Fix typo.
[official-gcc.git] / gcc / rtlanal.c
blob4d7aad0dff0351811d84b73e611802777d1929b0
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
86 if (base == array.stack)
88 if (i < LOCAL_ELEMS)
90 base[i] = x;
91 return base;
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
103 unsigned int length = array.heap->length ();
104 if (length > i)
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
110 else
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
155 else if (format[i] == 'E')
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
179 return end - orig_end;
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
186 vec_free (array.heap);
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x)
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
208 switch (code)
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
257 return 0;
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
270 RTX_CODE code;
271 int i;
272 const char *fmt;
274 if (!x)
275 return 0;
277 code = GET_CODE (x);
278 switch (code)
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
318 /* Fall through. */
320 default:
321 break;
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
331 else if (fmt[i] == 'E')
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
339 return 0;
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
462 enum rtx_code code = GET_CODE (x);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
468 HOST_WIDE_INT actual_offset = offset;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
483 switch (code)
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
490 tree decl;
491 HOST_WIDE_INT decl_size;
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
522 return 0;
524 case LABEL_REF:
525 return 0;
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
547 if (x == frame_pointer_rtx)
549 if (FRAME_GROWS_DOWNWARD)
551 high_bound = STARTING_FRAME_OFFSET;
552 low_bound = high_bound - get_frame_size ();
554 else
556 low_bound = STARTING_FRAME_OFFSET;
557 high_bound = low_bound + get_frame_size ();
560 else if (x == hard_frame_pointer_rtx)
562 HOST_WIDE_INT sp_offset
563 = get_initial_register_offset (STACK_POINTER_REGNUM,
564 HARD_FRAME_POINTER_REGNUM);
565 HOST_WIDE_INT ap_offset
566 = get_initial_register_offset (ARG_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
569 #if STACK_GROWS_DOWNWARD
570 low_bound = sp_offset - red_zone_size - stack_boundary;
571 high_bound = ap_offset
572 + FIRST_PARM_OFFSET (current_function_decl)
573 #if !ARGS_GROW_DOWNWARD
574 + crtl->args.size
575 #endif
576 + stack_boundary;
577 #else
578 high_bound = sp_offset + red_zone_size + stack_boundary;
579 low_bound = ap_offset
580 + FIRST_PARM_OFFSET (current_function_decl)
581 #if ARGS_GROW_DOWNWARD
582 - crtl->args.size
583 #endif
584 - stack_boundary;
585 #endif
587 else if (x == stack_pointer_rtx)
589 HOST_WIDE_INT ap_offset
590 = get_initial_register_offset (ARG_POINTER_REGNUM,
591 STACK_POINTER_REGNUM);
593 #if STACK_GROWS_DOWNWARD
594 low_bound = - red_zone_size - stack_boundary;
595 high_bound = ap_offset
596 + FIRST_PARM_OFFSET (current_function_decl)
597 #if !ARGS_GROW_DOWNWARD
598 + crtl->args.size
599 #endif
600 + stack_boundary;
601 #else
602 high_bound = red_zone_size + stack_boundary;
603 low_bound = ap_offset
604 + FIRST_PARM_OFFSET (current_function_decl)
605 #if ARGS_GROW_DOWNWARD
606 - crtl->args.size
607 #endif
608 - stack_boundary;
609 #endif
611 else
613 /* We assume that accesses are safe to at least the
614 next stack boundary.
615 Examples are varargs and __builtin_return_address. */
616 #if ARGS_GROW_DOWNWARD
617 high_bound = FIRST_PARM_OFFSET (current_function_decl)
618 + stack_boundary;
619 low_bound = FIRST_PARM_OFFSET (current_function_decl)
620 - crtl->args.size - stack_boundary;
621 #else
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - stack_boundary;
624 high_bound = FIRST_PARM_OFFSET (current_function_decl)
625 + crtl->args.size + stack_boundary;
626 #endif
629 if (offset >= low_bound && offset <= high_bound - size)
630 return 0;
631 return 1;
633 /* All of the virtual frame registers are stack references. */
634 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
635 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
636 return 0;
637 return 1;
639 case CONST:
640 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
641 mode, unaligned_mems);
643 case PLUS:
644 /* An address is assumed not to trap if:
645 - it is the pic register plus a constant. */
646 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
647 return 0;
649 /* - or it is an address that can't trap plus a constant integer. */
650 if (CONST_INT_P (XEXP (x, 1))
651 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
652 size, mode, unaligned_mems))
653 return 0;
655 return 1;
657 case LO_SUM:
658 case PRE_MODIFY:
659 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
660 mode, unaligned_mems);
662 case PRE_DEC:
663 case PRE_INC:
664 case POST_DEC:
665 case POST_INC:
666 case POST_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
670 default:
671 break;
674 /* If it isn't one of the case above, it can cause a trap. */
675 return 1;
678 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
681 rtx_addr_can_trap_p (const_rtx x)
683 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
686 /* Return true if X is an address that is known to not be zero. */
688 bool
689 nonzero_address_p (const_rtx x)
691 const enum rtx_code code = GET_CODE (x);
693 switch (code)
695 case SYMBOL_REF:
696 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
698 case LABEL_REF:
699 return true;
701 case REG:
702 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
703 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
704 || x == stack_pointer_rtx
705 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
706 return true;
707 /* All of the virtual frame registers are stack references. */
708 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
709 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
710 return true;
711 return false;
713 case CONST:
714 return nonzero_address_p (XEXP (x, 0));
716 case PLUS:
717 /* Handle PIC references. */
718 if (XEXP (x, 0) == pic_offset_table_rtx
719 && CONSTANT_P (XEXP (x, 1)))
720 return true;
721 return false;
723 case PRE_MODIFY:
724 /* Similar to the above; allow positive offsets. Further, since
725 auto-inc is only allowed in memories, the register must be a
726 pointer. */
727 if (CONST_INT_P (XEXP (x, 1))
728 && INTVAL (XEXP (x, 1)) > 0)
729 return true;
730 return nonzero_address_p (XEXP (x, 0));
732 case PRE_INC:
733 /* Similarly. Further, the offset is always positive. */
734 return true;
736 case PRE_DEC:
737 case POST_DEC:
738 case POST_INC:
739 case POST_MODIFY:
740 return nonzero_address_p (XEXP (x, 0));
742 case LO_SUM:
743 return nonzero_address_p (XEXP (x, 1));
745 default:
746 break;
749 /* If it isn't one of the case above, might be zero. */
750 return false;
753 /* Return 1 if X refers to a memory location whose address
754 cannot be compared reliably with constant addresses,
755 or if X refers to a BLKmode memory object.
756 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
757 zero, we are slightly more conservative. */
759 bool
760 rtx_addr_varies_p (const_rtx x, bool for_alias)
762 enum rtx_code code;
763 int i;
764 const char *fmt;
766 if (x == 0)
767 return 0;
769 code = GET_CODE (x);
770 if (code == MEM)
771 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
773 fmt = GET_RTX_FORMAT (code);
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 if (fmt[i] == 'e')
777 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
778 return 1;
780 else if (fmt[i] == 'E')
782 int j;
783 for (j = 0; j < XVECLEN (x, i); j++)
784 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
785 return 1;
787 return 0;
790 /* Return the CALL in X if there is one. */
793 get_call_rtx_from (rtx x)
795 if (INSN_P (x))
796 x = PATTERN (x);
797 if (GET_CODE (x) == PARALLEL)
798 x = XVECEXP (x, 0, 0);
799 if (GET_CODE (x) == SET)
800 x = SET_SRC (x);
801 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
802 return x;
803 return NULL_RTX;
806 /* Return the value of the integer term in X, if one is apparent;
807 otherwise return 0.
808 Only obvious integer terms are detected.
809 This is used in cse.c with the `related_value' field. */
811 HOST_WIDE_INT
812 get_integer_term (const_rtx x)
814 if (GET_CODE (x) == CONST)
815 x = XEXP (x, 0);
817 if (GET_CODE (x) == MINUS
818 && CONST_INT_P (XEXP (x, 1)))
819 return - INTVAL (XEXP (x, 1));
820 if (GET_CODE (x) == PLUS
821 && CONST_INT_P (XEXP (x, 1)))
822 return INTVAL (XEXP (x, 1));
823 return 0;
826 /* If X is a constant, return the value sans apparent integer term;
827 otherwise return 0.
828 Only obvious integer terms are detected. */
831 get_related_value (const_rtx x)
833 if (GET_CODE (x) != CONST)
834 return 0;
835 x = XEXP (x, 0);
836 if (GET_CODE (x) == PLUS
837 && CONST_INT_P (XEXP (x, 1)))
838 return XEXP (x, 0);
839 else if (GET_CODE (x) == MINUS
840 && CONST_INT_P (XEXP (x, 1)))
841 return XEXP (x, 0);
842 return 0;
845 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
846 to somewhere in the same object or object_block as SYMBOL. */
848 bool
849 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
851 tree decl;
853 if (GET_CODE (symbol) != SYMBOL_REF)
854 return false;
856 if (offset == 0)
857 return true;
859 if (offset > 0)
861 if (CONSTANT_POOL_ADDRESS_P (symbol)
862 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
863 return true;
865 decl = SYMBOL_REF_DECL (symbol);
866 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
867 return true;
870 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
871 && SYMBOL_REF_BLOCK (symbol)
872 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
873 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
874 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
875 return true;
877 return false;
880 /* Split X into a base and a constant offset, storing them in *BASE_OUT
881 and *OFFSET_OUT respectively. */
883 void
884 split_const (rtx x, rtx *base_out, rtx *offset_out)
886 if (GET_CODE (x) == CONST)
888 x = XEXP (x, 0);
889 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
891 *base_out = XEXP (x, 0);
892 *offset_out = XEXP (x, 1);
893 return;
896 *base_out = x;
897 *offset_out = const0_rtx;
900 /* Return the number of places FIND appears within X. If COUNT_DEST is
901 zero, we do not count occurrences inside the destination of a SET. */
904 count_occurrences (const_rtx x, const_rtx find, int count_dest)
906 int i, j;
907 enum rtx_code code;
908 const char *format_ptr;
909 int count;
911 if (x == find)
912 return 1;
914 code = GET_CODE (x);
916 switch (code)
918 case REG:
919 CASE_CONST_ANY:
920 case SYMBOL_REF:
921 case CODE_LABEL:
922 case PC:
923 case CC0:
924 return 0;
926 case EXPR_LIST:
927 count = count_occurrences (XEXP (x, 0), find, count_dest);
928 if (XEXP (x, 1))
929 count += count_occurrences (XEXP (x, 1), find, count_dest);
930 return count;
932 case MEM:
933 if (MEM_P (find) && rtx_equal_p (x, find))
934 return 1;
935 break;
937 case SET:
938 if (SET_DEST (x) == find && ! count_dest)
939 return count_occurrences (SET_SRC (x), find, count_dest);
940 break;
942 default:
943 break;
946 format_ptr = GET_RTX_FORMAT (code);
947 count = 0;
949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
951 switch (*format_ptr++)
953 case 'e':
954 count += count_occurrences (XEXP (x, i), find, count_dest);
955 break;
957 case 'E':
958 for (j = 0; j < XVECLEN (x, i); j++)
959 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
960 break;
963 return count;
967 /* Return TRUE if OP is a register or subreg of a register that
968 holds an unsigned quantity. Otherwise, return FALSE. */
970 bool
971 unsigned_reg_p (rtx op)
973 if (REG_P (op)
974 && REG_EXPR (op)
975 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
976 return true;
978 if (GET_CODE (op) == SUBREG
979 && SUBREG_PROMOTED_SIGN (op))
980 return true;
982 return false;
986 /* Nonzero if register REG appears somewhere within IN.
987 Also works if REG is not a register; in this case it checks
988 for a subexpression of IN that is Lisp "equal" to REG. */
991 reg_mentioned_p (const_rtx reg, const_rtx in)
993 const char *fmt;
994 int i;
995 enum rtx_code code;
997 if (in == 0)
998 return 0;
1000 if (reg == in)
1001 return 1;
1003 if (GET_CODE (in) == LABEL_REF)
1004 return reg == label_ref_label (in);
1006 code = GET_CODE (in);
1008 switch (code)
1010 /* Compare registers by number. */
1011 case REG:
1012 return REG_P (reg) && REGNO (in) == REGNO (reg);
1014 /* These codes have no constituent expressions
1015 and are unique. */
1016 case SCRATCH:
1017 case CC0:
1018 case PC:
1019 return 0;
1021 CASE_CONST_ANY:
1022 /* These are kept unique for a given value. */
1023 return 0;
1025 default:
1026 break;
1029 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1030 return 1;
1032 fmt = GET_RTX_FORMAT (code);
1034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1036 if (fmt[i] == 'E')
1038 int j;
1039 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1040 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1041 return 1;
1043 else if (fmt[i] == 'e'
1044 && reg_mentioned_p (reg, XEXP (in, i)))
1045 return 1;
1047 return 0;
1050 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1051 no CODE_LABEL insn. */
1054 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1056 rtx_insn *p;
1057 if (beg == end)
1058 return 0;
1059 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1060 if (LABEL_P (p))
1061 return 0;
1062 return 1;
1065 /* Nonzero if register REG is used in an insn between
1066 FROM_INSN and TO_INSN (exclusive of those two). */
1069 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1070 const rtx_insn *to_insn)
1072 rtx_insn *insn;
1074 if (from_insn == to_insn)
1075 return 0;
1077 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1078 if (NONDEBUG_INSN_P (insn)
1079 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1080 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1081 return 1;
1082 return 0;
1085 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1086 is entirely replaced by a new value and the only use is as a SET_DEST,
1087 we do not consider it a reference. */
1090 reg_referenced_p (const_rtx x, const_rtx body)
1092 int i;
1094 switch (GET_CODE (body))
1096 case SET:
1097 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1098 return 1;
1100 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1101 of a REG that occupies all of the REG, the insn references X if
1102 it is mentioned in the destination. */
1103 if (GET_CODE (SET_DEST (body)) != CC0
1104 && GET_CODE (SET_DEST (body)) != PC
1105 && !REG_P (SET_DEST (body))
1106 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1107 && REG_P (SUBREG_REG (SET_DEST (body)))
1108 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1109 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1110 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1111 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1112 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1113 return 1;
1114 return 0;
1116 case ASM_OPERANDS:
1117 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1118 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1119 return 1;
1120 return 0;
1122 case CALL:
1123 case USE:
1124 case IF_THEN_ELSE:
1125 return reg_overlap_mentioned_p (x, body);
1127 case TRAP_IF:
1128 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1130 case PREFETCH:
1131 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1133 case UNSPEC:
1134 case UNSPEC_VOLATILE:
1135 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1136 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1137 return 1;
1138 return 0;
1140 case PARALLEL:
1141 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1142 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1143 return 1;
1144 return 0;
1146 case CLOBBER:
1147 if (MEM_P (XEXP (body, 0)))
1148 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1149 return 1;
1150 return 0;
1152 case COND_EXEC:
1153 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1154 return 1;
1155 return reg_referenced_p (x, COND_EXEC_CODE (body));
1157 default:
1158 return 0;
1162 /* Nonzero if register REG is set or clobbered in an insn between
1163 FROM_INSN and TO_INSN (exclusive of those two). */
1166 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1167 const rtx_insn *to_insn)
1169 const rtx_insn *insn;
1171 if (from_insn == to_insn)
1172 return 0;
1174 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn) && reg_set_p (reg, insn))
1176 return 1;
1177 return 0;
1180 /* Return true if REG is set or clobbered inside INSN. */
1183 reg_set_p (const_rtx reg, const_rtx insn)
1185 /* After delay slot handling, call and branch insns might be in a
1186 sequence. Check all the elements there. */
1187 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1189 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1190 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1191 return true;
1193 return false;
1196 /* We can be passed an insn or part of one. If we are passed an insn,
1197 check if a side-effect of the insn clobbers REG. */
1198 if (INSN_P (insn)
1199 && (FIND_REG_INC_NOTE (insn, reg)
1200 || (CALL_P (insn)
1201 && ((REG_P (reg)
1202 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1203 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1204 GET_MODE (reg), REGNO (reg)))
1205 || MEM_P (reg)
1206 || find_reg_fusage (insn, CLOBBER, reg)))))
1207 return true;
1209 return set_of (reg, insn) != NULL_RTX;
1212 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1213 only if none of them are modified between START and END. Return 1 if
1214 X contains a MEM; this routine does use memory aliasing. */
1217 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1219 const enum rtx_code code = GET_CODE (x);
1220 const char *fmt;
1221 int i, j;
1222 rtx_insn *insn;
1224 if (start == end)
1225 return 0;
1227 switch (code)
1229 CASE_CONST_ANY:
1230 case CONST:
1231 case SYMBOL_REF:
1232 case LABEL_REF:
1233 return 0;
1235 case PC:
1236 case CC0:
1237 return 1;
1239 case MEM:
1240 if (modified_between_p (XEXP (x, 0), start, end))
1241 return 1;
1242 if (MEM_READONLY_P (x))
1243 return 0;
1244 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1245 if (memory_modified_in_insn_p (x, insn))
1246 return 1;
1247 return 0;
1249 case REG:
1250 return reg_set_between_p (x, start, end);
1252 default:
1253 break;
1256 fmt = GET_RTX_FORMAT (code);
1257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1259 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1260 return 1;
1262 else if (fmt[i] == 'E')
1263 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1264 if (modified_between_p (XVECEXP (x, i, j), start, end))
1265 return 1;
1268 return 0;
1271 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1272 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1273 does use memory aliasing. */
1276 modified_in_p (const_rtx x, const_rtx insn)
1278 const enum rtx_code code = GET_CODE (x);
1279 const char *fmt;
1280 int i, j;
1282 switch (code)
1284 CASE_CONST_ANY:
1285 case CONST:
1286 case SYMBOL_REF:
1287 case LABEL_REF:
1288 return 0;
1290 case PC:
1291 case CC0:
1292 return 1;
1294 case MEM:
1295 if (modified_in_p (XEXP (x, 0), insn))
1296 return 1;
1297 if (MEM_READONLY_P (x))
1298 return 0;
1299 if (memory_modified_in_insn_p (x, insn))
1300 return 1;
1301 return 0;
1303 case REG:
1304 return reg_set_p (x, insn);
1306 default:
1307 break;
1310 fmt = GET_RTX_FORMAT (code);
1311 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1313 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1314 return 1;
1316 else if (fmt[i] == 'E')
1317 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1318 if (modified_in_p (XVECEXP (x, i, j), insn))
1319 return 1;
1322 return 0;
1325 /* Helper function for set_of. */
1326 struct set_of_data
1328 const_rtx found;
1329 const_rtx pat;
1332 static void
1333 set_of_1 (rtx x, const_rtx pat, void *data1)
1335 struct set_of_data *const data = (struct set_of_data *) (data1);
1336 if (rtx_equal_p (x, data->pat)
1337 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1338 data->found = pat;
1341 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1342 (either directly or via STRICT_LOW_PART and similar modifiers). */
1343 const_rtx
1344 set_of (const_rtx pat, const_rtx insn)
1346 struct set_of_data data;
1347 data.found = NULL_RTX;
1348 data.pat = pat;
1349 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1350 return data.found;
1353 /* Add all hard register in X to *PSET. */
1354 void
1355 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1357 subrtx_iterator::array_type array;
1358 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1360 const_rtx x = *iter;
1361 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1362 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1366 /* This function, called through note_stores, collects sets and
1367 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1368 by DATA. */
1369 void
1370 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1372 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1373 if (REG_P (x) && HARD_REGISTER_P (x))
1374 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1377 /* Examine INSN, and compute the set of hard registers written by it.
1378 Store it in *PSET. Should only be called after reload. */
1379 void
1380 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1382 rtx link;
1384 CLEAR_HARD_REG_SET (*pset);
1385 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1386 if (CALL_P (insn))
1388 if (implicit)
1389 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1391 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1392 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1394 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1395 if (REG_NOTE_KIND (link) == REG_INC)
1396 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1399 /* Like record_hard_reg_sets, but called through note_uses. */
1400 void
1401 record_hard_reg_uses (rtx *px, void *data)
1403 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1406 /* Given an INSN, return a SET expression if this insn has only a single SET.
1407 It may also have CLOBBERs, USEs, or SET whose output
1408 will not be used, which we ignore. */
1411 single_set_2 (const rtx_insn *insn, const_rtx pat)
1413 rtx set = NULL;
1414 int set_verified = 1;
1415 int i;
1417 if (GET_CODE (pat) == PARALLEL)
1419 for (i = 0; i < XVECLEN (pat, 0); i++)
1421 rtx sub = XVECEXP (pat, 0, i);
1422 switch (GET_CODE (sub))
1424 case USE:
1425 case CLOBBER:
1426 break;
1428 case SET:
1429 /* We can consider insns having multiple sets, where all
1430 but one are dead as single set insns. In common case
1431 only single set is present in the pattern so we want
1432 to avoid checking for REG_UNUSED notes unless necessary.
1434 When we reach set first time, we just expect this is
1435 the single set we are looking for and only when more
1436 sets are found in the insn, we check them. */
1437 if (!set_verified)
1439 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1440 && !side_effects_p (set))
1441 set = NULL;
1442 else
1443 set_verified = 1;
1445 if (!set)
1446 set = sub, set_verified = 0;
1447 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1448 || side_effects_p (sub))
1449 return NULL_RTX;
1450 break;
1452 default:
1453 return NULL_RTX;
1457 return set;
1460 /* Given an INSN, return nonzero if it has more than one SET, else return
1461 zero. */
1464 multiple_sets (const_rtx insn)
1466 int found;
1467 int i;
1469 /* INSN must be an insn. */
1470 if (! INSN_P (insn))
1471 return 0;
1473 /* Only a PARALLEL can have multiple SETs. */
1474 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1476 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1479 /* If we have already found a SET, then return now. */
1480 if (found)
1481 return 1;
1482 else
1483 found = 1;
1487 /* Either zero or one SET. */
1488 return 0;
1491 /* Return nonzero if the destination of SET equals the source
1492 and there are no side effects. */
1495 set_noop_p (const_rtx set)
1497 rtx src = SET_SRC (set);
1498 rtx dst = SET_DEST (set);
1500 if (dst == pc_rtx && src == pc_rtx)
1501 return 1;
1503 if (MEM_P (dst) && MEM_P (src))
1504 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1506 if (GET_CODE (dst) == ZERO_EXTRACT)
1507 return rtx_equal_p (XEXP (dst, 0), src)
1508 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1509 && !side_effects_p (src);
1511 if (GET_CODE (dst) == STRICT_LOW_PART)
1512 dst = XEXP (dst, 0);
1514 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1516 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1517 return 0;
1518 src = SUBREG_REG (src);
1519 dst = SUBREG_REG (dst);
1522 /* It is a NOOP if destination overlaps with selected src vector
1523 elements. */
1524 if (GET_CODE (src) == VEC_SELECT
1525 && REG_P (XEXP (src, 0)) && REG_P (dst)
1526 && HARD_REGISTER_P (XEXP (src, 0))
1527 && HARD_REGISTER_P (dst))
1529 int i;
1530 rtx par = XEXP (src, 1);
1531 rtx src0 = XEXP (src, 0);
1532 int c0 = INTVAL (XVECEXP (par, 0, 0));
1533 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1535 for (i = 1; i < XVECLEN (par, 0); i++)
1536 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1537 return 0;
1538 return
1539 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1540 offset, GET_MODE (dst)) == (int) REGNO (dst);
1543 return (REG_P (src) && REG_P (dst)
1544 && REGNO (src) == REGNO (dst));
1547 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1548 value to itself. */
1551 noop_move_p (const rtx_insn *insn)
1553 rtx pat = PATTERN (insn);
1555 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1556 return 1;
1558 /* Insns carrying these notes are useful later on. */
1559 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1560 return 0;
1562 /* Check the code to be executed for COND_EXEC. */
1563 if (GET_CODE (pat) == COND_EXEC)
1564 pat = COND_EXEC_CODE (pat);
1566 if (GET_CODE (pat) == SET && set_noop_p (pat))
1567 return 1;
1569 if (GET_CODE (pat) == PARALLEL)
1571 int i;
1572 /* If nothing but SETs of registers to themselves,
1573 this insn can also be deleted. */
1574 for (i = 0; i < XVECLEN (pat, 0); i++)
1576 rtx tem = XVECEXP (pat, 0, i);
1578 if (GET_CODE (tem) == USE
1579 || GET_CODE (tem) == CLOBBER)
1580 continue;
1582 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1583 return 0;
1586 return 1;
1588 return 0;
1592 /* Return nonzero if register in range [REGNO, ENDREGNO)
1593 appears either explicitly or implicitly in X
1594 other than being stored into.
1596 References contained within the substructure at LOC do not count.
1597 LOC may be zero, meaning don't ignore anything. */
1599 bool
1600 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1601 rtx *loc)
1603 int i;
1604 unsigned int x_regno;
1605 RTX_CODE code;
1606 const char *fmt;
1608 repeat:
1609 /* The contents of a REG_NONNEG note is always zero, so we must come here
1610 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1611 if (x == 0)
1612 return false;
1614 code = GET_CODE (x);
1616 switch (code)
1618 case REG:
1619 x_regno = REGNO (x);
1621 /* If we modifying the stack, frame, or argument pointer, it will
1622 clobber a virtual register. In fact, we could be more precise,
1623 but it isn't worth it. */
1624 if ((x_regno == STACK_POINTER_REGNUM
1625 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1626 && x_regno == ARG_POINTER_REGNUM)
1627 || x_regno == FRAME_POINTER_REGNUM)
1628 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1629 return true;
1631 return endregno > x_regno && regno < END_REGNO (x);
1633 case SUBREG:
1634 /* If this is a SUBREG of a hard reg, we can see exactly which
1635 registers are being modified. Otherwise, handle normally. */
1636 if (REG_P (SUBREG_REG (x))
1637 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1639 unsigned int inner_regno = subreg_regno (x);
1640 unsigned int inner_endregno
1641 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1642 ? subreg_nregs (x) : 1);
1644 return endregno > inner_regno && regno < inner_endregno;
1646 break;
1648 case CLOBBER:
1649 case SET:
1650 if (&SET_DEST (x) != loc
1651 /* Note setting a SUBREG counts as referring to the REG it is in for
1652 a pseudo but not for hard registers since we can
1653 treat each word individually. */
1654 && ((GET_CODE (SET_DEST (x)) == SUBREG
1655 && loc != &SUBREG_REG (SET_DEST (x))
1656 && REG_P (SUBREG_REG (SET_DEST (x)))
1657 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1658 && refers_to_regno_p (regno, endregno,
1659 SUBREG_REG (SET_DEST (x)), loc))
1660 || (!REG_P (SET_DEST (x))
1661 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1662 return true;
1664 if (code == CLOBBER || loc == &SET_SRC (x))
1665 return false;
1666 x = SET_SRC (x);
1667 goto repeat;
1669 default:
1670 break;
1673 /* X does not match, so try its subexpressions. */
1675 fmt = GET_RTX_FORMAT (code);
1676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1678 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1680 if (i == 0)
1682 x = XEXP (x, 0);
1683 goto repeat;
1685 else
1686 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1687 return true;
1689 else if (fmt[i] == 'E')
1691 int j;
1692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1693 if (loc != &XVECEXP (x, i, j)
1694 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1695 return true;
1698 return false;
1701 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1702 we check if any register number in X conflicts with the relevant register
1703 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1704 contains a MEM (we don't bother checking for memory addresses that can't
1705 conflict because we expect this to be a rare case. */
1708 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1710 unsigned int regno, endregno;
1712 /* If either argument is a constant, then modifying X can not
1713 affect IN. Here we look at IN, we can profitably combine
1714 CONSTANT_P (x) with the switch statement below. */
1715 if (CONSTANT_P (in))
1716 return 0;
1718 recurse:
1719 switch (GET_CODE (x))
1721 case STRICT_LOW_PART:
1722 case ZERO_EXTRACT:
1723 case SIGN_EXTRACT:
1724 /* Overly conservative. */
1725 x = XEXP (x, 0);
1726 goto recurse;
1728 case SUBREG:
1729 regno = REGNO (SUBREG_REG (x));
1730 if (regno < FIRST_PSEUDO_REGISTER)
1731 regno = subreg_regno (x);
1732 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1733 ? subreg_nregs (x) : 1);
1734 goto do_reg;
1736 case REG:
1737 regno = REGNO (x);
1738 endregno = END_REGNO (x);
1739 do_reg:
1740 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1742 case MEM:
1744 const char *fmt;
1745 int i;
1747 if (MEM_P (in))
1748 return 1;
1750 fmt = GET_RTX_FORMAT (GET_CODE (in));
1751 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1752 if (fmt[i] == 'e')
1754 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1755 return 1;
1757 else if (fmt[i] == 'E')
1759 int j;
1760 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1761 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1762 return 1;
1765 return 0;
1768 case SCRATCH:
1769 case PC:
1770 case CC0:
1771 return reg_mentioned_p (x, in);
1773 case PARALLEL:
1775 int i;
1777 /* If any register in here refers to it we return true. */
1778 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1779 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1780 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1781 return 1;
1782 return 0;
1785 default:
1786 gcc_assert (CONSTANT_P (x));
1787 return 0;
1791 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1792 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1793 ignored by note_stores, but passed to FUN.
1795 FUN receives three arguments:
1796 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1797 2. the SET or CLOBBER rtx that does the store,
1798 3. the pointer DATA provided to note_stores.
1800 If the item being stored in or clobbered is a SUBREG of a hard register,
1801 the SUBREG will be passed. */
1803 void
1804 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1806 int i;
1808 if (GET_CODE (x) == COND_EXEC)
1809 x = COND_EXEC_CODE (x);
1811 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1813 rtx dest = SET_DEST (x);
1815 while ((GET_CODE (dest) == SUBREG
1816 && (!REG_P (SUBREG_REG (dest))
1817 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1818 || GET_CODE (dest) == ZERO_EXTRACT
1819 || GET_CODE (dest) == STRICT_LOW_PART)
1820 dest = XEXP (dest, 0);
1822 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1823 each of whose first operand is a register. */
1824 if (GET_CODE (dest) == PARALLEL)
1826 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1827 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1828 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1830 else
1831 (*fun) (dest, x, data);
1834 else if (GET_CODE (x) == PARALLEL)
1835 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1836 note_stores (XVECEXP (x, 0, i), fun, data);
1839 /* Like notes_stores, but call FUN for each expression that is being
1840 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1841 FUN for each expression, not any interior subexpressions. FUN receives a
1842 pointer to the expression and the DATA passed to this function.
1844 Note that this is not quite the same test as that done in reg_referenced_p
1845 since that considers something as being referenced if it is being
1846 partially set, while we do not. */
1848 void
1849 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1851 rtx body = *pbody;
1852 int i;
1854 switch (GET_CODE (body))
1856 case COND_EXEC:
1857 (*fun) (&COND_EXEC_TEST (body), data);
1858 note_uses (&COND_EXEC_CODE (body), fun, data);
1859 return;
1861 case PARALLEL:
1862 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1863 note_uses (&XVECEXP (body, 0, i), fun, data);
1864 return;
1866 case SEQUENCE:
1867 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1868 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1869 return;
1871 case USE:
1872 (*fun) (&XEXP (body, 0), data);
1873 return;
1875 case ASM_OPERANDS:
1876 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1877 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1878 return;
1880 case TRAP_IF:
1881 (*fun) (&TRAP_CONDITION (body), data);
1882 return;
1884 case PREFETCH:
1885 (*fun) (&XEXP (body, 0), data);
1886 return;
1888 case UNSPEC:
1889 case UNSPEC_VOLATILE:
1890 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1891 (*fun) (&XVECEXP (body, 0, i), data);
1892 return;
1894 case CLOBBER:
1895 if (MEM_P (XEXP (body, 0)))
1896 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1897 return;
1899 case SET:
1901 rtx dest = SET_DEST (body);
1903 /* For sets we replace everything in source plus registers in memory
1904 expression in store and operands of a ZERO_EXTRACT. */
1905 (*fun) (&SET_SRC (body), data);
1907 if (GET_CODE (dest) == ZERO_EXTRACT)
1909 (*fun) (&XEXP (dest, 1), data);
1910 (*fun) (&XEXP (dest, 2), data);
1913 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1914 dest = XEXP (dest, 0);
1916 if (MEM_P (dest))
1917 (*fun) (&XEXP (dest, 0), data);
1919 return;
1921 default:
1922 /* All the other possibilities never store. */
1923 (*fun) (pbody, data);
1924 return;
1928 /* Return nonzero if X's old contents don't survive after INSN.
1929 This will be true if X is (cc0) or if X is a register and
1930 X dies in INSN or because INSN entirely sets X.
1932 "Entirely set" means set directly and not through a SUBREG, or
1933 ZERO_EXTRACT, so no trace of the old contents remains.
1934 Likewise, REG_INC does not count.
1936 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1937 but for this use that makes no difference, since regs don't overlap
1938 during their lifetimes. Therefore, this function may be used
1939 at any time after deaths have been computed.
1941 If REG is a hard reg that occupies multiple machine registers, this
1942 function will only return 1 if each of those registers will be replaced
1943 by INSN. */
1946 dead_or_set_p (const_rtx insn, const_rtx x)
1948 unsigned int regno, end_regno;
1949 unsigned int i;
1951 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1952 if (GET_CODE (x) == CC0)
1953 return 1;
1955 gcc_assert (REG_P (x));
1957 regno = REGNO (x);
1958 end_regno = END_REGNO (x);
1959 for (i = regno; i < end_regno; i++)
1960 if (! dead_or_set_regno_p (insn, i))
1961 return 0;
1963 return 1;
1966 /* Return TRUE iff DEST is a register or subreg of a register and
1967 doesn't change the number of words of the inner register, and any
1968 part of the register is TEST_REGNO. */
1970 static bool
1971 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1973 unsigned int regno, endregno;
1975 if (GET_CODE (dest) == SUBREG
1976 && (((GET_MODE_SIZE (GET_MODE (dest))
1977 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1978 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1979 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1980 dest = SUBREG_REG (dest);
1982 if (!REG_P (dest))
1983 return false;
1985 regno = REGNO (dest);
1986 endregno = END_REGNO (dest);
1987 return (test_regno >= regno && test_regno < endregno);
1990 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1991 any member matches the covers_regno_no_parallel_p criteria. */
1993 static bool
1994 covers_regno_p (const_rtx dest, unsigned int test_regno)
1996 if (GET_CODE (dest) == PARALLEL)
1998 /* Some targets place small structures in registers for return
1999 values of functions, and those registers are wrapped in
2000 PARALLELs that we may see as the destination of a SET. */
2001 int i;
2003 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2005 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2006 if (inner != NULL_RTX
2007 && covers_regno_no_parallel_p (inner, test_regno))
2008 return true;
2011 return false;
2013 else
2014 return covers_regno_no_parallel_p (dest, test_regno);
2017 /* Utility function for dead_or_set_p to check an individual register. */
2020 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2022 const_rtx pattern;
2024 /* See if there is a death note for something that includes TEST_REGNO. */
2025 if (find_regno_note (insn, REG_DEAD, test_regno))
2026 return 1;
2028 if (CALL_P (insn)
2029 && find_regno_fusage (insn, CLOBBER, test_regno))
2030 return 1;
2032 pattern = PATTERN (insn);
2034 /* If a COND_EXEC is not executed, the value survives. */
2035 if (GET_CODE (pattern) == COND_EXEC)
2036 return 0;
2038 if (GET_CODE (pattern) == SET)
2039 return covers_regno_p (SET_DEST (pattern), test_regno);
2040 else if (GET_CODE (pattern) == PARALLEL)
2042 int i;
2044 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2046 rtx body = XVECEXP (pattern, 0, i);
2048 if (GET_CODE (body) == COND_EXEC)
2049 body = COND_EXEC_CODE (body);
2051 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2052 && covers_regno_p (SET_DEST (body), test_regno))
2053 return 1;
2057 return 0;
2060 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2061 If DATUM is nonzero, look for one whose datum is DATUM. */
2064 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2066 rtx link;
2068 gcc_checking_assert (insn);
2070 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2071 if (! INSN_P (insn))
2072 return 0;
2073 if (datum == 0)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == kind)
2077 return link;
2078 return 0;
2081 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2082 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2083 return link;
2084 return 0;
2087 /* Return the reg-note of kind KIND in insn INSN which applies to register
2088 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2089 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2090 it might be the case that the note overlaps REGNO. */
2093 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2095 rtx link;
2097 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2098 if (! INSN_P (insn))
2099 return 0;
2101 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2102 if (REG_NOTE_KIND (link) == kind
2103 /* Verify that it is a register, so that scratch and MEM won't cause a
2104 problem here. */
2105 && REG_P (XEXP (link, 0))
2106 && REGNO (XEXP (link, 0)) <= regno
2107 && END_REGNO (XEXP (link, 0)) > regno)
2108 return link;
2109 return 0;
2112 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2113 has such a note. */
2116 find_reg_equal_equiv_note (const_rtx insn)
2118 rtx link;
2120 if (!INSN_P (insn))
2121 return 0;
2123 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2124 if (REG_NOTE_KIND (link) == REG_EQUAL
2125 || REG_NOTE_KIND (link) == REG_EQUIV)
2127 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2128 insns that have multiple sets. Checking single_set to
2129 make sure of this is not the proper check, as explained
2130 in the comment in set_unique_reg_note.
2132 This should be changed into an assert. */
2133 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2134 return 0;
2135 return link;
2137 return NULL;
2140 /* Check whether INSN is a single_set whose source is known to be
2141 equivalent to a constant. Return that constant if so, otherwise
2142 return null. */
2145 find_constant_src (const rtx_insn *insn)
2147 rtx note, set, x;
2149 set = single_set (insn);
2150 if (set)
2152 x = avoid_constant_pool_reference (SET_SRC (set));
2153 if (CONSTANT_P (x))
2154 return x;
2157 note = find_reg_equal_equiv_note (insn);
2158 if (note && CONSTANT_P (XEXP (note, 0)))
2159 return XEXP (note, 0);
2161 return NULL_RTX;
2164 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2165 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2168 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2170 /* If it's not a CALL_INSN, it can't possibly have a
2171 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2172 if (!CALL_P (insn))
2173 return 0;
2175 gcc_assert (datum);
2177 if (!REG_P (datum))
2179 rtx link;
2181 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2182 link;
2183 link = XEXP (link, 1))
2184 if (GET_CODE (XEXP (link, 0)) == code
2185 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2186 return 1;
2188 else
2190 unsigned int regno = REGNO (datum);
2192 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2193 to pseudo registers, so don't bother checking. */
2195 if (regno < FIRST_PSEUDO_REGISTER)
2197 unsigned int end_regno = END_REGNO (datum);
2198 unsigned int i;
2200 for (i = regno; i < end_regno; i++)
2201 if (find_regno_fusage (insn, code, i))
2202 return 1;
2206 return 0;
2209 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2210 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2213 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2215 rtx link;
2217 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2218 to pseudo registers, so don't bother checking. */
2220 if (regno >= FIRST_PSEUDO_REGISTER
2221 || !CALL_P (insn) )
2222 return 0;
2224 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2226 rtx op, reg;
2228 if (GET_CODE (op = XEXP (link, 0)) == code
2229 && REG_P (reg = XEXP (op, 0))
2230 && REGNO (reg) <= regno
2231 && END_REGNO (reg) > regno)
2232 return 1;
2235 return 0;
2239 /* Return true if KIND is an integer REG_NOTE. */
2241 static bool
2242 int_reg_note_p (enum reg_note kind)
2244 return kind == REG_BR_PROB;
2247 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2248 stored as the pointer to the next register note. */
2251 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2253 rtx note;
2255 gcc_checking_assert (!int_reg_note_p (kind));
2256 switch (kind)
2258 case REG_CC_SETTER:
2259 case REG_CC_USER:
2260 case REG_LABEL_TARGET:
2261 case REG_LABEL_OPERAND:
2262 case REG_TM:
2263 /* These types of register notes use an INSN_LIST rather than an
2264 EXPR_LIST, so that copying is done right and dumps look
2265 better. */
2266 note = alloc_INSN_LIST (datum, list);
2267 PUT_REG_NOTE_KIND (note, kind);
2268 break;
2270 default:
2271 note = alloc_EXPR_LIST (kind, datum, list);
2272 break;
2275 return note;
2278 /* Add register note with kind KIND and datum DATUM to INSN. */
2280 void
2281 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2283 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2286 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2288 void
2289 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2291 gcc_checking_assert (int_reg_note_p (kind));
2292 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2293 datum, REG_NOTES (insn));
2296 /* Add a register note like NOTE to INSN. */
2298 void
2299 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2301 if (GET_CODE (note) == INT_LIST)
2302 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2303 else
2304 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2307 /* Duplicate NOTE and return the copy. */
2309 duplicate_reg_note (rtx note)
2311 reg_note kind = REG_NOTE_KIND (note);
2313 if (GET_CODE (note) == INT_LIST)
2314 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2315 else if (GET_CODE (note) == EXPR_LIST)
2316 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2317 else
2318 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2321 /* Remove register note NOTE from the REG_NOTES of INSN. */
2323 void
2324 remove_note (rtx_insn *insn, const_rtx note)
2326 rtx link;
2328 if (note == NULL_RTX)
2329 return;
2331 if (REG_NOTES (insn) == note)
2332 REG_NOTES (insn) = XEXP (note, 1);
2333 else
2334 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2335 if (XEXP (link, 1) == note)
2337 XEXP (link, 1) = XEXP (note, 1);
2338 break;
2341 switch (REG_NOTE_KIND (note))
2343 case REG_EQUAL:
2344 case REG_EQUIV:
2345 df_notes_rescan (insn);
2346 break;
2347 default:
2348 break;
2352 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2354 void
2355 remove_reg_equal_equiv_notes (rtx_insn *insn)
2357 rtx *loc;
2359 loc = &REG_NOTES (insn);
2360 while (*loc)
2362 enum reg_note kind = REG_NOTE_KIND (*loc);
2363 if (kind == REG_EQUAL || kind == REG_EQUIV)
2364 *loc = XEXP (*loc, 1);
2365 else
2366 loc = &XEXP (*loc, 1);
2370 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2372 void
2373 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2375 df_ref eq_use;
2377 if (!df)
2378 return;
2380 /* This loop is a little tricky. We cannot just go down the chain because
2381 it is being modified by some actions in the loop. So we just iterate
2382 over the head. We plan to drain the list anyway. */
2383 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2385 rtx_insn *insn = DF_REF_INSN (eq_use);
2386 rtx note = find_reg_equal_equiv_note (insn);
2388 /* This assert is generally triggered when someone deletes a REG_EQUAL
2389 or REG_EQUIV note by hacking the list manually rather than calling
2390 remove_note. */
2391 gcc_assert (note);
2393 remove_note (insn, note);
2397 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2398 return 1 if it is found. A simple equality test is used to determine if
2399 NODE matches. */
2401 bool
2402 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2404 const_rtx x;
2406 for (x = listp; x; x = XEXP (x, 1))
2407 if (node == XEXP (x, 0))
2408 return true;
2410 return false;
2413 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2414 remove that entry from the list if it is found.
2416 A simple equality test is used to determine if NODE matches. */
2418 void
2419 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2421 rtx_expr_list *temp = *listp;
2422 rtx_expr_list *prev = NULL;
2424 while (temp)
2426 if (node == temp->element ())
2428 /* Splice the node out of the list. */
2429 if (prev)
2430 XEXP (prev, 1) = temp->next ();
2431 else
2432 *listp = temp->next ();
2434 return;
2437 prev = temp;
2438 temp = temp->next ();
2442 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2443 remove that entry from the list if it is found.
2445 A simple equality test is used to determine if NODE matches. */
2447 void
2448 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2450 rtx_insn_list *temp = *listp;
2451 rtx_insn_list *prev = NULL;
2453 while (temp)
2455 if (node == temp->insn ())
2457 /* Splice the node out of the list. */
2458 if (prev)
2459 XEXP (prev, 1) = temp->next ();
2460 else
2461 *listp = temp->next ();
2463 return;
2466 prev = temp;
2467 temp = temp->next ();
2471 /* Nonzero if X contains any volatile instructions. These are instructions
2472 which may cause unpredictable machine state instructions, and thus no
2473 instructions or register uses should be moved or combined across them.
2474 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2477 volatile_insn_p (const_rtx x)
2479 const RTX_CODE code = GET_CODE (x);
2480 switch (code)
2482 case LABEL_REF:
2483 case SYMBOL_REF:
2484 case CONST:
2485 CASE_CONST_ANY:
2486 case CC0:
2487 case PC:
2488 case REG:
2489 case SCRATCH:
2490 case CLOBBER:
2491 case ADDR_VEC:
2492 case ADDR_DIFF_VEC:
2493 case CALL:
2494 case MEM:
2495 return 0;
2497 case UNSPEC_VOLATILE:
2498 return 1;
2500 case ASM_INPUT:
2501 case ASM_OPERANDS:
2502 if (MEM_VOLATILE_P (x))
2503 return 1;
2505 default:
2506 break;
2509 /* Recursively scan the operands of this expression. */
2512 const char *const fmt = GET_RTX_FORMAT (code);
2513 int i;
2515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2517 if (fmt[i] == 'e')
2519 if (volatile_insn_p (XEXP (x, i)))
2520 return 1;
2522 else if (fmt[i] == 'E')
2524 int j;
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 if (volatile_insn_p (XVECEXP (x, i, j)))
2527 return 1;
2531 return 0;
2534 /* Nonzero if X contains any volatile memory references
2535 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2538 volatile_refs_p (const_rtx x)
2540 const RTX_CODE code = GET_CODE (x);
2541 switch (code)
2543 case LABEL_REF:
2544 case SYMBOL_REF:
2545 case CONST:
2546 CASE_CONST_ANY:
2547 case CC0:
2548 case PC:
2549 case REG:
2550 case SCRATCH:
2551 case CLOBBER:
2552 case ADDR_VEC:
2553 case ADDR_DIFF_VEC:
2554 return 0;
2556 case UNSPEC_VOLATILE:
2557 return 1;
2559 case MEM:
2560 case ASM_INPUT:
2561 case ASM_OPERANDS:
2562 if (MEM_VOLATILE_P (x))
2563 return 1;
2565 default:
2566 break;
2569 /* Recursively scan the operands of this expression. */
2572 const char *const fmt = GET_RTX_FORMAT (code);
2573 int i;
2575 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2577 if (fmt[i] == 'e')
2579 if (volatile_refs_p (XEXP (x, i)))
2580 return 1;
2582 else if (fmt[i] == 'E')
2584 int j;
2585 for (j = 0; j < XVECLEN (x, i); j++)
2586 if (volatile_refs_p (XVECEXP (x, i, j)))
2587 return 1;
2591 return 0;
2594 /* Similar to above, except that it also rejects register pre- and post-
2595 incrementing. */
2598 side_effects_p (const_rtx x)
2600 const RTX_CODE code = GET_CODE (x);
2601 switch (code)
2603 case LABEL_REF:
2604 case SYMBOL_REF:
2605 case CONST:
2606 CASE_CONST_ANY:
2607 case CC0:
2608 case PC:
2609 case REG:
2610 case SCRATCH:
2611 case ADDR_VEC:
2612 case ADDR_DIFF_VEC:
2613 case VAR_LOCATION:
2614 return 0;
2616 case CLOBBER:
2617 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2618 when some combination can't be done. If we see one, don't think
2619 that we can simplify the expression. */
2620 return (GET_MODE (x) != VOIDmode);
2622 case PRE_INC:
2623 case PRE_DEC:
2624 case POST_INC:
2625 case POST_DEC:
2626 case PRE_MODIFY:
2627 case POST_MODIFY:
2628 case CALL:
2629 case UNSPEC_VOLATILE:
2630 return 1;
2632 case MEM:
2633 case ASM_INPUT:
2634 case ASM_OPERANDS:
2635 if (MEM_VOLATILE_P (x))
2636 return 1;
2638 default:
2639 break;
2642 /* Recursively scan the operands of this expression. */
2645 const char *fmt = GET_RTX_FORMAT (code);
2646 int i;
2648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2650 if (fmt[i] == 'e')
2652 if (side_effects_p (XEXP (x, i)))
2653 return 1;
2655 else if (fmt[i] == 'E')
2657 int j;
2658 for (j = 0; j < XVECLEN (x, i); j++)
2659 if (side_effects_p (XVECEXP (x, i, j)))
2660 return 1;
2664 return 0;
2667 /* Return nonzero if evaluating rtx X might cause a trap.
2668 FLAGS controls how to consider MEMs. A nonzero means the context
2669 of the access may have changed from the original, such that the
2670 address may have become invalid. */
2673 may_trap_p_1 (const_rtx x, unsigned flags)
2675 int i;
2676 enum rtx_code code;
2677 const char *fmt;
2679 /* We make no distinction currently, but this function is part of
2680 the internal target-hooks ABI so we keep the parameter as
2681 "unsigned flags". */
2682 bool code_changed = flags != 0;
2684 if (x == 0)
2685 return 0;
2686 code = GET_CODE (x);
2687 switch (code)
2689 /* Handle these cases quickly. */
2690 CASE_CONST_ANY:
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 case CONST:
2694 case PC:
2695 case CC0:
2696 case REG:
2697 case SCRATCH:
2698 return 0;
2700 case UNSPEC:
2701 return targetm.unspec_may_trap_p (x, flags);
2703 case UNSPEC_VOLATILE:
2704 case ASM_INPUT:
2705 case TRAP_IF:
2706 return 1;
2708 case ASM_OPERANDS:
2709 return MEM_VOLATILE_P (x);
2711 /* Memory ref can trap unless it's a static var or a stack slot. */
2712 case MEM:
2713 /* Recognize specific pattern of stack checking probes. */
2714 if (flag_stack_check
2715 && MEM_VOLATILE_P (x)
2716 && XEXP (x, 0) == stack_pointer_rtx)
2717 return 1;
2718 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2719 reference; moving it out of context such as when moving code
2720 when optimizing, might cause its address to become invalid. */
2721 code_changed
2722 || !MEM_NOTRAP_P (x))
2724 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2725 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2726 GET_MODE (x), code_changed);
2729 return 0;
2731 /* Division by a non-constant might trap. */
2732 case DIV:
2733 case MOD:
2734 case UDIV:
2735 case UMOD:
2736 if (HONOR_SNANS (x))
2737 return 1;
2738 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2739 return flag_trapping_math;
2740 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2741 return 1;
2742 break;
2744 case EXPR_LIST:
2745 /* An EXPR_LIST is used to represent a function call. This
2746 certainly may trap. */
2747 return 1;
2749 case GE:
2750 case GT:
2751 case LE:
2752 case LT:
2753 case LTGT:
2754 case COMPARE:
2755 /* Some floating point comparisons may trap. */
2756 if (!flag_trapping_math)
2757 break;
2758 /* ??? There is no machine independent way to check for tests that trap
2759 when COMPARE is used, though many targets do make this distinction.
2760 For instance, sparc uses CCFPE for compares which generate exceptions
2761 and CCFP for compares which do not generate exceptions. */
2762 if (HONOR_NANS (x))
2763 return 1;
2764 /* But often the compare has some CC mode, so check operand
2765 modes as well. */
2766 if (HONOR_NANS (XEXP (x, 0))
2767 || HONOR_NANS (XEXP (x, 1)))
2768 return 1;
2769 break;
2771 case EQ:
2772 case NE:
2773 if (HONOR_SNANS (x))
2774 return 1;
2775 /* Often comparison is CC mode, so check operand modes. */
2776 if (HONOR_SNANS (XEXP (x, 0))
2777 || HONOR_SNANS (XEXP (x, 1)))
2778 return 1;
2779 break;
2781 case FIX:
2782 /* Conversion of floating point might trap. */
2783 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2784 return 1;
2785 break;
2787 case NEG:
2788 case ABS:
2789 case SUBREG:
2790 /* These operations don't trap even with floating point. */
2791 break;
2793 default:
2794 /* Any floating arithmetic may trap. */
2795 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2796 return 1;
2799 fmt = GET_RTX_FORMAT (code);
2800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2802 if (fmt[i] == 'e')
2804 if (may_trap_p_1 (XEXP (x, i), flags))
2805 return 1;
2807 else if (fmt[i] == 'E')
2809 int j;
2810 for (j = 0; j < XVECLEN (x, i); j++)
2811 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2812 return 1;
2815 return 0;
2818 /* Return nonzero if evaluating rtx X might cause a trap. */
2821 may_trap_p (const_rtx x)
2823 return may_trap_p_1 (x, 0);
2826 /* Same as above, but additionally return nonzero if evaluating rtx X might
2827 cause a fault. We define a fault for the purpose of this function as a
2828 erroneous execution condition that cannot be encountered during the normal
2829 execution of a valid program; the typical example is an unaligned memory
2830 access on a strict alignment machine. The compiler guarantees that it
2831 doesn't generate code that will fault from a valid program, but this
2832 guarantee doesn't mean anything for individual instructions. Consider
2833 the following example:
2835 struct S { int d; union { char *cp; int *ip; }; };
2837 int foo(struct S *s)
2839 if (s->d == 1)
2840 return *s->ip;
2841 else
2842 return *s->cp;
2845 on a strict alignment machine. In a valid program, foo will never be
2846 invoked on a structure for which d is equal to 1 and the underlying
2847 unique field of the union not aligned on a 4-byte boundary, but the
2848 expression *s->ip might cause a fault if considered individually.
2850 At the RTL level, potentially problematic expressions will almost always
2851 verify may_trap_p; for example, the above dereference can be emitted as
2852 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2853 However, suppose that foo is inlined in a caller that causes s->cp to
2854 point to a local character variable and guarantees that s->d is not set
2855 to 1; foo may have been effectively translated into pseudo-RTL as:
2857 if ((reg:SI) == 1)
2858 (set (reg:SI) (mem:SI (%fp - 7)))
2859 else
2860 (set (reg:QI) (mem:QI (%fp - 7)))
2862 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2863 memory reference to a stack slot, but it will certainly cause a fault
2864 on a strict alignment machine. */
2867 may_trap_or_fault_p (const_rtx x)
2869 return may_trap_p_1 (x, 1);
2872 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2873 i.e., an inequality. */
2876 inequality_comparisons_p (const_rtx x)
2878 const char *fmt;
2879 int len, i;
2880 const enum rtx_code code = GET_CODE (x);
2882 switch (code)
2884 case REG:
2885 case SCRATCH:
2886 case PC:
2887 case CC0:
2888 CASE_CONST_ANY:
2889 case CONST:
2890 case LABEL_REF:
2891 case SYMBOL_REF:
2892 return 0;
2894 case LT:
2895 case LTU:
2896 case GT:
2897 case GTU:
2898 case LE:
2899 case LEU:
2900 case GE:
2901 case GEU:
2902 return 1;
2904 default:
2905 break;
2908 len = GET_RTX_LENGTH (code);
2909 fmt = GET_RTX_FORMAT (code);
2911 for (i = 0; i < len; i++)
2913 if (fmt[i] == 'e')
2915 if (inequality_comparisons_p (XEXP (x, i)))
2916 return 1;
2918 else if (fmt[i] == 'E')
2920 int j;
2921 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2922 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2923 return 1;
2927 return 0;
2930 /* Replace any occurrence of FROM in X with TO. The function does
2931 not enter into CONST_DOUBLE for the replace.
2933 Note that copying is not done so X must not be shared unless all copies
2934 are to be modified.
2936 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2937 those pointer-equal ones. */
2940 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2942 int i, j;
2943 const char *fmt;
2945 if (x == from)
2946 return to;
2948 /* Allow this function to make replacements in EXPR_LISTs. */
2949 if (x == 0)
2950 return 0;
2952 if (all_regs
2953 && REG_P (x)
2954 && REG_P (from)
2955 && REGNO (x) == REGNO (from))
2957 gcc_assert (GET_MODE (x) == GET_MODE (from));
2958 return to;
2960 else if (GET_CODE (x) == SUBREG)
2962 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2964 if (CONST_INT_P (new_rtx))
2966 x = simplify_subreg (GET_MODE (x), new_rtx,
2967 GET_MODE (SUBREG_REG (x)),
2968 SUBREG_BYTE (x));
2969 gcc_assert (x);
2971 else
2972 SUBREG_REG (x) = new_rtx;
2974 return x;
2976 else if (GET_CODE (x) == ZERO_EXTEND)
2978 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2980 if (CONST_INT_P (new_rtx))
2982 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2983 new_rtx, GET_MODE (XEXP (x, 0)));
2984 gcc_assert (x);
2986 else
2987 XEXP (x, 0) = new_rtx;
2989 return x;
2992 fmt = GET_RTX_FORMAT (GET_CODE (x));
2993 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2995 if (fmt[i] == 'e')
2996 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
2997 else if (fmt[i] == 'E')
2998 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2999 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3000 from, to, all_regs);
3003 return x;
3006 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3007 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3009 void
3010 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3012 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3013 rtx x = *loc;
3014 if (JUMP_TABLE_DATA_P (x))
3016 x = PATTERN (x);
3017 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3018 int len = GET_NUM_ELEM (vec);
3019 for (int i = 0; i < len; ++i)
3021 rtx ref = RTVEC_ELT (vec, i);
3022 if (XEXP (ref, 0) == old_label)
3024 XEXP (ref, 0) = new_label;
3025 if (update_label_nuses)
3027 ++LABEL_NUSES (new_label);
3028 --LABEL_NUSES (old_label);
3032 return;
3035 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3036 field. This is not handled by the iterator because it doesn't
3037 handle unprinted ('0') fields. */
3038 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3039 JUMP_LABEL (x) = new_label;
3041 subrtx_ptr_iterator::array_type array;
3042 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3044 rtx *loc = *iter;
3045 if (rtx x = *loc)
3047 if (GET_CODE (x) == SYMBOL_REF
3048 && CONSTANT_POOL_ADDRESS_P (x))
3050 rtx c = get_pool_constant (x);
3051 if (rtx_referenced_p (old_label, c))
3053 /* Create a copy of constant C; replace the label inside
3054 but do not update LABEL_NUSES because uses in constant pool
3055 are not counted. */
3056 rtx new_c = copy_rtx (c);
3057 replace_label (&new_c, old_label, new_label, false);
3059 /* Add the new constant NEW_C to constant pool and replace
3060 the old reference to constant by new reference. */
3061 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3062 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3066 if ((GET_CODE (x) == LABEL_REF
3067 || GET_CODE (x) == INSN_LIST)
3068 && XEXP (x, 0) == old_label)
3070 XEXP (x, 0) = new_label;
3071 if (update_label_nuses)
3073 ++LABEL_NUSES (new_label);
3074 --LABEL_NUSES (old_label);
3081 void
3082 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3083 bool update_label_nuses)
3085 rtx insn_as_rtx = insn;
3086 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3087 gcc_checking_assert (insn_as_rtx == insn);
3090 /* Return true if X is referenced in BODY. */
3092 bool
3093 rtx_referenced_p (const_rtx x, const_rtx body)
3095 subrtx_iterator::array_type array;
3096 FOR_EACH_SUBRTX (iter, array, body, ALL)
3097 if (const_rtx y = *iter)
3099 /* Check if a label_ref Y refers to label X. */
3100 if (GET_CODE (y) == LABEL_REF
3101 && LABEL_P (x)
3102 && label_ref_label (y) == x)
3103 return true;
3105 if (rtx_equal_p (x, y))
3106 return true;
3108 /* If Y is a reference to pool constant traverse the constant. */
3109 if (GET_CODE (y) == SYMBOL_REF
3110 && CONSTANT_POOL_ADDRESS_P (y))
3111 iter.substitute (get_pool_constant (y));
3113 return false;
3116 /* If INSN is a tablejump return true and store the label (before jump table) to
3117 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3119 bool
3120 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3121 rtx_jump_table_data **tablep)
3123 if (!JUMP_P (insn))
3124 return false;
3126 rtx target = JUMP_LABEL (insn);
3127 if (target == NULL_RTX || ANY_RETURN_P (target))
3128 return false;
3130 rtx_insn *label = as_a<rtx_insn *> (target);
3131 rtx_insn *table = next_insn (label);
3132 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3133 return false;
3135 if (labelp)
3136 *labelp = label;
3137 if (tablep)
3138 *tablep = as_a <rtx_jump_table_data *> (table);
3139 return true;
3142 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3143 constant that is not in the constant pool and not in the condition
3144 of an IF_THEN_ELSE. */
3146 static int
3147 computed_jump_p_1 (const_rtx x)
3149 const enum rtx_code code = GET_CODE (x);
3150 int i, j;
3151 const char *fmt;
3153 switch (code)
3155 case LABEL_REF:
3156 case PC:
3157 return 0;
3159 case CONST:
3160 CASE_CONST_ANY:
3161 case SYMBOL_REF:
3162 case REG:
3163 return 1;
3165 case MEM:
3166 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3167 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3169 case IF_THEN_ELSE:
3170 return (computed_jump_p_1 (XEXP (x, 1))
3171 || computed_jump_p_1 (XEXP (x, 2)));
3173 default:
3174 break;
3177 fmt = GET_RTX_FORMAT (code);
3178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3180 if (fmt[i] == 'e'
3181 && computed_jump_p_1 (XEXP (x, i)))
3182 return 1;
3184 else if (fmt[i] == 'E')
3185 for (j = 0; j < XVECLEN (x, i); j++)
3186 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3187 return 1;
3190 return 0;
3193 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3195 Tablejumps and casesi insns are not considered indirect jumps;
3196 we can recognize them by a (use (label_ref)). */
3199 computed_jump_p (const rtx_insn *insn)
3201 int i;
3202 if (JUMP_P (insn))
3204 rtx pat = PATTERN (insn);
3206 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3207 if (JUMP_LABEL (insn) != NULL)
3208 return 0;
3210 if (GET_CODE (pat) == PARALLEL)
3212 int len = XVECLEN (pat, 0);
3213 int has_use_labelref = 0;
3215 for (i = len - 1; i >= 0; i--)
3216 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3217 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3218 == LABEL_REF))
3220 has_use_labelref = 1;
3221 break;
3224 if (! has_use_labelref)
3225 for (i = len - 1; i >= 0; i--)
3226 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3227 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3228 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3229 return 1;
3231 else if (GET_CODE (pat) == SET
3232 && SET_DEST (pat) == pc_rtx
3233 && computed_jump_p_1 (SET_SRC (pat)))
3234 return 1;
3236 return 0;
3241 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3242 the equivalent add insn and pass the result to FN, using DATA as the
3243 final argument. */
3245 static int
3246 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3248 rtx x = XEXP (mem, 0);
3249 switch (GET_CODE (x))
3251 case PRE_INC:
3252 case POST_INC:
3254 int size = GET_MODE_SIZE (GET_MODE (mem));
3255 rtx r1 = XEXP (x, 0);
3256 rtx c = gen_int_mode (size, GET_MODE (r1));
3257 return fn (mem, x, r1, r1, c, data);
3260 case PRE_DEC:
3261 case POST_DEC:
3263 int size = GET_MODE_SIZE (GET_MODE (mem));
3264 rtx r1 = XEXP (x, 0);
3265 rtx c = gen_int_mode (-size, GET_MODE (r1));
3266 return fn (mem, x, r1, r1, c, data);
3269 case PRE_MODIFY:
3270 case POST_MODIFY:
3272 rtx r1 = XEXP (x, 0);
3273 rtx add = XEXP (x, 1);
3274 return fn (mem, x, r1, add, NULL, data);
3277 default:
3278 gcc_unreachable ();
3282 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3283 For each such autoinc operation found, call FN, passing it
3284 the innermost enclosing MEM, the operation itself, the RTX modified
3285 by the operation, two RTXs (the second may be NULL) that, once
3286 added, represent the value to be held by the modified RTX
3287 afterwards, and DATA. FN is to return 0 to continue the
3288 traversal or any other value to have it returned to the caller of
3289 for_each_inc_dec. */
3292 for_each_inc_dec (rtx x,
3293 for_each_inc_dec_fn fn,
3294 void *data)
3296 subrtx_var_iterator::array_type array;
3297 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3299 rtx mem = *iter;
3300 if (mem
3301 && MEM_P (mem)
3302 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3304 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3305 if (res != 0)
3306 return res;
3307 iter.skip_subrtxes ();
3310 return 0;
3314 /* Searches X for any reference to REGNO, returning the rtx of the
3315 reference found if any. Otherwise, returns NULL_RTX. */
3318 regno_use_in (unsigned int regno, rtx x)
3320 const char *fmt;
3321 int i, j;
3322 rtx tem;
3324 if (REG_P (x) && REGNO (x) == regno)
3325 return x;
3327 fmt = GET_RTX_FORMAT (GET_CODE (x));
3328 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3330 if (fmt[i] == 'e')
3332 if ((tem = regno_use_in (regno, XEXP (x, i))))
3333 return tem;
3335 else if (fmt[i] == 'E')
3336 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3337 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3338 return tem;
3341 return NULL_RTX;
3344 /* Return a value indicating whether OP, an operand of a commutative
3345 operation, is preferred as the first or second operand. The more
3346 positive the value, the stronger the preference for being the first
3347 operand. */
3350 commutative_operand_precedence (rtx op)
3352 enum rtx_code code = GET_CODE (op);
3354 /* Constants always become the second operand. Prefer "nice" constants. */
3355 if (code == CONST_INT)
3356 return -8;
3357 if (code == CONST_WIDE_INT)
3358 return -7;
3359 if (code == CONST_DOUBLE)
3360 return -7;
3361 if (code == CONST_FIXED)
3362 return -7;
3363 op = avoid_constant_pool_reference (op);
3364 code = GET_CODE (op);
3366 switch (GET_RTX_CLASS (code))
3368 case RTX_CONST_OBJ:
3369 if (code == CONST_INT)
3370 return -6;
3371 if (code == CONST_WIDE_INT)
3372 return -6;
3373 if (code == CONST_DOUBLE)
3374 return -5;
3375 if (code == CONST_FIXED)
3376 return -5;
3377 return -4;
3379 case RTX_EXTRA:
3380 /* SUBREGs of objects should come second. */
3381 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3382 return -3;
3383 return 0;
3385 case RTX_OBJ:
3386 /* Complex expressions should be the first, so decrease priority
3387 of objects. Prefer pointer objects over non pointer objects. */
3388 if ((REG_P (op) && REG_POINTER (op))
3389 || (MEM_P (op) && MEM_POINTER (op)))
3390 return -1;
3391 return -2;
3393 case RTX_COMM_ARITH:
3394 /* Prefer operands that are themselves commutative to be first.
3395 This helps to make things linear. In particular,
3396 (and (and (reg) (reg)) (not (reg))) is canonical. */
3397 return 4;
3399 case RTX_BIN_ARITH:
3400 /* If only one operand is a binary expression, it will be the first
3401 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3402 is canonical, although it will usually be further simplified. */
3403 return 2;
3405 case RTX_UNARY:
3406 /* Then prefer NEG and NOT. */
3407 if (code == NEG || code == NOT)
3408 return 1;
3409 /* FALLTHRU */
3411 default:
3412 return 0;
3416 /* Return 1 iff it is necessary to swap operands of commutative operation
3417 in order to canonicalize expression. */
3419 bool
3420 swap_commutative_operands_p (rtx x, rtx y)
3422 return (commutative_operand_precedence (x)
3423 < commutative_operand_precedence (y));
3426 /* Return 1 if X is an autoincrement side effect and the register is
3427 not the stack pointer. */
3429 auto_inc_p (const_rtx x)
3431 switch (GET_CODE (x))
3433 case PRE_INC:
3434 case POST_INC:
3435 case PRE_DEC:
3436 case POST_DEC:
3437 case PRE_MODIFY:
3438 case POST_MODIFY:
3439 /* There are no REG_INC notes for SP. */
3440 if (XEXP (x, 0) != stack_pointer_rtx)
3441 return 1;
3442 default:
3443 break;
3445 return 0;
3448 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3450 loc_mentioned_in_p (rtx *loc, const_rtx in)
3452 enum rtx_code code;
3453 const char *fmt;
3454 int i, j;
3456 if (!in)
3457 return 0;
3459 code = GET_CODE (in);
3460 fmt = GET_RTX_FORMAT (code);
3461 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3463 if (fmt[i] == 'e')
3465 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3466 return 1;
3468 else if (fmt[i] == 'E')
3469 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3470 if (loc == &XVECEXP (in, i, j)
3471 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3472 return 1;
3474 return 0;
3477 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3478 and SUBREG_BYTE, return the bit offset where the subreg begins
3479 (counting from the least significant bit of the operand). */
3481 unsigned int
3482 subreg_lsb_1 (machine_mode outer_mode,
3483 machine_mode inner_mode,
3484 unsigned int subreg_byte)
3486 unsigned int bitpos;
3487 unsigned int byte;
3488 unsigned int word;
3490 /* A paradoxical subreg begins at bit position 0. */
3491 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3492 return 0;
3494 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3495 /* If the subreg crosses a word boundary ensure that
3496 it also begins and ends on a word boundary. */
3497 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3498 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3499 && (subreg_byte % UNITS_PER_WORD
3500 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3502 if (WORDS_BIG_ENDIAN)
3503 word = (GET_MODE_SIZE (inner_mode)
3504 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3505 else
3506 word = subreg_byte / UNITS_PER_WORD;
3507 bitpos = word * BITS_PER_WORD;
3509 if (BYTES_BIG_ENDIAN)
3510 byte = (GET_MODE_SIZE (inner_mode)
3511 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3512 else
3513 byte = subreg_byte % UNITS_PER_WORD;
3514 bitpos += byte * BITS_PER_UNIT;
3516 return bitpos;
3519 /* Given a subreg X, return the bit offset where the subreg begins
3520 (counting from the least significant bit of the reg). */
3522 unsigned int
3523 subreg_lsb (const_rtx x)
3525 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3526 SUBREG_BYTE (x));
3529 /* Fill in information about a subreg of a hard register.
3530 xregno - A regno of an inner hard subreg_reg (or what will become one).
3531 xmode - The mode of xregno.
3532 offset - The byte offset.
3533 ymode - The mode of a top level SUBREG (or what may become one).
3534 info - Pointer to structure to fill in.
3536 Rather than considering one particular inner register (and thus one
3537 particular "outer" register) in isolation, this function really uses
3538 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3539 function does not check whether adding INFO->offset to XREGNO gives
3540 a valid hard register; even if INFO->offset + XREGNO is out of range,
3541 there might be another register of the same type that is in range.
3542 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3543 register, since that can depend on things like whether the final
3544 register number is even or odd. Callers that want to check whether
3545 this particular subreg can be replaced by a simple (reg ...) should
3546 use simplify_subreg_regno. */
3548 void
3549 subreg_get_info (unsigned int xregno, machine_mode xmode,
3550 unsigned int offset, machine_mode ymode,
3551 struct subreg_info *info)
3553 int nregs_xmode, nregs_ymode;
3554 int mode_multiple, nregs_multiple;
3555 int offset_adj, y_offset, y_offset_adj;
3556 int regsize_xmode, regsize_ymode;
3557 bool rknown;
3559 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3561 rknown = false;
3563 /* If there are holes in a non-scalar mode in registers, we expect
3564 that it is made up of its units concatenated together. */
3565 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3567 machine_mode xmode_unit;
3569 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3570 xmode_unit = GET_MODE_INNER (xmode);
3571 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3572 gcc_assert (nregs_xmode
3573 == (GET_MODE_NUNITS (xmode)
3574 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3575 gcc_assert (hard_regno_nregs[xregno][xmode]
3576 == (hard_regno_nregs[xregno][xmode_unit]
3577 * GET_MODE_NUNITS (xmode)));
3579 /* You can only ask for a SUBREG of a value with holes in the middle
3580 if you don't cross the holes. (Such a SUBREG should be done by
3581 picking a different register class, or doing it in memory if
3582 necessary.) An example of a value with holes is XCmode on 32-bit
3583 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3584 3 for each part, but in memory it's two 128-bit parts.
3585 Padding is assumed to be at the end (not necessarily the 'high part')
3586 of each unit. */
3587 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3588 < GET_MODE_NUNITS (xmode))
3589 && (offset / GET_MODE_SIZE (xmode_unit)
3590 != ((offset + GET_MODE_SIZE (ymode) - 1)
3591 / GET_MODE_SIZE (xmode_unit))))
3593 info->representable_p = false;
3594 rknown = true;
3597 else
3598 nregs_xmode = hard_regno_nregs[xregno][xmode];
3600 nregs_ymode = hard_regno_nregs[xregno][ymode];
3602 /* Paradoxical subregs are otherwise valid. */
3603 if (!rknown
3604 && offset == 0
3605 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3607 info->representable_p = true;
3608 /* If this is a big endian paradoxical subreg, which uses more
3609 actual hard registers than the original register, we must
3610 return a negative offset so that we find the proper highpart
3611 of the register. */
3612 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3613 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3614 info->offset = nregs_xmode - nregs_ymode;
3615 else
3616 info->offset = 0;
3617 info->nregs = nregs_ymode;
3618 return;
3621 /* If registers store different numbers of bits in the different
3622 modes, we cannot generally form this subreg. */
3623 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3624 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3625 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3626 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3628 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3629 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3630 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3632 info->representable_p = false;
3633 info->nregs
3634 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3635 info->offset = offset / regsize_xmode;
3636 return;
3638 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3640 info->representable_p = false;
3641 info->nregs
3642 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3643 info->offset = offset / regsize_xmode;
3644 return;
3646 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3647 would go outside of XMODE. */
3648 if (!rknown
3649 && GET_MODE_SIZE (ymode) + offset > GET_MODE_SIZE (xmode))
3651 info->representable_p = false;
3652 info->nregs = nregs_ymode;
3653 info->offset = offset / regsize_xmode;
3654 return;
3656 /* Quick exit for the simple and common case of extracting whole
3657 subregisters from a multiregister value. */
3658 /* ??? It would be better to integrate this into the code below,
3659 if we can generalize the concept enough and figure out how
3660 odd-sized modes can coexist with the other weird cases we support. */
3661 if (!rknown
3662 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3663 && regsize_xmode == regsize_ymode
3664 && (offset % regsize_ymode) == 0)
3666 info->representable_p = true;
3667 info->nregs = nregs_ymode;
3668 info->offset = offset / regsize_ymode;
3669 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3670 return;
3674 /* Lowpart subregs are otherwise valid. */
3675 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3677 info->representable_p = true;
3678 rknown = true;
3680 if (offset == 0 || nregs_xmode == nregs_ymode)
3682 info->offset = 0;
3683 info->nregs = nregs_ymode;
3684 return;
3688 /* This should always pass, otherwise we don't know how to verify
3689 the constraint. These conditions may be relaxed but
3690 subreg_regno_offset would need to be redesigned. */
3691 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3692 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3694 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3695 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3697 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3698 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3699 HOST_WIDE_INT off_low = offset & (ysize - 1);
3700 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3701 offset = (xsize - ysize - off_high) | off_low;
3703 /* The XMODE value can be seen as a vector of NREGS_XMODE
3704 values. The subreg must represent a lowpart of given field.
3705 Compute what field it is. */
3706 offset_adj = offset;
3707 offset_adj -= subreg_lowpart_offset (ymode,
3708 mode_for_size (GET_MODE_BITSIZE (xmode)
3709 / nregs_xmode,
3710 MODE_INT, 0));
3712 /* Size of ymode must not be greater than the size of xmode. */
3713 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3714 gcc_assert (mode_multiple != 0);
3716 y_offset = offset / GET_MODE_SIZE (ymode);
3717 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3718 nregs_multiple = nregs_xmode / nregs_ymode;
3720 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3721 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3723 if (!rknown)
3725 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3726 rknown = true;
3728 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3729 info->nregs = nregs_ymode;
3732 /* This function returns the regno offset of a subreg expression.
3733 xregno - A regno of an inner hard subreg_reg (or what will become one).
3734 xmode - The mode of xregno.
3735 offset - The byte offset.
3736 ymode - The mode of a top level SUBREG (or what may become one).
3737 RETURN - The regno offset which would be used. */
3738 unsigned int
3739 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3740 unsigned int offset, machine_mode ymode)
3742 struct subreg_info info;
3743 subreg_get_info (xregno, xmode, offset, ymode, &info);
3744 return info.offset;
3747 /* This function returns true when the offset is representable via
3748 subreg_offset in the given regno.
3749 xregno - A regno of an inner hard subreg_reg (or what will become one).
3750 xmode - The mode of xregno.
3751 offset - The byte offset.
3752 ymode - The mode of a top level SUBREG (or what may become one).
3753 RETURN - Whether the offset is representable. */
3754 bool
3755 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3756 unsigned int offset, machine_mode ymode)
3758 struct subreg_info info;
3759 subreg_get_info (xregno, xmode, offset, ymode, &info);
3760 return info.representable_p;
3763 /* Return the number of a YMODE register to which
3765 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3767 can be simplified. Return -1 if the subreg can't be simplified.
3769 XREGNO is a hard register number. */
3772 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3773 unsigned int offset, machine_mode ymode)
3775 struct subreg_info info;
3776 unsigned int yregno;
3778 #ifdef CANNOT_CHANGE_MODE_CLASS
3779 /* Give the backend a chance to disallow the mode change. */
3780 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3781 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3782 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3783 /* We can use mode change in LRA for some transformations. */
3784 && ! lra_in_progress)
3785 return -1;
3786 #endif
3788 /* We shouldn't simplify stack-related registers. */
3789 if ((!reload_completed || frame_pointer_needed)
3790 && xregno == FRAME_POINTER_REGNUM)
3791 return -1;
3793 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3794 && xregno == ARG_POINTER_REGNUM)
3795 return -1;
3797 if (xregno == STACK_POINTER_REGNUM
3798 /* We should convert hard stack register in LRA if it is
3799 possible. */
3800 && ! lra_in_progress)
3801 return -1;
3803 /* Try to get the register offset. */
3804 subreg_get_info (xregno, xmode, offset, ymode, &info);
3805 if (!info.representable_p)
3806 return -1;
3808 /* Make sure that the offsetted register value is in range. */
3809 yregno = xregno + info.offset;
3810 if (!HARD_REGISTER_NUM_P (yregno))
3811 return -1;
3813 /* See whether (reg:YMODE YREGNO) is valid.
3815 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3816 This is a kludge to work around how complex FP arguments are passed
3817 on IA-64 and should be fixed. See PR target/49226. */
3818 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3819 && HARD_REGNO_MODE_OK (xregno, xmode))
3820 return -1;
3822 return (int) yregno;
3825 /* Return the final regno that a subreg expression refers to. */
3826 unsigned int
3827 subreg_regno (const_rtx x)
3829 unsigned int ret;
3830 rtx subreg = SUBREG_REG (x);
3831 int regno = REGNO (subreg);
3833 ret = regno + subreg_regno_offset (regno,
3834 GET_MODE (subreg),
3835 SUBREG_BYTE (x),
3836 GET_MODE (x));
3837 return ret;
3841 /* Return the number of registers that a subreg expression refers
3842 to. */
3843 unsigned int
3844 subreg_nregs (const_rtx x)
3846 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3849 /* Return the number of registers that a subreg REG with REGNO
3850 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3851 changed so that the regno can be passed in. */
3853 unsigned int
3854 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3856 struct subreg_info info;
3857 rtx subreg = SUBREG_REG (x);
3859 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3860 &info);
3861 return info.nregs;
3865 struct parms_set_data
3867 int nregs;
3868 HARD_REG_SET regs;
3871 /* Helper function for noticing stores to parameter registers. */
3872 static void
3873 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3875 struct parms_set_data *const d = (struct parms_set_data *) data;
3876 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3877 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3879 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3880 d->nregs--;
3884 /* Look backward for first parameter to be loaded.
3885 Note that loads of all parameters will not necessarily be
3886 found if CSE has eliminated some of them (e.g., an argument
3887 to the outer function is passed down as a parameter).
3888 Do not skip BOUNDARY. */
3889 rtx_insn *
3890 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3892 struct parms_set_data parm;
3893 rtx p;
3894 rtx_insn *before, *first_set;
3896 /* Since different machines initialize their parameter registers
3897 in different orders, assume nothing. Collect the set of all
3898 parameter registers. */
3899 CLEAR_HARD_REG_SET (parm.regs);
3900 parm.nregs = 0;
3901 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3902 if (GET_CODE (XEXP (p, 0)) == USE
3903 && REG_P (XEXP (XEXP (p, 0), 0))
3904 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3906 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3908 /* We only care about registers which can hold function
3909 arguments. */
3910 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3911 continue;
3913 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3914 parm.nregs++;
3916 before = call_insn;
3917 first_set = call_insn;
3919 /* Search backward for the first set of a register in this set. */
3920 while (parm.nregs && before != boundary)
3922 before = PREV_INSN (before);
3924 /* It is possible that some loads got CSEed from one call to
3925 another. Stop in that case. */
3926 if (CALL_P (before))
3927 break;
3929 /* Our caller needs either ensure that we will find all sets
3930 (in case code has not been optimized yet), or take care
3931 for possible labels in a way by setting boundary to preceding
3932 CODE_LABEL. */
3933 if (LABEL_P (before))
3935 gcc_assert (before == boundary);
3936 break;
3939 if (INSN_P (before))
3941 int nregs_old = parm.nregs;
3942 note_stores (PATTERN (before), parms_set, &parm);
3943 /* If we found something that did not set a parameter reg,
3944 we're done. Do not keep going, as that might result
3945 in hoisting an insn before the setting of a pseudo
3946 that is used by the hoisted insn. */
3947 if (nregs_old != parm.nregs)
3948 first_set = before;
3949 else
3950 break;
3953 return first_set;
3956 /* Return true if we should avoid inserting code between INSN and preceding
3957 call instruction. */
3959 bool
3960 keep_with_call_p (const rtx_insn *insn)
3962 rtx set;
3964 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3966 if (REG_P (SET_DEST (set))
3967 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3968 && fixed_regs[REGNO (SET_DEST (set))]
3969 && general_operand (SET_SRC (set), VOIDmode))
3970 return true;
3971 if (REG_P (SET_SRC (set))
3972 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3973 && REG_P (SET_DEST (set))
3974 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3975 return true;
3976 /* There may be a stack pop just after the call and before the store
3977 of the return register. Search for the actual store when deciding
3978 if we can break or not. */
3979 if (SET_DEST (set) == stack_pointer_rtx)
3981 /* This CONST_CAST is okay because next_nonnote_insn just
3982 returns its argument and we assign it to a const_rtx
3983 variable. */
3984 const rtx_insn *i2
3985 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3986 if (i2 && keep_with_call_p (i2))
3987 return true;
3990 return false;
3993 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3994 to non-complex jumps. That is, direct unconditional, conditional,
3995 and tablejumps, but not computed jumps or returns. It also does
3996 not apply to the fallthru case of a conditional jump. */
3998 bool
3999 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4001 rtx tmp = JUMP_LABEL (jump_insn);
4002 rtx_jump_table_data *table;
4004 if (label == tmp)
4005 return true;
4007 if (tablejump_p (jump_insn, NULL, &table))
4009 rtvec vec = table->get_labels ();
4010 int i, veclen = GET_NUM_ELEM (vec);
4012 for (i = 0; i < veclen; ++i)
4013 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4014 return true;
4017 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4018 return true;
4020 return false;
4024 /* Return an estimate of the cost of computing rtx X.
4025 One use is in cse, to decide which expression to keep in the hash table.
4026 Another is in rtl generation, to pick the cheapest way to multiply.
4027 Other uses like the latter are expected in the future.
4029 X appears as operand OPNO in an expression with code OUTER_CODE.
4030 SPEED specifies whether costs optimized for speed or size should
4031 be returned. */
4034 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4035 int opno, bool speed)
4037 int i, j;
4038 enum rtx_code code;
4039 const char *fmt;
4040 int total;
4041 int factor;
4043 if (x == 0)
4044 return 0;
4046 if (GET_MODE (x) != VOIDmode)
4047 mode = GET_MODE (x);
4049 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4050 many insns, taking N times as long. */
4051 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4052 if (factor == 0)
4053 factor = 1;
4055 /* Compute the default costs of certain things.
4056 Note that targetm.rtx_costs can override the defaults. */
4058 code = GET_CODE (x);
4059 switch (code)
4061 case MULT:
4062 /* Multiplication has time-complexity O(N*N), where N is the
4063 number of units (translated from digits) when using
4064 schoolbook long multiplication. */
4065 total = factor * factor * COSTS_N_INSNS (5);
4066 break;
4067 case DIV:
4068 case UDIV:
4069 case MOD:
4070 case UMOD:
4071 /* Similarly, complexity for schoolbook long division. */
4072 total = factor * factor * COSTS_N_INSNS (7);
4073 break;
4074 case USE:
4075 /* Used in combine.c as a marker. */
4076 total = 0;
4077 break;
4078 case SET:
4079 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4080 the mode for the factor. */
4081 mode = GET_MODE (SET_DEST (x));
4082 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4083 if (factor == 0)
4084 factor = 1;
4085 /* FALLTHRU */
4086 default:
4087 total = factor * COSTS_N_INSNS (1);
4090 switch (code)
4092 case REG:
4093 return 0;
4095 case SUBREG:
4096 total = 0;
4097 /* If we can't tie these modes, make this expensive. The larger
4098 the mode, the more expensive it is. */
4099 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4100 return COSTS_N_INSNS (2 + factor);
4101 break;
4103 default:
4104 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4105 return total;
4106 break;
4109 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4110 which is already in total. */
4112 fmt = GET_RTX_FORMAT (code);
4113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4114 if (fmt[i] == 'e')
4115 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4116 else if (fmt[i] == 'E')
4117 for (j = 0; j < XVECLEN (x, i); j++)
4118 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4120 return total;
4123 /* Fill in the structure C with information about both speed and size rtx
4124 costs for X, which is operand OPNO in an expression with code OUTER. */
4126 void
4127 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4128 struct full_rtx_costs *c)
4130 c->speed = rtx_cost (x, mode, outer, opno, true);
4131 c->size = rtx_cost (x, mode, outer, opno, false);
4135 /* Return cost of address expression X.
4136 Expect that X is properly formed address reference.
4138 SPEED parameter specify whether costs optimized for speed or size should
4139 be returned. */
4142 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4144 /* We may be asked for cost of various unusual addresses, such as operands
4145 of push instruction. It is not worthwhile to complicate writing
4146 of the target hook by such cases. */
4148 if (!memory_address_addr_space_p (mode, x, as))
4149 return 1000;
4151 return targetm.address_cost (x, mode, as, speed);
4154 /* If the target doesn't override, compute the cost as with arithmetic. */
4157 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4159 return rtx_cost (x, Pmode, MEM, 0, speed);
4163 unsigned HOST_WIDE_INT
4164 nonzero_bits (const_rtx x, machine_mode mode)
4166 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4169 unsigned int
4170 num_sign_bit_copies (const_rtx x, machine_mode mode)
4172 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4175 /* Return true if nonzero_bits1 might recurse into both operands
4176 of X. */
4178 static inline bool
4179 nonzero_bits_binary_arith_p (const_rtx x)
4181 if (!ARITHMETIC_P (x))
4182 return false;
4183 switch (GET_CODE (x))
4185 case AND:
4186 case XOR:
4187 case IOR:
4188 case UMIN:
4189 case UMAX:
4190 case SMIN:
4191 case SMAX:
4192 case PLUS:
4193 case MINUS:
4194 case MULT:
4195 case DIV:
4196 case UDIV:
4197 case MOD:
4198 case UMOD:
4199 return true;
4200 default:
4201 return false;
4205 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4206 It avoids exponential behavior in nonzero_bits1 when X has
4207 identical subexpressions on the first or the second level. */
4209 static unsigned HOST_WIDE_INT
4210 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4211 machine_mode known_mode,
4212 unsigned HOST_WIDE_INT known_ret)
4214 if (x == known_x && mode == known_mode)
4215 return known_ret;
4217 /* Try to find identical subexpressions. If found call
4218 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4219 precomputed value for the subexpression as KNOWN_RET. */
4221 if (nonzero_bits_binary_arith_p (x))
4223 rtx x0 = XEXP (x, 0);
4224 rtx x1 = XEXP (x, 1);
4226 /* Check the first level. */
4227 if (x0 == x1)
4228 return nonzero_bits1 (x, mode, x0, mode,
4229 cached_nonzero_bits (x0, mode, known_x,
4230 known_mode, known_ret));
4232 /* Check the second level. */
4233 if (nonzero_bits_binary_arith_p (x0)
4234 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4235 return nonzero_bits1 (x, mode, x1, mode,
4236 cached_nonzero_bits (x1, mode, known_x,
4237 known_mode, known_ret));
4239 if (nonzero_bits_binary_arith_p (x1)
4240 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4241 return nonzero_bits1 (x, mode, x0, mode,
4242 cached_nonzero_bits (x0, mode, known_x,
4243 known_mode, known_ret));
4246 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4249 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4250 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4251 is less useful. We can't allow both, because that results in exponential
4252 run time recursion. There is a nullstone testcase that triggered
4253 this. This macro avoids accidental uses of num_sign_bit_copies. */
4254 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4256 /* Given an expression, X, compute which bits in X can be nonzero.
4257 We don't care about bits outside of those defined in MODE.
4259 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4260 an arithmetic operation, we can do better. */
4262 static unsigned HOST_WIDE_INT
4263 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4264 machine_mode known_mode,
4265 unsigned HOST_WIDE_INT known_ret)
4267 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4268 unsigned HOST_WIDE_INT inner_nz;
4269 enum rtx_code code;
4270 machine_mode inner_mode;
4271 unsigned int mode_width = GET_MODE_PRECISION (mode);
4273 /* For floating-point and vector values, assume all bits are needed. */
4274 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4275 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4276 return nonzero;
4278 /* If X is wider than MODE, use its mode instead. */
4279 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4281 mode = GET_MODE (x);
4282 nonzero = GET_MODE_MASK (mode);
4283 mode_width = GET_MODE_PRECISION (mode);
4286 if (mode_width > HOST_BITS_PER_WIDE_INT)
4287 /* Our only callers in this case look for single bit values. So
4288 just return the mode mask. Those tests will then be false. */
4289 return nonzero;
4291 /* If MODE is wider than X, but both are a single word for both the host
4292 and target machines, we can compute this from which bits of the
4293 object might be nonzero in its own mode, taking into account the fact
4294 that on many CISC machines, accessing an object in a wider mode
4295 causes the high-order bits to become undefined. So they are
4296 not known to be zero. */
4298 if (!WORD_REGISTER_OPERATIONS
4299 && GET_MODE (x) != VOIDmode
4300 && GET_MODE (x) != mode
4301 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4302 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4303 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4305 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4306 known_x, known_mode, known_ret);
4307 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4308 return nonzero;
4311 /* Please keep nonzero_bits_binary_arith_p above in sync with
4312 the code in the switch below. */
4313 code = GET_CODE (x);
4314 switch (code)
4316 case REG:
4317 #if defined(POINTERS_EXTEND_UNSIGNED)
4318 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4319 all the bits above ptr_mode are known to be zero. */
4320 /* As we do not know which address space the pointer is referring to,
4321 we can do this only if the target does not support different pointer
4322 or address modes depending on the address space. */
4323 if (target_default_pointer_address_modes_p ()
4324 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4325 && REG_POINTER (x)
4326 && !targetm.have_ptr_extend ())
4327 nonzero &= GET_MODE_MASK (ptr_mode);
4328 #endif
4330 /* Include declared information about alignment of pointers. */
4331 /* ??? We don't properly preserve REG_POINTER changes across
4332 pointer-to-integer casts, so we can't trust it except for
4333 things that we know must be pointers. See execute/960116-1.c. */
4334 if ((x == stack_pointer_rtx
4335 || x == frame_pointer_rtx
4336 || x == arg_pointer_rtx)
4337 && REGNO_POINTER_ALIGN (REGNO (x)))
4339 unsigned HOST_WIDE_INT alignment
4340 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4342 #ifdef PUSH_ROUNDING
4343 /* If PUSH_ROUNDING is defined, it is possible for the
4344 stack to be momentarily aligned only to that amount,
4345 so we pick the least alignment. */
4346 if (x == stack_pointer_rtx && PUSH_ARGS)
4347 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4348 alignment);
4349 #endif
4351 nonzero &= ~(alignment - 1);
4355 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4356 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4357 known_mode, known_ret,
4358 &nonzero_for_hook);
4360 if (new_rtx)
4361 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4362 known_mode, known_ret);
4364 return nonzero_for_hook;
4367 case CONST_INT:
4368 /* If X is negative in MODE, sign-extend the value. */
4369 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4370 && mode_width < BITS_PER_WORD
4371 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4372 != 0)
4373 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4375 return UINTVAL (x);
4377 case MEM:
4378 /* In many, if not most, RISC machines, reading a byte from memory
4379 zeros the rest of the register. Noticing that fact saves a lot
4380 of extra zero-extends. */
4381 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4382 nonzero &= GET_MODE_MASK (GET_MODE (x));
4383 break;
4385 case EQ: case NE:
4386 case UNEQ: case LTGT:
4387 case GT: case GTU: case UNGT:
4388 case LT: case LTU: case UNLT:
4389 case GE: case GEU: case UNGE:
4390 case LE: case LEU: case UNLE:
4391 case UNORDERED: case ORDERED:
4392 /* If this produces an integer result, we know which bits are set.
4393 Code here used to clear bits outside the mode of X, but that is
4394 now done above. */
4395 /* Mind that MODE is the mode the caller wants to look at this
4396 operation in, and not the actual operation mode. We can wind
4397 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4398 that describes the results of a vector compare. */
4399 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4400 && mode_width <= HOST_BITS_PER_WIDE_INT)
4401 nonzero = STORE_FLAG_VALUE;
4402 break;
4404 case NEG:
4405 #if 0
4406 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4407 and num_sign_bit_copies. */
4408 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4409 == GET_MODE_PRECISION (GET_MODE (x)))
4410 nonzero = 1;
4411 #endif
4413 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4414 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4415 break;
4417 case ABS:
4418 #if 0
4419 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4420 and num_sign_bit_copies. */
4421 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4422 == GET_MODE_PRECISION (GET_MODE (x)))
4423 nonzero = 1;
4424 #endif
4425 break;
4427 case TRUNCATE:
4428 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4429 known_x, known_mode, known_ret)
4430 & GET_MODE_MASK (mode));
4431 break;
4433 case ZERO_EXTEND:
4434 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4435 known_x, known_mode, known_ret);
4436 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4437 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4438 break;
4440 case SIGN_EXTEND:
4441 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4442 Otherwise, show all the bits in the outer mode but not the inner
4443 may be nonzero. */
4444 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4445 known_x, known_mode, known_ret);
4446 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4448 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4449 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4450 inner_nz |= (GET_MODE_MASK (mode)
4451 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4454 nonzero &= inner_nz;
4455 break;
4457 case AND:
4458 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4459 known_x, known_mode, known_ret)
4460 & cached_nonzero_bits (XEXP (x, 1), mode,
4461 known_x, known_mode, known_ret);
4462 break;
4464 case XOR: case IOR:
4465 case UMIN: case UMAX: case SMIN: case SMAX:
4467 unsigned HOST_WIDE_INT nonzero0
4468 = cached_nonzero_bits (XEXP (x, 0), mode,
4469 known_x, known_mode, known_ret);
4471 /* Don't call nonzero_bits for the second time if it cannot change
4472 anything. */
4473 if ((nonzero & nonzero0) != nonzero)
4474 nonzero &= nonzero0
4475 | cached_nonzero_bits (XEXP (x, 1), mode,
4476 known_x, known_mode, known_ret);
4478 break;
4480 case PLUS: case MINUS:
4481 case MULT:
4482 case DIV: case UDIV:
4483 case MOD: case UMOD:
4484 /* We can apply the rules of arithmetic to compute the number of
4485 high- and low-order zero bits of these operations. We start by
4486 computing the width (position of the highest-order nonzero bit)
4487 and the number of low-order zero bits for each value. */
4489 unsigned HOST_WIDE_INT nz0
4490 = cached_nonzero_bits (XEXP (x, 0), mode,
4491 known_x, known_mode, known_ret);
4492 unsigned HOST_WIDE_INT nz1
4493 = cached_nonzero_bits (XEXP (x, 1), mode,
4494 known_x, known_mode, known_ret);
4495 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4496 int width0 = floor_log2 (nz0) + 1;
4497 int width1 = floor_log2 (nz1) + 1;
4498 int low0 = ctz_or_zero (nz0);
4499 int low1 = ctz_or_zero (nz1);
4500 unsigned HOST_WIDE_INT op0_maybe_minusp
4501 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4502 unsigned HOST_WIDE_INT op1_maybe_minusp
4503 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4504 unsigned int result_width = mode_width;
4505 int result_low = 0;
4507 switch (code)
4509 case PLUS:
4510 result_width = MAX (width0, width1) + 1;
4511 result_low = MIN (low0, low1);
4512 break;
4513 case MINUS:
4514 result_low = MIN (low0, low1);
4515 break;
4516 case MULT:
4517 result_width = width0 + width1;
4518 result_low = low0 + low1;
4519 break;
4520 case DIV:
4521 if (width1 == 0)
4522 break;
4523 if (!op0_maybe_minusp && !op1_maybe_minusp)
4524 result_width = width0;
4525 break;
4526 case UDIV:
4527 if (width1 == 0)
4528 break;
4529 result_width = width0;
4530 break;
4531 case MOD:
4532 if (width1 == 0)
4533 break;
4534 if (!op0_maybe_minusp && !op1_maybe_minusp)
4535 result_width = MIN (width0, width1);
4536 result_low = MIN (low0, low1);
4537 break;
4538 case UMOD:
4539 if (width1 == 0)
4540 break;
4541 result_width = MIN (width0, width1);
4542 result_low = MIN (low0, low1);
4543 break;
4544 default:
4545 gcc_unreachable ();
4548 if (result_width < mode_width)
4549 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4551 if (result_low > 0)
4552 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4554 break;
4556 case ZERO_EXTRACT:
4557 if (CONST_INT_P (XEXP (x, 1))
4558 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4559 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4560 break;
4562 case SUBREG:
4563 /* If this is a SUBREG formed for a promoted variable that has
4564 been zero-extended, we know that at least the high-order bits
4565 are zero, though others might be too. */
4567 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4568 nonzero = GET_MODE_MASK (GET_MODE (x))
4569 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4570 known_x, known_mode, known_ret);
4572 inner_mode = GET_MODE (SUBREG_REG (x));
4573 /* If the inner mode is a single word for both the host and target
4574 machines, we can compute this from which bits of the inner
4575 object might be nonzero. */
4576 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4577 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4579 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4580 known_x, known_mode, known_ret);
4582 /* On many CISC machines, accessing an object in a wider mode
4583 causes the high-order bits to become undefined. So they are
4584 not known to be zero. */
4585 if (!WORD_REGISTER_OPERATIONS
4586 /* If this is a typical RISC machine, we only have to worry
4587 about the way loads are extended. */
4588 || ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4589 ? val_signbit_known_set_p (inner_mode, nonzero)
4590 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4591 || !MEM_P (SUBREG_REG (x))))
4593 if (GET_MODE_PRECISION (GET_MODE (x))
4594 > GET_MODE_PRECISION (inner_mode))
4595 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4596 & ~GET_MODE_MASK (inner_mode));
4599 break;
4601 case ASHIFTRT:
4602 case LSHIFTRT:
4603 case ASHIFT:
4604 case ROTATE:
4605 /* The nonzero bits are in two classes: any bits within MODE
4606 that aren't in GET_MODE (x) are always significant. The rest of the
4607 nonzero bits are those that are significant in the operand of
4608 the shift when shifted the appropriate number of bits. This
4609 shows that high-order bits are cleared by the right shift and
4610 low-order bits by left shifts. */
4611 if (CONST_INT_P (XEXP (x, 1))
4612 && INTVAL (XEXP (x, 1)) >= 0
4613 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4614 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4616 machine_mode inner_mode = GET_MODE (x);
4617 unsigned int width = GET_MODE_PRECISION (inner_mode);
4618 int count = INTVAL (XEXP (x, 1));
4619 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4620 unsigned HOST_WIDE_INT op_nonzero
4621 = cached_nonzero_bits (XEXP (x, 0), mode,
4622 known_x, known_mode, known_ret);
4623 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4624 unsigned HOST_WIDE_INT outer = 0;
4626 if (mode_width > width)
4627 outer = (op_nonzero & nonzero & ~mode_mask);
4629 if (code == LSHIFTRT)
4630 inner >>= count;
4631 else if (code == ASHIFTRT)
4633 inner >>= count;
4635 /* If the sign bit may have been nonzero before the shift, we
4636 need to mark all the places it could have been copied to
4637 by the shift as possibly nonzero. */
4638 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4639 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4640 << (width - count);
4642 else if (code == ASHIFT)
4643 inner <<= count;
4644 else
4645 inner = ((inner << (count % width)
4646 | (inner >> (width - (count % width)))) & mode_mask);
4648 nonzero &= (outer | inner);
4650 break;
4652 case FFS:
4653 case POPCOUNT:
4654 /* This is at most the number of bits in the mode. */
4655 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4656 break;
4658 case CLZ:
4659 /* If CLZ has a known value at zero, then the nonzero bits are
4660 that value, plus the number of bits in the mode minus one. */
4661 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4662 nonzero
4663 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4664 else
4665 nonzero = -1;
4666 break;
4668 case CTZ:
4669 /* If CTZ has a known value at zero, then the nonzero bits are
4670 that value, plus the number of bits in the mode minus one. */
4671 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4672 nonzero
4673 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4674 else
4675 nonzero = -1;
4676 break;
4678 case CLRSB:
4679 /* This is at most the number of bits in the mode minus 1. */
4680 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4681 break;
4683 case PARITY:
4684 nonzero = 1;
4685 break;
4687 case IF_THEN_ELSE:
4689 unsigned HOST_WIDE_INT nonzero_true
4690 = cached_nonzero_bits (XEXP (x, 1), mode,
4691 known_x, known_mode, known_ret);
4693 /* Don't call nonzero_bits for the second time if it cannot change
4694 anything. */
4695 if ((nonzero & nonzero_true) != nonzero)
4696 nonzero &= nonzero_true
4697 | cached_nonzero_bits (XEXP (x, 2), mode,
4698 known_x, known_mode, known_ret);
4700 break;
4702 default:
4703 break;
4706 return nonzero;
4709 /* See the macro definition above. */
4710 #undef cached_num_sign_bit_copies
4713 /* Return true if num_sign_bit_copies1 might recurse into both operands
4714 of X. */
4716 static inline bool
4717 num_sign_bit_copies_binary_arith_p (const_rtx x)
4719 if (!ARITHMETIC_P (x))
4720 return false;
4721 switch (GET_CODE (x))
4723 case IOR:
4724 case AND:
4725 case XOR:
4726 case SMIN:
4727 case SMAX:
4728 case UMIN:
4729 case UMAX:
4730 case PLUS:
4731 case MINUS:
4732 case MULT:
4733 return true;
4734 default:
4735 return false;
4739 /* The function cached_num_sign_bit_copies is a wrapper around
4740 num_sign_bit_copies1. It avoids exponential behavior in
4741 num_sign_bit_copies1 when X has identical subexpressions on the
4742 first or the second level. */
4744 static unsigned int
4745 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4746 machine_mode known_mode,
4747 unsigned int known_ret)
4749 if (x == known_x && mode == known_mode)
4750 return known_ret;
4752 /* Try to find identical subexpressions. If found call
4753 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4754 the precomputed value for the subexpression as KNOWN_RET. */
4756 if (num_sign_bit_copies_binary_arith_p (x))
4758 rtx x0 = XEXP (x, 0);
4759 rtx x1 = XEXP (x, 1);
4761 /* Check the first level. */
4762 if (x0 == x1)
4763 return
4764 num_sign_bit_copies1 (x, mode, x0, mode,
4765 cached_num_sign_bit_copies (x0, mode, known_x,
4766 known_mode,
4767 known_ret));
4769 /* Check the second level. */
4770 if (num_sign_bit_copies_binary_arith_p (x0)
4771 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4772 return
4773 num_sign_bit_copies1 (x, mode, x1, mode,
4774 cached_num_sign_bit_copies (x1, mode, known_x,
4775 known_mode,
4776 known_ret));
4778 if (num_sign_bit_copies_binary_arith_p (x1)
4779 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4780 return
4781 num_sign_bit_copies1 (x, mode, x0, mode,
4782 cached_num_sign_bit_copies (x0, mode, known_x,
4783 known_mode,
4784 known_ret));
4787 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4790 /* Return the number of bits at the high-order end of X that are known to
4791 be equal to the sign bit. X will be used in mode MODE; if MODE is
4792 VOIDmode, X will be used in its own mode. The returned value will always
4793 be between 1 and the number of bits in MODE. */
4795 static unsigned int
4796 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4797 machine_mode known_mode,
4798 unsigned int known_ret)
4800 enum rtx_code code = GET_CODE (x);
4801 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4802 int num0, num1, result;
4803 unsigned HOST_WIDE_INT nonzero;
4805 /* If we weren't given a mode, use the mode of X. If the mode is still
4806 VOIDmode, we don't know anything. Likewise if one of the modes is
4807 floating-point. */
4809 if (mode == VOIDmode)
4810 mode = GET_MODE (x);
4812 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4813 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4814 return 1;
4816 /* For a smaller object, just ignore the high bits. */
4817 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4819 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4820 known_x, known_mode, known_ret);
4821 return MAX (1,
4822 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4825 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4827 /* If this machine does not do all register operations on the entire
4828 register and MODE is wider than the mode of X, we can say nothing
4829 at all about the high-order bits. */
4830 if (!WORD_REGISTER_OPERATIONS)
4831 return 1;
4833 /* Likewise on machines that do, if the mode of the object is smaller
4834 than a word and loads of that size don't sign extend, we can say
4835 nothing about the high order bits. */
4836 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4837 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND)
4838 return 1;
4841 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4842 the code in the switch below. */
4843 switch (code)
4845 case REG:
4847 #if defined(POINTERS_EXTEND_UNSIGNED)
4848 /* If pointers extend signed and this is a pointer in Pmode, say that
4849 all the bits above ptr_mode are known to be sign bit copies. */
4850 /* As we do not know which address space the pointer is referring to,
4851 we can do this only if the target does not support different pointer
4852 or address modes depending on the address space. */
4853 if (target_default_pointer_address_modes_p ()
4854 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4855 && mode == Pmode && REG_POINTER (x)
4856 && !targetm.have_ptr_extend ())
4857 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4858 #endif
4861 unsigned int copies_for_hook = 1, copies = 1;
4862 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4863 known_mode, known_ret,
4864 &copies_for_hook);
4866 if (new_rtx)
4867 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4868 known_mode, known_ret);
4870 if (copies > 1 || copies_for_hook > 1)
4871 return MAX (copies, copies_for_hook);
4873 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4875 break;
4877 case MEM:
4878 /* Some RISC machines sign-extend all loads of smaller than a word. */
4879 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4880 return MAX (1, ((int) bitwidth
4881 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4882 break;
4884 case CONST_INT:
4885 /* If the constant is negative, take its 1's complement and remask.
4886 Then see how many zero bits we have. */
4887 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4888 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4889 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4890 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4892 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4894 case SUBREG:
4895 /* If this is a SUBREG for a promoted object that is sign-extended
4896 and we are looking at it in a wider mode, we know that at least the
4897 high-order bits are known to be sign bit copies. */
4899 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4901 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4902 known_x, known_mode, known_ret);
4903 return MAX ((int) bitwidth
4904 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4905 num0);
4908 /* For a smaller object, just ignore the high bits. */
4909 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4911 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4912 known_x, known_mode, known_ret);
4913 return MAX (1, (num0
4914 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4915 - bitwidth)));
4918 /* For paradoxical SUBREGs on machines where all register operations
4919 affect the entire register, just look inside. Note that we are
4920 passing MODE to the recursive call, so the number of sign bit copies
4921 will remain relative to that mode, not the inner mode. */
4923 /* This works only if loads sign extend. Otherwise, if we get a
4924 reload for the inner part, it may be loaded from the stack, and
4925 then we lose all sign bit copies that existed before the store
4926 to the stack. */
4928 if (WORD_REGISTER_OPERATIONS
4929 && paradoxical_subreg_p (x)
4930 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4931 && MEM_P (SUBREG_REG (x)))
4932 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4933 known_x, known_mode, known_ret);
4934 break;
4936 case SIGN_EXTRACT:
4937 if (CONST_INT_P (XEXP (x, 1)))
4938 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4939 break;
4941 case SIGN_EXTEND:
4942 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4943 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4944 known_x, known_mode, known_ret));
4946 case TRUNCATE:
4947 /* For a smaller object, just ignore the high bits. */
4948 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4949 known_x, known_mode, known_ret);
4950 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4951 - bitwidth)));
4953 case NOT:
4954 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4955 known_x, known_mode, known_ret);
4957 case ROTATE: case ROTATERT:
4958 /* If we are rotating left by a number of bits less than the number
4959 of sign bit copies, we can just subtract that amount from the
4960 number. */
4961 if (CONST_INT_P (XEXP (x, 1))
4962 && INTVAL (XEXP (x, 1)) >= 0
4963 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4965 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4966 known_x, known_mode, known_ret);
4967 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4968 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4970 break;
4972 case NEG:
4973 /* In general, this subtracts one sign bit copy. But if the value
4974 is known to be positive, the number of sign bit copies is the
4975 same as that of the input. Finally, if the input has just one bit
4976 that might be nonzero, all the bits are copies of the sign bit. */
4977 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4978 known_x, known_mode, known_ret);
4979 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4980 return num0 > 1 ? num0 - 1 : 1;
4982 nonzero = nonzero_bits (XEXP (x, 0), mode);
4983 if (nonzero == 1)
4984 return bitwidth;
4986 if (num0 > 1
4987 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
4988 num0--;
4990 return num0;
4992 case IOR: case AND: case XOR:
4993 case SMIN: case SMAX: case UMIN: case UMAX:
4994 /* Logical operations will preserve the number of sign-bit copies.
4995 MIN and MAX operations always return one of the operands. */
4996 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4997 known_x, known_mode, known_ret);
4998 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4999 known_x, known_mode, known_ret);
5001 /* If num1 is clearing some of the top bits then regardless of
5002 the other term, we are guaranteed to have at least that many
5003 high-order zero bits. */
5004 if (code == AND
5005 && num1 > 1
5006 && bitwidth <= HOST_BITS_PER_WIDE_INT
5007 && CONST_INT_P (XEXP (x, 1))
5008 && (UINTVAL (XEXP (x, 1))
5009 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5010 return num1;
5012 /* Similarly for IOR when setting high-order bits. */
5013 if (code == IOR
5014 && num1 > 1
5015 && bitwidth <= HOST_BITS_PER_WIDE_INT
5016 && CONST_INT_P (XEXP (x, 1))
5017 && (UINTVAL (XEXP (x, 1))
5018 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5019 return num1;
5021 return MIN (num0, num1);
5023 case PLUS: case MINUS:
5024 /* For addition and subtraction, we can have a 1-bit carry. However,
5025 if we are subtracting 1 from a positive number, there will not
5026 be such a carry. Furthermore, if the positive number is known to
5027 be 0 or 1, we know the result is either -1 or 0. */
5029 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5030 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5032 nonzero = nonzero_bits (XEXP (x, 0), mode);
5033 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5034 return (nonzero == 1 || nonzero == 0 ? bitwidth
5035 : bitwidth - floor_log2 (nonzero) - 1);
5038 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5039 known_x, known_mode, known_ret);
5040 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5041 known_x, known_mode, known_ret);
5042 result = MAX (1, MIN (num0, num1) - 1);
5044 return result;
5046 case MULT:
5047 /* The number of bits of the product is the sum of the number of
5048 bits of both terms. However, unless one of the terms if known
5049 to be positive, we must allow for an additional bit since negating
5050 a negative number can remove one sign bit copy. */
5052 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5053 known_x, known_mode, known_ret);
5054 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5055 known_x, known_mode, known_ret);
5057 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5058 if (result > 0
5059 && (bitwidth > HOST_BITS_PER_WIDE_INT
5060 || (((nonzero_bits (XEXP (x, 0), mode)
5061 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5062 && ((nonzero_bits (XEXP (x, 1), mode)
5063 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5064 != 0))))
5065 result--;
5067 return MAX (1, result);
5069 case UDIV:
5070 /* The result must be <= the first operand. If the first operand
5071 has the high bit set, we know nothing about the number of sign
5072 bit copies. */
5073 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5074 return 1;
5075 else if ((nonzero_bits (XEXP (x, 0), mode)
5076 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5077 return 1;
5078 else
5079 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5080 known_x, known_mode, known_ret);
5082 case UMOD:
5083 /* The result must be <= the second operand. If the second operand
5084 has (or just might have) the high bit set, we know nothing about
5085 the number of sign bit copies. */
5086 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5087 return 1;
5088 else if ((nonzero_bits (XEXP (x, 1), mode)
5089 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5090 return 1;
5091 else
5092 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5093 known_x, known_mode, known_ret);
5095 case DIV:
5096 /* Similar to unsigned division, except that we have to worry about
5097 the case where the divisor is negative, in which case we have
5098 to add 1. */
5099 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5100 known_x, known_mode, known_ret);
5101 if (result > 1
5102 && (bitwidth > HOST_BITS_PER_WIDE_INT
5103 || (nonzero_bits (XEXP (x, 1), mode)
5104 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5105 result--;
5107 return result;
5109 case MOD:
5110 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5111 known_x, known_mode, known_ret);
5112 if (result > 1
5113 && (bitwidth > HOST_BITS_PER_WIDE_INT
5114 || (nonzero_bits (XEXP (x, 1), mode)
5115 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5116 result--;
5118 return result;
5120 case ASHIFTRT:
5121 /* Shifts by a constant add to the number of bits equal to the
5122 sign bit. */
5123 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5124 known_x, known_mode, known_ret);
5125 if (CONST_INT_P (XEXP (x, 1))
5126 && INTVAL (XEXP (x, 1)) > 0
5127 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5128 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5130 return num0;
5132 case ASHIFT:
5133 /* Left shifts destroy copies. */
5134 if (!CONST_INT_P (XEXP (x, 1))
5135 || INTVAL (XEXP (x, 1)) < 0
5136 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5137 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5138 return 1;
5140 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5141 known_x, known_mode, known_ret);
5142 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5144 case IF_THEN_ELSE:
5145 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5146 known_x, known_mode, known_ret);
5147 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5148 known_x, known_mode, known_ret);
5149 return MIN (num0, num1);
5151 case EQ: case NE: case GE: case GT: case LE: case LT:
5152 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5153 case GEU: case GTU: case LEU: case LTU:
5154 case UNORDERED: case ORDERED:
5155 /* If the constant is negative, take its 1's complement and remask.
5156 Then see how many zero bits we have. */
5157 nonzero = STORE_FLAG_VALUE;
5158 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5159 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5160 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5162 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5164 default:
5165 break;
5168 /* If we haven't been able to figure it out by one of the above rules,
5169 see if some of the high-order bits are known to be zero. If so,
5170 count those bits and return one less than that amount. If we can't
5171 safely compute the mask for this mode, always return BITWIDTH. */
5173 bitwidth = GET_MODE_PRECISION (mode);
5174 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5175 return 1;
5177 nonzero = nonzero_bits (x, mode);
5178 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5179 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5182 /* Calculate the rtx_cost of a single instruction. A return value of
5183 zero indicates an instruction pattern without a known cost. */
5186 insn_rtx_cost (rtx pat, bool speed)
5188 int i, cost;
5189 rtx set;
5191 /* Extract the single set rtx from the instruction pattern.
5192 We can't use single_set since we only have the pattern. */
5193 if (GET_CODE (pat) == SET)
5194 set = pat;
5195 else if (GET_CODE (pat) == PARALLEL)
5197 set = NULL_RTX;
5198 for (i = 0; i < XVECLEN (pat, 0); i++)
5200 rtx x = XVECEXP (pat, 0, i);
5201 if (GET_CODE (x) == SET)
5203 if (set)
5204 return 0;
5205 set = x;
5208 if (!set)
5209 return 0;
5211 else
5212 return 0;
5214 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5215 return cost > 0 ? cost : COSTS_N_INSNS (1);
5218 /* Returns estimate on cost of computing SEQ. */
5220 unsigned
5221 seq_cost (const rtx_insn *seq, bool speed)
5223 unsigned cost = 0;
5224 rtx set;
5226 for (; seq; seq = NEXT_INSN (seq))
5228 set = single_set (seq);
5229 if (set)
5230 cost += set_rtx_cost (set, speed);
5231 else
5232 cost++;
5235 return cost;
5238 /* Given an insn INSN and condition COND, return the condition in a
5239 canonical form to simplify testing by callers. Specifically:
5241 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5242 (2) Both operands will be machine operands; (cc0) will have been replaced.
5243 (3) If an operand is a constant, it will be the second operand.
5244 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5245 for GE, GEU, and LEU.
5247 If the condition cannot be understood, or is an inequality floating-point
5248 comparison which needs to be reversed, 0 will be returned.
5250 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5252 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5253 insn used in locating the condition was found. If a replacement test
5254 of the condition is desired, it should be placed in front of that
5255 insn and we will be sure that the inputs are still valid.
5257 If WANT_REG is nonzero, we wish the condition to be relative to that
5258 register, if possible. Therefore, do not canonicalize the condition
5259 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5260 to be a compare to a CC mode register.
5262 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5263 and at INSN. */
5266 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5267 rtx_insn **earliest,
5268 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5270 enum rtx_code code;
5271 rtx_insn *prev = insn;
5272 const_rtx set;
5273 rtx tem;
5274 rtx op0, op1;
5275 int reverse_code = 0;
5276 machine_mode mode;
5277 basic_block bb = BLOCK_FOR_INSN (insn);
5279 code = GET_CODE (cond);
5280 mode = GET_MODE (cond);
5281 op0 = XEXP (cond, 0);
5282 op1 = XEXP (cond, 1);
5284 if (reverse)
5285 code = reversed_comparison_code (cond, insn);
5286 if (code == UNKNOWN)
5287 return 0;
5289 if (earliest)
5290 *earliest = insn;
5292 /* If we are comparing a register with zero, see if the register is set
5293 in the previous insn to a COMPARE or a comparison operation. Perform
5294 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5295 in cse.c */
5297 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5298 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5299 && op1 == CONST0_RTX (GET_MODE (op0))
5300 && op0 != want_reg)
5302 /* Set nonzero when we find something of interest. */
5303 rtx x = 0;
5305 /* If comparison with cc0, import actual comparison from compare
5306 insn. */
5307 if (op0 == cc0_rtx)
5309 if ((prev = prev_nonnote_insn (prev)) == 0
5310 || !NONJUMP_INSN_P (prev)
5311 || (set = single_set (prev)) == 0
5312 || SET_DEST (set) != cc0_rtx)
5313 return 0;
5315 op0 = SET_SRC (set);
5316 op1 = CONST0_RTX (GET_MODE (op0));
5317 if (earliest)
5318 *earliest = prev;
5321 /* If this is a COMPARE, pick up the two things being compared. */
5322 if (GET_CODE (op0) == COMPARE)
5324 op1 = XEXP (op0, 1);
5325 op0 = XEXP (op0, 0);
5326 continue;
5328 else if (!REG_P (op0))
5329 break;
5331 /* Go back to the previous insn. Stop if it is not an INSN. We also
5332 stop if it isn't a single set or if it has a REG_INC note because
5333 we don't want to bother dealing with it. */
5335 prev = prev_nonnote_nondebug_insn (prev);
5337 if (prev == 0
5338 || !NONJUMP_INSN_P (prev)
5339 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5340 /* In cfglayout mode, there do not have to be labels at the
5341 beginning of a block, or jumps at the end, so the previous
5342 conditions would not stop us when we reach bb boundary. */
5343 || BLOCK_FOR_INSN (prev) != bb)
5344 break;
5346 set = set_of (op0, prev);
5348 if (set
5349 && (GET_CODE (set) != SET
5350 || !rtx_equal_p (SET_DEST (set), op0)))
5351 break;
5353 /* If this is setting OP0, get what it sets it to if it looks
5354 relevant. */
5355 if (set)
5357 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5358 #ifdef FLOAT_STORE_FLAG_VALUE
5359 REAL_VALUE_TYPE fsfv;
5360 #endif
5362 /* ??? We may not combine comparisons done in a CCmode with
5363 comparisons not done in a CCmode. This is to aid targets
5364 like Alpha that have an IEEE compliant EQ instruction, and
5365 a non-IEEE compliant BEQ instruction. The use of CCmode is
5366 actually artificial, simply to prevent the combination, but
5367 should not affect other platforms.
5369 However, we must allow VOIDmode comparisons to match either
5370 CCmode or non-CCmode comparison, because some ports have
5371 modeless comparisons inside branch patterns.
5373 ??? This mode check should perhaps look more like the mode check
5374 in simplify_comparison in combine. */
5375 if (((GET_MODE_CLASS (mode) == MODE_CC)
5376 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5377 && mode != VOIDmode
5378 && inner_mode != VOIDmode)
5379 break;
5380 if (GET_CODE (SET_SRC (set)) == COMPARE
5381 || (((code == NE
5382 || (code == LT
5383 && val_signbit_known_set_p (inner_mode,
5384 STORE_FLAG_VALUE))
5385 #ifdef FLOAT_STORE_FLAG_VALUE
5386 || (code == LT
5387 && SCALAR_FLOAT_MODE_P (inner_mode)
5388 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5389 REAL_VALUE_NEGATIVE (fsfv)))
5390 #endif
5392 && COMPARISON_P (SET_SRC (set))))
5393 x = SET_SRC (set);
5394 else if (((code == EQ
5395 || (code == GE
5396 && val_signbit_known_set_p (inner_mode,
5397 STORE_FLAG_VALUE))
5398 #ifdef FLOAT_STORE_FLAG_VALUE
5399 || (code == GE
5400 && SCALAR_FLOAT_MODE_P (inner_mode)
5401 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5402 REAL_VALUE_NEGATIVE (fsfv)))
5403 #endif
5405 && COMPARISON_P (SET_SRC (set)))
5407 reverse_code = 1;
5408 x = SET_SRC (set);
5410 else if ((code == EQ || code == NE)
5411 && GET_CODE (SET_SRC (set)) == XOR)
5412 /* Handle sequences like:
5414 (set op0 (xor X Y))
5415 ...(eq|ne op0 (const_int 0))...
5417 in which case:
5419 (eq op0 (const_int 0)) reduces to (eq X Y)
5420 (ne op0 (const_int 0)) reduces to (ne X Y)
5422 This is the form used by MIPS16, for example. */
5423 x = SET_SRC (set);
5424 else
5425 break;
5428 else if (reg_set_p (op0, prev))
5429 /* If this sets OP0, but not directly, we have to give up. */
5430 break;
5432 if (x)
5434 /* If the caller is expecting the condition to be valid at INSN,
5435 make sure X doesn't change before INSN. */
5436 if (valid_at_insn_p)
5437 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5438 break;
5439 if (COMPARISON_P (x))
5440 code = GET_CODE (x);
5441 if (reverse_code)
5443 code = reversed_comparison_code (x, prev);
5444 if (code == UNKNOWN)
5445 return 0;
5446 reverse_code = 0;
5449 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5450 if (earliest)
5451 *earliest = prev;
5455 /* If constant is first, put it last. */
5456 if (CONSTANT_P (op0))
5457 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5459 /* If OP0 is the result of a comparison, we weren't able to find what
5460 was really being compared, so fail. */
5461 if (!allow_cc_mode
5462 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5463 return 0;
5465 /* Canonicalize any ordered comparison with integers involving equality
5466 if we can do computations in the relevant mode and we do not
5467 overflow. */
5469 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5470 && CONST_INT_P (op1)
5471 && GET_MODE (op0) != VOIDmode
5472 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5474 HOST_WIDE_INT const_val = INTVAL (op1);
5475 unsigned HOST_WIDE_INT uconst_val = const_val;
5476 unsigned HOST_WIDE_INT max_val
5477 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5479 switch (code)
5481 case LE:
5482 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5483 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5484 break;
5486 /* When cross-compiling, const_val might be sign-extended from
5487 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5488 case GE:
5489 if ((const_val & max_val)
5490 != (HOST_WIDE_INT_1U
5491 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5492 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5493 break;
5495 case LEU:
5496 if (uconst_val < max_val)
5497 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5498 break;
5500 case GEU:
5501 if (uconst_val != 0)
5502 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5503 break;
5505 default:
5506 break;
5510 /* Never return CC0; return zero instead. */
5511 if (CC0_P (op0))
5512 return 0;
5514 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5517 /* Given a jump insn JUMP, return the condition that will cause it to branch
5518 to its JUMP_LABEL. If the condition cannot be understood, or is an
5519 inequality floating-point comparison which needs to be reversed, 0 will
5520 be returned.
5522 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5523 insn used in locating the condition was found. If a replacement test
5524 of the condition is desired, it should be placed in front of that
5525 insn and we will be sure that the inputs are still valid. If EARLIEST
5526 is null, the returned condition will be valid at INSN.
5528 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5529 compare CC mode register.
5531 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5534 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5535 int valid_at_insn_p)
5537 rtx cond;
5538 int reverse;
5539 rtx set;
5541 /* If this is not a standard conditional jump, we can't parse it. */
5542 if (!JUMP_P (jump)
5543 || ! any_condjump_p (jump))
5544 return 0;
5545 set = pc_set (jump);
5547 cond = XEXP (SET_SRC (set), 0);
5549 /* If this branches to JUMP_LABEL when the condition is false, reverse
5550 the condition. */
5551 reverse
5552 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5553 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5555 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5556 allow_cc_mode, valid_at_insn_p);
5559 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5560 TARGET_MODE_REP_EXTENDED.
5562 Note that we assume that the property of
5563 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5564 narrower than mode B. I.e., if A is a mode narrower than B then in
5565 order to be able to operate on it in mode B, mode A needs to
5566 satisfy the requirements set by the representation of mode B. */
5568 static void
5569 init_num_sign_bit_copies_in_rep (void)
5571 machine_mode mode, in_mode;
5573 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5574 in_mode = GET_MODE_WIDER_MODE (mode))
5575 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5576 mode = GET_MODE_WIDER_MODE (mode))
5578 machine_mode i;
5580 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5581 extends to the next widest mode. */
5582 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5583 || GET_MODE_WIDER_MODE (mode) == in_mode);
5585 /* We are in in_mode. Count how many bits outside of mode
5586 have to be copies of the sign-bit. */
5587 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5589 machine_mode wider = GET_MODE_WIDER_MODE (i);
5591 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5592 /* We can only check sign-bit copies starting from the
5593 top-bit. In order to be able to check the bits we
5594 have already seen we pretend that subsequent bits
5595 have to be sign-bit copies too. */
5596 || num_sign_bit_copies_in_rep [in_mode][mode])
5597 num_sign_bit_copies_in_rep [in_mode][mode]
5598 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5603 /* Suppose that truncation from the machine mode of X to MODE is not a
5604 no-op. See if there is anything special about X so that we can
5605 assume it already contains a truncated value of MODE. */
5607 bool
5608 truncated_to_mode (machine_mode mode, const_rtx x)
5610 /* This register has already been used in MODE without explicit
5611 truncation. */
5612 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5613 return true;
5615 /* See if we already satisfy the requirements of MODE. If yes we
5616 can just switch to MODE. */
5617 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5618 && (num_sign_bit_copies (x, GET_MODE (x))
5619 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5620 return true;
5622 return false;
5625 /* Return true if RTX code CODE has a single sequence of zero or more
5626 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5627 entry in that case. */
5629 static bool
5630 setup_reg_subrtx_bounds (unsigned int code)
5632 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5633 unsigned int i = 0;
5634 for (; format[i] != 'e'; ++i)
5636 if (!format[i])
5637 /* No subrtxes. Leave start and count as 0. */
5638 return true;
5639 if (format[i] == 'E' || format[i] == 'V')
5640 return false;
5643 /* Record the sequence of 'e's. */
5644 rtx_all_subrtx_bounds[code].start = i;
5646 ++i;
5647 while (format[i] == 'e');
5648 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5649 /* rtl-iter.h relies on this. */
5650 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5652 for (; format[i]; ++i)
5653 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5654 return false;
5656 return true;
5659 /* Initialize rtx_all_subrtx_bounds. */
5660 void
5661 init_rtlanal (void)
5663 int i;
5664 for (i = 0; i < NUM_RTX_CODE; i++)
5666 if (!setup_reg_subrtx_bounds (i))
5667 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5668 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5669 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5672 init_num_sign_bit_copies_in_rep ();
5675 /* Check whether this is a constant pool constant. */
5676 bool
5677 constant_pool_constant_p (rtx x)
5679 x = avoid_constant_pool_reference (x);
5680 return CONST_DOUBLE_P (x);
5683 /* If M is a bitmask that selects a field of low-order bits within an item but
5684 not the entire word, return the length of the field. Return -1 otherwise.
5685 M is used in machine mode MODE. */
5688 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5690 if (mode != VOIDmode)
5692 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5693 return -1;
5694 m &= GET_MODE_MASK (mode);
5697 return exact_log2 (m + 1);
5700 /* Return the mode of MEM's address. */
5702 machine_mode
5703 get_address_mode (rtx mem)
5705 machine_mode mode;
5707 gcc_assert (MEM_P (mem));
5708 mode = GET_MODE (XEXP (mem, 0));
5709 if (mode != VOIDmode)
5710 return mode;
5711 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5714 /* Split up a CONST_DOUBLE or integer constant rtx
5715 into two rtx's for single words,
5716 storing in *FIRST the word that comes first in memory in the target
5717 and in *SECOND the other.
5719 TODO: This function needs to be rewritten to work on any size
5720 integer. */
5722 void
5723 split_double (rtx value, rtx *first, rtx *second)
5725 if (CONST_INT_P (value))
5727 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5729 /* In this case the CONST_INT holds both target words.
5730 Extract the bits from it into two word-sized pieces.
5731 Sign extend each half to HOST_WIDE_INT. */
5732 unsigned HOST_WIDE_INT low, high;
5733 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5734 unsigned bits_per_word = BITS_PER_WORD;
5736 /* Set sign_bit to the most significant bit of a word. */
5737 sign_bit = 1;
5738 sign_bit <<= bits_per_word - 1;
5740 /* Set mask so that all bits of the word are set. We could
5741 have used 1 << BITS_PER_WORD instead of basing the
5742 calculation on sign_bit. However, on machines where
5743 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5744 compiler warning, even though the code would never be
5745 executed. */
5746 mask = sign_bit << 1;
5747 mask--;
5749 /* Set sign_extend as any remaining bits. */
5750 sign_extend = ~mask;
5752 /* Pick the lower word and sign-extend it. */
5753 low = INTVAL (value);
5754 low &= mask;
5755 if (low & sign_bit)
5756 low |= sign_extend;
5758 /* Pick the higher word, shifted to the least significant
5759 bits, and sign-extend it. */
5760 high = INTVAL (value);
5761 high >>= bits_per_word - 1;
5762 high >>= 1;
5763 high &= mask;
5764 if (high & sign_bit)
5765 high |= sign_extend;
5767 /* Store the words in the target machine order. */
5768 if (WORDS_BIG_ENDIAN)
5770 *first = GEN_INT (high);
5771 *second = GEN_INT (low);
5773 else
5775 *first = GEN_INT (low);
5776 *second = GEN_INT (high);
5779 else
5781 /* The rule for using CONST_INT for a wider mode
5782 is that we regard the value as signed.
5783 So sign-extend it. */
5784 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5785 if (WORDS_BIG_ENDIAN)
5787 *first = high;
5788 *second = value;
5790 else
5792 *first = value;
5793 *second = high;
5797 else if (GET_CODE (value) == CONST_WIDE_INT)
5799 /* All of this is scary code and needs to be converted to
5800 properly work with any size integer. */
5801 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5802 if (WORDS_BIG_ENDIAN)
5804 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5805 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5807 else
5809 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5810 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5813 else if (!CONST_DOUBLE_P (value))
5815 if (WORDS_BIG_ENDIAN)
5817 *first = const0_rtx;
5818 *second = value;
5820 else
5822 *first = value;
5823 *second = const0_rtx;
5826 else if (GET_MODE (value) == VOIDmode
5827 /* This is the old way we did CONST_DOUBLE integers. */
5828 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5830 /* In an integer, the words are defined as most and least significant.
5831 So order them by the target's convention. */
5832 if (WORDS_BIG_ENDIAN)
5834 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5835 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5837 else
5839 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5840 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5843 else
5845 long l[2];
5847 /* Note, this converts the REAL_VALUE_TYPE to the target's
5848 format, splits up the floating point double and outputs
5849 exactly 32 bits of it into each of l[0] and l[1] --
5850 not necessarily BITS_PER_WORD bits. */
5851 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5853 /* If 32 bits is an entire word for the target, but not for the host,
5854 then sign-extend on the host so that the number will look the same
5855 way on the host that it would on the target. See for instance
5856 simplify_unary_operation. The #if is needed to avoid compiler
5857 warnings. */
5859 #if HOST_BITS_PER_LONG > 32
5860 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5862 if (l[0] & ((long) 1 << 31))
5863 l[0] |= ((unsigned long) (-1) << 32);
5864 if (l[1] & ((long) 1 << 31))
5865 l[1] |= ((unsigned long) (-1) << 32);
5867 #endif
5869 *first = GEN_INT (l[0]);
5870 *second = GEN_INT (l[1]);
5874 /* Return true if X is a sign_extract or zero_extract from the least
5875 significant bit. */
5877 static bool
5878 lsb_bitfield_op_p (rtx x)
5880 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5882 machine_mode mode = GET_MODE (XEXP (x, 0));
5883 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5884 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5886 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5888 return false;
5891 /* Strip outer address "mutations" from LOC and return a pointer to the
5892 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5893 stripped expression there.
5895 "Mutations" either convert between modes or apply some kind of
5896 extension, truncation or alignment. */
5898 rtx *
5899 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5901 for (;;)
5903 enum rtx_code code = GET_CODE (*loc);
5904 if (GET_RTX_CLASS (code) == RTX_UNARY)
5905 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5906 used to convert between pointer sizes. */
5907 loc = &XEXP (*loc, 0);
5908 else if (lsb_bitfield_op_p (*loc))
5909 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5910 acts as a combined truncation and extension. */
5911 loc = &XEXP (*loc, 0);
5912 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5913 /* (and ... (const_int -X)) is used to align to X bytes. */
5914 loc = &XEXP (*loc, 0);
5915 else if (code == SUBREG
5916 && !OBJECT_P (SUBREG_REG (*loc))
5917 && subreg_lowpart_p (*loc))
5918 /* (subreg (operator ...) ...) inside and is used for mode
5919 conversion too. */
5920 loc = &SUBREG_REG (*loc);
5921 else
5922 return loc;
5923 if (outer_code)
5924 *outer_code = code;
5928 /* Return true if CODE applies some kind of scale. The scaled value is
5929 is the first operand and the scale is the second. */
5931 static bool
5932 binary_scale_code_p (enum rtx_code code)
5934 return (code == MULT
5935 || code == ASHIFT
5936 /* Needed by ARM targets. */
5937 || code == ASHIFTRT
5938 || code == LSHIFTRT
5939 || code == ROTATE
5940 || code == ROTATERT);
5943 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5944 (see address_info). Return null otherwise. */
5946 static rtx *
5947 get_base_term (rtx *inner)
5949 if (GET_CODE (*inner) == LO_SUM)
5950 inner = strip_address_mutations (&XEXP (*inner, 0));
5951 if (REG_P (*inner)
5952 || MEM_P (*inner)
5953 || GET_CODE (*inner) == SUBREG
5954 || GET_CODE (*inner) == SCRATCH)
5955 return inner;
5956 return 0;
5959 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5960 (see address_info). Return null otherwise. */
5962 static rtx *
5963 get_index_term (rtx *inner)
5965 /* At present, only constant scales are allowed. */
5966 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5967 inner = strip_address_mutations (&XEXP (*inner, 0));
5968 if (REG_P (*inner)
5969 || MEM_P (*inner)
5970 || GET_CODE (*inner) == SUBREG
5971 || GET_CODE (*inner) == SCRATCH)
5972 return inner;
5973 return 0;
5976 /* Set the segment part of address INFO to LOC, given that INNER is the
5977 unmutated value. */
5979 static void
5980 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5982 gcc_assert (!info->segment);
5983 info->segment = loc;
5984 info->segment_term = inner;
5987 /* Set the base part of address INFO to LOC, given that INNER is the
5988 unmutated value. */
5990 static void
5991 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5993 gcc_assert (!info->base);
5994 info->base = loc;
5995 info->base_term = inner;
5998 /* Set the index part of address INFO to LOC, given that INNER is the
5999 unmutated value. */
6001 static void
6002 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6004 gcc_assert (!info->index);
6005 info->index = loc;
6006 info->index_term = inner;
6009 /* Set the displacement part of address INFO to LOC, given that INNER
6010 is the constant term. */
6012 static void
6013 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6015 gcc_assert (!info->disp);
6016 info->disp = loc;
6017 info->disp_term = inner;
6020 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6021 rest of INFO accordingly. */
6023 static void
6024 decompose_incdec_address (struct address_info *info)
6026 info->autoinc_p = true;
6028 rtx *base = &XEXP (*info->inner, 0);
6029 set_address_base (info, base, base);
6030 gcc_checking_assert (info->base == info->base_term);
6032 /* These addresses are only valid when the size of the addressed
6033 value is known. */
6034 gcc_checking_assert (info->mode != VOIDmode);
6037 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6038 of INFO accordingly. */
6040 static void
6041 decompose_automod_address (struct address_info *info)
6043 info->autoinc_p = true;
6045 rtx *base = &XEXP (*info->inner, 0);
6046 set_address_base (info, base, base);
6047 gcc_checking_assert (info->base == info->base_term);
6049 rtx plus = XEXP (*info->inner, 1);
6050 gcc_assert (GET_CODE (plus) == PLUS);
6052 info->base_term2 = &XEXP (plus, 0);
6053 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6055 rtx *step = &XEXP (plus, 1);
6056 rtx *inner_step = strip_address_mutations (step);
6057 if (CONSTANT_P (*inner_step))
6058 set_address_disp (info, step, inner_step);
6059 else
6060 set_address_index (info, step, inner_step);
6063 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6064 values in [PTR, END). Return a pointer to the end of the used array. */
6066 static rtx **
6067 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6069 rtx x = *loc;
6070 if (GET_CODE (x) == PLUS)
6072 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6073 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6075 else
6077 gcc_assert (ptr != end);
6078 *ptr++ = loc;
6080 return ptr;
6083 /* Evaluate the likelihood of X being a base or index value, returning
6084 positive if it is likely to be a base, negative if it is likely to be
6085 an index, and 0 if we can't tell. Make the magnitude of the return
6086 value reflect the amount of confidence we have in the answer.
6088 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6090 static int
6091 baseness (rtx x, machine_mode mode, addr_space_t as,
6092 enum rtx_code outer_code, enum rtx_code index_code)
6094 /* Believe *_POINTER unless the address shape requires otherwise. */
6095 if (REG_P (x) && REG_POINTER (x))
6096 return 2;
6097 if (MEM_P (x) && MEM_POINTER (x))
6098 return 2;
6100 if (REG_P (x) && HARD_REGISTER_P (x))
6102 /* X is a hard register. If it only fits one of the base
6103 or index classes, choose that interpretation. */
6104 int regno = REGNO (x);
6105 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6106 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6107 if (base_p != index_p)
6108 return base_p ? 1 : -1;
6110 return 0;
6113 /* INFO->INNER describes a normal, non-automodified address.
6114 Fill in the rest of INFO accordingly. */
6116 static void
6117 decompose_normal_address (struct address_info *info)
6119 /* Treat the address as the sum of up to four values. */
6120 rtx *ops[4];
6121 size_t n_ops = extract_plus_operands (info->inner, ops,
6122 ops + ARRAY_SIZE (ops)) - ops;
6124 /* If there is more than one component, any base component is in a PLUS. */
6125 if (n_ops > 1)
6126 info->base_outer_code = PLUS;
6128 /* Try to classify each sum operand now. Leave those that could be
6129 either a base or an index in OPS. */
6130 rtx *inner_ops[4];
6131 size_t out = 0;
6132 for (size_t in = 0; in < n_ops; ++in)
6134 rtx *loc = ops[in];
6135 rtx *inner = strip_address_mutations (loc);
6136 if (CONSTANT_P (*inner))
6137 set_address_disp (info, loc, inner);
6138 else if (GET_CODE (*inner) == UNSPEC)
6139 set_address_segment (info, loc, inner);
6140 else
6142 /* The only other possibilities are a base or an index. */
6143 rtx *base_term = get_base_term (inner);
6144 rtx *index_term = get_index_term (inner);
6145 gcc_assert (base_term || index_term);
6146 if (!base_term)
6147 set_address_index (info, loc, index_term);
6148 else if (!index_term)
6149 set_address_base (info, loc, base_term);
6150 else
6152 gcc_assert (base_term == index_term);
6153 ops[out] = loc;
6154 inner_ops[out] = base_term;
6155 ++out;
6160 /* Classify the remaining OPS members as bases and indexes. */
6161 if (out == 1)
6163 /* If we haven't seen a base or an index yet, assume that this is
6164 the base. If we were confident that another term was the base
6165 or index, treat the remaining operand as the other kind. */
6166 if (!info->base)
6167 set_address_base (info, ops[0], inner_ops[0]);
6168 else
6169 set_address_index (info, ops[0], inner_ops[0]);
6171 else if (out == 2)
6173 /* In the event of a tie, assume the base comes first. */
6174 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6175 GET_CODE (*ops[1]))
6176 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6177 GET_CODE (*ops[0])))
6179 set_address_base (info, ops[0], inner_ops[0]);
6180 set_address_index (info, ops[1], inner_ops[1]);
6182 else
6184 set_address_base (info, ops[1], inner_ops[1]);
6185 set_address_index (info, ops[0], inner_ops[0]);
6188 else
6189 gcc_assert (out == 0);
6192 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6193 or VOIDmode if not known. AS is the address space associated with LOC.
6194 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6196 void
6197 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6198 addr_space_t as, enum rtx_code outer_code)
6200 memset (info, 0, sizeof (*info));
6201 info->mode = mode;
6202 info->as = as;
6203 info->addr_outer_code = outer_code;
6204 info->outer = loc;
6205 info->inner = strip_address_mutations (loc, &outer_code);
6206 info->base_outer_code = outer_code;
6207 switch (GET_CODE (*info->inner))
6209 case PRE_DEC:
6210 case PRE_INC:
6211 case POST_DEC:
6212 case POST_INC:
6213 decompose_incdec_address (info);
6214 break;
6216 case PRE_MODIFY:
6217 case POST_MODIFY:
6218 decompose_automod_address (info);
6219 break;
6221 default:
6222 decompose_normal_address (info);
6223 break;
6227 /* Describe address operand LOC in INFO. */
6229 void
6230 decompose_lea_address (struct address_info *info, rtx *loc)
6232 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6235 /* Describe the address of MEM X in INFO. */
6237 void
6238 decompose_mem_address (struct address_info *info, rtx x)
6240 gcc_assert (MEM_P (x));
6241 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6242 MEM_ADDR_SPACE (x), MEM);
6245 /* Update INFO after a change to the address it describes. */
6247 void
6248 update_address (struct address_info *info)
6250 decompose_address (info, info->outer, info->mode, info->as,
6251 info->addr_outer_code);
6254 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6255 more complicated than that. */
6257 HOST_WIDE_INT
6258 get_index_scale (const struct address_info *info)
6260 rtx index = *info->index;
6261 if (GET_CODE (index) == MULT
6262 && CONST_INT_P (XEXP (index, 1))
6263 && info->index_term == &XEXP (index, 0))
6264 return INTVAL (XEXP (index, 1));
6266 if (GET_CODE (index) == ASHIFT
6267 && CONST_INT_P (XEXP (index, 1))
6268 && info->index_term == &XEXP (index, 0))
6269 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6271 if (info->index == info->index_term)
6272 return 1;
6274 return 0;
6277 /* Return the "index code" of INFO, in the form required by
6278 ok_for_base_p_1. */
6280 enum rtx_code
6281 get_index_code (const struct address_info *info)
6283 if (info->index)
6284 return GET_CODE (*info->index);
6286 if (info->disp)
6287 return GET_CODE (*info->disp);
6289 return SCRATCH;
6292 /* Return true if RTL X contains a SYMBOL_REF. */
6294 bool
6295 contains_symbol_ref_p (const_rtx x)
6297 subrtx_iterator::array_type array;
6298 FOR_EACH_SUBRTX (iter, array, x, ALL)
6299 if (SYMBOL_REF_P (*iter))
6300 return true;
6302 return false;
6305 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6307 bool
6308 contains_symbolic_reference_p (const_rtx x)
6310 subrtx_iterator::array_type array;
6311 FOR_EACH_SUBRTX (iter, array, x, ALL)
6312 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6313 return true;
6315 return false;
6318 /* Return true if X contains a thread-local symbol. */
6320 bool
6321 tls_referenced_p (const_rtx x)
6323 if (!targetm.have_tls)
6324 return false;
6326 subrtx_iterator::array_type array;
6327 FOR_EACH_SUBRTX (iter, array, x, ALL)
6328 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6329 return true;
6330 return false;