2008-07-01 Jerry DeLisle <jvdelisle@gcc.gnu.org>
[official-gcc.git] / gcc / tree-flow-inline.h
blobbff697db5ae089a9478a1756f10ea0b9950dfc69
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
31 at first place. */
32 static inline bool
33 gimple_in_ssa_p (const struct function *fun)
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
39 static inline bool
40 gimple_aliases_computed_p (const struct function *fun)
42 gcc_assert (fun && fun->gimple_df);
43 return fun->gimple_df->aliases_computed_p;
46 /* Addressable variables in the function. If bit I is set, then
47 REFERENCED_VARS (I) has had its address taken. Note that
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
49 addressable variable is not necessarily call-clobbered (e.g., a
50 local addressable whose address does not escape) and not all
51 call-clobbered variables are addressable (e.g., a local static
52 variable). */
53 static inline bitmap
54 gimple_addressable_vars (const struct function *fun)
56 gcc_assert (fun && fun->gimple_df);
57 return fun->gimple_df->addressable_vars;
60 /* Call clobbered variables in the function. If bit I is set, then
61 REFERENCED_VARS (I) is call-clobbered. */
62 static inline bitmap
63 gimple_call_clobbered_vars (const struct function *fun)
65 gcc_assert (fun && fun->gimple_df);
66 return fun->gimple_df->call_clobbered_vars;
69 /* Call-used variables in the function. If bit I is set, then
70 REFERENCED_VARS (I) is call-used at pure function call-sites. */
71 static inline bitmap
72 gimple_call_used_vars (const struct function *fun)
74 gcc_assert (fun && fun->gimple_df);
75 return fun->gimple_df->call_used_vars;
78 /* Array of all variables referenced in the function. */
79 static inline htab_t
80 gimple_referenced_vars (const struct function *fun)
82 if (!fun->gimple_df)
83 return NULL;
84 return fun->gimple_df->referenced_vars;
87 /* Artificial variable used to model the effects of function calls. */
88 static inline tree
89 gimple_global_var (const struct function *fun)
91 gcc_assert (fun && fun->gimple_df);
92 return fun->gimple_df->global_var;
95 /* Artificial variable used to model the effects of nonlocal
96 variables. */
97 static inline tree
98 gimple_nonlocal_all (const struct function *fun)
100 gcc_assert (fun && fun->gimple_df);
101 return fun->gimple_df->nonlocal_all;
104 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
106 static inline void *
107 first_htab_element (htab_iterator *hti, htab_t table)
109 hti->htab = table;
110 hti->slot = table->entries;
111 hti->limit = hti->slot + htab_size (table);
114 PTR x = *(hti->slot);
115 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
116 break;
117 } while (++(hti->slot) < hti->limit);
119 if (hti->slot < hti->limit)
120 return *(hti->slot);
121 return NULL;
124 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
125 or NULL if we have reached the end. */
127 static inline bool
128 end_htab_p (const htab_iterator *hti)
130 if (hti->slot >= hti->limit)
131 return true;
132 return false;
135 /* Advance the hashtable iterator pointed to by HTI to the next element of the
136 hashtable. */
138 static inline void *
139 next_htab_element (htab_iterator *hti)
141 while (++(hti->slot) < hti->limit)
143 PTR x = *(hti->slot);
144 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
145 return x;
147 return NULL;
150 /* Initialize ITER to point to the first referenced variable in the
151 referenced_vars hashtable, and return that variable. */
153 static inline tree
154 first_referenced_var (referenced_var_iterator *iter)
156 return (tree) first_htab_element (&iter->hti,
157 gimple_referenced_vars (cfun));
160 /* Return true if we have hit the end of the referenced variables ITER is
161 iterating through. */
163 static inline bool
164 end_referenced_vars_p (const referenced_var_iterator *iter)
166 return end_htab_p (&iter->hti);
169 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
170 and return that variable. */
172 static inline tree
173 next_referenced_var (referenced_var_iterator *iter)
175 return (tree) next_htab_element (&iter->hti);
178 /* Fill up VEC with the variables in the referenced vars hashtable. */
180 static inline void
181 fill_referenced_var_vec (VEC (tree, heap) **vec)
183 referenced_var_iterator rvi;
184 tree var;
185 *vec = NULL;
186 FOR_EACH_REFERENCED_VAR (var, rvi)
187 VEC_safe_push (tree, heap, *vec, var);
190 /* Return the variable annotation for T, which must be a _DECL node.
191 Return NULL if the variable annotation doesn't already exist. */
192 static inline var_ann_t
193 var_ann (const_tree t)
195 var_ann_t ann;
197 if (!t->base.ann)
198 return NULL;
199 ann = (var_ann_t) t->base.ann;
201 gcc_assert (ann->common.type == VAR_ANN);
203 return ann;
206 /* Return the variable annotation for T, which must be a _DECL node.
207 Create the variable annotation if it doesn't exist. */
208 static inline var_ann_t
209 get_var_ann (tree var)
211 var_ann_t ann = var_ann (var);
212 return (ann) ? ann : create_var_ann (var);
215 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
216 Return NULL if the function annotation doesn't already exist. */
217 static inline function_ann_t
218 function_ann (const_tree t)
220 gcc_assert (t);
221 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
222 gcc_assert (!t->base.ann
223 || t->base.ann->common.type == FUNCTION_ANN);
225 return (function_ann_t) t->base.ann;
228 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
229 Create the function annotation if it doesn't exist. */
230 static inline function_ann_t
231 get_function_ann (tree var)
233 function_ann_t ann = function_ann (var);
234 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
235 return (ann) ? ann : create_function_ann (var);
238 /* Return true if T has a statement annotation attached to it. */
240 static inline bool
241 has_stmt_ann (tree t)
243 #ifdef ENABLE_CHECKING
244 gcc_assert (is_gimple_stmt (t));
245 #endif
246 return t->base.ann && t->base.ann->common.type == STMT_ANN;
249 /* Return the statement annotation for T, which must be a statement
250 node. Return NULL if the statement annotation doesn't exist. */
251 static inline stmt_ann_t
252 stmt_ann (tree t)
254 #ifdef ENABLE_CHECKING
255 gcc_assert (is_gimple_stmt (t));
256 #endif
257 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
258 return (stmt_ann_t) t->base.ann;
261 /* Return the statement annotation for T, which must be a statement
262 node. Create the statement annotation if it doesn't exist. */
263 static inline stmt_ann_t
264 get_stmt_ann (tree stmt)
266 stmt_ann_t ann = stmt_ann (stmt);
267 return (ann) ? ann : create_stmt_ann (stmt);
270 /* Set the uid of all non phi function statements. */
271 static inline void
272 set_gimple_stmt_uid (tree stmt, unsigned int uid)
274 get_stmt_ann (stmt)->uid = uid;
277 /* Get the uid of all non phi function statements. */
278 static inline unsigned int
279 gimple_stmt_uid (tree stmt)
281 return get_stmt_ann (stmt)->uid;
284 /* Get the number of the next statement uid to be allocated. */
285 static inline unsigned int
286 gimple_stmt_max_uid (struct function *fn)
288 return fn->last_stmt_uid;
291 /* Set the number of the next statement uid to be allocated. */
292 static inline void
293 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
295 fn->last_stmt_uid = maxid;
298 /* Set the number of the next statement uid to be allocated. */
299 static inline unsigned int
300 inc_gimple_stmt_max_uid (struct function *fn)
302 return fn->last_stmt_uid++;
305 /* Return the annotation type for annotation ANN. */
306 static inline enum tree_ann_type
307 ann_type (tree_ann_t ann)
309 return ann->common.type;
312 /* Return the basic block for statement T. */
313 static inline basic_block
314 bb_for_stmt (tree t)
316 stmt_ann_t ann;
318 if (TREE_CODE (t) == PHI_NODE)
319 return PHI_BB (t);
321 ann = stmt_ann (t);
322 return ann ? ann->bb : NULL;
325 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
326 no may aliases. */
327 static inline bitmap
328 may_aliases (const_tree var)
330 return MTAG_ALIASES (var);
333 /* Return the line number for EXPR, or return -1 if we have no line
334 number information for it. */
335 static inline int
336 get_lineno (const_tree expr)
338 if (expr == NULL_TREE)
339 return -1;
341 if (TREE_CODE (expr) == COMPOUND_EXPR)
342 expr = TREE_OPERAND (expr, 0);
344 if (! EXPR_HAS_LOCATION (expr))
345 return -1;
347 return EXPR_LINENO (expr);
350 /* Return true if T is a noreturn call. */
351 static inline bool
352 noreturn_call_p (tree t)
354 tree call = get_call_expr_in (t);
355 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
358 /* Mark statement T as modified. */
359 static inline void
360 mark_stmt_modified (tree t)
362 stmt_ann_t ann;
363 if (TREE_CODE (t) == PHI_NODE)
364 return;
366 ann = stmt_ann (t);
367 if (ann == NULL)
368 ann = create_stmt_ann (t);
369 else if (noreturn_call_p (t) && cfun->gimple_df)
370 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
371 ann->modified = 1;
374 /* Mark statement T as modified, and update it. */
375 static inline void
376 update_stmt (tree t)
378 if (TREE_CODE (t) == PHI_NODE)
379 return;
380 mark_stmt_modified (t);
381 update_stmt_operands (t);
384 static inline void
385 update_stmt_if_modified (tree t)
387 if (stmt_modified_p (t))
388 update_stmt_operands (t);
391 /* Return true if T is marked as modified, false otherwise. */
392 static inline bool
393 stmt_modified_p (tree t)
395 stmt_ann_t ann = stmt_ann (t);
397 /* Note that if the statement doesn't yet have an annotation, we consider it
398 modified. This will force the next call to update_stmt_operands to scan
399 the statement. */
400 return ann ? ann->modified : true;
403 /* Delink an immediate_uses node from its chain. */
404 static inline void
405 delink_imm_use (ssa_use_operand_t *linknode)
407 /* Return if this node is not in a list. */
408 if (linknode->prev == NULL)
409 return;
411 linknode->prev->next = linknode->next;
412 linknode->next->prev = linknode->prev;
413 linknode->prev = NULL;
414 linknode->next = NULL;
417 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
418 static inline void
419 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
421 /* Link the new node at the head of the list. If we are in the process of
422 traversing the list, we won't visit any new nodes added to it. */
423 linknode->prev = list;
424 linknode->next = list->next;
425 list->next->prev = linknode;
426 list->next = linknode;
429 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
430 static inline void
431 link_imm_use (ssa_use_operand_t *linknode, tree def)
433 ssa_use_operand_t *root;
435 if (!def || TREE_CODE (def) != SSA_NAME)
436 linknode->prev = NULL;
437 else
439 root = &(SSA_NAME_IMM_USE_NODE (def));
440 #ifdef ENABLE_CHECKING
441 if (linknode->use)
442 gcc_assert (*(linknode->use) == def);
443 #endif
444 link_imm_use_to_list (linknode, root);
448 /* Set the value of a use pointed to by USE to VAL. */
449 static inline void
450 set_ssa_use_from_ptr (use_operand_p use, tree val)
452 delink_imm_use (use);
453 *(use->use) = val;
454 link_imm_use (use, val);
457 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
458 in STMT. */
459 static inline void
460 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
462 if (stmt)
463 link_imm_use (linknode, def);
464 else
465 link_imm_use (linknode, NULL);
466 linknode->stmt = stmt;
469 /* Relink a new node in place of an old node in the list. */
470 static inline void
471 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
473 /* The node one had better be in the same list. */
474 gcc_assert (*(old->use) == *(node->use));
475 node->prev = old->prev;
476 node->next = old->next;
477 if (old->prev)
479 old->prev->next = node;
480 old->next->prev = node;
481 /* Remove the old node from the list. */
482 old->prev = NULL;
486 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
487 in STMT. */
488 static inline void
489 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
491 if (stmt)
492 relink_imm_use (linknode, old);
493 else
494 link_imm_use (linknode, NULL);
495 linknode->stmt = stmt;
499 /* Return true is IMM has reached the end of the immediate use list. */
500 static inline bool
501 end_readonly_imm_use_p (const imm_use_iterator *imm)
503 return (imm->imm_use == imm->end_p);
506 /* Initialize iterator IMM to process the list for VAR. */
507 static inline use_operand_p
508 first_readonly_imm_use (imm_use_iterator *imm, tree var)
510 gcc_assert (TREE_CODE (var) == SSA_NAME);
512 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
513 imm->imm_use = imm->end_p->next;
514 #ifdef ENABLE_CHECKING
515 imm->iter_node.next = imm->imm_use->next;
516 #endif
517 if (end_readonly_imm_use_p (imm))
518 return NULL_USE_OPERAND_P;
519 return imm->imm_use;
522 /* Bump IMM to the next use in the list. */
523 static inline use_operand_p
524 next_readonly_imm_use (imm_use_iterator *imm)
526 use_operand_p old = imm->imm_use;
528 #ifdef ENABLE_CHECKING
529 /* If this assertion fails, it indicates the 'next' pointer has changed
530 since the last bump. This indicates that the list is being modified
531 via stmt changes, or SET_USE, or somesuch thing, and you need to be
532 using the SAFE version of the iterator. */
533 gcc_assert (imm->iter_node.next == old->next);
534 imm->iter_node.next = old->next->next;
535 #endif
537 imm->imm_use = old->next;
538 if (end_readonly_imm_use_p (imm))
539 return NULL_USE_OPERAND_P;
540 return imm->imm_use;
543 /* Return true if VAR has no uses. */
544 static inline bool
545 has_zero_uses (const_tree var)
547 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
548 /* A single use means there is no items in the list. */
549 return (ptr == ptr->next);
552 /* Return true if VAR has a single use. */
553 static inline bool
554 has_single_use (const_tree var)
556 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
557 /* A single use means there is one item in the list. */
558 return (ptr != ptr->next && ptr == ptr->next->next);
562 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
563 to the use pointer and stmt of occurrence. */
564 static inline bool
565 single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt)
567 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
568 if (ptr != ptr->next && ptr == ptr->next->next)
570 *use_p = ptr->next;
571 *stmt = ptr->next->stmt;
572 return true;
574 *use_p = NULL_USE_OPERAND_P;
575 *stmt = NULL_TREE;
576 return false;
579 /* Return the number of immediate uses of VAR. */
580 static inline unsigned int
581 num_imm_uses (const_tree var)
583 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
584 const ssa_use_operand_t *ptr;
585 unsigned int num = 0;
587 for (ptr = start->next; ptr != start; ptr = ptr->next)
588 num++;
590 return num;
593 /* Return the tree pointer to by USE. */
594 static inline tree
595 get_use_from_ptr (use_operand_p use)
597 return *(use->use);
600 /* Return the tree pointer to by DEF. */
601 static inline tree
602 get_def_from_ptr (def_operand_p def)
604 return *def;
607 /* Return a def_operand_p pointer for the result of PHI. */
608 static inline def_operand_p
609 get_phi_result_ptr (tree phi)
611 return &(PHI_RESULT_TREE (phi));
614 /* Return a use_operand_p pointer for argument I of phinode PHI. */
615 static inline use_operand_p
616 get_phi_arg_def_ptr (tree phi, int i)
618 return &(PHI_ARG_IMM_USE_NODE (phi,i));
622 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
623 no addresses. */
624 static inline bitmap
625 addresses_taken (tree stmt)
627 stmt_ann_t ann = stmt_ann (stmt);
628 return ann ? ann->addresses_taken : NULL;
631 /* Return the PHI nodes for basic block BB, or NULL if there are no
632 PHI nodes. */
633 static inline tree
634 phi_nodes (const_basic_block bb)
636 gcc_assert (!(bb->flags & BB_RTL));
637 if (!bb->il.tree)
638 return NULL;
639 return bb->il.tree->phi_nodes;
642 /* Return pointer to the list of PHI nodes for basic block BB. */
644 static inline tree *
645 phi_nodes_ptr (basic_block bb)
647 gcc_assert (!(bb->flags & BB_RTL));
648 return &bb->il.tree->phi_nodes;
651 /* Set list of phi nodes of a basic block BB to L. */
653 static inline void
654 set_phi_nodes (basic_block bb, tree l)
656 tree phi;
658 gcc_assert (!(bb->flags & BB_RTL));
659 bb->il.tree->phi_nodes = l;
660 for (phi = l; phi; phi = PHI_CHAIN (phi))
661 set_bb_for_stmt (phi, bb);
664 /* Return the phi argument which contains the specified use. */
666 static inline int
667 phi_arg_index_from_use (use_operand_p use)
669 struct phi_arg_d *element, *root;
670 int index;
671 tree phi;
673 /* Since the use is the first thing in a PHI argument element, we can
674 calculate its index based on casting it to an argument, and performing
675 pointer arithmetic. */
677 phi = USE_STMT (use);
678 gcc_assert (TREE_CODE (phi) == PHI_NODE);
680 element = (struct phi_arg_d *)use;
681 root = &(PHI_ARG_ELT (phi, 0));
682 index = element - root;
684 #ifdef ENABLE_CHECKING
685 /* Make sure the calculation doesn't have any leftover bytes. If it does,
686 then imm_use is likely not the first element in phi_arg_d. */
687 gcc_assert (
688 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
689 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
690 #endif
692 return index;
695 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
697 static inline void
698 set_is_used (tree var)
700 var_ann_t ann = get_var_ann (var);
701 ann->used = 1;
705 /* Return true if T (assumed to be a DECL) is a global variable. */
707 static inline bool
708 is_global_var (const_tree t)
710 if (MTAG_P (t))
711 return MTAG_GLOBAL (t);
712 else
713 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
716 /* PHI nodes should contain only ssa_names and invariants. A test
717 for ssa_name is definitely simpler; don't let invalid contents
718 slip in in the meantime. */
720 static inline bool
721 phi_ssa_name_p (const_tree t)
723 if (TREE_CODE (t) == SSA_NAME)
724 return true;
725 #ifdef ENABLE_CHECKING
726 gcc_assert (is_gimple_min_invariant (t));
727 #endif
728 return false;
731 /* ----------------------------------------------------------------------- */
733 /* Returns the list of statements in BB. */
735 static inline tree
736 bb_stmt_list (const_basic_block bb)
738 gcc_assert (!(bb->flags & BB_RTL));
739 return bb->il.tree->stmt_list;
742 /* Sets the list of statements in BB to LIST. */
744 static inline void
745 set_bb_stmt_list (basic_block bb, tree list)
747 gcc_assert (!(bb->flags & BB_RTL));
748 bb->il.tree->stmt_list = list;
751 /* Return a block_stmt_iterator that points to beginning of basic
752 block BB. */
753 static inline block_stmt_iterator
754 bsi_start (basic_block bb)
756 block_stmt_iterator bsi;
757 if (bb->index < NUM_FIXED_BLOCKS)
759 bsi.tsi.ptr = NULL;
760 bsi.tsi.container = NULL;
762 else
763 bsi.tsi = tsi_start (bb_stmt_list (bb));
764 bsi.bb = bb;
765 return bsi;
768 /* Return a block statement iterator that points to the first non-label
769 statement in block BB. */
771 static inline block_stmt_iterator
772 bsi_after_labels (basic_block bb)
774 block_stmt_iterator bsi = bsi_start (bb);
776 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
777 bsi_next (&bsi);
779 return bsi;
782 /* Return a block statement iterator that points to the end of basic
783 block BB. */
784 static inline block_stmt_iterator
785 bsi_last (basic_block bb)
787 block_stmt_iterator bsi;
789 if (bb->index < NUM_FIXED_BLOCKS)
791 bsi.tsi.ptr = NULL;
792 bsi.tsi.container = NULL;
794 else
795 bsi.tsi = tsi_last (bb_stmt_list (bb));
796 bsi.bb = bb;
797 return bsi;
800 /* Return true if block statement iterator I has reached the end of
801 the basic block. */
802 static inline bool
803 bsi_end_p (block_stmt_iterator i)
805 return tsi_end_p (i.tsi);
808 /* Modify block statement iterator I so that it is at the next
809 statement in the basic block. */
810 static inline void
811 bsi_next (block_stmt_iterator *i)
813 tsi_next (&i->tsi);
816 /* Modify block statement iterator I so that it is at the previous
817 statement in the basic block. */
818 static inline void
819 bsi_prev (block_stmt_iterator *i)
821 tsi_prev (&i->tsi);
824 /* Return the statement that block statement iterator I is currently
825 at. */
826 static inline tree
827 bsi_stmt (block_stmt_iterator i)
829 return tsi_stmt (i.tsi);
832 /* Return a pointer to the statement that block statement iterator I
833 is currently at. */
834 static inline tree *
835 bsi_stmt_ptr (block_stmt_iterator i)
837 return tsi_stmt_ptr (i.tsi);
840 /* Returns the loop of the statement STMT. */
842 static inline struct loop *
843 loop_containing_stmt (tree stmt)
845 basic_block bb = bb_for_stmt (stmt);
846 if (!bb)
847 return NULL;
849 return bb->loop_father;
853 /* Return the memory partition tag associated with symbol SYM. */
855 static inline tree
856 memory_partition (tree sym)
858 tree tag;
860 /* MPTs belong to their own partition. */
861 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
862 return sym;
864 gcc_assert (!is_gimple_reg (sym));
865 tag = get_var_ann (sym)->mpt;
867 #if defined ENABLE_CHECKING
868 if (tag)
869 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
870 #endif
872 return tag;
875 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
876 name for a memory partition. */
878 static inline bool
879 factoring_name_p (const_tree name)
881 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
884 /* Return true if VAR is a clobbered by function calls. */
885 static inline bool
886 is_call_clobbered (const_tree var)
888 return var_ann (var)->call_clobbered;
891 /* Mark variable VAR as being clobbered by function calls. */
892 static inline void
893 mark_call_clobbered (tree var, unsigned int escape_type)
895 var_ann (var)->escape_mask |= escape_type;
896 var_ann (var)->call_clobbered = true;
897 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
900 /* Clear the call-clobbered attribute from variable VAR. */
901 static inline void
902 clear_call_clobbered (tree var)
904 var_ann_t ann = var_ann (var);
905 ann->escape_mask = 0;
906 if (MTAG_P (var))
907 MTAG_GLOBAL (var) = 0;
908 var_ann (var)->call_clobbered = false;
909 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
912 /* Return the common annotation for T. Return NULL if the annotation
913 doesn't already exist. */
914 static inline tree_ann_common_t
915 tree_common_ann (const_tree t)
917 /* Watch out static variables with unshared annotations. */
918 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
919 return &var_ann (t)->common;
920 return &t->base.ann->common;
923 /* Return a common annotation for T. Create the constant annotation if it
924 doesn't exist. */
925 static inline tree_ann_common_t
926 get_tree_common_ann (tree t)
928 tree_ann_common_t ann = tree_common_ann (t);
929 return (ann) ? ann : create_tree_common_ann (t);
932 /* ----------------------------------------------------------------------- */
934 /* The following set of routines are used to iterator over various type of
935 SSA operands. */
937 /* Return true if PTR is finished iterating. */
938 static inline bool
939 op_iter_done (const ssa_op_iter *ptr)
941 return ptr->done;
944 /* Get the next iterator use value for PTR. */
945 static inline use_operand_p
946 op_iter_next_use (ssa_op_iter *ptr)
948 use_operand_p use_p;
949 #ifdef ENABLE_CHECKING
950 gcc_assert (ptr->iter_type == ssa_op_iter_use);
951 #endif
952 if (ptr->uses)
954 use_p = USE_OP_PTR (ptr->uses);
955 ptr->uses = ptr->uses->next;
956 return use_p;
958 if (ptr->vuses)
960 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
961 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
963 ptr->vuse_index = 0;
964 ptr->vuses = ptr->vuses->next;
966 return use_p;
968 if (ptr->mayuses)
970 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
971 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
973 ptr->mayuse_index = 0;
974 ptr->mayuses = ptr->mayuses->next;
976 return use_p;
978 if (ptr->phi_i < ptr->num_phi)
980 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
982 ptr->done = true;
983 return NULL_USE_OPERAND_P;
986 /* Get the next iterator def value for PTR. */
987 static inline def_operand_p
988 op_iter_next_def (ssa_op_iter *ptr)
990 def_operand_p def_p;
991 #ifdef ENABLE_CHECKING
992 gcc_assert (ptr->iter_type == ssa_op_iter_def);
993 #endif
994 if (ptr->defs)
996 def_p = DEF_OP_PTR (ptr->defs);
997 ptr->defs = ptr->defs->next;
998 return def_p;
1000 if (ptr->vdefs)
1002 def_p = VDEF_RESULT_PTR (ptr->vdefs);
1003 ptr->vdefs = ptr->vdefs->next;
1004 return def_p;
1006 ptr->done = true;
1007 return NULL_DEF_OPERAND_P;
1010 /* Get the next iterator tree value for PTR. */
1011 static inline tree
1012 op_iter_next_tree (ssa_op_iter *ptr)
1014 tree val;
1015 #ifdef ENABLE_CHECKING
1016 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
1017 #endif
1018 if (ptr->uses)
1020 val = USE_OP (ptr->uses);
1021 ptr->uses = ptr->uses->next;
1022 return val;
1024 if (ptr->vuses)
1026 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1027 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1029 ptr->vuse_index = 0;
1030 ptr->vuses = ptr->vuses->next;
1032 return val;
1034 if (ptr->mayuses)
1036 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1037 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1039 ptr->mayuse_index = 0;
1040 ptr->mayuses = ptr->mayuses->next;
1042 return val;
1044 if (ptr->defs)
1046 val = DEF_OP (ptr->defs);
1047 ptr->defs = ptr->defs->next;
1048 return val;
1050 if (ptr->vdefs)
1052 val = VDEF_RESULT (ptr->vdefs);
1053 ptr->vdefs = ptr->vdefs->next;
1054 return val;
1057 ptr->done = true;
1058 return NULL_TREE;
1063 /* This functions clears the iterator PTR, and marks it done. This is normally
1064 used to prevent warnings in the compile about might be uninitialized
1065 components. */
1067 static inline void
1068 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1070 ptr->defs = NULL;
1071 ptr->uses = NULL;
1072 ptr->vuses = NULL;
1073 ptr->vdefs = NULL;
1074 ptr->mayuses = NULL;
1075 ptr->iter_type = ssa_op_iter_none;
1076 ptr->phi_i = 0;
1077 ptr->num_phi = 0;
1078 ptr->phi_stmt = NULL_TREE;
1079 ptr->done = true;
1080 ptr->vuse_index = 0;
1081 ptr->mayuse_index = 0;
1084 /* Initialize the iterator PTR to the virtual defs in STMT. */
1085 static inline void
1086 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1088 #ifdef ENABLE_CHECKING
1089 gcc_assert (stmt_ann (stmt));
1090 #endif
1092 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1093 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1094 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1095 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1096 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1097 ptr->done = false;
1099 ptr->phi_i = 0;
1100 ptr->num_phi = 0;
1101 ptr->phi_stmt = NULL_TREE;
1102 ptr->vuse_index = 0;
1103 ptr->mayuse_index = 0;
1106 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1107 the first use. */
1108 static inline use_operand_p
1109 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1111 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1112 op_iter_init (ptr, stmt, flags);
1113 ptr->iter_type = ssa_op_iter_use;
1114 return op_iter_next_use (ptr);
1117 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1118 the first def. */
1119 static inline def_operand_p
1120 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1122 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1123 op_iter_init (ptr, stmt, flags);
1124 ptr->iter_type = ssa_op_iter_def;
1125 return op_iter_next_def (ptr);
1128 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1129 the first operand as a tree. */
1130 static inline tree
1131 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1133 op_iter_init (ptr, stmt, flags);
1134 ptr->iter_type = ssa_op_iter_tree;
1135 return op_iter_next_tree (ptr);
1138 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1139 KILL and DEF. */
1140 static inline void
1141 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1142 ssa_op_iter *ptr)
1144 #ifdef ENABLE_CHECKING
1145 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1146 #endif
1147 if (ptr->mayuses)
1149 *def = VDEF_RESULT_PTR (ptr->mayuses);
1150 *use = VDEF_VECT (ptr->mayuses);
1151 ptr->mayuses = ptr->mayuses->next;
1152 return;
1155 *def = NULL_DEF_OPERAND_P;
1156 *use = NULL;
1157 ptr->done = true;
1158 return;
1162 static inline void
1163 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1164 ssa_op_iter *ptr)
1166 vuse_vec_p vp;
1167 op_iter_next_vdef (&vp, def, ptr);
1168 if (vp != NULL)
1170 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1171 *use = VUSE_ELEMENT_PTR (*vp, 0);
1173 else
1174 *use = NULL_USE_OPERAND_P;
1177 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1178 in USE and DEF. */
1179 static inline void
1180 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1181 def_operand_p *def)
1183 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1185 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1186 ptr->iter_type = ssa_op_iter_vdef;
1187 op_iter_next_vdef (use, def, ptr);
1191 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1192 return NULL. */
1193 static inline tree
1194 single_ssa_tree_operand (tree stmt, int flags)
1196 tree var;
1197 ssa_op_iter iter;
1199 var = op_iter_init_tree (&iter, stmt, flags);
1200 if (op_iter_done (&iter))
1201 return NULL_TREE;
1202 op_iter_next_tree (&iter);
1203 if (op_iter_done (&iter))
1204 return var;
1205 return NULL_TREE;
1209 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1210 return NULL. */
1211 static inline use_operand_p
1212 single_ssa_use_operand (tree stmt, int flags)
1214 use_operand_p var;
1215 ssa_op_iter iter;
1217 var = op_iter_init_use (&iter, stmt, flags);
1218 if (op_iter_done (&iter))
1219 return NULL_USE_OPERAND_P;
1220 op_iter_next_use (&iter);
1221 if (op_iter_done (&iter))
1222 return var;
1223 return NULL_USE_OPERAND_P;
1228 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1229 return NULL. */
1230 static inline def_operand_p
1231 single_ssa_def_operand (tree stmt, int flags)
1233 def_operand_p var;
1234 ssa_op_iter iter;
1236 var = op_iter_init_def (&iter, stmt, flags);
1237 if (op_iter_done (&iter))
1238 return NULL_DEF_OPERAND_P;
1239 op_iter_next_def (&iter);
1240 if (op_iter_done (&iter))
1241 return var;
1242 return NULL_DEF_OPERAND_P;
1246 /* Return true if there are zero operands in STMT matching the type
1247 given in FLAGS. */
1248 static inline bool
1249 zero_ssa_operands (tree stmt, int flags)
1251 ssa_op_iter iter;
1253 op_iter_init_tree (&iter, stmt, flags);
1254 return op_iter_done (&iter);
1258 /* Return the number of operands matching FLAGS in STMT. */
1259 static inline int
1260 num_ssa_operands (tree stmt, int flags)
1262 ssa_op_iter iter;
1263 tree t;
1264 int num = 0;
1266 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1267 num++;
1268 return num;
1272 /* Delink all immediate_use information for STMT. */
1273 static inline void
1274 delink_stmt_imm_use (tree stmt)
1276 ssa_op_iter iter;
1277 use_operand_p use_p;
1279 if (ssa_operands_active ())
1280 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1281 delink_imm_use (use_p);
1285 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1286 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1287 static inline bool
1288 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1290 ssa_op_iter iter1, iter2;
1291 tree op1 = NULL_TREE;
1292 tree op2 = NULL_TREE;
1293 bool look1, look2;
1295 if (stmt1 == stmt2)
1296 return true;
1298 look1 = stmt1 && stmt_ann (stmt1);
1299 look2 = stmt2 && stmt_ann (stmt2);
1301 if (look1)
1303 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1304 if (!look2)
1305 return op_iter_done (&iter1);
1307 else
1308 clear_and_done_ssa_iter (&iter1);
1310 if (look2)
1312 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1313 if (!look1)
1314 return op_iter_done (&iter2);
1316 else
1317 clear_and_done_ssa_iter (&iter2);
1319 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1321 if (op1 != op2)
1322 return false;
1323 op1 = op_iter_next_tree (&iter1);
1324 op2 = op_iter_next_tree (&iter2);
1327 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1331 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1332 Otherwise return NULL_DEF_OPERAND_P. */
1333 static inline tree
1334 single_phi_def (tree stmt, int flags)
1336 tree def = PHI_RESULT (stmt);
1337 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1338 return def;
1339 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1340 return def;
1341 return NULL_TREE;
1344 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1345 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1346 static inline use_operand_p
1347 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1349 tree phi_def = PHI_RESULT (phi);
1350 int comp;
1352 clear_and_done_ssa_iter (ptr);
1353 ptr->done = false;
1355 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1357 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1359 /* If the PHI node doesn't the operand type we care about, we're done. */
1360 if ((flags & comp) == 0)
1362 ptr->done = true;
1363 return NULL_USE_OPERAND_P;
1366 ptr->phi_stmt = phi;
1367 ptr->num_phi = PHI_NUM_ARGS (phi);
1368 ptr->iter_type = ssa_op_iter_use;
1369 return op_iter_next_use (ptr);
1373 /* Start an iterator for a PHI definition. */
1375 static inline def_operand_p
1376 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1378 tree phi_def = PHI_RESULT (phi);
1379 int comp;
1381 clear_and_done_ssa_iter (ptr);
1382 ptr->done = false;
1384 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1386 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1388 /* If the PHI node doesn't the operand type we care about, we're done. */
1389 if ((flags & comp) == 0)
1391 ptr->done = true;
1392 return NULL_USE_OPERAND_P;
1395 ptr->iter_type = ssa_op_iter_def;
1396 /* The first call to op_iter_next_def will terminate the iterator since
1397 all the fields are NULL. Simply return the result here as the first and
1398 therefore only result. */
1399 return PHI_RESULT_PTR (phi);
1402 /* Return true is IMM has reached the end of the immediate use stmt list. */
1404 static inline bool
1405 end_imm_use_stmt_p (const imm_use_iterator *imm)
1407 return (imm->imm_use == imm->end_p);
1410 /* Finished the traverse of an immediate use stmt list IMM by removing the
1411 placeholder node from the list. */
1413 static inline void
1414 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1416 delink_imm_use (&(imm->iter_node));
1419 /* Immediate use traversal of uses within a stmt require that all the
1420 uses on a stmt be sequentially listed. This routine is used to build up
1421 this sequential list by adding USE_P to the end of the current list
1422 currently delimited by HEAD and LAST_P. The new LAST_P value is
1423 returned. */
1425 static inline use_operand_p
1426 move_use_after_head (use_operand_p use_p, use_operand_p head,
1427 use_operand_p last_p)
1429 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1430 /* Skip head when we find it. */
1431 if (use_p != head)
1433 /* If use_p is already linked in after last_p, continue. */
1434 if (last_p->next == use_p)
1435 last_p = use_p;
1436 else
1438 /* Delink from current location, and link in at last_p. */
1439 delink_imm_use (use_p);
1440 link_imm_use_to_list (use_p, last_p);
1441 last_p = use_p;
1444 return last_p;
1448 /* This routine will relink all uses with the same stmt as HEAD into the list
1449 immediately following HEAD for iterator IMM. */
1451 static inline void
1452 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1454 use_operand_p use_p;
1455 use_operand_p last_p = head;
1456 tree head_stmt = USE_STMT (head);
1457 tree use = USE_FROM_PTR (head);
1458 ssa_op_iter op_iter;
1459 int flag;
1461 /* Only look at virtual or real uses, depending on the type of HEAD. */
1462 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1464 if (TREE_CODE (head_stmt) == PHI_NODE)
1466 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1467 if (USE_FROM_PTR (use_p) == use)
1468 last_p = move_use_after_head (use_p, head, last_p);
1470 else
1472 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1473 if (USE_FROM_PTR (use_p) == use)
1474 last_p = move_use_after_head (use_p, head, last_p);
1476 /* Link iter node in after last_p. */
1477 if (imm->iter_node.prev != NULL)
1478 delink_imm_use (&imm->iter_node);
1479 link_imm_use_to_list (&(imm->iter_node), last_p);
1482 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1483 static inline tree
1484 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1486 gcc_assert (TREE_CODE (var) == SSA_NAME);
1488 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1489 imm->imm_use = imm->end_p->next;
1490 imm->next_imm_name = NULL_USE_OPERAND_P;
1492 /* iter_node is used as a marker within the immediate use list to indicate
1493 where the end of the current stmt's uses are. Initialize it to NULL
1494 stmt and use, which indicates a marker node. */
1495 imm->iter_node.prev = NULL_USE_OPERAND_P;
1496 imm->iter_node.next = NULL_USE_OPERAND_P;
1497 imm->iter_node.stmt = NULL_TREE;
1498 imm->iter_node.use = NULL_USE_OPERAND_P;
1500 if (end_imm_use_stmt_p (imm))
1501 return NULL_TREE;
1503 link_use_stmts_after (imm->imm_use, imm);
1505 return USE_STMT (imm->imm_use);
1508 /* Bump IMM to the next stmt which has a use of var. */
1510 static inline tree
1511 next_imm_use_stmt (imm_use_iterator *imm)
1513 imm->imm_use = imm->iter_node.next;
1514 if (end_imm_use_stmt_p (imm))
1516 if (imm->iter_node.prev != NULL)
1517 delink_imm_use (&imm->iter_node);
1518 return NULL_TREE;
1521 link_use_stmts_after (imm->imm_use, imm);
1522 return USE_STMT (imm->imm_use);
1525 /* This routine will return the first use on the stmt IMM currently refers
1526 to. */
1528 static inline use_operand_p
1529 first_imm_use_on_stmt (imm_use_iterator *imm)
1531 imm->next_imm_name = imm->imm_use->next;
1532 return imm->imm_use;
1535 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1537 static inline bool
1538 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1540 return (imm->imm_use == &(imm->iter_node));
1543 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1545 static inline use_operand_p
1546 next_imm_use_on_stmt (imm_use_iterator *imm)
1548 imm->imm_use = imm->next_imm_name;
1549 if (end_imm_use_on_stmt_p (imm))
1550 return NULL_USE_OPERAND_P;
1551 else
1553 imm->next_imm_name = imm->imm_use->next;
1554 return imm->imm_use;
1558 /* Return true if VAR cannot be modified by the program. */
1560 static inline bool
1561 unmodifiable_var_p (const_tree var)
1563 if (TREE_CODE (var) == SSA_NAME)
1564 var = SSA_NAME_VAR (var);
1566 if (MTAG_P (var))
1567 return false;
1569 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1572 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1574 static inline bool
1575 array_ref_contains_indirect_ref (const_tree ref)
1577 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1579 do {
1580 ref = TREE_OPERAND (ref, 0);
1581 } while (handled_component_p (ref));
1583 return TREE_CODE (ref) == INDIRECT_REF;
1586 /* Return true if REF, a handled component reference, has an ARRAY_REF
1587 somewhere in it. */
1589 static inline bool
1590 ref_contains_array_ref (const_tree ref)
1592 gcc_assert (handled_component_p (ref));
1594 do {
1595 if (TREE_CODE (ref) == ARRAY_REF)
1596 return true;
1597 ref = TREE_OPERAND (ref, 0);
1598 } while (handled_component_p (ref));
1600 return false;
1603 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1604 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1605 range is open-ended. Otherwise return false. */
1607 static inline bool
1608 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
1609 unsigned HOST_WIDE_INT size1,
1610 unsigned HOST_WIDE_INT pos2,
1611 unsigned HOST_WIDE_INT size2)
1613 if (pos1 >= pos2
1614 && (size2 == (unsigned HOST_WIDE_INT)-1
1615 || pos1 < (pos2 + size2)))
1616 return true;
1617 if (pos2 >= pos1
1618 && (size1 == (unsigned HOST_WIDE_INT)-1
1619 || pos2 < (pos1 + size1)))
1620 return true;
1622 return false;
1625 /* Return the memory tag associated with symbol SYM. */
1627 static inline tree
1628 symbol_mem_tag (tree sym)
1630 tree tag = get_var_ann (sym)->symbol_mem_tag;
1632 #if defined ENABLE_CHECKING
1633 if (tag)
1634 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1635 #endif
1637 return tag;
1641 /* Set the memory tag associated with symbol SYM. */
1643 static inline void
1644 set_symbol_mem_tag (tree sym, tree tag)
1646 #if defined ENABLE_CHECKING
1647 if (tag)
1648 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1649 #endif
1651 get_var_ann (sym)->symbol_mem_tag = tag;
1654 /* Get the value handle of EXPR. This is the only correct way to get
1655 the value handle for a "thing". If EXPR does not have a value
1656 handle associated, it returns NULL_TREE.
1657 NB: If EXPR is min_invariant, this function is *required* to return
1658 EXPR. */
1660 static inline tree
1661 get_value_handle (tree expr)
1663 if (TREE_CODE (expr) == SSA_NAME)
1664 return SSA_NAME_VALUE (expr);
1665 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1666 || TREE_CODE (expr) == CONSTRUCTOR)
1668 tree_ann_common_t ann = tree_common_ann (expr);
1669 return ((ann) ? ann->value_handle : NULL_TREE);
1671 else if (is_gimple_min_invariant (expr))
1672 return expr;
1673 else if (EXPR_P (expr))
1675 tree_ann_common_t ann = tree_common_ann (expr);
1676 return ((ann) ? ann->value_handle : NULL_TREE);
1678 else
1679 gcc_unreachable ();
1682 /* Accessor to tree-ssa-operands.c caches. */
1683 static inline struct ssa_operands *
1684 gimple_ssa_operands (const struct function *fun)
1686 return &fun->gimple_df->ssa_operands;
1689 /* Map describing reference statistics for function FN. */
1690 static inline struct mem_ref_stats_d *
1691 gimple_mem_ref_stats (const struct function *fn)
1693 return &fn->gimple_df->mem_ref_stats;
1696 /* Given an edge_var_map V, return the PHI arg definition. */
1698 static inline tree
1699 redirect_edge_var_map_def (edge_var_map *v)
1701 return v->def;
1704 /* Given an edge_var_map V, return the PHI result. */
1706 static inline tree
1707 redirect_edge_var_map_result (edge_var_map *v)
1709 return v->result;
1713 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1714 in function cfun. */
1716 static inline tree
1717 make_ssa_name (tree var, tree stmt)
1719 return make_ssa_name_fn (cfun, var, stmt);
1722 #endif /* _TREE_FLOW_INLINE_H */