1 /* Decompose multiword subregs.
2 Copyright (C) 2007-2023 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
33 #include "insn-config.h"
41 #include "tree-pass.h"
42 #include "lower-subreg.h"
47 /* Decompose multi-word pseudo-registers into individual
48 pseudo-registers when possible and profitable. This is possible
49 when all the uses of a multi-word register are via SUBREG, or are
50 copies of the register to another location. Breaking apart the
51 register permits more CSE and permits better register allocation.
52 This is profitable if the machine does not have move instructions
55 This pass only splits moves with modes that are wider than
56 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
57 integer modes that are twice the width of word_mode. The latter
58 could be generalized if there was a need to do this, but the trend in
59 architectures is to not need this.
61 There are two useful preprocessor defines for use by maintainers:
65 if you wish to see the actual cost estimates that are being used
66 for each mode wider than word mode and the cost estimates for zero
67 extension and the shifts. This can be useful when port maintainers
68 are tuning insn rtx costs.
70 #define FORCE_LOWERING 1
72 if you wish to test the pass with all the transformation forced on.
73 This can be useful for finding bugs in the transformations. */
76 #define FORCE_LOWERING 0
78 /* Bit N in this bitmap is set if regno N is used in a context in
79 which we can decompose it. */
80 static bitmap decomposable_context
;
82 /* Bit N in this bitmap is set if regno N is used in a context in
83 which it cannot be decomposed. */
84 static bitmap non_decomposable_context
;
86 /* Bit N in this bitmap is set if regno N is used in a subreg
87 which changes the mode but not the size. This typically happens
88 when the register accessed as a floating-point value; we want to
89 avoid generating accesses to its subwords in integer modes. */
90 static bitmap subreg_context
;
92 /* Bit N in the bitmap in element M of this array is set if there is a
93 copy from reg M to reg N. */
94 static vec
<bitmap
> reg_copy_graph
;
96 struct target_lower_subreg default_target_lower_subreg
;
98 struct target_lower_subreg
*this_target_lower_subreg
99 = &default_target_lower_subreg
;
102 #define twice_word_mode \
103 this_target_lower_subreg->x_twice_word_mode
105 this_target_lower_subreg->x_choices
107 /* Return true if MODE is a mode we know how to lower. When returning true,
108 store its byte size in *BYTES and its word size in *WORDS. */
111 interesting_mode_p (machine_mode mode
, unsigned int *bytes
,
114 if (!GET_MODE_SIZE (mode
).is_constant (bytes
))
116 *words
= CEIL (*bytes
, UNITS_PER_WORD
);
120 /* RTXes used while computing costs. */
122 /* Source and target registers. */
126 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
129 /* A shift of SOURCE. */
132 /* A SET of TARGET. */
136 /* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
137 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
140 shift_cost (bool speed_p
, struct cost_rtxes
*rtxes
, enum rtx_code code
,
141 machine_mode mode
, int op1
)
143 PUT_CODE (rtxes
->shift
, code
);
144 PUT_MODE (rtxes
->shift
, mode
);
145 PUT_MODE (rtxes
->source
, mode
);
146 XEXP (rtxes
->shift
, 1) = gen_int_shift_amount (mode
, op1
);
147 return set_src_cost (rtxes
->shift
, mode
, speed_p
);
150 /* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
151 to true if it is profitable to split a double-word CODE shift
152 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
153 for speed or size profitability.
155 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
156 the cost of moving zero into a word-mode register. WORD_MOVE_COST
157 is the cost of moving between word registers. */
160 compute_splitting_shift (bool speed_p
, struct cost_rtxes
*rtxes
,
161 bool *splitting
, enum rtx_code code
,
162 int word_move_zero_cost
, int word_move_cost
)
164 int wide_cost
, narrow_cost
, upper_cost
, i
;
166 for (i
= 0; i
< BITS_PER_WORD
; i
++)
168 wide_cost
= shift_cost (speed_p
, rtxes
, code
, twice_word_mode
,
171 narrow_cost
= word_move_cost
;
173 narrow_cost
= shift_cost (speed_p
, rtxes
, code
, word_mode
, i
);
175 if (code
!= ASHIFTRT
)
176 upper_cost
= word_move_zero_cost
;
177 else if (i
== BITS_PER_WORD
- 1)
178 upper_cost
= word_move_cost
;
180 upper_cost
= shift_cost (speed_p
, rtxes
, code
, word_mode
,
184 fprintf (stderr
, "%s %s by %d: original cost %d, split cost %d + %d\n",
185 GET_MODE_NAME (twice_word_mode
), GET_RTX_NAME (code
),
186 i
+ BITS_PER_WORD
, wide_cost
, narrow_cost
, upper_cost
);
188 if (FORCE_LOWERING
|| wide_cost
>= narrow_cost
+ upper_cost
)
193 /* Compute what we should do when optimizing for speed or size; SPEED_P
194 selects which. Use RTXES for computing costs. */
197 compute_costs (bool speed_p
, struct cost_rtxes
*rtxes
)
200 int word_move_zero_cost
, word_move_cost
;
202 PUT_MODE (rtxes
->target
, word_mode
);
203 SET_SRC (rtxes
->set
) = CONST0_RTX (word_mode
);
204 word_move_zero_cost
= set_rtx_cost (rtxes
->set
, speed_p
);
206 SET_SRC (rtxes
->set
) = rtxes
->source
;
207 word_move_cost
= set_rtx_cost (rtxes
->set
, speed_p
);
210 fprintf (stderr
, "%s move: from zero cost %d, from reg cost %d\n",
211 GET_MODE_NAME (word_mode
), word_move_zero_cost
, word_move_cost
);
213 for (i
= 0; i
< MAX_MACHINE_MODE
; i
++)
215 machine_mode mode
= (machine_mode
) i
;
216 unsigned int size
, factor
;
217 if (interesting_mode_p (mode
, &size
, &factor
) && factor
> 1)
219 unsigned int mode_move_cost
;
221 PUT_MODE (rtxes
->target
, mode
);
222 PUT_MODE (rtxes
->source
, mode
);
223 mode_move_cost
= set_rtx_cost (rtxes
->set
, speed_p
);
226 fprintf (stderr
, "%s move: original cost %d, split cost %d * %d\n",
227 GET_MODE_NAME (mode
), mode_move_cost
,
228 word_move_cost
, factor
);
230 if (FORCE_LOWERING
|| mode_move_cost
>= word_move_cost
* factor
)
232 choices
[speed_p
].move_modes_to_split
[i
] = true;
233 choices
[speed_p
].something_to_do
= true;
238 /* For the moves and shifts, the only case that is checked is one
239 where the mode of the target is an integer mode twice the width
242 If it is not profitable to split a double word move then do not
243 even consider the shifts or the zero extension. */
244 if (choices
[speed_p
].move_modes_to_split
[(int) twice_word_mode
])
248 /* The only case here to check to see if moving the upper part with a
249 zero is cheaper than doing the zext itself. */
250 PUT_MODE (rtxes
->source
, word_mode
);
251 zext_cost
= set_src_cost (rtxes
->zext
, twice_word_mode
, speed_p
);
254 fprintf (stderr
, "%s %s: original cost %d, split cost %d + %d\n",
255 GET_MODE_NAME (twice_word_mode
), GET_RTX_NAME (ZERO_EXTEND
),
256 zext_cost
, word_move_cost
, word_move_zero_cost
);
258 if (FORCE_LOWERING
|| zext_cost
>= word_move_cost
+ word_move_zero_cost
)
259 choices
[speed_p
].splitting_zext
= true;
261 compute_splitting_shift (speed_p
, rtxes
,
262 choices
[speed_p
].splitting_ashift
, ASHIFT
,
263 word_move_zero_cost
, word_move_cost
);
264 compute_splitting_shift (speed_p
, rtxes
,
265 choices
[speed_p
].splitting_lshiftrt
, LSHIFTRT
,
266 word_move_zero_cost
, word_move_cost
);
267 compute_splitting_shift (speed_p
, rtxes
,
268 choices
[speed_p
].splitting_ashiftrt
, ASHIFTRT
,
269 word_move_zero_cost
, word_move_cost
);
273 /* Do one-per-target initialisation. This involves determining
274 which operations on the machine are profitable. If none are found,
275 then the pass just returns when called. */
278 init_lower_subreg (void)
280 struct cost_rtxes rtxes
;
282 memset (this_target_lower_subreg
, 0, sizeof (*this_target_lower_subreg
));
284 twice_word_mode
= GET_MODE_2XWIDER_MODE (word_mode
).require ();
286 rtxes
.target
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
287 rtxes
.source
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 2);
288 rtxes
.set
= gen_rtx_SET (rtxes
.target
, rtxes
.source
);
289 rtxes
.zext
= gen_rtx_ZERO_EXTEND (twice_word_mode
, rtxes
.source
);
290 rtxes
.shift
= gen_rtx_ASHIFT (twice_word_mode
, rtxes
.source
, const0_rtx
);
293 fprintf (stderr
, "\nSize costs\n==========\n\n");
294 compute_costs (false, &rtxes
);
297 fprintf (stderr
, "\nSpeed costs\n===========\n\n");
298 compute_costs (true, &rtxes
);
302 simple_move_operand (rtx x
)
304 if (GET_CODE (x
) == SUBREG
)
310 if (GET_CODE (x
) == LABEL_REF
311 || GET_CODE (x
) == SYMBOL_REF
312 || GET_CODE (x
) == HIGH
313 || GET_CODE (x
) == CONST
)
317 && (MEM_VOLATILE_P (x
)
318 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
))))
324 /* If X is an operator that can be treated as a simple move that we
325 can split, then return the operand that is operated on. */
328 operand_for_swap_move_operator (rtx x
)
330 /* A word sized rotate of a register pair is equivalent to swapping
331 the registers in the register pair. */
332 if (GET_CODE (x
) == ROTATE
333 && GET_MODE (x
) == twice_word_mode
334 && simple_move_operand (XEXP (x
, 0))
335 && CONST_INT_P (XEXP (x
, 1))
336 && INTVAL (XEXP (x
, 1)) == BITS_PER_WORD
)
342 /* If INSN is a single set between two objects that we want to split,
343 return the single set. SPEED_P says whether we are optimizing
344 INSN for speed or size.
346 INSN should have been passed to recog and extract_insn before this
350 simple_move (rtx_insn
*insn
, bool speed_p
)
356 if (recog_data
.n_operands
!= 2)
359 set
= single_set (insn
);
364 if (x
!= recog_data
.operand
[0] && x
!= recog_data
.operand
[1])
366 if (!simple_move_operand (x
))
370 if ((op
= operand_for_swap_move_operator (x
)) != NULL_RTX
)
373 if (x
!= recog_data
.operand
[0] && x
!= recog_data
.operand
[1])
375 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
376 things like x86 rdtsc which returns a DImode value. */
377 if (GET_CODE (x
) != ASM_OPERANDS
378 && !simple_move_operand (x
))
381 /* We try to decompose in integer modes, to avoid generating
382 inefficient code copying between integer and floating point
383 registers. That means that we can't decompose if this is a
384 non-integer mode for which there is no integer mode of the same
386 mode
= GET_MODE (SET_DEST (set
));
387 scalar_int_mode int_mode
;
388 if (!SCALAR_INT_MODE_P (mode
)
389 && (!int_mode_for_size (GET_MODE_BITSIZE (mode
), 0).exists (&int_mode
)
390 || !targetm
.modes_tieable_p (mode
, int_mode
)))
393 /* Reject PARTIAL_INT modes. They are used for processor specific
394 purposes and it's probably best not to tamper with them. */
395 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
398 if (!choices
[speed_p
].move_modes_to_split
[(int) mode
])
404 /* If SET is a copy from one multi-word pseudo-register to another,
405 record that in reg_copy_graph. Return whether it is such a
409 find_pseudo_copy (rtx set
)
411 rtx dest
= SET_DEST (set
);
412 rtx src
= SET_SRC (set
);
417 if ((op
= operand_for_swap_move_operator (src
)) != NULL_RTX
)
420 if (!REG_P (dest
) || !REG_P (src
))
425 if (HARD_REGISTER_NUM_P (rd
) || HARD_REGISTER_NUM_P (rs
))
428 b
= reg_copy_graph
[rs
];
431 b
= BITMAP_ALLOC (NULL
);
432 reg_copy_graph
[rs
] = b
;
435 bitmap_set_bit (b
, rd
);
440 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
441 where they are copied to another register, add the register to
442 which they are copied to DECOMPOSABLE_CONTEXT. Use
443 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
444 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
447 propagate_pseudo_copies (void)
449 auto_bitmap queue
, propagate
;
451 bitmap_copy (queue
, decomposable_context
);
454 bitmap_iterator iter
;
457 bitmap_clear (propagate
);
459 EXECUTE_IF_SET_IN_BITMAP (queue
, 0, i
, iter
)
461 bitmap b
= reg_copy_graph
[i
];
463 bitmap_ior_and_compl_into (propagate
, b
, non_decomposable_context
);
466 bitmap_and_compl (queue
, propagate
, decomposable_context
);
467 bitmap_ior_into (decomposable_context
, propagate
);
469 while (!bitmap_empty_p (queue
));
472 /* A pointer to one of these values is passed to
473 find_decomposable_subregs. */
475 enum classify_move_insn
477 /* Not a simple move from one location to another. */
479 /* A simple move we want to decompose. */
480 DECOMPOSABLE_SIMPLE_MOVE
,
481 /* Any other simple move. */
485 /* If we find a SUBREG in *LOC which we could use to decompose a
486 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
487 unadorned register which is not a simple pseudo-register copy,
488 DATA will point at the type of move, and we set a bit in
489 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
492 find_decomposable_subregs (rtx
*loc
, enum classify_move_insn
*pcmi
)
494 subrtx_var_iterator::array_type array
;
495 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
498 if (GET_CODE (x
) == SUBREG
)
500 rtx inner
= SUBREG_REG (x
);
501 unsigned int regno
, outer_size
, inner_size
, outer_words
, inner_words
;
506 regno
= REGNO (inner
);
507 if (HARD_REGISTER_NUM_P (regno
))
509 iter
.skip_subrtxes ();
513 if (!interesting_mode_p (GET_MODE (x
), &outer_size
, &outer_words
)
514 || !interesting_mode_p (GET_MODE (inner
), &inner_size
,
518 /* We only try to decompose single word subregs of multi-word
519 registers. When we find one, we return -1 to avoid iterating
520 over the inner register.
522 ??? This doesn't allow, e.g., DImode subregs of TImode values
523 on 32-bit targets. We would need to record the way the
524 pseudo-register was used, and only decompose if all the uses
525 were the same number and size of pieces. Hopefully this
526 doesn't happen much. */
530 /* Don't allow to decompose floating point subregs of
531 multi-word pseudos if the floating point mode does
532 not have word size, because otherwise we'd generate
533 a subreg with that floating mode from a different
534 sized integral pseudo which is not allowed by
536 && (!FLOAT_MODE_P (GET_MODE (x
))
537 || outer_size
== UNITS_PER_WORD
))
539 bitmap_set_bit (decomposable_context
, regno
);
540 iter
.skip_subrtxes ();
544 /* If this is a cast from one mode to another, where the modes
545 have the same size, and they are not tieable, then mark this
546 register as non-decomposable. If we decompose it we are
547 likely to mess up whatever the backend is trying to do. */
549 && outer_size
== inner_size
550 && !targetm
.modes_tieable_p (GET_MODE (x
), GET_MODE (inner
)))
552 bitmap_set_bit (non_decomposable_context
, regno
);
553 bitmap_set_bit (subreg_context
, regno
);
554 iter
.skip_subrtxes ();
560 unsigned int regno
, size
, words
;
562 /* We will see an outer SUBREG before we see the inner REG, so
563 when we see a plain REG here it means a direct reference to
566 If this is not a simple copy from one location to another,
567 then we cannot decompose this register. If this is a simple
568 copy we want to decompose, and the mode is right,
569 then we mark the register as decomposable.
570 Otherwise we don't say anything about this register --
571 it could be decomposed, but whether that would be
572 profitable depends upon how it is used elsewhere.
574 We only set bits in the bitmap for multi-word
575 pseudo-registers, since those are the only ones we care about
576 and it keeps the size of the bitmaps down. */
579 if (!HARD_REGISTER_NUM_P (regno
)
580 && interesting_mode_p (GET_MODE (x
), &size
, &words
)
585 case NOT_SIMPLE_MOVE
:
586 bitmap_set_bit (non_decomposable_context
, regno
);
588 case DECOMPOSABLE_SIMPLE_MOVE
:
589 if (targetm
.modes_tieable_p (GET_MODE (x
), word_mode
))
590 bitmap_set_bit (decomposable_context
, regno
);
601 enum classify_move_insn cmi_mem
= NOT_SIMPLE_MOVE
;
603 /* Any registers used in a MEM do not participate in a
604 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
605 here, and return -1 to block the parent's recursion. */
606 find_decomposable_subregs (&XEXP (x
, 0), &cmi_mem
);
607 iter
.skip_subrtxes ();
612 /* Decompose REGNO into word-sized components. We smash the REG node
613 in place. This ensures that (1) something goes wrong quickly if we
614 fail to make some replacement, and (2) the debug information inside
615 the symbol table is automatically kept up to date. */
618 decompose_register (unsigned int regno
)
621 unsigned int size
, words
, i
;
624 reg
= regno_reg_rtx
[regno
];
626 regno_reg_rtx
[regno
] = NULL_RTX
;
628 if (!interesting_mode_p (GET_MODE (reg
), &size
, &words
))
631 v
= rtvec_alloc (words
);
632 for (i
= 0; i
< words
; ++i
)
633 RTVEC_ELT (v
, i
) = gen_reg_rtx_offset (reg
, word_mode
, i
* UNITS_PER_WORD
);
635 PUT_CODE (reg
, CONCATN
);
640 fprintf (dump_file
, "; Splitting reg %u ->", regno
);
641 for (i
= 0; i
< words
; ++i
)
642 fprintf (dump_file
, " %u", REGNO (XVECEXP (reg
, 0, i
)));
643 fputc ('\n', dump_file
);
647 /* Get a SUBREG of a CONCATN. */
650 simplify_subreg_concatn (machine_mode outermode
, rtx op
, poly_uint64 orig_byte
)
652 unsigned int outer_size
, outer_words
, inner_size
, inner_words
;
653 machine_mode innermode
, partmode
;
655 unsigned int final_offset
;
658 innermode
= GET_MODE (op
);
659 if (!interesting_mode_p (outermode
, &outer_size
, &outer_words
)
660 || !interesting_mode_p (innermode
, &inner_size
, &inner_words
))
663 /* Must be constant if interesting_mode_p passes. */
664 byte
= orig_byte
.to_constant ();
665 gcc_assert (GET_CODE (op
) == CONCATN
);
666 gcc_assert (byte
% outer_size
== 0);
668 gcc_assert (byte
< inner_size
);
669 if (outer_size
> inner_size
)
672 inner_size
/= XVECLEN (op
, 0);
673 part
= XVECEXP (op
, 0, byte
/ inner_size
);
674 partmode
= GET_MODE (part
);
676 final_offset
= byte
% inner_size
;
677 if (final_offset
+ outer_size
> inner_size
)
680 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
681 regular CONST_VECTORs. They have vector or integer modes, depending
682 on the capabilities of the target. Cope with them. */
683 if (partmode
== VOIDmode
&& VECTOR_MODE_P (innermode
))
684 partmode
= GET_MODE_INNER (innermode
);
685 else if (partmode
== VOIDmode
)
686 partmode
= mode_for_size (inner_size
* BITS_PER_UNIT
,
687 GET_MODE_CLASS (innermode
), 0).require ();
689 return simplify_gen_subreg (outermode
, part
, partmode
, final_offset
);
692 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
695 simplify_gen_subreg_concatn (machine_mode outermode
, rtx op
,
696 machine_mode innermode
, unsigned int byte
)
700 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
701 If OP is a SUBREG of a CONCATN, then it must be a simple mode
702 change with the same size and offset 0, or it must extract a
703 part. We shouldn't see anything else here. */
704 if (GET_CODE (op
) == SUBREG
&& GET_CODE (SUBREG_REG (op
)) == CONCATN
)
708 if (known_eq (GET_MODE_SIZE (GET_MODE (op
)),
709 GET_MODE_SIZE (GET_MODE (SUBREG_REG (op
))))
710 && known_eq (SUBREG_BYTE (op
), 0))
711 return simplify_gen_subreg_concatn (outermode
, SUBREG_REG (op
),
712 GET_MODE (SUBREG_REG (op
)), byte
);
714 op2
= simplify_subreg_concatn (GET_MODE (op
), SUBREG_REG (op
),
718 /* We don't handle paradoxical subregs here. */
719 gcc_assert (!paradoxical_subreg_p (outermode
, GET_MODE (op
)));
720 gcc_assert (!paradoxical_subreg_p (op
));
721 op2
= simplify_subreg_concatn (outermode
, SUBREG_REG (op
),
722 byte
+ SUBREG_BYTE (op
));
723 gcc_assert (op2
!= NULL_RTX
);
728 gcc_assert (op
!= NULL_RTX
);
729 gcc_assert (innermode
== GET_MODE (op
));
732 if (GET_CODE (op
) == CONCATN
)
733 return simplify_subreg_concatn (outermode
, op
, byte
);
735 ret
= simplify_gen_subreg (outermode
, op
, innermode
, byte
);
737 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
738 resolve_simple_move will ask for the high part of the paradoxical
739 subreg, which does not have a value. Just return a zero. */
741 && paradoxical_subreg_p (op
))
742 return CONST0_RTX (outermode
);
744 gcc_assert (ret
!= NULL_RTX
);
748 /* Return whether we should resolve X into the registers into which it
752 resolve_reg_p (rtx x
)
754 return GET_CODE (x
) == CONCATN
;
757 /* Return whether X is a SUBREG of a register which we need to
761 resolve_subreg_p (rtx x
)
763 if (GET_CODE (x
) != SUBREG
)
765 return resolve_reg_p (SUBREG_REG (x
));
768 /* Look for SUBREGs in *LOC which need to be decomposed. */
771 resolve_subreg_use (rtx
*loc
, rtx insn
)
773 subrtx_ptr_iterator::array_type array
;
774 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
778 if (resolve_subreg_p (x
))
780 x
= simplify_subreg_concatn (GET_MODE (x
), SUBREG_REG (x
),
783 /* It is possible for a note to contain a reference which we can
784 decompose. In this case, return 1 to the caller to indicate
785 that the note must be removed. */
792 validate_change (insn
, loc
, x
, 1);
793 iter
.skip_subrtxes ();
795 else if (resolve_reg_p (x
))
796 /* Return 1 to the caller to indicate that we found a direct
797 reference to a register which is being decomposed. This can
798 happen inside notes, multiword shift or zero-extend
806 /* Resolve any decomposed registers which appear in register notes on
810 resolve_reg_notes (rtx_insn
*insn
)
814 note
= find_reg_equal_equiv_note (insn
);
817 int old_count
= num_validated_changes ();
818 if (resolve_subreg_use (&XEXP (note
, 0), NULL_RTX
))
819 remove_note (insn
, note
);
821 if (old_count
!= num_validated_changes ())
822 df_notes_rescan (insn
);
825 pnote
= ®_NOTES (insn
);
826 while (*pnote
!= NULL_RTX
)
831 switch (REG_NOTE_KIND (note
))
835 if (resolve_reg_p (XEXP (note
, 0)))
844 *pnote
= XEXP (note
, 1);
846 pnote
= &XEXP (note
, 1);
850 /* Return whether X can be decomposed into subwords. */
853 can_decompose_p (rtx x
)
857 unsigned int regno
= REGNO (x
);
859 if (HARD_REGISTER_NUM_P (regno
))
861 unsigned int byte
, num_bytes
, num_words
;
863 if (!interesting_mode_p (GET_MODE (x
), &num_bytes
, &num_words
))
865 for (byte
= 0; byte
< num_bytes
; byte
+= UNITS_PER_WORD
)
866 if (simplify_subreg_regno (regno
, GET_MODE (x
), byte
, word_mode
) < 0)
871 return !bitmap_bit_p (subreg_context
, regno
);
877 /* OPND is a concatn operand this is used with a simple move operator.
878 Return a new rtx with the concatn's operands swapped. */
881 resolve_operand_for_swap_move_operator (rtx opnd
)
883 gcc_assert (GET_CODE (opnd
) == CONCATN
);
884 rtx concatn
= copy_rtx (opnd
);
885 rtx op0
= XVECEXP (concatn
, 0, 0);
886 rtx op1
= XVECEXP (concatn
, 0, 1);
887 XVECEXP (concatn
, 0, 0) = op1
;
888 XVECEXP (concatn
, 0, 1) = op0
;
892 /* Decompose the registers used in a simple move SET within INSN. If
893 we don't change anything, return INSN, otherwise return the start
894 of the sequence of moves. */
897 resolve_simple_move (rtx set
, rtx_insn
*insn
)
899 rtx src
, dest
, real_dest
, src_op
;
901 machine_mode orig_mode
, dest_mode
;
902 unsigned int orig_size
, words
;
906 dest
= SET_DEST (set
);
907 orig_mode
= GET_MODE (dest
);
909 if (!interesting_mode_p (orig_mode
, &orig_size
, &words
))
911 gcc_assert (words
> 1);
915 /* We have to handle copying from a SUBREG of a decomposed reg where
916 the SUBREG is larger than word size. Rather than assume that we
917 can take a word_mode SUBREG of the destination, we copy to a new
918 register and then copy that to the destination. */
920 real_dest
= NULL_RTX
;
922 if ((src_op
= operand_for_swap_move_operator (src
)) != NULL_RTX
)
924 if (resolve_reg_p (dest
))
926 /* DEST is a CONCATN, so swap its operands and strip
928 dest
= resolve_operand_for_swap_move_operator (dest
);
931 else if (resolve_reg_p (src_op
))
933 /* SRC is an operation on a CONCATN, so strip the operator and
934 swap the CONCATN's operands. */
935 src
= resolve_operand_for_swap_move_operator (src_op
);
939 if (GET_CODE (src
) == SUBREG
940 && resolve_reg_p (SUBREG_REG (src
))
941 && (maybe_ne (SUBREG_BYTE (src
), 0)
942 || maybe_ne (orig_size
, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))))
945 dest
= gen_reg_rtx (orig_mode
);
946 if (REG_P (real_dest
))
947 REG_ATTRS (dest
) = REG_ATTRS (real_dest
);
950 /* Similarly if we are copying to a SUBREG of a decomposed reg where
951 the SUBREG is larger than word size. */
953 if (GET_CODE (dest
) == SUBREG
954 && resolve_reg_p (SUBREG_REG (dest
))
955 && (maybe_ne (SUBREG_BYTE (dest
), 0)
956 || maybe_ne (orig_size
,
957 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))))
962 reg
= gen_reg_rtx (orig_mode
);
963 minsn
= emit_move_insn (reg
, src
);
964 smove
= single_set (minsn
);
965 gcc_assert (smove
!= NULL_RTX
);
966 resolve_simple_move (smove
, minsn
);
970 /* If we didn't have any big SUBREGS of decomposed registers, and
971 neither side of the move is a register we are decomposing, then
972 we don't have to do anything here. */
974 if (src
== SET_SRC (set
)
975 && dest
== SET_DEST (set
)
976 && !resolve_reg_p (src
)
977 && !resolve_subreg_p (src
)
978 && !resolve_reg_p (dest
)
979 && !resolve_subreg_p (dest
))
985 /* It's possible for the code to use a subreg of a decomposed
986 register while forming an address. We need to handle that before
987 passing the address to emit_move_insn. We pass NULL_RTX as the
988 insn parameter to resolve_subreg_use because we cannot validate
990 if (MEM_P (src
) || MEM_P (dest
))
995 resolve_subreg_use (&XEXP (src
, 0), NULL_RTX
);
997 resolve_subreg_use (&XEXP (dest
, 0), NULL_RTX
);
998 acg
= apply_change_group ();
1002 /* If SRC is a register which we can't decompose, or has side
1003 effects, we need to move via a temporary register. */
1005 if (!can_decompose_p (src
)
1006 || side_effects_p (src
)
1007 || GET_CODE (src
) == ASM_OPERANDS
)
1011 reg
= gen_reg_rtx (orig_mode
);
1015 rtx_insn
*move
= emit_move_insn (reg
, src
);
1018 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
1020 add_reg_note (move
, REG_INC
, XEXP (note
, 0));
1024 emit_move_insn (reg
, src
);
1029 /* If DEST is a register which we can't decompose, or has side
1030 effects, we need to first move to a temporary register. We
1031 handle the common case of pushing an operand directly. We also
1032 go through a temporary register if it holds a floating point
1033 value. This gives us better code on systems which can't move
1034 data easily between integer and floating point registers. */
1036 dest_mode
= orig_mode
;
1037 pushing
= push_operand (dest
, dest_mode
);
1038 if (!can_decompose_p (dest
)
1039 || (side_effects_p (dest
) && !pushing
)
1040 || (!SCALAR_INT_MODE_P (dest_mode
)
1041 && !resolve_reg_p (dest
)
1042 && !resolve_subreg_p (dest
)))
1044 if (real_dest
== NULL_RTX
)
1046 if (!SCALAR_INT_MODE_P (dest_mode
))
1047 dest_mode
= int_mode_for_mode (dest_mode
).require ();
1048 dest
= gen_reg_rtx (dest_mode
);
1049 if (REG_P (real_dest
))
1050 REG_ATTRS (dest
) = REG_ATTRS (real_dest
);
1055 unsigned int i
, j
, jinc
;
1057 gcc_assert (orig_size
% UNITS_PER_WORD
== 0);
1058 gcc_assert (GET_CODE (XEXP (dest
, 0)) != PRE_MODIFY
);
1059 gcc_assert (GET_CODE (XEXP (dest
, 0)) != POST_MODIFY
);
1061 if (WORDS_BIG_ENDIAN
== STACK_GROWS_DOWNWARD
)
1072 for (i
= 0; i
< words
; ++i
, j
+= jinc
)
1076 temp
= copy_rtx (XEXP (dest
, 0));
1077 temp
= adjust_automodify_address_nv (dest
, word_mode
, temp
,
1078 j
* UNITS_PER_WORD
);
1079 emit_move_insn (temp
,
1080 simplify_gen_subreg_concatn (word_mode
, src
,
1082 j
* UNITS_PER_WORD
));
1089 for (i
= 0; i
< words
; ++i
)
1091 rtx t
= simplify_gen_subreg_concatn (word_mode
, dest
,
1093 i
* UNITS_PER_WORD
);
1094 /* simplify_gen_subreg_concatn can return (const_int 0) for
1095 some sub-objects of paradoxical subregs. As a source operand,
1096 that's fine. As a destination it must be avoided. Those are
1097 supposed to be don't care bits, so we can just drop that store
1099 if (t
!= CONST0_RTX (word_mode
))
1101 simplify_gen_subreg_concatn (word_mode
, src
,
1103 i
* UNITS_PER_WORD
));
1107 if (real_dest
!= NULL_RTX
)
1112 if (dest_mode
== orig_mode
)
1115 mdest
= simplify_gen_subreg (orig_mode
, dest
, GET_MODE (dest
), 0);
1116 minsn
= emit_move_insn (real_dest
, mdest
);
1118 if (AUTO_INC_DEC
&& MEM_P (real_dest
)
1119 && !(resolve_reg_p (real_dest
) || resolve_subreg_p (real_dest
)))
1121 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
1123 add_reg_note (minsn
, REG_INC
, XEXP (note
, 0));
1126 smove
= single_set (minsn
);
1127 gcc_assert (smove
!= NULL_RTX
);
1129 resolve_simple_move (smove
, minsn
);
1132 insns
= get_insns ();
1135 copy_reg_eh_region_note_forward (insn
, insns
, NULL_RTX
);
1137 emit_insn_before (insns
, insn
);
1139 /* If we get here via self-recursion, then INSN is not yet in the insns
1140 chain and delete_insn will fail. We only want to remove INSN from the
1141 current sequence. See PR56738. */
1142 if (in_sequence_p ())
1150 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
1151 component registers. Return whether we changed something. */
1154 resolve_clobber (rtx pat
, rtx_insn
*insn
)
1157 machine_mode orig_mode
;
1158 unsigned int orig_size
, words
, i
;
1161 reg
= XEXP (pat
, 0);
1162 /* For clobbers we can look through paradoxical subregs which
1163 we do not handle in simplify_gen_subreg_concatn. */
1164 if (paradoxical_subreg_p (reg
))
1165 reg
= SUBREG_REG (reg
);
1166 if (!resolve_reg_p (reg
) && !resolve_subreg_p (reg
))
1169 orig_mode
= GET_MODE (reg
);
1170 if (!interesting_mode_p (orig_mode
, &orig_size
, &words
))
1173 ret
= validate_change (NULL_RTX
, &XEXP (pat
, 0),
1174 simplify_gen_subreg_concatn (word_mode
, reg
,
1177 df_insn_rescan (insn
);
1178 gcc_assert (ret
!= 0);
1180 for (i
= words
- 1; i
> 0; --i
)
1184 x
= simplify_gen_subreg_concatn (word_mode
, reg
, orig_mode
,
1185 i
* UNITS_PER_WORD
);
1186 x
= gen_rtx_CLOBBER (VOIDmode
, x
);
1187 emit_insn_after (x
, insn
);
1190 resolve_reg_notes (insn
);
1195 /* A USE of a decomposed register is no longer meaningful. Return
1196 whether we changed something. */
1199 resolve_use (rtx pat
, rtx_insn
*insn
)
1201 if (resolve_reg_p (XEXP (pat
, 0)) || resolve_subreg_p (XEXP (pat
, 0)))
1207 resolve_reg_notes (insn
);
1212 /* A VAR_LOCATION can be simplified. */
1215 resolve_debug (rtx_insn
*insn
)
1217 subrtx_ptr_iterator::array_type array
;
1218 FOR_EACH_SUBRTX_PTR (iter
, array
, &PATTERN (insn
), NONCONST
)
1222 if (resolve_subreg_p (x
))
1224 x
= simplify_subreg_concatn (GET_MODE (x
), SUBREG_REG (x
),
1230 x
= copy_rtx (*loc
);
1232 if (resolve_reg_p (x
))
1233 *loc
= copy_rtx (x
);
1236 df_insn_rescan (insn
);
1238 resolve_reg_notes (insn
);
1241 /* Check if INSN is a decomposable multiword-shift or zero-extend and
1242 set the decomposable_context bitmap accordingly. SPEED_P is true
1243 if we are optimizing INSN for speed rather than size. Return true
1244 if INSN is decomposable. */
1247 find_decomposable_shift_zext (rtx_insn
*insn
, bool speed_p
)
1253 set
= single_set (insn
);
1258 if (GET_CODE (op
) != ASHIFT
1259 && GET_CODE (op
) != LSHIFTRT
1260 && GET_CODE (op
) != ASHIFTRT
1261 && GET_CODE (op
) != ZERO_EXTEND
)
1264 op_operand
= XEXP (op
, 0);
1265 if (!REG_P (SET_DEST (set
)) || !REG_P (op_operand
)
1266 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set
)))
1267 || HARD_REGISTER_NUM_P (REGNO (op_operand
))
1268 || GET_MODE (op
) != twice_word_mode
)
1271 if (GET_CODE (op
) == ZERO_EXTEND
)
1273 if (GET_MODE (op_operand
) != word_mode
1274 || !choices
[speed_p
].splitting_zext
)
1277 else /* left or right shift */
1279 bool *splitting
= (GET_CODE (op
) == ASHIFT
1280 ? choices
[speed_p
].splitting_ashift
1281 : GET_CODE (op
) == ASHIFTRT
1282 ? choices
[speed_p
].splitting_ashiftrt
1283 : choices
[speed_p
].splitting_lshiftrt
);
1284 if (!CONST_INT_P (XEXP (op
, 1))
1285 || !IN_RANGE (INTVAL (XEXP (op
, 1)), BITS_PER_WORD
,
1286 2 * BITS_PER_WORD
- 1)
1287 || !splitting
[INTVAL (XEXP (op
, 1)) - BITS_PER_WORD
])
1290 bitmap_set_bit (decomposable_context
, REGNO (op_operand
));
1293 bitmap_set_bit (decomposable_context
, REGNO (SET_DEST (set
)));
1298 /* Decompose a more than word wide shift (in INSN) of a multiword
1299 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1300 and 'set to zero' insn. SPEED_P says whether we are optimizing
1301 for speed or size, when checking if a ZERO_EXTEND is preferable.
1302 Return a pointer to the new insn when a replacement was done. */
1305 resolve_shift_zext (rtx_insn
*insn
, bool speed_p
)
1311 rtx src_reg
, dest_reg
, dest_upper
, upper_src
= NULL_RTX
;
1312 int src_reg_num
, dest_reg_num
, offset1
, offset2
, src_offset
;
1313 scalar_int_mode inner_mode
;
1315 set
= single_set (insn
);
1320 if (GET_CODE (op
) != ASHIFT
1321 && GET_CODE (op
) != LSHIFTRT
1322 && GET_CODE (op
) != ASHIFTRT
1323 && GET_CODE (op
) != ZERO_EXTEND
)
1326 op_operand
= XEXP (op
, 0);
1327 if (!is_a
<scalar_int_mode
> (GET_MODE (op_operand
), &inner_mode
))
1330 /* We can tear this operation apart only if the regs were already
1332 if (!resolve_reg_p (SET_DEST (set
)) && !resolve_reg_p (op_operand
))
1335 /* src_reg_num is the number of the word mode register which we
1336 are operating on. For a left shift and a zero_extend on little
1337 endian machines this is register 0. */
1338 src_reg_num
= (GET_CODE (op
) == LSHIFTRT
|| GET_CODE (op
) == ASHIFTRT
)
1341 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
1342 src_reg_num
= 1 - src_reg_num
;
1344 if (GET_CODE (op
) == ZERO_EXTEND
)
1345 dest_reg_num
= WORDS_BIG_ENDIAN
? 1 : 0;
1347 dest_reg_num
= 1 - src_reg_num
;
1349 offset1
= UNITS_PER_WORD
* dest_reg_num
;
1350 offset2
= UNITS_PER_WORD
* (1 - dest_reg_num
);
1351 src_offset
= UNITS_PER_WORD
* src_reg_num
;
1355 dest_reg
= simplify_gen_subreg_concatn (word_mode
, SET_DEST (set
),
1356 GET_MODE (SET_DEST (set
)),
1358 dest_upper
= simplify_gen_subreg_concatn (word_mode
, SET_DEST (set
),
1359 GET_MODE (SET_DEST (set
)),
1361 src_reg
= simplify_gen_subreg_concatn (word_mode
, op_operand
,
1362 GET_MODE (op_operand
),
1364 if (GET_CODE (op
) == ASHIFTRT
1365 && INTVAL (XEXP (op
, 1)) != 2 * BITS_PER_WORD
- 1)
1366 upper_src
= expand_shift (RSHIFT_EXPR
, word_mode
, copy_rtx (src_reg
),
1367 BITS_PER_WORD
- 1, NULL_RTX
, 0);
1369 if (GET_CODE (op
) != ZERO_EXTEND
)
1371 int shift_count
= INTVAL (XEXP (op
, 1));
1372 if (shift_count
> BITS_PER_WORD
)
1373 src_reg
= expand_shift (GET_CODE (op
) == ASHIFT
?
1374 LSHIFT_EXPR
: RSHIFT_EXPR
,
1376 shift_count
- BITS_PER_WORD
,
1377 dest_reg
, GET_CODE (op
) != ASHIFTRT
);
1380 /* Consider using ZERO_EXTEND instead of setting DEST_UPPER to zero
1381 if this is considered reasonable. */
1382 if (GET_CODE (op
) == LSHIFTRT
1383 && GET_MODE (op
) == twice_word_mode
1384 && REG_P (SET_DEST (set
))
1385 && !choices
[speed_p
].splitting_zext
)
1387 rtx tmp
= force_reg (word_mode
, copy_rtx (src_reg
));
1388 tmp
= simplify_gen_unary (ZERO_EXTEND
, twice_word_mode
, tmp
, word_mode
);
1389 emit_move_insn (SET_DEST (set
), tmp
);
1393 if (dest_reg
!= src_reg
)
1394 emit_move_insn (dest_reg
, src_reg
);
1395 if (GET_CODE (op
) != ASHIFTRT
)
1396 emit_move_insn (dest_upper
, CONST0_RTX (word_mode
));
1397 else if (INTVAL (XEXP (op
, 1)) == 2 * BITS_PER_WORD
- 1)
1398 emit_move_insn (dest_upper
, copy_rtx (src_reg
));
1400 emit_move_insn (dest_upper
, upper_src
);
1403 insns
= get_insns ();
1407 emit_insn_before (insns
, insn
);
1412 fprintf (dump_file
, "; Replacing insn: %d with insns: ", INSN_UID (insn
));
1413 for (in
= insns
; in
!= insn
; in
= NEXT_INSN (in
))
1414 fprintf (dump_file
, "%d ", INSN_UID (in
));
1415 fprintf (dump_file
, "\n");
1422 /* Print to dump_file a description of what we're doing with shift code CODE.
1423 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1426 dump_shift_choices (enum rtx_code code
, bool *splitting
)
1432 " Splitting mode %s for %s lowering with shift amounts = ",
1433 GET_MODE_NAME (twice_word_mode
), GET_RTX_NAME (code
));
1435 for (i
= 0; i
< BITS_PER_WORD
; i
++)
1438 fprintf (dump_file
, "%s%d", sep
, i
+ BITS_PER_WORD
);
1441 fprintf (dump_file
, "\n");
1444 /* Print to dump_file a description of what we're doing when optimizing
1445 for speed or size; SPEED_P says which. DESCRIPTION is a description
1446 of the SPEED_P choice. */
1449 dump_choices (bool speed_p
, const char *description
)
1451 unsigned int size
, factor
, i
;
1453 fprintf (dump_file
, "Choices when optimizing for %s:\n", description
);
1455 for (i
= 0; i
< MAX_MACHINE_MODE
; i
++)
1456 if (interesting_mode_p ((machine_mode
) i
, &size
, &factor
)
1458 fprintf (dump_file
, " %s mode %s for copy lowering.\n",
1459 choices
[speed_p
].move_modes_to_split
[i
]
1462 GET_MODE_NAME ((machine_mode
) i
));
1464 fprintf (dump_file
, " %s mode %s for zero_extend lowering.\n",
1465 choices
[speed_p
].splitting_zext
? "Splitting" : "Skipping",
1466 GET_MODE_NAME (twice_word_mode
));
1468 dump_shift_choices (ASHIFT
, choices
[speed_p
].splitting_ashift
);
1469 dump_shift_choices (LSHIFTRT
, choices
[speed_p
].splitting_lshiftrt
);
1470 dump_shift_choices (ASHIFTRT
, choices
[speed_p
].splitting_ashiftrt
);
1471 fprintf (dump_file
, "\n");
1474 /* Look for registers which are always accessed via word-sized SUBREGs
1475 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1476 registers into several word-sized pseudo-registers. */
1479 decompose_multiword_subregs (bool decompose_copies
)
1487 dump_choices (false, "size");
1488 dump_choices (true, "speed");
1491 /* Check if this target even has any modes to consider lowering. */
1492 if (!choices
[false].something_to_do
&& !choices
[true].something_to_do
)
1495 fprintf (dump_file
, "Nothing to do!\n");
1499 max
= max_reg_num ();
1501 /* First see if there are any multi-word pseudo-registers. If there
1502 aren't, there is nothing we can do. This should speed up this
1503 pass in the normal case, since it should be faster than scanning
1507 bool useful_modes_seen
= false;
1509 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; ++i
)
1510 if (regno_reg_rtx
[i
] != NULL
)
1512 machine_mode mode
= GET_MODE (regno_reg_rtx
[i
]);
1513 if (choices
[false].move_modes_to_split
[(int) mode
]
1514 || choices
[true].move_modes_to_split
[(int) mode
])
1516 useful_modes_seen
= true;
1521 if (!useful_modes_seen
)
1524 fprintf (dump_file
, "Nothing to lower in this function.\n");
1531 df_set_flags (DF_DEFER_INSN_RESCAN
);
1535 /* FIXME: It may be possible to change this code to look for each
1536 multi-word pseudo-register and to find each insn which sets or
1537 uses that register. That should be faster than scanning all the
1540 decomposable_context
= BITMAP_ALLOC (NULL
);
1541 non_decomposable_context
= BITMAP_ALLOC (NULL
);
1542 subreg_context
= BITMAP_ALLOC (NULL
);
1544 reg_copy_graph
.create (max
);
1545 reg_copy_graph
.safe_grow_cleared (max
, true);
1546 memset (reg_copy_graph
.address (), 0, sizeof (bitmap
) * max
);
1548 speed_p
= optimize_function_for_speed_p (cfun
);
1549 FOR_EACH_BB_FN (bb
, cfun
)
1553 FOR_BB_INSNS (bb
, insn
)
1556 enum classify_move_insn cmi
;
1560 || GET_CODE (PATTERN (insn
)) == CLOBBER
1561 || GET_CODE (PATTERN (insn
)) == USE
)
1564 recog_memoized (insn
);
1566 if (find_decomposable_shift_zext (insn
, speed_p
))
1569 extract_insn (insn
);
1571 set
= simple_move (insn
, speed_p
);
1574 cmi
= NOT_SIMPLE_MOVE
;
1577 /* We mark pseudo-to-pseudo copies as decomposable during the
1578 second pass only. The first pass is so early that there is
1579 good chance such moves will be optimized away completely by
1580 subsequent optimizations anyway.
1582 However, we call find_pseudo_copy even during the first pass
1583 so as to properly set up the reg_copy_graph. */
1584 if (find_pseudo_copy (set
))
1585 cmi
= decompose_copies
? DECOMPOSABLE_SIMPLE_MOVE
: SIMPLE_MOVE
;
1590 n
= recog_data
.n_operands
;
1591 for (i
= 0; i
< n
; ++i
)
1593 find_decomposable_subregs (&recog_data
.operand
[i
], &cmi
);
1595 /* We handle ASM_OPERANDS as a special case to support
1596 things like x86 rdtsc which returns a DImode value.
1597 We can decompose the output, which will certainly be
1598 operand 0, but not the inputs. */
1600 if (cmi
== SIMPLE_MOVE
1601 && GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1603 gcc_assert (i
== 0);
1604 cmi
= NOT_SIMPLE_MOVE
;
1610 bitmap_and_compl_into (decomposable_context
, non_decomposable_context
);
1611 if (!bitmap_empty_p (decomposable_context
))
1614 sbitmap_iterator sbi
;
1615 bitmap_iterator iter
;
1618 propagate_pseudo_copies ();
1620 auto_sbitmap
sub_blocks (last_basic_block_for_fn (cfun
));
1621 bitmap_clear (sub_blocks
);
1623 EXECUTE_IF_SET_IN_BITMAP (decomposable_context
, 0, regno
, iter
)
1624 decompose_register (regno
);
1626 FOR_EACH_BB_FN (bb
, cfun
)
1630 FOR_BB_INSNS (bb
, insn
)
1637 pat
= PATTERN (insn
);
1638 if (GET_CODE (pat
) == CLOBBER
)
1639 resolve_clobber (pat
, insn
);
1640 else if (GET_CODE (pat
) == USE
)
1641 resolve_use (pat
, insn
);
1642 else if (DEBUG_INSN_P (insn
))
1643 resolve_debug (insn
);
1649 recog_memoized (insn
);
1650 extract_insn (insn
);
1652 set
= simple_move (insn
, speed_p
);
1655 rtx_insn
*orig_insn
= insn
;
1656 bool cfi
= control_flow_insn_p (insn
);
1658 /* We can end up splitting loads to multi-word pseudos
1659 into separate loads to machine word size pseudos.
1660 When this happens, we first had one load that can
1661 throw, and after resolve_simple_move we'll have a
1662 bunch of loads (at least two). All those loads may
1663 trap if we can have non-call exceptions, so they
1664 all will end the current basic block. We split the
1665 block after the outer loop over all insns, but we
1666 make sure here that we will be able to split the
1667 basic block and still produce the correct control
1668 flow graph for it. */
1670 || (cfun
->can_throw_non_call_exceptions
1671 && can_throw_internal (insn
)));
1673 insn
= resolve_simple_move (set
, insn
);
1674 if (insn
!= orig_insn
)
1676 recog_memoized (insn
);
1677 extract_insn (insn
);
1680 bitmap_set_bit (sub_blocks
, bb
->index
);
1685 rtx_insn
*decomposed_shift
;
1687 decomposed_shift
= resolve_shift_zext (insn
, speed_p
);
1688 if (decomposed_shift
!= NULL_RTX
)
1690 insn
= decomposed_shift
;
1691 recog_memoized (insn
);
1692 extract_insn (insn
);
1696 for (i
= recog_data
.n_operands
- 1; i
>= 0; --i
)
1697 resolve_subreg_use (recog_data
.operand_loc
[i
], insn
);
1699 resolve_reg_notes (insn
);
1701 if (num_validated_changes () > 0)
1703 for (i
= recog_data
.n_dups
- 1; i
>= 0; --i
)
1705 rtx
*pl
= recog_data
.dup_loc
[i
];
1706 int dup_num
= recog_data
.dup_num
[i
];
1707 rtx
*px
= recog_data
.operand_loc
[dup_num
];
1709 validate_unshare_change (insn
, pl
, *px
, 1);
1712 i
= apply_change_group ();
1719 /* If we had insns to split that caused control flow insns in the middle
1720 of a basic block, split those blocks now. Note that we only handle
1721 the case where splitting a load has caused multiple possibly trapping
1723 EXECUTE_IF_SET_IN_BITMAP (sub_blocks
, 0, i
, sbi
)
1725 rtx_insn
*insn
, *end
;
1728 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1729 insn
= BB_HEAD (bb
);
1734 if (control_flow_insn_p (insn
))
1736 /* Split the block after insn. There will be a fallthru
1737 edge, which is OK so we keep it. We have to create the
1738 exception edges ourselves. */
1739 fallthru
= split_block (bb
, insn
);
1740 rtl_make_eh_edge (NULL
, bb
, BB_END (bb
));
1741 bb
= fallthru
->dest
;
1742 insn
= BB_HEAD (bb
);
1745 insn
= NEXT_INSN (insn
);
1750 for (bitmap b
: reg_copy_graph
)
1754 reg_copy_graph
.release ();
1756 BITMAP_FREE (decomposable_context
);
1757 BITMAP_FREE (non_decomposable_context
);
1758 BITMAP_FREE (subreg_context
);
1761 /* Implement first lower subreg pass. */
1765 const pass_data pass_data_lower_subreg
=
1767 RTL_PASS
, /* type */
1768 "subreg1", /* name */
1769 OPTGROUP_NONE
, /* optinfo_flags */
1770 TV_LOWER_SUBREG
, /* tv_id */
1771 0, /* properties_required */
1772 0, /* properties_provided */
1773 0, /* properties_destroyed */
1774 0, /* todo_flags_start */
1775 0, /* todo_flags_finish */
1778 class pass_lower_subreg
: public rtl_opt_pass
1781 pass_lower_subreg (gcc::context
*ctxt
)
1782 : rtl_opt_pass (pass_data_lower_subreg
, ctxt
)
1785 /* opt_pass methods: */
1786 bool gate (function
*) final override
{ return flag_split_wide_types
!= 0; }
1787 unsigned int execute (function
*) final override
1789 decompose_multiword_subregs (false);
1793 }; // class pass_lower_subreg
1798 make_pass_lower_subreg (gcc::context
*ctxt
)
1800 return new pass_lower_subreg (ctxt
);
1803 /* Implement second lower subreg pass. */
1807 const pass_data pass_data_lower_subreg2
=
1809 RTL_PASS
, /* type */
1810 "subreg2", /* name */
1811 OPTGROUP_NONE
, /* optinfo_flags */
1812 TV_LOWER_SUBREG
, /* tv_id */
1813 0, /* properties_required */
1814 0, /* properties_provided */
1815 0, /* properties_destroyed */
1816 0, /* todo_flags_start */
1817 TODO_df_finish
, /* todo_flags_finish */
1820 class pass_lower_subreg2
: public rtl_opt_pass
1823 pass_lower_subreg2 (gcc::context
*ctxt
)
1824 : rtl_opt_pass (pass_data_lower_subreg2
, ctxt
)
1827 /* opt_pass methods: */
1828 bool gate (function
*) final override
1830 return flag_split_wide_types
&& flag_split_wide_types_early
;
1832 unsigned int execute (function
*) final override
1834 decompose_multiword_subregs (true);
1838 }; // class pass_lower_subreg2
1843 make_pass_lower_subreg2 (gcc::context
*ctxt
)
1845 return new pass_lower_subreg2 (ctxt
);
1848 /* Implement third lower subreg pass. */
1852 const pass_data pass_data_lower_subreg3
=
1854 RTL_PASS
, /* type */
1855 "subreg3", /* name */
1856 OPTGROUP_NONE
, /* optinfo_flags */
1857 TV_LOWER_SUBREG
, /* tv_id */
1858 0, /* properties_required */
1859 0, /* properties_provided */
1860 0, /* properties_destroyed */
1861 0, /* todo_flags_start */
1862 TODO_df_finish
, /* todo_flags_finish */
1865 class pass_lower_subreg3
: public rtl_opt_pass
1868 pass_lower_subreg3 (gcc::context
*ctxt
)
1869 : rtl_opt_pass (pass_data_lower_subreg3
, ctxt
)
1872 /* opt_pass methods: */
1873 bool gate (function
*) final override
{ return flag_split_wide_types
; }
1874 unsigned int execute (function
*) final override
1876 decompose_multiword_subregs (true);
1880 }; // class pass_lower_subreg3
1885 make_pass_lower_subreg3 (gcc::context
*ctxt
)
1887 return new pass_lower_subreg3 (ctxt
);