ae_kill
, n_blocks
);
3022 ae_gen
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3023 sbitmap_vector_zero (ae_gen
, n_blocks
);
3025 ae_in
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3026 sbitmap_vector_zero (ae_in
, n_blocks
);
3028 ae_out
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3029 sbitmap_vector_zero (ae_out
, n_blocks
);
3033 free_avail_expr_mem (void)
3035 sbitmap_vector_free (ae_kill
);
3036 sbitmap_vector_free (ae_gen
);
3037 sbitmap_vector_free (ae_in
);
3038 sbitmap_vector_free (ae_out
);
3041 /* Compute the set of available expressions generated in each basic block. */
3044 compute_ae_gen (struct hash_table
*expr_hash_table
)
3050 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3051 This is all we have to do because an expression is not recorded if it
3052 is not available, and the only expressions we want to work with are the
3053 ones that are recorded. */
3054 for (i
= 0; i
< expr_hash_table
->size
; i
++)
3055 for (expr
= expr_hash_table
->table
[i
]; expr
!= 0; expr
= expr
->next_same_hash
)
3056 for (occr
= expr
->avail_occr
; occr
!= 0; occr
= occr
->next
)
3057 SET_BIT (ae_gen
[BLOCK_NUM (occr
->insn
)], expr
->bitmap_index
);
3060 /* Return nonzero if expression X is killed in BB. */
3063 expr_killed_p (rtx x
, basic_block bb
)
3072 code
= GET_CODE (x
);
3076 return TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
));
3079 if (load_killed_in_block_p (bb
, get_max_uid () + 1, x
, 0))
3082 return expr_killed_p (XEXP (x
, 0), bb
);
3100 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3104 /* If we are about to do the last recursive call
3105 needed at this level, change it into iteration.
3106 This function is called enough to be worth it. */
3108 return expr_killed_p (XEXP (x
, i
), bb
);
3109 else if (expr_killed_p (XEXP (x
, i
), bb
))
3112 else if (fmt
[i
] == 'E')
3113 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3114 if (expr_killed_p (XVECEXP (x
, i
, j
), bb
))
3121 /* Compute the set of available expressions killed in each basic block. */
3124 compute_ae_kill (sbitmap
*ae_gen
, sbitmap
*ae_kill
,
3125 struct hash_table
*expr_hash_table
)
3132 for (i
= 0; i
< expr_hash_table
->size
; i
++)
3133 for (expr
= expr_hash_table
->table
[i
]; expr
; expr
= expr
->next_same_hash
)
3135 /* Skip EXPR if generated in this block. */
3136 if (TEST_BIT (ae_gen
[bb
->index
], expr
->bitmap_index
))
3139 if (expr_killed_p (expr
->expr
, bb
))
3140 SET_BIT (ae_kill
[bb
->index
], expr
->bitmap_index
);
3144 /* Actually perform the Classic GCSE optimizations. */
3146 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3148 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3149 as a positive reach. We want to do this when there are two computations
3150 of the expression in the block.
3152 VISITED is a pointer to a working buffer for tracking which BB's have
3153 been visited. It is NULL for the top-level call.
3155 We treat reaching expressions that go through blocks containing the same
3156 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3157 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3158 2 as not reaching. The intent is to improve the probability of finding
3159 only one reaching expression and to reduce register lifetimes by picking
3160 the closest such expression. */
3163 expr_reaches_here_p_work (struct occr
*occr
, struct expr
*expr
,
3164 basic_block bb
, int check_self_loop
, char *visited
)
3168 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
3170 basic_block pred_bb
= pred
->src
;
3172 if (visited
[pred_bb
->index
])
3173 /* This predecessor has already been visited. Nothing to do. */
3175 else if (pred_bb
== bb
)
3177 /* BB loops on itself. */
3179 && TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
)
3180 && BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3183 visited
[pred_bb
->index
] = 1;
3186 /* Ignore this predecessor if it kills the expression. */
3187 else if (TEST_BIT (ae_kill
[pred_bb
->index
], expr
->bitmap_index
))
3188 visited
[pred_bb
->index
] = 1;
3190 /* Does this predecessor generate this expression? */
3191 else if (TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
))
3193 /* Is this the occurrence we're looking for?
3194 Note that there's only one generating occurrence per block
3195 so we just need to check the block number. */
3196 if (BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3199 visited
[pred_bb
->index
] = 1;
3202 /* Neither gen nor kill. */
3205 visited
[pred_bb
->index
] = 1;
3206 if (expr_reaches_here_p_work (occr
, expr
, pred_bb
, check_self_loop
,
3213 /* All paths have been checked. */
3217 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3218 memory allocated for that function is returned. */
3221 expr_reaches_here_p (struct occr
*occr
, struct expr
*expr
, basic_block bb
,
3222 int check_self_loop
)
3225 char *visited
= xcalloc (last_basic_block
, 1);
3227 rval
= expr_reaches_here_p_work (occr
, expr
, bb
, check_self_loop
, visited
);
3233 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3234 If there is more than one such instruction, return NULL.
3236 Called only by handle_avail_expr. */
3239 computing_insn (struct expr
*expr
, rtx insn
)
3241 basic_block bb
= BLOCK_FOR_INSN (insn
);
3243 if (expr
->avail_occr
->next
== NULL
)
3245 if (BLOCK_FOR_INSN (expr
->avail_occr
->insn
) == bb
)
3246 /* The available expression is actually itself
3247 (i.e. a loop in the flow graph) so do nothing. */
3250 /* (FIXME) Case that we found a pattern that was created by
3251 a substitution that took place. */
3252 return expr
->avail_occr
->insn
;
3256 /* Pattern is computed more than once.
3257 Search backwards from this insn to see how many of these
3258 computations actually reach this insn. */
3260 rtx insn_computes_expr
= NULL
;
3263 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
3265 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
3267 /* The expression is generated in this block.
3268 The only time we care about this is when the expression
3269 is generated later in the block [and thus there's a loop].
3270 We let the normal cse pass handle the other cases. */
3271 if (INSN_CUID (insn
) < INSN_CUID (occr
->insn
)
3272 && expr_reaches_here_p (occr
, expr
, bb
, 1))
3278 insn_computes_expr
= occr
->insn
;
3281 else if (expr_reaches_here_p (occr
, expr
, bb
, 0))
3287 insn_computes_expr
= occr
->insn
;
3291 if (insn_computes_expr
== NULL
)
3294 return insn_computes_expr
;
3298 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3299 Only called by can_disregard_other_sets. */
3302 def_reaches_here_p (rtx insn
, rtx def_insn
)
3306 if (TEST_BIT (reaching_defs
[BLOCK_NUM (insn
)], INSN_CUID (def_insn
)))
3309 if (BLOCK_NUM (insn
) == BLOCK_NUM (def_insn
))
3311 if (INSN_CUID (def_insn
) < INSN_CUID (insn
))
3313 if (GET_CODE (PATTERN (def_insn
)) == PARALLEL
)
3315 else if (GET_CODE (PATTERN (def_insn
)) == CLOBBER
)
3316 reg
= XEXP (PATTERN (def_insn
), 0);
3317 else if (GET_CODE (PATTERN (def_insn
)) == SET
)
3318 reg
= SET_DEST (PATTERN (def_insn
));
3322 return ! reg_set_between_p (reg
, NEXT_INSN (def_insn
), insn
);
3331 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3332 value returned is the number of definitions that reach INSN. Returning a
3333 value of zero means that [maybe] more than one definition reaches INSN and
3334 the caller can't perform whatever optimization it is trying. i.e. it is
3335 always safe to return zero. */
3338 can_disregard_other_sets (struct reg_set
**addr_this_reg
, rtx insn
, int for_combine
)
3340 int number_of_reaching_defs
= 0;
3341 struct reg_set
*this_reg
;
3343 for (this_reg
= *addr_this_reg
; this_reg
!= 0; this_reg
= this_reg
->next
)
3344 if (def_reaches_here_p (insn
, this_reg
->insn
))
3346 number_of_reaching_defs
++;
3347 /* Ignore parallels for now. */
3348 if (GET_CODE (PATTERN (this_reg
->insn
)) == PARALLEL
)
3352 && (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
3353 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3354 SET_SRC (PATTERN (insn
)))))
3355 /* A setting of the reg to a different value reaches INSN. */
3358 if (number_of_reaching_defs
> 1)
3360 /* If in this setting the value the register is being set to is
3361 equal to the previous value the register was set to and this
3362 setting reaches the insn we are trying to do the substitution
3363 on then we are ok. */
3364 if (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
)
3366 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3367 SET_SRC (PATTERN (insn
))))
3371 *addr_this_reg
= this_reg
;
3374 return number_of_reaching_defs
;
3377 /* Expression computed by insn is available and the substitution is legal,
3378 so try to perform the substitution.
3380 The result is nonzero if any changes were made. */
3383 handle_avail_expr (rtx insn
, struct expr
*expr
)
3385 rtx pat
, insn_computes_expr
, expr_set
;
3387 struct reg_set
*this_reg
;
3388 int found_setting
, use_src
;
3391 /* We only handle the case where one computation of the expression
3392 reaches this instruction. */
3393 insn_computes_expr
= computing_insn (expr
, insn
);
3394 if (insn_computes_expr
== NULL
)
3396 expr_set
= single_set (insn_computes_expr
);
3397 /* The set might be in a parallel with multiple sets; we could
3398 probably handle that, but there's currently no easy way to find
3399 the relevant sub-expression. */
3406 /* At this point we know only one computation of EXPR outside of this
3407 block reaches this insn. Now try to find a register that the
3408 expression is computed into. */
3409 if (GET_CODE (SET_SRC (expr_set
)) == REG
)
3411 /* This is the case when the available expression that reaches
3412 here has already been handled as an available expression. */
3413 unsigned int regnum_for_replacing
3414 = REGNO (SET_SRC (expr_set
));
3416 /* If the register was created by GCSE we can't use `reg_set_table',
3417 however we know it's set only once. */
3418 if (regnum_for_replacing
>= max_gcse_regno
3419 /* If the register the expression is computed into is set only once,
3420 or only one set reaches this insn, we can use it. */
3421 || (((this_reg
= reg_set_table
[regnum_for_replacing
]),
3422 this_reg
->next
== NULL
)
3423 || can_disregard_other_sets (&this_reg
, insn
, 0)))
3432 unsigned int regnum_for_replacing
3433 = REGNO (SET_DEST (expr_set
));
3435 /* This shouldn't happen. */
3436 if (regnum_for_replacing
>= max_gcse_regno
)
3439 this_reg
= reg_set_table
[regnum_for_replacing
];
3441 /* If the register the expression is computed into is set only once,
3442 or only one set reaches this insn, use it. */
3443 if (this_reg
->next
== NULL
3444 || can_disregard_other_sets (&this_reg
, insn
, 0))
3450 pat
= PATTERN (insn
);
3452 to
= SET_SRC (expr_set
);
3454 to
= SET_DEST (expr_set
);
3455 changed
= validate_change (insn
, &SET_SRC (pat
), to
, 0);
3457 /* We should be able to ignore the return code from validate_change but
3458 to play it safe we check. */
3462 if (gcse_file
!= NULL
)
3464 fprintf (gcse_file
, "GCSE: Replacing the source in insn %d with",
3466 fprintf (gcse_file
, " reg %d %s insn %d\n",
3467 REGNO (to
), use_src
? "from" : "set in",
3468 INSN_UID (insn_computes_expr
));
3473 /* The register that the expr is computed into is set more than once. */
3474 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3476 /* Insert an insn after insnx that copies the reg set in insnx
3477 into a new pseudo register call this new register REGN.
3478 From insnb until end of basic block or until REGB is set
3479 replace all uses of REGB with REGN. */
3482 to
= gen_reg_rtx (GET_MODE (SET_DEST (expr_set
)));
3484 /* Generate the new insn. */
3485 /* ??? If the change fails, we return 0, even though we created
3486 an insn. I think this is ok. */
3488 = emit_insn_after (gen_rtx_SET (VOIDmode
, to
,
3489 SET_DEST (expr_set
)),
3490 insn_computes_expr
);
3492 /* Keep register set table up to date. */
3493 record_one_set (REGNO (to
), new_insn
);
3495 gcse_create_count
++;
3496 if (gcse_file
!= NULL
)
3498 fprintf (gcse_file
, "GCSE: Creating insn %d to copy value of reg %d",
3499 INSN_UID (NEXT_INSN (insn_computes_expr
)),
3500 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr
)))));
3501 fprintf (gcse_file
, ", computed in insn %d,\n",
3502 INSN_UID (insn_computes_expr
));
3503 fprintf (gcse_file
, " into newly allocated reg %d\n",
3507 pat
= PATTERN (insn
);
3509 /* Do register replacement for INSN. */
3510 changed
= validate_change (insn
, &SET_SRC (pat
),
3512 (NEXT_INSN (insn_computes_expr
))),
3515 /* We should be able to ignore the return code from validate_change but
3516 to play it safe we check. */
3520 if (gcse_file
!= NULL
)
3523 "GCSE: Replacing the source in insn %d with reg %d ",
3525 REGNO (SET_DEST (PATTERN (NEXT_INSN
3526 (insn_computes_expr
)))));
3527 fprintf (gcse_file
, "set in insn %d\n",
3528 INSN_UID (insn_computes_expr
));
3536 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3537 the dataflow analysis has been done.
3539 The result is nonzero if a change was made. */
3548 /* Note we start at block 1. */
3550 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3554 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3556 /* Reset tables used to keep track of what's still valid [since the
3557 start of the block]. */
3558 reset_opr_set_tables ();
3560 for (insn
= BB_HEAD (bb
);
3561 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
3562 insn
= NEXT_INSN (insn
))
3564 /* Is insn of form (set (pseudo-reg) ...)? */
3565 if (GET_CODE (insn
) == INSN
3566 && GET_CODE (PATTERN (insn
)) == SET
3567 && GET_CODE (SET_DEST (PATTERN (insn
))) == REG
3568 && REGNO (SET_DEST (PATTERN (insn
))) >= FIRST_PSEUDO_REGISTER
)
3570 rtx pat
= PATTERN (insn
);
3571 rtx src
= SET_SRC (pat
);
3574 if (want_to_gcse_p (src
)
3575 /* Is the expression recorded? */
3576 && ((expr
= lookup_expr (src
, &expr_hash_table
)) != NULL
)
3577 /* Is the expression available [at the start of the
3579 && TEST_BIT (ae_in
[bb
->index
], expr
->bitmap_index
)
3580 /* Are the operands unchanged since the start of the
3582 && oprs_not_set_p (src
, insn
))
3583 changed
|= handle_avail_expr (insn
, expr
);
3586 /* Keep track of everything modified by this insn. */
3587 /* ??? Need to be careful w.r.t. mods done to INSN. */
3589 mark_oprs_set (insn
);
3596 /* Top level routine to perform one classic GCSE pass.
3598 Return nonzero if a change was made. */
3601 one_classic_gcse_pass (int pass
)
3605 gcse_subst_count
= 0;
3606 gcse_create_count
= 0;
3608 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
3609 alloc_rd_mem (last_basic_block
, max_cuid
);
3610 compute_hash_table (&expr_hash_table
);
3612 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
3614 if (expr_hash_table
.n_elems
> 0)
3618 alloc_avail_expr_mem (last_basic_block
, expr_hash_table
.n_elems
);
3619 compute_ae_gen (&expr_hash_table
);
3620 compute_ae_kill (ae_gen
, ae_kill
, &expr_hash_table
);
3621 compute_available (ae_gen
, ae_kill
, ae_out
, ae_in
);
3622 changed
= classic_gcse ();
3623 free_avail_expr_mem ();
3627 free_hash_table (&expr_hash_table
);
3631 fprintf (gcse_file
, "\n");
3632 fprintf (gcse_file
, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3633 current_function_name (), pass
, bytes_used
, gcse_subst_count
);
3634 fprintf (gcse_file
, "%d insns created\n", gcse_create_count
);
3640 /* Compute copy/constant propagation working variables. */
3642 /* Local properties of assignments. */
3643 static sbitmap
*cprop_pavloc
;
3644 static sbitmap
*cprop_absaltered
;
3646 /* Global properties of assignments (computed from the local properties). */
3647 static sbitmap
*cprop_avin
;
3648 static sbitmap
*cprop_avout
;
3650 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3651 basic blocks. N_SETS is the number of sets. */
3654 alloc_cprop_mem (int n_blocks
, int n_sets
)
3656 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3657 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3659 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3660 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3663 /* Free vars used by copy/const propagation. */
3666 free_cprop_mem (void)
3668 sbitmap_vector_free (cprop_pavloc
);
3669 sbitmap_vector_free (cprop_absaltered
);
3670 sbitmap_vector_free (cprop_avin
);
3671 sbitmap_vector_free (cprop_avout
);
3674 /* For each block, compute whether X is transparent. X is either an
3675 expression or an assignment [though we don't care which, for this context
3676 an assignment is treated as an expression]. For each block where an
3677 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3681 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
3689 /* repeat is used to turn tail-recursion into iteration since GCC
3690 can't do it when there's no return value. */
3696 code
= GET_CODE (x
);
3702 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3705 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
3706 SET_BIT (bmap
[bb
->index
], indx
);
3710 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3711 SET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3716 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3719 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
3720 RESET_BIT (bmap
[bb
->index
], indx
);
3724 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3725 RESET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3734 rtx list_entry
= canon_modify_mem_list
[bb
->index
];
3738 rtx dest
, dest_addr
;
3740 if (GET_CODE (XEXP (list_entry
, 0)) == CALL_INSN
)
3743 SET_BIT (bmap
[bb
->index
], indx
);
3745 RESET_BIT (bmap
[bb
->index
], indx
);
3748 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3749 Examine each hunk of memory that is modified. */
3751 dest
= XEXP (list_entry
, 0);
3752 list_entry
= XEXP (list_entry
, 1);
3753 dest_addr
= XEXP (list_entry
, 0);
3755 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
3756 x
, rtx_addr_varies_p
))
3759 SET_BIT (bmap
[bb
->index
], indx
);
3761 RESET_BIT (bmap
[bb
->index
], indx
);
3764 list_entry
= XEXP (list_entry
, 1);
3787 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3791 /* If we are about to do the last recursive call
3792 needed at this level, change it into iteration.
3793 This function is called enough to be worth it. */
3800 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
3802 else if (fmt
[i
] == 'E')
3803 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3804 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
3808 /* Top level routine to do the dataflow analysis needed by copy/const
3812 compute_cprop_data (void)
3814 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
3815 compute_available (cprop_pavloc
, cprop_absaltered
,
3816 cprop_avout
, cprop_avin
);
3819 /* Copy/constant propagation. */
3821 /* Maximum number of register uses in an insn that we handle. */
3824 /* Table of uses found in an insn.
3825 Allocated statically to avoid alloc/free complexity and overhead. */
3826 static struct reg_use reg_use_table
[MAX_USES
];
3828 /* Index into `reg_use_table' while building it. */
3829 static int reg_use_count
;
3831 /* Set up a list of register numbers used in INSN. The found uses are stored
3832 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3833 and contains the number of uses in the table upon exit.
3835 ??? If a register appears multiple times we will record it multiple times.
3836 This doesn't hurt anything but it will slow things down. */
3839 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
3846 /* repeat is used to turn tail-recursion into iteration since GCC
3847 can't do it when there's no return value. */
3852 code
= GET_CODE (x
);
3855 if (reg_use_count
== MAX_USES
)
3858 reg_use_table
[reg_use_count
].reg_rtx
= x
;
3862 /* Recursively scan the operands of this expression. */
3864 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3868 /* If we are about to do the last recursive call
3869 needed at this level, change it into iteration.
3870 This function is called enough to be worth it. */
3877 find_used_regs (&XEXP (x
, i
), data
);
3879 else if (fmt
[i
] == 'E')
3880 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3881 find_used_regs (&XVECEXP (x
, i
, j
), data
);
3885 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3886 Returns nonzero is successful. */
3889 try_replace_reg (rtx from
, rtx to
, rtx insn
)
3891 rtx note
= find_reg_equal_equiv_note (insn
);
3894 rtx set
= single_set (insn
);
3896 validate_replace_src_group (from
, to
, insn
);
3897 if (num_changes_pending () && apply_change_group ())
3900 /* Try to simplify SET_SRC if we have substituted a constant. */
3901 if (success
&& set
&& CONSTANT_P (to
))
3903 src
= simplify_rtx (SET_SRC (set
));
3906 validate_change (insn
, &SET_SRC (set
), src
, 0);
3909 /* If there is already a NOTE, update the expression in it with our
3912 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
3914 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
3916 /* If above failed and this is a single set, try to simplify the source of
3917 the set given our substitution. We could perhaps try this for multiple
3918 SETs, but it probably won't buy us anything. */
3919 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
3921 if (!rtx_equal_p (src
, SET_SRC (set
))
3922 && validate_change (insn
, &SET_SRC (set
), src
, 0))
3925 /* If we've failed to do replacement, have a single SET, don't already
3926 have a note, and have no special SET, add a REG_EQUAL note to not
3927 lose information. */
3928 if (!success
&& note
== 0 && set
!= 0
3929 && GET_CODE (XEXP (set
, 0)) != ZERO_EXTRACT
3930 && GET_CODE (XEXP (set
, 0)) != SIGN_EXTRACT
)
3931 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
3934 /* REG_EQUAL may get simplified into register.
3935 We don't allow that. Remove that note. This code ought
3936 not to happen, because previous code ought to synthesize
3937 reg-reg move, but be on the safe side. */
3938 if (note
&& REG_P (XEXP (note
, 0)))
3939 remove_note (insn
, note
);
3944 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3945 NULL no such set is found. */
3947 static struct expr
*
3948 find_avail_set (int regno
, rtx insn
)
3950 /* SET1 contains the last set found that can be returned to the caller for
3951 use in a substitution. */
3952 struct expr
*set1
= 0;
3954 /* Loops are not possible here. To get a loop we would need two sets
3955 available at the start of the block containing INSN. ie we would
3956 need two sets like this available at the start of the block:
3958 (set (reg X) (reg Y))
3959 (set (reg Y) (reg X))
3961 This can not happen since the set of (reg Y) would have killed the
3962 set of (reg X) making it unavailable at the start of this block. */
3966 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3968 /* Find a set that is available at the start of the block
3969 which contains INSN. */
3972 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
3974 set
= next_set (regno
, set
);
3977 /* If no available set was found we've reached the end of the
3978 (possibly empty) copy chain. */
3982 if (GET_CODE (set
->expr
) != SET
)
3985 src
= SET_SRC (set
->expr
);
3987 /* We know the set is available.
3988 Now check that SRC is ANTLOC (i.e. none of the source operands
3989 have changed since the start of the block).
3991 If the source operand changed, we may still use it for the next
3992 iteration of this loop, but we may not use it for substitutions. */
3994 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
3997 /* If the source of the set is anything except a register, then
3998 we have reached the end of the copy chain. */
3999 if (GET_CODE (src
) != REG
)
4002 /* Follow the copy chain, ie start another iteration of the loop
4003 and see if we have an available copy into SRC. */
4004 regno
= REGNO (src
);
4007 /* SET1 holds the last set that was available and anticipatable at
4012 /* Subroutine of cprop_insn that tries to propagate constants into
4013 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4014 it is the instruction that immediately precedes JUMP, and must be a
4015 single SET of a register. FROM is what we will try to replace,
4016 SRC is the constant we will try to substitute for it. Returns nonzero
4017 if a change was made. */
4020 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
4022 rtx
new, set_src
, note_src
;
4023 rtx set
= pc_set (jump
);
4024 rtx note
= find_reg_equal_equiv_note (jump
);
4028 note_src
= XEXP (note
, 0);
4029 if (GET_CODE (note_src
) == EXPR_LIST
)
4030 note_src
= NULL_RTX
;
4032 else note_src
= NULL_RTX
;
4034 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
4035 set_src
= note_src
? note_src
: SET_SRC (set
);
4037 /* First substitute the SETCC condition into the JUMP instruction,
4038 then substitute that given values into this expanded JUMP. */
4039 if (setcc
!= NULL_RTX
4040 && !modified_between_p (from
, setcc
, jump
)
4041 && !modified_between_p (src
, setcc
, jump
))
4044 rtx setcc_set
= single_set (setcc
);
4045 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
4046 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
4047 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
4048 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
4054 new = simplify_replace_rtx (set_src
, from
, src
);
4056 /* If no simplification can be made, then try the next register. */
4057 if (rtx_equal_p (new, SET_SRC (set
)))
4060 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4065 /* Ensure the value computed inside the jump insn to be equivalent
4066 to one computed by setcc. */
4067 if (setcc
&& modified_in_p (new, setcc
))
4069 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
4071 /* When (some) constants are not valid in a comparison, and there
4072 are two registers to be replaced by constants before the entire
4073 comparison can be folded into a constant, we need to keep
4074 intermediate information in REG_EQUAL notes. For targets with
4075 separate compare insns, such notes are added by try_replace_reg.
4076 When we have a combined compare-and-branch instruction, however,
4077 we need to attach a note to the branch itself to make this
4078 optimization work. */
4080 if (!rtx_equal_p (new, note_src
))
4081 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
4085 /* Remove REG_EQUAL note after simplification. */
4087 remove_note (jump
, note
);
4089 /* If this has turned into an unconditional jump,
4090 then put a barrier after it so that the unreachable
4091 code will be deleted. */
4092 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
4093 emit_barrier_after (jump
);
4097 /* Delete the cc0 setter. */
4098 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
4099 delete_insn (setcc
);
4102 run_jump_opt_after_gcse
= 1;
4105 if (gcse_file
!= NULL
)
4108 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4109 REGNO (from
), INSN_UID (jump
));
4110 print_rtl (gcse_file
, src
);
4111 fprintf (gcse_file
, "\n");
4113 purge_dead_edges (bb
);
4119 constprop_register (rtx insn
, rtx from
, rtx to
, int alter_jumps
)
4123 /* Check for reg or cc0 setting instructions followed by
4124 conditional branch instructions first. */
4126 && (sset
= single_set (insn
)) != NULL
4128 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
4130 rtx dest
= SET_DEST (sset
);
4131 if ((REG_P (dest
) || CC0_P (dest
))
4132 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
4136 /* Handle normal insns next. */
4137 if (GET_CODE (insn
) == INSN
4138 && try_replace_reg (from
, to
, insn
))
4141 /* Try to propagate a CONST_INT into a conditional jump.
4142 We're pretty specific about what we will handle in this
4143 code, we can extend this as necessary over time.
4145 Right now the insn in question must look like
4146 (set (pc) (if_then_else ...)) */
4147 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
4148 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
4152 /* Perform constant and copy propagation on INSN.
4153 The result is nonzero if a change was made. */
4156 cprop_insn (rtx insn
, int alter_jumps
)
4158 struct reg_use
*reg_used
;
4166 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
4168 note
= find_reg_equal_equiv_note (insn
);
4170 /* We may win even when propagating constants into notes. */
4172 find_used_regs (&XEXP (note
, 0), NULL
);
4174 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
4175 reg_used
++, reg_use_count
--)
4177 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
4181 /* Ignore registers created by GCSE.
4182 We do this because ... */
4183 if (regno
>= max_gcse_regno
)
4186 /* If the register has already been set in this block, there's
4187 nothing we can do. */
4188 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
4191 /* Find an assignment that sets reg_used and is available
4192 at the start of the block. */
4193 set
= find_avail_set (regno
, insn
);
4198 /* ??? We might be able to handle PARALLELs. Later. */
4199 if (GET_CODE (pat
) != SET
)
4202 src
= SET_SRC (pat
);
4204 /* Constant propagation. */
4205 if (gcse_constant_p (src
))
4207 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
4211 if (gcse_file
!= NULL
)
4213 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
4214 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
4215 print_rtl (gcse_file
, src
);
4216 fprintf (gcse_file
, "\n");
4218 if (INSN_DELETED_P (insn
))
4222 else if (GET_CODE (src
) == REG
4223 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
4224 && REGNO (src
) != regno
)
4226 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
4230 if (gcse_file
!= NULL
)
4232 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4233 regno
, INSN_UID (insn
));
4234 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
4237 /* The original insn setting reg_used may or may not now be
4238 deletable. We leave the deletion to flow. */
4239 /* FIXME: If it turns out that the insn isn't deletable,
4240 then we may have unnecessarily extended register lifetimes
4241 and made things worse. */
4249 /* Like find_used_regs, but avoid recording uses that appear in
4250 input-output contexts such as zero_extract or pre_dec. This
4251 restricts the cases we consider to those for which local cprop
4252 can legitimately make replacements. */
4255 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
4262 switch (GET_CODE (x
))
4266 case STRICT_LOW_PART
:
4275 /* Can only legitimately appear this early in the context of
4276 stack pushes for function arguments, but handle all of the
4277 codes nonetheless. */
4281 /* Setting a subreg of a register larger than word_mode leaves
4282 the non-written words unchanged. */
4283 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
4291 find_used_regs (xptr
, data
);
4294 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4295 their REG_EQUAL notes need updating. */
4298 do_local_cprop (rtx x
, rtx insn
, int alter_jumps
, rtx
*libcall_sp
)
4300 rtx newreg
= NULL
, newcnst
= NULL
;
4302 /* Rule out USE instructions and ASM statements as we don't want to
4303 change the hard registers mentioned. */
4304 if (GET_CODE (x
) == REG
4305 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
4306 || (GET_CODE (PATTERN (insn
)) != USE
4307 && asm_noperands (PATTERN (insn
)) < 0)))
4309 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
4310 struct elt_loc_list
*l
;
4314 for (l
= val
->locs
; l
; l
= l
->next
)
4316 rtx this_rtx
= l
->loc
;
4322 if (gcse_constant_p (this_rtx
))
4324 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
4325 /* Don't copy propagate if it has attached REG_EQUIV note.
4326 At this point this only function parameters should have
4327 REG_EQUIV notes and if the argument slot is used somewhere
4328 explicitly, it means address of parameter has been taken,
4329 so we should not extend the lifetime of the pseudo. */
4330 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
4331 || GET_CODE (XEXP (note
, 0)) != MEM
))
4334 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
4336 /* If we find a case where we can't fix the retval REG_EQUAL notes
4337 match the new register, we either have to abandon this replacement
4338 or fix delete_trivially_dead_insns to preserve the setting insn,
4339 or make it delete the REG_EUAQL note, and fix up all passes that
4340 require the REG_EQUAL note there. */
4341 if (!adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
))
4343 if (gcse_file
!= NULL
)
4345 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
4347 fprintf (gcse_file
, "insn %d with constant ",
4349 print_rtl (gcse_file
, newcnst
);
4350 fprintf (gcse_file
, "\n");
4355 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
4357 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
4358 if (gcse_file
!= NULL
)
4361 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4362 REGNO (x
), INSN_UID (insn
));
4363 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
4372 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4373 their REG_EQUAL notes need updating to reflect that OLDREG has been
4374 replaced with NEWVAL in INSN. Return true if all substitutions could
4377 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
4381 while ((end
= *libcall_sp
++))
4383 rtx note
= find_reg_equal_equiv_note (end
);
4390 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
4394 note
= find_reg_equal_equiv_note (end
);
4397 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
4400 while ((end
= *libcall_sp
++));
4404 XEXP (note
, 0) = replace_rtx (XEXP (note
, 0), oldreg
, newval
);
4410 #define MAX_NESTED_LIBCALLS 9
4413 local_cprop_pass (int alter_jumps
)
4416 struct reg_use
*reg_used
;
4417 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
4418 bool changed
= false;
4420 cselib_init (false);
4421 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
4423 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4427 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
4431 if (libcall_sp
== libcall_stack
)
4433 *--libcall_sp
= XEXP (note
, 0);
4435 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
4438 note
= find_reg_equal_equiv_note (insn
);
4442 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
, NULL
);
4444 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
4446 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
4447 reg_used
++, reg_use_count
--)
4448 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
4454 if (INSN_DELETED_P (insn
))
4457 while (reg_use_count
);
4459 cselib_process_insn (insn
);
4462 /* Global analysis may get into infinite loops for unreachable blocks. */
4463 if (changed
&& alter_jumps
)
4465 delete_unreachable_blocks ();
4466 free_reg_set_mem ();
4467 alloc_reg_set_mem (max_reg_num ());
4468 compute_sets (get_insns ());
4472 /* Forward propagate copies. This includes copies and constants. Return
4473 nonzero if a change was made. */
4476 cprop (int alter_jumps
)
4482 /* Note we start at block 1. */
4483 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
4485 if (gcse_file
!= NULL
)
4486 fprintf (gcse_file
, "\n");
4491 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
4493 /* Reset tables used to keep track of what's still valid [since the
4494 start of the block]. */
4495 reset_opr_set_tables ();
4497 for (insn
= BB_HEAD (bb
);
4498 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
4499 insn
= NEXT_INSN (insn
))
4502 changed
|= cprop_insn (insn
, alter_jumps
);
4504 /* Keep track of everything modified by this insn. */
4505 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4506 call mark_oprs_set if we turned the insn into a NOTE. */
4507 if (GET_CODE (insn
) != NOTE
)
4508 mark_oprs_set (insn
);
4512 if (gcse_file
!= NULL
)
4513 fprintf (gcse_file
, "\n");
4518 /* Similar to get_condition, only the resulting condition must be
4519 valid at JUMP, instead of at EARLIEST.
4521 This differs from noce_get_condition in ifcvt.c in that we prefer not to
4522 settle for the condition variable in the jump instruction being integral.
4523 We prefer to be able to record the value of a user variable, rather than
4524 the value of a temporary used in a condition. This could be solved by
4525 recording the value of *every* register scaned by canonicalize_condition,
4526 but this would require some code reorganization. */
4529 fis_get_condition (rtx jump
)
4531 rtx cond
, set
, tmp
, insn
, earliest
;
4534 if (! any_condjump_p (jump
))
4537 set
= pc_set (jump
);
4538 cond
= XEXP (SET_SRC (set
), 0);
4540 /* If this branches to JUMP_LABEL when the condition is false,
4541 reverse the condition. */
4542 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4543 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
));
4545 /* Use canonicalize_condition to do the dirty work of manipulating
4546 MODE_CC values and COMPARE rtx codes. */
4547 tmp
= canonicalize_condition (jump
, cond
, reverse
, &earliest
, NULL_RTX
,
4552 /* Verify that the given condition is valid at JUMP by virtue of not
4553 having been modified since EARLIEST. */
4554 for (insn
= earliest
; insn
!= jump
; insn
= NEXT_INSN (insn
))
4555 if (INSN_P (insn
) && modified_in_p (tmp
, insn
))
4560 /* The condition was modified. See if we can get a partial result
4561 that doesn't follow all the reversals. Perhaps combine can fold
4562 them together later. */
4563 tmp
= XEXP (tmp
, 0);
4564 if (!REG_P (tmp
) || GET_MODE_CLASS (GET_MODE (tmp
)) != MODE_INT
)
4566 tmp
= canonicalize_condition (jump
, cond
, reverse
, &earliest
, tmp
,
4571 /* For sanity's sake, re-validate the new result. */
4572 for (insn
= earliest
; insn
!= jump
; insn
= NEXT_INSN (insn
))
4573 if (INSN_P (insn
) && modified_in_p (tmp
, insn
))
4579 /* Check the comparison COND to see if we can safely form an implicit set from
4580 it. COND is either an EQ or NE comparison. */
4583 implicit_set_cond_p (rtx cond
)
4585 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
4586 rtx cst
= XEXP (cond
, 1);
4588 /* We can't perform this optimization if either operand might be or might
4589 contain a signed zero. */
4590 if (HONOR_SIGNED_ZEROS (mode
))
4592 /* It is sufficient to check if CST is or contains a zero. We must
4593 handle float, complex, and vector. If any subpart is a zero, then
4594 the optimization can't be performed. */
4595 /* ??? The complex and vector checks are not implemented yet. We just
4596 always return zero for them. */
4597 if (GET_CODE (cst
) == CONST_DOUBLE
)
4600 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
4601 if (REAL_VALUES_EQUAL (d
, dconst0
))
4608 return gcse_constant_p (cst
);
4611 /* Find the implicit sets of a function. An "implicit set" is a constraint
4612 on the value of a variable, implied by a conditional jump. For example,
4613 following "if (x == 2)", the then branch may be optimized as though the
4614 conditional performed an "explicit set", in this example, "x = 2". This
4615 function records the set patterns that are implicit at the start of each
4619 find_implicit_sets (void)
4621 basic_block bb
, dest
;
4627 /* Check for more than one successor. */
4628 if (bb
->succ
&& bb
->succ
->succ_next
)
4630 cond
= fis_get_condition (BB_END (bb
));
4633 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
4634 && GET_CODE (XEXP (cond
, 0)) == REG
4635 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
4636 && implicit_set_cond_p (cond
))
4638 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
4639 : FALLTHRU_EDGE (bb
)->dest
;
4641 if (dest
&& ! dest
->pred
->pred_next
4642 && dest
!= EXIT_BLOCK_PTR
)
4644 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
4646 implicit_sets
[dest
->index
] = new;
4649 fprintf(gcse_file
, "Implicit set of reg %d in ",
4650 REGNO (XEXP (cond
, 0)));
4651 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
4659 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
4662 /* Perform one copy/constant propagation pass.
4663 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4664 propagation into conditional jumps. If BYPASS_JUMPS is true,
4665 perform conditional jump bypassing optimizations. */
4668 one_cprop_pass (int pass
, int cprop_jumps
, int bypass_jumps
)
4672 const_prop_count
= 0;
4673 copy_prop_count
= 0;
4675 local_cprop_pass (cprop_jumps
);
4677 /* Determine implicit sets. */
4678 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
4679 find_implicit_sets ();
4681 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
4682 compute_hash_table (&set_hash_table
);
4684 /* Free implicit_sets before peak usage. */
4685 free (implicit_sets
);
4686 implicit_sets
= NULL
;
4689 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
4690 if (set_hash_table
.n_elems
> 0)
4692 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
4693 compute_cprop_data ();
4694 changed
= cprop (cprop_jumps
);
4696 changed
|= bypass_conditional_jumps ();
4700 free_hash_table (&set_hash_table
);
4704 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
4705 current_function_name (), pass
, bytes_used
);
4706 fprintf (gcse_file
, "%d const props, %d copy props\n\n",
4707 const_prop_count
, copy_prop_count
);
4709 /* Global analysis may get into infinite loops for unreachable blocks. */
4710 if (changed
&& cprop_jumps
)
4711 delete_unreachable_blocks ();
4716 /* Bypass conditional jumps. */
4718 /* The value of last_basic_block at the beginning of the jump_bypass
4719 pass. The use of redirect_edge_and_branch_force may introduce new
4720 basic blocks, but the data flow analysis is only valid for basic
4721 block indices less than bypass_last_basic_block. */
4723 static int bypass_last_basic_block
;
4725 /* Find a set of REGNO to a constant that is available at the end of basic
4726 block BB. Returns NULL if no such set is found. Based heavily upon
4729 static struct expr
*
4730 find_bypass_set (int regno
, int bb
)
4732 struct expr
*result
= 0;
4737 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
4741 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
4743 set
= next_set (regno
, set
);
4749 if (GET_CODE (set
->expr
) != SET
)
4752 src
= SET_SRC (set
->expr
);
4753 if (gcse_constant_p (src
))
4756 if (GET_CODE (src
) != REG
)
4759 regno
= REGNO (src
);
4765 /* Subroutine of bypass_block that checks whether a pseudo is killed by
4766 any of the instructions inserted on an edge. Jump bypassing places
4767 condition code setters on CFG edges using insert_insn_on_edge. This
4768 function is required to check that our data flow analysis is still
4769 valid prior to commit_edge_insertions. */
4772 reg_killed_on_edge (rtx reg
, edge e
)
4776 for (insn
= e
->insns
; insn
; insn
= NEXT_INSN (insn
))
4777 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
4783 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4784 basic block BB which has more than one predecessor. If not NULL, SETCC
4785 is the first instruction of BB, which is immediately followed by JUMP_INSN
4786 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4787 Returns nonzero if a change was made.
4789 During the jump bypassing pass, we may place copies of SETCC instructions
4790 on CFG edges. The following routine must be careful to pay attention to
4791 these inserted insns when performing its transformations. */
4794 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
4797 edge e
, enext
, edest
;
4799 int may_be_loop_header
;
4801 insn
= (setcc
!= NULL
) ? setcc
: jump
;
4803 /* Determine set of register uses in INSN. */
4805 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
4806 note
= find_reg_equal_equiv_note (insn
);
4808 find_used_regs (&XEXP (note
, 0), NULL
);
4810 may_be_loop_header
= false;
4811 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
4812 if (e
->flags
& EDGE_DFS_BACK
)
4814 may_be_loop_header
= true;
4819 for (e
= bb
->pred
; e
; e
= enext
)
4821 enext
= e
->pred_next
;
4822 if (e
->flags
& EDGE_COMPLEX
)
4825 /* We can't redirect edges from new basic blocks. */
4826 if (e
->src
->index
>= bypass_last_basic_block
)
4829 /* The irreducible loops created by redirecting of edges entering the
4830 loop from outside would decrease effectiveness of some of the following
4831 optimizations, so prevent this. */
4832 if (may_be_loop_header
4833 && !(e
->flags
& EDGE_DFS_BACK
))
4836 for (i
= 0; i
< reg_use_count
; i
++)
4838 struct reg_use
*reg_used
= ®_use_table
[i
];
4839 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
4840 basic_block dest
, old_dest
;
4844 if (regno
>= max_gcse_regno
)
4847 set
= find_bypass_set (regno
, e
->src
->index
);
4852 /* Check the data flow is valid after edge insertions. */
4853 if (e
->insns
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
4856 src
= SET_SRC (pc_set (jump
));
4859 src
= simplify_replace_rtx (src
,
4860 SET_DEST (PATTERN (setcc
)),
4861 SET_SRC (PATTERN (setcc
)));
4863 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
4864 SET_SRC (set
->expr
));
4866 /* Jump bypassing may have already placed instructions on
4867 edges of the CFG. We can't bypass an outgoing edge that
4868 has instructions associated with it, as these insns won't
4869 get executed if the incoming edge is redirected. */
4873 edest
= FALLTHRU_EDGE (bb
);
4874 dest
= edest
->insns
? NULL
: edest
->dest
;
4876 else if (GET_CODE (new) == LABEL_REF
)
4878 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
4879 /* Don't bypass edges containing instructions. */
4880 for (edest
= bb
->succ
; edest
; edest
= edest
->succ_next
)
4881 if (edest
->dest
== dest
&& edest
->insns
)
4890 /* Avoid unification of the edge with other edges from original
4891 branch. We would end up emitting the instruction on "both"
4894 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
))))
4897 for (e2
= e
->src
->succ
; e2
; e2
= e2
->succ_next
)
4898 if (e2
->dest
== dest
)
4908 && dest
!= EXIT_BLOCK_PTR
)
4910 redirect_edge_and_branch_force (e
, dest
);
4912 /* Copy the register setter to the redirected edge.
4913 Don't copy CC0 setters, as CC0 is dead after jump. */
4916 rtx pat
= PATTERN (setcc
);
4917 if (!CC0_P (SET_DEST (pat
)))
4918 insert_insn_on_edge (copy_insn (pat
), e
);
4921 if (gcse_file
!= NULL
)
4923 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4924 regno
, INSN_UID (jump
));
4925 print_rtl (gcse_file
, SET_SRC (set
->expr
));
4926 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
4927 e
->src
->index
, old_dest
->index
, dest
->index
);
4937 /* Find basic blocks with more than one predecessor that only contain a
4938 single conditional jump. If the result of the comparison is known at
4939 compile-time from any incoming edge, redirect that edge to the
4940 appropriate target. Returns nonzero if a change was made.
4942 This function is now mis-named, because we also handle indirect jumps. */
4945 bypass_conditional_jumps (void)
4953 /* Note we start at block 1. */
4954 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
4957 bypass_last_basic_block
= last_basic_block
;
4958 mark_dfs_back_edges ();
4961 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
4962 EXIT_BLOCK_PTR
, next_bb
)
4964 /* Check for more than one predecessor. */
4965 if (bb
->pred
&& bb
->pred
->pred_next
)
4968 for (insn
= BB_HEAD (bb
);
4969 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
4970 insn
= NEXT_INSN (insn
))
4971 if (GET_CODE (insn
) == INSN
)
4975 if (GET_CODE (PATTERN (insn
)) != SET
)
4978 dest
= SET_DEST (PATTERN (insn
));
4979 if (REG_P (dest
) || CC0_P (dest
))
4984 else if (GET_CODE (insn
) == JUMP_INSN
)
4986 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
4987 && onlyjump_p (insn
))
4988 changed
|= bypass_block (bb
, setcc
, insn
);
4991 else if (INSN_P (insn
))
4996 /* If we bypassed any register setting insns, we inserted a
4997 copy on the redirected edge. These need to be committed. */
4999 commit_edge_insertions();
5004 /* Compute PRE+LCM working variables. */
5006 /* Local properties of expressions. */
5007 /* Nonzero for expressions that are transparent in the block. */
5008 static sbitmap
*transp
;
5010 /* Nonzero for expressions that are transparent at the end of the block.
5011 This is only zero for expressions killed by abnormal critical edge
5012 created by a calls. */
5013 static sbitmap
*transpout
;
5015 /* Nonzero for expressions that are computed (available) in the block. */
5016 static sbitmap
*comp
;
5018 /* Nonzero for expressions that are locally anticipatable in the block. */
5019 static sbitmap
*antloc
;
5021 /* Nonzero for expressions where this block is an optimal computation
5023 static sbitmap
*pre_optimal
;
5025 /* Nonzero for expressions which are redundant in a particular block. */
5026 static sbitmap
*pre_redundant
;
5028 /* Nonzero for expressions which should be inserted on a specific edge. */
5029 static sbitmap
*pre_insert_map
;
5031 /* Nonzero for expressions which should be deleted in a specific block. */
5032 static sbitmap
*pre_delete_map
;
5034 /* Contains the edge_list returned by pre_edge_lcm. */
5035 static struct edge_list
*edge_list
;
5037 /* Redundant insns. */
5038 static sbitmap pre_redundant_insns
;
5040 /* Allocate vars used for PRE analysis. */
5043 alloc_pre_mem (int n_blocks
, int n_exprs
)
5045 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5046 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5047 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5050 pre_redundant
= NULL
;
5051 pre_insert_map
= NULL
;
5052 pre_delete_map
= NULL
;
5055 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5057 /* pre_insert and pre_delete are allocated later. */
5060 /* Free vars used for PRE analysis. */
5065 sbitmap_vector_free (transp
);
5066 sbitmap_vector_free (comp
);
5068 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
5071 sbitmap_vector_free (pre_optimal
);
5073 sbitmap_vector_free (pre_redundant
);
5075 sbitmap_vector_free (pre_insert_map
);
5077 sbitmap_vector_free (pre_delete_map
);
5079 sbitmap_vector_free (ae_in
);
5081 sbitmap_vector_free (ae_out
);
5083 transp
= comp
= NULL
;
5084 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
5085 ae_in
= ae_out
= NULL
;
5088 /* Top level routine to do the dataflow analysis needed by PRE. */
5091 compute_pre_data (void)
5093 sbitmap trapping_expr
;
5097 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
5098 sbitmap_vector_zero (ae_kill
, last_basic_block
);
5100 /* Collect expressions which might trap. */
5101 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
5102 sbitmap_zero (trapping_expr
);
5103 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
5106 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
5107 if (may_trap_p (e
->expr
))
5108 SET_BIT (trapping_expr
, e
->bitmap_index
);
5111 /* Compute ae_kill for each basic block using:
5115 This is significantly faster than compute_ae_kill. */
5121 /* If the current block is the destination of an abnormal edge, we
5122 kill all trapping expressions because we won't be able to properly
5123 place the instruction on the edge. So make them neither
5124 anticipatable nor transparent. This is fairly conservative. */
5125 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
5126 if (e
->flags
& EDGE_ABNORMAL
)
5128 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
5129 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
5133 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
5134 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
5137 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
5138 ae_kill
, &pre_insert_map
, &pre_delete_map
);
5139 sbitmap_vector_free (antloc
);
5141 sbitmap_vector_free (ae_kill
);
5143 sbitmap_free (trapping_expr
);
5148 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
5151 VISITED is a pointer to a working buffer for tracking which BB's have
5152 been visited. It is NULL for the top-level call.
5154 We treat reaching expressions that go through blocks containing the same
5155 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
5156 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
5157 2 as not reaching. The intent is to improve the probability of finding
5158 only one reaching expression and to reduce register lifetimes by picking
5159 the closest such expression. */
5162 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
5166 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
5168 basic_block pred_bb
= pred
->src
;
5170 if (pred
->src
== ENTRY_BLOCK_PTR
5171 /* Has predecessor has already been visited? */
5172 || visited
[pred_bb
->index
])
5173 ;/* Nothing to do. */
5175 /* Does this predecessor generate this expression? */
5176 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
5178 /* Is this the occurrence we're looking for?
5179 Note that there's only one generating occurrence per block
5180 so we just need to check the block number. */
5181 if (occr_bb
== pred_bb
)
5184 visited
[pred_bb
->index
] = 1;
5186 /* Ignore this predecessor if it kills the expression. */
5187 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
5188 visited
[pred_bb
->index
] = 1;
5190 /* Neither gen nor kill. */
5193 visited
[pred_bb
->index
] = 1;
5194 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
5199 /* All paths have been checked. */
5203 /* The wrapper for pre_expr_reaches_here_work that ensures that any
5204 memory allocated for that function is returned. */
5207 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
5210 char *visited
= xcalloc (last_basic_block
, 1);
5212 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
5219 /* Given an expr, generate RTL which we can insert at the end of a BB,
5220 or on an edge. Set the block number of any insns generated to
5224 process_insert_insn (struct expr
*expr
)
5226 rtx reg
= expr
->reaching_reg
;
5227 rtx exp
= copy_rtx (expr
->expr
);
5232 /* If the expression is something that's an operand, like a constant,
5233 just copy it to a register. */
5234 if (general_operand (exp
, GET_MODE (reg
)))
5235 emit_move_insn (reg
, exp
);
5237 /* Otherwise, make a new insn to compute this expression and make sure the
5238 insn will be recognized (this also adds any needed CLOBBERs). Copy the
5239 expression to make sure we don't have any sharing issues. */
5240 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
))))
5249 /* Add EXPR to the end of basic block BB.
5251 This is used by both the PRE and code hoisting.
5253 For PRE, we want to verify that the expr is either transparent
5254 or locally anticipatable in the target block. This check makes
5255 no sense for code hoisting. */
5258 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
5260 rtx insn
= BB_END (bb
);
5262 rtx reg
= expr
->reaching_reg
;
5263 int regno
= REGNO (reg
);
5266 pat
= process_insert_insn (expr
);
5267 if (pat
== NULL_RTX
|| ! INSN_P (pat
))
5271 while (NEXT_INSN (pat_end
) != NULL_RTX
)
5272 pat_end
= NEXT_INSN (pat_end
);
5274 /* If the last insn is a jump, insert EXPR in front [taking care to
5275 handle cc0, etc. properly]. Similarly we need to care trapping
5276 instructions in presence of non-call exceptions. */
5278 if (GET_CODE (insn
) == JUMP_INSN
5279 || (GET_CODE (insn
) == INSN
5280 && (bb
->succ
->succ_next
|| (bb
->succ
->flags
& EDGE_ABNORMAL
))))
5285 /* It should always be the case that we can put these instructions
5286 anywhere in the basic block with performing PRE optimizations.
5288 if (GET_CODE (insn
) == INSN
&& pre
5289 && !TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
5290 && !TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
))
5293 /* If this is a jump table, then we can't insert stuff here. Since
5294 we know the previous real insn must be the tablejump, we insert
5295 the new instruction just before the tablejump. */
5296 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
5297 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
5298 insn
= prev_real_insn (insn
);
5301 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5302 if cc0 isn't set. */
5303 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
5305 insn
= XEXP (note
, 0);
5308 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
5309 if (maybe_cc0_setter
5310 && INSN_P (maybe_cc0_setter
)
5311 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
5312 insn
= maybe_cc0_setter
;
5315 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5316 new_insn
= emit_insn_before (pat
, insn
);
5319 /* Likewise if the last insn is a call, as will happen in the presence
5320 of exception handling. */
5321 else if (GET_CODE (insn
) == CALL_INSN
5322 && (bb
->succ
->succ_next
|| (bb
->succ
->flags
& EDGE_ABNORMAL
)))
5324 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5325 we search backward and place the instructions before the first
5326 parameter is loaded. Do this for everyone for consistency and a
5327 presumption that we'll get better code elsewhere as well.
5329 It should always be the case that we can put these instructions
5330 anywhere in the basic block with performing PRE optimizations.
5334 && !TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
5335 && !TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
))
5338 /* Since different machines initialize their parameter registers
5339 in different orders, assume nothing. Collect the set of all
5340 parameter registers. */
5341 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
5343 /* If we found all the parameter loads, then we want to insert
5344 before the first parameter load.
5346 If we did not find all the parameter loads, then we might have
5347 stopped on the head of the block, which could be a CODE_LABEL.
5348 If we inserted before the CODE_LABEL, then we would be putting
5349 the insn in the wrong basic block. In that case, put the insn
5350 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5351 while (GET_CODE (insn
) == CODE_LABEL
5352 || NOTE_INSN_BASIC_BLOCK_P (insn
))
5353 insn
= NEXT_INSN (insn
);
5355 new_insn
= emit_insn_before (pat
, insn
);
5358 new_insn
= emit_insn_after (pat
, insn
);
5364 add_label_notes (PATTERN (pat
), new_insn
);
5365 note_stores (PATTERN (pat
), record_set_info
, pat
);
5369 pat
= NEXT_INSN (pat
);
5372 gcse_create_count
++;
5376 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
5377 bb
->index
, INSN_UID (new_insn
));
5378 fprintf (gcse_file
, "copying expression %d to reg %d\n",
5379 expr
->bitmap_index
, regno
);
5383 /* Insert partially redundant expressions on edges in the CFG to make
5384 the expressions fully redundant. */
5387 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
5389 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
5392 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5393 if it reaches any of the deleted expressions. */
5395 set_size
= pre_insert_map
[0]->size
;
5396 num_edges
= NUM_EDGES (edge_list
);
5397 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
5398 sbitmap_vector_zero (inserted
, num_edges
);
5400 for (e
= 0; e
< num_edges
; e
++)
5403 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
5405 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
5407 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
5409 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
5410 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
5412 struct expr
*expr
= index_map
[j
];
5415 /* Now look at each deleted occurrence of this expression. */
5416 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5418 if (! occr
->deleted_p
)
5421 /* Insert this expression on this edge if if it would
5422 reach the deleted occurrence in BB. */
5423 if (!TEST_BIT (inserted
[e
], j
))
5426 edge eg
= INDEX_EDGE (edge_list
, e
);
5428 /* We can't insert anything on an abnormal and
5429 critical edge, so we insert the insn at the end of
5430 the previous block. There are several alternatives
5431 detailed in Morgans book P277 (sec 10.5) for
5432 handling this situation. This one is easiest for
5435 if ((eg
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
5436 insert_insn_end_bb (index_map
[j
], bb
, 0);
5439 insn
= process_insert_insn (index_map
[j
]);
5440 insert_insn_on_edge (insn
, eg
);
5445 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
5447 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
5448 fprintf (gcse_file
, "copy expression %d\n",
5449 expr
->bitmap_index
);
5452 update_ld_motion_stores (expr
);
5453 SET_BIT (inserted
[e
], j
);
5455 gcse_create_count
++;
5462 sbitmap_vector_free (inserted
);
5466 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
5467 Given "old_reg <- expr" (INSN), instead of adding after it
5468 reaching_reg <- old_reg
5469 it's better to do the following:
5470 reaching_reg <- expr
5471 old_reg <- reaching_reg
5472 because this way copy propagation can discover additional PRE
5473 opportunities. But if this fails, we try the old way.
5474 When "expr" is a store, i.e.
5475 given "MEM <- old_reg", instead of adding after it
5476 reaching_reg <- old_reg
5477 it's better to add it before as follows:
5478 reaching_reg <- old_reg
5479 MEM <- reaching_reg. */
5482 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
5484 rtx reg
= expr
->reaching_reg
;
5485 int regno
= REGNO (reg
);
5486 int indx
= expr
->bitmap_index
;
5487 rtx pat
= PATTERN (insn
);
5492 /* This block matches the logic in hash_scan_insn. */
5493 if (GET_CODE (pat
) == SET
)
5495 else if (GET_CODE (pat
) == PARALLEL
)
5497 /* Search through the parallel looking for the set whose
5498 source was the expression that we're interested in. */
5500 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
5502 rtx x
= XVECEXP (pat
, 0, i
);
5503 if (GET_CODE (x
) == SET
5504 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
5514 if (GET_CODE (SET_DEST (set
)) == REG
)
5516 old_reg
= SET_DEST (set
);
5517 /* Check if we can modify the set destination in the original insn. */
5518 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
5520 new_insn
= gen_move_insn (old_reg
, reg
);
5521 new_insn
= emit_insn_after (new_insn
, insn
);
5523 /* Keep register set table up to date. */
5524 replace_one_set (REGNO (old_reg
), insn
, new_insn
);
5525 record_one_set (regno
, insn
);
5529 new_insn
= gen_move_insn (reg
, old_reg
);
5530 new_insn
= emit_insn_after (new_insn
, insn
);
5532 /* Keep register set table up to date. */
5533 record_one_set (regno
, new_insn
);
5536 else /* This is possible only in case of a store to memory. */
5538 old_reg
= SET_SRC (set
);
5539 new_insn
= gen_move_insn (reg
, old_reg
);
5541 /* Check if we can modify the set source in the original insn. */
5542 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
5543 new_insn
= emit_insn_before (new_insn
, insn
);
5545 new_insn
= emit_insn_after (new_insn
, insn
);
5547 /* Keep register set table up to date. */
5548 record_one_set (regno
, new_insn
);
5551 gcse_create_count
++;
5555 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5556 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
5557 INSN_UID (insn
), regno
);
5560 /* Copy available expressions that reach the redundant expression
5561 to `reaching_reg'. */
5564 pre_insert_copies (void)
5566 unsigned int i
, added_copy
;
5571 /* For each available expression in the table, copy the result to
5572 `reaching_reg' if the expression reaches a deleted one.
5574 ??? The current algorithm is rather brute force.
5575 Need to do some profiling. */
5577 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5578 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5580 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5581 we don't want to insert a copy here because the expression may not
5582 really be redundant. So only insert an insn if the expression was
5583 deleted. This test also avoids further processing if the
5584 expression wasn't deleted anywhere. */
5585 if (expr
->reaching_reg
== NULL
)
5588 /* Set when we add a copy for that expression. */
5591 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5593 if (! occr
->deleted_p
)
5596 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
5598 rtx insn
= avail
->insn
;
5600 /* No need to handle this one if handled already. */
5601 if (avail
->copied_p
)
5604 /* Don't handle this one if it's a redundant one. */
5605 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
5608 /* Or if the expression doesn't reach the deleted one. */
5609 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
5611 BLOCK_FOR_INSN (occr
->insn
)))
5616 /* Copy the result of avail to reaching_reg. */
5617 pre_insert_copy_insn (expr
, insn
);
5618 avail
->copied_p
= 1;
5623 update_ld_motion_stores (expr
);
5627 /* Emit move from SRC to DEST noting the equivalence with expression computed
5630 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
5633 rtx set
= single_set (insn
), set2
;
5637 /* This should never fail since we're creating a reg->reg copy
5638 we've verified to be valid. */
5640 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
5642 /* Note the equivalence for local CSE pass. */
5643 set2
= single_set (new);
5644 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
5646 if ((note
= find_reg_equal_equiv_note (insn
)))
5647 eqv
= XEXP (note
, 0);
5649 eqv
= SET_SRC (set
);
5651 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
5656 /* Delete redundant computations.
5657 Deletion is done by changing the insn to copy the `reaching_reg' of
5658 the expression into the result of the SET. It is left to later passes
5659 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5661 Returns nonzero if a change is made. */
5672 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5673 for (expr
= expr_hash_table
.table
[i
];
5675 expr
= expr
->next_same_hash
)
5677 int indx
= expr
->bitmap_index
;
5679 /* We only need to search antic_occr since we require
5682 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5684 rtx insn
= occr
->insn
;
5686 basic_block bb
= BLOCK_FOR_INSN (insn
);
5688 /* We only delete insns that have a single_set. */
5689 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
5690 && (set
= single_set (insn
)) != 0)
5692 /* Create a pseudo-reg to store the result of reaching
5693 expressions into. Get the mode for the new pseudo from
5694 the mode of the original destination pseudo. */
5695 if (expr
->reaching_reg
== NULL
)
5697 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
5699 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
5701 occr
->deleted_p
= 1;
5702 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
5709 "PRE: redundant insn %d (expression %d) in ",
5710 INSN_UID (insn
), indx
);
5711 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
5712 bb
->index
, REGNO (expr
->reaching_reg
));
5721 /* Perform GCSE optimizations using PRE.
5722 This is called by one_pre_gcse_pass after all the dataflow analysis
5725 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5726 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5727 Compiler Design and Implementation.
5729 ??? A new pseudo reg is created to hold the reaching expression. The nice
5730 thing about the classical approach is that it would try to use an existing
5731 reg. If the register can't be adequately optimized [i.e. we introduce
5732 reload problems], one could add a pass here to propagate the new register
5735 ??? We don't handle single sets in PARALLELs because we're [currently] not
5736 able to copy the rest of the parallel when we insert copies to create full
5737 redundancies from partial redundancies. However, there's no reason why we
5738 can't handle PARALLELs in the cases where there are no partial
5745 int did_insert
, changed
;
5746 struct expr
**index_map
;
5749 /* Compute a mapping from expression number (`bitmap_index') to
5750 hash table entry. */
5752 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
5753 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5754 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5755 index_map
[expr
->bitmap_index
] = expr
;
5757 /* Reset bitmap used to track which insns are redundant. */
5758 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
5759 sbitmap_zero (pre_redundant_insns
);
5761 /* Delete the redundant insns first so that
5762 - we know what register to use for the new insns and for the other
5763 ones with reaching expressions
5764 - we know which insns are redundant when we go to create copies */
5766 changed
= pre_delete ();
5768 did_insert
= pre_edge_insert (edge_list
, index_map
);
5770 /* In other places with reaching expressions, copy the expression to the
5771 specially allocated pseudo-reg that reaches the redundant expr. */
5772 pre_insert_copies ();
5775 commit_edge_insertions ();
5780 sbitmap_free (pre_redundant_insns
);
5784 /* Top level routine to perform one PRE GCSE pass.
5786 Return nonzero if a change was made. */
5789 one_pre_gcse_pass (int pass
)
5793 gcse_subst_count
= 0;
5794 gcse_create_count
= 0;
5796 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
5797 add_noreturn_fake_exit_edges ();
5799 compute_ld_motion_mems ();
5801 compute_hash_table (&expr_hash_table
);
5802 trim_ld_motion_mems ();
5804 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
5806 if (expr_hash_table
.n_elems
> 0)
5808 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
5809 compute_pre_data ();
5810 changed
|= pre_gcse ();
5811 free_edge_list (edge_list
);
5816 remove_fake_edges ();
5817 free_hash_table (&expr_hash_table
);
5821 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5822 current_function_name (), pass
, bytes_used
);
5823 fprintf (gcse_file
, "%d substs, %d insns created\n",
5824 gcse_subst_count
, gcse_create_count
);
5830 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5831 If notes are added to an insn which references a CODE_LABEL, the
5832 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5833 because the following loop optimization pass requires them. */
5835 /* ??? This is very similar to the loop.c add_label_notes function. We
5836 could probably share code here. */
5838 /* ??? If there was a jump optimization pass after gcse and before loop,
5839 then we would not need to do this here, because jump would add the
5840 necessary REG_LABEL notes. */
5843 add_label_notes (rtx x
, rtx insn
)
5845 enum rtx_code code
= GET_CODE (x
);
5849 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
5851 /* This code used to ignore labels that referred to dispatch tables to
5852 avoid flow generating (slightly) worse code.
5854 We no longer ignore such label references (see LABEL_REF handling in
5855 mark_jump_label for additional information). */
5857 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
5859 if (LABEL_P (XEXP (x
, 0)))
5860 LABEL_NUSES (XEXP (x
, 0))++;
5864 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
5867 add_label_notes (XEXP (x
, i
), insn
);
5868 else if (fmt
[i
] == 'E')
5869 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5870 add_label_notes (XVECEXP (x
, i
, j
), insn
);
5874 /* Compute transparent outgoing information for each block.
5876 An expression is transparent to an edge unless it is killed by
5877 the edge itself. This can only happen with abnormal control flow,
5878 when the edge is traversed through a call. This happens with
5879 non-local labels and exceptions.
5881 This would not be necessary if we split the edge. While this is
5882 normally impossible for abnormal critical edges, with some effort
5883 it should be possible with exception handling, since we still have
5884 control over which handler should be invoked. But due to increased
5885 EH table sizes, this may not be worthwhile. */
5888 compute_transpout (void)
5894 sbitmap_vector_ones (transpout
, last_basic_block
);
5898 /* Note that flow inserted a nop a the end of basic blocks that
5899 end in call instructions for reasons other than abnormal
5901 if (GET_CODE (BB_END (bb
)) != CALL_INSN
)
5904 for (i
= 0; i
< expr_hash_table
.size
; i
++)
5905 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
5906 if (GET_CODE (expr
->expr
) == MEM
)
5908 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
5909 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
5912 /* ??? Optimally, we would use interprocedural alias
5913 analysis to determine if this mem is actually killed
5915 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
5920 /* Removal of useless null pointer checks */
5922 /* Called via note_stores. X is set by SETTER. If X is a register we must
5923 invalidate nonnull_local and set nonnull_killed. DATA is really a
5924 `null_pointer_info *'.
5926 We ignore hard registers. */
5929 invalidate_nonnull_info (rtx x
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
5932 struct null_pointer_info
*npi
= (struct null_pointer_info
*) data
;
5934 while (GET_CODE (x
) == SUBREG
)
5937 /* Ignore anything that is not a register or is a hard register. */
5938 if (GET_CODE (x
) != REG
5939 || REGNO (x
) < npi
->min_reg
5940 || REGNO (x
) >= npi
->max_reg
)
5943 regno
= REGNO (x
) - npi
->min_reg
;
5945 RESET_BIT (npi
->nonnull_local
[npi
->current_block
->index
], regno
);
5946 SET_BIT (npi
->nonnull_killed
[npi
->current_block
->index
], regno
);
5949 /* Do null-pointer check elimination for the registers indicated in
5950 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5951 they are not our responsibility to free. */
5954 delete_null_pointer_checks_1 (unsigned int *block_reg
, sbitmap
*nonnull_avin
,
5955 sbitmap
*nonnull_avout
,
5956 struct null_pointer_info
*npi
)
5958 basic_block bb
, current_block
;
5959 sbitmap
*nonnull_local
= npi
->nonnull_local
;
5960 sbitmap
*nonnull_killed
= npi
->nonnull_killed
;
5961 int something_changed
= 0;
5963 /* Compute local properties, nonnull and killed. A register will have
5964 the nonnull property if at the end of the current block its value is
5965 known to be nonnull. The killed property indicates that somewhere in
5966 the block any information we had about the register is killed.
5968 Note that a register can have both properties in a single block. That
5969 indicates that it's killed, then later in the block a new value is
5971 sbitmap_vector_zero (nonnull_local
, last_basic_block
);
5972 sbitmap_vector_zero (nonnull_killed
, last_basic_block
);
5974 FOR_EACH_BB (current_block
)
5976 rtx insn
, stop_insn
;
5978 /* Set the current block for invalidate_nonnull_info. */
5979 npi
->current_block
= current_block
;
5981 /* Scan each insn in the basic block looking for memory references and
5983 stop_insn
= NEXT_INSN (BB_END (current_block
));
5984 for (insn
= BB_HEAD (current_block
);
5986 insn
= NEXT_INSN (insn
))
5991 /* Ignore anything that is not a normal insn. */
5992 if (! INSN_P (insn
))
5995 /* Basically ignore anything that is not a simple SET. We do have
5996 to make sure to invalidate nonnull_local and set nonnull_killed
5997 for such insns though. */
5998 set
= single_set (insn
);
6001 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
6005 /* See if we've got a usable memory load. We handle it first
6006 in case it uses its address register as a dest (which kills
6007 the nonnull property). */
6008 if (GET_CODE (SET_SRC (set
)) == MEM
6009 && GET_CODE ((reg
= XEXP (SET_SRC (set
), 0))) == REG
6010 && REGNO (reg
) >= npi
->min_reg
6011 && REGNO (reg
) < npi
->max_reg
)
6012 SET_BIT (nonnull_local
[current_block
->index
],
6013 REGNO (reg
) - npi
->min_reg
);
6015 /* Now invalidate stuff clobbered by this insn. */
6016 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
6018 /* And handle stores, we do these last since any sets in INSN can
6019 not kill the nonnull property if it is derived from a MEM
6020 appearing in a SET_DEST. */
6021 if (GET_CODE (SET_DEST (set
)) == MEM
6022 && GET_CODE ((reg
= XEXP (SET_DEST (set
), 0))) == REG
6023 && REGNO (reg
) >= npi
->min_reg
6024 && REGNO (reg
) < npi
->max_reg
)
6025 SET_BIT (nonnull_local
[current_block
->index
],
6026 REGNO (reg
) - npi
->min_reg
);
6030 /* Now compute global properties based on the local properties. This
6031 is a classic global availability algorithm. */
6032 compute_available (nonnull_local
, nonnull_killed
,
6033 nonnull_avout
, nonnull_avin
);
6035 /* Now look at each bb and see if it ends with a compare of a value
6039 rtx last_insn
= BB_END (bb
);
6040 rtx condition
, earliest
;
6041 int compare_and_branch
;
6043 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
6044 since BLOCK_REG[BB] is zero if this block did not end with a
6045 comparison against zero, this condition works. */
6046 if (block_reg
[bb
->index
] < npi
->min_reg
6047 || block_reg
[bb
->index
] >= npi
->max_reg
)
6050 /* LAST_INSN is a conditional jump. Get its condition. */
6051 condition
= get_condition (last_insn
, &earliest
, false);
6053 /* If we can't determine the condition then skip. */
6057 /* Is the register known to have a nonzero value? */
6058 if (!TEST_BIT (nonnull_avout
[bb
->index
], block_reg
[bb
->index
] - npi
->min_reg
))
6061 /* Try to compute whether the compare/branch at the loop end is one or
6062 two instructions. */
6063 if (earliest
== last_insn
)
6064 compare_and_branch
= 1;
6065 else if (earliest
== prev_nonnote_insn (last_insn
))
6066 compare_and_branch
= 2;
6070 /* We know the register in this comparison is nonnull at exit from
6071 this block. We can optimize this comparison. */
6072 if (GET_CODE (condition
) == NE
)
6076 new_jump
= emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn
)),
6078 JUMP_LABEL (new_jump
) = JUMP_LABEL (last_insn
);
6079 LABEL_NUSES (JUMP_LABEL (new_jump
))++;
6080 emit_barrier_after (new_jump
);
6083 something_changed
= 1;
6084 delete_insn (last_insn
);
6086 if (compare_and_branch
== 2)
6087 delete_insn (earliest
);
6089 purge_dead_edges (bb
);
6091 /* Don't check this block again. (Note that BB_END is
6092 invalid here; we deleted the last instruction in the
6094 block_reg
[bb
->index
] = 0;
6097 return something_changed
;
6100 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
6103 This is conceptually similar to global constant/copy propagation and
6104 classic global CSE (it even uses the same dataflow equations as cprop).
6106 If a register is used as memory address with the form (mem (reg)), then we
6107 know that REG can not be zero at that point in the program. Any instruction
6108 which sets REG "kills" this property.
6110 So, if every path leading to a conditional branch has an available memory
6111 reference of that form, then we know the register can not have the value
6112 zero at the conditional branch.
6114 So we merely need to compute the local properties and propagate that data
6115 around the cfg, then optimize where possible.
6117 We run this pass two times. Once before CSE, then again after CSE. This
6118 has proven to be the most profitable approach. It is rare for new
6119 optimization opportunities of this nature to appear after the first CSE
6122 This could probably be integrated with global cprop with a little work. */
6125 delete_null_pointer_checks (rtx f ATTRIBUTE_UNUSED
)
6127 sbitmap
*nonnull_avin
, *nonnull_avout
;
6128 unsigned int *block_reg
;
6132 int max_reg
= max_reg_num ();
6133 struct null_pointer_info npi
;
6134 int something_changed
= 0;
6136 /* If we have only a single block, or it is too expensive, give up. */
6137 if (n_basic_blocks
<= 1
6138 || is_too_expensive (_ ("NULL pointer checks disabled")))
6141 /* We need four bitmaps, each with a bit for each register in each
6143 regs_per_pass
= get_bitmap_width (4, last_basic_block
, max_reg
);
6145 /* Allocate bitmaps to hold local and global properties. */
6146 npi
.nonnull_local
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6147 npi
.nonnull_killed
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6148 nonnull_avin
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6149 nonnull_avout
= sbitmap_vector_alloc (last_basic_block
, regs_per_pass
);
6151 /* Go through the basic blocks, seeing whether or not each block
6152 ends with a conditional branch whose condition is a comparison
6153 against zero. Record the register compared in BLOCK_REG. */
6154 block_reg
= xcalloc (last_basic_block
, sizeof (int));
6157 rtx last_insn
= BB_END (bb
);
6158 rtx condition
, earliest
, reg
;
6160 /* We only want conditional branches. */
6161 if (GET_CODE (last_insn
) != JUMP_INSN
6162 || !any_condjump_p (last_insn
)
6163 || !onlyjump_p (last_insn
))
6166 /* LAST_INSN is a conditional jump. Get its condition. */
6167 condition
= get_condition (last_insn
, &earliest
, false);
6169 /* If we were unable to get the condition, or it is not an equality
6170 comparison against zero then there's nothing we can do. */
6172 || (GET_CODE (condition
) != NE
&& GET_CODE (condition
) != EQ
)
6173 || GET_CODE (XEXP (condition
, 1)) != CONST_INT
6174 || (XEXP (condition
, 1)
6175 != CONST0_RTX (GET_MODE (XEXP (condition
, 0)))))
6178 /* We must be checking a register against zero. */
6179 reg
= XEXP (condition
, 0);
6180 if (GET_CODE (reg
) != REG
)
6183 block_reg
[bb
->index
] = REGNO (reg
);
6186 /* Go through the algorithm for each block of registers. */
6187 for (reg
= FIRST_PSEUDO_REGISTER
; reg
< max_reg
; reg
+= regs_per_pass
)
6190 npi
.max_reg
= MIN (reg
+ regs_per_pass
, max_reg
);
6191 something_changed
|= delete_null_pointer_checks_1 (block_reg
,
6197 /* Free the table of registers compared at the end of every block. */
6201 sbitmap_vector_free (npi
.nonnull_local
);
6202 sbitmap_vector_free (npi
.nonnull_killed
);
6203 sbitmap_vector_free (nonnull_avin
);
6204 sbitmap_vector_free (nonnull_avout
);
6206 return something_changed
;
6209 /* Code Hoisting variables and subroutines. */
6211 /* Very busy expressions. */
6212 static sbitmap
*hoist_vbein
;
6213 static sbitmap
*hoist_vbeout
;
6215 /* Hoistable expressions. */
6216 static sbitmap
*hoist_exprs
;
6218 /* ??? We could compute post dominators and run this algorithm in
6219 reverse to perform tail merging, doing so would probably be
6220 more effective than the tail merging code in jump.c.
6222 It's unclear if tail merging could be run in parallel with
6223 code hoisting. It would be nice. */
6225 /* Allocate vars used for code hoisting analysis. */
6228 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
6230 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6231 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6232 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6234 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6235 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6236 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6237 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
6240 /* Free vars used for code hoisting analysis. */
6243 free_code_hoist_mem (void)
6245 sbitmap_vector_free (antloc
);
6246 sbitmap_vector_free (transp
);
6247 sbitmap_vector_free (comp
);
6249 sbitmap_vector_free (hoist_vbein
);
6250 sbitmap_vector_free (hoist_vbeout
);
6251 sbitmap_vector_free (hoist_exprs
);
6252 sbitmap_vector_free (transpout
);
6254 free_dominance_info (CDI_DOMINATORS
);
6257 /* Compute the very busy expressions at entry/exit from each block.
6259 An expression is very busy if all paths from a given point
6260 compute the expression. */
6263 compute_code_hoist_vbeinout (void)
6265 int changed
, passes
;
6268 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
6269 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
6278 /* We scan the blocks in the reverse order to speed up
6280 FOR_EACH_BB_REVERSE (bb
)
6282 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
6283 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
6284 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
6285 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
6292 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
6295 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6298 compute_code_hoist_data (void)
6300 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
6301 compute_transpout ();
6302 compute_code_hoist_vbeinout ();
6303 calculate_dominance_info (CDI_DOMINATORS
);
6305 fprintf (gcse_file
, "\n");
6308 /* Determine if the expression identified by EXPR_INDEX would
6309 reach BB unimpared if it was placed at the end of EXPR_BB.
6311 It's unclear exactly what Muchnick meant by "unimpared". It seems
6312 to me that the expression must either be computed or transparent in
6313 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6314 would allow the expression to be hoisted out of loops, even if
6315 the expression wasn't a loop invariant.
6317 Contrast this to reachability for PRE where an expression is
6318 considered reachable if *any* path reaches instead of *all*
6322 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
6325 int visited_allocated_locally
= 0;
6328 if (visited
== NULL
)
6330 visited_allocated_locally
= 1;
6331 visited
= xcalloc (last_basic_block
, 1);
6334 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
6336 basic_block pred_bb
= pred
->src
;
6338 if (pred
->src
== ENTRY_BLOCK_PTR
)
6340 else if (pred_bb
== expr_bb
)
6342 else if (visited
[pred_bb
->index
])
6345 /* Does this predecessor generate this expression? */
6346 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
6348 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
6354 visited
[pred_bb
->index
] = 1;
6355 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
6360 if (visited_allocated_locally
)
6363 return (pred
== NULL
);
6366 /* Actually perform code hoisting. */
6371 basic_block bb
, dominated
;
6373 unsigned int domby_len
;
6375 struct expr
**index_map
;
6378 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
6380 /* Compute a mapping from expression number (`bitmap_index') to
6381 hash table entry. */
6383 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
6384 for (i
= 0; i
< expr_hash_table
.size
; i
++)
6385 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
6386 index_map
[expr
->bitmap_index
] = expr
;
6388 /* Walk over each basic block looking for potentially hoistable
6389 expressions, nothing gets hoisted from the entry block. */
6393 int insn_inserted_p
;
6395 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
6396 /* Examine each expression that is very busy at the exit of this
6397 block. These are the potentially hoistable expressions. */
6398 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
6402 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
6403 && TEST_BIT (transpout
[bb
->index
], i
))
6405 /* We've found a potentially hoistable expression, now
6406 we look at every block BB dominates to see if it
6407 computes the expression. */
6408 for (j
= 0; j
< domby_len
; j
++)
6410 dominated
= domby
[j
];
6411 /* Ignore self dominance. */
6412 if (bb
== dominated
)
6414 /* We've found a dominated block, now see if it computes
6415 the busy expression and whether or not moving that
6416 expression to the "beginning" of that block is safe. */
6417 if (!TEST_BIT (antloc
[dominated
->index
], i
))
6420 /* Note if the expression would reach the dominated block
6421 unimpared if it was placed at the end of BB.
6423 Keep track of how many times this expression is hoistable
6424 from a dominated block into BB. */
6425 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
6429 /* If we found more than one hoistable occurrence of this
6430 expression, then note it in the bitmap of expressions to
6431 hoist. It makes no sense to hoist things which are computed
6432 in only one BB, and doing so tends to pessimize register
6433 allocation. One could increase this value to try harder
6434 to avoid any possible code expansion due to register
6435 allocation issues; however experiments have shown that
6436 the vast majority of hoistable expressions are only movable
6437 from two successors, so raising this threshold is likely
6438 to nullify any benefit we get from code hoisting. */
6441 SET_BIT (hoist_exprs
[bb
->index
], i
);
6446 /* If we found nothing to hoist, then quit now. */
6453 /* Loop over all the hoistable expressions. */
6454 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
6456 /* We want to insert the expression into BB only once, so
6457 note when we've inserted it. */
6458 insn_inserted_p
= 0;
6460 /* These tests should be the same as the tests above. */
6461 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
6463 /* We've found a potentially hoistable expression, now
6464 we look at every block BB dominates to see if it
6465 computes the expression. */
6466 for (j
= 0; j
< domby_len
; j
++)
6468 dominated
= domby
[j
];
6469 /* Ignore self dominance. */
6470 if (bb
== dominated
)
6473 /* We've found a dominated block, now see if it computes
6474 the busy expression and whether or not moving that
6475 expression to the "beginning" of that block is safe. */
6476 if (!TEST_BIT (antloc
[dominated
->index
], i
))
6479 /* The expression is computed in the dominated block and
6480 it would be safe to compute it at the start of the
6481 dominated block. Now we have to determine if the
6482 expression would reach the dominated block if it was
6483 placed at the end of BB. */
6484 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
6486 struct expr
*expr
= index_map
[i
];
6487 struct occr
*occr
= expr
->antic_occr
;
6491 /* Find the right occurrence of this expression. */
6492 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
6495 /* Should never happen. */
6501 set
= single_set (insn
);
6505 /* Create a pseudo-reg to store the result of reaching
6506 expressions into. Get the mode for the new pseudo
6507 from the mode of the original destination pseudo. */
6508 if (expr
->reaching_reg
== NULL
)
6510 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
6512 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
6514 occr
->deleted_p
= 1;
6515 if (!insn_inserted_p
)
6517 insert_insn_end_bb (index_map
[i
], bb
, 0);
6518 insn_inserted_p
= 1;
6530 /* Top level routine to perform one code hoisting (aka unification) pass
6532 Return nonzero if a change was made. */
6535 one_code_hoisting_pass (void)
6539 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
6540 compute_hash_table (&expr_hash_table
);
6542 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
6544 if (expr_hash_table
.n_elems
> 0)
6546 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
6547 compute_code_hoist_data ();
6549 free_code_hoist_mem ();
6552 free_hash_table (&expr_hash_table
);
6557 /* Here we provide the things required to do store motion towards
6558 the exit. In order for this to be effective, gcse also needed to
6559 be taught how to move a load when it is kill only by a store to itself.
6564 void foo(float scale)
6566 for (i=0; i<10; i++)
6570 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6571 the load out since its live around the loop, and stored at the bottom
6574 The 'Load Motion' referred to and implemented in this file is
6575 an enhancement to gcse which when using edge based lcm, recognizes
6576 this situation and allows gcse to move the load out of the loop.
6578 Once gcse has hoisted the load, store motion can then push this
6579 load towards the exit, and we end up with no loads or stores of 'i'
6582 /* This will search the ldst list for a matching expression. If it
6583 doesn't find one, we create one and initialize it. */
6585 static struct ls_expr
*
6588 int do_not_record_p
= 0;
6589 struct ls_expr
* ptr
;
6592 hash
= hash_expr_1 (x
, GET_MODE (x
), & do_not_record_p
);
6594 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6595 if (ptr
->hash_index
== hash
&& expr_equiv_p (ptr
->pattern
, x
))
6598 ptr
= xmalloc (sizeof (struct ls_expr
));
6600 ptr
->next
= pre_ldst_mems
;
6603 ptr
->pattern_regs
= NULL_RTX
;
6604 ptr
->loads
= NULL_RTX
;
6605 ptr
->stores
= NULL_RTX
;
6606 ptr
->reaching_reg
= NULL_RTX
;
6609 ptr
->hash_index
= hash
;
6610 pre_ldst_mems
= ptr
;
6615 /* Free up an individual ldst entry. */
6618 free_ldst_entry (struct ls_expr
* ptr
)
6620 free_INSN_LIST_list (& ptr
->loads
);
6621 free_INSN_LIST_list (& ptr
->stores
);
6626 /* Free up all memory associated with the ldst list. */
6629 free_ldst_mems (void)
6631 while (pre_ldst_mems
)
6633 struct ls_expr
* tmp
= pre_ldst_mems
;
6635 pre_ldst_mems
= pre_ldst_mems
->next
;
6637 free_ldst_entry (tmp
);
6640 pre_ldst_mems
= NULL
;
6643 /* Dump debugging info about the ldst list. */
6646 print_ldst_list (FILE * file
)
6648 struct ls_expr
* ptr
;
6650 fprintf (file
, "LDST list: \n");
6652 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6654 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
6656 print_rtl (file
, ptr
->pattern
);
6658 fprintf (file
, "\n Loads : ");
6661 print_rtl (file
, ptr
->loads
);
6663 fprintf (file
, "(nil)");
6665 fprintf (file
, "\n Stores : ");
6668 print_rtl (file
, ptr
->stores
);
6670 fprintf (file
, "(nil)");
6672 fprintf (file
, "\n\n");
6675 fprintf (file
, "\n");
6678 /* Returns 1 if X is in the list of ldst only expressions. */
6680 static struct ls_expr
*
6681 find_rtx_in_ldst (rtx x
)
6683 struct ls_expr
* ptr
;
6685 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6686 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
6692 /* Assign each element of the list of mems a monotonically increasing value. */
6695 enumerate_ldsts (void)
6697 struct ls_expr
* ptr
;
6700 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6706 /* Return first item in the list. */
6708 static inline struct ls_expr
*
6709 first_ls_expr (void)
6711 return pre_ldst_mems
;
6714 /* Return the next item in the list after the specified one. */
6716 static inline struct ls_expr
*
6717 next_ls_expr (struct ls_expr
* ptr
)
6722 /* Load Motion for loads which only kill themselves. */
6724 /* Return true if x is a simple MEM operation, with no registers or
6725 side effects. These are the types of loads we consider for the
6726 ld_motion list, otherwise we let the usual aliasing take care of it. */
6731 if (GET_CODE (x
) != MEM
)
6734 if (MEM_VOLATILE_P (x
))
6737 if (GET_MODE (x
) == BLKmode
)
6740 /* If we are handling exceptions, we must be careful with memory references
6741 that may trap. If we are not, the behavior is undefined, so we may just
6743 if (flag_non_call_exceptions
&& may_trap_p (x
))
6746 if (side_effects_p (x
))
6749 /* Do not consider function arguments passed on stack. */
6750 if (reg_mentioned_p (stack_pointer_rtx
, x
))
6753 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
6759 /* Make sure there isn't a buried reference in this pattern anywhere.
6760 If there is, invalidate the entry for it since we're not capable
6761 of fixing it up just yet.. We have to be sure we know about ALL
6762 loads since the aliasing code will allow all entries in the
6763 ld_motion list to not-alias itself. If we miss a load, we will get
6764 the wrong value since gcse might common it and we won't know to
6768 invalidate_any_buried_refs (rtx x
)
6772 struct ls_expr
* ptr
;
6774 /* Invalidate it in the list. */
6775 if (GET_CODE (x
) == MEM
&& simple_mem (x
))
6777 ptr
= ldst_entry (x
);
6781 /* Recursively process the insn. */
6782 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6784 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
6787 invalidate_any_buried_refs (XEXP (x
, i
));
6788 else if (fmt
[i
] == 'E')
6789 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6790 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
6794 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6795 being defined as MEM loads and stores to symbols, with no side effects
6796 and no registers in the expression. For a MEM destination, we also
6797 check that the insn is still valid if we replace the destination with a
6798 REG, as is done in update_ld_motion_stores. If there are any uses/defs
6799 which don't match this criteria, they are invalidated and trimmed out
6803 compute_ld_motion_mems (void)
6805 struct ls_expr
* ptr
;
6809 pre_ldst_mems
= NULL
;
6813 for (insn
= BB_HEAD (bb
);
6814 insn
&& insn
!= NEXT_INSN (BB_END (bb
));
6815 insn
= NEXT_INSN (insn
))
6819 if (GET_CODE (PATTERN (insn
)) == SET
)
6821 rtx src
= SET_SRC (PATTERN (insn
));
6822 rtx dest
= SET_DEST (PATTERN (insn
));
6824 /* Check for a simple LOAD... */
6825 if (GET_CODE (src
) == MEM
&& simple_mem (src
))
6827 ptr
= ldst_entry (src
);
6828 if (GET_CODE (dest
) == REG
)
6829 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
6835 /* Make sure there isn't a buried load somewhere. */
6836 invalidate_any_buried_refs (src
);
6839 /* Check for stores. Don't worry about aliased ones, they
6840 will block any movement we might do later. We only care
6841 about this exact pattern since those are the only
6842 circumstance that we will ignore the aliasing info. */
6843 if (GET_CODE (dest
) == MEM
&& simple_mem (dest
))
6845 ptr
= ldst_entry (dest
);
6847 if (GET_CODE (src
) != MEM
6848 && GET_CODE (src
) != ASM_OPERANDS
6849 /* Check for REG manually since want_to_gcse_p
6850 returns 0 for all REGs. */
6851 && can_assign_to_reg_p (src
))
6852 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
6858 invalidate_any_buried_refs (PATTERN (insn
));
6864 /* Remove any references that have been either invalidated or are not in the
6865 expression list for pre gcse. */
6868 trim_ld_motion_mems (void)
6870 struct ls_expr
* * last
= & pre_ldst_mems
;
6871 struct ls_expr
* ptr
= pre_ldst_mems
;
6877 /* Delete if entry has been made invalid. */
6880 /* Delete if we cannot find this mem in the expression list. */
6881 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
6883 for (expr
= expr_hash_table
.table
[hash
];
6885 expr
= expr
->next_same_hash
)
6886 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
6890 expr
= (struct expr
*) 0;
6894 /* Set the expression field if we are keeping it. */
6902 free_ldst_entry (ptr
);
6907 /* Show the world what we've found. */
6908 if (gcse_file
&& pre_ldst_mems
!= NULL
)
6909 print_ldst_list (gcse_file
);
6912 /* This routine will take an expression which we are replacing with
6913 a reaching register, and update any stores that are needed if
6914 that expression is in the ld_motion list. Stores are updated by
6915 copying their SRC to the reaching register, and then storing
6916 the reaching register into the store location. These keeps the
6917 correct value in the reaching register for the loads. */
6920 update_ld_motion_stores (struct expr
* expr
)
6922 struct ls_expr
* mem_ptr
;
6924 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
6926 /* We can try to find just the REACHED stores, but is shouldn't
6927 matter to set the reaching reg everywhere... some might be
6928 dead and should be eliminated later. */
6930 /* We replace (set mem expr) with (set reg expr) (set mem reg)
6931 where reg is the reaching reg used in the load. We checked in
6932 compute_ld_motion_mems that we can replace (set mem expr) with
6933 (set reg expr) in that insn. */
6934 rtx list
= mem_ptr
->stores
;
6936 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
6938 rtx insn
= XEXP (list
, 0);
6939 rtx pat
= PATTERN (insn
);
6940 rtx src
= SET_SRC (pat
);
6941 rtx reg
= expr
->reaching_reg
;
6944 /* If we've already copied it, continue. */
6945 if (expr
->reaching_reg
== src
)
6950 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
6951 print_rtl (gcse_file
, expr
->reaching_reg
);
6952 fprintf (gcse_file
, ":\n ");
6953 print_inline_rtx (gcse_file
, insn
, 8);
6954 fprintf (gcse_file
, "\n");
6957 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
6958 new = emit_insn_before (copy
, insn
);
6959 record_one_set (REGNO (reg
), new);
6960 SET_SRC (pat
) = reg
;
6962 /* un-recognize this pattern since it's probably different now. */
6963 INSN_CODE (insn
) = -1;
6964 gcse_create_count
++;
6969 /* Store motion code. */
6971 #define ANTIC_STORE_LIST(x) ((x)->loads)
6972 #define AVAIL_STORE_LIST(x) ((x)->stores)
6973 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
6975 /* This is used to communicate the target bitvector we want to use in the
6976 reg_set_info routine when called via the note_stores mechanism. */
6977 static int * regvec
;
6979 /* And current insn, for the same routine. */
6980 static rtx compute_store_table_current_insn
;
6982 /* Used in computing the reverse edge graph bit vectors. */
6983 static sbitmap
* st_antloc
;
6985 /* Global holding the number of store expressions we are dealing with. */
6986 static int num_stores
;
6988 /* Checks to set if we need to mark a register set. Called from
6992 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
6995 sbitmap bb_reg
= data
;
6997 if (GET_CODE (dest
) == SUBREG
)
6998 dest
= SUBREG_REG (dest
);
7000 if (GET_CODE (dest
) == REG
)
7002 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
7004 SET_BIT (bb_reg
, REGNO (dest
));
7008 /* Clear any mark that says that this insn sets dest. Called from
7012 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
7015 int *dead_vec
= data
;
7017 if (GET_CODE (dest
) == SUBREG
)
7018 dest
= SUBREG_REG (dest
);
7020 if (GET_CODE (dest
) == REG
&&
7021 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
7022 dead_vec
[REGNO (dest
)] = 0;
7025 /* Return zero if some of the registers in list X are killed
7026 due to set of registers in bitmap REGS_SET. */
7029 store_ops_ok (rtx x
, int *regs_set
)
7033 for (; x
; x
= XEXP (x
, 1))
7036 if (regs_set
[REGNO(reg
)])
7043 /* Returns a list of registers mentioned in X. */
7045 extract_mentioned_regs (rtx x
)
7047 return extract_mentioned_regs_helper (x
, NULL_RTX
);
7050 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
7053 extract_mentioned_regs_helper (rtx x
, rtx accum
)
7059 /* Repeat is used to turn tail-recursion into iteration. */
7065 code
= GET_CODE (x
);
7069 return alloc_EXPR_LIST (0, x
, accum
);
7079 /* We do not run this function with arguments having side effects. */
7098 i
= GET_RTX_LENGTH (code
) - 1;
7099 fmt
= GET_RTX_FORMAT (code
);
7105 rtx tem
= XEXP (x
, i
);
7107 /* If we are about to do the last recursive call
7108 needed at this level, change it into iteration. */
7115 accum
= extract_mentioned_regs_helper (tem
, accum
);
7117 else if (fmt
[i
] == 'E')
7121 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7122 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
7129 /* Determine whether INSN is MEM store pattern that we will consider moving.
7130 REGS_SET_BEFORE is bitmap of registers set before (and including) the
7131 current insn, REGS_SET_AFTER is bitmap of registers set after (and
7132 including) the insn in this basic block. We must be passing through BB from
7133 head to end, as we are using this fact to speed things up.
7135 The results are stored this way:
7137 -- the first anticipatable expression is added into ANTIC_STORE_LIST
7138 -- if the processed expression is not anticipatable, NULL_RTX is added
7139 there instead, so that we can use it as indicator that no further
7140 expression of this type may be anticipatable
7141 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
7142 consequently, all of them but this head are dead and may be deleted.
7143 -- if the expression is not available, the insn due to that it fails to be
7144 available is stored in reaching_reg.
7146 The things are complicated a bit by fact that there already may be stores
7147 to the same MEM from other blocks; also caller must take care of the
7148 necessary cleanup of the temporary markers after end of the basic block.
7152 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
7154 struct ls_expr
* ptr
;
7156 int check_anticipatable
, check_available
;
7157 basic_block bb
= BLOCK_FOR_INSN (insn
);
7159 set
= single_set (insn
);
7163 dest
= SET_DEST (set
);
7165 if (GET_CODE (dest
) != MEM
|| MEM_VOLATILE_P (dest
)
7166 || GET_MODE (dest
) == BLKmode
)
7169 if (side_effects_p (dest
))
7172 /* If we are handling exceptions, we must be careful with memory references
7173 that may trap. If we are not, the behavior is undefined, so we may just
7175 if (flag_non_call_exceptions
&& may_trap_p (dest
))
7178 ptr
= ldst_entry (dest
);
7179 if (!ptr
->pattern_regs
)
7180 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
7182 /* Do not check for anticipatability if we either found one anticipatable
7183 store already, or tested for one and found out that it was killed. */
7184 check_anticipatable
= 0;
7185 if (!ANTIC_STORE_LIST (ptr
))
7186 check_anticipatable
= 1;
7189 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
7191 && BLOCK_FOR_INSN (tmp
) != bb
)
7192 check_anticipatable
= 1;
7194 if (check_anticipatable
)
7196 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
7200 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
7201 ANTIC_STORE_LIST (ptr
));
7204 /* It is not necessary to check whether store is available if we did
7205 it successfully before; if we failed before, do not bother to check
7206 until we reach the insn that caused us to fail. */
7207 check_available
= 0;
7208 if (!AVAIL_STORE_LIST (ptr
))
7209 check_available
= 1;
7212 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
7213 if (BLOCK_FOR_INSN (tmp
) != bb
)
7214 check_available
= 1;
7216 if (check_available
)
7218 /* Check that we have already reached the insn at that the check
7219 failed last time. */
7220 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
7222 for (tmp
= BB_END (bb
);
7223 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
7224 tmp
= PREV_INSN (tmp
))
7227 check_available
= 0;
7230 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
7232 &LAST_AVAIL_CHECK_FAILURE (ptr
));
7234 if (!check_available
)
7235 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
7238 /* Find available and anticipatable stores. */
7241 compute_store_table (void)
7247 int *last_set_in
, *already_set
;
7248 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
7250 max_gcse_regno
= max_reg_num ();
7252 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
7254 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
7256 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
7257 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
7259 /* Find all the stores we care about. */
7262 /* First compute the registers set in this block. */
7263 regvec
= last_set_in
;
7265 for (insn
= BB_HEAD (bb
);
7266 insn
!= NEXT_INSN (BB_END (bb
));
7267 insn
= NEXT_INSN (insn
))
7269 if (! INSN_P (insn
))
7272 if (GET_CODE (insn
) == CALL_INSN
)
7274 bool clobbers_all
= false;
7275 #ifdef NON_SAVING_SETJMP
7276 if (NON_SAVING_SETJMP
7277 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
7278 clobbers_all
= true;
7281 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7283 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
7285 last_set_in
[regno
] = INSN_UID (insn
);
7286 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
7290 pat
= PATTERN (insn
);
7291 compute_store_table_current_insn
= insn
;
7292 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
7295 /* Now find the stores. */
7296 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
7297 regvec
= already_set
;
7298 for (insn
= BB_HEAD (bb
);
7299 insn
!= NEXT_INSN (BB_END (bb
));
7300 insn
= NEXT_INSN (insn
))
7302 if (! INSN_P (insn
))
7305 if (GET_CODE (insn
) == CALL_INSN
)
7307 bool clobbers_all
= false;
7308 #ifdef NON_SAVING_SETJMP
7309 if (NON_SAVING_SETJMP
7310 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
7311 clobbers_all
= true;
7314 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7316 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
7317 already_set
[regno
] = 1;
7320 pat
= PATTERN (insn
);
7321 note_stores (pat
, reg_set_info
, NULL
);
7323 /* Now that we've marked regs, look for stores. */
7324 find_moveable_store (insn
, already_set
, last_set_in
);
7326 /* Unmark regs that are no longer set. */
7327 compute_store_table_current_insn
= insn
;
7328 note_stores (pat
, reg_clear_last_set
, last_set_in
);
7329 if (GET_CODE (insn
) == CALL_INSN
)
7331 bool clobbers_all
= false;
7332 #ifdef NON_SAVING_SETJMP
7333 if (NON_SAVING_SETJMP
7334 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
7335 clobbers_all
= true;
7338 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
7340 || TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
7341 && last_set_in
[regno
] == INSN_UID (insn
))
7342 last_set_in
[regno
] = 0;
7346 #ifdef ENABLE_CHECKING
7347 /* last_set_in should now be all-zero. */
7348 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
7349 if (last_set_in
[regno
] != 0)
7353 /* Clear temporary marks. */
7354 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7356 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
7357 if (ANTIC_STORE_LIST (ptr
)
7358 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
7359 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
7363 /* Remove the stores that are not available anywhere, as there will
7364 be no opportunity to optimize them. */
7365 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
7367 ptr
= *prev_next_ptr_ptr
)
7369 if (!AVAIL_STORE_LIST (ptr
))
7371 *prev_next_ptr_ptr
= ptr
->next
;
7372 free_ldst_entry (ptr
);
7375 prev_next_ptr_ptr
= &ptr
->next
;
7378 ret
= enumerate_ldsts ();
7382 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
7383 print_ldst_list (gcse_file
);
7391 /* Check to see if the load X is aliased with STORE_PATTERN.
7392 AFTER is true if we are checking the case when STORE_PATTERN occurs
7396 load_kills_store (rtx x
, rtx store_pattern
, int after
)
7399 return anti_dependence (x
, store_pattern
);
7401 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
7405 /* Go through the entire insn X, looking for any loads which might alias
7406 STORE_PATTERN. Return true if found.
7407 AFTER is true if we are checking the case when STORE_PATTERN occurs
7408 after the insn X. */
7411 find_loads (rtx x
, rtx store_pattern
, int after
)
7420 if (GET_CODE (x
) == SET
)
7423 if (GET_CODE (x
) == MEM
)
7425 if (load_kills_store (x
, store_pattern
, after
))
7429 /* Recursively process the insn. */
7430 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
7432 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
7435 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
7436 else if (fmt
[i
] == 'E')
7437 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7438 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
7443 /* Check if INSN kills the store pattern X (is aliased with it).
7444 AFTER is true if we are checking the case when store X occurs
7445 after the insn. Return true if it it does. */
7448 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
7450 rtx reg
, base
, note
;
7455 if (GET_CODE (insn
) == CALL_INSN
)
7457 /* A normal or pure call might read from pattern,
7458 but a const call will not. */
7459 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
7462 /* But even a const call reads its parameters. Check whether the
7463 base of some of registers used in mem is stack pointer. */
7464 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
7466 base
= find_base_term (XEXP (reg
, 0));
7468 || (GET_CODE (base
) == ADDRESS
7469 && GET_MODE (base
) == Pmode
7470 && XEXP (base
, 0) == stack_pointer_rtx
))
7477 if (GET_CODE (PATTERN (insn
)) == SET
)
7479 rtx pat
= PATTERN (insn
);
7480 rtx dest
= SET_DEST (pat
);
7482 if (GET_CODE (dest
) == SIGN_EXTRACT
7483 || GET_CODE (dest
) == ZERO_EXTRACT
)
7484 dest
= XEXP (dest
, 0);
7486 /* Check for memory stores to aliased objects. */
7487 if (GET_CODE (dest
) == MEM
7488 && !expr_equiv_p (dest
, x
))
7492 if (output_dependence (dest
, x
))
7497 if (output_dependence (x
, dest
))
7501 if (find_loads (SET_SRC (pat
), x
, after
))
7504 else if (find_loads (PATTERN (insn
), x
, after
))
7507 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
7508 location aliased with X, then this insn kills X. */
7509 note
= find_reg_equal_equiv_note (insn
);
7512 note
= XEXP (note
, 0);
7514 /* However, if the note represents a must alias rather than a may
7515 alias relationship, then it does not kill X. */
7516 if (expr_equiv_p (note
, x
))
7519 /* See if there are any aliased loads in the note. */
7520 return find_loads (note
, x
, after
);
7523 /* Returns true if the expression X is loaded or clobbered on or after INSN
7524 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
7525 or after the insn. X_REGS is list of registers mentioned in X. If the store
7526 is killed, return the last insn in that it occurs in FAIL_INSN. */
7529 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
7530 int *regs_set_after
, rtx
*fail_insn
)
7532 rtx last
= BB_END (bb
), act
;
7534 if (!store_ops_ok (x_regs
, regs_set_after
))
7536 /* We do not know where it will happen. */
7538 *fail_insn
= NULL_RTX
;
7542 /* Scan from the end, so that fail_insn is determined correctly. */
7543 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
7544 if (store_killed_in_insn (x
, x_regs
, act
, false))
7554 /* Returns true if the expression X is loaded or clobbered on or before INSN
7555 within basic block BB. X_REGS is list of registers mentioned in X.
7556 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
7558 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
7559 int *regs_set_before
)
7561 rtx first
= BB_HEAD (bb
);
7563 if (!store_ops_ok (x_regs
, regs_set_before
))
7566 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
7567 if (store_killed_in_insn (x
, x_regs
, insn
, true))
7573 /* Fill in available, anticipatable, transparent and kill vectors in
7574 STORE_DATA, based on lists of available and anticipatable stores. */
7576 build_store_vectors (void)
7579 int *regs_set_in_block
;
7581 struct ls_expr
* ptr
;
7584 /* Build the gen_vector. This is any store in the table which is not killed
7585 by aliasing later in its block. */
7586 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
7587 sbitmap_vector_zero (ae_gen
, last_basic_block
);
7589 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
7590 sbitmap_vector_zero (st_antloc
, last_basic_block
);
7592 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7594 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
7596 insn
= XEXP (st
, 0);
7597 bb
= BLOCK_FOR_INSN (insn
);
7599 /* If we've already seen an available expression in this block,
7600 we can delete this one (It occurs earlier in the block). We'll
7601 copy the SRC expression to an unused register in case there
7602 are any side effects. */
7603 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
7605 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
7607 fprintf (gcse_file
, "Removing redundant store:\n");
7608 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
7611 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
7614 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
7616 insn
= XEXP (st
, 0);
7617 bb
= BLOCK_FOR_INSN (insn
);
7618 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
7622 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
7623 sbitmap_vector_zero (ae_kill
, last_basic_block
);
7625 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
7626 sbitmap_vector_zero (transp
, last_basic_block
);
7627 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
7631 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
7632 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
7634 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7636 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
7637 bb
, regs_set_in_block
, NULL
))
7639 /* It should not be necessary to consider the expression
7640 killed if it is both anticipatable and available. */
7641 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
7642 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
7643 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
7646 SET_BIT (transp
[bb
->index
], ptr
->index
);
7650 free (regs_set_in_block
);
7654 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
7655 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
7656 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
7657 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
7661 /* Insert an instruction at the beginning of a basic block, and update
7662 the BB_HEAD if needed. */
7665 insert_insn_start_bb (rtx insn
, basic_block bb
)
7667 /* Insert at start of successor block. */
7668 rtx prev
= PREV_INSN (BB_HEAD (bb
));
7669 rtx before
= BB_HEAD (bb
);
7672 if (GET_CODE (before
) != CODE_LABEL
7673 && (GET_CODE (before
) != NOTE
7674 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
7677 if (prev
== BB_END (bb
))
7679 before
= NEXT_INSN (before
);
7682 insn
= emit_insn_after (insn
, prev
);
7686 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
7688 print_inline_rtx (gcse_file
, insn
, 6);
7689 fprintf (gcse_file
, "\n");
7693 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7694 the memory reference, and E is the edge to insert it on. Returns nonzero
7695 if an edge insertion was performed. */
7698 insert_store (struct ls_expr
* expr
, edge e
)
7704 /* We did all the deleted before this insert, so if we didn't delete a
7705 store, then we haven't set the reaching reg yet either. */
7706 if (expr
->reaching_reg
== NULL_RTX
)
7709 if (e
->flags
& EDGE_FAKE
)
7712 reg
= expr
->reaching_reg
;
7713 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
7715 /* If we are inserting this expression on ALL predecessor edges of a BB,
7716 insert it at the start of the BB, and reset the insert bits on the other
7717 edges so we don't try to insert it on the other edges. */
7719 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
7720 if (!(tmp
->flags
& EDGE_FAKE
))
7722 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
7723 if (index
== EDGE_INDEX_NO_EDGE
)
7725 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
7729 /* If tmp is NULL, we found an insertion on every edge, blank the
7730 insertion vector for these edges, and insert at the start of the BB. */
7731 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
7733 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
7735 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
7736 RESET_BIT (pre_insert_map
[index
], expr
->index
);
7738 insert_insn_start_bb (insn
, bb
);
7742 /* We can't insert on this edge, so we'll insert at the head of the
7743 successors block. See Morgan, sec 10.5. */
7744 if ((e
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
7746 insert_insn_start_bb (insn
, bb
);
7750 insert_insn_on_edge (insn
, e
);
7754 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
7755 e
->src
->index
, e
->dest
->index
);
7756 print_inline_rtx (gcse_file
, insn
, 6);
7757 fprintf (gcse_file
, "\n");
7763 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
7764 memory location in SMEXPR set in basic block BB.
7766 This could be rather expensive. */
7769 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
7771 edge
*stack
= xmalloc (sizeof (edge
) * n_basic_blocks
), act
;
7772 sbitmap visited
= sbitmap_alloc (last_basic_block
);
7774 rtx last
, insn
, note
;
7775 rtx mem
= smexpr
->pattern
;
7777 sbitmap_zero (visited
);
7787 sbitmap_free (visited
);
7790 act
= stack
[--stack_top
];
7794 if (bb
== EXIT_BLOCK_PTR
7795 || TEST_BIT (visited
, bb
->index
)
7796 || TEST_BIT (ae_kill
[bb
->index
], smexpr
->index
))
7798 act
= act
->succ_next
;
7801 SET_BIT (visited
, bb
->index
);
7803 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
7805 for (last
= ANTIC_STORE_LIST (smexpr
);
7806 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
7807 last
= XEXP (last
, 1))
7809 last
= XEXP (last
, 0);
7812 last
= NEXT_INSN (BB_END (bb
));
7814 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
7817 note
= find_reg_equal_equiv_note (insn
);
7818 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
7822 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
7824 remove_note (insn
, note
);
7826 act
= act
->succ_next
;
7830 stack
[stack_top
++] = act
;
7836 /* This routine will replace a store with a SET to a specified register. */
7839 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
7841 rtx insn
, mem
, note
, set
, ptr
;
7843 mem
= smexpr
->pattern
;
7844 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
7845 insn
= emit_insn_after (insn
, del
);
7850 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
7851 print_inline_rtx (gcse_file
, del
, 6);
7852 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
7853 print_inline_rtx (gcse_file
, insn
, 6);
7854 fprintf (gcse_file
, "\n");
7857 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
7858 if (XEXP (ptr
, 0) == del
)
7860 XEXP (ptr
, 0) = insn
;
7865 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
7866 they are no longer accurate provided that they are reached by this
7867 definition, so drop them. */
7868 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
7871 set
= single_set (insn
);
7874 if (expr_equiv_p (SET_DEST (set
), mem
))
7876 note
= find_reg_equal_equiv_note (insn
);
7877 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
7881 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
7883 remove_note (insn
, note
);
7885 remove_reachable_equiv_notes (bb
, smexpr
);
7889 /* Delete a store, but copy the value that would have been stored into
7890 the reaching_reg for later storing. */
7893 delete_store (struct ls_expr
* expr
, basic_block bb
)
7897 if (expr
->reaching_reg
== NULL_RTX
)
7898 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
7900 reg
= expr
->reaching_reg
;
7902 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
7905 if (BLOCK_FOR_INSN (del
) == bb
)
7907 /* We know there is only one since we deleted redundant
7908 ones during the available computation. */
7909 replace_store_insn (reg
, del
, bb
, expr
);
7915 /* Free memory used by store motion. */
7918 free_store_memory (void)
7923 sbitmap_vector_free (ae_gen
);
7925 sbitmap_vector_free (ae_kill
);
7927 sbitmap_vector_free (transp
);
7929 sbitmap_vector_free (st_antloc
);
7931 sbitmap_vector_free (pre_insert_map
);
7933 sbitmap_vector_free (pre_delete_map
);
7934 if (reg_set_in_block
)
7935 sbitmap_vector_free (reg_set_in_block
);
7937 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
7938 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
7941 /* Perform store motion. Much like gcse, except we move expressions the
7942 other way by looking at the flowgraph in reverse. */
7949 struct ls_expr
* ptr
;
7950 int update_flow
= 0;
7954 fprintf (gcse_file
, "before store motion\n");
7955 print_rtl (gcse_file
, get_insns ());
7958 init_alias_analysis ();
7960 /* Find all the available and anticipatable stores. */
7961 num_stores
= compute_store_table ();
7962 if (num_stores
== 0)
7964 sbitmap_vector_free (reg_set_in_block
);
7965 end_alias_analysis ();
7969 /* Now compute kill & transp vectors. */
7970 build_store_vectors ();
7971 add_noreturn_fake_exit_edges ();
7972 connect_infinite_loops_to_exit ();
7974 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
7975 st_antloc
, ae_kill
, &pre_insert_map
,
7978 /* Now we want to insert the new stores which are going to be needed. */
7979 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7982 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
7983 delete_store (ptr
, bb
);
7985 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
7986 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
7987 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
7991 commit_edge_insertions ();
7993 free_store_memory ();
7994 free_edge_list (edge_list
);
7995 remove_fake_edges ();
7996 end_alias_analysis ();
8000 /* Entry point for jump bypassing optimization pass. */
8003 bypass_jumps (FILE *file
)
8007 /* We do not construct an accurate cfg in functions which call
8008 setjmp, so just punt to be safe. */
8009 if (current_function_calls_setjmp
)
8012 /* For calling dump_foo fns from gdb. */
8013 debug_stderr
= stderr
;
8016 /* Identify the basic block information for this function, including
8017 successors and predecessors. */
8018 max_gcse_regno
= max_reg_num ();
8021 dump_flow_info (file
);
8023 /* Return if there's nothing to do, or it is too expensive. */
8024 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
8027 gcc_obstack_init (&gcse_obstack
);
8030 /* We need alias. */
8031 init_alias_analysis ();
8033 /* Record where pseudo-registers are set. This data is kept accurate
8034 during each pass. ??? We could also record hard-reg information here
8035 [since it's unchanging], however it is currently done during hash table
8038 It may be tempting to compute MEM set information here too, but MEM sets
8039 will be subject to code motion one day and thus we need to compute
8040 information about memory sets when we build the hash tables. */
8042 alloc_reg_set_mem (max_gcse_regno
);
8043 compute_sets (get_insns ());
8045 max_gcse_regno
= max_reg_num ();
8046 alloc_gcse_mem (get_insns ());
8047 changed
= one_cprop_pass (1, 1, 1);
8052 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
8053 current_function_name (), n_basic_blocks
);
8054 fprintf (file
, "%d bytes\n\n", bytes_used
);
8057 obstack_free (&gcse_obstack
, NULL
);
8058 free_reg_set_mem ();
8060 /* We are finished with alias. */
8061 end_alias_analysis ();
8062 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
8067 /* Return true if the graph is too expensive to optimize. PASS is the
8068 optimization about to be performed. */
8071 is_too_expensive (const char *pass
)
8073 /* Trying to perform global optimizations on flow graphs which have
8074 a high connectivity will take a long time and is unlikely to be
8075 particularly useful.
8077 In normal circumstances a cfg should have about twice as many
8078 edges as blocks. But we do not want to punish small functions
8079 which have a couple switch statements. Rather than simply
8080 threshold the number of blocks, uses something with a more
8081 graceful degradation. */
8082 if (n_edges
> 20000 + n_basic_blocks
* 4)
8084 if (warn_disabled_optimization
)
8085 warning ("%s: %d basic blocks and %d edges/basic block",
8086 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
8091 /* If allocating memory for the cprop bitmap would take up too much
8092 storage it's better just to disable the optimization. */
8094 * SBITMAP_SET_SIZE (max_reg_num ())
8095 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
8097 if (warn_disabled_optimization
)
8098 warning ("%s: %d basic blocks and %d registers",
8099 pass
, n_basic_blocks
, max_reg_num ());
8107 /* The following code implements gcse after reload, the purpose of this
8108 pass is to cleanup redundant loads generated by reload and other
8109 optimizations that come after gcse. It searches for simple inter-block
8110 redundancies and tries to eliminate them by adding moves and loads
8113 /* The following structure holds the information about the occurrences of
8114 the redundant instructions. */
8117 struct unoccr
*next
;
8122 static bool reg_used_on_edge (rtx
, edge
);
8123 static rtx
reg_set_between_after_reload_p (rtx
, rtx
, rtx
);
8124 static rtx
reg_used_between_after_reload_p (rtx
, rtx
, rtx
);
8125 static rtx
get_avail_load_store_reg (rtx
);
8126 static bool is_jump_table_basic_block (basic_block
);
8127 static bool bb_has_well_behaved_predecessors (basic_block
);
8128 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
8129 static void hash_scan_set_after_reload (rtx
, rtx
, struct hash_table
*);
8130 static void compute_hash_table_after_reload (struct hash_table
*);
8131 static void eliminate_partially_redundant_loads (basic_block
,
8134 static void gcse_after_reload (void);
8135 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
8136 void gcse_after_reload_main (rtx
, FILE *);
8139 /* Check if register REG is used in any insn waiting to be inserted on E.
8140 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
8141 with PREV(insn),NEXT(insn) instead of calling
8142 reg_overlap_mentioned_p. */
8145 reg_used_on_edge (rtx reg
, edge e
)
8149 for (insn
= e
->insns
; insn
; insn
= NEXT_INSN (insn
))
8150 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
8156 /* Return the insn that sets register REG or clobbers it in between
8157 FROM_INSN and TO_INSN (exclusive of those two).
8158 Just like reg_set_between but for hard registers and not pseudos. */
8161 reg_set_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
8166 if (GET_CODE (reg
) != REG
)
8168 regno
= REGNO (reg
);
8170 /* We are called after register allocation. */
8171 if (regno
>= FIRST_PSEUDO_REGISTER
)
8174 if (from_insn
== to_insn
)
8177 for (insn
= NEXT_INSN (from_insn
);
8179 insn
= NEXT_INSN (insn
))
8183 if (FIND_REG_INC_NOTE (insn
, reg
)
8184 || (GET_CODE (insn
) == CALL_INSN
8185 && call_used_regs
[regno
])
8186 || find_reg_fusage (insn
, CLOBBER
, reg
))
8189 if (set_of (reg
, insn
) != NULL_RTX
)
8195 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
8196 (exclusive of those two). Similar to reg_used_between but for hard
8197 registers and not pseudos. */
8200 reg_used_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
8205 if (GET_CODE (reg
) != REG
)
8207 regno
= REGNO (reg
);
8209 /* We are called after register allocation. */
8210 if (regno
>= FIRST_PSEUDO_REGISTER
)
8212 if (from_insn
== to_insn
)
8215 for (insn
= NEXT_INSN (from_insn
);
8217 insn
= NEXT_INSN (insn
))
8219 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
8220 || (GET_CODE (insn
) == CALL_INSN
8221 && call_used_regs
[regno
])
8222 || find_reg_fusage (insn
, USE
, reg
)
8223 || find_reg_fusage (insn
, CLOBBER
, reg
)))
8228 /* Return the loaded/stored register of a load/store instruction. */
8231 get_avail_load_store_reg (rtx insn
)
8233 if (GET_CODE (SET_DEST (PATTERN (insn
))) == REG
) /* A load. */
8234 return SET_DEST(PATTERN(insn
));
8235 if (GET_CODE (SET_SRC (PATTERN (insn
))) == REG
) /* A store. */
8236 return SET_SRC (PATTERN (insn
));
8240 /* Don't handle ABNORMAL edges or jump tables. */
8243 is_jump_table_basic_block (basic_block bb
)
8245 rtx insn
= BB_END (bb
);
8247 if (GET_CODE (insn
) == JUMP_INSN
&&
8248 (GET_CODE (PATTERN (insn
)) == ADDR_VEC
8249 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
8254 /* Return nonzero if the predecessors of BB are "well behaved". */
8257 bb_has_well_behaved_predecessors (basic_block bb
)
8263 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
8264 if (((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
8265 || is_jump_table_basic_block (pred
->src
))
8271 /* Search for the occurrences of expression in BB. */
8274 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
8276 for (; occr
!= NULL
; occr
= occr
->next
)
8277 if (BLOCK_FOR_INSN (occr
->insn
)->index
== bb
->index
)
8282 /* Perform partial GCSE pass after reload, try to eliminate redundant loads
8283 created by the reload pass. We try to look for a full or partial
8284 redundant loads fed by one or more loads/stores in predecessor BBs,
8285 and try adding loads to make them fully redundant. We also check if
8286 it's worth adding loads to be able to delete the redundant load.
8289 1. Build available expressions hash table:
8290 For each load/store instruction, if the loaded/stored memory didn't
8291 change until the end of the basic block add this memory expression to
8293 2. Perform Redundancy elimination:
8294 For each load instruction do the following:
8295 perform partial redundancy elimination, check if it's worth adding
8296 loads to make the load fully redundant. If so add loads and
8297 register copies and delete the load.
8300 if loaded register is used/defined between load and some store,
8301 look for some other free register between load and all its stores,
8302 and replace load with a copy from this register to the loaded
8306 /* This handles the case where several stores feed a partially redundant
8307 load. It checks if the redundancy elimination is possible and if it's
8311 eliminate_partially_redundant_loads (basic_block bb
, rtx insn
,
8315 rtx avail_insn
= NULL_RTX
;
8318 struct occr
*a_occr
;
8319 struct unoccr
*occr
, *avail_occrs
= NULL
;
8320 struct unoccr
*unoccr
, *unavail_occrs
= NULL
;
8322 gcov_type ok_count
= 0; /* Redundant load execution count. */
8323 gcov_type critical_count
= 0; /* Execution count of critical edges. */
8325 /* The execution count of the loads to be added to make the
8326 load fully redundant. */
8327 gcov_type not_ok_count
= 0;
8328 basic_block pred_bb
;
8330 pat
= PATTERN (insn
);
8331 dest
= SET_DEST (pat
);
8332 /* Check that the loaded register is not used, set, or killed from the
8333 beginning of the block. */
8334 if (reg_used_between_after_reload_p (dest
,
8335 PREV_INSN (BB_HEAD (bb
)), insn
)
8336 || reg_set_between_after_reload_p (dest
,
8337 PREV_INSN (BB_HEAD (bb
)), insn
))
8340 /* Check potential for replacing load with copy for predecessors. */
8341 for (pred
= bb
->pred
; pred
; pred
= pred
->pred_next
)
8343 rtx next_pred_bb_end
;
8345 avail_insn
= NULL_RTX
;
8346 pred_bb
= pred
->src
;
8347 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
8348 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
8349 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
8351 /* Check if the loaded register is not used. */
8352 avail_insn
= a_occr
->insn
;
8353 if (! (avail_reg
= get_avail_load_store_reg (avail_insn
)))
8355 /* Make sure we can generate a move from register avail_reg to
8357 extract_insn (gen_move_insn (copy_rtx (dest
),
8358 copy_rtx (avail_reg
)));
8359 if (! constrain_operands (1)
8360 || reg_killed_on_edge (avail_reg
, pred
)
8361 || reg_used_on_edge (dest
, pred
))
8366 if (! reg_set_between_after_reload_p (avail_reg
, avail_insn
,
8368 /* AVAIL_INSN remains non-null. */
8373 if (avail_insn
!= NULL_RTX
)
8376 ok_count
+= pred
->count
;
8377 if (EDGE_CRITICAL_P (pred
))
8378 critical_count
+= pred
->count
;
8379 occr
= gmalloc (sizeof (struct unoccr
));
8380 occr
->insn
= avail_insn
;
8382 occr
->next
= avail_occrs
;
8387 not_ok_count
+= pred
->count
;
8388 if (EDGE_CRITICAL_P (pred
))
8389 critical_count
+= pred
->count
;
8390 unoccr
= gmalloc (sizeof (struct unoccr
));
8391 unoccr
->insn
= NULL_RTX
;
8392 unoccr
->pred
= pred
;
8393 unoccr
->next
= unavail_occrs
;
8394 unavail_occrs
= unoccr
;
8398 if (npred_ok
== 0 /* No load can be replaced by copy. */
8399 || (optimize_size
&& npred_ok
> 1)) /* Prevent exploding the code. */
8402 /* Check if it's worth applying the partial redundancy elimination. */
8403 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
8406 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
8409 /* Generate moves to the loaded register from where
8410 the memory is available. */
8411 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
8413 avail_insn
= occr
->insn
;
8415 /* Set avail_reg to be the register having the value of the
8417 avail_reg
= get_avail_load_store_reg (avail_insn
);
8421 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
8422 copy_rtx (avail_reg
)),
8427 "GCSE AFTER reload generating move from %d to %d on \
8428 edge from %d to %d\n",
8435 /* Regenerate loads where the memory is unavailable. */
8436 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
8438 pred
= unoccr
->pred
;
8439 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
8443 "GCSE AFTER reload: generating on edge from %d to %d\
8449 /* Delete the insn if it is not available in this block and mark it
8450 for deletion if it is available. If insn is available it may help
8451 discover additional redundancies, so mark it for later deletion.*/
8452 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
8453 a_occr
&& (a_occr
->insn
!= insn
);
8454 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
8459 a_occr
->deleted_p
= 1;
8462 /* Performing the redundancy elimination as described before. */
8465 gcse_after_reload (void)
8473 /* Note we start at block 1. */
8475 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
8479 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
8483 if (! bb_has_well_behaved_predecessors (bb
))
8486 /* Do not try this optimization on cold basic blocks. */
8487 if (probably_cold_bb_p (bb
))
8490 reset_opr_set_tables ();
8492 for (insn
= BB_HEAD (bb
);
8494 && insn
!= NEXT_INSN (BB_END (bb
));
8495 insn
= NEXT_INSN (insn
))
8497 /* Is it a load - of the form (set (reg) (mem))? */
8498 if (GET_CODE (insn
) == INSN
8499 && GET_CODE (PATTERN (insn
)) == SET
8500 && GET_CODE (SET_DEST (PATTERN (insn
))) == REG
8501 && GET_CODE (SET_SRC (PATTERN (insn
))) == MEM
)
8503 rtx pat
= PATTERN (insn
);
8504 rtx src
= SET_SRC (pat
);
8507 if (general_operand (src
, GET_MODE (src
))
8508 /* Is the expression recorded? */
8509 && (expr
= lookup_expr (src
, &expr_hash_table
)) != NULL
8510 /* Are the operands unchanged since the start of the
8512 && oprs_not_set_p (src
, insn
)
8513 && ! MEM_VOLATILE_P (src
)
8514 && GET_MODE (src
) != BLKmode
8515 && !(flag_non_call_exceptions
&& may_trap_p (src
))
8516 && !side_effects_p (src
))
8518 /* We now have a load (insn) and an available memory at
8519 its BB start (expr). Try to remove the loads if it is
8521 eliminate_partially_redundant_loads (bb
, insn
, expr
);
8525 /* Keep track of everything modified by this insn. */
8527 mark_oprs_set (insn
);
8531 commit_edge_insertions ();
8533 /* Go over the expression hash table and delete insns that were
8534 marked for later deletion. */
8535 for (i
= 0; i
< expr_hash_table
.size
; i
++)
8537 for (expr
= expr_hash_table
.table
[i
];
8539 expr
= expr
->next_same_hash
)
8540 for (occr
= expr
->avail_occr
; occr
; occr
= occr
->next
)
8541 if (occr
->deleted_p
)
8542 delete_insn (occr
->insn
);
8546 /* Scan pattern PAT of INSN and add an entry to the hash TABLE.
8547 After reload we are interested in loads/stores only. */
8550 hash_scan_set_after_reload (rtx pat
, rtx insn
, struct hash_table
*table
)
8552 rtx src
= SET_SRC (pat
);
8553 rtx dest
= SET_DEST (pat
);
8555 if (GET_CODE (src
) != MEM
&& GET_CODE (dest
) != MEM
)
8558 if (GET_CODE (dest
) == REG
)
8560 if (/* Don't GCSE something if we can't do a reg/reg copy. */
8561 can_copy_p (GET_MODE (dest
))
8562 /* GCSE commonly inserts instruction after the insn. We can't
8563 do that easily for EH_REGION notes so disable GCSE on these
8565 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
8566 /* Is SET_SRC something we want to gcse? */
8567 && general_operand (src
, GET_MODE (src
))
8568 /* Don't CSE a nop. */
8569 && ! set_noop_p (pat
)
8572 /* An expression is not available if its operands are
8573 subsequently modified, including this insn. */
8574 if (oprs_available_p (src
, insn
))
8575 insert_expr_in_table (src
, GET_MODE (dest
), insn
, 0, 1, table
);
8578 else if ((GET_CODE (src
) == REG
))
8580 /* Only record sets of pseudo-regs in the hash table. */
8581 if (/* Don't GCSE something if we can't do a reg/reg copy. */
8582 can_copy_p (GET_MODE (src
))
8583 /* GCSE commonly inserts instruction after the insn. We can't
8584 do that easily for EH_REGION notes so disable GCSE on these
8586 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
8587 /* Is SET_DEST something we want to gcse? */
8588 && general_operand (dest
, GET_MODE (dest
))
8589 /* Don't CSE a nop. */
8590 && ! set_noop_p (pat
)
8592 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
8593 /* Check if the memory expression is killed after insn. */
8594 && ! load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
8595 INSN_CUID (insn
) + 1,
8598 && oprs_unchanged_p (XEXP (dest
, 0), insn
, 1))
8600 insert_expr_in_table (dest
, GET_MODE (dest
), insn
, 0, 1, table
);
8606 /* Create hash table of memory expressions available at end of basic
8610 compute_hash_table_after_reload (struct hash_table
*table
)
8616 /* Initialize count of number of entries in hash table. */
8618 memset ((char *) table
->table
, 0,
8619 table
->size
* sizeof (struct expr
*));
8621 /* While we compute the hash table we also compute a bit array of which
8622 registers are set in which blocks. */
8623 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
8625 /* Re-cache any INSN_LIST nodes we have allocated. */
8626 clear_modify_mem_tables ();
8628 /* Some working arrays used to track first and last set in each block. */
8629 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
8631 for (i
= 0; i
< max_gcse_regno
; ++i
)
8632 reg_avail_info
[i
].last_bb
= NULL
;
8634 FOR_EACH_BB (current_bb
)
8639 /* First pass over the instructions records information used to
8640 determine when registers and memory are first and last set. */
8641 for (insn
= BB_HEAD (current_bb
);
8642 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
8643 insn
= NEXT_INSN (insn
))
8645 if (! INSN_P (insn
))
8648 if (GET_CODE (insn
) == CALL_INSN
)
8650 bool clobbers_all
= false;
8652 #ifdef NON_SAVING_SETJMP
8653 if (NON_SAVING_SETJMP
8654 && find_reg_note (insn
, REG_SETJMP
, NULL_RTX
))
8655 clobbers_all
= true;
8658 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
8660 || TEST_HARD_REG_BIT (regs_invalidated_by_call
,
8662 record_last_reg_set_info (insn
, regno
);
8667 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
8669 if (GET_CODE (PATTERN (insn
)) == SET
)
8673 src
= SET_SRC (PATTERN (insn
));
8674 dest
= SET_DEST (PATTERN (insn
));
8675 if (GET_CODE (src
) == MEM
&& auto_inc_p (XEXP (src
, 0)))
8677 regno
= REGNO (XEXP (XEXP (src
, 0), 0));
8678 record_last_reg_set_info (insn
, regno
);
8680 if (GET_CODE (dest
) == MEM
&& auto_inc_p (XEXP (dest
, 0)))
8682 regno
= REGNO (XEXP (XEXP (dest
, 0), 0));
8683 record_last_reg_set_info (insn
, regno
);
8688 /* The next pass builds the hash table. */
8689 for (insn
= BB_HEAD (current_bb
);
8690 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
8691 insn
= NEXT_INSN (insn
))
8692 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
8693 if (! find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
8694 hash_scan_set_after_reload (PATTERN (insn
), insn
, table
);
8697 free (reg_avail_info
);
8698 reg_avail_info
= NULL
;
8702 /* Main entry point of the GCSE after reload - clean some redundant loads
8706 gcse_after_reload_main (rtx f
, FILE* file
)
8708 gcse_subst_count
= 0;
8709 gcse_create_count
= 0;
8713 gcc_obstack_init (&gcse_obstack
);
8716 /* We need alias. */
8717 init_alias_analysis ();
8719 max_gcse_regno
= max_reg_num ();
8721 alloc_reg_set_mem (max_gcse_regno
);
8723 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
8724 compute_hash_table_after_reload (&expr_hash_table
);
8727 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
8729 if (expr_hash_table
.n_elems
> 0)
8730 gcse_after_reload ();
8732 free_hash_table (&expr_hash_table
);
8735 free_reg_set_mem ();
8737 /* We are finished with alias. */
8738 end_alias_analysis ();
8740 obstack_free (&gcse_obstack
, NULL
);
8743 #include "gt-gcse.h"