Fix typo.
[official-gcc.git] / gcc / combine.c
blob69020561c3147fec1c2a085086fbc68505dc83ad
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "memmodel.h"
88 #include "tm_p.h"
89 #include "optabs.h"
90 #include "regs.h"
91 #include "emit-rtl.h"
92 #include "recog.h"
93 #include "cgraph.h"
94 #include "stor-layout.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
98 #include "explow.h"
99 #include "insn-attr.h"
100 #include "rtlhooks-def.h"
101 #include "params.h"
102 #include "tree-pass.h"
103 #include "valtrack.h"
104 #include "rtl-iter.h"
105 #include "print-rtl.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx_insn *i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 struct reg_stat_type {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx_insn *last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx_insn *last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
254 static vec<reg_stat_type> reg_stat;
256 /* One plus the highest pseudo for which we track REG_N_SETS.
257 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
258 but during combine_split_insns new pseudos can be created. As we don't have
259 updated DF information in that case, it is hard to initialize the array
260 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
261 so instead of growing the arrays, just assume all newly created pseudos
262 during combine might be set multiple times. */
264 static unsigned int reg_n_sets_max;
266 /* Record the luid of the last insn that invalidated memory
267 (anything that writes memory, and subroutine calls, but not pushes). */
269 static int mem_last_set;
271 /* Record the luid of the last CALL_INSN
272 so we can tell whether a potential combination crosses any calls. */
274 static int last_call_luid;
276 /* When `subst' is called, this is the insn that is being modified
277 (by combining in a previous insn). The PATTERN of this insn
278 is still the old pattern partially modified and it should not be
279 looked at, but this may be used to examine the successors of the insn
280 to judge whether a simplification is valid. */
282 static rtx_insn *subst_insn;
284 /* This is the lowest LUID that `subst' is currently dealing with.
285 get_last_value will not return a value if the register was set at or
286 after this LUID. If not for this mechanism, we could get confused if
287 I2 or I1 in try_combine were an insn that used the old value of a register
288 to obtain a new value. In that case, we might erroneously get the
289 new value of the register when we wanted the old one. */
291 static int subst_low_luid;
293 /* This contains any hard registers that are used in newpat; reg_dead_at_p
294 must consider all these registers to be always live. */
296 static HARD_REG_SET newpat_used_regs;
298 /* This is an insn to which a LOG_LINKS entry has been added. If this
299 insn is the earlier than I2 or I3, combine should rescan starting at
300 that location. */
302 static rtx_insn *added_links_insn;
304 /* Basic block in which we are performing combines. */
305 static basic_block this_basic_block;
306 static bool optimize_this_for_speed_p;
309 /* Length of the currently allocated uid_insn_cost array. */
311 static int max_uid_known;
313 /* The following array records the insn_rtx_cost for every insn
314 in the instruction stream. */
316 static int *uid_insn_cost;
318 /* The following array records the LOG_LINKS for every insn in the
319 instruction stream as struct insn_link pointers. */
321 struct insn_link {
322 rtx_insn *insn;
323 unsigned int regno;
324 struct insn_link *next;
327 static struct insn_link **uid_log_links;
329 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
335 /* Links for LOG_LINKS are allocated from this obstack. */
337 static struct obstack insn_link_obstack;
339 /* Allocate a link. */
341 static inline struct insn_link *
342 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
344 struct insn_link *l
345 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
346 sizeof (struct insn_link));
347 l->insn = insn;
348 l->regno = regno;
349 l->next = next;
350 return l;
353 /* Incremented for each basic block. */
355 static int label_tick;
357 /* Reset to label_tick for each extended basic block in scanning order. */
359 static int label_tick_ebb_start;
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
364 static machine_mode nonzero_bits_mode;
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
370 in a loop. */
372 static int nonzero_sign_valid;
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
378 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
380 struct undo
382 struct undo *next;
383 enum undo_kind kind;
384 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
385 union { rtx *r; int *i; struct insn_link **l; } where;
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
394 struct undobuf
396 struct undo *undos;
397 struct undo *frees;
398 rtx_insn *other_insn;
401 static struct undobuf undobuf;
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
406 static int n_occurrences;
408 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
409 machine_mode,
410 unsigned HOST_WIDE_INT,
411 unsigned HOST_WIDE_INT *);
412 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
413 machine_mode,
414 unsigned int, unsigned int *);
415 static void do_SUBST (rtx *, rtx);
416 static void do_SUBST_INT (int *, int);
417 static void init_reg_last (void);
418 static void setup_incoming_promotions (rtx_insn *);
419 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
420 static int cant_combine_insn_p (rtx_insn *);
421 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 rtx_insn *, rtx_insn *, rtx *, rtx *);
423 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
424 static int contains_muldiv (rtx);
425 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
426 int *, rtx_insn *);
427 static void undo_all (void);
428 static void undo_commit (void);
429 static rtx *find_split_point (rtx *, rtx_insn *, bool);
430 static rtx subst (rtx, rtx, rtx, int, int, int);
431 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
432 static rtx simplify_if_then_else (rtx);
433 static rtx simplify_set (rtx);
434 static rtx simplify_logical (rtx);
435 static rtx expand_compound_operation (rtx);
436 static const_rtx expand_field_assignment (const_rtx);
437 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
438 rtx, unsigned HOST_WIDE_INT, int, int, int);
439 static rtx extract_left_shift (rtx, int);
440 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
441 unsigned HOST_WIDE_INT *);
442 static rtx canon_reg_for_combine (rtx, rtx);
443 static rtx force_to_mode (rtx, machine_mode,
444 unsigned HOST_WIDE_INT, int);
445 static rtx if_then_else_cond (rtx, rtx *, rtx *);
446 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
447 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
448 static rtx make_field_assignment (rtx);
449 static rtx apply_distributive_law (rtx);
450 static rtx distribute_and_simplify_rtx (rtx, int);
451 static rtx simplify_and_const_int_1 (machine_mode, rtx,
452 unsigned HOST_WIDE_INT);
453 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
454 unsigned HOST_WIDE_INT);
455 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
456 HOST_WIDE_INT, machine_mode, int *);
457 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
458 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
459 int);
460 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
461 static rtx gen_lowpart_for_combine (machine_mode, rtx);
462 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
463 rtx, rtx *);
464 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
465 static void update_table_tick (rtx);
466 static void record_value_for_reg (rtx, rtx_insn *, rtx);
467 static void check_promoted_subreg (rtx_insn *, rtx);
468 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
469 static void record_dead_and_set_regs (rtx_insn *);
470 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
471 static rtx get_last_value (const_rtx);
472 static int use_crosses_set_p (const_rtx, int);
473 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
474 static int reg_dead_at_p (rtx, rtx_insn *);
475 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
476 static int reg_bitfield_target_p (rtx, rtx);
477 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
478 static void distribute_links (struct insn_link *);
479 static void mark_used_regs_combine (rtx);
480 static void record_promoted_value (rtx_insn *, rtx);
481 static bool unmentioned_reg_p (rtx, rtx);
482 static void record_truncated_values (rtx *, void *);
483 static bool reg_truncated_to_mode (machine_mode, const_rtx);
484 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
487 /* It is not safe to use ordinary gen_lowpart in combine.
488 See comments in gen_lowpart_for_combine. */
489 #undef RTL_HOOKS_GEN_LOWPART
490 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
492 /* Our implementation of gen_lowpart never emits a new pseudo. */
493 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
494 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
496 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
497 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
499 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
500 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
502 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
503 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
505 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
508 /* Convenience wrapper for the canonicalize_comparison target hook.
509 Target hooks cannot use enum rtx_code. */
510 static inline void
511 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
512 bool op0_preserve_value)
514 int code_int = (int)*code;
515 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
516 *code = (enum rtx_code)code_int;
519 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
520 PATTERN can not be split. Otherwise, it returns an insn sequence.
521 This is a wrapper around split_insns which ensures that the
522 reg_stat vector is made larger if the splitter creates a new
523 register. */
525 static rtx_insn *
526 combine_split_insns (rtx pattern, rtx_insn *insn)
528 rtx_insn *ret;
529 unsigned int nregs;
531 ret = split_insns (pattern, insn);
532 nregs = max_reg_num ();
533 if (nregs > reg_stat.length ())
534 reg_stat.safe_grow_cleared (nregs);
535 return ret;
538 /* This is used by find_single_use to locate an rtx in LOC that
539 contains exactly one use of DEST, which is typically either a REG
540 or CC0. It returns a pointer to the innermost rtx expression
541 containing DEST. Appearances of DEST that are being used to
542 totally replace it are not counted. */
544 static rtx *
545 find_single_use_1 (rtx dest, rtx *loc)
547 rtx x = *loc;
548 enum rtx_code code = GET_CODE (x);
549 rtx *result = NULL;
550 rtx *this_result;
551 int i;
552 const char *fmt;
554 switch (code)
556 case CONST:
557 case LABEL_REF:
558 case SYMBOL_REF:
559 CASE_CONST_ANY:
560 case CLOBBER:
561 return 0;
563 case SET:
564 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
565 of a REG that occupies all of the REG, the insn uses DEST if
566 it is mentioned in the destination or the source. Otherwise, we
567 need just check the source. */
568 if (GET_CODE (SET_DEST (x)) != CC0
569 && GET_CODE (SET_DEST (x)) != PC
570 && !REG_P (SET_DEST (x))
571 && ! (GET_CODE (SET_DEST (x)) == SUBREG
572 && REG_P (SUBREG_REG (SET_DEST (x)))
573 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
574 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
575 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
576 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
577 break;
579 return find_single_use_1 (dest, &SET_SRC (x));
581 case MEM:
582 case SUBREG:
583 return find_single_use_1 (dest, &XEXP (x, 0));
585 default:
586 break;
589 /* If it wasn't one of the common cases above, check each expression and
590 vector of this code. Look for a unique usage of DEST. */
592 fmt = GET_RTX_FORMAT (code);
593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
595 if (fmt[i] == 'e')
597 if (dest == XEXP (x, i)
598 || (REG_P (dest) && REG_P (XEXP (x, i))
599 && REGNO (dest) == REGNO (XEXP (x, i))))
600 this_result = loc;
601 else
602 this_result = find_single_use_1 (dest, &XEXP (x, i));
604 if (result == NULL)
605 result = this_result;
606 else if (this_result)
607 /* Duplicate usage. */
608 return NULL;
610 else if (fmt[i] == 'E')
612 int j;
614 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
616 if (XVECEXP (x, i, j) == dest
617 || (REG_P (dest)
618 && REG_P (XVECEXP (x, i, j))
619 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
620 this_result = loc;
621 else
622 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
624 if (result == NULL)
625 result = this_result;
626 else if (this_result)
627 return NULL;
632 return result;
636 /* See if DEST, produced in INSN, is used only a single time in the
637 sequel. If so, return a pointer to the innermost rtx expression in which
638 it is used.
640 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
642 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
643 care about REG_DEAD notes or LOG_LINKS.
645 Otherwise, we find the single use by finding an insn that has a
646 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
647 only referenced once in that insn, we know that it must be the first
648 and last insn referencing DEST. */
650 static rtx *
651 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
653 basic_block bb;
654 rtx_insn *next;
655 rtx *result;
656 struct insn_link *link;
658 if (dest == cc0_rtx)
660 next = NEXT_INSN (insn);
661 if (next == 0
662 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
663 return 0;
665 result = find_single_use_1 (dest, &PATTERN (next));
666 if (result && ploc)
667 *ploc = next;
668 return result;
671 if (!REG_P (dest))
672 return 0;
674 bb = BLOCK_FOR_INSN (insn);
675 for (next = NEXT_INSN (insn);
676 next && BLOCK_FOR_INSN (next) == bb;
677 next = NEXT_INSN (next))
678 if (INSN_P (next) && dead_or_set_p (next, dest))
680 FOR_EACH_LOG_LINK (link, next)
681 if (link->insn == insn && link->regno == REGNO (dest))
682 break;
684 if (link)
686 result = find_single_use_1 (dest, &PATTERN (next));
687 if (ploc)
688 *ploc = next;
689 return result;
693 return 0;
696 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
697 insn. The substitution can be undone by undo_all. If INTO is already
698 set to NEWVAL, do not record this change. Because computing NEWVAL might
699 also call SUBST, we have to compute it before we put anything into
700 the undo table. */
702 static void
703 do_SUBST (rtx *into, rtx newval)
705 struct undo *buf;
706 rtx oldval = *into;
708 if (oldval == newval)
709 return;
711 /* We'd like to catch as many invalid transformations here as
712 possible. Unfortunately, there are way too many mode changes
713 that are perfectly valid, so we'd waste too much effort for
714 little gain doing the checks here. Focus on catching invalid
715 transformations involving integer constants. */
716 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
717 && CONST_INT_P (newval))
719 /* Sanity check that we're replacing oldval with a CONST_INT
720 that is a valid sign-extension for the original mode. */
721 gcc_assert (INTVAL (newval)
722 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
724 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
725 CONST_INT is not valid, because after the replacement, the
726 original mode would be gone. Unfortunately, we can't tell
727 when do_SUBST is called to replace the operand thereof, so we
728 perform this test on oldval instead, checking whether an
729 invalid replacement took place before we got here. */
730 gcc_assert (!(GET_CODE (oldval) == SUBREG
731 && CONST_INT_P (SUBREG_REG (oldval))));
732 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
733 && CONST_INT_P (XEXP (oldval, 0))));
736 if (undobuf.frees)
737 buf = undobuf.frees, undobuf.frees = buf->next;
738 else
739 buf = XNEW (struct undo);
741 buf->kind = UNDO_RTX;
742 buf->where.r = into;
743 buf->old_contents.r = oldval;
744 *into = newval;
746 buf->next = undobuf.undos, undobuf.undos = buf;
749 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
751 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
752 for the value of a HOST_WIDE_INT value (including CONST_INT) is
753 not safe. */
755 static void
756 do_SUBST_INT (int *into, int newval)
758 struct undo *buf;
759 int oldval = *into;
761 if (oldval == newval)
762 return;
764 if (undobuf.frees)
765 buf = undobuf.frees, undobuf.frees = buf->next;
766 else
767 buf = XNEW (struct undo);
769 buf->kind = UNDO_INT;
770 buf->where.i = into;
771 buf->old_contents.i = oldval;
772 *into = newval;
774 buf->next = undobuf.undos, undobuf.undos = buf;
777 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
779 /* Similar to SUBST, but just substitute the mode. This is used when
780 changing the mode of a pseudo-register, so that any other
781 references to the entry in the regno_reg_rtx array will change as
782 well. */
784 static void
785 do_SUBST_MODE (rtx *into, machine_mode newval)
787 struct undo *buf;
788 machine_mode oldval = GET_MODE (*into);
790 if (oldval == newval)
791 return;
793 if (undobuf.frees)
794 buf = undobuf.frees, undobuf.frees = buf->next;
795 else
796 buf = XNEW (struct undo);
798 buf->kind = UNDO_MODE;
799 buf->where.r = into;
800 buf->old_contents.m = oldval;
801 adjust_reg_mode (*into, newval);
803 buf->next = undobuf.undos, undobuf.undos = buf;
806 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
808 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
810 static void
811 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
813 struct undo *buf;
814 struct insn_link * oldval = *into;
816 if (oldval == newval)
817 return;
819 if (undobuf.frees)
820 buf = undobuf.frees, undobuf.frees = buf->next;
821 else
822 buf = XNEW (struct undo);
824 buf->kind = UNDO_LINKS;
825 buf->where.l = into;
826 buf->old_contents.l = oldval;
827 *into = newval;
829 buf->next = undobuf.undos, undobuf.undos = buf;
832 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
834 /* Subroutine of try_combine. Determine whether the replacement patterns
835 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
836 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
837 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
838 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
839 of all the instructions can be estimated and the replacements are more
840 expensive than the original sequence. */
842 static bool
843 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
844 rtx newpat, rtx newi2pat, rtx newotherpat)
846 int i0_cost, i1_cost, i2_cost, i3_cost;
847 int new_i2_cost, new_i3_cost;
848 int old_cost, new_cost;
850 /* Lookup the original insn_rtx_costs. */
851 i2_cost = INSN_COST (i2);
852 i3_cost = INSN_COST (i3);
854 if (i1)
856 i1_cost = INSN_COST (i1);
857 if (i0)
859 i0_cost = INSN_COST (i0);
860 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
861 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
863 else
865 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
866 ? i1_cost + i2_cost + i3_cost : 0);
867 i0_cost = 0;
870 else
872 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
873 i1_cost = i0_cost = 0;
876 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
877 correct that. */
878 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
879 old_cost -= i1_cost;
882 /* Calculate the replacement insn_rtx_costs. */
883 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
884 if (newi2pat)
886 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
887 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
888 ? new_i2_cost + new_i3_cost : 0;
890 else
892 new_cost = new_i3_cost;
893 new_i2_cost = 0;
896 if (undobuf.other_insn)
898 int old_other_cost, new_other_cost;
900 old_other_cost = INSN_COST (undobuf.other_insn);
901 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
902 if (old_other_cost > 0 && new_other_cost > 0)
904 old_cost += old_other_cost;
905 new_cost += new_other_cost;
907 else
908 old_cost = 0;
911 /* Disallow this combination if both new_cost and old_cost are greater than
912 zero, and new_cost is greater than old cost. */
913 int reject = old_cost > 0 && new_cost > old_cost;
915 if (dump_file)
917 fprintf (dump_file, "%s combination of insns ",
918 reject ? "rejecting" : "allowing");
919 if (i0)
920 fprintf (dump_file, "%d, ", INSN_UID (i0));
921 if (i1 && INSN_UID (i1) != INSN_UID (i2))
922 fprintf (dump_file, "%d, ", INSN_UID (i1));
923 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
925 fprintf (dump_file, "original costs ");
926 if (i0)
927 fprintf (dump_file, "%d + ", i0_cost);
928 if (i1 && INSN_UID (i1) != INSN_UID (i2))
929 fprintf (dump_file, "%d + ", i1_cost);
930 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
932 if (newi2pat)
933 fprintf (dump_file, "replacement costs %d + %d = %d\n",
934 new_i2_cost, new_i3_cost, new_cost);
935 else
936 fprintf (dump_file, "replacement cost %d\n", new_cost);
939 if (reject)
940 return false;
942 /* Update the uid_insn_cost array with the replacement costs. */
943 INSN_COST (i2) = new_i2_cost;
944 INSN_COST (i3) = new_i3_cost;
945 if (i1)
947 INSN_COST (i1) = 0;
948 if (i0)
949 INSN_COST (i0) = 0;
952 return true;
956 /* Delete any insns that copy a register to itself. */
958 static void
959 delete_noop_moves (void)
961 rtx_insn *insn, *next;
962 basic_block bb;
964 FOR_EACH_BB_FN (bb, cfun)
966 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
968 next = NEXT_INSN (insn);
969 if (INSN_P (insn) && noop_move_p (insn))
971 if (dump_file)
972 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
974 delete_insn_and_edges (insn);
981 /* Return false if we do not want to (or cannot) combine DEF. */
982 static bool
983 can_combine_def_p (df_ref def)
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
989 unsigned int regno = DF_REF_REGNO (def);
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1001 return true;
1004 /* Return false if we do not want to (or cannot) combine USE. */
1005 static bool
1006 can_combine_use_p (df_ref use)
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1012 return true;
1015 /* Fill in log links field for all insns. */
1017 static void
1018 create_log_links (void)
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1036 FOR_EACH_BB_FN (bb, cfun)
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1046 FOR_EACH_INSN_DEF (def, insn)
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1051 if (!next_use[regno])
1052 continue;
1054 if (!can_combine_def_p (def))
1055 continue;
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1060 if (BLOCK_FOR_INSN (use_insn) != bb)
1061 continue;
1063 /* flow.c claimed:
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn)) >= 0)
1072 continue;
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1091 free (next_use);
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B.
1098 We also check the implicit dependency created by a cc0 setter/user
1099 pair. */
1101 static bool
1102 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, b)
1106 if (links->insn == a)
1107 return true;
1108 if (HAVE_cc0 && sets_cc0_p (a))
1109 return true;
1110 return false;
1113 /* Main entry point for combiner. F is the first insn of the function.
1114 NREGS is the first unused pseudo-reg number.
1116 Return nonzero if the combiner has turned an indirect jump
1117 instruction into a direct jump. */
1118 static int
1119 combine_instructions (rtx_insn *f, unsigned int nregs)
1121 rtx_insn *insn, *next;
1122 rtx_insn *prev;
1123 struct insn_link *links, *nextlinks;
1124 rtx_insn *first;
1125 basic_block last_bb;
1127 int new_direct_jump_p = 0;
1129 for (first = f; first && !INSN_P (first); )
1130 first = NEXT_INSN (first);
1131 if (!first)
1132 return 0;
1134 combine_attempts = 0;
1135 combine_merges = 0;
1136 combine_extras = 0;
1137 combine_successes = 0;
1139 rtl_hooks = combine_rtl_hooks;
1141 reg_stat.safe_grow_cleared (nregs);
1143 init_recog_no_volatile ();
1145 /* Allocate array for insn info. */
1146 max_uid_known = get_max_uid ();
1147 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1148 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1149 gcc_obstack_init (&insn_link_obstack);
1151 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1153 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1154 problems when, for example, we have j <<= 1 in a loop. */
1156 nonzero_sign_valid = 0;
1157 label_tick = label_tick_ebb_start = 1;
1159 /* Scan all SETs and see if we can deduce anything about what
1160 bits are known to be zero for some registers and how many copies
1161 of the sign bit are known to exist for those registers.
1163 Also set any known values so that we can use it while searching
1164 for what bits are known to be set. */
1166 setup_incoming_promotions (first);
1167 /* Allow the entry block and the first block to fall into the same EBB.
1168 Conceptually the incoming promotions are assigned to the entry block. */
1169 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1171 create_log_links ();
1172 FOR_EACH_BB_FN (this_basic_block, cfun)
1174 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1175 last_call_luid = 0;
1176 mem_last_set = -1;
1178 label_tick++;
1179 if (!single_pred_p (this_basic_block)
1180 || single_pred (this_basic_block) != last_bb)
1181 label_tick_ebb_start = label_tick;
1182 last_bb = this_basic_block;
1184 FOR_BB_INSNS (this_basic_block, insn)
1185 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1187 rtx links;
1189 subst_low_luid = DF_INSN_LUID (insn);
1190 subst_insn = insn;
1192 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1193 insn);
1194 record_dead_and_set_regs (insn);
1196 if (AUTO_INC_DEC)
1197 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1198 if (REG_NOTE_KIND (links) == REG_INC)
1199 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1200 insn);
1202 /* Record the current insn_rtx_cost of this instruction. */
1203 if (NONJUMP_INSN_P (insn))
1204 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1205 optimize_this_for_speed_p);
1206 if (dump_file)
1207 fprintf (dump_file, "insn_cost %d: %d\n",
1208 INSN_UID (insn), INSN_COST (insn));
1212 nonzero_sign_valid = 1;
1214 /* Now scan all the insns in forward order. */
1215 label_tick = label_tick_ebb_start = 1;
1216 init_reg_last ();
1217 setup_incoming_promotions (first);
1218 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1219 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1221 FOR_EACH_BB_FN (this_basic_block, cfun)
1223 rtx_insn *last_combined_insn = NULL;
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1228 label_tick++;
1229 if (!single_pred_p (this_basic_block)
1230 || single_pred (this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1243 while (last_combined_insn
1244 && last_combined_insn->deleted ())
1245 last_combined_insn = PREV_INSN (last_combined_insn);
1246 if (last_combined_insn == NULL_RTX
1247 || BARRIER_P (last_combined_insn)
1248 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1261 /* Try this insn with each insn it links back to. */
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1272 /* Try each sequence of three linked insns ending with this one. */
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1277 rtx_insn *link = links->insn;
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1294 /* Try to combine a jump insn that uses CC0
1295 with a preceding insn that sets CC0, and maybe with its
1296 logical predecessor as well.
1297 This is how we make decrement-and-branch insns.
1298 We need this special code because data flow connections
1299 via CC0 do not get entered in LOG_LINKS. */
1301 if (HAVE_cc0
1302 && JUMP_P (insn)
1303 && (prev = prev_nonnote_insn (insn)) != 0
1304 && NONJUMP_INSN_P (prev)
1305 && sets_cc0_p (PATTERN (prev)))
1307 if ((next = try_combine (insn, prev, NULL, NULL,
1308 &new_direct_jump_p,
1309 last_combined_insn)) != 0)
1310 goto retry;
1312 FOR_EACH_LOG_LINK (nextlinks, prev)
1313 if ((next = try_combine (insn, prev, nextlinks->insn,
1314 NULL, &new_direct_jump_p,
1315 last_combined_insn)) != 0)
1316 goto retry;
1319 /* Do the same for an insn that explicitly references CC0. */
1320 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1321 && (prev = prev_nonnote_insn (insn)) != 0
1322 && NONJUMP_INSN_P (prev)
1323 && sets_cc0_p (PATTERN (prev))
1324 && GET_CODE (PATTERN (insn)) == SET
1325 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1327 if ((next = try_combine (insn, prev, NULL, NULL,
1328 &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 goto retry;
1332 FOR_EACH_LOG_LINK (nextlinks, prev)
1333 if ((next = try_combine (insn, prev, nextlinks->insn,
1334 NULL, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1339 /* Finally, see if any of the insns that this insn links to
1340 explicitly references CC0. If so, try this insn, that insn,
1341 and its predecessor if it sets CC0. */
1342 if (HAVE_cc0)
1344 FOR_EACH_LOG_LINK (links, insn)
1345 if (NONJUMP_INSN_P (links->insn)
1346 && GET_CODE (PATTERN (links->insn)) == SET
1347 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1348 && (prev = prev_nonnote_insn (links->insn)) != 0
1349 && NONJUMP_INSN_P (prev)
1350 && sets_cc0_p (PATTERN (prev))
1351 && (next = try_combine (insn, links->insn,
1352 prev, NULL, &new_direct_jump_p,
1353 last_combined_insn)) != 0)
1354 goto retry;
1357 /* Try combining an insn with two different insns whose results it
1358 uses. */
1359 if (max_combine >= 3)
1360 FOR_EACH_LOG_LINK (links, insn)
1361 for (nextlinks = links->next; nextlinks;
1362 nextlinks = nextlinks->next)
1363 if ((next = try_combine (insn, links->insn,
1364 nextlinks->insn, NULL,
1365 &new_direct_jump_p,
1366 last_combined_insn)) != 0)
1369 statistics_counter_event (cfun, "three-insn combine", 1);
1370 goto retry;
1373 /* Try four-instruction combinations. */
1374 if (max_combine >= 4)
1375 FOR_EACH_LOG_LINK (links, insn)
1377 struct insn_link *next1;
1378 rtx_insn *link = links->insn;
1380 /* If the linked insn has been replaced by a note, then there
1381 is no point in pursuing this chain any further. */
1382 if (NOTE_P (link))
1383 continue;
1385 FOR_EACH_LOG_LINK (next1, link)
1387 rtx_insn *link1 = next1->insn;
1388 if (NOTE_P (link1))
1389 continue;
1390 /* I0 -> I1 -> I2 -> I3. */
1391 FOR_EACH_LOG_LINK (nextlinks, link1)
1392 if ((next = try_combine (insn, link, link1,
1393 nextlinks->insn,
1394 &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1397 statistics_counter_event (cfun, "four-insn combine", 1);
1398 goto retry;
1400 /* I0, I1 -> I2, I2 -> I3. */
1401 for (nextlinks = next1->next; nextlinks;
1402 nextlinks = nextlinks->next)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1413 for (next1 = links->next; next1; next1 = next1->next)
1415 rtx_insn *link1 = next1->insn;
1416 if (NOTE_P (link1))
1417 continue;
1418 /* I0 -> I2; I1, I2 -> I3. */
1419 FOR_EACH_LOG_LINK (nextlinks, link)
1420 if ((next = try_combine (insn, link, link1,
1421 nextlinks->insn,
1422 &new_direct_jump_p,
1423 last_combined_insn)) != 0)
1425 statistics_counter_event (cfun, "four-insn combine", 1);
1426 goto retry;
1428 /* I0 -> I1; I1, I2 -> I3. */
1429 FOR_EACH_LOG_LINK (nextlinks, link1)
1430 if ((next = try_combine (insn, link, link1,
1431 nextlinks->insn,
1432 &new_direct_jump_p,
1433 last_combined_insn)) != 0)
1435 statistics_counter_event (cfun, "four-insn combine", 1);
1436 goto retry;
1441 /* Try this insn with each REG_EQUAL note it links back to. */
1442 FOR_EACH_LOG_LINK (links, insn)
1444 rtx set, note;
1445 rtx_insn *temp = links->insn;
1446 if ((set = single_set (temp)) != 0
1447 && (note = find_reg_equal_equiv_note (temp)) != 0
1448 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1449 /* Avoid using a register that may already been marked
1450 dead by an earlier instruction. */
1451 && ! unmentioned_reg_p (note, SET_SRC (set))
1452 && (GET_MODE (note) == VOIDmode
1453 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1454 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1455 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1456 || (GET_MODE (XEXP (SET_DEST (set), 0))
1457 == GET_MODE (note))))))
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig_src = SET_SRC (set);
1463 rtx orig_dest = SET_DEST (set);
1464 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1465 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1466 SET_SRC (set) = note;
1467 i2mod = temp;
1468 i2mod_old_rhs = copy_rtx (orig_src);
1469 i2mod_new_rhs = copy_rtx (note);
1470 next = try_combine (insn, i2mod, NULL, NULL,
1471 &new_direct_jump_p,
1472 last_combined_insn);
1473 i2mod = NULL;
1474 if (next)
1476 statistics_counter_event (cfun, "insn-with-note combine", 1);
1477 goto retry;
1479 SET_SRC (set) = orig_src;
1480 SET_DEST (set) = orig_dest;
1484 if (!NOTE_P (insn))
1485 record_dead_and_set_regs (insn);
1487 retry:
1492 default_rtl_profile ();
1493 clear_bb_flags ();
1494 new_direct_jump_p |= purge_all_dead_edges ();
1495 delete_noop_moves ();
1497 /* Clean up. */
1498 obstack_free (&insn_link_obstack, NULL);
1499 free (uid_log_links);
1500 free (uid_insn_cost);
1501 reg_stat.release ();
1504 struct undo *undo, *next;
1505 for (undo = undobuf.frees; undo; undo = next)
1507 next = undo->next;
1508 free (undo);
1510 undobuf.frees = 0;
1513 total_attempts += combine_attempts;
1514 total_merges += combine_merges;
1515 total_extras += combine_extras;
1516 total_successes += combine_successes;
1518 nonzero_sign_valid = 0;
1519 rtl_hooks = general_rtl_hooks;
1521 /* Make recognizer allow volatile MEMs again. */
1522 init_recog ();
1524 return new_direct_jump_p;
1527 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1529 static void
1530 init_reg_last (void)
1532 unsigned int i;
1533 reg_stat_type *p;
1535 FOR_EACH_VEC_ELT (reg_stat, i, p)
1536 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1539 /* Set up any promoted values for incoming argument registers. */
1541 static void
1542 setup_incoming_promotions (rtx_insn *first)
1544 tree arg;
1545 bool strictly_local = false;
1547 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1548 arg = DECL_CHAIN (arg))
1550 rtx x, reg = DECL_INCOMING_RTL (arg);
1551 int uns1, uns3;
1552 machine_mode mode1, mode2, mode3, mode4;
1554 /* Only continue if the incoming argument is in a register. */
1555 if (!REG_P (reg))
1556 continue;
1558 /* Determine, if possible, whether all call sites of the current
1559 function lie within the current compilation unit. (This does
1560 take into account the exporting of a function via taking its
1561 address, and so forth.) */
1562 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1564 /* The mode and signedness of the argument before any promotions happen
1565 (equal to the mode of the pseudo holding it at that stage). */
1566 mode1 = TYPE_MODE (TREE_TYPE (arg));
1567 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1569 /* The mode and signedness of the argument after any source language and
1570 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1571 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1572 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1574 /* The mode and signedness of the argument as it is actually passed,
1575 see assign_parm_setup_reg in function.c. */
1576 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1577 TREE_TYPE (cfun->decl), 0);
1579 /* The mode of the register in which the argument is being passed. */
1580 mode4 = GET_MODE (reg);
1582 /* Eliminate sign extensions in the callee when:
1583 (a) A mode promotion has occurred; */
1584 if (mode1 == mode3)
1585 continue;
1586 /* (b) The mode of the register is the same as the mode of
1587 the argument as it is passed; */
1588 if (mode3 != mode4)
1589 continue;
1590 /* (c) There's no language level extension; */
1591 if (mode1 == mode2)
1593 /* (c.1) All callers are from the current compilation unit. If that's
1594 the case we don't have to rely on an ABI, we only have to know
1595 what we're generating right now, and we know that we will do the
1596 mode1 to mode2 promotion with the given sign. */
1597 else if (!strictly_local)
1598 continue;
1599 /* (c.2) The combination of the two promotions is useful. This is
1600 true when the signs match, or if the first promotion is unsigned.
1601 In the later case, (sign_extend (zero_extend x)) is the same as
1602 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1603 else if (uns1)
1604 uns3 = true;
1605 else if (uns3)
1606 continue;
1608 /* Record that the value was promoted from mode1 to mode3,
1609 so that any sign extension at the head of the current
1610 function may be eliminated. */
1611 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1612 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1613 record_value_for_reg (reg, first, x);
1617 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1618 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1619 because some machines (maybe most) will actually do the sign-extension and
1620 this is the conservative approach.
1622 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1623 kludge. */
1625 static rtx
1626 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1628 if (GET_MODE_PRECISION (mode) < prec
1629 && CONST_INT_P (src)
1630 && INTVAL (src) > 0
1631 && val_signbit_known_set_p (mode, INTVAL (src)))
1632 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1634 return src;
1637 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1638 and SET. */
1640 static void
1641 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1642 rtx x)
1644 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1645 unsigned HOST_WIDE_INT bits = 0;
1646 rtx reg_equal = NULL, src = SET_SRC (set);
1647 unsigned int num = 0;
1649 if (reg_equal_note)
1650 reg_equal = XEXP (reg_equal_note, 0);
1652 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1654 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1655 if (reg_equal)
1656 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1659 /* Don't call nonzero_bits if it cannot change anything. */
1660 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1662 bits = nonzero_bits (src, nonzero_bits_mode);
1663 if (reg_equal && bits)
1664 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1665 rsp->nonzero_bits |= bits;
1668 /* Don't call num_sign_bit_copies if it cannot change anything. */
1669 if (rsp->sign_bit_copies != 1)
1671 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1672 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1674 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1675 if (num == 0 || numeq > num)
1676 num = numeq;
1678 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1679 rsp->sign_bit_copies = num;
1683 /* Called via note_stores. If X is a pseudo that is narrower than
1684 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1686 If we are setting only a portion of X and we can't figure out what
1687 portion, assume all bits will be used since we don't know what will
1688 be happening.
1690 Similarly, set how many bits of X are known to be copies of the sign bit
1691 at all locations in the function. This is the smallest number implied
1692 by any set of X. */
1694 static void
1695 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1697 rtx_insn *insn = (rtx_insn *) data;
1699 if (REG_P (x)
1700 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1701 /* If this register is undefined at the start of the file, we can't
1702 say what its contents were. */
1703 && ! REGNO_REG_SET_P
1704 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1705 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1707 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1709 if (set == 0 || GET_CODE (set) == CLOBBER)
1711 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1712 rsp->sign_bit_copies = 1;
1713 return;
1716 /* If this register is being initialized using itself, and the
1717 register is uninitialized in this basic block, and there are
1718 no LOG_LINKS which set the register, then part of the
1719 register is uninitialized. In that case we can't assume
1720 anything about the number of nonzero bits.
1722 ??? We could do better if we checked this in
1723 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1724 could avoid making assumptions about the insn which initially
1725 sets the register, while still using the information in other
1726 insns. We would have to be careful to check every insn
1727 involved in the combination. */
1729 if (insn
1730 && reg_referenced_p (x, PATTERN (insn))
1731 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1732 REGNO (x)))
1734 struct insn_link *link;
1736 FOR_EACH_LOG_LINK (link, insn)
1737 if (dead_or_set_p (link->insn, x))
1738 break;
1739 if (!link)
1741 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1742 rsp->sign_bit_copies = 1;
1743 return;
1747 /* If this is a complex assignment, see if we can convert it into a
1748 simple assignment. */
1749 set = expand_field_assignment (set);
1751 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1752 set what we know about X. */
1754 if (SET_DEST (set) == x
1755 || (paradoxical_subreg_p (SET_DEST (set))
1756 && SUBREG_REG (SET_DEST (set)) == x))
1757 update_rsp_from_reg_equal (rsp, insn, set, x);
1758 else
1760 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1761 rsp->sign_bit_copies = 1;
1766 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1767 optionally insns that were previously combined into I3 or that will be
1768 combined into the merger of INSN and I3. The order is PRED, PRED2,
1769 INSN, SUCC, SUCC2, I3.
1771 Return 0 if the combination is not allowed for any reason.
1773 If the combination is allowed, *PDEST will be set to the single
1774 destination of INSN and *PSRC to the single source, and this function
1775 will return 1. */
1777 static int
1778 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1779 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1780 rtx *pdest, rtx *psrc)
1782 int i;
1783 const_rtx set = 0;
1784 rtx src, dest;
1785 rtx_insn *p;
1786 rtx link;
1787 bool all_adjacent = true;
1788 int (*is_volatile_p) (const_rtx);
1790 if (succ)
1792 if (succ2)
1794 if (next_active_insn (succ2) != i3)
1795 all_adjacent = false;
1796 if (next_active_insn (succ) != succ2)
1797 all_adjacent = false;
1799 else if (next_active_insn (succ) != i3)
1800 all_adjacent = false;
1801 if (next_active_insn (insn) != succ)
1802 all_adjacent = false;
1804 else if (next_active_insn (insn) != i3)
1805 all_adjacent = false;
1807 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1808 or a PARALLEL consisting of such a SET and CLOBBERs.
1810 If INSN has CLOBBER parallel parts, ignore them for our processing.
1811 By definition, these happen during the execution of the insn. When it
1812 is merged with another insn, all bets are off. If they are, in fact,
1813 needed and aren't also supplied in I3, they may be added by
1814 recog_for_combine. Otherwise, it won't match.
1816 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1817 note.
1819 Get the source and destination of INSN. If more than one, can't
1820 combine. */
1822 if (GET_CODE (PATTERN (insn)) == SET)
1823 set = PATTERN (insn);
1824 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1825 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1827 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1829 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1831 switch (GET_CODE (elt))
1833 /* This is important to combine floating point insns
1834 for the SH4 port. */
1835 case USE:
1836 /* Combining an isolated USE doesn't make sense.
1837 We depend here on combinable_i3pat to reject them. */
1838 /* The code below this loop only verifies that the inputs of
1839 the SET in INSN do not change. We call reg_set_between_p
1840 to verify that the REG in the USE does not change between
1841 I3 and INSN.
1842 If the USE in INSN was for a pseudo register, the matching
1843 insn pattern will likely match any register; combining this
1844 with any other USE would only be safe if we knew that the
1845 used registers have identical values, or if there was
1846 something to tell them apart, e.g. different modes. For
1847 now, we forgo such complicated tests and simply disallow
1848 combining of USES of pseudo registers with any other USE. */
1849 if (REG_P (XEXP (elt, 0))
1850 && GET_CODE (PATTERN (i3)) == PARALLEL)
1852 rtx i3pat = PATTERN (i3);
1853 int i = XVECLEN (i3pat, 0) - 1;
1854 unsigned int regno = REGNO (XEXP (elt, 0));
1858 rtx i3elt = XVECEXP (i3pat, 0, i);
1860 if (GET_CODE (i3elt) == USE
1861 && REG_P (XEXP (i3elt, 0))
1862 && (REGNO (XEXP (i3elt, 0)) == regno
1863 ? reg_set_between_p (XEXP (elt, 0),
1864 PREV_INSN (insn), i3)
1865 : regno >= FIRST_PSEUDO_REGISTER))
1866 return 0;
1868 while (--i >= 0);
1870 break;
1872 /* We can ignore CLOBBERs. */
1873 case CLOBBER:
1874 break;
1876 case SET:
1877 /* Ignore SETs whose result isn't used but not those that
1878 have side-effects. */
1879 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1880 && insn_nothrow_p (insn)
1881 && !side_effects_p (elt))
1882 break;
1884 /* If we have already found a SET, this is a second one and
1885 so we cannot combine with this insn. */
1886 if (set)
1887 return 0;
1889 set = elt;
1890 break;
1892 default:
1893 /* Anything else means we can't combine. */
1894 return 0;
1898 if (set == 0
1899 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1900 so don't do anything with it. */
1901 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1902 return 0;
1904 else
1905 return 0;
1907 if (set == 0)
1908 return 0;
1910 /* The simplification in expand_field_assignment may call back to
1911 get_last_value, so set safe guard here. */
1912 subst_low_luid = DF_INSN_LUID (insn);
1914 set = expand_field_assignment (set);
1915 src = SET_SRC (set), dest = SET_DEST (set);
1917 /* Do not eliminate user-specified register if it is in an
1918 asm input because we may break the register asm usage defined
1919 in GCC manual if allow to do so.
1920 Be aware that this may cover more cases than we expect but this
1921 should be harmless. */
1922 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1923 && extract_asm_operands (PATTERN (i3)))
1924 return 0;
1926 /* Don't eliminate a store in the stack pointer. */
1927 if (dest == stack_pointer_rtx
1928 /* Don't combine with an insn that sets a register to itself if it has
1929 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1930 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1931 /* Can't merge an ASM_OPERANDS. */
1932 || GET_CODE (src) == ASM_OPERANDS
1933 /* Can't merge a function call. */
1934 || GET_CODE (src) == CALL
1935 /* Don't eliminate a function call argument. */
1936 || (CALL_P (i3)
1937 && (find_reg_fusage (i3, USE, dest)
1938 || (REG_P (dest)
1939 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1940 && global_regs[REGNO (dest)])))
1941 /* Don't substitute into an incremented register. */
1942 || FIND_REG_INC_NOTE (i3, dest)
1943 || (succ && FIND_REG_INC_NOTE (succ, dest))
1944 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1945 /* Don't substitute into a non-local goto, this confuses CFG. */
1946 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1947 /* Make sure that DEST is not used after SUCC but before I3. */
1948 || (!all_adjacent
1949 && ((succ2
1950 && (reg_used_between_p (dest, succ2, i3)
1951 || reg_used_between_p (dest, succ, succ2)))
1952 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1953 /* Make sure that the value that is to be substituted for the register
1954 does not use any registers whose values alter in between. However,
1955 If the insns are adjacent, a use can't cross a set even though we
1956 think it might (this can happen for a sequence of insns each setting
1957 the same destination; last_set of that register might point to
1958 a NOTE). If INSN has a REG_EQUIV note, the register is always
1959 equivalent to the memory so the substitution is valid even if there
1960 are intervening stores. Also, don't move a volatile asm or
1961 UNSPEC_VOLATILE across any other insns. */
1962 || (! all_adjacent
1963 && (((!MEM_P (src)
1964 || ! find_reg_note (insn, REG_EQUIV, src))
1965 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1966 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1967 || GET_CODE (src) == UNSPEC_VOLATILE))
1968 /* Don't combine across a CALL_INSN, because that would possibly
1969 change whether the life span of some REGs crosses calls or not,
1970 and it is a pain to update that information.
1971 Exception: if source is a constant, moving it later can't hurt.
1972 Accept that as a special case. */
1973 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1974 return 0;
1976 /* DEST must either be a REG or CC0. */
1977 if (REG_P (dest))
1979 /* If register alignment is being enforced for multi-word items in all
1980 cases except for parameters, it is possible to have a register copy
1981 insn referencing a hard register that is not allowed to contain the
1982 mode being copied and which would not be valid as an operand of most
1983 insns. Eliminate this problem by not combining with such an insn.
1985 Also, on some machines we don't want to extend the life of a hard
1986 register. */
1988 if (REG_P (src)
1989 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1990 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1991 /* Don't extend the life of a hard register unless it is
1992 user variable (if we have few registers) or it can't
1993 fit into the desired register (meaning something special
1994 is going on).
1995 Also avoid substituting a return register into I3, because
1996 reload can't handle a conflict with constraints of other
1997 inputs. */
1998 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2000 return 0;
2002 else if (GET_CODE (dest) != CC0)
2003 return 0;
2006 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2007 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2008 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2010 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2012 /* If the clobber represents an earlyclobber operand, we must not
2013 substitute an expression containing the clobbered register.
2014 As we do not analyze the constraint strings here, we have to
2015 make the conservative assumption. However, if the register is
2016 a fixed hard reg, the clobber cannot represent any operand;
2017 we leave it up to the machine description to either accept or
2018 reject use-and-clobber patterns. */
2019 if (!REG_P (reg)
2020 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2021 || !fixed_regs[REGNO (reg)])
2022 if (reg_overlap_mentioned_p (reg, src))
2023 return 0;
2026 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2027 or not), reject, unless nothing volatile comes between it and I3 */
2029 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2031 /* Make sure neither succ nor succ2 contains a volatile reference. */
2032 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2033 return 0;
2034 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2035 return 0;
2036 /* We'll check insns between INSN and I3 below. */
2039 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2040 to be an explicit register variable, and was chosen for a reason. */
2042 if (GET_CODE (src) == ASM_OPERANDS
2043 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2044 return 0;
2046 /* If INSN contains volatile references (specifically volatile MEMs),
2047 we cannot combine across any other volatile references.
2048 Even if INSN doesn't contain volatile references, any intervening
2049 volatile insn might affect machine state. */
2051 is_volatile_p = volatile_refs_p (PATTERN (insn))
2052 ? volatile_refs_p
2053 : volatile_insn_p;
2055 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2056 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2057 return 0;
2059 /* If INSN contains an autoincrement or autodecrement, make sure that
2060 register is not used between there and I3, and not already used in
2061 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2062 Also insist that I3 not be a jump; if it were one
2063 and the incremented register were spilled, we would lose. */
2065 if (AUTO_INC_DEC)
2066 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2067 if (REG_NOTE_KIND (link) == REG_INC
2068 && (JUMP_P (i3)
2069 || reg_used_between_p (XEXP (link, 0), insn, i3)
2070 || (pred != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2072 || (pred2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2074 || (succ != NULL_RTX
2075 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2076 || (succ2 != NULL_RTX
2077 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2078 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2079 return 0;
2081 /* Don't combine an insn that follows a CC0-setting insn.
2082 An insn that uses CC0 must not be separated from the one that sets it.
2083 We do, however, allow I2 to follow a CC0-setting insn if that insn
2084 is passed as I1; in that case it will be deleted also.
2085 We also allow combining in this case if all the insns are adjacent
2086 because that would leave the two CC0 insns adjacent as well.
2087 It would be more logical to test whether CC0 occurs inside I1 or I2,
2088 but that would be much slower, and this ought to be equivalent. */
2090 if (HAVE_cc0)
2092 p = prev_nonnote_insn (insn);
2093 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2094 && ! all_adjacent)
2095 return 0;
2098 /* If we get here, we have passed all the tests and the combination is
2099 to be allowed. */
2101 *pdest = dest;
2102 *psrc = src;
2104 return 1;
2107 /* LOC is the location within I3 that contains its pattern or the component
2108 of a PARALLEL of the pattern. We validate that it is valid for combining.
2110 One problem is if I3 modifies its output, as opposed to replacing it
2111 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2112 doing so would produce an insn that is not equivalent to the original insns.
2114 Consider:
2116 (set (reg:DI 101) (reg:DI 100))
2117 (set (subreg:SI (reg:DI 101) 0) <foo>)
2119 This is NOT equivalent to:
2121 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2122 (set (reg:DI 101) (reg:DI 100))])
2124 Not only does this modify 100 (in which case it might still be valid
2125 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2127 We can also run into a problem if I2 sets a register that I1
2128 uses and I1 gets directly substituted into I3 (not via I2). In that
2129 case, we would be getting the wrong value of I2DEST into I3, so we
2130 must reject the combination. This case occurs when I2 and I1 both
2131 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2132 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2133 of a SET must prevent combination from occurring. The same situation
2134 can occur for I0, in which case I0_NOT_IN_SRC is set.
2136 Before doing the above check, we first try to expand a field assignment
2137 into a set of logical operations.
2139 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2140 we place a register that is both set and used within I3. If more than one
2141 such register is detected, we fail.
2143 Return 1 if the combination is valid, zero otherwise. */
2145 static int
2146 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2147 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2149 rtx x = *loc;
2151 if (GET_CODE (x) == SET)
2153 rtx set = x ;
2154 rtx dest = SET_DEST (set);
2155 rtx src = SET_SRC (set);
2156 rtx inner_dest = dest;
2157 rtx subdest;
2159 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2160 || GET_CODE (inner_dest) == SUBREG
2161 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2162 inner_dest = XEXP (inner_dest, 0);
2164 /* Check for the case where I3 modifies its output, as discussed
2165 above. We don't want to prevent pseudos from being combined
2166 into the address of a MEM, so only prevent the combination if
2167 i1 or i2 set the same MEM. */
2168 if ((inner_dest != dest &&
2169 (!MEM_P (inner_dest)
2170 || rtx_equal_p (i2dest, inner_dest)
2171 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2172 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2173 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2174 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2175 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2177 /* This is the same test done in can_combine_p except we can't test
2178 all_adjacent; we don't have to, since this instruction will stay
2179 in place, thus we are not considering increasing the lifetime of
2180 INNER_DEST.
2182 Also, if this insn sets a function argument, combining it with
2183 something that might need a spill could clobber a previous
2184 function argument; the all_adjacent test in can_combine_p also
2185 checks this; here, we do a more specific test for this case. */
2187 || (REG_P (inner_dest)
2188 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2189 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2190 GET_MODE (inner_dest))))
2191 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2192 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2193 return 0;
2195 /* If DEST is used in I3, it is being killed in this insn, so
2196 record that for later. We have to consider paradoxical
2197 subregs here, since they kill the whole register, but we
2198 ignore partial subregs, STRICT_LOW_PART, etc.
2199 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2200 STACK_POINTER_REGNUM, since these are always considered to be
2201 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2202 subdest = dest;
2203 if (GET_CODE (subdest) == SUBREG
2204 && (GET_MODE_SIZE (GET_MODE (subdest))
2205 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2206 subdest = SUBREG_REG (subdest);
2207 if (pi3dest_killed
2208 && REG_P (subdest)
2209 && reg_referenced_p (subdest, PATTERN (i3))
2210 && REGNO (subdest) != FRAME_POINTER_REGNUM
2211 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2212 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2213 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2214 || (REGNO (subdest) != ARG_POINTER_REGNUM
2215 || ! fixed_regs [REGNO (subdest)]))
2216 && REGNO (subdest) != STACK_POINTER_REGNUM)
2218 if (*pi3dest_killed)
2219 return 0;
2221 *pi3dest_killed = subdest;
2225 else if (GET_CODE (x) == PARALLEL)
2227 int i;
2229 for (i = 0; i < XVECLEN (x, 0); i++)
2230 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2231 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2232 return 0;
2235 return 1;
2238 /* Return 1 if X is an arithmetic expression that contains a multiplication
2239 and division. We don't count multiplications by powers of two here. */
2241 static int
2242 contains_muldiv (rtx x)
2244 switch (GET_CODE (x))
2246 case MOD: case DIV: case UMOD: case UDIV:
2247 return 1;
2249 case MULT:
2250 return ! (CONST_INT_P (XEXP (x, 1))
2251 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2252 default:
2253 if (BINARY_P (x))
2254 return contains_muldiv (XEXP (x, 0))
2255 || contains_muldiv (XEXP (x, 1));
2257 if (UNARY_P (x))
2258 return contains_muldiv (XEXP (x, 0));
2260 return 0;
2264 /* Determine whether INSN can be used in a combination. Return nonzero if
2265 not. This is used in try_combine to detect early some cases where we
2266 can't perform combinations. */
2268 static int
2269 cant_combine_insn_p (rtx_insn *insn)
2271 rtx set;
2272 rtx src, dest;
2274 /* If this isn't really an insn, we can't do anything.
2275 This can occur when flow deletes an insn that it has merged into an
2276 auto-increment address. */
2277 if (! INSN_P (insn))
2278 return 1;
2280 /* Never combine loads and stores involving hard regs that are likely
2281 to be spilled. The register allocator can usually handle such
2282 reg-reg moves by tying. If we allow the combiner to make
2283 substitutions of likely-spilled regs, reload might die.
2284 As an exception, we allow combinations involving fixed regs; these are
2285 not available to the register allocator so there's no risk involved. */
2287 set = single_set (insn);
2288 if (! set)
2289 return 0;
2290 src = SET_SRC (set);
2291 dest = SET_DEST (set);
2292 if (GET_CODE (src) == SUBREG)
2293 src = SUBREG_REG (src);
2294 if (GET_CODE (dest) == SUBREG)
2295 dest = SUBREG_REG (dest);
2296 if (REG_P (src) && REG_P (dest)
2297 && ((HARD_REGISTER_P (src)
2298 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2300 || (HARD_REGISTER_P (dest)
2301 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2302 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2303 return 1;
2305 return 0;
2308 struct likely_spilled_retval_info
2310 unsigned regno, nregs;
2311 unsigned mask;
2314 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2315 hard registers that are known to be written to / clobbered in full. */
2316 static void
2317 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2319 struct likely_spilled_retval_info *const info =
2320 (struct likely_spilled_retval_info *) data;
2321 unsigned regno, nregs;
2322 unsigned new_mask;
2324 if (!REG_P (XEXP (set, 0)))
2325 return;
2326 regno = REGNO (x);
2327 if (regno >= info->regno + info->nregs)
2328 return;
2329 nregs = REG_NREGS (x);
2330 if (regno + nregs <= info->regno)
2331 return;
2332 new_mask = (2U << (nregs - 1)) - 1;
2333 if (regno < info->regno)
2334 new_mask >>= info->regno - regno;
2335 else
2336 new_mask <<= regno - info->regno;
2337 info->mask &= ~new_mask;
2340 /* Return nonzero iff part of the return value is live during INSN, and
2341 it is likely spilled. This can happen when more than one insn is needed
2342 to copy the return value, e.g. when we consider to combine into the
2343 second copy insn for a complex value. */
2345 static int
2346 likely_spilled_retval_p (rtx_insn *insn)
2348 rtx_insn *use = BB_END (this_basic_block);
2349 rtx reg;
2350 rtx_insn *p;
2351 unsigned regno, nregs;
2352 /* We assume here that no machine mode needs more than
2353 32 hard registers when the value overlaps with a register
2354 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2355 unsigned mask;
2356 struct likely_spilled_retval_info info;
2358 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2359 return 0;
2360 reg = XEXP (PATTERN (use), 0);
2361 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2362 return 0;
2363 regno = REGNO (reg);
2364 nregs = REG_NREGS (reg);
2365 if (nregs == 1)
2366 return 0;
2367 mask = (2U << (nregs - 1)) - 1;
2369 /* Disregard parts of the return value that are set later. */
2370 info.regno = regno;
2371 info.nregs = nregs;
2372 info.mask = mask;
2373 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2374 if (INSN_P (p))
2375 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2376 mask = info.mask;
2378 /* Check if any of the (probably) live return value registers is
2379 likely spilled. */
2380 nregs --;
2383 if ((mask & 1 << nregs)
2384 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2385 return 1;
2386 } while (nregs--);
2387 return 0;
2390 /* Adjust INSN after we made a change to its destination.
2392 Changing the destination can invalidate notes that say something about
2393 the results of the insn and a LOG_LINK pointing to the insn. */
2395 static void
2396 adjust_for_new_dest (rtx_insn *insn)
2398 /* For notes, be conservative and simply remove them. */
2399 remove_reg_equal_equiv_notes (insn);
2401 /* The new insn will have a destination that was previously the destination
2402 of an insn just above it. Call distribute_links to make a LOG_LINK from
2403 the next use of that destination. */
2405 rtx set = single_set (insn);
2406 gcc_assert (set);
2408 rtx reg = SET_DEST (set);
2410 while (GET_CODE (reg) == ZERO_EXTRACT
2411 || GET_CODE (reg) == STRICT_LOW_PART
2412 || GET_CODE (reg) == SUBREG)
2413 reg = XEXP (reg, 0);
2414 gcc_assert (REG_P (reg));
2416 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2418 df_insn_rescan (insn);
2421 /* Return TRUE if combine can reuse reg X in mode MODE.
2422 ADDED_SETS is nonzero if the original set is still required. */
2423 static bool
2424 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2426 unsigned int regno;
2428 if (!REG_P (x))
2429 return false;
2431 regno = REGNO (x);
2432 /* Allow hard registers if the new mode is legal, and occupies no more
2433 registers than the old mode. */
2434 if (regno < FIRST_PSEUDO_REGISTER)
2435 return (HARD_REGNO_MODE_OK (regno, mode)
2436 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2438 /* Or a pseudo that is only used once. */
2439 return (regno < reg_n_sets_max
2440 && REG_N_SETS (regno) == 1
2441 && !added_sets
2442 && !REG_USERVAR_P (x));
2446 /* Check whether X, the destination of a set, refers to part of
2447 the register specified by REG. */
2449 static bool
2450 reg_subword_p (rtx x, rtx reg)
2452 /* Check that reg is an integer mode register. */
2453 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2454 return false;
2456 if (GET_CODE (x) == STRICT_LOW_PART
2457 || GET_CODE (x) == ZERO_EXTRACT)
2458 x = XEXP (x, 0);
2460 return GET_CODE (x) == SUBREG
2461 && SUBREG_REG (x) == reg
2462 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2465 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2466 Note that the INSN should be deleted *after* removing dead edges, so
2467 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2468 but not for a (set (pc) (label_ref FOO)). */
2470 static void
2471 update_cfg_for_uncondjump (rtx_insn *insn)
2473 basic_block bb = BLOCK_FOR_INSN (insn);
2474 gcc_assert (BB_END (bb) == insn);
2476 purge_dead_edges (bb);
2478 delete_insn (insn);
2479 if (EDGE_COUNT (bb->succs) == 1)
2481 rtx_insn *insn;
2483 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2485 /* Remove barriers from the footer if there are any. */
2486 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2487 if (BARRIER_P (insn))
2489 if (PREV_INSN (insn))
2490 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2491 else
2492 BB_FOOTER (bb) = NEXT_INSN (insn);
2493 if (NEXT_INSN (insn))
2494 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2496 else if (LABEL_P (insn))
2497 break;
2501 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2502 by an arbitrary number of CLOBBERs. */
2503 static bool
2504 is_parallel_of_n_reg_sets (rtx pat, int n)
2506 if (GET_CODE (pat) != PARALLEL)
2507 return false;
2509 int len = XVECLEN (pat, 0);
2510 if (len < n)
2511 return false;
2513 int i;
2514 for (i = 0; i < n; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2516 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2517 return false;
2518 for ( ; i < len; i++)
2519 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2520 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2521 return false;
2523 return true;
2526 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2527 CLOBBERs), can be split into individual SETs in that order, without
2528 changing semantics. */
2529 static bool
2530 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2532 if (!insn_nothrow_p (insn))
2533 return false;
2535 rtx pat = PATTERN (insn);
2537 int i, j;
2538 for (i = 0; i < n; i++)
2540 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2541 return false;
2543 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2545 for (j = i + 1; j < n; j++)
2546 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2547 return false;
2550 return true;
2553 /* Try to combine the insns I0, I1 and I2 into I3.
2554 Here I0, I1 and I2 appear earlier than I3.
2555 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2558 If we are combining more than two insns and the resulting insn is not
2559 recognized, try splitting it into two insns. If that happens, I2 and I3
2560 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2561 Otherwise, I0, I1 and I2 are pseudo-deleted.
2563 Return 0 if the combination does not work. Then nothing is changed.
2564 If we did the combination, return the insn at which combine should
2565 resume scanning.
2567 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2568 new direct jump instruction.
2570 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2571 been I3 passed to an earlier try_combine within the same basic
2572 block. */
2574 static rtx_insn *
2575 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2576 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2578 /* New patterns for I3 and I2, respectively. */
2579 rtx newpat, newi2pat = 0;
2580 rtvec newpat_vec_with_clobbers = 0;
2581 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2582 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2583 dead. */
2584 int added_sets_0, added_sets_1, added_sets_2;
2585 /* Total number of SETs to put into I3. */
2586 int total_sets;
2587 /* Nonzero if I2's or I1's body now appears in I3. */
2588 int i2_is_used = 0, i1_is_used = 0;
2589 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2590 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2591 /* Contains I3 if the destination of I3 is used in its source, which means
2592 that the old life of I3 is being killed. If that usage is placed into
2593 I2 and not in I3, a REG_DEAD note must be made. */
2594 rtx i3dest_killed = 0;
2595 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2596 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2597 /* Copy of SET_SRC of I1 and I0, if needed. */
2598 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2599 /* Set if I2DEST was reused as a scratch register. */
2600 bool i2scratch = false;
2601 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2602 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2603 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2604 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2605 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2606 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2607 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2608 /* Notes that must be added to REG_NOTES in I3 and I2. */
2609 rtx new_i3_notes, new_i2_notes;
2610 /* Notes that we substituted I3 into I2 instead of the normal case. */
2611 int i3_subst_into_i2 = 0;
2612 /* Notes that I1, I2 or I3 is a MULT operation. */
2613 int have_mult = 0;
2614 int swap_i2i3 = 0;
2615 int changed_i3_dest = 0;
2617 int maxreg;
2618 rtx_insn *temp_insn;
2619 rtx temp_expr;
2620 struct insn_link *link;
2621 rtx other_pat = 0;
2622 rtx new_other_notes;
2623 int i;
2625 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2626 never be). */
2627 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2628 return 0;
2630 /* Only try four-insn combinations when there's high likelihood of
2631 success. Look for simple insns, such as loads of constants or
2632 binary operations involving a constant. */
2633 if (i0)
2635 int i;
2636 int ngood = 0;
2637 int nshift = 0;
2638 rtx set0, set3;
2640 if (!flag_expensive_optimizations)
2641 return 0;
2643 for (i = 0; i < 4; i++)
2645 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2646 rtx set = single_set (insn);
2647 rtx src;
2648 if (!set)
2649 continue;
2650 src = SET_SRC (set);
2651 if (CONSTANT_P (src))
2653 ngood += 2;
2654 break;
2656 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2657 ngood++;
2658 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2659 || GET_CODE (src) == LSHIFTRT)
2660 nshift++;
2663 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2664 are likely manipulating its value. Ideally we'll be able to combine
2665 all four insns into a bitfield insertion of some kind.
2667 Note the source in I0 might be inside a sign/zero extension and the
2668 memory modes in I0 and I3 might be different. So extract the address
2669 from the destination of I3 and search for it in the source of I0.
2671 In the event that there's a match but the source/dest do not actually
2672 refer to the same memory, the worst that happens is we try some
2673 combinations that we wouldn't have otherwise. */
2674 if ((set0 = single_set (i0))
2675 /* Ensure the source of SET0 is a MEM, possibly buried inside
2676 an extension. */
2677 && (GET_CODE (SET_SRC (set0)) == MEM
2678 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2679 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2680 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2681 && (set3 = single_set (i3))
2682 /* Ensure the destination of SET3 is a MEM. */
2683 && GET_CODE (SET_DEST (set3)) == MEM
2684 /* Would it be better to extract the base address for the MEM
2685 in SET3 and look for that? I don't have cases where it matters
2686 but I could envision such cases. */
2687 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2688 ngood += 2;
2690 if (ngood < 2 && nshift < 2)
2691 return 0;
2694 /* Exit early if one of the insns involved can't be used for
2695 combinations. */
2696 if (CALL_P (i2)
2697 || (i1 && CALL_P (i1))
2698 || (i0 && CALL_P (i0))
2699 || cant_combine_insn_p (i3)
2700 || cant_combine_insn_p (i2)
2701 || (i1 && cant_combine_insn_p (i1))
2702 || (i0 && cant_combine_insn_p (i0))
2703 || likely_spilled_retval_p (i3))
2704 return 0;
2706 combine_attempts++;
2707 undobuf.other_insn = 0;
2709 /* Reset the hard register usage information. */
2710 CLEAR_HARD_REG_SET (newpat_used_regs);
2712 if (dump_file && (dump_flags & TDF_DETAILS))
2714 if (i0)
2715 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2716 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2717 else if (i1)
2718 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2719 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2720 else
2721 fprintf (dump_file, "\nTrying %d -> %d:\n",
2722 INSN_UID (i2), INSN_UID (i3));
2725 /* If multiple insns feed into one of I2 or I3, they can be in any
2726 order. To simplify the code below, reorder them in sequence. */
2727 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2728 std::swap (i0, i2);
2729 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2730 std::swap (i0, i1);
2731 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2732 std::swap (i1, i2);
2734 added_links_insn = 0;
2736 /* First check for one important special case that the code below will
2737 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2738 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2739 we may be able to replace that destination with the destination of I3.
2740 This occurs in the common code where we compute both a quotient and
2741 remainder into a structure, in which case we want to do the computation
2742 directly into the structure to avoid register-register copies.
2744 Note that this case handles both multiple sets in I2 and also cases
2745 where I2 has a number of CLOBBERs inside the PARALLEL.
2747 We make very conservative checks below and only try to handle the
2748 most common cases of this. For example, we only handle the case
2749 where I2 and I3 are adjacent to avoid making difficult register
2750 usage tests. */
2752 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2753 && REG_P (SET_SRC (PATTERN (i3)))
2754 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2755 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2756 && GET_CODE (PATTERN (i2)) == PARALLEL
2757 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2758 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2759 below would need to check what is inside (and reg_overlap_mentioned_p
2760 doesn't support those codes anyway). Don't allow those destinations;
2761 the resulting insn isn't likely to be recognized anyway. */
2762 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2763 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2764 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2765 SET_DEST (PATTERN (i3)))
2766 && next_active_insn (i2) == i3)
2768 rtx p2 = PATTERN (i2);
2770 /* Make sure that the destination of I3,
2771 which we are going to substitute into one output of I2,
2772 is not used within another output of I2. We must avoid making this:
2773 (parallel [(set (mem (reg 69)) ...)
2774 (set (reg 69) ...)])
2775 which is not well-defined as to order of actions.
2776 (Besides, reload can't handle output reloads for this.)
2778 The problem can also happen if the dest of I3 is a memory ref,
2779 if another dest in I2 is an indirect memory ref. */
2780 for (i = 0; i < XVECLEN (p2, 0); i++)
2781 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2782 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2783 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2784 SET_DEST (XVECEXP (p2, 0, i))))
2785 break;
2787 /* Make sure this PARALLEL is not an asm. We do not allow combining
2788 that usually (see can_combine_p), so do not here either. */
2789 for (i = 0; i < XVECLEN (p2, 0); i++)
2790 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2791 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2792 break;
2794 if (i == XVECLEN (p2, 0))
2795 for (i = 0; i < XVECLEN (p2, 0); i++)
2796 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2797 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2799 combine_merges++;
2801 subst_insn = i3;
2802 subst_low_luid = DF_INSN_LUID (i2);
2804 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2805 i2src = SET_SRC (XVECEXP (p2, 0, i));
2806 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2807 i2dest_killed = dead_or_set_p (i2, i2dest);
2809 /* Replace the dest in I2 with our dest and make the resulting
2810 insn the new pattern for I3. Then skip to where we validate
2811 the pattern. Everything was set up above. */
2812 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2813 newpat = p2;
2814 i3_subst_into_i2 = 1;
2815 goto validate_replacement;
2819 /* If I2 is setting a pseudo to a constant and I3 is setting some
2820 sub-part of it to another constant, merge them by making a new
2821 constant. */
2822 if (i1 == 0
2823 && (temp_expr = single_set (i2)) != 0
2824 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2825 && GET_CODE (PATTERN (i3)) == SET
2826 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2827 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2829 rtx dest = SET_DEST (PATTERN (i3));
2830 int offset = -1;
2831 int width = 0;
2833 if (GET_CODE (dest) == ZERO_EXTRACT)
2835 if (CONST_INT_P (XEXP (dest, 1))
2836 && CONST_INT_P (XEXP (dest, 2)))
2838 width = INTVAL (XEXP (dest, 1));
2839 offset = INTVAL (XEXP (dest, 2));
2840 dest = XEXP (dest, 0);
2841 if (BITS_BIG_ENDIAN)
2842 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2845 else
2847 if (GET_CODE (dest) == STRICT_LOW_PART)
2848 dest = XEXP (dest, 0);
2849 width = GET_MODE_PRECISION (GET_MODE (dest));
2850 offset = 0;
2853 if (offset >= 0)
2855 /* If this is the low part, we're done. */
2856 if (subreg_lowpart_p (dest))
2858 /* Handle the case where inner is twice the size of outer. */
2859 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2860 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2861 offset += GET_MODE_PRECISION (GET_MODE (dest));
2862 /* Otherwise give up for now. */
2863 else
2864 offset = -1;
2867 if (offset >= 0)
2869 rtx inner = SET_SRC (PATTERN (i3));
2870 rtx outer = SET_SRC (temp_expr);
2872 wide_int o
2873 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2874 std::make_pair (inner, GET_MODE (dest)),
2875 offset, width);
2877 combine_merges++;
2878 subst_insn = i3;
2879 subst_low_luid = DF_INSN_LUID (i2);
2880 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2881 i2dest = SET_DEST (temp_expr);
2882 i2dest_killed = dead_or_set_p (i2, i2dest);
2884 /* Replace the source in I2 with the new constant and make the
2885 resulting insn the new pattern for I3. Then skip to where we
2886 validate the pattern. Everything was set up above. */
2887 SUBST (SET_SRC (temp_expr),
2888 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2890 newpat = PATTERN (i2);
2892 /* The dest of I3 has been replaced with the dest of I2. */
2893 changed_i3_dest = 1;
2894 goto validate_replacement;
2898 /* If we have no I1 and I2 looks like:
2899 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2900 (set Y OP)])
2901 make up a dummy I1 that is
2902 (set Y OP)
2903 and change I2 to be
2904 (set (reg:CC X) (compare:CC Y (const_int 0)))
2906 (We can ignore any trailing CLOBBERs.)
2908 This undoes a previous combination and allows us to match a branch-and-
2909 decrement insn. */
2911 if (!HAVE_cc0 && i1 == 0
2912 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2913 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2914 == MODE_CC)
2915 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2916 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2917 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2918 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2919 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2920 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2928 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2929 -1, NULL_RTX);
2930 INSN_UID (i1) = INSN_UID (i2);
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2933 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2934 SET_DEST (PATTERN (i1)));
2935 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2936 SUBST_LINK (LOG_LINKS (i2),
2937 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2940 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2941 make those two SETs separate I1 and I2 insns, and make an I0 that is
2942 the original I1. */
2943 if (!HAVE_cc0 && i0 == 0
2944 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2945 && can_split_parallel_of_n_reg_sets (i2, 2)
2946 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2949 /* If there is no I1, there is no I0 either. */
2950 i0 = i1;
2952 /* We make I1 with the same INSN_UID as I2. This gives it
2953 the same DF_INSN_LUID for value tracking. Our fake I1 will
2954 never appear in the insn stream so giving it the same INSN_UID
2955 as I2 will not cause a problem. */
2957 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2958 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2959 -1, NULL_RTX);
2960 INSN_UID (i1) = INSN_UID (i2);
2962 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2965 /* Verify that I2 and I1 are valid for combining. */
2966 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2967 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2968 &i1dest, &i1src))
2969 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2970 &i0dest, &i0src)))
2972 undo_all ();
2973 return 0;
2976 /* Record whether I2DEST is used in I2SRC and similarly for the other
2977 cases. Knowing this will help in register status updating below. */
2978 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2979 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2980 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2981 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2982 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2983 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2984 i2dest_killed = dead_or_set_p (i2, i2dest);
2985 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2986 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2988 /* For the earlier insns, determine which of the subsequent ones they
2989 feed. */
2990 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2991 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2992 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2993 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2994 && reg_overlap_mentioned_p (i0dest, i2src))));
2996 /* Ensure that I3's pattern can be the destination of combines. */
2997 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2998 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2999 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3000 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3001 &i3dest_killed))
3003 undo_all ();
3004 return 0;
3007 /* See if any of the insns is a MULT operation. Unless one is, we will
3008 reject a combination that is, since it must be slower. Be conservative
3009 here. */
3010 if (GET_CODE (i2src) == MULT
3011 || (i1 != 0 && GET_CODE (i1src) == MULT)
3012 || (i0 != 0 && GET_CODE (i0src) == MULT)
3013 || (GET_CODE (PATTERN (i3)) == SET
3014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3015 have_mult = 1;
3017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3018 We used to do this EXCEPT in one case: I3 has a post-inc in an
3019 output operand. However, that exception can give rise to insns like
3020 mov r3,(r3)+
3021 which is a famous insn on the PDP-11 where the value of r3 used as the
3022 source was model-dependent. Avoid this sort of thing. */
3024 #if 0
3025 if (!(GET_CODE (PATTERN (i3)) == SET
3026 && REG_P (SET_SRC (PATTERN (i3)))
3027 && MEM_P (SET_DEST (PATTERN (i3)))
3028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3030 /* It's not the exception. */
3031 #endif
3032 if (AUTO_INC_DEC)
3034 rtx link;
3035 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3036 if (REG_NOTE_KIND (link) == REG_INC
3037 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3038 || (i1 != 0
3039 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3041 undo_all ();
3042 return 0;
3046 /* See if the SETs in I1 or I2 need to be kept around in the merged
3047 instruction: whenever the value set there is still needed past I3.
3048 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3050 For the SET in I1, we have two cases: if I1 and I2 independently feed
3051 into I3, the set in I1 needs to be kept around unless I1DEST dies
3052 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3053 in I1 needs to be kept around unless I1DEST dies or is set in either
3054 I2 or I3. The same considerations apply to I0. */
3056 added_sets_2 = !dead_or_set_p (i3, i2dest);
3058 if (i1)
3059 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3060 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3061 else
3062 added_sets_1 = 0;
3064 if (i0)
3065 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3066 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3067 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3068 && dead_or_set_p (i2, i0dest)));
3069 else
3070 added_sets_0 = 0;
3072 /* We are about to copy insns for the case where they need to be kept
3073 around. Check that they can be copied in the merged instruction. */
3075 if (targetm.cannot_copy_insn_p
3076 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3077 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3078 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3080 undo_all ();
3081 return 0;
3084 /* If the set in I2 needs to be kept around, we must make a copy of
3085 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3086 PATTERN (I2), we are only substituting for the original I1DEST, not into
3087 an already-substituted copy. This also prevents making self-referential
3088 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3089 I2DEST. */
3091 if (added_sets_2)
3093 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3094 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3095 else
3096 i2pat = copy_rtx (PATTERN (i2));
3099 if (added_sets_1)
3101 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3102 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3103 else
3104 i1pat = copy_rtx (PATTERN (i1));
3107 if (added_sets_0)
3109 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3110 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3111 else
3112 i0pat = copy_rtx (PATTERN (i0));
3115 combine_merges++;
3117 /* Substitute in the latest insn for the regs set by the earlier ones. */
3119 maxreg = max_reg_num ();
3121 subst_insn = i3;
3123 /* Many machines that don't use CC0 have insns that can both perform an
3124 arithmetic operation and set the condition code. These operations will
3125 be represented as a PARALLEL with the first element of the vector
3126 being a COMPARE of an arithmetic operation with the constant zero.
3127 The second element of the vector will set some pseudo to the result
3128 of the same arithmetic operation. If we simplify the COMPARE, we won't
3129 match such a pattern and so will generate an extra insn. Here we test
3130 for this case, where both the comparison and the operation result are
3131 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3132 I2SRC. Later we will make the PARALLEL that contains I2. */
3134 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3135 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3136 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3137 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3139 rtx newpat_dest;
3140 rtx *cc_use_loc = NULL;
3141 rtx_insn *cc_use_insn = NULL;
3142 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3143 machine_mode compare_mode, orig_compare_mode;
3144 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3146 newpat = PATTERN (i3);
3147 newpat_dest = SET_DEST (newpat);
3148 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3150 if (undobuf.other_insn == 0
3151 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3152 &cc_use_insn)))
3154 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3155 compare_code = simplify_compare_const (compare_code,
3156 GET_MODE (i2dest), op0, &op1);
3157 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3160 /* Do the rest only if op1 is const0_rtx, which may be the
3161 result of simplification. */
3162 if (op1 == const0_rtx)
3164 /* If a single use of the CC is found, prepare to modify it
3165 when SELECT_CC_MODE returns a new CC-class mode, or when
3166 the above simplify_compare_const() returned a new comparison
3167 operator. undobuf.other_insn is assigned the CC use insn
3168 when modifying it. */
3169 if (cc_use_loc)
3171 #ifdef SELECT_CC_MODE
3172 machine_mode new_mode
3173 = SELECT_CC_MODE (compare_code, op0, op1);
3174 if (new_mode != orig_compare_mode
3175 && can_change_dest_mode (SET_DEST (newpat),
3176 added_sets_2, new_mode))
3178 unsigned int regno = REGNO (newpat_dest);
3179 compare_mode = new_mode;
3180 if (regno < FIRST_PSEUDO_REGISTER)
3181 newpat_dest = gen_rtx_REG (compare_mode, regno);
3182 else
3184 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3185 newpat_dest = regno_reg_rtx[regno];
3188 #endif
3189 /* Cases for modifying the CC-using comparison. */
3190 if (compare_code != orig_compare_code
3191 /* ??? Do we need to verify the zero rtx? */
3192 && XEXP (*cc_use_loc, 1) == const0_rtx)
3194 /* Replace cc_use_loc with entire new RTX. */
3195 SUBST (*cc_use_loc,
3196 gen_rtx_fmt_ee (compare_code, compare_mode,
3197 newpat_dest, const0_rtx));
3198 undobuf.other_insn = cc_use_insn;
3200 else if (compare_mode != orig_compare_mode)
3202 /* Just replace the CC reg with a new mode. */
3203 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3204 undobuf.other_insn = cc_use_insn;
3208 /* Now we modify the current newpat:
3209 First, SET_DEST(newpat) is updated if the CC mode has been
3210 altered. For targets without SELECT_CC_MODE, this should be
3211 optimized away. */
3212 if (compare_mode != orig_compare_mode)
3213 SUBST (SET_DEST (newpat), newpat_dest);
3214 /* This is always done to propagate i2src into newpat. */
3215 SUBST (SET_SRC (newpat),
3216 gen_rtx_COMPARE (compare_mode, op0, op1));
3217 /* Create new version of i2pat if needed; the below PARALLEL
3218 creation needs this to work correctly. */
3219 if (! rtx_equal_p (i2src, op0))
3220 i2pat = gen_rtx_SET (i2dest, op0);
3221 i2_is_used = 1;
3225 if (i2_is_used == 0)
3227 /* It is possible that the source of I2 or I1 may be performing
3228 an unneeded operation, such as a ZERO_EXTEND of something
3229 that is known to have the high part zero. Handle that case
3230 by letting subst look at the inner insns.
3232 Another way to do this would be to have a function that tries
3233 to simplify a single insn instead of merging two or more
3234 insns. We don't do this because of the potential of infinite
3235 loops and because of the potential extra memory required.
3236 However, doing it the way we are is a bit of a kludge and
3237 doesn't catch all cases.
3239 But only do this if -fexpensive-optimizations since it slows
3240 things down and doesn't usually win.
3242 This is not done in the COMPARE case above because the
3243 unmodified I2PAT is used in the PARALLEL and so a pattern
3244 with a modified I2SRC would not match. */
3246 if (flag_expensive_optimizations)
3248 /* Pass pc_rtx so no substitutions are done, just
3249 simplifications. */
3250 if (i1)
3252 subst_low_luid = DF_INSN_LUID (i1);
3253 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3256 subst_low_luid = DF_INSN_LUID (i2);
3257 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3260 n_occurrences = 0; /* `subst' counts here */
3261 subst_low_luid = DF_INSN_LUID (i2);
3263 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3264 copy of I2SRC each time we substitute it, in order to avoid creating
3265 self-referential RTL when we will be substituting I1SRC for I1DEST
3266 later. Likewise if I0 feeds into I2, either directly or indirectly
3267 through I1, and I0DEST is in I0SRC. */
3268 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3269 (i1_feeds_i2_n && i1dest_in_i1src)
3270 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3271 && i0dest_in_i0src));
3272 substed_i2 = 1;
3274 /* Record whether I2's body now appears within I3's body. */
3275 i2_is_used = n_occurrences;
3278 /* If we already got a failure, don't try to do more. Otherwise, try to
3279 substitute I1 if we have it. */
3281 if (i1 && GET_CODE (newpat) != CLOBBER)
3283 /* Check that an autoincrement side-effect on I1 has not been lost.
3284 This happens if I1DEST is mentioned in I2 and dies there, and
3285 has disappeared from the new pattern. */
3286 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3287 && i1_feeds_i2_n
3288 && dead_or_set_p (i2, i1dest)
3289 && !reg_overlap_mentioned_p (i1dest, newpat))
3290 /* Before we can do this substitution, we must redo the test done
3291 above (see detailed comments there) that ensures I1DEST isn't
3292 mentioned in any SETs in NEWPAT that are field assignments. */
3293 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3294 0, 0, 0))
3296 undo_all ();
3297 return 0;
3300 n_occurrences = 0;
3301 subst_low_luid = DF_INSN_LUID (i1);
3303 /* If the following substitution will modify I1SRC, make a copy of it
3304 for the case where it is substituted for I1DEST in I2PAT later. */
3305 if (added_sets_2 && i1_feeds_i2_n)
3306 i1src_copy = copy_rtx (i1src);
3308 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3309 copy of I1SRC each time we substitute it, in order to avoid creating
3310 self-referential RTL when we will be substituting I0SRC for I0DEST
3311 later. */
3312 newpat = subst (newpat, i1dest, i1src, 0, 0,
3313 i0_feeds_i1_n && i0dest_in_i0src);
3314 substed_i1 = 1;
3316 /* Record whether I1's body now appears within I3's body. */
3317 i1_is_used = n_occurrences;
3320 /* Likewise for I0 if we have it. */
3322 if (i0 && GET_CODE (newpat) != CLOBBER)
3324 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3325 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3326 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3327 && !reg_overlap_mentioned_p (i0dest, newpat))
3328 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3329 0, 0, 0))
3331 undo_all ();
3332 return 0;
3335 /* If the following substitution will modify I0SRC, make a copy of it
3336 for the case where it is substituted for I0DEST in I1PAT later. */
3337 if (added_sets_1 && i0_feeds_i1_n)
3338 i0src_copy = copy_rtx (i0src);
3339 /* And a copy for I0DEST in I2PAT substitution. */
3340 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3341 || (i0_feeds_i2_n)))
3342 i0src_copy2 = copy_rtx (i0src);
3344 n_occurrences = 0;
3345 subst_low_luid = DF_INSN_LUID (i0);
3346 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3347 substed_i0 = 1;
3350 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3351 to count all the ways that I2SRC and I1SRC can be used. */
3352 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3353 && i2_is_used + added_sets_2 > 1)
3354 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3355 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3356 > 1))
3357 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3358 && (n_occurrences + added_sets_0
3359 + (added_sets_1 && i0_feeds_i1_n)
3360 + (added_sets_2 && i0_feeds_i2_n)
3361 > 1))
3362 /* Fail if we tried to make a new register. */
3363 || max_reg_num () != maxreg
3364 /* Fail if we couldn't do something and have a CLOBBER. */
3365 || GET_CODE (newpat) == CLOBBER
3366 /* Fail if this new pattern is a MULT and we didn't have one before
3367 at the outer level. */
3368 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3369 && ! have_mult))
3371 undo_all ();
3372 return 0;
3375 /* If the actions of the earlier insns must be kept
3376 in addition to substituting them into the latest one,
3377 we must make a new PARALLEL for the latest insn
3378 to hold additional the SETs. */
3380 if (added_sets_0 || added_sets_1 || added_sets_2)
3382 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3383 combine_extras++;
3385 if (GET_CODE (newpat) == PARALLEL)
3387 rtvec old = XVEC (newpat, 0);
3388 total_sets = XVECLEN (newpat, 0) + extra_sets;
3389 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3390 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3391 sizeof (old->elem[0]) * old->num_elem);
3393 else
3395 rtx old = newpat;
3396 total_sets = 1 + extra_sets;
3397 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3398 XVECEXP (newpat, 0, 0) = old;
3401 if (added_sets_0)
3402 XVECEXP (newpat, 0, --total_sets) = i0pat;
3404 if (added_sets_1)
3406 rtx t = i1pat;
3407 if (i0_feeds_i1_n)
3408 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3410 XVECEXP (newpat, 0, --total_sets) = t;
3412 if (added_sets_2)
3414 rtx t = i2pat;
3415 if (i1_feeds_i2_n)
3416 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3417 i0_feeds_i1_n && i0dest_in_i0src);
3418 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3419 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3421 XVECEXP (newpat, 0, --total_sets) = t;
3425 validate_replacement:
3427 /* Note which hard regs this insn has as inputs. */
3428 mark_used_regs_combine (newpat);
3430 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3431 consider splitting this pattern, we might need these clobbers. */
3432 if (i1 && GET_CODE (newpat) == PARALLEL
3433 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3435 int len = XVECLEN (newpat, 0);
3437 newpat_vec_with_clobbers = rtvec_alloc (len);
3438 for (i = 0; i < len; i++)
3439 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3442 /* We have recognized nothing yet. */
3443 insn_code_number = -1;
3445 /* See if this is a PARALLEL of two SETs where one SET's destination is
3446 a register that is unused and this isn't marked as an instruction that
3447 might trap in an EH region. In that case, we just need the other SET.
3448 We prefer this over the PARALLEL.
3450 This can occur when simplifying a divmod insn. We *must* test for this
3451 case here because the code below that splits two independent SETs doesn't
3452 handle this case correctly when it updates the register status.
3454 It's pointless doing this if we originally had two sets, one from
3455 i3, and one from i2. Combining then splitting the parallel results
3456 in the original i2 again plus an invalid insn (which we delete).
3457 The net effect is only to move instructions around, which makes
3458 debug info less accurate. */
3460 if (!(added_sets_2 && i1 == 0)
3461 && is_parallel_of_n_reg_sets (newpat, 2)
3462 && asm_noperands (newpat) < 0)
3464 rtx set0 = XVECEXP (newpat, 0, 0);
3465 rtx set1 = XVECEXP (newpat, 0, 1);
3466 rtx oldpat = newpat;
3468 if (((REG_P (SET_DEST (set1))
3469 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3470 || (GET_CODE (SET_DEST (set1)) == SUBREG
3471 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3472 && insn_nothrow_p (i3)
3473 && !side_effects_p (SET_SRC (set1)))
3475 newpat = set0;
3476 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3479 else if (((REG_P (SET_DEST (set0))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3481 || (GET_CODE (SET_DEST (set0)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED,
3483 SUBREG_REG (SET_DEST (set0)))))
3484 && insn_nothrow_p (i3)
3485 && !side_effects_p (SET_SRC (set0)))
3487 newpat = set1;
3488 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490 if (insn_code_number >= 0)
3491 changed_i3_dest = 1;
3494 if (insn_code_number < 0)
3495 newpat = oldpat;
3498 /* Is the result of combination a valid instruction? */
3499 if (insn_code_number < 0)
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3502 /* If we were combining three insns and the result is a simple SET
3503 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3504 insns. There are two ways to do this. It can be split using a
3505 machine-specific method (like when you have an addition of a large
3506 constant) or by combine in the function find_split_point. */
3508 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3509 && asm_noperands (newpat) < 0)
3511 rtx parallel, *split;
3512 rtx_insn *m_split_insn;
3514 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3515 use I2DEST as a scratch register will help. In the latter case,
3516 convert I2DEST to the mode of the source of NEWPAT if we can. */
3518 m_split_insn = combine_split_insns (newpat, i3);
3520 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3521 inputs of NEWPAT. */
3523 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3524 possible to try that as a scratch reg. This would require adding
3525 more code to make it work though. */
3527 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3529 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3531 /* First try to split using the original register as a
3532 scratch register. */
3533 parallel = gen_rtx_PARALLEL (VOIDmode,
3534 gen_rtvec (2, newpat,
3535 gen_rtx_CLOBBER (VOIDmode,
3536 i2dest)));
3537 m_split_insn = combine_split_insns (parallel, i3);
3539 /* If that didn't work, try changing the mode of I2DEST if
3540 we can. */
3541 if (m_split_insn == 0
3542 && new_mode != GET_MODE (i2dest)
3543 && new_mode != VOIDmode
3544 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3546 machine_mode old_mode = GET_MODE (i2dest);
3547 rtx ni2dest;
3549 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3550 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3551 else
3553 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3554 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3557 parallel = (gen_rtx_PARALLEL
3558 (VOIDmode,
3559 gen_rtvec (2, newpat,
3560 gen_rtx_CLOBBER (VOIDmode,
3561 ni2dest))));
3562 m_split_insn = combine_split_insns (parallel, i3);
3564 if (m_split_insn == 0
3565 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3567 struct undo *buf;
3569 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3570 buf = undobuf.undos;
3571 undobuf.undos = buf->next;
3572 buf->next = undobuf.frees;
3573 undobuf.frees = buf;
3577 i2scratch = m_split_insn != 0;
3580 /* If recog_for_combine has discarded clobbers, try to use them
3581 again for the split. */
3582 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3584 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3585 m_split_insn = combine_split_insns (parallel, i3);
3588 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3590 rtx m_split_pat = PATTERN (m_split_insn);
3591 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3592 if (insn_code_number >= 0)
3593 newpat = m_split_pat;
3595 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3596 && (next_nonnote_nondebug_insn (i2) == i3
3597 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3599 rtx i2set, i3set;
3600 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3601 newi2pat = PATTERN (m_split_insn);
3603 i3set = single_set (NEXT_INSN (m_split_insn));
3604 i2set = single_set (m_split_insn);
3606 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3608 /* If I2 or I3 has multiple SETs, we won't know how to track
3609 register status, so don't use these insns. If I2's destination
3610 is used between I2 and I3, we also can't use these insns. */
3612 if (i2_code_number >= 0 && i2set && i3set
3613 && (next_nonnote_nondebug_insn (i2) == i3
3614 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3615 insn_code_number = recog_for_combine (&newi3pat, i3,
3616 &new_i3_notes);
3617 if (insn_code_number >= 0)
3618 newpat = newi3pat;
3620 /* It is possible that both insns now set the destination of I3.
3621 If so, we must show an extra use of it. */
3623 if (insn_code_number >= 0)
3625 rtx new_i3_dest = SET_DEST (i3set);
3626 rtx new_i2_dest = SET_DEST (i2set);
3628 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3629 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3630 || GET_CODE (new_i3_dest) == SUBREG)
3631 new_i3_dest = XEXP (new_i3_dest, 0);
3633 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3634 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3635 || GET_CODE (new_i2_dest) == SUBREG)
3636 new_i2_dest = XEXP (new_i2_dest, 0);
3638 if (REG_P (new_i3_dest)
3639 && REG_P (new_i2_dest)
3640 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3641 && REGNO (new_i2_dest) < reg_n_sets_max)
3642 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3646 /* If we can split it and use I2DEST, go ahead and see if that
3647 helps things be recognized. Verify that none of the registers
3648 are set between I2 and I3. */
3649 if (insn_code_number < 0
3650 && (split = find_split_point (&newpat, i3, false)) != 0
3651 && (!HAVE_cc0 || REG_P (i2dest))
3652 /* We need I2DEST in the proper mode. If it is a hard register
3653 or the only use of a pseudo, we can change its mode.
3654 Make sure we don't change a hard register to have a mode that
3655 isn't valid for it, or change the number of registers. */
3656 && (GET_MODE (*split) == GET_MODE (i2dest)
3657 || GET_MODE (*split) == VOIDmode
3658 || can_change_dest_mode (i2dest, added_sets_2,
3659 GET_MODE (*split)))
3660 && (next_nonnote_nondebug_insn (i2) == i3
3661 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3662 /* We can't overwrite I2DEST if its value is still used by
3663 NEWPAT. */
3664 && ! reg_referenced_p (i2dest, newpat))
3666 rtx newdest = i2dest;
3667 enum rtx_code split_code = GET_CODE (*split);
3668 machine_mode split_mode = GET_MODE (*split);
3669 bool subst_done = false;
3670 newi2pat = NULL_RTX;
3672 i2scratch = true;
3674 /* *SPLIT may be part of I2SRC, so make sure we have the
3675 original expression around for later debug processing.
3676 We should not need I2SRC any more in other cases. */
3677 if (MAY_HAVE_DEBUG_INSNS)
3678 i2src = copy_rtx (i2src);
3679 else
3680 i2src = NULL;
3682 /* Get NEWDEST as a register in the proper mode. We have already
3683 validated that we can do this. */
3684 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3686 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3687 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3688 else
3690 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3691 newdest = regno_reg_rtx[REGNO (i2dest)];
3695 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3696 an ASHIFT. This can occur if it was inside a PLUS and hence
3697 appeared to be a memory address. This is a kludge. */
3698 if (split_code == MULT
3699 && CONST_INT_P (XEXP (*split, 1))
3700 && INTVAL (XEXP (*split, 1)) > 0
3701 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3703 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3704 XEXP (*split, 0), GEN_INT (i)));
3705 /* Update split_code because we may not have a multiply
3706 anymore. */
3707 split_code = GET_CODE (*split);
3710 /* Similarly for (plus (mult FOO (const_int pow2))). */
3711 if (split_code == PLUS
3712 && GET_CODE (XEXP (*split, 0)) == MULT
3713 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3714 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3715 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3717 rtx nsplit = XEXP (*split, 0);
3718 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3719 XEXP (nsplit, 0), GEN_INT (i)));
3720 /* Update split_code because we may not have a multiply
3721 anymore. */
3722 split_code = GET_CODE (*split);
3725 #ifdef INSN_SCHEDULING
3726 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3727 be written as a ZERO_EXTEND. */
3728 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3730 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3731 what it really is. */
3732 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3733 == SIGN_EXTEND)
3734 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3735 SUBREG_REG (*split)));
3736 else
3737 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3738 SUBREG_REG (*split)));
3740 #endif
3742 /* Attempt to split binary operators using arithmetic identities. */
3743 if (BINARY_P (SET_SRC (newpat))
3744 && split_mode == GET_MODE (SET_SRC (newpat))
3745 && ! side_effects_p (SET_SRC (newpat)))
3747 rtx setsrc = SET_SRC (newpat);
3748 machine_mode mode = GET_MODE (setsrc);
3749 enum rtx_code code = GET_CODE (setsrc);
3750 rtx src_op0 = XEXP (setsrc, 0);
3751 rtx src_op1 = XEXP (setsrc, 1);
3753 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3754 if (rtx_equal_p (src_op0, src_op1))
3756 newi2pat = gen_rtx_SET (newdest, src_op0);
3757 SUBST (XEXP (setsrc, 0), newdest);
3758 SUBST (XEXP (setsrc, 1), newdest);
3759 subst_done = true;
3761 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3762 else if ((code == PLUS || code == MULT)
3763 && GET_CODE (src_op0) == code
3764 && GET_CODE (XEXP (src_op0, 0)) == code
3765 && (INTEGRAL_MODE_P (mode)
3766 || (FLOAT_MODE_P (mode)
3767 && flag_unsafe_math_optimizations)))
3769 rtx p = XEXP (XEXP (src_op0, 0), 0);
3770 rtx q = XEXP (XEXP (src_op0, 0), 1);
3771 rtx r = XEXP (src_op0, 1);
3772 rtx s = src_op1;
3774 /* Split both "((X op Y) op X) op Y" and
3775 "((X op Y) op Y) op X" as "T op T" where T is
3776 "X op Y". */
3777 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3778 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3780 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3781 SUBST (XEXP (setsrc, 0), newdest);
3782 SUBST (XEXP (setsrc, 1), newdest);
3783 subst_done = true;
3785 /* Split "((X op X) op Y) op Y)" as "T op T" where
3786 T is "X op Y". */
3787 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3789 rtx tmp = simplify_gen_binary (code, mode, p, r);
3790 newi2pat = gen_rtx_SET (newdest, tmp);
3791 SUBST (XEXP (setsrc, 0), newdest);
3792 SUBST (XEXP (setsrc, 1), newdest);
3793 subst_done = true;
3798 if (!subst_done)
3800 newi2pat = gen_rtx_SET (newdest, *split);
3801 SUBST (*split, newdest);
3804 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3806 /* recog_for_combine might have added CLOBBERs to newi2pat.
3807 Make sure NEWPAT does not depend on the clobbered regs. */
3808 if (GET_CODE (newi2pat) == PARALLEL)
3809 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3810 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3812 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3813 if (reg_overlap_mentioned_p (reg, newpat))
3815 undo_all ();
3816 return 0;
3820 /* If the split point was a MULT and we didn't have one before,
3821 don't use one now. */
3822 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3823 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3827 /* Check for a case where we loaded from memory in a narrow mode and
3828 then sign extended it, but we need both registers. In that case,
3829 we have a PARALLEL with both loads from the same memory location.
3830 We can split this into a load from memory followed by a register-register
3831 copy. This saves at least one insn, more if register allocation can
3832 eliminate the copy.
3834 We cannot do this if the destination of the first assignment is a
3835 condition code register or cc0. We eliminate this case by making sure
3836 the SET_DEST and SET_SRC have the same mode.
3838 We cannot do this if the destination of the second assignment is
3839 a register that we have already assumed is zero-extended. Similarly
3840 for a SUBREG of such a register. */
3842 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3843 && GET_CODE (newpat) == PARALLEL
3844 && XVECLEN (newpat, 0) == 2
3845 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3846 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3847 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3848 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3849 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3850 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3851 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3852 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3853 DF_INSN_LUID (i2))
3854 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3855 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3856 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3857 (REG_P (temp_expr)
3858 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3859 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3860 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3861 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3862 != GET_MODE_MASK (word_mode))))
3863 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3864 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3865 (REG_P (temp_expr)
3866 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3867 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3868 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3869 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3870 != GET_MODE_MASK (word_mode)))))
3871 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3872 SET_SRC (XVECEXP (newpat, 0, 1)))
3873 && ! find_reg_note (i3, REG_UNUSED,
3874 SET_DEST (XVECEXP (newpat, 0, 0))))
3876 rtx ni2dest;
3878 newi2pat = XVECEXP (newpat, 0, 0);
3879 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3880 newpat = XVECEXP (newpat, 0, 1);
3881 SUBST (SET_SRC (newpat),
3882 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3883 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3885 if (i2_code_number >= 0)
3886 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3888 if (insn_code_number >= 0)
3889 swap_i2i3 = 1;
3892 /* Similarly, check for a case where we have a PARALLEL of two independent
3893 SETs but we started with three insns. In this case, we can do the sets
3894 as two separate insns. This case occurs when some SET allows two
3895 other insns to combine, but the destination of that SET is still live.
3897 Also do this if we started with two insns and (at least) one of the
3898 resulting sets is a noop; this noop will be deleted later. */
3900 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3901 && GET_CODE (newpat) == PARALLEL
3902 && XVECLEN (newpat, 0) == 2
3903 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3904 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3905 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3906 || set_noop_p (XVECEXP (newpat, 0, 1)))
3907 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3908 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3909 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3910 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3911 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3912 XVECEXP (newpat, 0, 0))
3913 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3914 XVECEXP (newpat, 0, 1))
3915 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3916 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3918 rtx set0 = XVECEXP (newpat, 0, 0);
3919 rtx set1 = XVECEXP (newpat, 0, 1);
3921 /* Normally, it doesn't matter which of the two is done first,
3922 but the one that references cc0 can't be the second, and
3923 one which uses any regs/memory set in between i2 and i3 can't
3924 be first. The PARALLEL might also have been pre-existing in i3,
3925 so we need to make sure that we won't wrongly hoist a SET to i2
3926 that would conflict with a death note present in there. */
3927 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3928 && !(REG_P (SET_DEST (set1))
3929 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3930 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3931 && find_reg_note (i2, REG_DEAD,
3932 SUBREG_REG (SET_DEST (set1))))
3933 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3934 /* If I3 is a jump, ensure that set0 is a jump so that
3935 we do not create invalid RTL. */
3936 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3939 newi2pat = set1;
3940 newpat = set0;
3942 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3943 && !(REG_P (SET_DEST (set0))
3944 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3945 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3946 && find_reg_note (i2, REG_DEAD,
3947 SUBREG_REG (SET_DEST (set0))))
3948 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3949 /* If I3 is a jump, ensure that set1 is a jump so that
3950 we do not create invalid RTL. */
3951 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3954 newi2pat = set0;
3955 newpat = set1;
3957 else
3959 undo_all ();
3960 return 0;
3963 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3965 if (i2_code_number >= 0)
3967 /* recog_for_combine might have added CLOBBERs to newi2pat.
3968 Make sure NEWPAT does not depend on the clobbered regs. */
3969 if (GET_CODE (newi2pat) == PARALLEL)
3971 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3972 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3974 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3975 if (reg_overlap_mentioned_p (reg, newpat))
3977 undo_all ();
3978 return 0;
3983 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3987 /* If it still isn't recognized, fail and change things back the way they
3988 were. */
3989 if ((insn_code_number < 0
3990 /* Is the result a reasonable ASM_OPERANDS? */
3991 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3993 undo_all ();
3994 return 0;
3997 /* If we had to change another insn, make sure it is valid also. */
3998 if (undobuf.other_insn)
4000 CLEAR_HARD_REG_SET (newpat_used_regs);
4002 other_pat = PATTERN (undobuf.other_insn);
4003 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4004 &new_other_notes);
4006 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4008 undo_all ();
4009 return 0;
4013 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4014 they are adjacent to each other or not. */
4015 if (HAVE_cc0)
4017 rtx_insn *p = prev_nonnote_insn (i3);
4018 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4019 && sets_cc0_p (newi2pat))
4021 undo_all ();
4022 return 0;
4026 /* Only allow this combination if insn_rtx_costs reports that the
4027 replacement instructions are cheaper than the originals. */
4028 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4030 undo_all ();
4031 return 0;
4034 if (MAY_HAVE_DEBUG_INSNS)
4036 struct undo *undo;
4038 for (undo = undobuf.undos; undo; undo = undo->next)
4039 if (undo->kind == UNDO_MODE)
4041 rtx reg = *undo->where.r;
4042 machine_mode new_mode = GET_MODE (reg);
4043 machine_mode old_mode = undo->old_contents.m;
4045 /* Temporarily revert mode back. */
4046 adjust_reg_mode (reg, old_mode);
4048 if (reg == i2dest && i2scratch)
4050 /* If we used i2dest as a scratch register with a
4051 different mode, substitute it for the original
4052 i2src while its original mode is temporarily
4053 restored, and then clear i2scratch so that we don't
4054 do it again later. */
4055 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4056 this_basic_block);
4057 i2scratch = false;
4058 /* Put back the new mode. */
4059 adjust_reg_mode (reg, new_mode);
4061 else
4063 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4064 rtx_insn *first, *last;
4066 if (reg == i2dest)
4068 first = i2;
4069 last = last_combined_insn;
4071 else
4073 first = i3;
4074 last = undobuf.other_insn;
4075 gcc_assert (last);
4076 if (DF_INSN_LUID (last)
4077 < DF_INSN_LUID (last_combined_insn))
4078 last = last_combined_insn;
4081 /* We're dealing with a reg that changed mode but not
4082 meaning, so we want to turn it into a subreg for
4083 the new mode. However, because of REG sharing and
4084 because its mode had already changed, we have to do
4085 it in two steps. First, replace any debug uses of
4086 reg, with its original mode temporarily restored,
4087 with this copy we have created; then, replace the
4088 copy with the SUBREG of the original shared reg,
4089 once again changed to the new mode. */
4090 propagate_for_debug (first, last, reg, tempreg,
4091 this_basic_block);
4092 adjust_reg_mode (reg, new_mode);
4093 propagate_for_debug (first, last, tempreg,
4094 lowpart_subreg (old_mode, reg, new_mode),
4095 this_basic_block);
4100 /* If we will be able to accept this, we have made a
4101 change to the destination of I3. This requires us to
4102 do a few adjustments. */
4104 if (changed_i3_dest)
4106 PATTERN (i3) = newpat;
4107 adjust_for_new_dest (i3);
4110 /* We now know that we can do this combination. Merge the insns and
4111 update the status of registers and LOG_LINKS. */
4113 if (undobuf.other_insn)
4115 rtx note, next;
4117 PATTERN (undobuf.other_insn) = other_pat;
4119 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4120 ensure that they are still valid. Then add any non-duplicate
4121 notes added by recog_for_combine. */
4122 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4124 next = XEXP (note, 1);
4126 if ((REG_NOTE_KIND (note) == REG_DEAD
4127 && !reg_referenced_p (XEXP (note, 0),
4128 PATTERN (undobuf.other_insn)))
4129 ||(REG_NOTE_KIND (note) == REG_UNUSED
4130 && !reg_set_p (XEXP (note, 0),
4131 PATTERN (undobuf.other_insn))))
4132 remove_note (undobuf.other_insn, note);
4135 distribute_notes (new_other_notes, undobuf.other_insn,
4136 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4137 NULL_RTX);
4140 if (swap_i2i3)
4142 rtx_insn *insn;
4143 struct insn_link *link;
4144 rtx ni2dest;
4146 /* I3 now uses what used to be its destination and which is now
4147 I2's destination. This requires us to do a few adjustments. */
4148 PATTERN (i3) = newpat;
4149 adjust_for_new_dest (i3);
4151 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4152 so we still will.
4154 However, some later insn might be using I2's dest and have
4155 a LOG_LINK pointing at I3. We must remove this link.
4156 The simplest way to remove the link is to point it at I1,
4157 which we know will be a NOTE. */
4159 /* newi2pat is usually a SET here; however, recog_for_combine might
4160 have added some clobbers. */
4161 if (GET_CODE (newi2pat) == PARALLEL)
4162 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4163 else
4164 ni2dest = SET_DEST (newi2pat);
4166 for (insn = NEXT_INSN (i3);
4167 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4168 || insn != BB_HEAD (this_basic_block->next_bb));
4169 insn = NEXT_INSN (insn))
4171 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4173 FOR_EACH_LOG_LINK (link, insn)
4174 if (link->insn == i3)
4175 link->insn = i1;
4177 break;
4183 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4184 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4185 rtx midnotes = 0;
4186 int from_luid;
4187 /* Compute which registers we expect to eliminate. newi2pat may be setting
4188 either i3dest or i2dest, so we must check it. */
4189 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4190 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4191 || !i2dest_killed
4192 ? 0 : i2dest);
4193 /* For i1, we need to compute both local elimination and global
4194 elimination information with respect to newi2pat because i1dest
4195 may be the same as i3dest, in which case newi2pat may be setting
4196 i1dest. Global information is used when distributing REG_DEAD
4197 note for i2 and i3, in which case it does matter if newi2pat sets
4198 i1dest or not.
4200 Local information is used when distributing REG_DEAD note for i1,
4201 in which case it doesn't matter if newi2pat sets i1dest or not.
4202 See PR62151, if we have four insns combination:
4203 i0: r0 <- i0src
4204 i1: r1 <- i1src (using r0)
4205 REG_DEAD (r0)
4206 i2: r0 <- i2src (using r1)
4207 i3: r3 <- i3src (using r0)
4208 ix: using r0
4209 From i1's point of view, r0 is eliminated, no matter if it is set
4210 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4211 should be discarded.
4213 Note local information only affects cases in forms like "I1->I2->I3",
4214 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4215 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4216 i0dest anyway. */
4217 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4218 || !i1dest_killed
4219 ? 0 : i1dest);
4220 rtx elim_i1 = (local_elim_i1 == 0
4221 || (newi2pat && reg_set_p (i1dest, newi2pat))
4222 ? 0 : i1dest);
4223 /* Same case as i1. */
4224 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4225 ? 0 : i0dest);
4226 rtx elim_i0 = (local_elim_i0 == 0
4227 || (newi2pat && reg_set_p (i0dest, newi2pat))
4228 ? 0 : i0dest);
4230 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4231 clear them. */
4232 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4233 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4234 if (i1)
4235 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4236 if (i0)
4237 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4239 /* Ensure that we do not have something that should not be shared but
4240 occurs multiple times in the new insns. Check this by first
4241 resetting all the `used' flags and then copying anything is shared. */
4243 reset_used_flags (i3notes);
4244 reset_used_flags (i2notes);
4245 reset_used_flags (i1notes);
4246 reset_used_flags (i0notes);
4247 reset_used_flags (newpat);
4248 reset_used_flags (newi2pat);
4249 if (undobuf.other_insn)
4250 reset_used_flags (PATTERN (undobuf.other_insn));
4252 i3notes = copy_rtx_if_shared (i3notes);
4253 i2notes = copy_rtx_if_shared (i2notes);
4254 i1notes = copy_rtx_if_shared (i1notes);
4255 i0notes = copy_rtx_if_shared (i0notes);
4256 newpat = copy_rtx_if_shared (newpat);
4257 newi2pat = copy_rtx_if_shared (newi2pat);
4258 if (undobuf.other_insn)
4259 reset_used_flags (PATTERN (undobuf.other_insn));
4261 INSN_CODE (i3) = insn_code_number;
4262 PATTERN (i3) = newpat;
4264 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4266 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4268 reset_used_flags (call_usage);
4269 call_usage = copy_rtx (call_usage);
4271 if (substed_i2)
4273 /* I2SRC must still be meaningful at this point. Some splitting
4274 operations can invalidate I2SRC, but those operations do not
4275 apply to calls. */
4276 gcc_assert (i2src);
4277 replace_rtx (call_usage, i2dest, i2src);
4280 if (substed_i1)
4281 replace_rtx (call_usage, i1dest, i1src);
4282 if (substed_i0)
4283 replace_rtx (call_usage, i0dest, i0src);
4285 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4288 if (undobuf.other_insn)
4289 INSN_CODE (undobuf.other_insn) = other_code_number;
4291 /* We had one special case above where I2 had more than one set and
4292 we replaced a destination of one of those sets with the destination
4293 of I3. In that case, we have to update LOG_LINKS of insns later
4294 in this basic block. Note that this (expensive) case is rare.
4296 Also, in this case, we must pretend that all REG_NOTEs for I2
4297 actually came from I3, so that REG_UNUSED notes from I2 will be
4298 properly handled. */
4300 if (i3_subst_into_i2)
4302 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4303 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4304 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4305 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4306 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4307 && ! find_reg_note (i2, REG_UNUSED,
4308 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4309 for (temp_insn = NEXT_INSN (i2);
4310 temp_insn
4311 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4312 || BB_HEAD (this_basic_block) != temp_insn);
4313 temp_insn = NEXT_INSN (temp_insn))
4314 if (temp_insn != i3 && INSN_P (temp_insn))
4315 FOR_EACH_LOG_LINK (link, temp_insn)
4316 if (link->insn == i2)
4317 link->insn = i3;
4319 if (i3notes)
4321 rtx link = i3notes;
4322 while (XEXP (link, 1))
4323 link = XEXP (link, 1);
4324 XEXP (link, 1) = i2notes;
4326 else
4327 i3notes = i2notes;
4328 i2notes = 0;
4331 LOG_LINKS (i3) = NULL;
4332 REG_NOTES (i3) = 0;
4333 LOG_LINKS (i2) = NULL;
4334 REG_NOTES (i2) = 0;
4336 if (newi2pat)
4338 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4339 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4340 this_basic_block);
4341 INSN_CODE (i2) = i2_code_number;
4342 PATTERN (i2) = newi2pat;
4344 else
4346 if (MAY_HAVE_DEBUG_INSNS && i2src)
4347 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4348 this_basic_block);
4349 SET_INSN_DELETED (i2);
4352 if (i1)
4354 LOG_LINKS (i1) = NULL;
4355 REG_NOTES (i1) = 0;
4356 if (MAY_HAVE_DEBUG_INSNS)
4357 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4358 this_basic_block);
4359 SET_INSN_DELETED (i1);
4362 if (i0)
4364 LOG_LINKS (i0) = NULL;
4365 REG_NOTES (i0) = 0;
4366 if (MAY_HAVE_DEBUG_INSNS)
4367 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4368 this_basic_block);
4369 SET_INSN_DELETED (i0);
4372 /* Get death notes for everything that is now used in either I3 or
4373 I2 and used to die in a previous insn. If we built two new
4374 patterns, move from I1 to I2 then I2 to I3 so that we get the
4375 proper movement on registers that I2 modifies. */
4377 if (i0)
4378 from_luid = DF_INSN_LUID (i0);
4379 else if (i1)
4380 from_luid = DF_INSN_LUID (i1);
4381 else
4382 from_luid = DF_INSN_LUID (i2);
4383 if (newi2pat)
4384 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4385 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4387 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4388 if (i3notes)
4389 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4390 elim_i2, elim_i1, elim_i0);
4391 if (i2notes)
4392 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4393 elim_i2, elim_i1, elim_i0);
4394 if (i1notes)
4395 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4396 elim_i2, local_elim_i1, local_elim_i0);
4397 if (i0notes)
4398 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4399 elim_i2, elim_i1, local_elim_i0);
4400 if (midnotes)
4401 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4402 elim_i2, elim_i1, elim_i0);
4404 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4405 know these are REG_UNUSED and want them to go to the desired insn,
4406 so we always pass it as i3. */
4408 if (newi2pat && new_i2_notes)
4409 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4410 NULL_RTX);
4412 if (new_i3_notes)
4413 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4414 NULL_RTX);
4416 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4417 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4418 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4419 in that case, it might delete I2. Similarly for I2 and I1.
4420 Show an additional death due to the REG_DEAD note we make here. If
4421 we discard it in distribute_notes, we will decrement it again. */
4423 if (i3dest_killed)
4425 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4426 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4427 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4428 elim_i1, elim_i0);
4429 else
4430 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4431 elim_i2, elim_i1, elim_i0);
4434 if (i2dest_in_i2src)
4436 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4437 if (newi2pat && reg_set_p (i2dest, newi2pat))
4438 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4439 NULL_RTX, NULL_RTX);
4440 else
4441 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4442 NULL_RTX, NULL_RTX, NULL_RTX);
4445 if (i1dest_in_i1src)
4447 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4448 if (newi2pat && reg_set_p (i1dest, newi2pat))
4449 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4450 NULL_RTX, NULL_RTX);
4451 else
4452 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4453 NULL_RTX, NULL_RTX, NULL_RTX);
4456 if (i0dest_in_i0src)
4458 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4459 if (newi2pat && reg_set_p (i0dest, newi2pat))
4460 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4461 NULL_RTX, NULL_RTX);
4462 else
4463 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4464 NULL_RTX, NULL_RTX, NULL_RTX);
4467 distribute_links (i3links);
4468 distribute_links (i2links);
4469 distribute_links (i1links);
4470 distribute_links (i0links);
4472 if (REG_P (i2dest))
4474 struct insn_link *link;
4475 rtx_insn *i2_insn = 0;
4476 rtx i2_val = 0, set;
4478 /* The insn that used to set this register doesn't exist, and
4479 this life of the register may not exist either. See if one of
4480 I3's links points to an insn that sets I2DEST. If it does,
4481 that is now the last known value for I2DEST. If we don't update
4482 this and I2 set the register to a value that depended on its old
4483 contents, we will get confused. If this insn is used, thing
4484 will be set correctly in combine_instructions. */
4485 FOR_EACH_LOG_LINK (link, i3)
4486 if ((set = single_set (link->insn)) != 0
4487 && rtx_equal_p (i2dest, SET_DEST (set)))
4488 i2_insn = link->insn, i2_val = SET_SRC (set);
4490 record_value_for_reg (i2dest, i2_insn, i2_val);
4492 /* If the reg formerly set in I2 died only once and that was in I3,
4493 zero its use count so it won't make `reload' do any work. */
4494 if (! added_sets_2
4495 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4496 && ! i2dest_in_i2src
4497 && REGNO (i2dest) < reg_n_sets_max)
4498 INC_REG_N_SETS (REGNO (i2dest), -1);
4501 if (i1 && REG_P (i1dest))
4503 struct insn_link *link;
4504 rtx_insn *i1_insn = 0;
4505 rtx i1_val = 0, set;
4507 FOR_EACH_LOG_LINK (link, i3)
4508 if ((set = single_set (link->insn)) != 0
4509 && rtx_equal_p (i1dest, SET_DEST (set)))
4510 i1_insn = link->insn, i1_val = SET_SRC (set);
4512 record_value_for_reg (i1dest, i1_insn, i1_val);
4514 if (! added_sets_1
4515 && ! i1dest_in_i1src
4516 && REGNO (i1dest) < reg_n_sets_max)
4517 INC_REG_N_SETS (REGNO (i1dest), -1);
4520 if (i0 && REG_P (i0dest))
4522 struct insn_link *link;
4523 rtx_insn *i0_insn = 0;
4524 rtx i0_val = 0, set;
4526 FOR_EACH_LOG_LINK (link, i3)
4527 if ((set = single_set (link->insn)) != 0
4528 && rtx_equal_p (i0dest, SET_DEST (set)))
4529 i0_insn = link->insn, i0_val = SET_SRC (set);
4531 record_value_for_reg (i0dest, i0_insn, i0_val);
4533 if (! added_sets_0
4534 && ! i0dest_in_i0src
4535 && REGNO (i0dest) < reg_n_sets_max)
4536 INC_REG_N_SETS (REGNO (i0dest), -1);
4539 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4540 been made to this insn. The order is important, because newi2pat
4541 can affect nonzero_bits of newpat. */
4542 if (newi2pat)
4543 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4544 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4547 if (undobuf.other_insn != NULL_RTX)
4549 if (dump_file)
4551 fprintf (dump_file, "modifying other_insn ");
4552 dump_insn_slim (dump_file, undobuf.other_insn);
4554 df_insn_rescan (undobuf.other_insn);
4557 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4559 if (dump_file)
4561 fprintf (dump_file, "modifying insn i0 ");
4562 dump_insn_slim (dump_file, i0);
4564 df_insn_rescan (i0);
4567 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4569 if (dump_file)
4571 fprintf (dump_file, "modifying insn i1 ");
4572 dump_insn_slim (dump_file, i1);
4574 df_insn_rescan (i1);
4577 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4579 if (dump_file)
4581 fprintf (dump_file, "modifying insn i2 ");
4582 dump_insn_slim (dump_file, i2);
4584 df_insn_rescan (i2);
4587 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4589 if (dump_file)
4591 fprintf (dump_file, "modifying insn i3 ");
4592 dump_insn_slim (dump_file, i3);
4594 df_insn_rescan (i3);
4597 /* Set new_direct_jump_p if a new return or simple jump instruction
4598 has been created. Adjust the CFG accordingly. */
4599 if (returnjump_p (i3) || any_uncondjump_p (i3))
4601 *new_direct_jump_p = 1;
4602 mark_jump_label (PATTERN (i3), i3, 0);
4603 update_cfg_for_uncondjump (i3);
4606 if (undobuf.other_insn != NULL_RTX
4607 && (returnjump_p (undobuf.other_insn)
4608 || any_uncondjump_p (undobuf.other_insn)))
4610 *new_direct_jump_p = 1;
4611 update_cfg_for_uncondjump (undobuf.other_insn);
4614 /* A noop might also need cleaning up of CFG, if it comes from the
4615 simplification of a jump. */
4616 if (JUMP_P (i3)
4617 && GET_CODE (newpat) == SET
4618 && SET_SRC (newpat) == pc_rtx
4619 && SET_DEST (newpat) == pc_rtx)
4621 *new_direct_jump_p = 1;
4622 update_cfg_for_uncondjump (i3);
4625 if (undobuf.other_insn != NULL_RTX
4626 && JUMP_P (undobuf.other_insn)
4627 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4628 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4629 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4631 *new_direct_jump_p = 1;
4632 update_cfg_for_uncondjump (undobuf.other_insn);
4635 combine_successes++;
4636 undo_commit ();
4638 if (added_links_insn
4639 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4640 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4641 return added_links_insn;
4642 else
4643 return newi2pat ? i2 : i3;
4646 /* Get a marker for undoing to the current state. */
4648 static void *
4649 get_undo_marker (void)
4651 return undobuf.undos;
4654 /* Undo the modifications up to the marker. */
4656 static void
4657 undo_to_marker (void *marker)
4659 struct undo *undo, *next;
4661 for (undo = undobuf.undos; undo != marker; undo = next)
4663 gcc_assert (undo);
4665 next = undo->next;
4666 switch (undo->kind)
4668 case UNDO_RTX:
4669 *undo->where.r = undo->old_contents.r;
4670 break;
4671 case UNDO_INT:
4672 *undo->where.i = undo->old_contents.i;
4673 break;
4674 case UNDO_MODE:
4675 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4676 break;
4677 case UNDO_LINKS:
4678 *undo->where.l = undo->old_contents.l;
4679 break;
4680 default:
4681 gcc_unreachable ();
4684 undo->next = undobuf.frees;
4685 undobuf.frees = undo;
4688 undobuf.undos = (struct undo *) marker;
4691 /* Undo all the modifications recorded in undobuf. */
4693 static void
4694 undo_all (void)
4696 undo_to_marker (0);
4699 /* We've committed to accepting the changes we made. Move all
4700 of the undos to the free list. */
4702 static void
4703 undo_commit (void)
4705 struct undo *undo, *next;
4707 for (undo = undobuf.undos; undo; undo = next)
4709 next = undo->next;
4710 undo->next = undobuf.frees;
4711 undobuf.frees = undo;
4713 undobuf.undos = 0;
4716 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4717 where we have an arithmetic expression and return that point. LOC will
4718 be inside INSN.
4720 try_combine will call this function to see if an insn can be split into
4721 two insns. */
4723 static rtx *
4724 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4726 rtx x = *loc;
4727 enum rtx_code code = GET_CODE (x);
4728 rtx *split;
4729 unsigned HOST_WIDE_INT len = 0;
4730 HOST_WIDE_INT pos = 0;
4731 int unsignedp = 0;
4732 rtx inner = NULL_RTX;
4734 /* First special-case some codes. */
4735 switch (code)
4737 case SUBREG:
4738 #ifdef INSN_SCHEDULING
4739 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4740 point. */
4741 if (MEM_P (SUBREG_REG (x)))
4742 return loc;
4743 #endif
4744 return find_split_point (&SUBREG_REG (x), insn, false);
4746 case MEM:
4747 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4748 using LO_SUM and HIGH. */
4749 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4750 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4752 machine_mode address_mode = get_address_mode (x);
4754 SUBST (XEXP (x, 0),
4755 gen_rtx_LO_SUM (address_mode,
4756 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4757 XEXP (x, 0)));
4758 return &XEXP (XEXP (x, 0), 0);
4761 /* If we have a PLUS whose second operand is a constant and the
4762 address is not valid, perhaps will can split it up using
4763 the machine-specific way to split large constants. We use
4764 the first pseudo-reg (one of the virtual regs) as a placeholder;
4765 it will not remain in the result. */
4766 if (GET_CODE (XEXP (x, 0)) == PLUS
4767 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4768 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4769 MEM_ADDR_SPACE (x)))
4771 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4772 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4773 subst_insn);
4775 /* This should have produced two insns, each of which sets our
4776 placeholder. If the source of the second is a valid address,
4777 we can make put both sources together and make a split point
4778 in the middle. */
4780 if (seq
4781 && NEXT_INSN (seq) != NULL_RTX
4782 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4783 && NONJUMP_INSN_P (seq)
4784 && GET_CODE (PATTERN (seq)) == SET
4785 && SET_DEST (PATTERN (seq)) == reg
4786 && ! reg_mentioned_p (reg,
4787 SET_SRC (PATTERN (seq)))
4788 && NONJUMP_INSN_P (NEXT_INSN (seq))
4789 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4790 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4791 && memory_address_addr_space_p
4792 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4793 MEM_ADDR_SPACE (x)))
4795 rtx src1 = SET_SRC (PATTERN (seq));
4796 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4798 /* Replace the placeholder in SRC2 with SRC1. If we can
4799 find where in SRC2 it was placed, that can become our
4800 split point and we can replace this address with SRC2.
4801 Just try two obvious places. */
4803 src2 = replace_rtx (src2, reg, src1);
4804 split = 0;
4805 if (XEXP (src2, 0) == src1)
4806 split = &XEXP (src2, 0);
4807 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4808 && XEXP (XEXP (src2, 0), 0) == src1)
4809 split = &XEXP (XEXP (src2, 0), 0);
4811 if (split)
4813 SUBST (XEXP (x, 0), src2);
4814 return split;
4818 /* If that didn't work, perhaps the first operand is complex and
4819 needs to be computed separately, so make a split point there.
4820 This will occur on machines that just support REG + CONST
4821 and have a constant moved through some previous computation. */
4823 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4824 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4825 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4826 return &XEXP (XEXP (x, 0), 0);
4829 /* If we have a PLUS whose first operand is complex, try computing it
4830 separately by making a split there. */
4831 if (GET_CODE (XEXP (x, 0)) == PLUS
4832 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4833 MEM_ADDR_SPACE (x))
4834 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4835 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4836 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4837 return &XEXP (XEXP (x, 0), 0);
4838 break;
4840 case SET:
4841 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4842 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4843 we need to put the operand into a register. So split at that
4844 point. */
4846 if (SET_DEST (x) == cc0_rtx
4847 && GET_CODE (SET_SRC (x)) != COMPARE
4848 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4849 && !OBJECT_P (SET_SRC (x))
4850 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4851 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4852 return &SET_SRC (x);
4854 /* See if we can split SET_SRC as it stands. */
4855 split = find_split_point (&SET_SRC (x), insn, true);
4856 if (split && split != &SET_SRC (x))
4857 return split;
4859 /* See if we can split SET_DEST as it stands. */
4860 split = find_split_point (&SET_DEST (x), insn, false);
4861 if (split && split != &SET_DEST (x))
4862 return split;
4864 /* See if this is a bitfield assignment with everything constant. If
4865 so, this is an IOR of an AND, so split it into that. */
4866 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4867 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4868 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4869 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4870 && CONST_INT_P (SET_SRC (x))
4871 && ((INTVAL (XEXP (SET_DEST (x), 1))
4872 + INTVAL (XEXP (SET_DEST (x), 2)))
4873 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4874 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4876 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4877 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4878 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4879 rtx dest = XEXP (SET_DEST (x), 0);
4880 machine_mode mode = GET_MODE (dest);
4881 unsigned HOST_WIDE_INT mask
4882 = (HOST_WIDE_INT_1U << len) - 1;
4883 rtx or_mask;
4885 if (BITS_BIG_ENDIAN)
4886 pos = GET_MODE_PRECISION (mode) - len - pos;
4888 or_mask = gen_int_mode (src << pos, mode);
4889 if (src == mask)
4890 SUBST (SET_SRC (x),
4891 simplify_gen_binary (IOR, mode, dest, or_mask));
4892 else
4894 rtx negmask = gen_int_mode (~(mask << pos), mode);
4895 SUBST (SET_SRC (x),
4896 simplify_gen_binary (IOR, mode,
4897 simplify_gen_binary (AND, mode,
4898 dest, negmask),
4899 or_mask));
4902 SUBST (SET_DEST (x), dest);
4904 split = find_split_point (&SET_SRC (x), insn, true);
4905 if (split && split != &SET_SRC (x))
4906 return split;
4909 /* Otherwise, see if this is an operation that we can split into two.
4910 If so, try to split that. */
4911 code = GET_CODE (SET_SRC (x));
4913 switch (code)
4915 case AND:
4916 /* If we are AND'ing with a large constant that is only a single
4917 bit and the result is only being used in a context where we
4918 need to know if it is zero or nonzero, replace it with a bit
4919 extraction. This will avoid the large constant, which might
4920 have taken more than one insn to make. If the constant were
4921 not a valid argument to the AND but took only one insn to make,
4922 this is no worse, but if it took more than one insn, it will
4923 be better. */
4925 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4926 && REG_P (XEXP (SET_SRC (x), 0))
4927 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4928 && REG_P (SET_DEST (x))
4929 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4930 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4931 && XEXP (*split, 0) == SET_DEST (x)
4932 && XEXP (*split, 1) == const0_rtx)
4934 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4935 XEXP (SET_SRC (x), 0),
4936 pos, NULL_RTX, 1, 1, 0, 0);
4937 if (extraction != 0)
4939 SUBST (SET_SRC (x), extraction);
4940 return find_split_point (loc, insn, false);
4943 break;
4945 case NE:
4946 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4947 is known to be on, this can be converted into a NEG of a shift. */
4948 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4949 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4950 && 1 <= (pos = exact_log2
4951 (nonzero_bits (XEXP (SET_SRC (x), 0),
4952 GET_MODE (XEXP (SET_SRC (x), 0))))))
4954 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4956 SUBST (SET_SRC (x),
4957 gen_rtx_NEG (mode,
4958 gen_rtx_LSHIFTRT (mode,
4959 XEXP (SET_SRC (x), 0),
4960 GEN_INT (pos))));
4962 split = find_split_point (&SET_SRC (x), insn, true);
4963 if (split && split != &SET_SRC (x))
4964 return split;
4966 break;
4968 case SIGN_EXTEND:
4969 inner = XEXP (SET_SRC (x), 0);
4971 /* We can't optimize if either mode is a partial integer
4972 mode as we don't know how many bits are significant
4973 in those modes. */
4974 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4975 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4976 break;
4978 pos = 0;
4979 len = GET_MODE_PRECISION (GET_MODE (inner));
4980 unsignedp = 0;
4981 break;
4983 case SIGN_EXTRACT:
4984 case ZERO_EXTRACT:
4985 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4986 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4988 inner = XEXP (SET_SRC (x), 0);
4989 len = INTVAL (XEXP (SET_SRC (x), 1));
4990 pos = INTVAL (XEXP (SET_SRC (x), 2));
4992 if (BITS_BIG_ENDIAN)
4993 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4994 unsignedp = (code == ZERO_EXTRACT);
4996 break;
4998 default:
4999 break;
5002 if (len && pos >= 0
5003 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5005 machine_mode mode = GET_MODE (SET_SRC (x));
5007 /* For unsigned, we have a choice of a shift followed by an
5008 AND or two shifts. Use two shifts for field sizes where the
5009 constant might be too large. We assume here that we can
5010 always at least get 8-bit constants in an AND insn, which is
5011 true for every current RISC. */
5013 if (unsignedp && len <= 8)
5015 unsigned HOST_WIDE_INT mask
5016 = (HOST_WIDE_INT_1U << len) - 1;
5017 SUBST (SET_SRC (x),
5018 gen_rtx_AND (mode,
5019 gen_rtx_LSHIFTRT
5020 (mode, gen_lowpart (mode, inner),
5021 GEN_INT (pos)),
5022 gen_int_mode (mask, mode)));
5024 split = find_split_point (&SET_SRC (x), insn, true);
5025 if (split && split != &SET_SRC (x))
5026 return split;
5028 else
5030 SUBST (SET_SRC (x),
5031 gen_rtx_fmt_ee
5032 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5033 gen_rtx_ASHIFT (mode,
5034 gen_lowpart (mode, inner),
5035 GEN_INT (GET_MODE_PRECISION (mode)
5036 - len - pos)),
5037 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5039 split = find_split_point (&SET_SRC (x), insn, true);
5040 if (split && split != &SET_SRC (x))
5041 return split;
5045 /* See if this is a simple operation with a constant as the second
5046 operand. It might be that this constant is out of range and hence
5047 could be used as a split point. */
5048 if (BINARY_P (SET_SRC (x))
5049 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5050 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5051 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5052 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5053 return &XEXP (SET_SRC (x), 1);
5055 /* Finally, see if this is a simple operation with its first operand
5056 not in a register. The operation might require this operand in a
5057 register, so return it as a split point. We can always do this
5058 because if the first operand were another operation, we would have
5059 already found it as a split point. */
5060 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5061 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5062 return &XEXP (SET_SRC (x), 0);
5064 return 0;
5066 case AND:
5067 case IOR:
5068 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5069 it is better to write this as (not (ior A B)) so we can split it.
5070 Similarly for IOR. */
5071 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5073 SUBST (*loc,
5074 gen_rtx_NOT (GET_MODE (x),
5075 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5076 GET_MODE (x),
5077 XEXP (XEXP (x, 0), 0),
5078 XEXP (XEXP (x, 1), 0))));
5079 return find_split_point (loc, insn, set_src);
5082 /* Many RISC machines have a large set of logical insns. If the
5083 second operand is a NOT, put it first so we will try to split the
5084 other operand first. */
5085 if (GET_CODE (XEXP (x, 1)) == NOT)
5087 rtx tem = XEXP (x, 0);
5088 SUBST (XEXP (x, 0), XEXP (x, 1));
5089 SUBST (XEXP (x, 1), tem);
5091 break;
5093 case PLUS:
5094 case MINUS:
5095 /* Canonicalization can produce (minus A (mult B C)), where C is a
5096 constant. It may be better to try splitting (plus (mult B -C) A)
5097 instead if this isn't a multiply by a power of two. */
5098 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5099 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5100 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5102 machine_mode mode = GET_MODE (x);
5103 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5104 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5105 SUBST (*loc, gen_rtx_PLUS (mode,
5106 gen_rtx_MULT (mode,
5107 XEXP (XEXP (x, 1), 0),
5108 gen_int_mode (other_int,
5109 mode)),
5110 XEXP (x, 0)));
5111 return find_split_point (loc, insn, set_src);
5114 /* Split at a multiply-accumulate instruction. However if this is
5115 the SET_SRC, we likely do not have such an instruction and it's
5116 worthless to try this split. */
5117 if (!set_src
5118 && (GET_CODE (XEXP (x, 0)) == MULT
5119 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5120 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5121 return loc;
5123 default:
5124 break;
5127 /* Otherwise, select our actions depending on our rtx class. */
5128 switch (GET_RTX_CLASS (code))
5130 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5131 case RTX_TERNARY:
5132 split = find_split_point (&XEXP (x, 2), insn, false);
5133 if (split)
5134 return split;
5135 /* fall through */
5136 case RTX_BIN_ARITH:
5137 case RTX_COMM_ARITH:
5138 case RTX_COMPARE:
5139 case RTX_COMM_COMPARE:
5140 split = find_split_point (&XEXP (x, 1), insn, false);
5141 if (split)
5142 return split;
5143 /* fall through */
5144 case RTX_UNARY:
5145 /* Some machines have (and (shift ...) ...) insns. If X is not
5146 an AND, but XEXP (X, 0) is, use it as our split point. */
5147 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5148 return &XEXP (x, 0);
5150 split = find_split_point (&XEXP (x, 0), insn, false);
5151 if (split)
5152 return split;
5153 return loc;
5155 default:
5156 /* Otherwise, we don't have a split point. */
5157 return 0;
5161 /* Throughout X, replace FROM with TO, and return the result.
5162 The result is TO if X is FROM;
5163 otherwise the result is X, but its contents may have been modified.
5164 If they were modified, a record was made in undobuf so that
5165 undo_all will (among other things) return X to its original state.
5167 If the number of changes necessary is too much to record to undo,
5168 the excess changes are not made, so the result is invalid.
5169 The changes already made can still be undone.
5170 undobuf.num_undo is incremented for such changes, so by testing that
5171 the caller can tell whether the result is valid.
5173 `n_occurrences' is incremented each time FROM is replaced.
5175 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5177 IN_COND is nonzero if we are at the top level of a condition.
5179 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5180 by copying if `n_occurrences' is nonzero. */
5182 static rtx
5183 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5185 enum rtx_code code = GET_CODE (x);
5186 machine_mode op0_mode = VOIDmode;
5187 const char *fmt;
5188 int len, i;
5189 rtx new_rtx;
5191 /* Two expressions are equal if they are identical copies of a shared
5192 RTX or if they are both registers with the same register number
5193 and mode. */
5195 #define COMBINE_RTX_EQUAL_P(X,Y) \
5196 ((X) == (Y) \
5197 || (REG_P (X) && REG_P (Y) \
5198 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5200 /* Do not substitute into clobbers of regs -- this will never result in
5201 valid RTL. */
5202 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5203 return x;
5205 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5207 n_occurrences++;
5208 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5211 /* If X and FROM are the same register but different modes, they
5212 will not have been seen as equal above. However, the log links code
5213 will make a LOG_LINKS entry for that case. If we do nothing, we
5214 will try to rerecognize our original insn and, when it succeeds,
5215 we will delete the feeding insn, which is incorrect.
5217 So force this insn not to match in this (rare) case. */
5218 if (! in_dest && code == REG && REG_P (from)
5219 && reg_overlap_mentioned_p (x, from))
5220 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5222 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5223 of which may contain things that can be combined. */
5224 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5225 return x;
5227 /* It is possible to have a subexpression appear twice in the insn.
5228 Suppose that FROM is a register that appears within TO.
5229 Then, after that subexpression has been scanned once by `subst',
5230 the second time it is scanned, TO may be found. If we were
5231 to scan TO here, we would find FROM within it and create a
5232 self-referent rtl structure which is completely wrong. */
5233 if (COMBINE_RTX_EQUAL_P (x, to))
5234 return to;
5236 /* Parallel asm_operands need special attention because all of the
5237 inputs are shared across the arms. Furthermore, unsharing the
5238 rtl results in recognition failures. Failure to handle this case
5239 specially can result in circular rtl.
5241 Solve this by doing a normal pass across the first entry of the
5242 parallel, and only processing the SET_DESTs of the subsequent
5243 entries. Ug. */
5245 if (code == PARALLEL
5246 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5247 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5249 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5251 /* If this substitution failed, this whole thing fails. */
5252 if (GET_CODE (new_rtx) == CLOBBER
5253 && XEXP (new_rtx, 0) == const0_rtx)
5254 return new_rtx;
5256 SUBST (XVECEXP (x, 0, 0), new_rtx);
5258 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5260 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5262 if (!REG_P (dest)
5263 && GET_CODE (dest) != CC0
5264 && GET_CODE (dest) != PC)
5266 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5268 /* If this substitution failed, this whole thing fails. */
5269 if (GET_CODE (new_rtx) == CLOBBER
5270 && XEXP (new_rtx, 0) == const0_rtx)
5271 return new_rtx;
5273 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5277 else
5279 len = GET_RTX_LENGTH (code);
5280 fmt = GET_RTX_FORMAT (code);
5282 /* We don't need to process a SET_DEST that is a register, CC0,
5283 or PC, so set up to skip this common case. All other cases
5284 where we want to suppress replacing something inside a
5285 SET_SRC are handled via the IN_DEST operand. */
5286 if (code == SET
5287 && (REG_P (SET_DEST (x))
5288 || GET_CODE (SET_DEST (x)) == CC0
5289 || GET_CODE (SET_DEST (x)) == PC))
5290 fmt = "ie";
5292 /* Trying to simplify the operands of a widening MULT is not likely
5293 to create RTL matching a machine insn. */
5294 if (code == MULT
5295 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5296 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5297 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5298 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5299 && REG_P (XEXP (XEXP (x, 0), 0))
5300 && REG_P (XEXP (XEXP (x, 1), 0))
5301 && from == to)
5302 return x;
5305 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5306 constant. */
5307 if (fmt[0] == 'e')
5308 op0_mode = GET_MODE (XEXP (x, 0));
5310 for (i = 0; i < len; i++)
5312 if (fmt[i] == 'E')
5314 int j;
5315 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5317 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5319 new_rtx = (unique_copy && n_occurrences
5320 ? copy_rtx (to) : to);
5321 n_occurrences++;
5323 else
5325 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5326 unique_copy);
5328 /* If this substitution failed, this whole thing
5329 fails. */
5330 if (GET_CODE (new_rtx) == CLOBBER
5331 && XEXP (new_rtx, 0) == const0_rtx)
5332 return new_rtx;
5335 SUBST (XVECEXP (x, i, j), new_rtx);
5338 else if (fmt[i] == 'e')
5340 /* If this is a register being set, ignore it. */
5341 new_rtx = XEXP (x, i);
5342 if (in_dest
5343 && i == 0
5344 && (((code == SUBREG || code == ZERO_EXTRACT)
5345 && REG_P (new_rtx))
5346 || code == STRICT_LOW_PART))
5349 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5351 /* In general, don't install a subreg involving two
5352 modes not tieable. It can worsen register
5353 allocation, and can even make invalid reload
5354 insns, since the reg inside may need to be copied
5355 from in the outside mode, and that may be invalid
5356 if it is an fp reg copied in integer mode.
5358 We allow two exceptions to this: It is valid if
5359 it is inside another SUBREG and the mode of that
5360 SUBREG and the mode of the inside of TO is
5361 tieable and it is valid if X is a SET that copies
5362 FROM to CC0. */
5364 if (GET_CODE (to) == SUBREG
5365 && ! MODES_TIEABLE_P (GET_MODE (to),
5366 GET_MODE (SUBREG_REG (to)))
5367 && ! (code == SUBREG
5368 && MODES_TIEABLE_P (GET_MODE (x),
5369 GET_MODE (SUBREG_REG (to))))
5370 && (!HAVE_cc0
5371 || (! (code == SET
5372 && i == 1
5373 && XEXP (x, 0) == cc0_rtx))))
5374 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5376 if (code == SUBREG
5377 && REG_P (to)
5378 && REGNO (to) < FIRST_PSEUDO_REGISTER
5379 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5380 SUBREG_BYTE (x),
5381 GET_MODE (x)) < 0)
5382 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5384 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5385 n_occurrences++;
5387 else
5388 /* If we are in a SET_DEST, suppress most cases unless we
5389 have gone inside a MEM, in which case we want to
5390 simplify the address. We assume here that things that
5391 are actually part of the destination have their inner
5392 parts in the first expression. This is true for SUBREG,
5393 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5394 things aside from REG and MEM that should appear in a
5395 SET_DEST. */
5396 new_rtx = subst (XEXP (x, i), from, to,
5397 (((in_dest
5398 && (code == SUBREG || code == STRICT_LOW_PART
5399 || code == ZERO_EXTRACT))
5400 || code == SET)
5401 && i == 0),
5402 code == IF_THEN_ELSE && i == 0,
5403 unique_copy);
5405 /* If we found that we will have to reject this combination,
5406 indicate that by returning the CLOBBER ourselves, rather than
5407 an expression containing it. This will speed things up as
5408 well as prevent accidents where two CLOBBERs are considered
5409 to be equal, thus producing an incorrect simplification. */
5411 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5412 return new_rtx;
5414 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5416 machine_mode mode = GET_MODE (x);
5418 x = simplify_subreg (GET_MODE (x), new_rtx,
5419 GET_MODE (SUBREG_REG (x)),
5420 SUBREG_BYTE (x));
5421 if (! x)
5422 x = gen_rtx_CLOBBER (mode, const0_rtx);
5424 else if (CONST_SCALAR_INT_P (new_rtx)
5425 && GET_CODE (x) == ZERO_EXTEND)
5427 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5428 new_rtx, GET_MODE (XEXP (x, 0)));
5429 gcc_assert (x);
5431 else
5432 SUBST (XEXP (x, i), new_rtx);
5437 /* Check if we are loading something from the constant pool via float
5438 extension; in this case we would undo compress_float_constant
5439 optimization and degenerate constant load to an immediate value. */
5440 if (GET_CODE (x) == FLOAT_EXTEND
5441 && MEM_P (XEXP (x, 0))
5442 && MEM_READONLY_P (XEXP (x, 0)))
5444 rtx tmp = avoid_constant_pool_reference (x);
5445 if (x != tmp)
5446 return x;
5449 /* Try to simplify X. If the simplification changed the code, it is likely
5450 that further simplification will help, so loop, but limit the number
5451 of repetitions that will be performed. */
5453 for (i = 0; i < 4; i++)
5455 /* If X is sufficiently simple, don't bother trying to do anything
5456 with it. */
5457 if (code != CONST_INT && code != REG && code != CLOBBER)
5458 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5460 if (GET_CODE (x) == code)
5461 break;
5463 code = GET_CODE (x);
5465 /* We no longer know the original mode of operand 0 since we
5466 have changed the form of X) */
5467 op0_mode = VOIDmode;
5470 return x;
5473 /* Simplify X, a piece of RTL. We just operate on the expression at the
5474 outer level; call `subst' to simplify recursively. Return the new
5475 expression.
5477 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5478 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5479 of a condition. */
5481 static rtx
5482 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5483 int in_cond)
5485 enum rtx_code code = GET_CODE (x);
5486 machine_mode mode = GET_MODE (x);
5487 rtx temp;
5488 int i;
5490 /* If this is a commutative operation, put a constant last and a complex
5491 expression first. We don't need to do this for comparisons here. */
5492 if (COMMUTATIVE_ARITH_P (x)
5493 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5495 temp = XEXP (x, 0);
5496 SUBST (XEXP (x, 0), XEXP (x, 1));
5497 SUBST (XEXP (x, 1), temp);
5500 /* Try to fold this expression in case we have constants that weren't
5501 present before. */
5502 temp = 0;
5503 switch (GET_RTX_CLASS (code))
5505 case RTX_UNARY:
5506 if (op0_mode == VOIDmode)
5507 op0_mode = GET_MODE (XEXP (x, 0));
5508 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5509 break;
5510 case RTX_COMPARE:
5511 case RTX_COMM_COMPARE:
5513 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5514 if (cmp_mode == VOIDmode)
5516 cmp_mode = GET_MODE (XEXP (x, 1));
5517 if (cmp_mode == VOIDmode)
5518 cmp_mode = op0_mode;
5520 temp = simplify_relational_operation (code, mode, cmp_mode,
5521 XEXP (x, 0), XEXP (x, 1));
5523 break;
5524 case RTX_COMM_ARITH:
5525 case RTX_BIN_ARITH:
5526 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5527 break;
5528 case RTX_BITFIELD_OPS:
5529 case RTX_TERNARY:
5530 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5531 XEXP (x, 1), XEXP (x, 2));
5532 break;
5533 default:
5534 break;
5537 if (temp)
5539 x = temp;
5540 code = GET_CODE (temp);
5541 op0_mode = VOIDmode;
5542 mode = GET_MODE (temp);
5545 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5546 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5547 things. Check for cases where both arms are testing the same
5548 condition.
5550 Don't do anything if all operands are very simple. */
5552 if ((BINARY_P (x)
5553 && ((!OBJECT_P (XEXP (x, 0))
5554 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5555 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5556 || (!OBJECT_P (XEXP (x, 1))
5557 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5558 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5559 || (UNARY_P (x)
5560 && (!OBJECT_P (XEXP (x, 0))
5561 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5562 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5564 rtx cond, true_rtx, false_rtx;
5566 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5567 if (cond != 0
5568 /* If everything is a comparison, what we have is highly unlikely
5569 to be simpler, so don't use it. */
5570 && ! (COMPARISON_P (x)
5571 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5573 rtx cop1 = const0_rtx;
5574 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5576 if (cond_code == NE && COMPARISON_P (cond))
5577 return x;
5579 /* Simplify the alternative arms; this may collapse the true and
5580 false arms to store-flag values. Be careful to use copy_rtx
5581 here since true_rtx or false_rtx might share RTL with x as a
5582 result of the if_then_else_cond call above. */
5583 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5584 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5586 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5587 is unlikely to be simpler. */
5588 if (general_operand (true_rtx, VOIDmode)
5589 && general_operand (false_rtx, VOIDmode))
5591 enum rtx_code reversed;
5593 /* Restarting if we generate a store-flag expression will cause
5594 us to loop. Just drop through in this case. */
5596 /* If the result values are STORE_FLAG_VALUE and zero, we can
5597 just make the comparison operation. */
5598 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5599 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5600 cond, cop1);
5601 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5602 && ((reversed = reversed_comparison_code_parts
5603 (cond_code, cond, cop1, NULL))
5604 != UNKNOWN))
5605 x = simplify_gen_relational (reversed, mode, VOIDmode,
5606 cond, cop1);
5608 /* Likewise, we can make the negate of a comparison operation
5609 if the result values are - STORE_FLAG_VALUE and zero. */
5610 else if (CONST_INT_P (true_rtx)
5611 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5612 && false_rtx == const0_rtx)
5613 x = simplify_gen_unary (NEG, mode,
5614 simplify_gen_relational (cond_code,
5615 mode, VOIDmode,
5616 cond, cop1),
5617 mode);
5618 else if (CONST_INT_P (false_rtx)
5619 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5620 && true_rtx == const0_rtx
5621 && ((reversed = reversed_comparison_code_parts
5622 (cond_code, cond, cop1, NULL))
5623 != UNKNOWN))
5624 x = simplify_gen_unary (NEG, mode,
5625 simplify_gen_relational (reversed,
5626 mode, VOIDmode,
5627 cond, cop1),
5628 mode);
5629 else
5630 return gen_rtx_IF_THEN_ELSE (mode,
5631 simplify_gen_relational (cond_code,
5632 mode,
5633 VOIDmode,
5634 cond,
5635 cop1),
5636 true_rtx, false_rtx);
5638 code = GET_CODE (x);
5639 op0_mode = VOIDmode;
5644 /* First see if we can apply the inverse distributive law. */
5645 if (code == PLUS || code == MINUS
5646 || code == AND || code == IOR || code == XOR)
5648 x = apply_distributive_law (x);
5649 code = GET_CODE (x);
5650 op0_mode = VOIDmode;
5653 /* If CODE is an associative operation not otherwise handled, see if we
5654 can associate some operands. This can win if they are constants or
5655 if they are logically related (i.e. (a & b) & a). */
5656 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5657 || code == AND || code == IOR || code == XOR
5658 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5659 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5660 || (flag_associative_math && FLOAT_MODE_P (mode))))
5662 if (GET_CODE (XEXP (x, 0)) == code)
5664 rtx other = XEXP (XEXP (x, 0), 0);
5665 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5666 rtx inner_op1 = XEXP (x, 1);
5667 rtx inner;
5669 /* Make sure we pass the constant operand if any as the second
5670 one if this is a commutative operation. */
5671 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5672 std::swap (inner_op0, inner_op1);
5673 inner = simplify_binary_operation (code == MINUS ? PLUS
5674 : code == DIV ? MULT
5675 : code,
5676 mode, inner_op0, inner_op1);
5678 /* For commutative operations, try the other pair if that one
5679 didn't simplify. */
5680 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5682 other = XEXP (XEXP (x, 0), 1);
5683 inner = simplify_binary_operation (code, mode,
5684 XEXP (XEXP (x, 0), 0),
5685 XEXP (x, 1));
5688 if (inner)
5689 return simplify_gen_binary (code, mode, other, inner);
5693 /* A little bit of algebraic simplification here. */
5694 switch (code)
5696 case MEM:
5697 /* Ensure that our address has any ASHIFTs converted to MULT in case
5698 address-recognizing predicates are called later. */
5699 temp = make_compound_operation (XEXP (x, 0), MEM);
5700 SUBST (XEXP (x, 0), temp);
5701 break;
5703 case SUBREG:
5704 if (op0_mode == VOIDmode)
5705 op0_mode = GET_MODE (SUBREG_REG (x));
5707 /* See if this can be moved to simplify_subreg. */
5708 if (CONSTANT_P (SUBREG_REG (x))
5709 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5710 /* Don't call gen_lowpart if the inner mode
5711 is VOIDmode and we cannot simplify it, as SUBREG without
5712 inner mode is invalid. */
5713 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5714 || gen_lowpart_common (mode, SUBREG_REG (x))))
5715 return gen_lowpart (mode, SUBREG_REG (x));
5717 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5718 break;
5720 rtx temp;
5721 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5722 SUBREG_BYTE (x));
5723 if (temp)
5724 return temp;
5726 /* If op is known to have all lower bits zero, the result is zero. */
5727 if (!in_dest
5728 && SCALAR_INT_MODE_P (mode)
5729 && SCALAR_INT_MODE_P (op0_mode)
5730 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5731 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5732 && HWI_COMPUTABLE_MODE_P (op0_mode)
5733 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5734 & GET_MODE_MASK (mode)) == 0)
5735 return CONST0_RTX (mode);
5738 /* Don't change the mode of the MEM if that would change the meaning
5739 of the address. */
5740 if (MEM_P (SUBREG_REG (x))
5741 && (MEM_VOLATILE_P (SUBREG_REG (x))
5742 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5743 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5744 return gen_rtx_CLOBBER (mode, const0_rtx);
5746 /* Note that we cannot do any narrowing for non-constants since
5747 we might have been counting on using the fact that some bits were
5748 zero. We now do this in the SET. */
5750 break;
5752 case NEG:
5753 temp = expand_compound_operation (XEXP (x, 0));
5755 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5756 replaced by (lshiftrt X C). This will convert
5757 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5759 if (GET_CODE (temp) == ASHIFTRT
5760 && CONST_INT_P (XEXP (temp, 1))
5761 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5762 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5763 INTVAL (XEXP (temp, 1)));
5765 /* If X has only a single bit that might be nonzero, say, bit I, convert
5766 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5767 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5768 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5769 or a SUBREG of one since we'd be making the expression more
5770 complex if it was just a register. */
5772 if (!REG_P (temp)
5773 && ! (GET_CODE (temp) == SUBREG
5774 && REG_P (SUBREG_REG (temp)))
5775 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5777 rtx temp1 = simplify_shift_const
5778 (NULL_RTX, ASHIFTRT, mode,
5779 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5780 GET_MODE_PRECISION (mode) - 1 - i),
5781 GET_MODE_PRECISION (mode) - 1 - i);
5783 /* If all we did was surround TEMP with the two shifts, we
5784 haven't improved anything, so don't use it. Otherwise,
5785 we are better off with TEMP1. */
5786 if (GET_CODE (temp1) != ASHIFTRT
5787 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5788 || XEXP (XEXP (temp1, 0), 0) != temp)
5789 return temp1;
5791 break;
5793 case TRUNCATE:
5794 /* We can't handle truncation to a partial integer mode here
5795 because we don't know the real bitsize of the partial
5796 integer mode. */
5797 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5798 break;
5800 if (HWI_COMPUTABLE_MODE_P (mode))
5801 SUBST (XEXP (x, 0),
5802 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5803 GET_MODE_MASK (mode), 0));
5805 /* We can truncate a constant value and return it. */
5806 if (CONST_INT_P (XEXP (x, 0)))
5807 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5809 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5810 whose value is a comparison can be replaced with a subreg if
5811 STORE_FLAG_VALUE permits. */
5812 if (HWI_COMPUTABLE_MODE_P (mode)
5813 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5814 && (temp = get_last_value (XEXP (x, 0)))
5815 && COMPARISON_P (temp))
5816 return gen_lowpart (mode, XEXP (x, 0));
5817 break;
5819 case CONST:
5820 /* (const (const X)) can become (const X). Do it this way rather than
5821 returning the inner CONST since CONST can be shared with a
5822 REG_EQUAL note. */
5823 if (GET_CODE (XEXP (x, 0)) == CONST)
5824 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5825 break;
5827 case LO_SUM:
5828 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5829 can add in an offset. find_split_point will split this address up
5830 again if it doesn't match. */
5831 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5832 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5833 return XEXP (x, 1);
5834 break;
5836 case PLUS:
5837 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5838 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5839 bit-field and can be replaced by either a sign_extend or a
5840 sign_extract. The `and' may be a zero_extend and the two
5841 <c>, -<c> constants may be reversed. */
5842 if (GET_CODE (XEXP (x, 0)) == XOR
5843 && CONST_INT_P (XEXP (x, 1))
5844 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5845 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5846 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5847 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5848 && HWI_COMPUTABLE_MODE_P (mode)
5849 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5850 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5851 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5852 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5853 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5854 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5855 == (unsigned int) i + 1))))
5856 return simplify_shift_const
5857 (NULL_RTX, ASHIFTRT, mode,
5858 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5859 XEXP (XEXP (XEXP (x, 0), 0), 0),
5860 GET_MODE_PRECISION (mode) - (i + 1)),
5861 GET_MODE_PRECISION (mode) - (i + 1));
5863 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5864 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5865 the bitsize of the mode - 1. This allows simplification of
5866 "a = (b & 8) == 0;" */
5867 if (XEXP (x, 1) == constm1_rtx
5868 && !REG_P (XEXP (x, 0))
5869 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5870 && REG_P (SUBREG_REG (XEXP (x, 0))))
5871 && nonzero_bits (XEXP (x, 0), mode) == 1)
5872 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5873 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5874 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5875 GET_MODE_PRECISION (mode) - 1),
5876 GET_MODE_PRECISION (mode) - 1);
5878 /* If we are adding two things that have no bits in common, convert
5879 the addition into an IOR. This will often be further simplified,
5880 for example in cases like ((a & 1) + (a & 2)), which can
5881 become a & 3. */
5883 if (HWI_COMPUTABLE_MODE_P (mode)
5884 && (nonzero_bits (XEXP (x, 0), mode)
5885 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5887 /* Try to simplify the expression further. */
5888 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5889 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5891 /* If we could, great. If not, do not go ahead with the IOR
5892 replacement, since PLUS appears in many special purpose
5893 address arithmetic instructions. */
5894 if (GET_CODE (temp) != CLOBBER
5895 && (GET_CODE (temp) != IOR
5896 || ((XEXP (temp, 0) != XEXP (x, 0)
5897 || XEXP (temp, 1) != XEXP (x, 1))
5898 && (XEXP (temp, 0) != XEXP (x, 1)
5899 || XEXP (temp, 1) != XEXP (x, 0)))))
5900 return temp;
5903 /* Canonicalize x + x into x << 1. */
5904 if (GET_MODE_CLASS (mode) == MODE_INT
5905 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5906 && !side_effects_p (XEXP (x, 0)))
5907 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5909 break;
5911 case MINUS:
5912 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5913 (and <foo> (const_int pow2-1)) */
5914 if (GET_CODE (XEXP (x, 1)) == AND
5915 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5916 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5917 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5918 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5919 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5920 break;
5922 case MULT:
5923 /* If we have (mult (plus A B) C), apply the distributive law and then
5924 the inverse distributive law to see if things simplify. This
5925 occurs mostly in addresses, often when unrolling loops. */
5927 if (GET_CODE (XEXP (x, 0)) == PLUS)
5929 rtx result = distribute_and_simplify_rtx (x, 0);
5930 if (result)
5931 return result;
5934 /* Try simplify a*(b/c) as (a*b)/c. */
5935 if (FLOAT_MODE_P (mode) && flag_associative_math
5936 && GET_CODE (XEXP (x, 0)) == DIV)
5938 rtx tem = simplify_binary_operation (MULT, mode,
5939 XEXP (XEXP (x, 0), 0),
5940 XEXP (x, 1));
5941 if (tem)
5942 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5944 break;
5946 case UDIV:
5947 /* If this is a divide by a power of two, treat it as a shift if
5948 its first operand is a shift. */
5949 if (CONST_INT_P (XEXP (x, 1))
5950 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5951 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5952 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5953 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5954 || GET_CODE (XEXP (x, 0)) == ROTATE
5955 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5956 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5957 break;
5959 case EQ: case NE:
5960 case GT: case GTU: case GE: case GEU:
5961 case LT: case LTU: case LE: case LEU:
5962 case UNEQ: case LTGT:
5963 case UNGT: case UNGE:
5964 case UNLT: case UNLE:
5965 case UNORDERED: case ORDERED:
5966 /* If the first operand is a condition code, we can't do anything
5967 with it. */
5968 if (GET_CODE (XEXP (x, 0)) == COMPARE
5969 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5970 && ! CC0_P (XEXP (x, 0))))
5972 rtx op0 = XEXP (x, 0);
5973 rtx op1 = XEXP (x, 1);
5974 enum rtx_code new_code;
5976 if (GET_CODE (op0) == COMPARE)
5977 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5979 /* Simplify our comparison, if possible. */
5980 new_code = simplify_comparison (code, &op0, &op1);
5982 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5983 if only the low-order bit is possibly nonzero in X (such as when
5984 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5985 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5986 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5987 (plus X 1).
5989 Remove any ZERO_EXTRACT we made when thinking this was a
5990 comparison. It may now be simpler to use, e.g., an AND. If a
5991 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5992 the call to make_compound_operation in the SET case.
5994 Don't apply these optimizations if the caller would
5995 prefer a comparison rather than a value.
5996 E.g., for the condition in an IF_THEN_ELSE most targets need
5997 an explicit comparison. */
5999 if (in_cond)
6002 else if (STORE_FLAG_VALUE == 1
6003 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6004 && op1 == const0_rtx
6005 && mode == GET_MODE (op0)
6006 && nonzero_bits (op0, mode) == 1)
6007 return gen_lowpart (mode,
6008 expand_compound_operation (op0));
6010 else if (STORE_FLAG_VALUE == 1
6011 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6012 && op1 == const0_rtx
6013 && mode == GET_MODE (op0)
6014 && (num_sign_bit_copies (op0, mode)
6015 == GET_MODE_PRECISION (mode)))
6017 op0 = expand_compound_operation (op0);
6018 return simplify_gen_unary (NEG, mode,
6019 gen_lowpart (mode, op0),
6020 mode);
6023 else if (STORE_FLAG_VALUE == 1
6024 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6025 && op1 == const0_rtx
6026 && mode == GET_MODE (op0)
6027 && nonzero_bits (op0, mode) == 1)
6029 op0 = expand_compound_operation (op0);
6030 return simplify_gen_binary (XOR, mode,
6031 gen_lowpart (mode, op0),
6032 const1_rtx);
6035 else if (STORE_FLAG_VALUE == 1
6036 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6037 && op1 == const0_rtx
6038 && mode == GET_MODE (op0)
6039 && (num_sign_bit_copies (op0, mode)
6040 == GET_MODE_PRECISION (mode)))
6042 op0 = expand_compound_operation (op0);
6043 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6046 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6047 those above. */
6048 if (in_cond)
6051 else if (STORE_FLAG_VALUE == -1
6052 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6053 && op1 == const0_rtx
6054 && mode == GET_MODE (op0)
6055 && (num_sign_bit_copies (op0, mode)
6056 == GET_MODE_PRECISION (mode)))
6057 return gen_lowpart (mode,
6058 expand_compound_operation (op0));
6060 else if (STORE_FLAG_VALUE == -1
6061 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6062 && op1 == const0_rtx
6063 && mode == GET_MODE (op0)
6064 && nonzero_bits (op0, mode) == 1)
6066 op0 = expand_compound_operation (op0);
6067 return simplify_gen_unary (NEG, mode,
6068 gen_lowpart (mode, op0),
6069 mode);
6072 else if (STORE_FLAG_VALUE == -1
6073 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6074 && op1 == const0_rtx
6075 && mode == GET_MODE (op0)
6076 && (num_sign_bit_copies (op0, mode)
6077 == GET_MODE_PRECISION (mode)))
6079 op0 = expand_compound_operation (op0);
6080 return simplify_gen_unary (NOT, mode,
6081 gen_lowpart (mode, op0),
6082 mode);
6085 /* If X is 0/1, (eq X 0) is X-1. */
6086 else if (STORE_FLAG_VALUE == -1
6087 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6088 && op1 == const0_rtx
6089 && mode == GET_MODE (op0)
6090 && nonzero_bits (op0, mode) == 1)
6092 op0 = expand_compound_operation (op0);
6093 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6096 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6097 one bit that might be nonzero, we can convert (ne x 0) to
6098 (ashift x c) where C puts the bit in the sign bit. Remove any
6099 AND with STORE_FLAG_VALUE when we are done, since we are only
6100 going to test the sign bit. */
6101 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6102 && HWI_COMPUTABLE_MODE_P (mode)
6103 && val_signbit_p (mode, STORE_FLAG_VALUE)
6104 && op1 == const0_rtx
6105 && mode == GET_MODE (op0)
6106 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6108 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6109 expand_compound_operation (op0),
6110 GET_MODE_PRECISION (mode) - 1 - i);
6111 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6112 return XEXP (x, 0);
6113 else
6114 return x;
6117 /* If the code changed, return a whole new comparison.
6118 We also need to avoid using SUBST in cases where
6119 simplify_comparison has widened a comparison with a CONST_INT,
6120 since in that case the wider CONST_INT may fail the sanity
6121 checks in do_SUBST. */
6122 if (new_code != code
6123 || (CONST_INT_P (op1)
6124 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6125 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6126 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6128 /* Otherwise, keep this operation, but maybe change its operands.
6129 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6130 SUBST (XEXP (x, 0), op0);
6131 SUBST (XEXP (x, 1), op1);
6133 break;
6135 case IF_THEN_ELSE:
6136 return simplify_if_then_else (x);
6138 case ZERO_EXTRACT:
6139 case SIGN_EXTRACT:
6140 case ZERO_EXTEND:
6141 case SIGN_EXTEND:
6142 /* If we are processing SET_DEST, we are done. */
6143 if (in_dest)
6144 return x;
6146 return expand_compound_operation (x);
6148 case SET:
6149 return simplify_set (x);
6151 case AND:
6152 case IOR:
6153 return simplify_logical (x);
6155 case ASHIFT:
6156 case LSHIFTRT:
6157 case ASHIFTRT:
6158 case ROTATE:
6159 case ROTATERT:
6160 /* If this is a shift by a constant amount, simplify it. */
6161 if (CONST_INT_P (XEXP (x, 1)))
6162 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6163 INTVAL (XEXP (x, 1)));
6165 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6166 SUBST (XEXP (x, 1),
6167 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6168 (HOST_WIDE_INT_1U
6169 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6170 - 1,
6171 0));
6172 break;
6174 default:
6175 break;
6178 return x;
6181 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6183 static rtx
6184 simplify_if_then_else (rtx x)
6186 machine_mode mode = GET_MODE (x);
6187 rtx cond = XEXP (x, 0);
6188 rtx true_rtx = XEXP (x, 1);
6189 rtx false_rtx = XEXP (x, 2);
6190 enum rtx_code true_code = GET_CODE (cond);
6191 int comparison_p = COMPARISON_P (cond);
6192 rtx temp;
6193 int i;
6194 enum rtx_code false_code;
6195 rtx reversed;
6197 /* Simplify storing of the truth value. */
6198 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6199 return simplify_gen_relational (true_code, mode, VOIDmode,
6200 XEXP (cond, 0), XEXP (cond, 1));
6202 /* Also when the truth value has to be reversed. */
6203 if (comparison_p
6204 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6205 && (reversed = reversed_comparison (cond, mode)))
6206 return reversed;
6208 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6209 in it is being compared against certain values. Get the true and false
6210 comparisons and see if that says anything about the value of each arm. */
6212 if (comparison_p
6213 && ((false_code = reversed_comparison_code (cond, NULL))
6214 != UNKNOWN)
6215 && REG_P (XEXP (cond, 0)))
6217 HOST_WIDE_INT nzb;
6218 rtx from = XEXP (cond, 0);
6219 rtx true_val = XEXP (cond, 1);
6220 rtx false_val = true_val;
6221 int swapped = 0;
6223 /* If FALSE_CODE is EQ, swap the codes and arms. */
6225 if (false_code == EQ)
6227 swapped = 1, true_code = EQ, false_code = NE;
6228 std::swap (true_rtx, false_rtx);
6231 /* If we are comparing against zero and the expression being tested has
6232 only a single bit that might be nonzero, that is its value when it is
6233 not equal to zero. Similarly if it is known to be -1 or 0. */
6235 if (true_code == EQ && true_val == const0_rtx
6236 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6238 false_code = EQ;
6239 false_val = gen_int_mode (nzb, GET_MODE (from));
6241 else if (true_code == EQ && true_val == const0_rtx
6242 && (num_sign_bit_copies (from, GET_MODE (from))
6243 == GET_MODE_PRECISION (GET_MODE (from))))
6245 false_code = EQ;
6246 false_val = constm1_rtx;
6249 /* Now simplify an arm if we know the value of the register in the
6250 branch and it is used in the arm. Be careful due to the potential
6251 of locally-shared RTL. */
6253 if (reg_mentioned_p (from, true_rtx))
6254 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6255 from, true_val),
6256 pc_rtx, pc_rtx, 0, 0, 0);
6257 if (reg_mentioned_p (from, false_rtx))
6258 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6259 from, false_val),
6260 pc_rtx, pc_rtx, 0, 0, 0);
6262 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6263 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6265 true_rtx = XEXP (x, 1);
6266 false_rtx = XEXP (x, 2);
6267 true_code = GET_CODE (cond);
6270 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6271 reversed, do so to avoid needing two sets of patterns for
6272 subtract-and-branch insns. Similarly if we have a constant in the true
6273 arm, the false arm is the same as the first operand of the comparison, or
6274 the false arm is more complicated than the true arm. */
6276 if (comparison_p
6277 && reversed_comparison_code (cond, NULL) != UNKNOWN
6278 && (true_rtx == pc_rtx
6279 || (CONSTANT_P (true_rtx)
6280 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6281 || true_rtx == const0_rtx
6282 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6283 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6284 && !OBJECT_P (false_rtx))
6285 || reg_mentioned_p (true_rtx, false_rtx)
6286 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6288 true_code = reversed_comparison_code (cond, NULL);
6289 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6290 SUBST (XEXP (x, 1), false_rtx);
6291 SUBST (XEXP (x, 2), true_rtx);
6293 std::swap (true_rtx, false_rtx);
6294 cond = XEXP (x, 0);
6296 /* It is possible that the conditional has been simplified out. */
6297 true_code = GET_CODE (cond);
6298 comparison_p = COMPARISON_P (cond);
6301 /* If the two arms are identical, we don't need the comparison. */
6303 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6304 return true_rtx;
6306 /* Convert a == b ? b : a to "a". */
6307 if (true_code == EQ && ! side_effects_p (cond)
6308 && !HONOR_NANS (mode)
6309 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6310 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6311 return false_rtx;
6312 else if (true_code == NE && ! side_effects_p (cond)
6313 && !HONOR_NANS (mode)
6314 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6315 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6316 return true_rtx;
6318 /* Look for cases where we have (abs x) or (neg (abs X)). */
6320 if (GET_MODE_CLASS (mode) == MODE_INT
6321 && comparison_p
6322 && XEXP (cond, 1) == const0_rtx
6323 && GET_CODE (false_rtx) == NEG
6324 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6325 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6326 && ! side_effects_p (true_rtx))
6327 switch (true_code)
6329 case GT:
6330 case GE:
6331 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6332 case LT:
6333 case LE:
6334 return
6335 simplify_gen_unary (NEG, mode,
6336 simplify_gen_unary (ABS, mode, true_rtx, mode),
6337 mode);
6338 default:
6339 break;
6342 /* Look for MIN or MAX. */
6344 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6345 && comparison_p
6346 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6347 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6348 && ! side_effects_p (cond))
6349 switch (true_code)
6351 case GE:
6352 case GT:
6353 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6354 case LE:
6355 case LT:
6356 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6357 case GEU:
6358 case GTU:
6359 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6360 case LEU:
6361 case LTU:
6362 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6363 default:
6364 break;
6367 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6368 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6369 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6370 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6371 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6372 neither 1 or -1, but it isn't worth checking for. */
6374 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6375 && comparison_p
6376 && GET_MODE_CLASS (mode) == MODE_INT
6377 && ! side_effects_p (x))
6379 rtx t = make_compound_operation (true_rtx, SET);
6380 rtx f = make_compound_operation (false_rtx, SET);
6381 rtx cond_op0 = XEXP (cond, 0);
6382 rtx cond_op1 = XEXP (cond, 1);
6383 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6384 machine_mode m = mode;
6385 rtx z = 0, c1 = NULL_RTX;
6387 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6388 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6389 || GET_CODE (t) == ASHIFT
6390 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6391 && rtx_equal_p (XEXP (t, 0), f))
6392 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6394 /* If an identity-zero op is commutative, check whether there
6395 would be a match if we swapped the operands. */
6396 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6397 || GET_CODE (t) == XOR)
6398 && rtx_equal_p (XEXP (t, 1), f))
6399 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6400 else if (GET_CODE (t) == SIGN_EXTEND
6401 && (GET_CODE (XEXP (t, 0)) == PLUS
6402 || GET_CODE (XEXP (t, 0)) == MINUS
6403 || GET_CODE (XEXP (t, 0)) == IOR
6404 || GET_CODE (XEXP (t, 0)) == XOR
6405 || GET_CODE (XEXP (t, 0)) == ASHIFT
6406 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6407 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6408 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6409 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6410 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6411 && (num_sign_bit_copies (f, GET_MODE (f))
6412 > (unsigned int)
6413 (GET_MODE_PRECISION (mode)
6414 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6416 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6417 extend_op = SIGN_EXTEND;
6418 m = GET_MODE (XEXP (t, 0));
6420 else if (GET_CODE (t) == SIGN_EXTEND
6421 && (GET_CODE (XEXP (t, 0)) == PLUS
6422 || GET_CODE (XEXP (t, 0)) == IOR
6423 || GET_CODE (XEXP (t, 0)) == XOR)
6424 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6425 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6426 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6427 && (num_sign_bit_copies (f, GET_MODE (f))
6428 > (unsigned int)
6429 (GET_MODE_PRECISION (mode)
6430 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6432 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6433 extend_op = SIGN_EXTEND;
6434 m = GET_MODE (XEXP (t, 0));
6436 else if (GET_CODE (t) == ZERO_EXTEND
6437 && (GET_CODE (XEXP (t, 0)) == PLUS
6438 || GET_CODE (XEXP (t, 0)) == MINUS
6439 || GET_CODE (XEXP (t, 0)) == IOR
6440 || GET_CODE (XEXP (t, 0)) == XOR
6441 || GET_CODE (XEXP (t, 0)) == ASHIFT
6442 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6443 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6444 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6445 && HWI_COMPUTABLE_MODE_P (mode)
6446 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6447 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6448 && ((nonzero_bits (f, GET_MODE (f))
6449 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6450 == 0))
6452 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6453 extend_op = ZERO_EXTEND;
6454 m = GET_MODE (XEXP (t, 0));
6456 else if (GET_CODE (t) == ZERO_EXTEND
6457 && (GET_CODE (XEXP (t, 0)) == PLUS
6458 || GET_CODE (XEXP (t, 0)) == IOR
6459 || GET_CODE (XEXP (t, 0)) == XOR)
6460 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6461 && HWI_COMPUTABLE_MODE_P (mode)
6462 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6463 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6464 && ((nonzero_bits (f, GET_MODE (f))
6465 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6466 == 0))
6468 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6469 extend_op = ZERO_EXTEND;
6470 m = GET_MODE (XEXP (t, 0));
6473 if (z)
6475 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6476 cond_op0, cond_op1),
6477 pc_rtx, pc_rtx, 0, 0, 0);
6478 temp = simplify_gen_binary (MULT, m, temp,
6479 simplify_gen_binary (MULT, m, c1,
6480 const_true_rtx));
6481 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6482 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6484 if (extend_op != UNKNOWN)
6485 temp = simplify_gen_unary (extend_op, mode, temp, m);
6487 return temp;
6491 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6492 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6493 negation of a single bit, we can convert this operation to a shift. We
6494 can actually do this more generally, but it doesn't seem worth it. */
6496 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6497 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6498 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6499 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6500 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6501 == GET_MODE_PRECISION (mode))
6502 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6503 return
6504 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6505 gen_lowpart (mode, XEXP (cond, 0)), i);
6507 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6508 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6509 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6510 && GET_MODE (XEXP (cond, 0)) == mode
6511 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6512 == nonzero_bits (XEXP (cond, 0), mode)
6513 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6514 return XEXP (cond, 0);
6516 return x;
6519 /* Simplify X, a SET expression. Return the new expression. */
6521 static rtx
6522 simplify_set (rtx x)
6524 rtx src = SET_SRC (x);
6525 rtx dest = SET_DEST (x);
6526 machine_mode mode
6527 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6528 rtx_insn *other_insn;
6529 rtx *cc_use;
6531 /* (set (pc) (return)) gets written as (return). */
6532 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6533 return src;
6535 /* Now that we know for sure which bits of SRC we are using, see if we can
6536 simplify the expression for the object knowing that we only need the
6537 low-order bits. */
6539 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6541 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6542 SUBST (SET_SRC (x), src);
6545 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6546 the comparison result and try to simplify it unless we already have used
6547 undobuf.other_insn. */
6548 if ((GET_MODE_CLASS (mode) == MODE_CC
6549 || GET_CODE (src) == COMPARE
6550 || CC0_P (dest))
6551 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6552 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6553 && COMPARISON_P (*cc_use)
6554 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6556 enum rtx_code old_code = GET_CODE (*cc_use);
6557 enum rtx_code new_code;
6558 rtx op0, op1, tmp;
6559 int other_changed = 0;
6560 rtx inner_compare = NULL_RTX;
6561 machine_mode compare_mode = GET_MODE (dest);
6563 if (GET_CODE (src) == COMPARE)
6565 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6566 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6568 inner_compare = op0;
6569 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6572 else
6573 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6575 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6576 op0, op1);
6577 if (!tmp)
6578 new_code = old_code;
6579 else if (!CONSTANT_P (tmp))
6581 new_code = GET_CODE (tmp);
6582 op0 = XEXP (tmp, 0);
6583 op1 = XEXP (tmp, 1);
6585 else
6587 rtx pat = PATTERN (other_insn);
6588 undobuf.other_insn = other_insn;
6589 SUBST (*cc_use, tmp);
6591 /* Attempt to simplify CC user. */
6592 if (GET_CODE (pat) == SET)
6594 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6595 if (new_rtx != NULL_RTX)
6596 SUBST (SET_SRC (pat), new_rtx);
6599 /* Convert X into a no-op move. */
6600 SUBST (SET_DEST (x), pc_rtx);
6601 SUBST (SET_SRC (x), pc_rtx);
6602 return x;
6605 /* Simplify our comparison, if possible. */
6606 new_code = simplify_comparison (new_code, &op0, &op1);
6608 #ifdef SELECT_CC_MODE
6609 /* If this machine has CC modes other than CCmode, check to see if we
6610 need to use a different CC mode here. */
6611 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6612 compare_mode = GET_MODE (op0);
6613 else if (inner_compare
6614 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6615 && new_code == old_code
6616 && op0 == XEXP (inner_compare, 0)
6617 && op1 == XEXP (inner_compare, 1))
6618 compare_mode = GET_MODE (inner_compare);
6619 else
6620 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6622 /* If the mode changed, we have to change SET_DEST, the mode in the
6623 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6624 a hard register, just build new versions with the proper mode. If it
6625 is a pseudo, we lose unless it is only time we set the pseudo, in
6626 which case we can safely change its mode. */
6627 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6629 if (can_change_dest_mode (dest, 0, compare_mode))
6631 unsigned int regno = REGNO (dest);
6632 rtx new_dest;
6634 if (regno < FIRST_PSEUDO_REGISTER)
6635 new_dest = gen_rtx_REG (compare_mode, regno);
6636 else
6638 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6639 new_dest = regno_reg_rtx[regno];
6642 SUBST (SET_DEST (x), new_dest);
6643 SUBST (XEXP (*cc_use, 0), new_dest);
6644 other_changed = 1;
6646 dest = new_dest;
6649 #endif /* SELECT_CC_MODE */
6651 /* If the code changed, we have to build a new comparison in
6652 undobuf.other_insn. */
6653 if (new_code != old_code)
6655 int other_changed_previously = other_changed;
6656 unsigned HOST_WIDE_INT mask;
6657 rtx old_cc_use = *cc_use;
6659 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6660 dest, const0_rtx));
6661 other_changed = 1;
6663 /* If the only change we made was to change an EQ into an NE or
6664 vice versa, OP0 has only one bit that might be nonzero, and OP1
6665 is zero, check if changing the user of the condition code will
6666 produce a valid insn. If it won't, we can keep the original code
6667 in that insn by surrounding our operation with an XOR. */
6669 if (((old_code == NE && new_code == EQ)
6670 || (old_code == EQ && new_code == NE))
6671 && ! other_changed_previously && op1 == const0_rtx
6672 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6673 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6675 rtx pat = PATTERN (other_insn), note = 0;
6677 if ((recog_for_combine (&pat, other_insn, &note) < 0
6678 && ! check_asm_operands (pat)))
6680 *cc_use = old_cc_use;
6681 other_changed = 0;
6683 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6684 gen_int_mode (mask,
6685 GET_MODE (op0)));
6690 if (other_changed)
6691 undobuf.other_insn = other_insn;
6693 /* Don't generate a compare of a CC with 0, just use that CC. */
6694 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6696 SUBST (SET_SRC (x), op0);
6697 src = SET_SRC (x);
6699 /* Otherwise, if we didn't previously have the same COMPARE we
6700 want, create it from scratch. */
6701 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6702 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6704 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6705 src = SET_SRC (x);
6708 else
6710 /* Get SET_SRC in a form where we have placed back any
6711 compound expressions. Then do the checks below. */
6712 src = make_compound_operation (src, SET);
6713 SUBST (SET_SRC (x), src);
6716 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6717 and X being a REG or (subreg (reg)), we may be able to convert this to
6718 (set (subreg:m2 x) (op)).
6720 We can always do this if M1 is narrower than M2 because that means that
6721 we only care about the low bits of the result.
6723 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6724 perform a narrower operation than requested since the high-order bits will
6725 be undefined. On machine where it is defined, this transformation is safe
6726 as long as M1 and M2 have the same number of words. */
6728 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6729 && !OBJECT_P (SUBREG_REG (src))
6730 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6731 / UNITS_PER_WORD)
6732 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6733 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6734 && (WORD_REGISTER_OPERATIONS
6735 || (GET_MODE_SIZE (GET_MODE (src))
6736 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6737 #ifdef CANNOT_CHANGE_MODE_CLASS
6738 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6739 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6740 GET_MODE (SUBREG_REG (src)),
6741 GET_MODE (src)))
6742 #endif
6743 && (REG_P (dest)
6744 || (GET_CODE (dest) == SUBREG
6745 && REG_P (SUBREG_REG (dest)))))
6747 SUBST (SET_DEST (x),
6748 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6749 dest));
6750 SUBST (SET_SRC (x), SUBREG_REG (src));
6752 src = SET_SRC (x), dest = SET_DEST (x);
6755 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6756 in SRC. */
6757 if (dest == cc0_rtx
6758 && GET_CODE (src) == SUBREG
6759 && subreg_lowpart_p (src)
6760 && (GET_MODE_PRECISION (GET_MODE (src))
6761 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6763 rtx inner = SUBREG_REG (src);
6764 machine_mode inner_mode = GET_MODE (inner);
6766 /* Here we make sure that we don't have a sign bit on. */
6767 if (val_signbit_known_clear_p (GET_MODE (src),
6768 nonzero_bits (inner, inner_mode)))
6770 SUBST (SET_SRC (x), inner);
6771 src = SET_SRC (x);
6775 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6776 would require a paradoxical subreg. Replace the subreg with a
6777 zero_extend to avoid the reload that would otherwise be required. */
6779 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6780 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6781 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6782 && SUBREG_BYTE (src) == 0
6783 && paradoxical_subreg_p (src)
6784 && MEM_P (SUBREG_REG (src)))
6786 SUBST (SET_SRC (x),
6787 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6788 GET_MODE (src), SUBREG_REG (src)));
6790 src = SET_SRC (x);
6793 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6794 are comparing an item known to be 0 or -1 against 0, use a logical
6795 operation instead. Check for one of the arms being an IOR of the other
6796 arm with some value. We compute three terms to be IOR'ed together. In
6797 practice, at most two will be nonzero. Then we do the IOR's. */
6799 if (GET_CODE (dest) != PC
6800 && GET_CODE (src) == IF_THEN_ELSE
6801 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6802 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6803 && XEXP (XEXP (src, 0), 1) == const0_rtx
6804 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6805 && (!HAVE_conditional_move
6806 || ! can_conditionally_move_p (GET_MODE (src)))
6807 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6808 GET_MODE (XEXP (XEXP (src, 0), 0)))
6809 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6810 && ! side_effects_p (src))
6812 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6813 ? XEXP (src, 1) : XEXP (src, 2));
6814 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6815 ? XEXP (src, 2) : XEXP (src, 1));
6816 rtx term1 = const0_rtx, term2, term3;
6818 if (GET_CODE (true_rtx) == IOR
6819 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6820 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6821 else if (GET_CODE (true_rtx) == IOR
6822 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6823 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6824 else if (GET_CODE (false_rtx) == IOR
6825 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6826 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6827 else if (GET_CODE (false_rtx) == IOR
6828 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6829 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6831 term2 = simplify_gen_binary (AND, GET_MODE (src),
6832 XEXP (XEXP (src, 0), 0), true_rtx);
6833 term3 = simplify_gen_binary (AND, GET_MODE (src),
6834 simplify_gen_unary (NOT, GET_MODE (src),
6835 XEXP (XEXP (src, 0), 0),
6836 GET_MODE (src)),
6837 false_rtx);
6839 SUBST (SET_SRC (x),
6840 simplify_gen_binary (IOR, GET_MODE (src),
6841 simplify_gen_binary (IOR, GET_MODE (src),
6842 term1, term2),
6843 term3));
6845 src = SET_SRC (x);
6848 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6849 whole thing fail. */
6850 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6851 return src;
6852 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6853 return dest;
6854 else
6855 /* Convert this into a field assignment operation, if possible. */
6856 return make_field_assignment (x);
6859 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6860 result. */
6862 static rtx
6863 simplify_logical (rtx x)
6865 machine_mode mode = GET_MODE (x);
6866 rtx op0 = XEXP (x, 0);
6867 rtx op1 = XEXP (x, 1);
6869 switch (GET_CODE (x))
6871 case AND:
6872 /* We can call simplify_and_const_int only if we don't lose
6873 any (sign) bits when converting INTVAL (op1) to
6874 "unsigned HOST_WIDE_INT". */
6875 if (CONST_INT_P (op1)
6876 && (HWI_COMPUTABLE_MODE_P (mode)
6877 || INTVAL (op1) > 0))
6879 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6880 if (GET_CODE (x) != AND)
6881 return x;
6883 op0 = XEXP (x, 0);
6884 op1 = XEXP (x, 1);
6887 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6888 apply the distributive law and then the inverse distributive
6889 law to see if things simplify. */
6890 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6892 rtx result = distribute_and_simplify_rtx (x, 0);
6893 if (result)
6894 return result;
6896 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6898 rtx result = distribute_and_simplify_rtx (x, 1);
6899 if (result)
6900 return result;
6902 break;
6904 case IOR:
6905 /* If we have (ior (and A B) C), apply the distributive law and then
6906 the inverse distributive law to see if things simplify. */
6908 if (GET_CODE (op0) == AND)
6910 rtx result = distribute_and_simplify_rtx (x, 0);
6911 if (result)
6912 return result;
6915 if (GET_CODE (op1) == AND)
6917 rtx result = distribute_and_simplify_rtx (x, 1);
6918 if (result)
6919 return result;
6921 break;
6923 default:
6924 gcc_unreachable ();
6927 return x;
6930 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6931 operations" because they can be replaced with two more basic operations.
6932 ZERO_EXTEND is also considered "compound" because it can be replaced with
6933 an AND operation, which is simpler, though only one operation.
6935 The function expand_compound_operation is called with an rtx expression
6936 and will convert it to the appropriate shifts and AND operations,
6937 simplifying at each stage.
6939 The function make_compound_operation is called to convert an expression
6940 consisting of shifts and ANDs into the equivalent compound expression.
6941 It is the inverse of this function, loosely speaking. */
6943 static rtx
6944 expand_compound_operation (rtx x)
6946 unsigned HOST_WIDE_INT pos = 0, len;
6947 int unsignedp = 0;
6948 unsigned int modewidth;
6949 rtx tem;
6951 switch (GET_CODE (x))
6953 case ZERO_EXTEND:
6954 unsignedp = 1;
6955 /* FALLTHRU */
6956 case SIGN_EXTEND:
6957 /* We can't necessarily use a const_int for a multiword mode;
6958 it depends on implicitly extending the value.
6959 Since we don't know the right way to extend it,
6960 we can't tell whether the implicit way is right.
6962 Even for a mode that is no wider than a const_int,
6963 we can't win, because we need to sign extend one of its bits through
6964 the rest of it, and we don't know which bit. */
6965 if (CONST_INT_P (XEXP (x, 0)))
6966 return x;
6968 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6969 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6970 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6971 reloaded. If not for that, MEM's would very rarely be safe.
6973 Reject MODEs bigger than a word, because we might not be able
6974 to reference a two-register group starting with an arbitrary register
6975 (and currently gen_lowpart might crash for a SUBREG). */
6977 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6978 return x;
6980 /* Reject MODEs that aren't scalar integers because turning vector
6981 or complex modes into shifts causes problems. */
6983 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6984 return x;
6986 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6987 /* If the inner object has VOIDmode (the only way this can happen
6988 is if it is an ASM_OPERANDS), we can't do anything since we don't
6989 know how much masking to do. */
6990 if (len == 0)
6991 return x;
6993 break;
6995 case ZERO_EXTRACT:
6996 unsignedp = 1;
6998 /* fall through */
7000 case SIGN_EXTRACT:
7001 /* If the operand is a CLOBBER, just return it. */
7002 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7003 return XEXP (x, 0);
7005 if (!CONST_INT_P (XEXP (x, 1))
7006 || !CONST_INT_P (XEXP (x, 2))
7007 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7008 return x;
7010 /* Reject MODEs that aren't scalar integers because turning vector
7011 or complex modes into shifts causes problems. */
7013 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7014 return x;
7016 len = INTVAL (XEXP (x, 1));
7017 pos = INTVAL (XEXP (x, 2));
7019 /* This should stay within the object being extracted, fail otherwise. */
7020 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7021 return x;
7023 if (BITS_BIG_ENDIAN)
7024 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7026 break;
7028 default:
7029 return x;
7031 /* Convert sign extension to zero extension, if we know that the high
7032 bit is not set, as this is easier to optimize. It will be converted
7033 back to cheaper alternative in make_extraction. */
7034 if (GET_CODE (x) == SIGN_EXTEND
7035 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7036 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7037 & ~(((unsigned HOST_WIDE_INT)
7038 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7039 >> 1))
7040 == 0)))
7042 machine_mode mode = GET_MODE (x);
7043 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7044 rtx temp2 = expand_compound_operation (temp);
7046 /* Make sure this is a profitable operation. */
7047 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7048 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7049 return temp2;
7050 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7051 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7052 return temp;
7053 else
7054 return x;
7057 /* We can optimize some special cases of ZERO_EXTEND. */
7058 if (GET_CODE (x) == ZERO_EXTEND)
7060 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7061 know that the last value didn't have any inappropriate bits
7062 set. */
7063 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7064 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7065 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7066 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7067 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7068 return XEXP (XEXP (x, 0), 0);
7070 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7071 if (GET_CODE (XEXP (x, 0)) == SUBREG
7072 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7073 && subreg_lowpart_p (XEXP (x, 0))
7074 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7075 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7076 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7077 return SUBREG_REG (XEXP (x, 0));
7079 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7080 is a comparison and STORE_FLAG_VALUE permits. This is like
7081 the first case, but it works even when GET_MODE (x) is larger
7082 than HOST_WIDE_INT. */
7083 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7084 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7085 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7086 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7087 <= HOST_BITS_PER_WIDE_INT)
7088 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7089 return XEXP (XEXP (x, 0), 0);
7091 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7092 if (GET_CODE (XEXP (x, 0)) == SUBREG
7093 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7094 && subreg_lowpart_p (XEXP (x, 0))
7095 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7096 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7097 <= HOST_BITS_PER_WIDE_INT)
7098 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7099 return SUBREG_REG (XEXP (x, 0));
7103 /* If we reach here, we want to return a pair of shifts. The inner
7104 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7105 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7106 logical depending on the value of UNSIGNEDP.
7108 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7109 converted into an AND of a shift.
7111 We must check for the case where the left shift would have a negative
7112 count. This can happen in a case like (x >> 31) & 255 on machines
7113 that can't shift by a constant. On those machines, we would first
7114 combine the shift with the AND to produce a variable-position
7115 extraction. Then the constant of 31 would be substituted in
7116 to produce such a position. */
7118 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7119 if (modewidth >= pos + len)
7121 machine_mode mode = GET_MODE (x);
7122 tem = gen_lowpart (mode, XEXP (x, 0));
7123 if (!tem || GET_CODE (tem) == CLOBBER)
7124 return x;
7125 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7126 tem, modewidth - pos - len);
7127 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7128 mode, tem, modewidth - len);
7130 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7131 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7132 simplify_shift_const (NULL_RTX, LSHIFTRT,
7133 GET_MODE (x),
7134 XEXP (x, 0), pos),
7135 (HOST_WIDE_INT_1U << len) - 1);
7136 else
7137 /* Any other cases we can't handle. */
7138 return x;
7140 /* If we couldn't do this for some reason, return the original
7141 expression. */
7142 if (GET_CODE (tem) == CLOBBER)
7143 return x;
7145 return tem;
7148 /* X is a SET which contains an assignment of one object into
7149 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7150 or certain SUBREGS). If possible, convert it into a series of
7151 logical operations.
7153 We half-heartedly support variable positions, but do not at all
7154 support variable lengths. */
7156 static const_rtx
7157 expand_field_assignment (const_rtx x)
7159 rtx inner;
7160 rtx pos; /* Always counts from low bit. */
7161 int len;
7162 rtx mask, cleared, masked;
7163 machine_mode compute_mode;
7165 /* Loop until we find something we can't simplify. */
7166 while (1)
7168 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7169 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7171 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7172 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7173 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7175 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7176 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7178 inner = XEXP (SET_DEST (x), 0);
7179 len = INTVAL (XEXP (SET_DEST (x), 1));
7180 pos = XEXP (SET_DEST (x), 2);
7182 /* A constant position should stay within the width of INNER. */
7183 if (CONST_INT_P (pos)
7184 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7185 break;
7187 if (BITS_BIG_ENDIAN)
7189 if (CONST_INT_P (pos))
7190 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7191 - INTVAL (pos));
7192 else if (GET_CODE (pos) == MINUS
7193 && CONST_INT_P (XEXP (pos, 1))
7194 && (INTVAL (XEXP (pos, 1))
7195 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7196 /* If position is ADJUST - X, new position is X. */
7197 pos = XEXP (pos, 0);
7198 else
7200 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7201 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7202 gen_int_mode (prec - len,
7203 GET_MODE (pos)),
7204 pos);
7209 /* A SUBREG between two modes that occupy the same numbers of words
7210 can be done by moving the SUBREG to the source. */
7211 else if (GET_CODE (SET_DEST (x)) == SUBREG
7212 /* We need SUBREGs to compute nonzero_bits properly. */
7213 && nonzero_sign_valid
7214 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7215 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7216 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7217 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7219 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7220 gen_lowpart
7221 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7222 SET_SRC (x)));
7223 continue;
7225 else
7226 break;
7228 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7229 inner = SUBREG_REG (inner);
7231 compute_mode = GET_MODE (inner);
7233 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7234 if (! SCALAR_INT_MODE_P (compute_mode))
7236 machine_mode imode;
7238 /* Don't do anything for vector or complex integral types. */
7239 if (! FLOAT_MODE_P (compute_mode))
7240 break;
7242 /* Try to find an integral mode to pun with. */
7243 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7244 if (imode == BLKmode)
7245 break;
7247 compute_mode = imode;
7248 inner = gen_lowpart (imode, inner);
7251 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7252 if (len >= HOST_BITS_PER_WIDE_INT)
7253 break;
7255 /* Don't try to compute in too wide unsupported modes. */
7256 if (!targetm.scalar_mode_supported_p (compute_mode))
7257 break;
7259 /* Now compute the equivalent expression. Make a copy of INNER
7260 for the SET_DEST in case it is a MEM into which we will substitute;
7261 we don't want shared RTL in that case. */
7262 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7263 compute_mode);
7264 cleared = simplify_gen_binary (AND, compute_mode,
7265 simplify_gen_unary (NOT, compute_mode,
7266 simplify_gen_binary (ASHIFT,
7267 compute_mode,
7268 mask, pos),
7269 compute_mode),
7270 inner);
7271 masked = simplify_gen_binary (ASHIFT, compute_mode,
7272 simplify_gen_binary (
7273 AND, compute_mode,
7274 gen_lowpart (compute_mode, SET_SRC (x)),
7275 mask),
7276 pos);
7278 x = gen_rtx_SET (copy_rtx (inner),
7279 simplify_gen_binary (IOR, compute_mode,
7280 cleared, masked));
7283 return x;
7286 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7287 it is an RTX that represents the (variable) starting position; otherwise,
7288 POS is the (constant) starting bit position. Both are counted from the LSB.
7290 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7292 IN_DEST is nonzero if this is a reference in the destination of a SET.
7293 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7294 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7295 be used.
7297 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7298 ZERO_EXTRACT should be built even for bits starting at bit 0.
7300 MODE is the desired mode of the result (if IN_DEST == 0).
7302 The result is an RTX for the extraction or NULL_RTX if the target
7303 can't handle it. */
7305 static rtx
7306 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7307 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7308 int in_dest, int in_compare)
7310 /* This mode describes the size of the storage area
7311 to fetch the overall value from. Within that, we
7312 ignore the POS lowest bits, etc. */
7313 machine_mode is_mode = GET_MODE (inner);
7314 machine_mode inner_mode;
7315 machine_mode wanted_inner_mode;
7316 machine_mode wanted_inner_reg_mode = word_mode;
7317 machine_mode pos_mode = word_mode;
7318 machine_mode extraction_mode = word_mode;
7319 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7320 rtx new_rtx = 0;
7321 rtx orig_pos_rtx = pos_rtx;
7322 HOST_WIDE_INT orig_pos;
7324 if (pos_rtx && CONST_INT_P (pos_rtx))
7325 pos = INTVAL (pos_rtx), pos_rtx = 0;
7327 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7329 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7330 consider just the QI as the memory to extract from.
7331 The subreg adds or removes high bits; its mode is
7332 irrelevant to the meaning of this extraction,
7333 since POS and LEN count from the lsb. */
7334 if (MEM_P (SUBREG_REG (inner)))
7335 is_mode = GET_MODE (SUBREG_REG (inner));
7336 inner = SUBREG_REG (inner);
7338 else if (GET_CODE (inner) == ASHIFT
7339 && CONST_INT_P (XEXP (inner, 1))
7340 && pos_rtx == 0 && pos == 0
7341 && len > UINTVAL (XEXP (inner, 1)))
7343 /* We're extracting the least significant bits of an rtx
7344 (ashift X (const_int C)), where LEN > C. Extract the
7345 least significant (LEN - C) bits of X, giving an rtx
7346 whose mode is MODE, then shift it left C times. */
7347 new_rtx = make_extraction (mode, XEXP (inner, 0),
7348 0, 0, len - INTVAL (XEXP (inner, 1)),
7349 unsignedp, in_dest, in_compare);
7350 if (new_rtx != 0)
7351 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7353 else if (GET_CODE (inner) == TRUNCATE)
7354 inner = XEXP (inner, 0);
7356 inner_mode = GET_MODE (inner);
7358 /* See if this can be done without an extraction. We never can if the
7359 width of the field is not the same as that of some integer mode. For
7360 registers, we can only avoid the extraction if the position is at the
7361 low-order bit and this is either not in the destination or we have the
7362 appropriate STRICT_LOW_PART operation available.
7364 For MEM, we can avoid an extract if the field starts on an appropriate
7365 boundary and we can change the mode of the memory reference. */
7367 if (tmode != BLKmode
7368 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7369 && !MEM_P (inner)
7370 && (inner_mode == tmode
7371 || !REG_P (inner)
7372 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7373 || reg_truncated_to_mode (tmode, inner))
7374 && (! in_dest
7375 || (REG_P (inner)
7376 && have_insn_for (STRICT_LOW_PART, tmode))))
7377 || (MEM_P (inner) && pos_rtx == 0
7378 && (pos
7379 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7380 : BITS_PER_UNIT)) == 0
7381 /* We can't do this if we are widening INNER_MODE (it
7382 may not be aligned, for one thing). */
7383 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7384 && (inner_mode == tmode
7385 || (! mode_dependent_address_p (XEXP (inner, 0),
7386 MEM_ADDR_SPACE (inner))
7387 && ! MEM_VOLATILE_P (inner))))))
7389 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7390 field. If the original and current mode are the same, we need not
7391 adjust the offset. Otherwise, we do if bytes big endian.
7393 If INNER is not a MEM, get a piece consisting of just the field
7394 of interest (in this case POS % BITS_PER_WORD must be 0). */
7396 if (MEM_P (inner))
7398 HOST_WIDE_INT offset;
7400 /* POS counts from lsb, but make OFFSET count in memory order. */
7401 if (BYTES_BIG_ENDIAN)
7402 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7403 else
7404 offset = pos / BITS_PER_UNIT;
7406 new_rtx = adjust_address_nv (inner, tmode, offset);
7408 else if (REG_P (inner))
7410 if (tmode != inner_mode)
7412 /* We can't call gen_lowpart in a DEST since we
7413 always want a SUBREG (see below) and it would sometimes
7414 return a new hard register. */
7415 if (pos || in_dest)
7417 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7419 if (WORDS_BIG_ENDIAN
7420 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7421 final_word = ((GET_MODE_SIZE (inner_mode)
7422 - GET_MODE_SIZE (tmode))
7423 / UNITS_PER_WORD) - final_word;
7425 final_word *= UNITS_PER_WORD;
7426 if (BYTES_BIG_ENDIAN &&
7427 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7428 final_word += (GET_MODE_SIZE (inner_mode)
7429 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7431 /* Avoid creating invalid subregs, for example when
7432 simplifying (x>>32)&255. */
7433 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7434 return NULL_RTX;
7436 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7438 else
7439 new_rtx = gen_lowpart (tmode, inner);
7441 else
7442 new_rtx = inner;
7444 else
7445 new_rtx = force_to_mode (inner, tmode,
7446 len >= HOST_BITS_PER_WIDE_INT
7447 ? HOST_WIDE_INT_M1U
7448 : (HOST_WIDE_INT_1U << len) - 1,
7451 /* If this extraction is going into the destination of a SET,
7452 make a STRICT_LOW_PART unless we made a MEM. */
7454 if (in_dest)
7455 return (MEM_P (new_rtx) ? new_rtx
7456 : (GET_CODE (new_rtx) != SUBREG
7457 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7458 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7460 if (mode == tmode)
7461 return new_rtx;
7463 if (CONST_SCALAR_INT_P (new_rtx))
7464 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7465 mode, new_rtx, tmode);
7467 /* If we know that no extraneous bits are set, and that the high
7468 bit is not set, convert the extraction to the cheaper of
7469 sign and zero extension, that are equivalent in these cases. */
7470 if (flag_expensive_optimizations
7471 && (HWI_COMPUTABLE_MODE_P (tmode)
7472 && ((nonzero_bits (new_rtx, tmode)
7473 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7474 == 0)))
7476 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7477 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7479 /* Prefer ZERO_EXTENSION, since it gives more information to
7480 backends. */
7481 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7482 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7483 return temp;
7484 return temp1;
7487 /* Otherwise, sign- or zero-extend unless we already are in the
7488 proper mode. */
7490 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7491 mode, new_rtx));
7494 /* Unless this is a COMPARE or we have a funny memory reference,
7495 don't do anything with zero-extending field extracts starting at
7496 the low-order bit since they are simple AND operations. */
7497 if (pos_rtx == 0 && pos == 0 && ! in_dest
7498 && ! in_compare && unsignedp)
7499 return 0;
7501 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7502 if the position is not a constant and the length is not 1. In all
7503 other cases, we would only be going outside our object in cases when
7504 an original shift would have been undefined. */
7505 if (MEM_P (inner)
7506 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7507 || (pos_rtx != 0 && len != 1)))
7508 return 0;
7510 enum extraction_pattern pattern = (in_dest ? EP_insv
7511 : unsignedp ? EP_extzv : EP_extv);
7513 /* If INNER is not from memory, we want it to have the mode of a register
7514 extraction pattern's structure operand, or word_mode if there is no
7515 such pattern. The same applies to extraction_mode and pos_mode
7516 and their respective operands.
7518 For memory, assume that the desired extraction_mode and pos_mode
7519 are the same as for a register operation, since at present we don't
7520 have named patterns for aligned memory structures. */
7521 struct extraction_insn insn;
7522 if (get_best_reg_extraction_insn (&insn, pattern,
7523 GET_MODE_BITSIZE (inner_mode), mode))
7525 wanted_inner_reg_mode = insn.struct_mode;
7526 pos_mode = insn.pos_mode;
7527 extraction_mode = insn.field_mode;
7530 /* Never narrow an object, since that might not be safe. */
7532 if (mode != VOIDmode
7533 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7534 extraction_mode = mode;
7536 if (!MEM_P (inner))
7537 wanted_inner_mode = wanted_inner_reg_mode;
7538 else
7540 /* Be careful not to go beyond the extracted object and maintain the
7541 natural alignment of the memory. */
7542 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7543 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7544 > GET_MODE_BITSIZE (wanted_inner_mode))
7546 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7547 gcc_assert (wanted_inner_mode != VOIDmode);
7551 orig_pos = pos;
7553 if (BITS_BIG_ENDIAN)
7555 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7556 BITS_BIG_ENDIAN style. If position is constant, compute new
7557 position. Otherwise, build subtraction.
7558 Note that POS is relative to the mode of the original argument.
7559 If it's a MEM we need to recompute POS relative to that.
7560 However, if we're extracting from (or inserting into) a register,
7561 we want to recompute POS relative to wanted_inner_mode. */
7562 int width = (MEM_P (inner)
7563 ? GET_MODE_BITSIZE (is_mode)
7564 : GET_MODE_BITSIZE (wanted_inner_mode));
7566 if (pos_rtx == 0)
7567 pos = width - len - pos;
7568 else
7569 pos_rtx
7570 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7571 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7572 pos_rtx);
7573 /* POS may be less than 0 now, but we check for that below.
7574 Note that it can only be less than 0 if !MEM_P (inner). */
7577 /* If INNER has a wider mode, and this is a constant extraction, try to
7578 make it smaller and adjust the byte to point to the byte containing
7579 the value. */
7580 if (wanted_inner_mode != VOIDmode
7581 && inner_mode != wanted_inner_mode
7582 && ! pos_rtx
7583 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7584 && MEM_P (inner)
7585 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7586 && ! MEM_VOLATILE_P (inner))
7588 int offset = 0;
7590 /* The computations below will be correct if the machine is big
7591 endian in both bits and bytes or little endian in bits and bytes.
7592 If it is mixed, we must adjust. */
7594 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7595 adjust OFFSET to compensate. */
7596 if (BYTES_BIG_ENDIAN
7597 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7598 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7600 /* We can now move to the desired byte. */
7601 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7602 * GET_MODE_SIZE (wanted_inner_mode);
7603 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7605 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7606 && is_mode != wanted_inner_mode)
7607 offset = (GET_MODE_SIZE (is_mode)
7608 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7610 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7613 /* If INNER is not memory, get it into the proper mode. If we are changing
7614 its mode, POS must be a constant and smaller than the size of the new
7615 mode. */
7616 else if (!MEM_P (inner))
7618 /* On the LHS, don't create paradoxical subregs implicitely truncating
7619 the register unless TRULY_NOOP_TRUNCATION. */
7620 if (in_dest
7621 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7622 wanted_inner_mode))
7623 return NULL_RTX;
7625 if (GET_MODE (inner) != wanted_inner_mode
7626 && (pos_rtx != 0
7627 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7628 return NULL_RTX;
7630 if (orig_pos < 0)
7631 return NULL_RTX;
7633 inner = force_to_mode (inner, wanted_inner_mode,
7634 pos_rtx
7635 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7636 ? HOST_WIDE_INT_M1U
7637 : (((HOST_WIDE_INT_1U << len) - 1)
7638 << orig_pos),
7642 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7643 have to zero extend. Otherwise, we can just use a SUBREG. */
7644 if (pos_rtx != 0
7645 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7647 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7648 GET_MODE (pos_rtx));
7650 /* If we know that no extraneous bits are set, and that the high
7651 bit is not set, convert extraction to cheaper one - either
7652 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7653 cases. */
7654 if (flag_expensive_optimizations
7655 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7656 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7657 & ~(((unsigned HOST_WIDE_INT)
7658 GET_MODE_MASK (GET_MODE (pos_rtx)))
7659 >> 1))
7660 == 0)))
7662 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7663 GET_MODE (pos_rtx));
7665 /* Prefer ZERO_EXTENSION, since it gives more information to
7666 backends. */
7667 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7668 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7669 temp = temp1;
7671 pos_rtx = temp;
7674 /* Make POS_RTX unless we already have it and it is correct. If we don't
7675 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7676 be a CONST_INT. */
7677 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7678 pos_rtx = orig_pos_rtx;
7680 else if (pos_rtx == 0)
7681 pos_rtx = GEN_INT (pos);
7683 /* Make the required operation. See if we can use existing rtx. */
7684 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7685 extraction_mode, inner, GEN_INT (len), pos_rtx);
7686 if (! in_dest)
7687 new_rtx = gen_lowpart (mode, new_rtx);
7689 return new_rtx;
7692 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7693 with any other operations in X. Return X without that shift if so. */
7695 static rtx
7696 extract_left_shift (rtx x, int count)
7698 enum rtx_code code = GET_CODE (x);
7699 machine_mode mode = GET_MODE (x);
7700 rtx tem;
7702 switch (code)
7704 case ASHIFT:
7705 /* This is the shift itself. If it is wide enough, we will return
7706 either the value being shifted if the shift count is equal to
7707 COUNT or a shift for the difference. */
7708 if (CONST_INT_P (XEXP (x, 1))
7709 && INTVAL (XEXP (x, 1)) >= count)
7710 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7711 INTVAL (XEXP (x, 1)) - count);
7712 break;
7714 case NEG: case NOT:
7715 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7716 return simplify_gen_unary (code, mode, tem, mode);
7718 break;
7720 case PLUS: case IOR: case XOR: case AND:
7721 /* If we can safely shift this constant and we find the inner shift,
7722 make a new operation. */
7723 if (CONST_INT_P (XEXP (x, 1))
7724 && (UINTVAL (XEXP (x, 1))
7725 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7726 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7728 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7729 return simplify_gen_binary (code, mode, tem,
7730 gen_int_mode (val, mode));
7732 break;
7734 default:
7735 break;
7738 return 0;
7741 /* Look at the expression rooted at X. Look for expressions
7742 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7743 Form these expressions.
7745 Return the new rtx, usually just X.
7747 Also, for machines like the VAX that don't have logical shift insns,
7748 try to convert logical to arithmetic shift operations in cases where
7749 they are equivalent. This undoes the canonicalizations to logical
7750 shifts done elsewhere.
7752 We try, as much as possible, to re-use rtl expressions to save memory.
7754 IN_CODE says what kind of expression we are processing. Normally, it is
7755 SET. In a memory address it is MEM. When processing the arguments of
7756 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
7757 precisely it is an equality comparison against zero. */
7760 make_compound_operation (rtx x, enum rtx_code in_code)
7762 enum rtx_code code = GET_CODE (x);
7763 machine_mode mode = GET_MODE (x);
7764 int mode_width = GET_MODE_PRECISION (mode);
7765 rtx rhs, lhs;
7766 enum rtx_code next_code;
7767 int i, j;
7768 rtx new_rtx = 0;
7769 rtx tem;
7770 const char *fmt;
7771 bool equality_comparison = false;
7773 /* PR rtl-optimization/70944. */
7774 if (VECTOR_MODE_P (mode))
7775 return x;
7777 /* Select the code to be used in recursive calls. Once we are inside an
7778 address, we stay there. If we have a comparison, set to COMPARE,
7779 but once inside, go back to our default of SET. */
7781 if (in_code == EQ)
7783 equality_comparison = true;
7784 in_code = COMPARE;
7786 next_code = (code == MEM ? MEM
7787 : ((code == COMPARE || COMPARISON_P (x))
7788 && XEXP (x, 1) == const0_rtx) ? COMPARE
7789 : in_code == COMPARE ? SET : in_code);
7791 /* Process depending on the code of this operation. If NEW is set
7792 nonzero, it will be returned. */
7794 switch (code)
7796 case ASHIFT:
7797 /* Convert shifts by constants into multiplications if inside
7798 an address. */
7799 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7800 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7801 && INTVAL (XEXP (x, 1)) >= 0
7802 && SCALAR_INT_MODE_P (mode))
7804 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7805 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7807 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7808 if (GET_CODE (new_rtx) == NEG)
7810 new_rtx = XEXP (new_rtx, 0);
7811 multval = -multval;
7813 multval = trunc_int_for_mode (multval, mode);
7814 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7816 break;
7818 case PLUS:
7819 lhs = XEXP (x, 0);
7820 rhs = XEXP (x, 1);
7821 lhs = make_compound_operation (lhs, next_code);
7822 rhs = make_compound_operation (rhs, next_code);
7823 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7824 && SCALAR_INT_MODE_P (mode))
7826 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7827 XEXP (lhs, 1));
7828 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7830 else if (GET_CODE (lhs) == MULT
7831 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7833 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7834 simplify_gen_unary (NEG, mode,
7835 XEXP (lhs, 1),
7836 mode));
7837 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7839 else
7841 SUBST (XEXP (x, 0), lhs);
7842 SUBST (XEXP (x, 1), rhs);
7843 goto maybe_swap;
7845 x = gen_lowpart (mode, new_rtx);
7846 goto maybe_swap;
7848 case MINUS:
7849 lhs = XEXP (x, 0);
7850 rhs = XEXP (x, 1);
7851 lhs = make_compound_operation (lhs, next_code);
7852 rhs = make_compound_operation (rhs, next_code);
7853 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7854 && SCALAR_INT_MODE_P (mode))
7856 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7857 XEXP (rhs, 1));
7858 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7860 else if (GET_CODE (rhs) == MULT
7861 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7863 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7864 simplify_gen_unary (NEG, mode,
7865 XEXP (rhs, 1),
7866 mode));
7867 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7869 else
7871 SUBST (XEXP (x, 0), lhs);
7872 SUBST (XEXP (x, 1), rhs);
7873 return x;
7875 return gen_lowpart (mode, new_rtx);
7877 case AND:
7878 /* If the second operand is not a constant, we can't do anything
7879 with it. */
7880 if (!CONST_INT_P (XEXP (x, 1)))
7881 break;
7883 /* If the constant is a power of two minus one and the first operand
7884 is a logical right shift, make an extraction. */
7885 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7886 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7888 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7889 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7890 0, in_code == COMPARE);
7893 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7894 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7895 && subreg_lowpart_p (XEXP (x, 0))
7896 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7897 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7899 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7900 machine_mode inner_mode = GET_MODE (inner_x0);
7901 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7902 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7903 XEXP (inner_x0, 1),
7904 i, 1, 0, in_code == COMPARE);
7906 if (new_rtx)
7908 /* If we narrowed the mode when dropping the subreg, then
7909 we must zero-extend to keep the semantics of the AND. */
7910 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7912 else if (SCALAR_INT_MODE_P (inner_mode))
7913 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7914 new_rtx, inner_mode);
7915 else
7916 new_rtx = NULL;
7919 /* If that didn't give anything, see if the AND simplifies on
7920 its own. */
7921 if (!new_rtx && i >= 0)
7923 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7924 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7925 0, in_code == COMPARE);
7928 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7929 else if ((GET_CODE (XEXP (x, 0)) == XOR
7930 || GET_CODE (XEXP (x, 0)) == IOR)
7931 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7932 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7933 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7935 /* Apply the distributive law, and then try to make extractions. */
7936 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7937 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7938 XEXP (x, 1)),
7939 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7940 XEXP (x, 1)));
7941 new_rtx = make_compound_operation (new_rtx, in_code);
7944 /* If we are have (and (rotate X C) M) and C is larger than the number
7945 of bits in M, this is an extraction. */
7947 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7948 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7949 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7950 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7952 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7953 new_rtx = make_extraction (mode, new_rtx,
7954 (GET_MODE_PRECISION (mode)
7955 - INTVAL (XEXP (XEXP (x, 0), 1))),
7956 NULL_RTX, i, 1, 0, in_code == COMPARE);
7959 /* On machines without logical shifts, if the operand of the AND is
7960 a logical shift and our mask turns off all the propagated sign
7961 bits, we can replace the logical shift with an arithmetic shift. */
7962 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7963 && !have_insn_for (LSHIFTRT, mode)
7964 && have_insn_for (ASHIFTRT, mode)
7965 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7966 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7967 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7968 && mode_width <= HOST_BITS_PER_WIDE_INT)
7970 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7972 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7973 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7974 SUBST (XEXP (x, 0),
7975 gen_rtx_ASHIFTRT (mode,
7976 make_compound_operation
7977 (XEXP (XEXP (x, 0), 0), next_code),
7978 XEXP (XEXP (x, 0), 1)));
7981 /* If the constant is one less than a power of two, this might be
7982 representable by an extraction even if no shift is present.
7983 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7984 we are in a COMPARE. */
7985 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7986 new_rtx = make_extraction (mode,
7987 make_compound_operation (XEXP (x, 0),
7988 next_code),
7989 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7991 /* If we are in a comparison and this is an AND with a power of two,
7992 convert this into the appropriate bit extract. */
7993 else if (in_code == COMPARE
7994 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
7995 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
7996 new_rtx = make_extraction (mode,
7997 make_compound_operation (XEXP (x, 0),
7998 next_code),
7999 i, NULL_RTX, 1, 1, 0, 1);
8001 /* If the one operand is a paradoxical subreg of a register or memory and
8002 the constant (limited to the smaller mode) has only zero bits where
8003 the sub expression has known zero bits, this can be expressed as
8004 a zero_extend. */
8005 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8007 rtx sub;
8009 sub = XEXP (XEXP (x, 0), 0);
8010 machine_mode sub_mode = GET_MODE (sub);
8011 if ((REG_P (sub) || MEM_P (sub))
8012 && GET_MODE_PRECISION (sub_mode) < mode_width)
8014 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8015 unsigned HOST_WIDE_INT mask;
8017 /* original AND constant with all the known zero bits set */
8018 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8019 if ((mask & mode_mask) == mode_mask)
8021 new_rtx = make_compound_operation (sub, next_code);
8022 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8023 GET_MODE_PRECISION (sub_mode),
8024 1, 0, in_code == COMPARE);
8029 break;
8031 case LSHIFTRT:
8032 /* If the sign bit is known to be zero, replace this with an
8033 arithmetic shift. */
8034 if (have_insn_for (ASHIFTRT, mode)
8035 && ! have_insn_for (LSHIFTRT, mode)
8036 && mode_width <= HOST_BITS_PER_WIDE_INT
8037 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8039 new_rtx = gen_rtx_ASHIFTRT (mode,
8040 make_compound_operation (XEXP (x, 0),
8041 next_code),
8042 XEXP (x, 1));
8043 break;
8046 /* fall through */
8048 case ASHIFTRT:
8049 lhs = XEXP (x, 0);
8050 rhs = XEXP (x, 1);
8052 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8053 this is a SIGN_EXTRACT. */
8054 if (CONST_INT_P (rhs)
8055 && GET_CODE (lhs) == ASHIFT
8056 && CONST_INT_P (XEXP (lhs, 1))
8057 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8058 && INTVAL (XEXP (lhs, 1)) >= 0
8059 && INTVAL (rhs) < mode_width)
8061 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8062 new_rtx = make_extraction (mode, new_rtx,
8063 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8064 NULL_RTX, mode_width - INTVAL (rhs),
8065 code == LSHIFTRT, 0, in_code == COMPARE);
8066 break;
8069 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8070 If so, try to merge the shifts into a SIGN_EXTEND. We could
8071 also do this for some cases of SIGN_EXTRACT, but it doesn't
8072 seem worth the effort; the case checked for occurs on Alpha. */
8074 if (!OBJECT_P (lhs)
8075 && ! (GET_CODE (lhs) == SUBREG
8076 && (OBJECT_P (SUBREG_REG (lhs))))
8077 && CONST_INT_P (rhs)
8078 && INTVAL (rhs) >= 0
8079 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8080 && INTVAL (rhs) < mode_width
8081 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8082 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8083 0, NULL_RTX, mode_width - INTVAL (rhs),
8084 code == LSHIFTRT, 0, in_code == COMPARE);
8086 break;
8088 case SUBREG:
8089 /* Call ourselves recursively on the inner expression. If we are
8090 narrowing the object and it has a different RTL code from
8091 what it originally did, do this SUBREG as a force_to_mode. */
8093 rtx inner = SUBREG_REG (x), simplified;
8094 enum rtx_code subreg_code = in_code;
8096 /* If in_code is COMPARE, it isn't always safe to pass it through
8097 to the recursive make_compound_operation call. */
8098 if (subreg_code == COMPARE
8099 && (!subreg_lowpart_p (x)
8100 || GET_CODE (inner) == SUBREG
8101 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8102 is (const_int 0), rather than
8103 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8104 || (GET_CODE (inner) == AND
8105 && CONST_INT_P (XEXP (inner, 1))
8106 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8107 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8108 >= GET_MODE_BITSIZE (mode))))
8109 subreg_code = SET;
8111 tem = make_compound_operation (inner, subreg_code);
8113 simplified
8114 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8115 if (simplified)
8116 tem = simplified;
8118 if (GET_CODE (tem) != GET_CODE (inner)
8119 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8120 && subreg_lowpart_p (x))
8122 rtx newer
8123 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8125 /* If we have something other than a SUBREG, we might have
8126 done an expansion, so rerun ourselves. */
8127 if (GET_CODE (newer) != SUBREG)
8128 newer = make_compound_operation (newer, in_code);
8130 /* force_to_mode can expand compounds. If it just re-expanded the
8131 compound, use gen_lowpart to convert to the desired mode. */
8132 if (rtx_equal_p (newer, x)
8133 /* Likewise if it re-expanded the compound only partially.
8134 This happens for SUBREG of ZERO_EXTRACT if they extract
8135 the same number of bits. */
8136 || (GET_CODE (newer) == SUBREG
8137 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8138 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8139 && GET_CODE (inner) == AND
8140 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8141 return gen_lowpart (GET_MODE (x), tem);
8143 return newer;
8146 if (simplified)
8147 return tem;
8149 break;
8151 default:
8152 break;
8155 if (new_rtx)
8157 x = gen_lowpart (mode, new_rtx);
8158 code = GET_CODE (x);
8161 /* Now recursively process each operand of this operation. We need to
8162 handle ZERO_EXTEND specially so that we don't lose track of the
8163 inner mode. */
8164 if (GET_CODE (x) == ZERO_EXTEND)
8166 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8167 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8168 new_rtx, GET_MODE (XEXP (x, 0)));
8169 if (tem)
8170 return tem;
8171 SUBST (XEXP (x, 0), new_rtx);
8172 return x;
8175 fmt = GET_RTX_FORMAT (code);
8176 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8177 if (fmt[i] == 'e')
8179 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8180 SUBST (XEXP (x, i), new_rtx);
8182 else if (fmt[i] == 'E')
8183 for (j = 0; j < XVECLEN (x, i); j++)
8185 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8186 SUBST (XVECEXP (x, i, j), new_rtx);
8189 maybe_swap:
8190 /* If this is a commutative operation, the changes to the operands
8191 may have made it noncanonical. */
8192 if (COMMUTATIVE_ARITH_P (x)
8193 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8195 tem = XEXP (x, 0);
8196 SUBST (XEXP (x, 0), XEXP (x, 1));
8197 SUBST (XEXP (x, 1), tem);
8200 return x;
8203 /* Given M see if it is a value that would select a field of bits
8204 within an item, but not the entire word. Return -1 if not.
8205 Otherwise, return the starting position of the field, where 0 is the
8206 low-order bit.
8208 *PLEN is set to the length of the field. */
8210 static int
8211 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8213 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8214 int pos = m ? ctz_hwi (m) : -1;
8215 int len = 0;
8217 if (pos >= 0)
8218 /* Now shift off the low-order zero bits and see if we have a
8219 power of two minus 1. */
8220 len = exact_log2 ((m >> pos) + 1);
8222 if (len <= 0)
8223 pos = -1;
8225 *plen = len;
8226 return pos;
8229 /* If X refers to a register that equals REG in value, replace these
8230 references with REG. */
8231 static rtx
8232 canon_reg_for_combine (rtx x, rtx reg)
8234 rtx op0, op1, op2;
8235 const char *fmt;
8236 int i;
8237 bool copied;
8239 enum rtx_code code = GET_CODE (x);
8240 switch (GET_RTX_CLASS (code))
8242 case RTX_UNARY:
8243 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8244 if (op0 != XEXP (x, 0))
8245 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8246 GET_MODE (reg));
8247 break;
8249 case RTX_BIN_ARITH:
8250 case RTX_COMM_ARITH:
8251 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8252 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8253 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8254 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8255 break;
8257 case RTX_COMPARE:
8258 case RTX_COMM_COMPARE:
8259 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8260 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8261 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8262 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8263 GET_MODE (op0), op0, op1);
8264 break;
8266 case RTX_TERNARY:
8267 case RTX_BITFIELD_OPS:
8268 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8269 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8270 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8271 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8272 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8273 GET_MODE (op0), op0, op1, op2);
8274 /* FALLTHRU */
8276 case RTX_OBJ:
8277 if (REG_P (x))
8279 if (rtx_equal_p (get_last_value (reg), x)
8280 || rtx_equal_p (reg, get_last_value (x)))
8281 return reg;
8282 else
8283 break;
8286 /* fall through */
8288 default:
8289 fmt = GET_RTX_FORMAT (code);
8290 copied = false;
8291 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8292 if (fmt[i] == 'e')
8294 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8295 if (op != XEXP (x, i))
8297 if (!copied)
8299 copied = true;
8300 x = copy_rtx (x);
8302 XEXP (x, i) = op;
8305 else if (fmt[i] == 'E')
8307 int j;
8308 for (j = 0; j < XVECLEN (x, i); j++)
8310 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8311 if (op != XVECEXP (x, i, j))
8313 if (!copied)
8315 copied = true;
8316 x = copy_rtx (x);
8318 XVECEXP (x, i, j) = op;
8323 break;
8326 return x;
8329 /* Return X converted to MODE. If the value is already truncated to
8330 MODE we can just return a subreg even though in the general case we
8331 would need an explicit truncation. */
8333 static rtx
8334 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8336 if (!CONST_INT_P (x)
8337 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8338 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8339 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8341 /* Bit-cast X into an integer mode. */
8342 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8343 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8344 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8345 x, GET_MODE (x));
8348 return gen_lowpart (mode, x);
8351 /* See if X can be simplified knowing that we will only refer to it in
8352 MODE and will only refer to those bits that are nonzero in MASK.
8353 If other bits are being computed or if masking operations are done
8354 that select a superset of the bits in MASK, they can sometimes be
8355 ignored.
8357 Return a possibly simplified expression, but always convert X to
8358 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8360 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8361 are all off in X. This is used when X will be complemented, by either
8362 NOT, NEG, or XOR. */
8364 static rtx
8365 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8366 int just_select)
8368 enum rtx_code code = GET_CODE (x);
8369 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8370 machine_mode op_mode;
8371 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8372 rtx op0, op1, temp;
8374 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8375 code below will do the wrong thing since the mode of such an
8376 expression is VOIDmode.
8378 Also do nothing if X is a CLOBBER; this can happen if X was
8379 the return value from a call to gen_lowpart. */
8380 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8381 return x;
8383 /* We want to perform the operation in its present mode unless we know
8384 that the operation is valid in MODE, in which case we do the operation
8385 in MODE. */
8386 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8387 && have_insn_for (code, mode))
8388 ? mode : GET_MODE (x));
8390 /* It is not valid to do a right-shift in a narrower mode
8391 than the one it came in with. */
8392 if ((code == LSHIFTRT || code == ASHIFTRT)
8393 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8394 op_mode = GET_MODE (x);
8396 /* Truncate MASK to fit OP_MODE. */
8397 if (op_mode)
8398 mask &= GET_MODE_MASK (op_mode);
8400 /* When we have an arithmetic operation, or a shift whose count we
8401 do not know, we need to assume that all bits up to the highest-order
8402 bit in MASK will be needed. This is how we form such a mask. */
8403 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8404 fuller_mask = HOST_WIDE_INT_M1U;
8405 else
8406 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8407 - 1);
8409 /* Determine what bits of X are guaranteed to be (non)zero. */
8410 nonzero = nonzero_bits (x, mode);
8412 /* If none of the bits in X are needed, return a zero. */
8413 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8414 x = const0_rtx;
8416 /* If X is a CONST_INT, return a new one. Do this here since the
8417 test below will fail. */
8418 if (CONST_INT_P (x))
8420 if (SCALAR_INT_MODE_P (mode))
8421 return gen_int_mode (INTVAL (x) & mask, mode);
8422 else
8424 x = GEN_INT (INTVAL (x) & mask);
8425 return gen_lowpart_common (mode, x);
8429 /* If X is narrower than MODE and we want all the bits in X's mode, just
8430 get X in the proper mode. */
8431 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8432 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8433 return gen_lowpart (mode, x);
8435 /* We can ignore the effect of a SUBREG if it narrows the mode or
8436 if the constant masks to zero all the bits the mode doesn't have. */
8437 if (GET_CODE (x) == SUBREG
8438 && subreg_lowpart_p (x)
8439 && ((GET_MODE_SIZE (GET_MODE (x))
8440 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8441 || (0 == (mask
8442 & GET_MODE_MASK (GET_MODE (x))
8443 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8444 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8446 /* The arithmetic simplifications here only work for scalar integer modes. */
8447 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8448 return gen_lowpart_or_truncate (mode, x);
8450 switch (code)
8452 case CLOBBER:
8453 /* If X is a (clobber (const_int)), return it since we know we are
8454 generating something that won't match. */
8455 return x;
8457 case SIGN_EXTEND:
8458 case ZERO_EXTEND:
8459 case ZERO_EXTRACT:
8460 case SIGN_EXTRACT:
8461 x = expand_compound_operation (x);
8462 if (GET_CODE (x) != code)
8463 return force_to_mode (x, mode, mask, next_select);
8464 break;
8466 case TRUNCATE:
8467 /* Similarly for a truncate. */
8468 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8470 case AND:
8471 /* If this is an AND with a constant, convert it into an AND
8472 whose constant is the AND of that constant with MASK. If it
8473 remains an AND of MASK, delete it since it is redundant. */
8475 if (CONST_INT_P (XEXP (x, 1)))
8477 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8478 mask & INTVAL (XEXP (x, 1)));
8480 /* If X is still an AND, see if it is an AND with a mask that
8481 is just some low-order bits. If so, and it is MASK, we don't
8482 need it. */
8484 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8485 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8486 == mask))
8487 x = XEXP (x, 0);
8489 /* If it remains an AND, try making another AND with the bits
8490 in the mode mask that aren't in MASK turned on. If the
8491 constant in the AND is wide enough, this might make a
8492 cheaper constant. */
8494 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8495 && GET_MODE_MASK (GET_MODE (x)) != mask
8496 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8498 unsigned HOST_WIDE_INT cval
8499 = UINTVAL (XEXP (x, 1))
8500 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8501 rtx y;
8503 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8504 gen_int_mode (cval, GET_MODE (x)));
8505 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8506 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8507 x = y;
8510 break;
8513 goto binop;
8515 case PLUS:
8516 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8517 low-order bits (as in an alignment operation) and FOO is already
8518 aligned to that boundary, mask C1 to that boundary as well.
8519 This may eliminate that PLUS and, later, the AND. */
8522 unsigned int width = GET_MODE_PRECISION (mode);
8523 unsigned HOST_WIDE_INT smask = mask;
8525 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8526 number, sign extend it. */
8528 if (width < HOST_BITS_PER_WIDE_INT
8529 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8530 smask |= HOST_WIDE_INT_M1U << width;
8532 if (CONST_INT_P (XEXP (x, 1))
8533 && pow2p_hwi (- smask)
8534 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8535 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8536 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8537 (INTVAL (XEXP (x, 1)) & smask)),
8538 mode, smask, next_select);
8541 /* fall through */
8543 case MULT:
8544 /* Substituting into the operands of a widening MULT is not likely to
8545 create RTL matching a machine insn. */
8546 if (code == MULT
8547 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8548 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8549 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8550 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8551 && REG_P (XEXP (XEXP (x, 0), 0))
8552 && REG_P (XEXP (XEXP (x, 1), 0)))
8553 return gen_lowpart_or_truncate (mode, x);
8555 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8556 most significant bit in MASK since carries from those bits will
8557 affect the bits we are interested in. */
8558 mask = fuller_mask;
8559 goto binop;
8561 case MINUS:
8562 /* If X is (minus C Y) where C's least set bit is larger than any bit
8563 in the mask, then we may replace with (neg Y). */
8564 if (CONST_INT_P (XEXP (x, 0))
8565 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8567 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8568 GET_MODE (x));
8569 return force_to_mode (x, mode, mask, next_select);
8572 /* Similarly, if C contains every bit in the fuller_mask, then we may
8573 replace with (not Y). */
8574 if (CONST_INT_P (XEXP (x, 0))
8575 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8577 x = simplify_gen_unary (NOT, GET_MODE (x),
8578 XEXP (x, 1), GET_MODE (x));
8579 return force_to_mode (x, mode, mask, next_select);
8582 mask = fuller_mask;
8583 goto binop;
8585 case IOR:
8586 case XOR:
8587 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8588 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8589 operation which may be a bitfield extraction. Ensure that the
8590 constant we form is not wider than the mode of X. */
8592 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8593 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8594 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8595 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8596 && CONST_INT_P (XEXP (x, 1))
8597 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8598 + floor_log2 (INTVAL (XEXP (x, 1))))
8599 < GET_MODE_PRECISION (GET_MODE (x)))
8600 && (UINTVAL (XEXP (x, 1))
8601 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8603 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8604 << INTVAL (XEXP (XEXP (x, 0), 1)),
8605 GET_MODE (x));
8606 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8607 XEXP (XEXP (x, 0), 0), temp);
8608 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8609 XEXP (XEXP (x, 0), 1));
8610 return force_to_mode (x, mode, mask, next_select);
8613 binop:
8614 /* For most binary operations, just propagate into the operation and
8615 change the mode if we have an operation of that mode. */
8617 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8618 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8620 /* If we ended up truncating both operands, truncate the result of the
8621 operation instead. */
8622 if (GET_CODE (op0) == TRUNCATE
8623 && GET_CODE (op1) == TRUNCATE)
8625 op0 = XEXP (op0, 0);
8626 op1 = XEXP (op1, 0);
8629 op0 = gen_lowpart_or_truncate (op_mode, op0);
8630 op1 = gen_lowpart_or_truncate (op_mode, op1);
8632 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8633 x = simplify_gen_binary (code, op_mode, op0, op1);
8634 break;
8636 case ASHIFT:
8637 /* For left shifts, do the same, but just for the first operand.
8638 However, we cannot do anything with shifts where we cannot
8639 guarantee that the counts are smaller than the size of the mode
8640 because such a count will have a different meaning in a
8641 wider mode. */
8643 if (! (CONST_INT_P (XEXP (x, 1))
8644 && INTVAL (XEXP (x, 1)) >= 0
8645 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8646 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8647 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8648 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8649 break;
8651 /* If the shift count is a constant and we can do arithmetic in
8652 the mode of the shift, refine which bits we need. Otherwise, use the
8653 conservative form of the mask. */
8654 if (CONST_INT_P (XEXP (x, 1))
8655 && INTVAL (XEXP (x, 1)) >= 0
8656 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8657 && HWI_COMPUTABLE_MODE_P (op_mode))
8658 mask >>= INTVAL (XEXP (x, 1));
8659 else
8660 mask = fuller_mask;
8662 op0 = gen_lowpart_or_truncate (op_mode,
8663 force_to_mode (XEXP (x, 0), op_mode,
8664 mask, next_select));
8666 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8667 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8668 break;
8670 case LSHIFTRT:
8671 /* Here we can only do something if the shift count is a constant,
8672 this shift constant is valid for the host, and we can do arithmetic
8673 in OP_MODE. */
8675 if (CONST_INT_P (XEXP (x, 1))
8676 && INTVAL (XEXP (x, 1)) >= 0
8677 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8678 && HWI_COMPUTABLE_MODE_P (op_mode))
8680 rtx inner = XEXP (x, 0);
8681 unsigned HOST_WIDE_INT inner_mask;
8683 /* Select the mask of the bits we need for the shift operand. */
8684 inner_mask = mask << INTVAL (XEXP (x, 1));
8686 /* We can only change the mode of the shift if we can do arithmetic
8687 in the mode of the shift and INNER_MASK is no wider than the
8688 width of X's mode. */
8689 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8690 op_mode = GET_MODE (x);
8692 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8694 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8695 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8698 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8699 shift and AND produces only copies of the sign bit (C2 is one less
8700 than a power of two), we can do this with just a shift. */
8702 if (GET_CODE (x) == LSHIFTRT
8703 && CONST_INT_P (XEXP (x, 1))
8704 /* The shift puts one of the sign bit copies in the least significant
8705 bit. */
8706 && ((INTVAL (XEXP (x, 1))
8707 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8708 >= GET_MODE_PRECISION (GET_MODE (x)))
8709 && pow2p_hwi (mask + 1)
8710 /* Number of bits left after the shift must be more than the mask
8711 needs. */
8712 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8713 <= GET_MODE_PRECISION (GET_MODE (x)))
8714 /* Must be more sign bit copies than the mask needs. */
8715 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8716 >= exact_log2 (mask + 1)))
8717 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8718 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8719 - exact_log2 (mask + 1)));
8721 goto shiftrt;
8723 case ASHIFTRT:
8724 /* If we are just looking for the sign bit, we don't need this shift at
8725 all, even if it has a variable count. */
8726 if (val_signbit_p (GET_MODE (x), mask))
8727 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8729 /* If this is a shift by a constant, get a mask that contains those bits
8730 that are not copies of the sign bit. We then have two cases: If
8731 MASK only includes those bits, this can be a logical shift, which may
8732 allow simplifications. If MASK is a single-bit field not within
8733 those bits, we are requesting a copy of the sign bit and hence can
8734 shift the sign bit to the appropriate location. */
8736 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8737 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8739 int i;
8741 /* If the considered data is wider than HOST_WIDE_INT, we can't
8742 represent a mask for all its bits in a single scalar.
8743 But we only care about the lower bits, so calculate these. */
8745 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8747 nonzero = HOST_WIDE_INT_M1U;
8749 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8750 is the number of bits a full-width mask would have set.
8751 We need only shift if these are fewer than nonzero can
8752 hold. If not, we must keep all bits set in nonzero. */
8754 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8755 < HOST_BITS_PER_WIDE_INT)
8756 nonzero >>= INTVAL (XEXP (x, 1))
8757 + HOST_BITS_PER_WIDE_INT
8758 - GET_MODE_PRECISION (GET_MODE (x)) ;
8760 else
8762 nonzero = GET_MODE_MASK (GET_MODE (x));
8763 nonzero >>= INTVAL (XEXP (x, 1));
8766 if ((mask & ~nonzero) == 0)
8768 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8769 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8770 if (GET_CODE (x) != ASHIFTRT)
8771 return force_to_mode (x, mode, mask, next_select);
8774 else if ((i = exact_log2 (mask)) >= 0)
8776 x = simplify_shift_const
8777 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8778 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8780 if (GET_CODE (x) != ASHIFTRT)
8781 return force_to_mode (x, mode, mask, next_select);
8785 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8786 even if the shift count isn't a constant. */
8787 if (mask == 1)
8788 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8789 XEXP (x, 0), XEXP (x, 1));
8791 shiftrt:
8793 /* If this is a zero- or sign-extension operation that just affects bits
8794 we don't care about, remove it. Be sure the call above returned
8795 something that is still a shift. */
8797 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8798 && CONST_INT_P (XEXP (x, 1))
8799 && INTVAL (XEXP (x, 1)) >= 0
8800 && (INTVAL (XEXP (x, 1))
8801 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8802 && GET_CODE (XEXP (x, 0)) == ASHIFT
8803 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8804 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8805 next_select);
8807 break;
8809 case ROTATE:
8810 case ROTATERT:
8811 /* If the shift count is constant and we can do computations
8812 in the mode of X, compute where the bits we care about are.
8813 Otherwise, we can't do anything. Don't change the mode of
8814 the shift or propagate MODE into the shift, though. */
8815 if (CONST_INT_P (XEXP (x, 1))
8816 && INTVAL (XEXP (x, 1)) >= 0)
8818 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8819 GET_MODE (x),
8820 gen_int_mode (mask, GET_MODE (x)),
8821 XEXP (x, 1));
8822 if (temp && CONST_INT_P (temp))
8823 x = simplify_gen_binary (code, GET_MODE (x),
8824 force_to_mode (XEXP (x, 0), GET_MODE (x),
8825 INTVAL (temp), next_select),
8826 XEXP (x, 1));
8828 break;
8830 case NEG:
8831 /* If we just want the low-order bit, the NEG isn't needed since it
8832 won't change the low-order bit. */
8833 if (mask == 1)
8834 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8836 /* We need any bits less significant than the most significant bit in
8837 MASK since carries from those bits will affect the bits we are
8838 interested in. */
8839 mask = fuller_mask;
8840 goto unop;
8842 case NOT:
8843 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8844 same as the XOR case above. Ensure that the constant we form is not
8845 wider than the mode of X. */
8847 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8848 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8849 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8850 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8851 < GET_MODE_PRECISION (GET_MODE (x)))
8852 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8854 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8855 GET_MODE (x));
8856 temp = simplify_gen_binary (XOR, GET_MODE (x),
8857 XEXP (XEXP (x, 0), 0), temp);
8858 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8859 temp, XEXP (XEXP (x, 0), 1));
8861 return force_to_mode (x, mode, mask, next_select);
8864 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8865 use the full mask inside the NOT. */
8866 mask = fuller_mask;
8868 unop:
8869 op0 = gen_lowpart_or_truncate (op_mode,
8870 force_to_mode (XEXP (x, 0), mode, mask,
8871 next_select));
8872 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8873 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8874 break;
8876 case NE:
8877 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8878 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8879 which is equal to STORE_FLAG_VALUE. */
8880 if ((mask & ~STORE_FLAG_VALUE) == 0
8881 && XEXP (x, 1) == const0_rtx
8882 && GET_MODE (XEXP (x, 0)) == mode
8883 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8884 && (nonzero_bits (XEXP (x, 0), mode)
8885 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8886 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8888 break;
8890 case IF_THEN_ELSE:
8891 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8892 written in a narrower mode. We play it safe and do not do so. */
8894 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8895 force_to_mode (XEXP (x, 1), mode,
8896 mask, next_select));
8897 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8898 force_to_mode (XEXP (x, 2), mode,
8899 mask, next_select));
8900 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8901 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8902 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8903 op0, op1);
8904 break;
8906 default:
8907 break;
8910 /* Ensure we return a value of the proper mode. */
8911 return gen_lowpart_or_truncate (mode, x);
8914 /* Return nonzero if X is an expression that has one of two values depending on
8915 whether some other value is zero or nonzero. In that case, we return the
8916 value that is being tested, *PTRUE is set to the value if the rtx being
8917 returned has a nonzero value, and *PFALSE is set to the other alternative.
8919 If we return zero, we set *PTRUE and *PFALSE to X. */
8921 static rtx
8922 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8924 machine_mode mode = GET_MODE (x);
8925 enum rtx_code code = GET_CODE (x);
8926 rtx cond0, cond1, true0, true1, false0, false1;
8927 unsigned HOST_WIDE_INT nz;
8929 /* If we are comparing a value against zero, we are done. */
8930 if ((code == NE || code == EQ)
8931 && XEXP (x, 1) == const0_rtx)
8933 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8934 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8935 return XEXP (x, 0);
8938 /* If this is a unary operation whose operand has one of two values, apply
8939 our opcode to compute those values. */
8940 else if (UNARY_P (x)
8941 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8943 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8944 *pfalse = simplify_gen_unary (code, mode, false0,
8945 GET_MODE (XEXP (x, 0)));
8946 return cond0;
8949 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8950 make can't possibly match and would suppress other optimizations. */
8951 else if (code == COMPARE)
8954 /* If this is a binary operation, see if either side has only one of two
8955 values. If either one does or if both do and they are conditional on
8956 the same value, compute the new true and false values. */
8957 else if (BINARY_P (x))
8959 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8960 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8962 if ((cond0 != 0 || cond1 != 0)
8963 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8965 /* If if_then_else_cond returned zero, then true/false are the
8966 same rtl. We must copy one of them to prevent invalid rtl
8967 sharing. */
8968 if (cond0 == 0)
8969 true0 = copy_rtx (true0);
8970 else if (cond1 == 0)
8971 true1 = copy_rtx (true1);
8973 if (COMPARISON_P (x))
8975 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8976 true0, true1);
8977 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8978 false0, false1);
8980 else
8982 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8983 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8986 return cond0 ? cond0 : cond1;
8989 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8990 operands is zero when the other is nonzero, and vice-versa,
8991 and STORE_FLAG_VALUE is 1 or -1. */
8993 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8994 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8995 || code == UMAX)
8996 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8998 rtx op0 = XEXP (XEXP (x, 0), 1);
8999 rtx op1 = XEXP (XEXP (x, 1), 1);
9001 cond0 = XEXP (XEXP (x, 0), 0);
9002 cond1 = XEXP (XEXP (x, 1), 0);
9004 if (COMPARISON_P (cond0)
9005 && COMPARISON_P (cond1)
9006 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9007 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9008 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9009 || ((swap_condition (GET_CODE (cond0))
9010 == reversed_comparison_code (cond1, NULL))
9011 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9012 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9013 && ! side_effects_p (x))
9015 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9016 *pfalse = simplify_gen_binary (MULT, mode,
9017 (code == MINUS
9018 ? simplify_gen_unary (NEG, mode,
9019 op1, mode)
9020 : op1),
9021 const_true_rtx);
9022 return cond0;
9026 /* Similarly for MULT, AND and UMIN, except that for these the result
9027 is always zero. */
9028 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9029 && (code == MULT || code == AND || code == UMIN)
9030 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9032 cond0 = XEXP (XEXP (x, 0), 0);
9033 cond1 = XEXP (XEXP (x, 1), 0);
9035 if (COMPARISON_P (cond0)
9036 && COMPARISON_P (cond1)
9037 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9038 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9039 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9040 || ((swap_condition (GET_CODE (cond0))
9041 == reversed_comparison_code (cond1, NULL))
9042 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9043 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9044 && ! side_effects_p (x))
9046 *ptrue = *pfalse = const0_rtx;
9047 return cond0;
9052 else if (code == IF_THEN_ELSE)
9054 /* If we have IF_THEN_ELSE already, extract the condition and
9055 canonicalize it if it is NE or EQ. */
9056 cond0 = XEXP (x, 0);
9057 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9058 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9059 return XEXP (cond0, 0);
9060 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9062 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9063 return XEXP (cond0, 0);
9065 else
9066 return cond0;
9069 /* If X is a SUBREG, we can narrow both the true and false values
9070 if the inner expression, if there is a condition. */
9071 else if (code == SUBREG
9072 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9073 &true0, &false0)))
9075 true0 = simplify_gen_subreg (mode, true0,
9076 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9077 false0 = simplify_gen_subreg (mode, false0,
9078 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9079 if (true0 && false0)
9081 *ptrue = true0;
9082 *pfalse = false0;
9083 return cond0;
9087 /* If X is a constant, this isn't special and will cause confusions
9088 if we treat it as such. Likewise if it is equivalent to a constant. */
9089 else if (CONSTANT_P (x)
9090 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9093 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9094 will be least confusing to the rest of the compiler. */
9095 else if (mode == BImode)
9097 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9098 return x;
9101 /* If X is known to be either 0 or -1, those are the true and
9102 false values when testing X. */
9103 else if (x == constm1_rtx || x == const0_rtx
9104 || (mode != VOIDmode
9105 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9107 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9108 return x;
9111 /* Likewise for 0 or a single bit. */
9112 else if (HWI_COMPUTABLE_MODE_P (mode)
9113 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9115 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9116 return x;
9119 /* Otherwise fail; show no condition with true and false values the same. */
9120 *ptrue = *pfalse = x;
9121 return 0;
9124 /* Return the value of expression X given the fact that condition COND
9125 is known to be true when applied to REG as its first operand and VAL
9126 as its second. X is known to not be shared and so can be modified in
9127 place.
9129 We only handle the simplest cases, and specifically those cases that
9130 arise with IF_THEN_ELSE expressions. */
9132 static rtx
9133 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9135 enum rtx_code code = GET_CODE (x);
9136 const char *fmt;
9137 int i, j;
9139 if (side_effects_p (x))
9140 return x;
9142 /* If either operand of the condition is a floating point value,
9143 then we have to avoid collapsing an EQ comparison. */
9144 if (cond == EQ
9145 && rtx_equal_p (x, reg)
9146 && ! FLOAT_MODE_P (GET_MODE (x))
9147 && ! FLOAT_MODE_P (GET_MODE (val)))
9148 return val;
9150 if (cond == UNEQ && rtx_equal_p (x, reg))
9151 return val;
9153 /* If X is (abs REG) and we know something about REG's relationship
9154 with zero, we may be able to simplify this. */
9156 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9157 switch (cond)
9159 case GE: case GT: case EQ:
9160 return XEXP (x, 0);
9161 case LT: case LE:
9162 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9163 XEXP (x, 0),
9164 GET_MODE (XEXP (x, 0)));
9165 default:
9166 break;
9169 /* The only other cases we handle are MIN, MAX, and comparisons if the
9170 operands are the same as REG and VAL. */
9172 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9174 if (rtx_equal_p (XEXP (x, 0), val))
9176 std::swap (val, reg);
9177 cond = swap_condition (cond);
9180 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9182 if (COMPARISON_P (x))
9184 if (comparison_dominates_p (cond, code))
9185 return const_true_rtx;
9187 code = reversed_comparison_code (x, NULL);
9188 if (code != UNKNOWN
9189 && comparison_dominates_p (cond, code))
9190 return const0_rtx;
9191 else
9192 return x;
9194 else if (code == SMAX || code == SMIN
9195 || code == UMIN || code == UMAX)
9197 int unsignedp = (code == UMIN || code == UMAX);
9199 /* Do not reverse the condition when it is NE or EQ.
9200 This is because we cannot conclude anything about
9201 the value of 'SMAX (x, y)' when x is not equal to y,
9202 but we can when x equals y. */
9203 if ((code == SMAX || code == UMAX)
9204 && ! (cond == EQ || cond == NE))
9205 cond = reverse_condition (cond);
9207 switch (cond)
9209 case GE: case GT:
9210 return unsignedp ? x : XEXP (x, 1);
9211 case LE: case LT:
9212 return unsignedp ? x : XEXP (x, 0);
9213 case GEU: case GTU:
9214 return unsignedp ? XEXP (x, 1) : x;
9215 case LEU: case LTU:
9216 return unsignedp ? XEXP (x, 0) : x;
9217 default:
9218 break;
9223 else if (code == SUBREG)
9225 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9226 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9228 if (SUBREG_REG (x) != r)
9230 /* We must simplify subreg here, before we lose track of the
9231 original inner_mode. */
9232 new_rtx = simplify_subreg (GET_MODE (x), r,
9233 inner_mode, SUBREG_BYTE (x));
9234 if (new_rtx)
9235 return new_rtx;
9236 else
9237 SUBST (SUBREG_REG (x), r);
9240 return x;
9242 /* We don't have to handle SIGN_EXTEND here, because even in the
9243 case of replacing something with a modeless CONST_INT, a
9244 CONST_INT is already (supposed to be) a valid sign extension for
9245 its narrower mode, which implies it's already properly
9246 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9247 story is different. */
9248 else if (code == ZERO_EXTEND)
9250 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9251 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9253 if (XEXP (x, 0) != r)
9255 /* We must simplify the zero_extend here, before we lose
9256 track of the original inner_mode. */
9257 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9258 r, inner_mode);
9259 if (new_rtx)
9260 return new_rtx;
9261 else
9262 SUBST (XEXP (x, 0), r);
9265 return x;
9268 fmt = GET_RTX_FORMAT (code);
9269 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9271 if (fmt[i] == 'e')
9272 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9273 else if (fmt[i] == 'E')
9274 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9275 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9276 cond, reg, val));
9279 return x;
9282 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9283 assignment as a field assignment. */
9285 static int
9286 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9288 if (widen_x && GET_MODE (x) != GET_MODE (y))
9290 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9291 return 0;
9292 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9293 return 0;
9294 /* For big endian, adjust the memory offset. */
9295 if (BYTES_BIG_ENDIAN)
9296 x = adjust_address_nv (x, GET_MODE (y),
9297 -subreg_lowpart_offset (GET_MODE (x),
9298 GET_MODE (y)));
9299 else
9300 x = adjust_address_nv (x, GET_MODE (y), 0);
9303 if (x == y || rtx_equal_p (x, y))
9304 return 1;
9306 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9307 return 0;
9309 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9310 Note that all SUBREGs of MEM are paradoxical; otherwise they
9311 would have been rewritten. */
9312 if (MEM_P (x) && GET_CODE (y) == SUBREG
9313 && MEM_P (SUBREG_REG (y))
9314 && rtx_equal_p (SUBREG_REG (y),
9315 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9316 return 1;
9318 if (MEM_P (y) && GET_CODE (x) == SUBREG
9319 && MEM_P (SUBREG_REG (x))
9320 && rtx_equal_p (SUBREG_REG (x),
9321 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9322 return 1;
9324 /* We used to see if get_last_value of X and Y were the same but that's
9325 not correct. In one direction, we'll cause the assignment to have
9326 the wrong destination and in the case, we'll import a register into this
9327 insn that might have already have been dead. So fail if none of the
9328 above cases are true. */
9329 return 0;
9332 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9333 Return that assignment if so.
9335 We only handle the most common cases. */
9337 static rtx
9338 make_field_assignment (rtx x)
9340 rtx dest = SET_DEST (x);
9341 rtx src = SET_SRC (x);
9342 rtx assign;
9343 rtx rhs, lhs;
9344 HOST_WIDE_INT c1;
9345 HOST_WIDE_INT pos;
9346 unsigned HOST_WIDE_INT len;
9347 rtx other;
9348 machine_mode mode;
9350 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9351 a clear of a one-bit field. We will have changed it to
9352 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9353 for a SUBREG. */
9355 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9356 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9357 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9358 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9360 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9361 1, 1, 1, 0);
9362 if (assign != 0)
9363 return gen_rtx_SET (assign, const0_rtx);
9364 return x;
9367 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9368 && subreg_lowpart_p (XEXP (src, 0))
9369 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9370 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9371 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9372 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9373 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9374 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9376 assign = make_extraction (VOIDmode, dest, 0,
9377 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9378 1, 1, 1, 0);
9379 if (assign != 0)
9380 return gen_rtx_SET (assign, const0_rtx);
9381 return x;
9384 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9385 one-bit field. */
9386 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9387 && XEXP (XEXP (src, 0), 0) == const1_rtx
9388 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9390 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9391 1, 1, 1, 0);
9392 if (assign != 0)
9393 return gen_rtx_SET (assign, const1_rtx);
9394 return x;
9397 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9398 SRC is an AND with all bits of that field set, then we can discard
9399 the AND. */
9400 if (GET_CODE (dest) == ZERO_EXTRACT
9401 && CONST_INT_P (XEXP (dest, 1))
9402 && GET_CODE (src) == AND
9403 && CONST_INT_P (XEXP (src, 1)))
9405 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9406 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9407 unsigned HOST_WIDE_INT ze_mask;
9409 if (width >= HOST_BITS_PER_WIDE_INT)
9410 ze_mask = -1;
9411 else
9412 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9414 /* Complete overlap. We can remove the source AND. */
9415 if ((and_mask & ze_mask) == ze_mask)
9416 return gen_rtx_SET (dest, XEXP (src, 0));
9418 /* Partial overlap. We can reduce the source AND. */
9419 if ((and_mask & ze_mask) != and_mask)
9421 mode = GET_MODE (src);
9422 src = gen_rtx_AND (mode, XEXP (src, 0),
9423 gen_int_mode (and_mask & ze_mask, mode));
9424 return gen_rtx_SET (dest, src);
9428 /* The other case we handle is assignments into a constant-position
9429 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9430 a mask that has all one bits except for a group of zero bits and
9431 OTHER is known to have zeros where C1 has ones, this is such an
9432 assignment. Compute the position and length from C1. Shift OTHER
9433 to the appropriate position, force it to the required mode, and
9434 make the extraction. Check for the AND in both operands. */
9436 /* One or more SUBREGs might obscure the constant-position field
9437 assignment. The first one we are likely to encounter is an outer
9438 narrowing SUBREG, which we can just strip for the purposes of
9439 identifying the constant-field assignment. */
9440 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9441 src = SUBREG_REG (src);
9443 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9444 return x;
9446 rhs = expand_compound_operation (XEXP (src, 0));
9447 lhs = expand_compound_operation (XEXP (src, 1));
9449 if (GET_CODE (rhs) == AND
9450 && CONST_INT_P (XEXP (rhs, 1))
9451 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9452 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9453 /* The second SUBREG that might get in the way is a paradoxical
9454 SUBREG around the first operand of the AND. We want to
9455 pretend the operand is as wide as the destination here. We
9456 do this by adjusting the MEM to wider mode for the sole
9457 purpose of the call to rtx_equal_for_field_assignment_p. Also
9458 note this trick only works for MEMs. */
9459 else if (GET_CODE (rhs) == AND
9460 && paradoxical_subreg_p (XEXP (rhs, 0))
9461 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9462 && CONST_INT_P (XEXP (rhs, 1))
9463 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9464 dest, true))
9465 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9466 else if (GET_CODE (lhs) == AND
9467 && CONST_INT_P (XEXP (lhs, 1))
9468 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9469 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9470 /* The second SUBREG that might get in the way is a paradoxical
9471 SUBREG around the first operand of the AND. We want to
9472 pretend the operand is as wide as the destination here. We
9473 do this by adjusting the MEM to wider mode for the sole
9474 purpose of the call to rtx_equal_for_field_assignment_p. Also
9475 note this trick only works for MEMs. */
9476 else if (GET_CODE (lhs) == AND
9477 && paradoxical_subreg_p (XEXP (lhs, 0))
9478 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9479 && CONST_INT_P (XEXP (lhs, 1))
9480 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9481 dest, true))
9482 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9483 else
9484 return x;
9486 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9487 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9488 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9489 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9490 return x;
9492 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9493 if (assign == 0)
9494 return x;
9496 /* The mode to use for the source is the mode of the assignment, or of
9497 what is inside a possible STRICT_LOW_PART. */
9498 mode = (GET_CODE (assign) == STRICT_LOW_PART
9499 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9501 /* Shift OTHER right POS places and make it the source, restricting it
9502 to the proper length and mode. */
9504 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9505 GET_MODE (src),
9506 other, pos),
9507 dest);
9508 src = force_to_mode (src, mode,
9509 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9510 ? HOST_WIDE_INT_M1U
9511 : (HOST_WIDE_INT_1U << len) - 1,
9514 /* If SRC is masked by an AND that does not make a difference in
9515 the value being stored, strip it. */
9516 if (GET_CODE (assign) == ZERO_EXTRACT
9517 && CONST_INT_P (XEXP (assign, 1))
9518 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9519 && GET_CODE (src) == AND
9520 && CONST_INT_P (XEXP (src, 1))
9521 && UINTVAL (XEXP (src, 1))
9522 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9523 src = XEXP (src, 0);
9525 return gen_rtx_SET (assign, src);
9528 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9529 if so. */
9531 static rtx
9532 apply_distributive_law (rtx x)
9534 enum rtx_code code = GET_CODE (x);
9535 enum rtx_code inner_code;
9536 rtx lhs, rhs, other;
9537 rtx tem;
9539 /* Distributivity is not true for floating point as it can change the
9540 value. So we don't do it unless -funsafe-math-optimizations. */
9541 if (FLOAT_MODE_P (GET_MODE (x))
9542 && ! flag_unsafe_math_optimizations)
9543 return x;
9545 /* The outer operation can only be one of the following: */
9546 if (code != IOR && code != AND && code != XOR
9547 && code != PLUS && code != MINUS)
9548 return x;
9550 lhs = XEXP (x, 0);
9551 rhs = XEXP (x, 1);
9553 /* If either operand is a primitive we can't do anything, so get out
9554 fast. */
9555 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9556 return x;
9558 lhs = expand_compound_operation (lhs);
9559 rhs = expand_compound_operation (rhs);
9560 inner_code = GET_CODE (lhs);
9561 if (inner_code != GET_CODE (rhs))
9562 return x;
9564 /* See if the inner and outer operations distribute. */
9565 switch (inner_code)
9567 case LSHIFTRT:
9568 case ASHIFTRT:
9569 case AND:
9570 case IOR:
9571 /* These all distribute except over PLUS. */
9572 if (code == PLUS || code == MINUS)
9573 return x;
9574 break;
9576 case MULT:
9577 if (code != PLUS && code != MINUS)
9578 return x;
9579 break;
9581 case ASHIFT:
9582 /* This is also a multiply, so it distributes over everything. */
9583 break;
9585 /* This used to handle SUBREG, but this turned out to be counter-
9586 productive, since (subreg (op ...)) usually is not handled by
9587 insn patterns, and this "optimization" therefore transformed
9588 recognizable patterns into unrecognizable ones. Therefore the
9589 SUBREG case was removed from here.
9591 It is possible that distributing SUBREG over arithmetic operations
9592 leads to an intermediate result than can then be optimized further,
9593 e.g. by moving the outer SUBREG to the other side of a SET as done
9594 in simplify_set. This seems to have been the original intent of
9595 handling SUBREGs here.
9597 However, with current GCC this does not appear to actually happen,
9598 at least on major platforms. If some case is found where removing
9599 the SUBREG case here prevents follow-on optimizations, distributing
9600 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9602 default:
9603 return x;
9606 /* Set LHS and RHS to the inner operands (A and B in the example
9607 above) and set OTHER to the common operand (C in the example).
9608 There is only one way to do this unless the inner operation is
9609 commutative. */
9610 if (COMMUTATIVE_ARITH_P (lhs)
9611 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9612 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9613 else if (COMMUTATIVE_ARITH_P (lhs)
9614 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9615 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9616 else if (COMMUTATIVE_ARITH_P (lhs)
9617 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9618 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9619 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9620 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9621 else
9622 return x;
9624 /* Form the new inner operation, seeing if it simplifies first. */
9625 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9627 /* There is one exception to the general way of distributing:
9628 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9629 if (code == XOR && inner_code == IOR)
9631 inner_code = AND;
9632 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9635 /* We may be able to continuing distributing the result, so call
9636 ourselves recursively on the inner operation before forming the
9637 outer operation, which we return. */
9638 return simplify_gen_binary (inner_code, GET_MODE (x),
9639 apply_distributive_law (tem), other);
9642 /* See if X is of the form (* (+ A B) C), and if so convert to
9643 (+ (* A C) (* B C)) and try to simplify.
9645 Most of the time, this results in no change. However, if some of
9646 the operands are the same or inverses of each other, simplifications
9647 will result.
9649 For example, (and (ior A B) (not B)) can occur as the result of
9650 expanding a bit field assignment. When we apply the distributive
9651 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9652 which then simplifies to (and (A (not B))).
9654 Note that no checks happen on the validity of applying the inverse
9655 distributive law. This is pointless since we can do it in the
9656 few places where this routine is called.
9658 N is the index of the term that is decomposed (the arithmetic operation,
9659 i.e. (+ A B) in the first example above). !N is the index of the term that
9660 is distributed, i.e. of C in the first example above. */
9661 static rtx
9662 distribute_and_simplify_rtx (rtx x, int n)
9664 machine_mode mode;
9665 enum rtx_code outer_code, inner_code;
9666 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9668 /* Distributivity is not true for floating point as it can change the
9669 value. So we don't do it unless -funsafe-math-optimizations. */
9670 if (FLOAT_MODE_P (GET_MODE (x))
9671 && ! flag_unsafe_math_optimizations)
9672 return NULL_RTX;
9674 decomposed = XEXP (x, n);
9675 if (!ARITHMETIC_P (decomposed))
9676 return NULL_RTX;
9678 mode = GET_MODE (x);
9679 outer_code = GET_CODE (x);
9680 distributed = XEXP (x, !n);
9682 inner_code = GET_CODE (decomposed);
9683 inner_op0 = XEXP (decomposed, 0);
9684 inner_op1 = XEXP (decomposed, 1);
9686 /* Special case (and (xor B C) (not A)), which is equivalent to
9687 (xor (ior A B) (ior A C)) */
9688 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9690 distributed = XEXP (distributed, 0);
9691 outer_code = IOR;
9694 if (n == 0)
9696 /* Distribute the second term. */
9697 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9698 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9700 else
9702 /* Distribute the first term. */
9703 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9704 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9707 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9708 new_op0, new_op1));
9709 if (GET_CODE (tmp) != outer_code
9710 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9711 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9712 return tmp;
9714 return NULL_RTX;
9717 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9718 in MODE. Return an equivalent form, if different from (and VAROP
9719 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9721 static rtx
9722 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9723 unsigned HOST_WIDE_INT constop)
9725 unsigned HOST_WIDE_INT nonzero;
9726 unsigned HOST_WIDE_INT orig_constop;
9727 rtx orig_varop;
9728 int i;
9730 orig_varop = varop;
9731 orig_constop = constop;
9732 if (GET_CODE (varop) == CLOBBER)
9733 return NULL_RTX;
9735 /* Simplify VAROP knowing that we will be only looking at some of the
9736 bits in it.
9738 Note by passing in CONSTOP, we guarantee that the bits not set in
9739 CONSTOP are not significant and will never be examined. We must
9740 ensure that is the case by explicitly masking out those bits
9741 before returning. */
9742 varop = force_to_mode (varop, mode, constop, 0);
9744 /* If VAROP is a CLOBBER, we will fail so return it. */
9745 if (GET_CODE (varop) == CLOBBER)
9746 return varop;
9748 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9749 to VAROP and return the new constant. */
9750 if (CONST_INT_P (varop))
9751 return gen_int_mode (INTVAL (varop) & constop, mode);
9753 /* See what bits may be nonzero in VAROP. Unlike the general case of
9754 a call to nonzero_bits, here we don't care about bits outside
9755 MODE. */
9757 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9759 /* Turn off all bits in the constant that are known to already be zero.
9760 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9761 which is tested below. */
9763 constop &= nonzero;
9765 /* If we don't have any bits left, return zero. */
9766 if (constop == 0)
9767 return const0_rtx;
9769 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9770 a power of two, we can replace this with an ASHIFT. */
9771 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9772 && (i = exact_log2 (constop)) >= 0)
9773 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9775 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9776 or XOR, then try to apply the distributive law. This may eliminate
9777 operations if either branch can be simplified because of the AND.
9778 It may also make some cases more complex, but those cases probably
9779 won't match a pattern either with or without this. */
9781 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9782 return
9783 gen_lowpart
9784 (mode,
9785 apply_distributive_law
9786 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9787 simplify_and_const_int (NULL_RTX,
9788 GET_MODE (varop),
9789 XEXP (varop, 0),
9790 constop),
9791 simplify_and_const_int (NULL_RTX,
9792 GET_MODE (varop),
9793 XEXP (varop, 1),
9794 constop))));
9796 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9797 the AND and see if one of the operands simplifies to zero. If so, we
9798 may eliminate it. */
9800 if (GET_CODE (varop) == PLUS
9801 && pow2p_hwi (constop + 1))
9803 rtx o0, o1;
9805 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9806 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9807 if (o0 == const0_rtx)
9808 return o1;
9809 if (o1 == const0_rtx)
9810 return o0;
9813 /* Make a SUBREG if necessary. If we can't make it, fail. */
9814 varop = gen_lowpart (mode, varop);
9815 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9816 return NULL_RTX;
9818 /* If we are only masking insignificant bits, return VAROP. */
9819 if (constop == nonzero)
9820 return varop;
9822 if (varop == orig_varop && constop == orig_constop)
9823 return NULL_RTX;
9825 /* Otherwise, return an AND. */
9826 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9830 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9831 in MODE.
9833 Return an equivalent form, if different from X. Otherwise, return X. If
9834 X is zero, we are to always construct the equivalent form. */
9836 static rtx
9837 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9838 unsigned HOST_WIDE_INT constop)
9840 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9841 if (tem)
9842 return tem;
9844 if (!x)
9845 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9846 gen_int_mode (constop, mode));
9847 if (GET_MODE (x) != mode)
9848 x = gen_lowpart (mode, x);
9849 return x;
9852 /* Given a REG, X, compute which bits in X can be nonzero.
9853 We don't care about bits outside of those defined in MODE.
9855 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9856 a shift, AND, or zero_extract, we can do better. */
9858 static rtx
9859 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9860 const_rtx known_x ATTRIBUTE_UNUSED,
9861 machine_mode known_mode ATTRIBUTE_UNUSED,
9862 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9863 unsigned HOST_WIDE_INT *nonzero)
9865 rtx tem;
9866 reg_stat_type *rsp;
9868 /* If X is a register whose nonzero bits value is current, use it.
9869 Otherwise, if X is a register whose value we can find, use that
9870 value. Otherwise, use the previously-computed global nonzero bits
9871 for this register. */
9873 rsp = &reg_stat[REGNO (x)];
9874 if (rsp->last_set_value != 0
9875 && (rsp->last_set_mode == mode
9876 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9877 && GET_MODE_CLASS (mode) == MODE_INT))
9878 && ((rsp->last_set_label >= label_tick_ebb_start
9879 && rsp->last_set_label < label_tick)
9880 || (rsp->last_set_label == label_tick
9881 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9882 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9883 && REGNO (x) < reg_n_sets_max
9884 && REG_N_SETS (REGNO (x)) == 1
9885 && !REGNO_REG_SET_P
9886 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9887 REGNO (x)))))
9889 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9891 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9892 /* We don't know anything about the upper bits. */
9893 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9895 *nonzero &= mask;
9896 return NULL;
9899 tem = get_last_value (x);
9901 if (tem)
9903 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9904 tem = sign_extend_short_imm (tem, GET_MODE (x),
9905 GET_MODE_PRECISION (mode));
9907 return tem;
9909 else if (nonzero_sign_valid && rsp->nonzero_bits)
9911 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9913 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9914 /* We don't know anything about the upper bits. */
9915 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9917 *nonzero &= mask;
9920 return NULL;
9923 /* Return the number of bits at the high-order end of X that are known to
9924 be equal to the sign bit. X will be used in mode MODE; if MODE is
9925 VOIDmode, X will be used in its own mode. The returned value will always
9926 be between 1 and the number of bits in MODE. */
9928 static rtx
9929 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9930 const_rtx known_x ATTRIBUTE_UNUSED,
9931 machine_mode known_mode
9932 ATTRIBUTE_UNUSED,
9933 unsigned int known_ret ATTRIBUTE_UNUSED,
9934 unsigned int *result)
9936 rtx tem;
9937 reg_stat_type *rsp;
9939 rsp = &reg_stat[REGNO (x)];
9940 if (rsp->last_set_value != 0
9941 && rsp->last_set_mode == mode
9942 && ((rsp->last_set_label >= label_tick_ebb_start
9943 && rsp->last_set_label < label_tick)
9944 || (rsp->last_set_label == label_tick
9945 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9946 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9947 && REGNO (x) < reg_n_sets_max
9948 && REG_N_SETS (REGNO (x)) == 1
9949 && !REGNO_REG_SET_P
9950 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9951 REGNO (x)))))
9953 *result = rsp->last_set_sign_bit_copies;
9954 return NULL;
9957 tem = get_last_value (x);
9958 if (tem != 0)
9959 return tem;
9961 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9962 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9963 *result = rsp->sign_bit_copies;
9965 return NULL;
9968 /* Return the number of "extended" bits there are in X, when interpreted
9969 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9970 unsigned quantities, this is the number of high-order zero bits.
9971 For signed quantities, this is the number of copies of the sign bit
9972 minus 1. In both case, this function returns the number of "spare"
9973 bits. For example, if two quantities for which this function returns
9974 at least 1 are added, the addition is known not to overflow.
9976 This function will always return 0 unless called during combine, which
9977 implies that it must be called from a define_split. */
9979 unsigned int
9980 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9982 if (nonzero_sign_valid == 0)
9983 return 0;
9985 return (unsignedp
9986 ? (HWI_COMPUTABLE_MODE_P (mode)
9987 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9988 - floor_log2 (nonzero_bits (x, mode)))
9989 : 0)
9990 : num_sign_bit_copies (x, mode) - 1);
9993 /* This function is called from `simplify_shift_const' to merge two
9994 outer operations. Specifically, we have already found that we need
9995 to perform operation *POP0 with constant *PCONST0 at the outermost
9996 position. We would now like to also perform OP1 with constant CONST1
9997 (with *POP0 being done last).
9999 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10000 the resulting operation. *PCOMP_P is set to 1 if we would need to
10001 complement the innermost operand, otherwise it is unchanged.
10003 MODE is the mode in which the operation will be done. No bits outside
10004 the width of this mode matter. It is assumed that the width of this mode
10005 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10007 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10008 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10009 result is simply *PCONST0.
10011 If the resulting operation cannot be expressed as one operation, we
10012 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10014 static int
10015 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10017 enum rtx_code op0 = *pop0;
10018 HOST_WIDE_INT const0 = *pconst0;
10020 const0 &= GET_MODE_MASK (mode);
10021 const1 &= GET_MODE_MASK (mode);
10023 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10024 if (op0 == AND)
10025 const1 &= const0;
10027 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10028 if OP0 is SET. */
10030 if (op1 == UNKNOWN || op0 == SET)
10031 return 1;
10033 else if (op0 == UNKNOWN)
10034 op0 = op1, const0 = const1;
10036 else if (op0 == op1)
10038 switch (op0)
10040 case AND:
10041 const0 &= const1;
10042 break;
10043 case IOR:
10044 const0 |= const1;
10045 break;
10046 case XOR:
10047 const0 ^= const1;
10048 break;
10049 case PLUS:
10050 const0 += const1;
10051 break;
10052 case NEG:
10053 op0 = UNKNOWN;
10054 break;
10055 default:
10056 break;
10060 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10061 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10062 return 0;
10064 /* If the two constants aren't the same, we can't do anything. The
10065 remaining six cases can all be done. */
10066 else if (const0 != const1)
10067 return 0;
10069 else
10070 switch (op0)
10072 case IOR:
10073 if (op1 == AND)
10074 /* (a & b) | b == b */
10075 op0 = SET;
10076 else /* op1 == XOR */
10077 /* (a ^ b) | b == a | b */
10079 break;
10081 case XOR:
10082 if (op1 == AND)
10083 /* (a & b) ^ b == (~a) & b */
10084 op0 = AND, *pcomp_p = 1;
10085 else /* op1 == IOR */
10086 /* (a | b) ^ b == a & ~b */
10087 op0 = AND, const0 = ~const0;
10088 break;
10090 case AND:
10091 if (op1 == IOR)
10092 /* (a | b) & b == b */
10093 op0 = SET;
10094 else /* op1 == XOR */
10095 /* (a ^ b) & b) == (~a) & b */
10096 *pcomp_p = 1;
10097 break;
10098 default:
10099 break;
10102 /* Check for NO-OP cases. */
10103 const0 &= GET_MODE_MASK (mode);
10104 if (const0 == 0
10105 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10106 op0 = UNKNOWN;
10107 else if (const0 == 0 && op0 == AND)
10108 op0 = SET;
10109 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10110 && op0 == AND)
10111 op0 = UNKNOWN;
10113 *pop0 = op0;
10115 /* ??? Slightly redundant with the above mask, but not entirely.
10116 Moving this above means we'd have to sign-extend the mode mask
10117 for the final test. */
10118 if (op0 != UNKNOWN && op0 != NEG)
10119 *pconst0 = trunc_int_for_mode (const0, mode);
10121 return 1;
10124 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10125 the shift in. The original shift operation CODE is performed on OP in
10126 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10127 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10128 result of the shift is subject to operation OUTER_CODE with operand
10129 OUTER_CONST. */
10131 static machine_mode
10132 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10133 machine_mode orig_mode, machine_mode mode,
10134 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10136 if (orig_mode == mode)
10137 return mode;
10138 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10140 /* In general we can't perform in wider mode for right shift and rotate. */
10141 switch (code)
10143 case ASHIFTRT:
10144 /* We can still widen if the bits brought in from the left are identical
10145 to the sign bit of ORIG_MODE. */
10146 if (num_sign_bit_copies (op, mode)
10147 > (unsigned) (GET_MODE_PRECISION (mode)
10148 - GET_MODE_PRECISION (orig_mode)))
10149 return mode;
10150 return orig_mode;
10152 case LSHIFTRT:
10153 /* Similarly here but with zero bits. */
10154 if (HWI_COMPUTABLE_MODE_P (mode)
10155 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10156 return mode;
10158 /* We can also widen if the bits brought in will be masked off. This
10159 operation is performed in ORIG_MODE. */
10160 if (outer_code == AND)
10162 int care_bits = low_bitmask_len (orig_mode, outer_const);
10164 if (care_bits >= 0
10165 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10166 return mode;
10168 /* fall through */
10170 case ROTATE:
10171 return orig_mode;
10173 case ROTATERT:
10174 gcc_unreachable ();
10176 default:
10177 return mode;
10181 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10182 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10183 if we cannot simplify it. Otherwise, return a simplified value.
10185 The shift is normally computed in the widest mode we find in VAROP, as
10186 long as it isn't a different number of words than RESULT_MODE. Exceptions
10187 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10189 static rtx
10190 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10191 rtx varop, int orig_count)
10193 enum rtx_code orig_code = code;
10194 rtx orig_varop = varop;
10195 int count;
10196 machine_mode mode = result_mode;
10197 machine_mode shift_mode, tmode;
10198 unsigned int mode_words
10199 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10200 /* We form (outer_op (code varop count) (outer_const)). */
10201 enum rtx_code outer_op = UNKNOWN;
10202 HOST_WIDE_INT outer_const = 0;
10203 int complement_p = 0;
10204 rtx new_rtx, x;
10206 /* Make sure and truncate the "natural" shift on the way in. We don't
10207 want to do this inside the loop as it makes it more difficult to
10208 combine shifts. */
10209 if (SHIFT_COUNT_TRUNCATED)
10210 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10212 /* If we were given an invalid count, don't do anything except exactly
10213 what was requested. */
10215 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10216 return NULL_RTX;
10218 count = orig_count;
10220 /* Unless one of the branches of the `if' in this loop does a `continue',
10221 we will `break' the loop after the `if'. */
10223 while (count != 0)
10225 /* If we have an operand of (clobber (const_int 0)), fail. */
10226 if (GET_CODE (varop) == CLOBBER)
10227 return NULL_RTX;
10229 /* Convert ROTATERT to ROTATE. */
10230 if (code == ROTATERT)
10232 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10233 code = ROTATE;
10234 if (VECTOR_MODE_P (result_mode))
10235 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10236 else
10237 count = bitsize - count;
10240 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10241 mode, outer_op, outer_const);
10243 /* Handle cases where the count is greater than the size of the mode
10244 minus 1. For ASHIFT, use the size minus one as the count (this can
10245 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10246 take the count modulo the size. For other shifts, the result is
10247 zero.
10249 Since these shifts are being produced by the compiler by combining
10250 multiple operations, each of which are defined, we know what the
10251 result is supposed to be. */
10253 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10255 if (code == ASHIFTRT)
10256 count = GET_MODE_PRECISION (shift_mode) - 1;
10257 else if (code == ROTATE || code == ROTATERT)
10258 count %= GET_MODE_PRECISION (shift_mode);
10259 else
10261 /* We can't simply return zero because there may be an
10262 outer op. */
10263 varop = const0_rtx;
10264 count = 0;
10265 break;
10269 /* If we discovered we had to complement VAROP, leave. Making a NOT
10270 here would cause an infinite loop. */
10271 if (complement_p)
10272 break;
10274 /* An arithmetic right shift of a quantity known to be -1 or 0
10275 is a no-op. */
10276 if (code == ASHIFTRT
10277 && (num_sign_bit_copies (varop, shift_mode)
10278 == GET_MODE_PRECISION (shift_mode)))
10280 count = 0;
10281 break;
10284 /* If we are doing an arithmetic right shift and discarding all but
10285 the sign bit copies, this is equivalent to doing a shift by the
10286 bitsize minus one. Convert it into that shift because it will often
10287 allow other simplifications. */
10289 if (code == ASHIFTRT
10290 && (count + num_sign_bit_copies (varop, shift_mode)
10291 >= GET_MODE_PRECISION (shift_mode)))
10292 count = GET_MODE_PRECISION (shift_mode) - 1;
10294 /* We simplify the tests below and elsewhere by converting
10295 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10296 `make_compound_operation' will convert it to an ASHIFTRT for
10297 those machines (such as VAX) that don't have an LSHIFTRT. */
10298 if (code == ASHIFTRT
10299 && val_signbit_known_clear_p (shift_mode,
10300 nonzero_bits (varop, shift_mode)))
10301 code = LSHIFTRT;
10303 if (((code == LSHIFTRT
10304 && HWI_COMPUTABLE_MODE_P (shift_mode)
10305 && !(nonzero_bits (varop, shift_mode) >> count))
10306 || (code == ASHIFT
10307 && HWI_COMPUTABLE_MODE_P (shift_mode)
10308 && !((nonzero_bits (varop, shift_mode) << count)
10309 & GET_MODE_MASK (shift_mode))))
10310 && !side_effects_p (varop))
10311 varop = const0_rtx;
10313 switch (GET_CODE (varop))
10315 case SIGN_EXTEND:
10316 case ZERO_EXTEND:
10317 case SIGN_EXTRACT:
10318 case ZERO_EXTRACT:
10319 new_rtx = expand_compound_operation (varop);
10320 if (new_rtx != varop)
10322 varop = new_rtx;
10323 continue;
10325 break;
10327 case MEM:
10328 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10329 minus the width of a smaller mode, we can do this with a
10330 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10331 if ((code == ASHIFTRT || code == LSHIFTRT)
10332 && ! mode_dependent_address_p (XEXP (varop, 0),
10333 MEM_ADDR_SPACE (varop))
10334 && ! MEM_VOLATILE_P (varop)
10335 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10336 MODE_INT, 1)) != BLKmode)
10338 new_rtx = adjust_address_nv (varop, tmode,
10339 BYTES_BIG_ENDIAN ? 0
10340 : count / BITS_PER_UNIT);
10342 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10343 : ZERO_EXTEND, mode, new_rtx);
10344 count = 0;
10345 continue;
10347 break;
10349 case SUBREG:
10350 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10351 the same number of words as what we've seen so far. Then store
10352 the widest mode in MODE. */
10353 if (subreg_lowpart_p (varop)
10354 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10355 > GET_MODE_SIZE (GET_MODE (varop)))
10356 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10357 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10358 == mode_words
10359 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10360 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10362 varop = SUBREG_REG (varop);
10363 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10364 mode = GET_MODE (varop);
10365 continue;
10367 break;
10369 case MULT:
10370 /* Some machines use MULT instead of ASHIFT because MULT
10371 is cheaper. But it is still better on those machines to
10372 merge two shifts into one. */
10373 if (CONST_INT_P (XEXP (varop, 1))
10374 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10376 varop
10377 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10378 XEXP (varop, 0),
10379 GEN_INT (exact_log2 (
10380 UINTVAL (XEXP (varop, 1)))));
10381 continue;
10383 break;
10385 case UDIV:
10386 /* Similar, for when divides are cheaper. */
10387 if (CONST_INT_P (XEXP (varop, 1))
10388 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10390 varop
10391 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10392 XEXP (varop, 0),
10393 GEN_INT (exact_log2 (
10394 UINTVAL (XEXP (varop, 1)))));
10395 continue;
10397 break;
10399 case ASHIFTRT:
10400 /* If we are extracting just the sign bit of an arithmetic
10401 right shift, that shift is not needed. However, the sign
10402 bit of a wider mode may be different from what would be
10403 interpreted as the sign bit in a narrower mode, so, if
10404 the result is narrower, don't discard the shift. */
10405 if (code == LSHIFTRT
10406 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10407 && (GET_MODE_BITSIZE (result_mode)
10408 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10410 varop = XEXP (varop, 0);
10411 continue;
10414 /* fall through */
10416 case LSHIFTRT:
10417 case ASHIFT:
10418 case ROTATE:
10419 /* Here we have two nested shifts. The result is usually the
10420 AND of a new shift with a mask. We compute the result below. */
10421 if (CONST_INT_P (XEXP (varop, 1))
10422 && INTVAL (XEXP (varop, 1)) >= 0
10423 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10424 && HWI_COMPUTABLE_MODE_P (result_mode)
10425 && HWI_COMPUTABLE_MODE_P (mode)
10426 && !VECTOR_MODE_P (result_mode))
10428 enum rtx_code first_code = GET_CODE (varop);
10429 unsigned int first_count = INTVAL (XEXP (varop, 1));
10430 unsigned HOST_WIDE_INT mask;
10431 rtx mask_rtx;
10433 /* We have one common special case. We can't do any merging if
10434 the inner code is an ASHIFTRT of a smaller mode. However, if
10435 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10436 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10437 we can convert it to
10438 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10439 This simplifies certain SIGN_EXTEND operations. */
10440 if (code == ASHIFT && first_code == ASHIFTRT
10441 && count == (GET_MODE_PRECISION (result_mode)
10442 - GET_MODE_PRECISION (GET_MODE (varop))))
10444 /* C3 has the low-order C1 bits zero. */
10446 mask = GET_MODE_MASK (mode)
10447 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10449 varop = simplify_and_const_int (NULL_RTX, result_mode,
10450 XEXP (varop, 0), mask);
10451 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10452 varop, count);
10453 count = first_count;
10454 code = ASHIFTRT;
10455 continue;
10458 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10459 than C1 high-order bits equal to the sign bit, we can convert
10460 this to either an ASHIFT or an ASHIFTRT depending on the
10461 two counts.
10463 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10465 if (code == ASHIFTRT && first_code == ASHIFT
10466 && GET_MODE (varop) == shift_mode
10467 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10468 > first_count))
10470 varop = XEXP (varop, 0);
10471 count -= first_count;
10472 if (count < 0)
10474 count = -count;
10475 code = ASHIFT;
10478 continue;
10481 /* There are some cases we can't do. If CODE is ASHIFTRT,
10482 we can only do this if FIRST_CODE is also ASHIFTRT.
10484 We can't do the case when CODE is ROTATE and FIRST_CODE is
10485 ASHIFTRT.
10487 If the mode of this shift is not the mode of the outer shift,
10488 we can't do this if either shift is a right shift or ROTATE.
10490 Finally, we can't do any of these if the mode is too wide
10491 unless the codes are the same.
10493 Handle the case where the shift codes are the same
10494 first. */
10496 if (code == first_code)
10498 if (GET_MODE (varop) != result_mode
10499 && (code == ASHIFTRT || code == LSHIFTRT
10500 || code == ROTATE))
10501 break;
10503 count += first_count;
10504 varop = XEXP (varop, 0);
10505 continue;
10508 if (code == ASHIFTRT
10509 || (code == ROTATE && first_code == ASHIFTRT)
10510 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10511 || (GET_MODE (varop) != result_mode
10512 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10513 || first_code == ROTATE
10514 || code == ROTATE)))
10515 break;
10517 /* To compute the mask to apply after the shift, shift the
10518 nonzero bits of the inner shift the same way the
10519 outer shift will. */
10521 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10522 result_mode);
10524 mask_rtx
10525 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10526 GEN_INT (count));
10528 /* Give up if we can't compute an outer operation to use. */
10529 if (mask_rtx == 0
10530 || !CONST_INT_P (mask_rtx)
10531 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10532 INTVAL (mask_rtx),
10533 result_mode, &complement_p))
10534 break;
10536 /* If the shifts are in the same direction, we add the
10537 counts. Otherwise, we subtract them. */
10538 if ((code == ASHIFTRT || code == LSHIFTRT)
10539 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10540 count += first_count;
10541 else
10542 count -= first_count;
10544 /* If COUNT is positive, the new shift is usually CODE,
10545 except for the two exceptions below, in which case it is
10546 FIRST_CODE. If the count is negative, FIRST_CODE should
10547 always be used */
10548 if (count > 0
10549 && ((first_code == ROTATE && code == ASHIFT)
10550 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10551 code = first_code;
10552 else if (count < 0)
10553 code = first_code, count = -count;
10555 varop = XEXP (varop, 0);
10556 continue;
10559 /* If we have (A << B << C) for any shift, we can convert this to
10560 (A << C << B). This wins if A is a constant. Only try this if
10561 B is not a constant. */
10563 else if (GET_CODE (varop) == code
10564 && CONST_INT_P (XEXP (varop, 0))
10565 && !CONST_INT_P (XEXP (varop, 1)))
10567 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10568 sure the result will be masked. See PR70222. */
10569 if (code == LSHIFTRT
10570 && mode != result_mode
10571 && !merge_outer_ops (&outer_op, &outer_const, AND,
10572 GET_MODE_MASK (result_mode)
10573 >> orig_count, result_mode,
10574 &complement_p))
10575 break;
10576 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10577 up outer sign extension (often left and right shift) is
10578 hardly more efficient than the original. See PR70429. */
10579 if (code == ASHIFTRT && mode != result_mode)
10580 break;
10582 rtx new_rtx = simplify_const_binary_operation (code, mode,
10583 XEXP (varop, 0),
10584 GEN_INT (count));
10585 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10586 count = 0;
10587 continue;
10589 break;
10591 case NOT:
10592 if (VECTOR_MODE_P (mode))
10593 break;
10595 /* Make this fit the case below. */
10596 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10597 continue;
10599 case IOR:
10600 case AND:
10601 case XOR:
10602 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10603 with C the size of VAROP - 1 and the shift is logical if
10604 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10605 we have an (le X 0) operation. If we have an arithmetic shift
10606 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10607 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10609 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10610 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10611 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10612 && (code == LSHIFTRT || code == ASHIFTRT)
10613 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10614 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10616 count = 0;
10617 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10618 const0_rtx);
10620 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10621 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10623 continue;
10626 /* If we have (shift (logical)), move the logical to the outside
10627 to allow it to possibly combine with another logical and the
10628 shift to combine with another shift. This also canonicalizes to
10629 what a ZERO_EXTRACT looks like. Also, some machines have
10630 (and (shift)) insns. */
10632 if (CONST_INT_P (XEXP (varop, 1))
10633 /* We can't do this if we have (ashiftrt (xor)) and the
10634 constant has its sign bit set in shift_mode with shift_mode
10635 wider than result_mode. */
10636 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10637 && result_mode != shift_mode
10638 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10639 shift_mode))
10640 && (new_rtx = simplify_const_binary_operation
10641 (code, result_mode,
10642 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10643 GEN_INT (count))) != 0
10644 && CONST_INT_P (new_rtx)
10645 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10646 INTVAL (new_rtx), result_mode, &complement_p))
10648 varop = XEXP (varop, 0);
10649 continue;
10652 /* If we can't do that, try to simplify the shift in each arm of the
10653 logical expression, make a new logical expression, and apply
10654 the inverse distributive law. This also can't be done for
10655 (ashiftrt (xor)) where we've widened the shift and the constant
10656 changes the sign bit. */
10657 if (CONST_INT_P (XEXP (varop, 1))
10658 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10659 && result_mode != shift_mode
10660 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10661 shift_mode)))
10663 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10664 XEXP (varop, 0), count);
10665 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10666 XEXP (varop, 1), count);
10668 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10669 lhs, rhs);
10670 varop = apply_distributive_law (varop);
10672 count = 0;
10673 continue;
10675 break;
10677 case EQ:
10678 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10679 says that the sign bit can be tested, FOO has mode MODE, C is
10680 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10681 that may be nonzero. */
10682 if (code == LSHIFTRT
10683 && XEXP (varop, 1) == const0_rtx
10684 && GET_MODE (XEXP (varop, 0)) == result_mode
10685 && count == (GET_MODE_PRECISION (result_mode) - 1)
10686 && HWI_COMPUTABLE_MODE_P (result_mode)
10687 && STORE_FLAG_VALUE == -1
10688 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10689 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10690 &complement_p))
10692 varop = XEXP (varop, 0);
10693 count = 0;
10694 continue;
10696 break;
10698 case NEG:
10699 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10700 than the number of bits in the mode is equivalent to A. */
10701 if (code == LSHIFTRT
10702 && count == (GET_MODE_PRECISION (result_mode) - 1)
10703 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10705 varop = XEXP (varop, 0);
10706 count = 0;
10707 continue;
10710 /* NEG commutes with ASHIFT since it is multiplication. Move the
10711 NEG outside to allow shifts to combine. */
10712 if (code == ASHIFT
10713 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10714 &complement_p))
10716 varop = XEXP (varop, 0);
10717 continue;
10719 break;
10721 case PLUS:
10722 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10723 is one less than the number of bits in the mode is
10724 equivalent to (xor A 1). */
10725 if (code == LSHIFTRT
10726 && count == (GET_MODE_PRECISION (result_mode) - 1)
10727 && XEXP (varop, 1) == constm1_rtx
10728 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10729 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10730 &complement_p))
10732 count = 0;
10733 varop = XEXP (varop, 0);
10734 continue;
10737 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10738 that might be nonzero in BAR are those being shifted out and those
10739 bits are known zero in FOO, we can replace the PLUS with FOO.
10740 Similarly in the other operand order. This code occurs when
10741 we are computing the size of a variable-size array. */
10743 if ((code == ASHIFTRT || code == LSHIFTRT)
10744 && count < HOST_BITS_PER_WIDE_INT
10745 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10746 && (nonzero_bits (XEXP (varop, 1), result_mode)
10747 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10749 varop = XEXP (varop, 0);
10750 continue;
10752 else if ((code == ASHIFTRT || code == LSHIFTRT)
10753 && count < HOST_BITS_PER_WIDE_INT
10754 && HWI_COMPUTABLE_MODE_P (result_mode)
10755 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10756 >> count)
10757 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10758 & nonzero_bits (XEXP (varop, 1),
10759 result_mode)))
10761 varop = XEXP (varop, 1);
10762 continue;
10765 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10766 if (code == ASHIFT
10767 && CONST_INT_P (XEXP (varop, 1))
10768 && (new_rtx = simplify_const_binary_operation
10769 (ASHIFT, result_mode,
10770 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10771 GEN_INT (count))) != 0
10772 && CONST_INT_P (new_rtx)
10773 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10774 INTVAL (new_rtx), result_mode, &complement_p))
10776 varop = XEXP (varop, 0);
10777 continue;
10780 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10781 signbit', and attempt to change the PLUS to an XOR and move it to
10782 the outer operation as is done above in the AND/IOR/XOR case
10783 leg for shift(logical). See details in logical handling above
10784 for reasoning in doing so. */
10785 if (code == LSHIFTRT
10786 && CONST_INT_P (XEXP (varop, 1))
10787 && mode_signbit_p (result_mode, XEXP (varop, 1))
10788 && (new_rtx = simplify_const_binary_operation
10789 (code, result_mode,
10790 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10791 GEN_INT (count))) != 0
10792 && CONST_INT_P (new_rtx)
10793 && merge_outer_ops (&outer_op, &outer_const, XOR,
10794 INTVAL (new_rtx), result_mode, &complement_p))
10796 varop = XEXP (varop, 0);
10797 continue;
10800 break;
10802 case MINUS:
10803 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10804 with C the size of VAROP - 1 and the shift is logical if
10805 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10806 we have a (gt X 0) operation. If the shift is arithmetic with
10807 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10808 we have a (neg (gt X 0)) operation. */
10810 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10811 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10812 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10813 && (code == LSHIFTRT || code == ASHIFTRT)
10814 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10815 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10816 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10818 count = 0;
10819 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10820 const0_rtx);
10822 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10823 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10825 continue;
10827 break;
10829 case TRUNCATE:
10830 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10831 if the truncate does not affect the value. */
10832 if (code == LSHIFTRT
10833 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10834 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10835 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10836 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10837 - GET_MODE_PRECISION (GET_MODE (varop)))))
10839 rtx varop_inner = XEXP (varop, 0);
10841 varop_inner
10842 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10843 XEXP (varop_inner, 0),
10844 GEN_INT
10845 (count + INTVAL (XEXP (varop_inner, 1))));
10846 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10847 count = 0;
10848 continue;
10850 break;
10852 default:
10853 break;
10856 break;
10859 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10860 outer_op, outer_const);
10862 /* We have now finished analyzing the shift. The result should be
10863 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10864 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10865 to the result of the shift. OUTER_CONST is the relevant constant,
10866 but we must turn off all bits turned off in the shift. */
10868 if (outer_op == UNKNOWN
10869 && orig_code == code && orig_count == count
10870 && varop == orig_varop
10871 && shift_mode == GET_MODE (varop))
10872 return NULL_RTX;
10874 /* Make a SUBREG if necessary. If we can't make it, fail. */
10875 varop = gen_lowpart (shift_mode, varop);
10876 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10877 return NULL_RTX;
10879 /* If we have an outer operation and we just made a shift, it is
10880 possible that we could have simplified the shift were it not
10881 for the outer operation. So try to do the simplification
10882 recursively. */
10884 if (outer_op != UNKNOWN)
10885 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10886 else
10887 x = NULL_RTX;
10889 if (x == NULL_RTX)
10890 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10892 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10893 turn off all the bits that the shift would have turned off. */
10894 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10895 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10896 GET_MODE_MASK (result_mode) >> orig_count);
10898 /* Do the remainder of the processing in RESULT_MODE. */
10899 x = gen_lowpart_or_truncate (result_mode, x);
10901 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10902 operation. */
10903 if (complement_p)
10904 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10906 if (outer_op != UNKNOWN)
10908 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10909 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10910 outer_const = trunc_int_for_mode (outer_const, result_mode);
10912 if (outer_op == AND)
10913 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10914 else if (outer_op == SET)
10916 /* This means that we have determined that the result is
10917 equivalent to a constant. This should be rare. */
10918 if (!side_effects_p (x))
10919 x = GEN_INT (outer_const);
10921 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10922 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10923 else
10924 x = simplify_gen_binary (outer_op, result_mode, x,
10925 GEN_INT (outer_const));
10928 return x;
10931 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10932 The result of the shift is RESULT_MODE. If we cannot simplify it,
10933 return X or, if it is NULL, synthesize the expression with
10934 simplify_gen_binary. Otherwise, return a simplified value.
10936 The shift is normally computed in the widest mode we find in VAROP, as
10937 long as it isn't a different number of words than RESULT_MODE. Exceptions
10938 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10940 static rtx
10941 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10942 rtx varop, int count)
10944 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10945 if (tem)
10946 return tem;
10948 if (!x)
10949 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10950 if (GET_MODE (x) != result_mode)
10951 x = gen_lowpart (result_mode, x);
10952 return x;
10956 /* A subroutine of recog_for_combine. See there for arguments and
10957 return value. */
10959 static int
10960 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10962 rtx pat = *pnewpat;
10963 rtx pat_without_clobbers;
10964 int insn_code_number;
10965 int num_clobbers_to_add = 0;
10966 int i;
10967 rtx notes = NULL_RTX;
10968 rtx old_notes, old_pat;
10969 int old_icode;
10971 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10972 we use to indicate that something didn't match. If we find such a
10973 thing, force rejection. */
10974 if (GET_CODE (pat) == PARALLEL)
10975 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10976 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10977 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10978 return -1;
10980 old_pat = PATTERN (insn);
10981 old_notes = REG_NOTES (insn);
10982 PATTERN (insn) = pat;
10983 REG_NOTES (insn) = NULL_RTX;
10985 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10986 if (dump_file && (dump_flags & TDF_DETAILS))
10988 if (insn_code_number < 0)
10989 fputs ("Failed to match this instruction:\n", dump_file);
10990 else
10991 fputs ("Successfully matched this instruction:\n", dump_file);
10992 print_rtl_single (dump_file, pat);
10995 /* If it isn't, there is the possibility that we previously had an insn
10996 that clobbered some register as a side effect, but the combined
10997 insn doesn't need to do that. So try once more without the clobbers
10998 unless this represents an ASM insn. */
11000 if (insn_code_number < 0 && ! check_asm_operands (pat)
11001 && GET_CODE (pat) == PARALLEL)
11003 int pos;
11005 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11006 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11008 if (i != pos)
11009 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11010 pos++;
11013 SUBST_INT (XVECLEN (pat, 0), pos);
11015 if (pos == 1)
11016 pat = XVECEXP (pat, 0, 0);
11018 PATTERN (insn) = pat;
11019 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11020 if (dump_file && (dump_flags & TDF_DETAILS))
11022 if (insn_code_number < 0)
11023 fputs ("Failed to match this instruction:\n", dump_file);
11024 else
11025 fputs ("Successfully matched this instruction:\n", dump_file);
11026 print_rtl_single (dump_file, pat);
11030 pat_without_clobbers = pat;
11032 PATTERN (insn) = old_pat;
11033 REG_NOTES (insn) = old_notes;
11035 /* Recognize all noop sets, these will be killed by followup pass. */
11036 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11037 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11039 /* If we had any clobbers to add, make a new pattern than contains
11040 them. Then check to make sure that all of them are dead. */
11041 if (num_clobbers_to_add)
11043 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11044 rtvec_alloc (GET_CODE (pat) == PARALLEL
11045 ? (XVECLEN (pat, 0)
11046 + num_clobbers_to_add)
11047 : num_clobbers_to_add + 1));
11049 if (GET_CODE (pat) == PARALLEL)
11050 for (i = 0; i < XVECLEN (pat, 0); i++)
11051 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11052 else
11053 XVECEXP (newpat, 0, 0) = pat;
11055 add_clobbers (newpat, insn_code_number);
11057 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11058 i < XVECLEN (newpat, 0); i++)
11060 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11061 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11062 return -1;
11063 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11065 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11066 notes = alloc_reg_note (REG_UNUSED,
11067 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11070 pat = newpat;
11073 if (insn_code_number >= 0
11074 && insn_code_number != NOOP_MOVE_INSN_CODE)
11076 old_pat = PATTERN (insn);
11077 old_notes = REG_NOTES (insn);
11078 old_icode = INSN_CODE (insn);
11079 PATTERN (insn) = pat;
11080 REG_NOTES (insn) = notes;
11082 /* Allow targets to reject combined insn. */
11083 if (!targetm.legitimate_combined_insn (insn))
11085 if (dump_file && (dump_flags & TDF_DETAILS))
11086 fputs ("Instruction not appropriate for target.",
11087 dump_file);
11089 /* Callers expect recog_for_combine to strip
11090 clobbers from the pattern on failure. */
11091 pat = pat_without_clobbers;
11092 notes = NULL_RTX;
11094 insn_code_number = -1;
11097 PATTERN (insn) = old_pat;
11098 REG_NOTES (insn) = old_notes;
11099 INSN_CODE (insn) = old_icode;
11102 *pnewpat = pat;
11103 *pnotes = notes;
11105 return insn_code_number;
11108 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11109 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11110 Return whether anything was so changed. */
11112 static bool
11113 change_zero_ext (rtx pat)
11115 bool changed = false;
11116 rtx *src = &SET_SRC (pat);
11118 subrtx_ptr_iterator::array_type array;
11119 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11121 rtx x = **iter;
11122 machine_mode mode = GET_MODE (x);
11123 int size;
11125 if (GET_CODE (x) == ZERO_EXTRACT
11126 && CONST_INT_P (XEXP (x, 1))
11127 && CONST_INT_P (XEXP (x, 2))
11128 && GET_MODE (XEXP (x, 0)) == mode)
11130 size = INTVAL (XEXP (x, 1));
11132 int start = INTVAL (XEXP (x, 2));
11133 if (BITS_BIG_ENDIAN)
11134 start = GET_MODE_PRECISION (mode) - size - start;
11136 x = simplify_gen_binary (LSHIFTRT, mode,
11137 XEXP (x, 0), GEN_INT (start));
11139 else if (GET_CODE (x) == ZERO_EXTEND
11140 && SCALAR_INT_MODE_P (mode)
11141 && GET_CODE (XEXP (x, 0)) == SUBREG
11142 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11143 && subreg_lowpart_p (XEXP (x, 0)))
11145 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11146 x = SUBREG_REG (XEXP (x, 0));
11148 else if (GET_CODE (x) == ZERO_EXTEND
11149 && SCALAR_INT_MODE_P (mode)
11150 && REG_P (XEXP (x, 0))
11151 && HARD_REGISTER_P (XEXP (x, 0)))
11153 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11154 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11156 else
11157 continue;
11159 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11160 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11162 SUBST (**iter, x);
11163 changed = true;
11166 if (changed)
11167 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11169 rtx x = **iter;
11170 if (COMMUTATIVE_ARITH_P (x)
11171 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
11173 rtx tem = XEXP (x, 0);
11174 SUBST (XEXP (x, 0), XEXP (x, 1));
11175 SUBST (XEXP (x, 1), tem);
11179 rtx *dst = &SET_DEST (pat);
11180 if (GET_CODE (*dst) == ZERO_EXTRACT
11181 && REG_P (XEXP (*dst, 0))
11182 && CONST_INT_P (XEXP (*dst, 1))
11183 && CONST_INT_P (XEXP (*dst, 2)))
11185 rtx reg = XEXP (*dst, 0);
11186 int width = INTVAL (XEXP (*dst, 1));
11187 int offset = INTVAL (XEXP (*dst, 2));
11188 machine_mode mode = GET_MODE (reg);
11189 int reg_width = GET_MODE_PRECISION (mode);
11190 if (BITS_BIG_ENDIAN)
11191 offset = reg_width - width - offset;
11193 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11194 rtx x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11195 rtx y = simplify_gen_binary (ASHIFT, mode, SET_SRC (pat),
11196 GEN_INT (offset));
11197 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11198 y = simplify_gen_binary (AND, mode, y,
11199 immed_wide_int_const (mask2, mode));
11200 rtx z = simplify_gen_binary (IOR, mode, x, y);
11201 SUBST (SET_DEST (pat), reg);
11202 SUBST (SET_SRC (pat), z);
11204 changed = true;
11207 return changed;
11210 /* Like recog, but we receive the address of a pointer to a new pattern.
11211 We try to match the rtx that the pointer points to.
11212 If that fails, we may try to modify or replace the pattern,
11213 storing the replacement into the same pointer object.
11215 Modifications include deletion or addition of CLOBBERs. If the
11216 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11217 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11218 (and undo if that fails).
11220 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11221 the CLOBBERs are placed.
11223 The value is the final insn code from the pattern ultimately matched,
11224 or -1. */
11226 static int
11227 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11229 rtx pat = *pnewpat;
11230 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11231 if (insn_code_number >= 0 || check_asm_operands (pat))
11232 return insn_code_number;
11234 void *marker = get_undo_marker ();
11235 bool changed = false;
11237 if (GET_CODE (pat) == SET)
11238 changed = change_zero_ext (pat);
11239 else if (GET_CODE (pat) == PARALLEL)
11241 int i;
11242 for (i = 0; i < XVECLEN (pat, 0); i++)
11244 rtx set = XVECEXP (pat, 0, i);
11245 if (GET_CODE (set) == SET)
11246 changed |= change_zero_ext (set);
11250 if (changed)
11252 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11254 if (insn_code_number < 0)
11255 undo_to_marker (marker);
11258 return insn_code_number;
11261 /* Like gen_lowpart_general but for use by combine. In combine it
11262 is not possible to create any new pseudoregs. However, it is
11263 safe to create invalid memory addresses, because combine will
11264 try to recognize them and all they will do is make the combine
11265 attempt fail.
11267 If for some reason this cannot do its job, an rtx
11268 (clobber (const_int 0)) is returned.
11269 An insn containing that will not be recognized. */
11271 static rtx
11272 gen_lowpart_for_combine (machine_mode omode, rtx x)
11274 machine_mode imode = GET_MODE (x);
11275 unsigned int osize = GET_MODE_SIZE (omode);
11276 unsigned int isize = GET_MODE_SIZE (imode);
11277 rtx result;
11279 if (omode == imode)
11280 return x;
11282 /* We can only support MODE being wider than a word if X is a
11283 constant integer or has a mode the same size. */
11284 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11285 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11286 goto fail;
11288 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11289 won't know what to do. So we will strip off the SUBREG here and
11290 process normally. */
11291 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11293 x = SUBREG_REG (x);
11295 /* For use in case we fall down into the address adjustments
11296 further below, we need to adjust the known mode and size of
11297 x; imode and isize, since we just adjusted x. */
11298 imode = GET_MODE (x);
11300 if (imode == omode)
11301 return x;
11303 isize = GET_MODE_SIZE (imode);
11306 result = gen_lowpart_common (omode, x);
11308 if (result)
11309 return result;
11311 if (MEM_P (x))
11313 int offset = 0;
11315 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11316 address. */
11317 if (MEM_VOLATILE_P (x)
11318 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11319 goto fail;
11321 /* If we want to refer to something bigger than the original memref,
11322 generate a paradoxical subreg instead. That will force a reload
11323 of the original memref X. */
11324 if (isize < osize)
11325 return gen_rtx_SUBREG (omode, x, 0);
11327 if (WORDS_BIG_ENDIAN)
11328 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11330 /* Adjust the address so that the address-after-the-data is
11331 unchanged. */
11332 if (BYTES_BIG_ENDIAN)
11333 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11335 return adjust_address_nv (x, omode, offset);
11338 /* If X is a comparison operator, rewrite it in a new mode. This
11339 probably won't match, but may allow further simplifications. */
11340 else if (COMPARISON_P (x))
11341 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11343 /* If we couldn't simplify X any other way, just enclose it in a
11344 SUBREG. Normally, this SUBREG won't match, but some patterns may
11345 include an explicit SUBREG or we may simplify it further in combine. */
11346 else
11348 rtx res;
11350 if (imode == VOIDmode)
11352 imode = int_mode_for_mode (omode);
11353 x = gen_lowpart_common (imode, x);
11354 if (x == NULL)
11355 goto fail;
11357 res = lowpart_subreg (omode, x, imode);
11358 if (res)
11359 return res;
11362 fail:
11363 return gen_rtx_CLOBBER (omode, const0_rtx);
11366 /* Try to simplify a comparison between OP0 and a constant OP1,
11367 where CODE is the comparison code that will be tested, into a
11368 (CODE OP0 const0_rtx) form.
11370 The result is a possibly different comparison code to use.
11371 *POP1 may be updated. */
11373 static enum rtx_code
11374 simplify_compare_const (enum rtx_code code, machine_mode mode,
11375 rtx op0, rtx *pop1)
11377 unsigned int mode_width = GET_MODE_PRECISION (mode);
11378 HOST_WIDE_INT const_op = INTVAL (*pop1);
11380 /* Get the constant we are comparing against and turn off all bits
11381 not on in our mode. */
11382 if (mode != VOIDmode)
11383 const_op = trunc_int_for_mode (const_op, mode);
11385 /* If we are comparing against a constant power of two and the value
11386 being compared can only have that single bit nonzero (e.g., it was
11387 `and'ed with that bit), we can replace this with a comparison
11388 with zero. */
11389 if (const_op
11390 && (code == EQ || code == NE || code == GE || code == GEU
11391 || code == LT || code == LTU)
11392 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11393 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11394 && (nonzero_bits (op0, mode)
11395 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11397 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11398 const_op = 0;
11401 /* Similarly, if we are comparing a value known to be either -1 or
11402 0 with -1, change it to the opposite comparison against zero. */
11403 if (const_op == -1
11404 && (code == EQ || code == NE || code == GT || code == LE
11405 || code == GEU || code == LTU)
11406 && num_sign_bit_copies (op0, mode) == mode_width)
11408 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11409 const_op = 0;
11412 /* Do some canonicalizations based on the comparison code. We prefer
11413 comparisons against zero and then prefer equality comparisons.
11414 If we can reduce the size of a constant, we will do that too. */
11415 switch (code)
11417 case LT:
11418 /* < C is equivalent to <= (C - 1) */
11419 if (const_op > 0)
11421 const_op -= 1;
11422 code = LE;
11423 /* ... fall through to LE case below. */
11424 gcc_fallthrough ();
11426 else
11427 break;
11429 case LE:
11430 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11431 if (const_op < 0)
11433 const_op += 1;
11434 code = LT;
11437 /* If we are doing a <= 0 comparison on a value known to have
11438 a zero sign bit, we can replace this with == 0. */
11439 else if (const_op == 0
11440 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11441 && (nonzero_bits (op0, mode)
11442 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11443 == 0)
11444 code = EQ;
11445 break;
11447 case GE:
11448 /* >= C is equivalent to > (C - 1). */
11449 if (const_op > 0)
11451 const_op -= 1;
11452 code = GT;
11453 /* ... fall through to GT below. */
11454 gcc_fallthrough ();
11456 else
11457 break;
11459 case GT:
11460 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11461 if (const_op < 0)
11463 const_op += 1;
11464 code = GE;
11467 /* If we are doing a > 0 comparison on a value known to have
11468 a zero sign bit, we can replace this with != 0. */
11469 else if (const_op == 0
11470 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11471 && (nonzero_bits (op0, mode)
11472 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11473 == 0)
11474 code = NE;
11475 break;
11477 case LTU:
11478 /* < C is equivalent to <= (C - 1). */
11479 if (const_op > 0)
11481 const_op -= 1;
11482 code = LEU;
11483 /* ... fall through ... */
11485 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11486 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11487 && (unsigned HOST_WIDE_INT) const_op
11488 == HOST_WIDE_INT_1U << (mode_width - 1))
11490 const_op = 0;
11491 code = GE;
11492 break;
11494 else
11495 break;
11497 case LEU:
11498 /* unsigned <= 0 is equivalent to == 0 */
11499 if (const_op == 0)
11500 code = EQ;
11501 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11502 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11503 && (unsigned HOST_WIDE_INT) const_op
11504 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11506 const_op = 0;
11507 code = GE;
11509 break;
11511 case GEU:
11512 /* >= C is equivalent to > (C - 1). */
11513 if (const_op > 1)
11515 const_op -= 1;
11516 code = GTU;
11517 /* ... fall through ... */
11520 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11521 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11522 && (unsigned HOST_WIDE_INT) const_op
11523 == HOST_WIDE_INT_1U << (mode_width - 1))
11525 const_op = 0;
11526 code = LT;
11527 break;
11529 else
11530 break;
11532 case GTU:
11533 /* unsigned > 0 is equivalent to != 0 */
11534 if (const_op == 0)
11535 code = NE;
11536 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11537 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11538 && (unsigned HOST_WIDE_INT) const_op
11539 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11541 const_op = 0;
11542 code = LT;
11544 break;
11546 default:
11547 break;
11550 *pop1 = GEN_INT (const_op);
11551 return code;
11554 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11555 comparison code that will be tested.
11557 The result is a possibly different comparison code to use. *POP0 and
11558 *POP1 may be updated.
11560 It is possible that we might detect that a comparison is either always
11561 true or always false. However, we do not perform general constant
11562 folding in combine, so this knowledge isn't useful. Such tautologies
11563 should have been detected earlier. Hence we ignore all such cases. */
11565 static enum rtx_code
11566 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11568 rtx op0 = *pop0;
11569 rtx op1 = *pop1;
11570 rtx tem, tem1;
11571 int i;
11572 machine_mode mode, tmode;
11574 /* Try a few ways of applying the same transformation to both operands. */
11575 while (1)
11577 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11578 so check specially. */
11579 if (!WORD_REGISTER_OPERATIONS
11580 && code != GTU && code != GEU && code != LTU && code != LEU
11581 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11582 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11583 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11584 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11585 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11586 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11587 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11588 && CONST_INT_P (XEXP (op0, 1))
11589 && XEXP (op0, 1) == XEXP (op1, 1)
11590 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11591 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11592 && (INTVAL (XEXP (op0, 1))
11593 == (GET_MODE_PRECISION (GET_MODE (op0))
11594 - (GET_MODE_PRECISION
11595 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11597 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11598 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11601 /* If both operands are the same constant shift, see if we can ignore the
11602 shift. We can if the shift is a rotate or if the bits shifted out of
11603 this shift are known to be zero for both inputs and if the type of
11604 comparison is compatible with the shift. */
11605 if (GET_CODE (op0) == GET_CODE (op1)
11606 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11607 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11608 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11609 && (code != GT && code != LT && code != GE && code != LE))
11610 || (GET_CODE (op0) == ASHIFTRT
11611 && (code != GTU && code != LTU
11612 && code != GEU && code != LEU)))
11613 && CONST_INT_P (XEXP (op0, 1))
11614 && INTVAL (XEXP (op0, 1)) >= 0
11615 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11616 && XEXP (op0, 1) == XEXP (op1, 1))
11618 machine_mode mode = GET_MODE (op0);
11619 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11620 int shift_count = INTVAL (XEXP (op0, 1));
11622 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11623 mask &= (mask >> shift_count) << shift_count;
11624 else if (GET_CODE (op0) == ASHIFT)
11625 mask = (mask & (mask << shift_count)) >> shift_count;
11627 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11628 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11629 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11630 else
11631 break;
11634 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11635 SUBREGs are of the same mode, and, in both cases, the AND would
11636 be redundant if the comparison was done in the narrower mode,
11637 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11638 and the operand's possibly nonzero bits are 0xffffff01; in that case
11639 if we only care about QImode, we don't need the AND). This case
11640 occurs if the output mode of an scc insn is not SImode and
11641 STORE_FLAG_VALUE == 1 (e.g., the 386).
11643 Similarly, check for a case where the AND's are ZERO_EXTEND
11644 operations from some narrower mode even though a SUBREG is not
11645 present. */
11647 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11648 && CONST_INT_P (XEXP (op0, 1))
11649 && CONST_INT_P (XEXP (op1, 1)))
11651 rtx inner_op0 = XEXP (op0, 0);
11652 rtx inner_op1 = XEXP (op1, 0);
11653 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11654 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11655 int changed = 0;
11657 if (paradoxical_subreg_p (inner_op0)
11658 && GET_CODE (inner_op1) == SUBREG
11659 && (GET_MODE (SUBREG_REG (inner_op0))
11660 == GET_MODE (SUBREG_REG (inner_op1)))
11661 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11662 <= HOST_BITS_PER_WIDE_INT)
11663 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11664 GET_MODE (SUBREG_REG (inner_op0)))))
11665 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11666 GET_MODE (SUBREG_REG (inner_op1))))))
11668 op0 = SUBREG_REG (inner_op0);
11669 op1 = SUBREG_REG (inner_op1);
11671 /* The resulting comparison is always unsigned since we masked
11672 off the original sign bit. */
11673 code = unsigned_condition (code);
11675 changed = 1;
11678 else if (c0 == c1)
11679 for (tmode = GET_CLASS_NARROWEST_MODE
11680 (GET_MODE_CLASS (GET_MODE (op0)));
11681 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11682 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11684 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11685 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11686 code = unsigned_condition (code);
11687 changed = 1;
11688 break;
11691 if (! changed)
11692 break;
11695 /* If both operands are NOT, we can strip off the outer operation
11696 and adjust the comparison code for swapped operands; similarly for
11697 NEG, except that this must be an equality comparison. */
11698 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11699 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11700 && (code == EQ || code == NE)))
11701 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11703 else
11704 break;
11707 /* If the first operand is a constant, swap the operands and adjust the
11708 comparison code appropriately, but don't do this if the second operand
11709 is already a constant integer. */
11710 if (swap_commutative_operands_p (op0, op1))
11712 std::swap (op0, op1);
11713 code = swap_condition (code);
11716 /* We now enter a loop during which we will try to simplify the comparison.
11717 For the most part, we only are concerned with comparisons with zero,
11718 but some things may really be comparisons with zero but not start
11719 out looking that way. */
11721 while (CONST_INT_P (op1))
11723 machine_mode mode = GET_MODE (op0);
11724 unsigned int mode_width = GET_MODE_PRECISION (mode);
11725 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11726 int equality_comparison_p;
11727 int sign_bit_comparison_p;
11728 int unsigned_comparison_p;
11729 HOST_WIDE_INT const_op;
11731 /* We only want to handle integral modes. This catches VOIDmode,
11732 CCmode, and the floating-point modes. An exception is that we
11733 can handle VOIDmode if OP0 is a COMPARE or a comparison
11734 operation. */
11736 if (GET_MODE_CLASS (mode) != MODE_INT
11737 && ! (mode == VOIDmode
11738 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11739 break;
11741 /* Try to simplify the compare to constant, possibly changing the
11742 comparison op, and/or changing op1 to zero. */
11743 code = simplify_compare_const (code, mode, op0, &op1);
11744 const_op = INTVAL (op1);
11746 /* Compute some predicates to simplify code below. */
11748 equality_comparison_p = (code == EQ || code == NE);
11749 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11750 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11751 || code == GEU);
11753 /* If this is a sign bit comparison and we can do arithmetic in
11754 MODE, say that we will only be needing the sign bit of OP0. */
11755 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11756 op0 = force_to_mode (op0, mode,
11757 HOST_WIDE_INT_1U
11758 << (GET_MODE_PRECISION (mode) - 1),
11761 /* Now try cases based on the opcode of OP0. If none of the cases
11762 does a "continue", we exit this loop immediately after the
11763 switch. */
11765 switch (GET_CODE (op0))
11767 case ZERO_EXTRACT:
11768 /* If we are extracting a single bit from a variable position in
11769 a constant that has only a single bit set and are comparing it
11770 with zero, we can convert this into an equality comparison
11771 between the position and the location of the single bit. */
11772 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11773 have already reduced the shift count modulo the word size. */
11774 if (!SHIFT_COUNT_TRUNCATED
11775 && CONST_INT_P (XEXP (op0, 0))
11776 && XEXP (op0, 1) == const1_rtx
11777 && equality_comparison_p && const_op == 0
11778 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11780 if (BITS_BIG_ENDIAN)
11781 i = BITS_PER_WORD - 1 - i;
11783 op0 = XEXP (op0, 2);
11784 op1 = GEN_INT (i);
11785 const_op = i;
11787 /* Result is nonzero iff shift count is equal to I. */
11788 code = reverse_condition (code);
11789 continue;
11792 /* fall through */
11794 case SIGN_EXTRACT:
11795 tem = expand_compound_operation (op0);
11796 if (tem != op0)
11798 op0 = tem;
11799 continue;
11801 break;
11803 case NOT:
11804 /* If testing for equality, we can take the NOT of the constant. */
11805 if (equality_comparison_p
11806 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11808 op0 = XEXP (op0, 0);
11809 op1 = tem;
11810 continue;
11813 /* If just looking at the sign bit, reverse the sense of the
11814 comparison. */
11815 if (sign_bit_comparison_p)
11817 op0 = XEXP (op0, 0);
11818 code = (code == GE ? LT : GE);
11819 continue;
11821 break;
11823 case NEG:
11824 /* If testing for equality, we can take the NEG of the constant. */
11825 if (equality_comparison_p
11826 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11828 op0 = XEXP (op0, 0);
11829 op1 = tem;
11830 continue;
11833 /* The remaining cases only apply to comparisons with zero. */
11834 if (const_op != 0)
11835 break;
11837 /* When X is ABS or is known positive,
11838 (neg X) is < 0 if and only if X != 0. */
11840 if (sign_bit_comparison_p
11841 && (GET_CODE (XEXP (op0, 0)) == ABS
11842 || (mode_width <= HOST_BITS_PER_WIDE_INT
11843 && (nonzero_bits (XEXP (op0, 0), mode)
11844 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11845 == 0)))
11847 op0 = XEXP (op0, 0);
11848 code = (code == LT ? NE : EQ);
11849 continue;
11852 /* If we have NEG of something whose two high-order bits are the
11853 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11854 if (num_sign_bit_copies (op0, mode) >= 2)
11856 op0 = XEXP (op0, 0);
11857 code = swap_condition (code);
11858 continue;
11860 break;
11862 case ROTATE:
11863 /* If we are testing equality and our count is a constant, we
11864 can perform the inverse operation on our RHS. */
11865 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11866 && (tem = simplify_binary_operation (ROTATERT, mode,
11867 op1, XEXP (op0, 1))) != 0)
11869 op0 = XEXP (op0, 0);
11870 op1 = tem;
11871 continue;
11874 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11875 a particular bit. Convert it to an AND of a constant of that
11876 bit. This will be converted into a ZERO_EXTRACT. */
11877 if (const_op == 0 && sign_bit_comparison_p
11878 && CONST_INT_P (XEXP (op0, 1))
11879 && mode_width <= HOST_BITS_PER_WIDE_INT)
11881 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11882 (HOST_WIDE_INT_1U
11883 << (mode_width - 1
11884 - INTVAL (XEXP (op0, 1)))));
11885 code = (code == LT ? NE : EQ);
11886 continue;
11889 /* Fall through. */
11891 case ABS:
11892 /* ABS is ignorable inside an equality comparison with zero. */
11893 if (const_op == 0 && equality_comparison_p)
11895 op0 = XEXP (op0, 0);
11896 continue;
11898 break;
11900 case SIGN_EXTEND:
11901 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11902 (compare FOO CONST) if CONST fits in FOO's mode and we
11903 are either testing inequality or have an unsigned
11904 comparison with ZERO_EXTEND or a signed comparison with
11905 SIGN_EXTEND. But don't do it if we don't have a compare
11906 insn of the given mode, since we'd have to revert it
11907 later on, and then we wouldn't know whether to sign- or
11908 zero-extend. */
11909 mode = GET_MODE (XEXP (op0, 0));
11910 if (GET_MODE_CLASS (mode) == MODE_INT
11911 && ! unsigned_comparison_p
11912 && HWI_COMPUTABLE_MODE_P (mode)
11913 && trunc_int_for_mode (const_op, mode) == const_op
11914 && have_insn_for (COMPARE, mode))
11916 op0 = XEXP (op0, 0);
11917 continue;
11919 break;
11921 case SUBREG:
11922 /* Check for the case where we are comparing A - C1 with C2, that is
11924 (subreg:MODE (plus (A) (-C1))) op (C2)
11926 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11927 comparison in the wider mode. One of the following two conditions
11928 must be true in order for this to be valid:
11930 1. The mode extension results in the same bit pattern being added
11931 on both sides and the comparison is equality or unsigned. As
11932 C2 has been truncated to fit in MODE, the pattern can only be
11933 all 0s or all 1s.
11935 2. The mode extension results in the sign bit being copied on
11936 each side.
11938 The difficulty here is that we have predicates for A but not for
11939 (A - C1) so we need to check that C1 is within proper bounds so
11940 as to perturbate A as little as possible. */
11942 if (mode_width <= HOST_BITS_PER_WIDE_INT
11943 && subreg_lowpart_p (op0)
11944 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11945 && GET_CODE (SUBREG_REG (op0)) == PLUS
11946 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11948 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11949 rtx a = XEXP (SUBREG_REG (op0), 0);
11950 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11952 if ((c1 > 0
11953 && (unsigned HOST_WIDE_INT) c1
11954 < HOST_WIDE_INT_1U << (mode_width - 1)
11955 && (equality_comparison_p || unsigned_comparison_p)
11956 /* (A - C1) zero-extends if it is positive and sign-extends
11957 if it is negative, C2 both zero- and sign-extends. */
11958 && ((0 == (nonzero_bits (a, inner_mode)
11959 & ~GET_MODE_MASK (mode))
11960 && const_op >= 0)
11961 /* (A - C1) sign-extends if it is positive and 1-extends
11962 if it is negative, C2 both sign- and 1-extends. */
11963 || (num_sign_bit_copies (a, inner_mode)
11964 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11965 - mode_width)
11966 && const_op < 0)))
11967 || ((unsigned HOST_WIDE_INT) c1
11968 < HOST_WIDE_INT_1U << (mode_width - 2)
11969 /* (A - C1) always sign-extends, like C2. */
11970 && num_sign_bit_copies (a, inner_mode)
11971 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11972 - (mode_width - 1))))
11974 op0 = SUBREG_REG (op0);
11975 continue;
11979 /* If the inner mode is narrower and we are extracting the low part,
11980 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11981 if (subreg_lowpart_p (op0)
11982 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11984 else
11985 break;
11987 /* FALLTHROUGH */
11989 case ZERO_EXTEND:
11990 mode = GET_MODE (XEXP (op0, 0));
11991 if (GET_MODE_CLASS (mode) == MODE_INT
11992 && (unsigned_comparison_p || equality_comparison_p)
11993 && HWI_COMPUTABLE_MODE_P (mode)
11994 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11995 && const_op >= 0
11996 && have_insn_for (COMPARE, mode))
11998 op0 = XEXP (op0, 0);
11999 continue;
12001 break;
12003 case PLUS:
12004 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12005 this for equality comparisons due to pathological cases involving
12006 overflows. */
12007 if (equality_comparison_p
12008 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12009 op1, XEXP (op0, 1))))
12011 op0 = XEXP (op0, 0);
12012 op1 = tem;
12013 continue;
12016 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12017 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12018 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12020 op0 = XEXP (XEXP (op0, 0), 0);
12021 code = (code == LT ? EQ : NE);
12022 continue;
12024 break;
12026 case MINUS:
12027 /* We used to optimize signed comparisons against zero, but that
12028 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12029 arrive here as equality comparisons, or (GEU, LTU) are
12030 optimized away. No need to special-case them. */
12032 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12033 (eq B (minus A C)), whichever simplifies. We can only do
12034 this for equality comparisons due to pathological cases involving
12035 overflows. */
12036 if (equality_comparison_p
12037 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12038 XEXP (op0, 1), op1)))
12040 op0 = XEXP (op0, 0);
12041 op1 = tem;
12042 continue;
12045 if (equality_comparison_p
12046 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12047 XEXP (op0, 0), op1)))
12049 op0 = XEXP (op0, 1);
12050 op1 = tem;
12051 continue;
12054 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12055 of bits in X minus 1, is one iff X > 0. */
12056 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12057 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12058 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12059 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12061 op0 = XEXP (op0, 1);
12062 code = (code == GE ? LE : GT);
12063 continue;
12065 break;
12067 case XOR:
12068 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12069 if C is zero or B is a constant. */
12070 if (equality_comparison_p
12071 && 0 != (tem = simplify_binary_operation (XOR, mode,
12072 XEXP (op0, 1), op1)))
12074 op0 = XEXP (op0, 0);
12075 op1 = tem;
12076 continue;
12078 break;
12080 case EQ: case NE:
12081 case UNEQ: case LTGT:
12082 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12083 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12084 case UNORDERED: case ORDERED:
12085 /* We can't do anything if OP0 is a condition code value, rather
12086 than an actual data value. */
12087 if (const_op != 0
12088 || CC0_P (XEXP (op0, 0))
12089 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12090 break;
12092 /* Get the two operands being compared. */
12093 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12094 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12095 else
12096 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12098 /* Check for the cases where we simply want the result of the
12099 earlier test or the opposite of that result. */
12100 if (code == NE || code == EQ
12101 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12102 && (code == LT || code == GE)))
12104 enum rtx_code new_code;
12105 if (code == LT || code == NE)
12106 new_code = GET_CODE (op0);
12107 else
12108 new_code = reversed_comparison_code (op0, NULL);
12110 if (new_code != UNKNOWN)
12112 code = new_code;
12113 op0 = tem;
12114 op1 = tem1;
12115 continue;
12118 break;
12120 case IOR:
12121 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12122 iff X <= 0. */
12123 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12124 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12125 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12127 op0 = XEXP (op0, 1);
12128 code = (code == GE ? GT : LE);
12129 continue;
12131 break;
12133 case AND:
12134 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12135 will be converted to a ZERO_EXTRACT later. */
12136 if (const_op == 0 && equality_comparison_p
12137 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12138 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12140 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12141 XEXP (XEXP (op0, 0), 1));
12142 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12143 continue;
12146 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12147 zero and X is a comparison and C1 and C2 describe only bits set
12148 in STORE_FLAG_VALUE, we can compare with X. */
12149 if (const_op == 0 && equality_comparison_p
12150 && mode_width <= HOST_BITS_PER_WIDE_INT
12151 && CONST_INT_P (XEXP (op0, 1))
12152 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12153 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12154 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12155 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12157 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12158 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12159 if ((~STORE_FLAG_VALUE & mask) == 0
12160 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12161 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12162 && COMPARISON_P (tem))))
12164 op0 = XEXP (XEXP (op0, 0), 0);
12165 continue;
12169 /* If we are doing an equality comparison of an AND of a bit equal
12170 to the sign bit, replace this with a LT or GE comparison of
12171 the underlying value. */
12172 if (equality_comparison_p
12173 && const_op == 0
12174 && CONST_INT_P (XEXP (op0, 1))
12175 && mode_width <= HOST_BITS_PER_WIDE_INT
12176 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12177 == HOST_WIDE_INT_1U << (mode_width - 1)))
12179 op0 = XEXP (op0, 0);
12180 code = (code == EQ ? GE : LT);
12181 continue;
12184 /* If this AND operation is really a ZERO_EXTEND from a narrower
12185 mode, the constant fits within that mode, and this is either an
12186 equality or unsigned comparison, try to do this comparison in
12187 the narrower mode.
12189 Note that in:
12191 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12192 -> (ne:DI (reg:SI 4) (const_int 0))
12194 unless TRULY_NOOP_TRUNCATION allows it or the register is
12195 known to hold a value of the required mode the
12196 transformation is invalid. */
12197 if ((equality_comparison_p || unsigned_comparison_p)
12198 && CONST_INT_P (XEXP (op0, 1))
12199 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12200 & GET_MODE_MASK (mode))
12201 + 1)) >= 0
12202 && const_op >> i == 0
12203 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12205 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12206 continue;
12209 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12210 fits in both M1 and M2 and the SUBREG is either paradoxical
12211 or represents the low part, permute the SUBREG and the AND
12212 and try again. */
12213 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12214 && CONST_INT_P (XEXP (op0, 1)))
12216 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12217 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12218 /* Require an integral mode, to avoid creating something like
12219 (AND:SF ...). */
12220 if (SCALAR_INT_MODE_P (tmode)
12221 /* It is unsafe to commute the AND into the SUBREG if the
12222 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12223 not defined. As originally written the upper bits
12224 have a defined value due to the AND operation.
12225 However, if we commute the AND inside the SUBREG then
12226 they no longer have defined values and the meaning of
12227 the code has been changed.
12228 Also C1 should not change value in the smaller mode,
12229 see PR67028 (a positive C1 can become negative in the
12230 smaller mode, so that the AND does no longer mask the
12231 upper bits). */
12232 && ((WORD_REGISTER_OPERATIONS
12233 && mode_width > GET_MODE_PRECISION (tmode)
12234 && mode_width <= BITS_PER_WORD
12235 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12236 || (mode_width <= GET_MODE_PRECISION (tmode)
12237 && subreg_lowpart_p (XEXP (op0, 0))))
12238 && mode_width <= HOST_BITS_PER_WIDE_INT
12239 && HWI_COMPUTABLE_MODE_P (tmode)
12240 && (c1 & ~mask) == 0
12241 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12242 && c1 != mask
12243 && c1 != GET_MODE_MASK (tmode))
12245 op0 = simplify_gen_binary (AND, tmode,
12246 SUBREG_REG (XEXP (op0, 0)),
12247 gen_int_mode (c1, tmode));
12248 op0 = gen_lowpart (mode, op0);
12249 continue;
12253 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12254 if (const_op == 0 && equality_comparison_p
12255 && XEXP (op0, 1) == const1_rtx
12256 && GET_CODE (XEXP (op0, 0)) == NOT)
12258 op0 = simplify_and_const_int (NULL_RTX, mode,
12259 XEXP (XEXP (op0, 0), 0), 1);
12260 code = (code == NE ? EQ : NE);
12261 continue;
12264 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12265 (eq (and (lshiftrt X) 1) 0).
12266 Also handle the case where (not X) is expressed using xor. */
12267 if (const_op == 0 && equality_comparison_p
12268 && XEXP (op0, 1) == const1_rtx
12269 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12271 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12272 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12274 if (GET_CODE (shift_op) == NOT
12275 || (GET_CODE (shift_op) == XOR
12276 && CONST_INT_P (XEXP (shift_op, 1))
12277 && CONST_INT_P (shift_count)
12278 && HWI_COMPUTABLE_MODE_P (mode)
12279 && (UINTVAL (XEXP (shift_op, 1))
12280 == HOST_WIDE_INT_1U
12281 << INTVAL (shift_count))))
12284 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12285 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12286 code = (code == NE ? EQ : NE);
12287 continue;
12290 break;
12292 case ASHIFT:
12293 /* If we have (compare (ashift FOO N) (const_int C)) and
12294 the high order N bits of FOO (N+1 if an inequality comparison)
12295 are known to be zero, we can do this by comparing FOO with C
12296 shifted right N bits so long as the low-order N bits of C are
12297 zero. */
12298 if (CONST_INT_P (XEXP (op0, 1))
12299 && INTVAL (XEXP (op0, 1)) >= 0
12300 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12301 < HOST_BITS_PER_WIDE_INT)
12302 && (((unsigned HOST_WIDE_INT) const_op
12303 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12304 - 1)) == 0)
12305 && mode_width <= HOST_BITS_PER_WIDE_INT
12306 && (nonzero_bits (XEXP (op0, 0), mode)
12307 & ~(mask >> (INTVAL (XEXP (op0, 1))
12308 + ! equality_comparison_p))) == 0)
12310 /* We must perform a logical shift, not an arithmetic one,
12311 as we want the top N bits of C to be zero. */
12312 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12314 temp >>= INTVAL (XEXP (op0, 1));
12315 op1 = gen_int_mode (temp, mode);
12316 op0 = XEXP (op0, 0);
12317 continue;
12320 /* If we are doing a sign bit comparison, it means we are testing
12321 a particular bit. Convert it to the appropriate AND. */
12322 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12323 && mode_width <= HOST_BITS_PER_WIDE_INT)
12325 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12326 (HOST_WIDE_INT_1U
12327 << (mode_width - 1
12328 - INTVAL (XEXP (op0, 1)))));
12329 code = (code == LT ? NE : EQ);
12330 continue;
12333 /* If this an equality comparison with zero and we are shifting
12334 the low bit to the sign bit, we can convert this to an AND of the
12335 low-order bit. */
12336 if (const_op == 0 && equality_comparison_p
12337 && CONST_INT_P (XEXP (op0, 1))
12338 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12340 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12341 continue;
12343 break;
12345 case ASHIFTRT:
12346 /* If this is an equality comparison with zero, we can do this
12347 as a logical shift, which might be much simpler. */
12348 if (equality_comparison_p && const_op == 0
12349 && CONST_INT_P (XEXP (op0, 1)))
12351 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12352 XEXP (op0, 0),
12353 INTVAL (XEXP (op0, 1)));
12354 continue;
12357 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12358 do the comparison in a narrower mode. */
12359 if (! unsigned_comparison_p
12360 && CONST_INT_P (XEXP (op0, 1))
12361 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12362 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12363 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12364 MODE_INT, 1)) != BLKmode
12365 && (((unsigned HOST_WIDE_INT) const_op
12366 + (GET_MODE_MASK (tmode) >> 1) + 1)
12367 <= GET_MODE_MASK (tmode)))
12369 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12370 continue;
12373 /* Likewise if OP0 is a PLUS of a sign extension with a
12374 constant, which is usually represented with the PLUS
12375 between the shifts. */
12376 if (! unsigned_comparison_p
12377 && CONST_INT_P (XEXP (op0, 1))
12378 && GET_CODE (XEXP (op0, 0)) == PLUS
12379 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12380 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12381 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12382 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12383 MODE_INT, 1)) != BLKmode
12384 && (((unsigned HOST_WIDE_INT) const_op
12385 + (GET_MODE_MASK (tmode) >> 1) + 1)
12386 <= GET_MODE_MASK (tmode)))
12388 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12389 rtx add_const = XEXP (XEXP (op0, 0), 1);
12390 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12391 add_const, XEXP (op0, 1));
12393 op0 = simplify_gen_binary (PLUS, tmode,
12394 gen_lowpart (tmode, inner),
12395 new_const);
12396 continue;
12399 /* FALLTHROUGH */
12400 case LSHIFTRT:
12401 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12402 the low order N bits of FOO are known to be zero, we can do this
12403 by comparing FOO with C shifted left N bits so long as no
12404 overflow occurs. Even if the low order N bits of FOO aren't known
12405 to be zero, if the comparison is >= or < we can use the same
12406 optimization and for > or <= by setting all the low
12407 order N bits in the comparison constant. */
12408 if (CONST_INT_P (XEXP (op0, 1))
12409 && INTVAL (XEXP (op0, 1)) > 0
12410 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12411 && mode_width <= HOST_BITS_PER_WIDE_INT
12412 && (((unsigned HOST_WIDE_INT) const_op
12413 + (GET_CODE (op0) != LSHIFTRT
12414 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12415 + 1)
12416 : 0))
12417 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12419 unsigned HOST_WIDE_INT low_bits
12420 = (nonzero_bits (XEXP (op0, 0), mode)
12421 & ((HOST_WIDE_INT_1U
12422 << INTVAL (XEXP (op0, 1))) - 1));
12423 if (low_bits == 0 || !equality_comparison_p)
12425 /* If the shift was logical, then we must make the condition
12426 unsigned. */
12427 if (GET_CODE (op0) == LSHIFTRT)
12428 code = unsigned_condition (code);
12430 const_op <<= INTVAL (XEXP (op0, 1));
12431 if (low_bits != 0
12432 && (code == GT || code == GTU
12433 || code == LE || code == LEU))
12434 const_op
12435 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12436 op1 = GEN_INT (const_op);
12437 op0 = XEXP (op0, 0);
12438 continue;
12442 /* If we are using this shift to extract just the sign bit, we
12443 can replace this with an LT or GE comparison. */
12444 if (const_op == 0
12445 && (equality_comparison_p || sign_bit_comparison_p)
12446 && CONST_INT_P (XEXP (op0, 1))
12447 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12449 op0 = XEXP (op0, 0);
12450 code = (code == NE || code == GT ? LT : GE);
12451 continue;
12453 break;
12455 default:
12456 break;
12459 break;
12462 /* Now make any compound operations involved in this comparison. Then,
12463 check for an outmost SUBREG on OP0 that is not doing anything or is
12464 paradoxical. The latter transformation must only be performed when
12465 it is known that the "extra" bits will be the same in op0 and op1 or
12466 that they don't matter. There are three cases to consider:
12468 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12469 care bits and we can assume they have any convenient value. So
12470 making the transformation is safe.
12472 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12473 In this case the upper bits of op0 are undefined. We should not make
12474 the simplification in that case as we do not know the contents of
12475 those bits.
12477 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12478 In that case we know those bits are zeros or ones. We must also be
12479 sure that they are the same as the upper bits of op1.
12481 We can never remove a SUBREG for a non-equality comparison because
12482 the sign bit is in a different place in the underlying object. */
12484 rtx_code op0_mco_code = SET;
12485 if (op1 == const0_rtx)
12486 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12488 op0 = make_compound_operation (op0, op0_mco_code);
12489 op1 = make_compound_operation (op1, SET);
12491 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12492 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12493 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12494 && (code == NE || code == EQ))
12496 if (paradoxical_subreg_p (op0))
12498 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12499 implemented. */
12500 if (REG_P (SUBREG_REG (op0)))
12502 op0 = SUBREG_REG (op0);
12503 op1 = gen_lowpart (GET_MODE (op0), op1);
12506 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12507 <= HOST_BITS_PER_WIDE_INT)
12508 && (nonzero_bits (SUBREG_REG (op0),
12509 GET_MODE (SUBREG_REG (op0)))
12510 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12512 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12514 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12515 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12516 op0 = SUBREG_REG (op0), op1 = tem;
12520 /* We now do the opposite procedure: Some machines don't have compare
12521 insns in all modes. If OP0's mode is an integer mode smaller than a
12522 word and we can't do a compare in that mode, see if there is a larger
12523 mode for which we can do the compare. There are a number of cases in
12524 which we can use the wider mode. */
12526 mode = GET_MODE (op0);
12527 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12528 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12529 && ! have_insn_for (COMPARE, mode))
12530 for (tmode = GET_MODE_WIDER_MODE (mode);
12531 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12532 tmode = GET_MODE_WIDER_MODE (tmode))
12533 if (have_insn_for (COMPARE, tmode))
12535 int zero_extended;
12537 /* If this is a test for negative, we can make an explicit
12538 test of the sign bit. Test this first so we can use
12539 a paradoxical subreg to extend OP0. */
12541 if (op1 == const0_rtx && (code == LT || code == GE)
12542 && HWI_COMPUTABLE_MODE_P (mode))
12544 unsigned HOST_WIDE_INT sign
12545 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12546 op0 = simplify_gen_binary (AND, tmode,
12547 gen_lowpart (tmode, op0),
12548 gen_int_mode (sign, tmode));
12549 code = (code == LT) ? NE : EQ;
12550 break;
12553 /* If the only nonzero bits in OP0 and OP1 are those in the
12554 narrower mode and this is an equality or unsigned comparison,
12555 we can use the wider mode. Similarly for sign-extended
12556 values, in which case it is true for all comparisons. */
12557 zero_extended = ((code == EQ || code == NE
12558 || code == GEU || code == GTU
12559 || code == LEU || code == LTU)
12560 && (nonzero_bits (op0, tmode)
12561 & ~GET_MODE_MASK (mode)) == 0
12562 && ((CONST_INT_P (op1)
12563 || (nonzero_bits (op1, tmode)
12564 & ~GET_MODE_MASK (mode)) == 0)));
12566 if (zero_extended
12567 || ((num_sign_bit_copies (op0, tmode)
12568 > (unsigned int) (GET_MODE_PRECISION (tmode)
12569 - GET_MODE_PRECISION (mode)))
12570 && (num_sign_bit_copies (op1, tmode)
12571 > (unsigned int) (GET_MODE_PRECISION (tmode)
12572 - GET_MODE_PRECISION (mode)))))
12574 /* If OP0 is an AND and we don't have an AND in MODE either,
12575 make a new AND in the proper mode. */
12576 if (GET_CODE (op0) == AND
12577 && !have_insn_for (AND, mode))
12578 op0 = simplify_gen_binary (AND, tmode,
12579 gen_lowpart (tmode,
12580 XEXP (op0, 0)),
12581 gen_lowpart (tmode,
12582 XEXP (op0, 1)));
12583 else
12585 if (zero_extended)
12587 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12588 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12590 else
12592 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12593 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12595 break;
12600 /* We may have changed the comparison operands. Re-canonicalize. */
12601 if (swap_commutative_operands_p (op0, op1))
12603 std::swap (op0, op1);
12604 code = swap_condition (code);
12607 /* If this machine only supports a subset of valid comparisons, see if we
12608 can convert an unsupported one into a supported one. */
12609 target_canonicalize_comparison (&code, &op0, &op1, 0);
12611 *pop0 = op0;
12612 *pop1 = op1;
12614 return code;
12617 /* Utility function for record_value_for_reg. Count number of
12618 rtxs in X. */
12619 static int
12620 count_rtxs (rtx x)
12622 enum rtx_code code = GET_CODE (x);
12623 const char *fmt;
12624 int i, j, ret = 1;
12626 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12627 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12629 rtx x0 = XEXP (x, 0);
12630 rtx x1 = XEXP (x, 1);
12632 if (x0 == x1)
12633 return 1 + 2 * count_rtxs (x0);
12635 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12636 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12637 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12638 return 2 + 2 * count_rtxs (x0)
12639 + count_rtxs (x == XEXP (x1, 0)
12640 ? XEXP (x1, 1) : XEXP (x1, 0));
12642 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12643 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12644 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12645 return 2 + 2 * count_rtxs (x1)
12646 + count_rtxs (x == XEXP (x0, 0)
12647 ? XEXP (x0, 1) : XEXP (x0, 0));
12650 fmt = GET_RTX_FORMAT (code);
12651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12652 if (fmt[i] == 'e')
12653 ret += count_rtxs (XEXP (x, i));
12654 else if (fmt[i] == 'E')
12655 for (j = 0; j < XVECLEN (x, i); j++)
12656 ret += count_rtxs (XVECEXP (x, i, j));
12658 return ret;
12661 /* Utility function for following routine. Called when X is part of a value
12662 being stored into last_set_value. Sets last_set_table_tick
12663 for each register mentioned. Similar to mention_regs in cse.c */
12665 static void
12666 update_table_tick (rtx x)
12668 enum rtx_code code = GET_CODE (x);
12669 const char *fmt = GET_RTX_FORMAT (code);
12670 int i, j;
12672 if (code == REG)
12674 unsigned int regno = REGNO (x);
12675 unsigned int endregno = END_REGNO (x);
12676 unsigned int r;
12678 for (r = regno; r < endregno; r++)
12680 reg_stat_type *rsp = &reg_stat[r];
12681 rsp->last_set_table_tick = label_tick;
12684 return;
12687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12688 if (fmt[i] == 'e')
12690 /* Check for identical subexpressions. If x contains
12691 identical subexpression we only have to traverse one of
12692 them. */
12693 if (i == 0 && ARITHMETIC_P (x))
12695 /* Note that at this point x1 has already been
12696 processed. */
12697 rtx x0 = XEXP (x, 0);
12698 rtx x1 = XEXP (x, 1);
12700 /* If x0 and x1 are identical then there is no need to
12701 process x0. */
12702 if (x0 == x1)
12703 break;
12705 /* If x0 is identical to a subexpression of x1 then while
12706 processing x1, x0 has already been processed. Thus we
12707 are done with x. */
12708 if (ARITHMETIC_P (x1)
12709 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12710 break;
12712 /* If x1 is identical to a subexpression of x0 then we
12713 still have to process the rest of x0. */
12714 if (ARITHMETIC_P (x0)
12715 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12717 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12718 break;
12722 update_table_tick (XEXP (x, i));
12724 else if (fmt[i] == 'E')
12725 for (j = 0; j < XVECLEN (x, i); j++)
12726 update_table_tick (XVECEXP (x, i, j));
12729 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12730 are saying that the register is clobbered and we no longer know its
12731 value. If INSN is zero, don't update reg_stat[].last_set; this is
12732 only permitted with VALUE also zero and is used to invalidate the
12733 register. */
12735 static void
12736 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12738 unsigned int regno = REGNO (reg);
12739 unsigned int endregno = END_REGNO (reg);
12740 unsigned int i;
12741 reg_stat_type *rsp;
12743 /* If VALUE contains REG and we have a previous value for REG, substitute
12744 the previous value. */
12745 if (value && insn && reg_overlap_mentioned_p (reg, value))
12747 rtx tem;
12749 /* Set things up so get_last_value is allowed to see anything set up to
12750 our insn. */
12751 subst_low_luid = DF_INSN_LUID (insn);
12752 tem = get_last_value (reg);
12754 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12755 it isn't going to be useful and will take a lot of time to process,
12756 so just use the CLOBBER. */
12758 if (tem)
12760 if (ARITHMETIC_P (tem)
12761 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12762 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12763 tem = XEXP (tem, 0);
12764 else if (count_occurrences (value, reg, 1) >= 2)
12766 /* If there are two or more occurrences of REG in VALUE,
12767 prevent the value from growing too much. */
12768 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12769 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12772 value = replace_rtx (copy_rtx (value), reg, tem);
12776 /* For each register modified, show we don't know its value, that
12777 we don't know about its bitwise content, that its value has been
12778 updated, and that we don't know the location of the death of the
12779 register. */
12780 for (i = regno; i < endregno; i++)
12782 rsp = &reg_stat[i];
12784 if (insn)
12785 rsp->last_set = insn;
12787 rsp->last_set_value = 0;
12788 rsp->last_set_mode = VOIDmode;
12789 rsp->last_set_nonzero_bits = 0;
12790 rsp->last_set_sign_bit_copies = 0;
12791 rsp->last_death = 0;
12792 rsp->truncated_to_mode = VOIDmode;
12795 /* Mark registers that are being referenced in this value. */
12796 if (value)
12797 update_table_tick (value);
12799 /* Now update the status of each register being set.
12800 If someone is using this register in this block, set this register
12801 to invalid since we will get confused between the two lives in this
12802 basic block. This makes using this register always invalid. In cse, we
12803 scan the table to invalidate all entries using this register, but this
12804 is too much work for us. */
12806 for (i = regno; i < endregno; i++)
12808 rsp = &reg_stat[i];
12809 rsp->last_set_label = label_tick;
12810 if (!insn
12811 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12812 rsp->last_set_invalid = 1;
12813 else
12814 rsp->last_set_invalid = 0;
12817 /* The value being assigned might refer to X (like in "x++;"). In that
12818 case, we must replace it with (clobber (const_int 0)) to prevent
12819 infinite loops. */
12820 rsp = &reg_stat[regno];
12821 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12823 value = copy_rtx (value);
12824 if (!get_last_value_validate (&value, insn, label_tick, 1))
12825 value = 0;
12828 /* For the main register being modified, update the value, the mode, the
12829 nonzero bits, and the number of sign bit copies. */
12831 rsp->last_set_value = value;
12833 if (value)
12835 machine_mode mode = GET_MODE (reg);
12836 subst_low_luid = DF_INSN_LUID (insn);
12837 rsp->last_set_mode = mode;
12838 if (GET_MODE_CLASS (mode) == MODE_INT
12839 && HWI_COMPUTABLE_MODE_P (mode))
12840 mode = nonzero_bits_mode;
12841 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12842 rsp->last_set_sign_bit_copies
12843 = num_sign_bit_copies (value, GET_MODE (reg));
12847 /* Called via note_stores from record_dead_and_set_regs to handle one
12848 SET or CLOBBER in an insn. DATA is the instruction in which the
12849 set is occurring. */
12851 static void
12852 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12854 rtx_insn *record_dead_insn = (rtx_insn *) data;
12856 if (GET_CODE (dest) == SUBREG)
12857 dest = SUBREG_REG (dest);
12859 if (!record_dead_insn)
12861 if (REG_P (dest))
12862 record_value_for_reg (dest, NULL, NULL_RTX);
12863 return;
12866 if (REG_P (dest))
12868 /* If we are setting the whole register, we know its value. Otherwise
12869 show that we don't know the value. We can handle SUBREG in
12870 some cases. */
12871 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12872 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12873 else if (GET_CODE (setter) == SET
12874 && GET_CODE (SET_DEST (setter)) == SUBREG
12875 && SUBREG_REG (SET_DEST (setter)) == dest
12876 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12877 && subreg_lowpart_p (SET_DEST (setter)))
12878 record_value_for_reg (dest, record_dead_insn,
12879 gen_lowpart (GET_MODE (dest),
12880 SET_SRC (setter)));
12881 else
12882 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12884 else if (MEM_P (dest)
12885 /* Ignore pushes, they clobber nothing. */
12886 && ! push_operand (dest, GET_MODE (dest)))
12887 mem_last_set = DF_INSN_LUID (record_dead_insn);
12890 /* Update the records of when each REG was most recently set or killed
12891 for the things done by INSN. This is the last thing done in processing
12892 INSN in the combiner loop.
12894 We update reg_stat[], in particular fields last_set, last_set_value,
12895 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12896 last_death, and also the similar information mem_last_set (which insn
12897 most recently modified memory) and last_call_luid (which insn was the
12898 most recent subroutine call). */
12900 static void
12901 record_dead_and_set_regs (rtx_insn *insn)
12903 rtx link;
12904 unsigned int i;
12906 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12908 if (REG_NOTE_KIND (link) == REG_DEAD
12909 && REG_P (XEXP (link, 0)))
12911 unsigned int regno = REGNO (XEXP (link, 0));
12912 unsigned int endregno = END_REGNO (XEXP (link, 0));
12914 for (i = regno; i < endregno; i++)
12916 reg_stat_type *rsp;
12918 rsp = &reg_stat[i];
12919 rsp->last_death = insn;
12922 else if (REG_NOTE_KIND (link) == REG_INC)
12923 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12926 if (CALL_P (insn))
12928 hard_reg_set_iterator hrsi;
12929 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12931 reg_stat_type *rsp;
12933 rsp = &reg_stat[i];
12934 rsp->last_set_invalid = 1;
12935 rsp->last_set = insn;
12936 rsp->last_set_value = 0;
12937 rsp->last_set_mode = VOIDmode;
12938 rsp->last_set_nonzero_bits = 0;
12939 rsp->last_set_sign_bit_copies = 0;
12940 rsp->last_death = 0;
12941 rsp->truncated_to_mode = VOIDmode;
12944 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12946 /* We can't combine into a call pattern. Remember, though, that
12947 the return value register is set at this LUID. We could
12948 still replace a register with the return value from the
12949 wrong subroutine call! */
12950 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12952 else
12953 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12956 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12957 register present in the SUBREG, so for each such SUBREG go back and
12958 adjust nonzero and sign bit information of the registers that are
12959 known to have some zero/sign bits set.
12961 This is needed because when combine blows the SUBREGs away, the
12962 information on zero/sign bits is lost and further combines can be
12963 missed because of that. */
12965 static void
12966 record_promoted_value (rtx_insn *insn, rtx subreg)
12968 struct insn_link *links;
12969 rtx set;
12970 unsigned int regno = REGNO (SUBREG_REG (subreg));
12971 machine_mode mode = GET_MODE (subreg);
12973 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12974 return;
12976 for (links = LOG_LINKS (insn); links;)
12978 reg_stat_type *rsp;
12980 insn = links->insn;
12981 set = single_set (insn);
12983 if (! set || !REG_P (SET_DEST (set))
12984 || REGNO (SET_DEST (set)) != regno
12985 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12987 links = links->next;
12988 continue;
12991 rsp = &reg_stat[regno];
12992 if (rsp->last_set == insn)
12994 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12995 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12998 if (REG_P (SET_SRC (set)))
13000 regno = REGNO (SET_SRC (set));
13001 links = LOG_LINKS (insn);
13003 else
13004 break;
13008 /* Check if X, a register, is known to contain a value already
13009 truncated to MODE. In this case we can use a subreg to refer to
13010 the truncated value even though in the generic case we would need
13011 an explicit truncation. */
13013 static bool
13014 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13016 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13017 machine_mode truncated = rsp->truncated_to_mode;
13019 if (truncated == 0
13020 || rsp->truncation_label < label_tick_ebb_start)
13021 return false;
13022 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13023 return true;
13024 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13025 return true;
13026 return false;
13029 /* If X is a hard reg or a subreg record the mode that the register is
13030 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13031 to turn a truncate into a subreg using this information. Return true
13032 if traversing X is complete. */
13034 static bool
13035 record_truncated_value (rtx x)
13037 machine_mode truncated_mode;
13038 reg_stat_type *rsp;
13040 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13042 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13043 truncated_mode = GET_MODE (x);
13045 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13046 return true;
13048 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13049 return true;
13051 x = SUBREG_REG (x);
13053 /* ??? For hard-regs we now record everything. We might be able to
13054 optimize this using last_set_mode. */
13055 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13056 truncated_mode = GET_MODE (x);
13057 else
13058 return false;
13060 rsp = &reg_stat[REGNO (x)];
13061 if (rsp->truncated_to_mode == 0
13062 || rsp->truncation_label < label_tick_ebb_start
13063 || (GET_MODE_SIZE (truncated_mode)
13064 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13066 rsp->truncated_to_mode = truncated_mode;
13067 rsp->truncation_label = label_tick;
13070 return true;
13073 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13074 the modes they are used in. This can help truning TRUNCATEs into
13075 SUBREGs. */
13077 static void
13078 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13080 subrtx_var_iterator::array_type array;
13081 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13082 if (record_truncated_value (*iter))
13083 iter.skip_subrtxes ();
13086 /* Scan X for promoted SUBREGs. For each one found,
13087 note what it implies to the registers used in it. */
13089 static void
13090 check_promoted_subreg (rtx_insn *insn, rtx x)
13092 if (GET_CODE (x) == SUBREG
13093 && SUBREG_PROMOTED_VAR_P (x)
13094 && REG_P (SUBREG_REG (x)))
13095 record_promoted_value (insn, x);
13096 else
13098 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13099 int i, j;
13101 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13102 switch (format[i])
13104 case 'e':
13105 check_promoted_subreg (insn, XEXP (x, i));
13106 break;
13107 case 'V':
13108 case 'E':
13109 if (XVEC (x, i) != 0)
13110 for (j = 0; j < XVECLEN (x, i); j++)
13111 check_promoted_subreg (insn, XVECEXP (x, i, j));
13112 break;
13117 /* Verify that all the registers and memory references mentioned in *LOC are
13118 still valid. *LOC was part of a value set in INSN when label_tick was
13119 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13120 the invalid references with (clobber (const_int 0)) and return 1. This
13121 replacement is useful because we often can get useful information about
13122 the form of a value (e.g., if it was produced by a shift that always
13123 produces -1 or 0) even though we don't know exactly what registers it
13124 was produced from. */
13126 static int
13127 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13129 rtx x = *loc;
13130 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13131 int len = GET_RTX_LENGTH (GET_CODE (x));
13132 int i, j;
13134 if (REG_P (x))
13136 unsigned int regno = REGNO (x);
13137 unsigned int endregno = END_REGNO (x);
13138 unsigned int j;
13140 for (j = regno; j < endregno; j++)
13142 reg_stat_type *rsp = &reg_stat[j];
13143 if (rsp->last_set_invalid
13144 /* If this is a pseudo-register that was only set once and not
13145 live at the beginning of the function, it is always valid. */
13146 || (! (regno >= FIRST_PSEUDO_REGISTER
13147 && regno < reg_n_sets_max
13148 && REG_N_SETS (regno) == 1
13149 && (!REGNO_REG_SET_P
13150 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13151 regno)))
13152 && rsp->last_set_label > tick))
13154 if (replace)
13155 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13156 return replace;
13160 return 1;
13162 /* If this is a memory reference, make sure that there were no stores after
13163 it that might have clobbered the value. We don't have alias info, so we
13164 assume any store invalidates it. Moreover, we only have local UIDs, so
13165 we also assume that there were stores in the intervening basic blocks. */
13166 else if (MEM_P (x) && !MEM_READONLY_P (x)
13167 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13169 if (replace)
13170 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13171 return replace;
13174 for (i = 0; i < len; i++)
13176 if (fmt[i] == 'e')
13178 /* Check for identical subexpressions. If x contains
13179 identical subexpression we only have to traverse one of
13180 them. */
13181 if (i == 1 && ARITHMETIC_P (x))
13183 /* Note that at this point x0 has already been checked
13184 and found valid. */
13185 rtx x0 = XEXP (x, 0);
13186 rtx x1 = XEXP (x, 1);
13188 /* If x0 and x1 are identical then x is also valid. */
13189 if (x0 == x1)
13190 return 1;
13192 /* If x1 is identical to a subexpression of x0 then
13193 while checking x0, x1 has already been checked. Thus
13194 it is valid and so as x. */
13195 if (ARITHMETIC_P (x0)
13196 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13197 return 1;
13199 /* If x0 is identical to a subexpression of x1 then x is
13200 valid iff the rest of x1 is valid. */
13201 if (ARITHMETIC_P (x1)
13202 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13203 return
13204 get_last_value_validate (&XEXP (x1,
13205 x0 == XEXP (x1, 0) ? 1 : 0),
13206 insn, tick, replace);
13209 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13210 replace) == 0)
13211 return 0;
13213 else if (fmt[i] == 'E')
13214 for (j = 0; j < XVECLEN (x, i); j++)
13215 if (get_last_value_validate (&XVECEXP (x, i, j),
13216 insn, tick, replace) == 0)
13217 return 0;
13220 /* If we haven't found a reason for it to be invalid, it is valid. */
13221 return 1;
13224 /* Get the last value assigned to X, if known. Some registers
13225 in the value may be replaced with (clobber (const_int 0)) if their value
13226 is known longer known reliably. */
13228 static rtx
13229 get_last_value (const_rtx x)
13231 unsigned int regno;
13232 rtx value;
13233 reg_stat_type *rsp;
13235 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13236 then convert it to the desired mode. If this is a paradoxical SUBREG,
13237 we cannot predict what values the "extra" bits might have. */
13238 if (GET_CODE (x) == SUBREG
13239 && subreg_lowpart_p (x)
13240 && !paradoxical_subreg_p (x)
13241 && (value = get_last_value (SUBREG_REG (x))) != 0)
13242 return gen_lowpart (GET_MODE (x), value);
13244 if (!REG_P (x))
13245 return 0;
13247 regno = REGNO (x);
13248 rsp = &reg_stat[regno];
13249 value = rsp->last_set_value;
13251 /* If we don't have a value, or if it isn't for this basic block and
13252 it's either a hard register, set more than once, or it's a live
13253 at the beginning of the function, return 0.
13255 Because if it's not live at the beginning of the function then the reg
13256 is always set before being used (is never used without being set).
13257 And, if it's set only once, and it's always set before use, then all
13258 uses must have the same last value, even if it's not from this basic
13259 block. */
13261 if (value == 0
13262 || (rsp->last_set_label < label_tick_ebb_start
13263 && (regno < FIRST_PSEUDO_REGISTER
13264 || regno >= reg_n_sets_max
13265 || REG_N_SETS (regno) != 1
13266 || REGNO_REG_SET_P
13267 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13268 return 0;
13270 /* If the value was set in a later insn than the ones we are processing,
13271 we can't use it even if the register was only set once. */
13272 if (rsp->last_set_label == label_tick
13273 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13274 return 0;
13276 /* If fewer bits were set than what we are asked for now, we cannot use
13277 the value. */
13278 if (GET_MODE_PRECISION (rsp->last_set_mode)
13279 < GET_MODE_PRECISION (GET_MODE (x)))
13280 return 0;
13282 /* If the value has all its registers valid, return it. */
13283 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13284 return value;
13286 /* Otherwise, make a copy and replace any invalid register with
13287 (clobber (const_int 0)). If that fails for some reason, return 0. */
13289 value = copy_rtx (value);
13290 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13291 return value;
13293 return 0;
13296 /* Return nonzero if expression X refers to a REG or to memory
13297 that is set in an instruction more recent than FROM_LUID. */
13299 static int
13300 use_crosses_set_p (const_rtx x, int from_luid)
13302 const char *fmt;
13303 int i;
13304 enum rtx_code code = GET_CODE (x);
13306 if (code == REG)
13308 unsigned int regno = REGNO (x);
13309 unsigned endreg = END_REGNO (x);
13311 #ifdef PUSH_ROUNDING
13312 /* Don't allow uses of the stack pointer to be moved,
13313 because we don't know whether the move crosses a push insn. */
13314 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13315 return 1;
13316 #endif
13317 for (; regno < endreg; regno++)
13319 reg_stat_type *rsp = &reg_stat[regno];
13320 if (rsp->last_set
13321 && rsp->last_set_label == label_tick
13322 && DF_INSN_LUID (rsp->last_set) > from_luid)
13323 return 1;
13325 return 0;
13328 if (code == MEM && mem_last_set > from_luid)
13329 return 1;
13331 fmt = GET_RTX_FORMAT (code);
13333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13335 if (fmt[i] == 'E')
13337 int j;
13338 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13339 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13340 return 1;
13342 else if (fmt[i] == 'e'
13343 && use_crosses_set_p (XEXP (x, i), from_luid))
13344 return 1;
13346 return 0;
13349 /* Define three variables used for communication between the following
13350 routines. */
13352 static unsigned int reg_dead_regno, reg_dead_endregno;
13353 static int reg_dead_flag;
13355 /* Function called via note_stores from reg_dead_at_p.
13357 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13358 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13360 static void
13361 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13363 unsigned int regno, endregno;
13365 if (!REG_P (dest))
13366 return;
13368 regno = REGNO (dest);
13369 endregno = END_REGNO (dest);
13370 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13371 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13374 /* Return nonzero if REG is known to be dead at INSN.
13376 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13377 referencing REG, it is dead. If we hit a SET referencing REG, it is
13378 live. Otherwise, see if it is live or dead at the start of the basic
13379 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13380 must be assumed to be always live. */
13382 static int
13383 reg_dead_at_p (rtx reg, rtx_insn *insn)
13385 basic_block block;
13386 unsigned int i;
13388 /* Set variables for reg_dead_at_p_1. */
13389 reg_dead_regno = REGNO (reg);
13390 reg_dead_endregno = END_REGNO (reg);
13392 reg_dead_flag = 0;
13394 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13395 we allow the machine description to decide whether use-and-clobber
13396 patterns are OK. */
13397 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13399 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13400 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13401 return 0;
13404 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13405 beginning of basic block. */
13406 block = BLOCK_FOR_INSN (insn);
13407 for (;;)
13409 if (INSN_P (insn))
13411 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13412 return 1;
13414 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13415 if (reg_dead_flag)
13416 return reg_dead_flag == 1 ? 1 : 0;
13418 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13419 return 1;
13422 if (insn == BB_HEAD (block))
13423 break;
13425 insn = PREV_INSN (insn);
13428 /* Look at live-in sets for the basic block that we were in. */
13429 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13430 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13431 return 0;
13433 return 1;
13436 /* Note hard registers in X that are used. */
13438 static void
13439 mark_used_regs_combine (rtx x)
13441 RTX_CODE code = GET_CODE (x);
13442 unsigned int regno;
13443 int i;
13445 switch (code)
13447 case LABEL_REF:
13448 case SYMBOL_REF:
13449 case CONST:
13450 CASE_CONST_ANY:
13451 case PC:
13452 case ADDR_VEC:
13453 case ADDR_DIFF_VEC:
13454 case ASM_INPUT:
13455 /* CC0 must die in the insn after it is set, so we don't need to take
13456 special note of it here. */
13457 case CC0:
13458 return;
13460 case CLOBBER:
13461 /* If we are clobbering a MEM, mark any hard registers inside the
13462 address as used. */
13463 if (MEM_P (XEXP (x, 0)))
13464 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13465 return;
13467 case REG:
13468 regno = REGNO (x);
13469 /* A hard reg in a wide mode may really be multiple registers.
13470 If so, mark all of them just like the first. */
13471 if (regno < FIRST_PSEUDO_REGISTER)
13473 /* None of this applies to the stack, frame or arg pointers. */
13474 if (regno == STACK_POINTER_REGNUM
13475 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13476 && regno == HARD_FRAME_POINTER_REGNUM)
13477 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13478 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13479 || regno == FRAME_POINTER_REGNUM)
13480 return;
13482 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13484 return;
13486 case SET:
13488 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13489 the address. */
13490 rtx testreg = SET_DEST (x);
13492 while (GET_CODE (testreg) == SUBREG
13493 || GET_CODE (testreg) == ZERO_EXTRACT
13494 || GET_CODE (testreg) == STRICT_LOW_PART)
13495 testreg = XEXP (testreg, 0);
13497 if (MEM_P (testreg))
13498 mark_used_regs_combine (XEXP (testreg, 0));
13500 mark_used_regs_combine (SET_SRC (x));
13502 return;
13504 default:
13505 break;
13508 /* Recursively scan the operands of this expression. */
13511 const char *fmt = GET_RTX_FORMAT (code);
13513 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13515 if (fmt[i] == 'e')
13516 mark_used_regs_combine (XEXP (x, i));
13517 else if (fmt[i] == 'E')
13519 int j;
13521 for (j = 0; j < XVECLEN (x, i); j++)
13522 mark_used_regs_combine (XVECEXP (x, i, j));
13528 /* Remove register number REGNO from the dead registers list of INSN.
13530 Return the note used to record the death, if there was one. */
13533 remove_death (unsigned int regno, rtx_insn *insn)
13535 rtx note = find_regno_note (insn, REG_DEAD, regno);
13537 if (note)
13538 remove_note (insn, note);
13540 return note;
13543 /* For each register (hardware or pseudo) used within expression X, if its
13544 death is in an instruction with luid between FROM_LUID (inclusive) and
13545 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13546 list headed by PNOTES.
13548 That said, don't move registers killed by maybe_kill_insn.
13550 This is done when X is being merged by combination into TO_INSN. These
13551 notes will then be distributed as needed. */
13553 static void
13554 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13555 rtx *pnotes)
13557 const char *fmt;
13558 int len, i;
13559 enum rtx_code code = GET_CODE (x);
13561 if (code == REG)
13563 unsigned int regno = REGNO (x);
13564 rtx_insn *where_dead = reg_stat[regno].last_death;
13566 /* Don't move the register if it gets killed in between from and to. */
13567 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13568 && ! reg_referenced_p (x, maybe_kill_insn))
13569 return;
13571 if (where_dead
13572 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13573 && DF_INSN_LUID (where_dead) >= from_luid
13574 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13576 rtx note = remove_death (regno, where_dead);
13578 /* It is possible for the call above to return 0. This can occur
13579 when last_death points to I2 or I1 that we combined with.
13580 In that case make a new note.
13582 We must also check for the case where X is a hard register
13583 and NOTE is a death note for a range of hard registers
13584 including X. In that case, we must put REG_DEAD notes for
13585 the remaining registers in place of NOTE. */
13587 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13588 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13589 > GET_MODE_SIZE (GET_MODE (x))))
13591 unsigned int deadregno = REGNO (XEXP (note, 0));
13592 unsigned int deadend = END_REGNO (XEXP (note, 0));
13593 unsigned int ourend = END_REGNO (x);
13594 unsigned int i;
13596 for (i = deadregno; i < deadend; i++)
13597 if (i < regno || i >= ourend)
13598 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13601 /* If we didn't find any note, or if we found a REG_DEAD note that
13602 covers only part of the given reg, and we have a multi-reg hard
13603 register, then to be safe we must check for REG_DEAD notes
13604 for each register other than the first. They could have
13605 their own REG_DEAD notes lying around. */
13606 else if ((note == 0
13607 || (note != 0
13608 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13609 < GET_MODE_SIZE (GET_MODE (x)))))
13610 && regno < FIRST_PSEUDO_REGISTER
13611 && REG_NREGS (x) > 1)
13613 unsigned int ourend = END_REGNO (x);
13614 unsigned int i, offset;
13615 rtx oldnotes = 0;
13617 if (note)
13618 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13619 else
13620 offset = 1;
13622 for (i = regno + offset; i < ourend; i++)
13623 move_deaths (regno_reg_rtx[i],
13624 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13627 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13629 XEXP (note, 1) = *pnotes;
13630 *pnotes = note;
13632 else
13633 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13636 return;
13639 else if (GET_CODE (x) == SET)
13641 rtx dest = SET_DEST (x);
13643 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13645 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13646 that accesses one word of a multi-word item, some
13647 piece of everything register in the expression is used by
13648 this insn, so remove any old death. */
13649 /* ??? So why do we test for equality of the sizes? */
13651 if (GET_CODE (dest) == ZERO_EXTRACT
13652 || GET_CODE (dest) == STRICT_LOW_PART
13653 || (GET_CODE (dest) == SUBREG
13654 && (((GET_MODE_SIZE (GET_MODE (dest))
13655 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13656 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13657 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13659 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13660 return;
13663 /* If this is some other SUBREG, we know it replaces the entire
13664 value, so use that as the destination. */
13665 if (GET_CODE (dest) == SUBREG)
13666 dest = SUBREG_REG (dest);
13668 /* If this is a MEM, adjust deaths of anything used in the address.
13669 For a REG (the only other possibility), the entire value is
13670 being replaced so the old value is not used in this insn. */
13672 if (MEM_P (dest))
13673 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13674 to_insn, pnotes);
13675 return;
13678 else if (GET_CODE (x) == CLOBBER)
13679 return;
13681 len = GET_RTX_LENGTH (code);
13682 fmt = GET_RTX_FORMAT (code);
13684 for (i = 0; i < len; i++)
13686 if (fmt[i] == 'E')
13688 int j;
13689 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13690 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13691 to_insn, pnotes);
13693 else if (fmt[i] == 'e')
13694 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13698 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13699 pattern of an insn. X must be a REG. */
13701 static int
13702 reg_bitfield_target_p (rtx x, rtx body)
13704 int i;
13706 if (GET_CODE (body) == SET)
13708 rtx dest = SET_DEST (body);
13709 rtx target;
13710 unsigned int regno, tregno, endregno, endtregno;
13712 if (GET_CODE (dest) == ZERO_EXTRACT)
13713 target = XEXP (dest, 0);
13714 else if (GET_CODE (dest) == STRICT_LOW_PART)
13715 target = SUBREG_REG (XEXP (dest, 0));
13716 else
13717 return 0;
13719 if (GET_CODE (target) == SUBREG)
13720 target = SUBREG_REG (target);
13722 if (!REG_P (target))
13723 return 0;
13725 tregno = REGNO (target), regno = REGNO (x);
13726 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13727 return target == x;
13729 endtregno = end_hard_regno (GET_MODE (target), tregno);
13730 endregno = end_hard_regno (GET_MODE (x), regno);
13732 return endregno > tregno && regno < endtregno;
13735 else if (GET_CODE (body) == PARALLEL)
13736 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13737 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13738 return 1;
13740 return 0;
13743 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13744 as appropriate. I3 and I2 are the insns resulting from the combination
13745 insns including FROM (I2 may be zero).
13747 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13748 not need REG_DEAD notes because they are being substituted for. This
13749 saves searching in the most common cases.
13751 Each note in the list is either ignored or placed on some insns, depending
13752 on the type of note. */
13754 static void
13755 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13756 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13758 rtx note, next_note;
13759 rtx tem_note;
13760 rtx_insn *tem_insn;
13762 for (note = notes; note; note = next_note)
13764 rtx_insn *place = 0, *place2 = 0;
13766 next_note = XEXP (note, 1);
13767 switch (REG_NOTE_KIND (note))
13769 case REG_BR_PROB:
13770 case REG_BR_PRED:
13771 /* Doesn't matter much where we put this, as long as it's somewhere.
13772 It is preferable to keep these notes on branches, which is most
13773 likely to be i3. */
13774 place = i3;
13775 break;
13777 case REG_NON_LOCAL_GOTO:
13778 if (JUMP_P (i3))
13779 place = i3;
13780 else
13782 gcc_assert (i2 && JUMP_P (i2));
13783 place = i2;
13785 break;
13787 case REG_EH_REGION:
13788 /* These notes must remain with the call or trapping instruction. */
13789 if (CALL_P (i3))
13790 place = i3;
13791 else if (i2 && CALL_P (i2))
13792 place = i2;
13793 else
13795 gcc_assert (cfun->can_throw_non_call_exceptions);
13796 if (may_trap_p (i3))
13797 place = i3;
13798 else if (i2 && may_trap_p (i2))
13799 place = i2;
13800 /* ??? Otherwise assume we've combined things such that we
13801 can now prove that the instructions can't trap. Drop the
13802 note in this case. */
13804 break;
13806 case REG_ARGS_SIZE:
13807 /* ??? How to distribute between i3-i1. Assume i3 contains the
13808 entire adjustment. Assert i3 contains at least some adjust. */
13809 if (!noop_move_p (i3))
13811 int old_size, args_size = INTVAL (XEXP (note, 0));
13812 /* fixup_args_size_notes looks at REG_NORETURN note,
13813 so ensure the note is placed there first. */
13814 if (CALL_P (i3))
13816 rtx *np;
13817 for (np = &next_note; *np; np = &XEXP (*np, 1))
13818 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13820 rtx n = *np;
13821 *np = XEXP (n, 1);
13822 XEXP (n, 1) = REG_NOTES (i3);
13823 REG_NOTES (i3) = n;
13824 break;
13827 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13828 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13829 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13830 gcc_assert (old_size != args_size
13831 || (CALL_P (i3)
13832 && !ACCUMULATE_OUTGOING_ARGS
13833 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13835 break;
13837 case REG_NORETURN:
13838 case REG_SETJMP:
13839 case REG_TM:
13840 case REG_CALL_DECL:
13841 /* These notes must remain with the call. It should not be
13842 possible for both I2 and I3 to be a call. */
13843 if (CALL_P (i3))
13844 place = i3;
13845 else
13847 gcc_assert (i2 && CALL_P (i2));
13848 place = i2;
13850 break;
13852 case REG_UNUSED:
13853 /* Any clobbers for i3 may still exist, and so we must process
13854 REG_UNUSED notes from that insn.
13856 Any clobbers from i2 or i1 can only exist if they were added by
13857 recog_for_combine. In that case, recog_for_combine created the
13858 necessary REG_UNUSED notes. Trying to keep any original
13859 REG_UNUSED notes from these insns can cause incorrect output
13860 if it is for the same register as the original i3 dest.
13861 In that case, we will notice that the register is set in i3,
13862 and then add a REG_UNUSED note for the destination of i3, which
13863 is wrong. However, it is possible to have REG_UNUSED notes from
13864 i2 or i1 for register which were both used and clobbered, so
13865 we keep notes from i2 or i1 if they will turn into REG_DEAD
13866 notes. */
13868 /* If this register is set or clobbered in I3, put the note there
13869 unless there is one already. */
13870 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13872 if (from_insn != i3)
13873 break;
13875 if (! (REG_P (XEXP (note, 0))
13876 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13877 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13878 place = i3;
13880 /* Otherwise, if this register is used by I3, then this register
13881 now dies here, so we must put a REG_DEAD note here unless there
13882 is one already. */
13883 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13884 && ! (REG_P (XEXP (note, 0))
13885 ? find_regno_note (i3, REG_DEAD,
13886 REGNO (XEXP (note, 0)))
13887 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13889 PUT_REG_NOTE_KIND (note, REG_DEAD);
13890 place = i3;
13892 break;
13894 case REG_EQUAL:
13895 case REG_EQUIV:
13896 case REG_NOALIAS:
13897 /* These notes say something about results of an insn. We can
13898 only support them if they used to be on I3 in which case they
13899 remain on I3. Otherwise they are ignored.
13901 If the note refers to an expression that is not a constant, we
13902 must also ignore the note since we cannot tell whether the
13903 equivalence is still true. It might be possible to do
13904 slightly better than this (we only have a problem if I2DEST
13905 or I1DEST is present in the expression), but it doesn't
13906 seem worth the trouble. */
13908 if (from_insn == i3
13909 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13910 place = i3;
13911 break;
13913 case REG_INC:
13914 /* These notes say something about how a register is used. They must
13915 be present on any use of the register in I2 or I3. */
13916 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13917 place = i3;
13919 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13921 if (place)
13922 place2 = i2;
13923 else
13924 place = i2;
13926 break;
13928 case REG_LABEL_TARGET:
13929 case REG_LABEL_OPERAND:
13930 /* This can show up in several ways -- either directly in the
13931 pattern, or hidden off in the constant pool with (or without?)
13932 a REG_EQUAL note. */
13933 /* ??? Ignore the without-reg_equal-note problem for now. */
13934 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13935 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13936 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13937 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
13938 place = i3;
13940 if (i2
13941 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13942 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13943 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13944 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
13946 if (place)
13947 place2 = i2;
13948 else
13949 place = i2;
13952 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13953 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13954 there. */
13955 if (place && JUMP_P (place)
13956 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13957 && (JUMP_LABEL (place) == NULL
13958 || JUMP_LABEL (place) == XEXP (note, 0)))
13960 rtx label = JUMP_LABEL (place);
13962 if (!label)
13963 JUMP_LABEL (place) = XEXP (note, 0);
13964 else if (LABEL_P (label))
13965 LABEL_NUSES (label)--;
13968 if (place2 && JUMP_P (place2)
13969 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13970 && (JUMP_LABEL (place2) == NULL
13971 || JUMP_LABEL (place2) == XEXP (note, 0)))
13973 rtx label = JUMP_LABEL (place2);
13975 if (!label)
13976 JUMP_LABEL (place2) = XEXP (note, 0);
13977 else if (LABEL_P (label))
13978 LABEL_NUSES (label)--;
13979 place2 = 0;
13981 break;
13983 case REG_NONNEG:
13984 /* This note says something about the value of a register prior
13985 to the execution of an insn. It is too much trouble to see
13986 if the note is still correct in all situations. It is better
13987 to simply delete it. */
13988 break;
13990 case REG_DEAD:
13991 /* If we replaced the right hand side of FROM_INSN with a
13992 REG_EQUAL note, the original use of the dying register
13993 will not have been combined into I3 and I2. In such cases,
13994 FROM_INSN is guaranteed to be the first of the combined
13995 instructions, so we simply need to search back before
13996 FROM_INSN for the previous use or set of this register,
13997 then alter the notes there appropriately.
13999 If the register is used as an input in I3, it dies there.
14000 Similarly for I2, if it is nonzero and adjacent to I3.
14002 If the register is not used as an input in either I3 or I2
14003 and it is not one of the registers we were supposed to eliminate,
14004 there are two possibilities. We might have a non-adjacent I2
14005 or we might have somehow eliminated an additional register
14006 from a computation. For example, we might have had A & B where
14007 we discover that B will always be zero. In this case we will
14008 eliminate the reference to A.
14010 In both cases, we must search to see if we can find a previous
14011 use of A and put the death note there. */
14013 if (from_insn
14014 && from_insn == i2mod
14015 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14016 tem_insn = from_insn;
14017 else
14019 if (from_insn
14020 && CALL_P (from_insn)
14021 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14022 place = from_insn;
14023 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14024 place = i3;
14025 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14026 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14027 place = i2;
14028 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14029 && !(i2mod
14030 && reg_overlap_mentioned_p (XEXP (note, 0),
14031 i2mod_old_rhs)))
14032 || rtx_equal_p (XEXP (note, 0), elim_i1)
14033 || rtx_equal_p (XEXP (note, 0), elim_i0))
14034 break;
14035 tem_insn = i3;
14036 /* If the new I2 sets the same register that is marked dead
14037 in the note, we do not know where to put the note.
14038 Give up. */
14039 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14040 break;
14043 if (place == 0)
14045 basic_block bb = this_basic_block;
14047 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14049 if (!NONDEBUG_INSN_P (tem_insn))
14051 if (tem_insn == BB_HEAD (bb))
14052 break;
14053 continue;
14056 /* If the register is being set at TEM_INSN, see if that is all
14057 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14058 into a REG_UNUSED note instead. Don't delete sets to
14059 global register vars. */
14060 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14061 || !global_regs[REGNO (XEXP (note, 0))])
14062 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14064 rtx set = single_set (tem_insn);
14065 rtx inner_dest = 0;
14066 rtx_insn *cc0_setter = NULL;
14068 if (set != 0)
14069 for (inner_dest = SET_DEST (set);
14070 (GET_CODE (inner_dest) == STRICT_LOW_PART
14071 || GET_CODE (inner_dest) == SUBREG
14072 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14073 inner_dest = XEXP (inner_dest, 0))
14076 /* Verify that it was the set, and not a clobber that
14077 modified the register.
14079 CC0 targets must be careful to maintain setter/user
14080 pairs. If we cannot delete the setter due to side
14081 effects, mark the user with an UNUSED note instead
14082 of deleting it. */
14084 if (set != 0 && ! side_effects_p (SET_SRC (set))
14085 && rtx_equal_p (XEXP (note, 0), inner_dest)
14086 && (!HAVE_cc0
14087 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14088 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14089 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14091 /* Move the notes and links of TEM_INSN elsewhere.
14092 This might delete other dead insns recursively.
14093 First set the pattern to something that won't use
14094 any register. */
14095 rtx old_notes = REG_NOTES (tem_insn);
14097 PATTERN (tem_insn) = pc_rtx;
14098 REG_NOTES (tem_insn) = NULL;
14100 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14101 NULL_RTX, NULL_RTX, NULL_RTX);
14102 distribute_links (LOG_LINKS (tem_insn));
14104 SET_INSN_DELETED (tem_insn);
14105 if (tem_insn == i2)
14106 i2 = NULL;
14108 /* Delete the setter too. */
14109 if (cc0_setter)
14111 PATTERN (cc0_setter) = pc_rtx;
14112 old_notes = REG_NOTES (cc0_setter);
14113 REG_NOTES (cc0_setter) = NULL;
14115 distribute_notes (old_notes, cc0_setter,
14116 cc0_setter, NULL,
14117 NULL_RTX, NULL_RTX, NULL_RTX);
14118 distribute_links (LOG_LINKS (cc0_setter));
14120 SET_INSN_DELETED (cc0_setter);
14121 if (cc0_setter == i2)
14122 i2 = NULL;
14125 else
14127 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14129 /* If there isn't already a REG_UNUSED note, put one
14130 here. Do not place a REG_DEAD note, even if
14131 the register is also used here; that would not
14132 match the algorithm used in lifetime analysis
14133 and can cause the consistency check in the
14134 scheduler to fail. */
14135 if (! find_regno_note (tem_insn, REG_UNUSED,
14136 REGNO (XEXP (note, 0))))
14137 place = tem_insn;
14138 break;
14141 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14142 || (CALL_P (tem_insn)
14143 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14145 place = tem_insn;
14147 /* If we are doing a 3->2 combination, and we have a
14148 register which formerly died in i3 and was not used
14149 by i2, which now no longer dies in i3 and is used in
14150 i2 but does not die in i2, and place is between i2
14151 and i3, then we may need to move a link from place to
14152 i2. */
14153 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14154 && from_insn
14155 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14156 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14158 struct insn_link *links = LOG_LINKS (place);
14159 LOG_LINKS (place) = NULL;
14160 distribute_links (links);
14162 break;
14165 if (tem_insn == BB_HEAD (bb))
14166 break;
14171 /* If the register is set or already dead at PLACE, we needn't do
14172 anything with this note if it is still a REG_DEAD note.
14173 We check here if it is set at all, not if is it totally replaced,
14174 which is what `dead_or_set_p' checks, so also check for it being
14175 set partially. */
14177 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14179 unsigned int regno = REGNO (XEXP (note, 0));
14180 reg_stat_type *rsp = &reg_stat[regno];
14182 if (dead_or_set_p (place, XEXP (note, 0))
14183 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14185 /* Unless the register previously died in PLACE, clear
14186 last_death. [I no longer understand why this is
14187 being done.] */
14188 if (rsp->last_death != place)
14189 rsp->last_death = 0;
14190 place = 0;
14192 else
14193 rsp->last_death = place;
14195 /* If this is a death note for a hard reg that is occupying
14196 multiple registers, ensure that we are still using all
14197 parts of the object. If we find a piece of the object
14198 that is unused, we must arrange for an appropriate REG_DEAD
14199 note to be added for it. However, we can't just emit a USE
14200 and tag the note to it, since the register might actually
14201 be dead; so we recourse, and the recursive call then finds
14202 the previous insn that used this register. */
14204 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14206 unsigned int endregno = END_REGNO (XEXP (note, 0));
14207 bool all_used = true;
14208 unsigned int i;
14210 for (i = regno; i < endregno; i++)
14211 if ((! refers_to_regno_p (i, PATTERN (place))
14212 && ! find_regno_fusage (place, USE, i))
14213 || dead_or_set_regno_p (place, i))
14215 all_used = false;
14216 break;
14219 if (! all_used)
14221 /* Put only REG_DEAD notes for pieces that are
14222 not already dead or set. */
14224 for (i = regno; i < endregno;
14225 i += hard_regno_nregs[i][reg_raw_mode[i]])
14227 rtx piece = regno_reg_rtx[i];
14228 basic_block bb = this_basic_block;
14230 if (! dead_or_set_p (place, piece)
14231 && ! reg_bitfield_target_p (piece,
14232 PATTERN (place)))
14234 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14235 NULL_RTX);
14237 distribute_notes (new_note, place, place,
14238 NULL, NULL_RTX, NULL_RTX,
14239 NULL_RTX);
14241 else if (! refers_to_regno_p (i, PATTERN (place))
14242 && ! find_regno_fusage (place, USE, i))
14243 for (tem_insn = PREV_INSN (place); ;
14244 tem_insn = PREV_INSN (tem_insn))
14246 if (!NONDEBUG_INSN_P (tem_insn))
14248 if (tem_insn == BB_HEAD (bb))
14249 break;
14250 continue;
14252 if (dead_or_set_p (tem_insn, piece)
14253 || reg_bitfield_target_p (piece,
14254 PATTERN (tem_insn)))
14256 add_reg_note (tem_insn, REG_UNUSED, piece);
14257 break;
14262 place = 0;
14266 break;
14268 default:
14269 /* Any other notes should not be present at this point in the
14270 compilation. */
14271 gcc_unreachable ();
14274 if (place)
14276 XEXP (note, 1) = REG_NOTES (place);
14277 REG_NOTES (place) = note;
14280 if (place2)
14281 add_shallow_copy_of_reg_note (place2, note);
14285 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14286 I3, I2, and I1 to new locations. This is also called to add a link
14287 pointing at I3 when I3's destination is changed. */
14289 static void
14290 distribute_links (struct insn_link *links)
14292 struct insn_link *link, *next_link;
14294 for (link = links; link; link = next_link)
14296 rtx_insn *place = 0;
14297 rtx_insn *insn;
14298 rtx set, reg;
14300 next_link = link->next;
14302 /* If the insn that this link points to is a NOTE, ignore it. */
14303 if (NOTE_P (link->insn))
14304 continue;
14306 set = 0;
14307 rtx pat = PATTERN (link->insn);
14308 if (GET_CODE (pat) == SET)
14309 set = pat;
14310 else if (GET_CODE (pat) == PARALLEL)
14312 int i;
14313 for (i = 0; i < XVECLEN (pat, 0); i++)
14315 set = XVECEXP (pat, 0, i);
14316 if (GET_CODE (set) != SET)
14317 continue;
14319 reg = SET_DEST (set);
14320 while (GET_CODE (reg) == ZERO_EXTRACT
14321 || GET_CODE (reg) == STRICT_LOW_PART
14322 || GET_CODE (reg) == SUBREG)
14323 reg = XEXP (reg, 0);
14325 if (!REG_P (reg))
14326 continue;
14328 if (REGNO (reg) == link->regno)
14329 break;
14331 if (i == XVECLEN (pat, 0))
14332 continue;
14334 else
14335 continue;
14337 reg = SET_DEST (set);
14339 while (GET_CODE (reg) == ZERO_EXTRACT
14340 || GET_CODE (reg) == STRICT_LOW_PART
14341 || GET_CODE (reg) == SUBREG)
14342 reg = XEXP (reg, 0);
14344 /* A LOG_LINK is defined as being placed on the first insn that uses
14345 a register and points to the insn that sets the register. Start
14346 searching at the next insn after the target of the link and stop
14347 when we reach a set of the register or the end of the basic block.
14349 Note that this correctly handles the link that used to point from
14350 I3 to I2. Also note that not much searching is typically done here
14351 since most links don't point very far away. */
14353 for (insn = NEXT_INSN (link->insn);
14354 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14355 || BB_HEAD (this_basic_block->next_bb) != insn));
14356 insn = NEXT_INSN (insn))
14357 if (DEBUG_INSN_P (insn))
14358 continue;
14359 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14361 if (reg_referenced_p (reg, PATTERN (insn)))
14362 place = insn;
14363 break;
14365 else if (CALL_P (insn)
14366 && find_reg_fusage (insn, USE, reg))
14368 place = insn;
14369 break;
14371 else if (INSN_P (insn) && reg_set_p (reg, insn))
14372 break;
14374 /* If we found a place to put the link, place it there unless there
14375 is already a link to the same insn as LINK at that point. */
14377 if (place)
14379 struct insn_link *link2;
14381 FOR_EACH_LOG_LINK (link2, place)
14382 if (link2->insn == link->insn && link2->regno == link->regno)
14383 break;
14385 if (link2 == NULL)
14387 link->next = LOG_LINKS (place);
14388 LOG_LINKS (place) = link;
14390 /* Set added_links_insn to the earliest insn we added a
14391 link to. */
14392 if (added_links_insn == 0
14393 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14394 added_links_insn = place;
14400 /* Check for any register or memory mentioned in EQUIV that is not
14401 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14402 of EXPR where some registers may have been replaced by constants. */
14404 static bool
14405 unmentioned_reg_p (rtx equiv, rtx expr)
14407 subrtx_iterator::array_type array;
14408 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14410 const_rtx x = *iter;
14411 if ((REG_P (x) || MEM_P (x))
14412 && !reg_mentioned_p (x, expr))
14413 return true;
14415 return false;
14418 DEBUG_FUNCTION void
14419 dump_combine_stats (FILE *file)
14421 fprintf
14422 (file,
14423 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14424 combine_attempts, combine_merges, combine_extras, combine_successes);
14427 void
14428 dump_combine_total_stats (FILE *file)
14430 fprintf
14431 (file,
14432 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14433 total_attempts, total_merges, total_extras, total_successes);
14436 /* Try combining insns through substitution. */
14437 static unsigned int
14438 rest_of_handle_combine (void)
14440 int rebuild_jump_labels_after_combine;
14442 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14443 df_note_add_problem ();
14444 df_analyze ();
14446 regstat_init_n_sets_and_refs ();
14447 reg_n_sets_max = max_reg_num ();
14449 rebuild_jump_labels_after_combine
14450 = combine_instructions (get_insns (), max_reg_num ());
14452 /* Combining insns may have turned an indirect jump into a
14453 direct jump. Rebuild the JUMP_LABEL fields of jumping
14454 instructions. */
14455 if (rebuild_jump_labels_after_combine)
14457 if (dom_info_available_p (CDI_DOMINATORS))
14458 free_dominance_info (CDI_DOMINATORS);
14459 timevar_push (TV_JUMP);
14460 rebuild_jump_labels (get_insns ());
14461 cleanup_cfg (0);
14462 timevar_pop (TV_JUMP);
14465 regstat_free_n_sets_and_refs ();
14466 return 0;
14469 namespace {
14471 const pass_data pass_data_combine =
14473 RTL_PASS, /* type */
14474 "combine", /* name */
14475 OPTGROUP_NONE, /* optinfo_flags */
14476 TV_COMBINE, /* tv_id */
14477 PROP_cfglayout, /* properties_required */
14478 0, /* properties_provided */
14479 0, /* properties_destroyed */
14480 0, /* todo_flags_start */
14481 TODO_df_finish, /* todo_flags_finish */
14484 class pass_combine : public rtl_opt_pass
14486 public:
14487 pass_combine (gcc::context *ctxt)
14488 : rtl_opt_pass (pass_data_combine, ctxt)
14491 /* opt_pass methods: */
14492 virtual bool gate (function *) { return (optimize > 0); }
14493 virtual unsigned int execute (function *)
14495 return rest_of_handle_combine ();
14498 }; // class pass_combine
14500 } // anon namespace
14502 rtl_opt_pass *
14503 make_pass_combine (gcc::context *ctxt)
14505 return new pass_combine (ctxt);