Fix 50988 testsuite failures
[official-gcc.git] / gcc / reload.c
blob896e8de9ff78a7ab1c7885cd37bcc440cc48c84f
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "output.h"
110 #include "function.h"
111 #include "params.h"
112 #include "target.h"
113 #include "ira.h"
115 /* True if X is a constant that can be forced into the constant pool.
116 MODE is the mode of the operand, or VOIDmode if not known. */
117 #define CONST_POOL_OK_P(MODE, X) \
118 ((MODE) != VOIDmode \
119 && CONSTANT_P (X) \
120 && GET_CODE (X) != HIGH \
121 && !targetm.cannot_force_const_mem (MODE, X))
123 /* True if C is a non-empty register class that has too few registers
124 to be safely used as a reload target class. */
126 static inline bool
127 small_register_class_p (reg_class_t rclass)
129 return (reg_class_size [(int) rclass] == 1
130 || (reg_class_size [(int) rclass] >= 1
131 && targetm.class_likely_spilled_p (rclass)));
135 /* All reloads of the current insn are recorded here. See reload.h for
136 comments. */
137 int n_reloads;
138 struct reload rld[MAX_RELOADS];
140 /* All the "earlyclobber" operands of the current insn
141 are recorded here. */
142 int n_earlyclobbers;
143 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
145 int reload_n_operands;
147 /* Replacing reloads.
149 If `replace_reloads' is nonzero, then as each reload is recorded
150 an entry is made for it in the table `replacements'.
151 Then later `subst_reloads' can look through that table and
152 perform all the replacements needed. */
154 /* Nonzero means record the places to replace. */
155 static int replace_reloads;
157 /* Each replacement is recorded with a structure like this. */
158 struct replacement
160 rtx *where; /* Location to store in */
161 int what; /* which reload this is for */
162 enum machine_mode mode; /* mode it must have */
165 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
167 /* Number of replacements currently recorded. */
168 static int n_replacements;
170 /* Used to track what is modified by an operand. */
171 struct decomposition
173 int reg_flag; /* Nonzero if referencing a register. */
174 int safe; /* Nonzero if this can't conflict with anything. */
175 rtx base; /* Base address for MEM. */
176 HOST_WIDE_INT start; /* Starting offset or register number. */
177 HOST_WIDE_INT end; /* Ending offset or register number. */
180 #ifdef SECONDARY_MEMORY_NEEDED
182 /* Save MEMs needed to copy from one class of registers to another. One MEM
183 is used per mode, but normally only one or two modes are ever used.
185 We keep two versions, before and after register elimination. The one
186 after register elimination is record separately for each operand. This
187 is done in case the address is not valid to be sure that we separately
188 reload each. */
190 static rtx secondary_memlocs[NUM_MACHINE_MODES];
191 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
192 static int secondary_memlocs_elim_used = 0;
193 #endif
195 /* The instruction we are doing reloads for;
196 so we can test whether a register dies in it. */
197 static rtx this_insn;
199 /* Nonzero if this instruction is a user-specified asm with operands. */
200 static int this_insn_is_asm;
202 /* If hard_regs_live_known is nonzero,
203 we can tell which hard regs are currently live,
204 at least enough to succeed in choosing dummy reloads. */
205 static int hard_regs_live_known;
207 /* Indexed by hard reg number,
208 element is nonnegative if hard reg has been spilled.
209 This vector is passed to `find_reloads' as an argument
210 and is not changed here. */
211 static short *static_reload_reg_p;
213 /* Set to 1 in subst_reg_equivs if it changes anything. */
214 static int subst_reg_equivs_changed;
216 /* On return from push_reload, holds the reload-number for the OUT
217 operand, which can be different for that from the input operand. */
218 static int output_reloadnum;
220 /* Compare two RTX's. */
221 #define MATCHES(x, y) \
222 (x == y || (x != 0 && (REG_P (x) \
223 ? REG_P (y) && REGNO (x) == REGNO (y) \
224 : rtx_equal_p (x, y) && ! side_effects_p (x))))
226 /* Indicates if two reloads purposes are for similar enough things that we
227 can merge their reloads. */
228 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
229 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
230 || ((when1) == (when2) && (op1) == (op2)) \
231 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
232 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
233 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
234 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
235 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
237 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
238 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
239 ((when1) != (when2) \
240 || ! ((op1) == (op2) \
241 || (when1) == RELOAD_FOR_INPUT \
242 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
243 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
245 /* If we are going to reload an address, compute the reload type to
246 use. */
247 #define ADDR_TYPE(type) \
248 ((type) == RELOAD_FOR_INPUT_ADDRESS \
249 ? RELOAD_FOR_INPADDR_ADDRESS \
250 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
251 ? RELOAD_FOR_OUTADDR_ADDRESS \
252 : (type)))
254 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
255 enum machine_mode, enum reload_type,
256 enum insn_code *, secondary_reload_info *);
257 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
258 int, unsigned int);
259 static void push_replacement (rtx *, int, enum machine_mode);
260 static void dup_replacements (rtx *, rtx *);
261 static void combine_reloads (void);
262 static int find_reusable_reload (rtx *, rtx, enum reg_class,
263 enum reload_type, int, int);
264 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
265 enum machine_mode, reg_class_t, int, int);
266 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
267 static struct decomposition decompose (rtx);
268 static int immune_p (rtx, rtx, struct decomposition);
269 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
270 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
271 int *);
272 static rtx make_memloc (rtx, int);
273 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
274 addr_space_t, rtx *);
275 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
276 int, enum reload_type, int, rtx);
277 static rtx subst_reg_equivs (rtx, rtx);
278 static rtx subst_indexed_address (rtx);
279 static void update_auto_inc_notes (rtx, int, int);
280 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
281 enum rtx_code, enum rtx_code, rtx *,
282 int, enum reload_type,int, rtx);
283 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
284 enum machine_mode, int,
285 enum reload_type, int);
286 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
287 int, rtx, int *);
288 static void copy_replacements_1 (rtx *, rtx *, int);
289 static int find_inc_amount (rtx, rtx);
290 static int refers_to_mem_for_reload_p (rtx);
291 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
292 rtx, rtx *);
294 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
295 list yet. */
297 static void
298 push_reg_equiv_alt_mem (int regno, rtx mem)
300 rtx it;
302 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
303 if (rtx_equal_p (XEXP (it, 0), mem))
304 return;
306 reg_equiv_alt_mem_list (regno)
307 = alloc_EXPR_LIST (REG_EQUIV, mem,
308 reg_equiv_alt_mem_list (regno));
311 /* Determine if any secondary reloads are needed for loading (if IN_P is
312 nonzero) or storing (if IN_P is zero) X to or from a reload register of
313 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
314 are needed, push them.
316 Return the reload number of the secondary reload we made, or -1 if
317 we didn't need one. *PICODE is set to the insn_code to use if we do
318 need a secondary reload. */
320 static int
321 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
322 enum reg_class reload_class,
323 enum machine_mode reload_mode, enum reload_type type,
324 enum insn_code *picode, secondary_reload_info *prev_sri)
326 enum reg_class rclass = NO_REGS;
327 enum reg_class scratch_class;
328 enum machine_mode mode = reload_mode;
329 enum insn_code icode = CODE_FOR_nothing;
330 enum insn_code t_icode = CODE_FOR_nothing;
331 enum reload_type secondary_type;
332 int s_reload, t_reload = -1;
333 const char *scratch_constraint;
334 char letter;
335 secondary_reload_info sri;
337 if (type == RELOAD_FOR_INPUT_ADDRESS
338 || type == RELOAD_FOR_OUTPUT_ADDRESS
339 || type == RELOAD_FOR_INPADDR_ADDRESS
340 || type == RELOAD_FOR_OUTADDR_ADDRESS)
341 secondary_type = type;
342 else
343 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
345 *picode = CODE_FOR_nothing;
347 /* If X is a paradoxical SUBREG, use the inner value to determine both the
348 mode and object being reloaded. */
349 if (paradoxical_subreg_p (x))
351 x = SUBREG_REG (x);
352 reload_mode = GET_MODE (x);
355 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
356 is still a pseudo-register by now, it *must* have an equivalent MEM
357 but we don't want to assume that), use that equivalent when seeing if
358 a secondary reload is needed since whether or not a reload is needed
359 might be sensitive to the form of the MEM. */
361 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
362 && reg_equiv_mem (REGNO (x)))
363 x = reg_equiv_mem (REGNO (x));
365 sri.icode = CODE_FOR_nothing;
366 sri.prev_sri = prev_sri;
367 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
368 reload_mode, &sri);
369 icode = (enum insn_code) sri.icode;
371 /* If we don't need any secondary registers, done. */
372 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
373 return -1;
375 if (rclass != NO_REGS)
376 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
377 reload_mode, type, &t_icode, &sri);
379 /* If we will be using an insn, the secondary reload is for a
380 scratch register. */
382 if (icode != CODE_FOR_nothing)
384 /* If IN_P is nonzero, the reload register will be the output in
385 operand 0. If IN_P is zero, the reload register will be the input
386 in operand 1. Outputs should have an initial "=", which we must
387 skip. */
389 /* ??? It would be useful to be able to handle only two, or more than
390 three, operands, but for now we can only handle the case of having
391 exactly three: output, input and one temp/scratch. */
392 gcc_assert (insn_data[(int) icode].n_operands == 3);
394 /* ??? We currently have no way to represent a reload that needs
395 an icode to reload from an intermediate tertiary reload register.
396 We should probably have a new field in struct reload to tag a
397 chain of scratch operand reloads onto. */
398 gcc_assert (rclass == NO_REGS);
400 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
401 gcc_assert (*scratch_constraint == '=');
402 scratch_constraint++;
403 if (*scratch_constraint == '&')
404 scratch_constraint++;
405 letter = *scratch_constraint;
406 scratch_class = (letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
408 scratch_constraint));
410 rclass = scratch_class;
411 mode = insn_data[(int) icode].operand[2].mode;
414 /* This case isn't valid, so fail. Reload is allowed to use the same
415 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
416 in the case of a secondary register, we actually need two different
417 registers for correct code. We fail here to prevent the possibility of
418 silently generating incorrect code later.
420 The convention is that secondary input reloads are valid only if the
421 secondary_class is different from class. If you have such a case, you
422 can not use secondary reloads, you must work around the problem some
423 other way.
425 Allow this when a reload_in/out pattern is being used. I.e. assume
426 that the generated code handles this case. */
428 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
429 || t_icode != CODE_FOR_nothing);
431 /* See if we can reuse an existing secondary reload. */
432 for (s_reload = 0; s_reload < n_reloads; s_reload++)
433 if (rld[s_reload].secondary_p
434 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
435 || reg_class_subset_p (rld[s_reload].rclass, rclass))
436 && ((in_p && rld[s_reload].inmode == mode)
437 || (! in_p && rld[s_reload].outmode == mode))
438 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
439 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
440 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
441 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
442 && (small_register_class_p (rclass)
443 || targetm.small_register_classes_for_mode_p (VOIDmode))
444 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
445 opnum, rld[s_reload].opnum))
447 if (in_p)
448 rld[s_reload].inmode = mode;
449 if (! in_p)
450 rld[s_reload].outmode = mode;
452 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
453 rld[s_reload].rclass = rclass;
455 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
456 rld[s_reload].optional &= optional;
457 rld[s_reload].secondary_p = 1;
458 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
459 opnum, rld[s_reload].opnum))
460 rld[s_reload].when_needed = RELOAD_OTHER;
462 break;
465 if (s_reload == n_reloads)
467 #ifdef SECONDARY_MEMORY_NEEDED
468 /* If we need a memory location to copy between the two reload regs,
469 set it up now. Note that we do the input case before making
470 the reload and the output case after. This is due to the
471 way reloads are output. */
473 if (in_p && icode == CODE_FOR_nothing
474 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
476 get_secondary_mem (x, reload_mode, opnum, type);
478 /* We may have just added new reloads. Make sure we add
479 the new reload at the end. */
480 s_reload = n_reloads;
482 #endif
484 /* We need to make a new secondary reload for this register class. */
485 rld[s_reload].in = rld[s_reload].out = 0;
486 rld[s_reload].rclass = rclass;
488 rld[s_reload].inmode = in_p ? mode : VOIDmode;
489 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
490 rld[s_reload].reg_rtx = 0;
491 rld[s_reload].optional = optional;
492 rld[s_reload].inc = 0;
493 /* Maybe we could combine these, but it seems too tricky. */
494 rld[s_reload].nocombine = 1;
495 rld[s_reload].in_reg = 0;
496 rld[s_reload].out_reg = 0;
497 rld[s_reload].opnum = opnum;
498 rld[s_reload].when_needed = secondary_type;
499 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
500 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
501 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
502 rld[s_reload].secondary_out_icode
503 = ! in_p ? t_icode : CODE_FOR_nothing;
504 rld[s_reload].secondary_p = 1;
506 n_reloads++;
508 #ifdef SECONDARY_MEMORY_NEEDED
509 if (! in_p && icode == CODE_FOR_nothing
510 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
511 get_secondary_mem (x, mode, opnum, type);
512 #endif
515 *picode = icode;
516 return s_reload;
519 /* If a secondary reload is needed, return its class. If both an intermediate
520 register and a scratch register is needed, we return the class of the
521 intermediate register. */
522 reg_class_t
523 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
524 rtx x)
526 enum insn_code icode;
527 secondary_reload_info sri;
529 sri.icode = CODE_FOR_nothing;
530 sri.prev_sri = NULL;
531 rclass
532 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
533 icode = (enum insn_code) sri.icode;
535 /* If there are no secondary reloads at all, we return NO_REGS.
536 If an intermediate register is needed, we return its class. */
537 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
538 return rclass;
540 /* No intermediate register is needed, but we have a special reload
541 pattern, which we assume for now needs a scratch register. */
542 return scratch_reload_class (icode);
545 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
546 three operands, verify that operand 2 is an output operand, and return
547 its register class.
548 ??? We'd like to be able to handle any pattern with at least 2 operands,
549 for zero or more scratch registers, but that needs more infrastructure. */
550 enum reg_class
551 scratch_reload_class (enum insn_code icode)
553 const char *scratch_constraint;
554 char scratch_letter;
555 enum reg_class rclass;
557 gcc_assert (insn_data[(int) icode].n_operands == 3);
558 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
559 gcc_assert (*scratch_constraint == '=');
560 scratch_constraint++;
561 if (*scratch_constraint == '&')
562 scratch_constraint++;
563 scratch_letter = *scratch_constraint;
564 if (scratch_letter == 'r')
565 return GENERAL_REGS;
566 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
567 scratch_constraint);
568 gcc_assert (rclass != NO_REGS);
569 return rclass;
572 #ifdef SECONDARY_MEMORY_NEEDED
574 /* Return a memory location that will be used to copy X in mode MODE.
575 If we haven't already made a location for this mode in this insn,
576 call find_reloads_address on the location being returned. */
579 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
580 int opnum, enum reload_type type)
582 rtx loc;
583 int mem_valid;
585 /* By default, if MODE is narrower than a word, widen it to a word.
586 This is required because most machines that require these memory
587 locations do not support short load and stores from all registers
588 (e.g., FP registers). */
590 #ifdef SECONDARY_MEMORY_NEEDED_MODE
591 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
592 #else
593 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
594 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
595 #endif
597 /* If we already have made a MEM for this operand in MODE, return it. */
598 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
599 return secondary_memlocs_elim[(int) mode][opnum];
601 /* If this is the first time we've tried to get a MEM for this mode,
602 allocate a new one. `something_changed' in reload will get set
603 by noticing that the frame size has changed. */
605 if (secondary_memlocs[(int) mode] == 0)
607 #ifdef SECONDARY_MEMORY_NEEDED_RTX
608 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
609 #else
610 secondary_memlocs[(int) mode]
611 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
612 #endif
615 /* Get a version of the address doing any eliminations needed. If that
616 didn't give us a new MEM, make a new one if it isn't valid. */
618 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
619 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
620 MEM_ADDR_SPACE (loc));
622 if (! mem_valid && loc == secondary_memlocs[(int) mode])
623 loc = copy_rtx (loc);
625 /* The only time the call below will do anything is if the stack
626 offset is too large. In that case IND_LEVELS doesn't matter, so we
627 can just pass a zero. Adjust the type to be the address of the
628 corresponding object. If the address was valid, save the eliminated
629 address. If it wasn't valid, we need to make a reload each time, so
630 don't save it. */
632 if (! mem_valid)
634 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
635 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
636 : RELOAD_OTHER);
638 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
639 opnum, type, 0, 0);
642 secondary_memlocs_elim[(int) mode][opnum] = loc;
643 if (secondary_memlocs_elim_used <= (int)mode)
644 secondary_memlocs_elim_used = (int)mode + 1;
645 return loc;
648 /* Clear any secondary memory locations we've made. */
650 void
651 clear_secondary_mem (void)
653 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
655 #endif /* SECONDARY_MEMORY_NEEDED */
658 /* Find the largest class which has at least one register valid in
659 mode INNER, and which for every such register, that register number
660 plus N is also valid in OUTER (if in range) and is cheap to move
661 into REGNO. Such a class must exist. */
663 static enum reg_class
664 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
665 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
666 unsigned int dest_regno ATTRIBUTE_UNUSED)
668 int best_cost = -1;
669 int rclass;
670 int regno;
671 enum reg_class best_class = NO_REGS;
672 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
673 unsigned int best_size = 0;
674 int cost;
676 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
678 int bad = 0;
679 int good = 0;
680 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
681 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
683 if (HARD_REGNO_MODE_OK (regno, inner))
685 good = 1;
686 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
687 || ! HARD_REGNO_MODE_OK (regno + n, outer))
688 bad = 1;
692 if (bad || !good)
693 continue;
694 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
696 if ((reg_class_size[rclass] > best_size
697 && (best_cost < 0 || best_cost >= cost))
698 || best_cost > cost)
700 best_class = (enum reg_class) rclass;
701 best_size = reg_class_size[rclass];
702 best_cost = register_move_cost (outer, (enum reg_class) rclass,
703 dest_class);
707 gcc_assert (best_size != 0);
709 return best_class;
712 /* Return the number of a previously made reload that can be combined with
713 a new one, or n_reloads if none of the existing reloads can be used.
714 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
715 push_reload, they determine the kind of the new reload that we try to
716 combine. P_IN points to the corresponding value of IN, which can be
717 modified by this function.
718 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
720 static int
721 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
722 enum reload_type type, int opnum, int dont_share)
724 rtx in = *p_in;
725 int i;
726 /* We can't merge two reloads if the output of either one is
727 earlyclobbered. */
729 if (earlyclobber_operand_p (out))
730 return n_reloads;
732 /* We can use an existing reload if the class is right
733 and at least one of IN and OUT is a match
734 and the other is at worst neutral.
735 (A zero compared against anything is neutral.)
737 For targets with small register classes, don't use existing reloads
738 unless they are for the same thing since that can cause us to need
739 more reload registers than we otherwise would. */
741 for (i = 0; i < n_reloads; i++)
742 if ((reg_class_subset_p (rclass, rld[i].rclass)
743 || reg_class_subset_p (rld[i].rclass, rclass))
744 /* If the existing reload has a register, it must fit our class. */
745 && (rld[i].reg_rtx == 0
746 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
747 true_regnum (rld[i].reg_rtx)))
748 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
749 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
750 || (out != 0 && MATCHES (rld[i].out, out)
751 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
752 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
753 && (small_register_class_p (rclass)
754 || targetm.small_register_classes_for_mode_p (VOIDmode))
755 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
756 return i;
758 /* Reloading a plain reg for input can match a reload to postincrement
759 that reg, since the postincrement's value is the right value.
760 Likewise, it can match a preincrement reload, since we regard
761 the preincrementation as happening before any ref in this insn
762 to that register. */
763 for (i = 0; i < n_reloads; i++)
764 if ((reg_class_subset_p (rclass, rld[i].rclass)
765 || reg_class_subset_p (rld[i].rclass, rclass))
766 /* If the existing reload has a register, it must fit our
767 class. */
768 && (rld[i].reg_rtx == 0
769 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
770 true_regnum (rld[i].reg_rtx)))
771 && out == 0 && rld[i].out == 0 && rld[i].in != 0
772 && ((REG_P (in)
773 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
774 && MATCHES (XEXP (rld[i].in, 0), in))
775 || (REG_P (rld[i].in)
776 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
777 && MATCHES (XEXP (in, 0), rld[i].in)))
778 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
779 && (small_register_class_p (rclass)
780 || targetm.small_register_classes_for_mode_p (VOIDmode))
781 && MERGABLE_RELOADS (type, rld[i].when_needed,
782 opnum, rld[i].opnum))
784 /* Make sure reload_in ultimately has the increment,
785 not the plain register. */
786 if (REG_P (in))
787 *p_in = rld[i].in;
788 return i;
790 return n_reloads;
793 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
794 expression. MODE is the mode that X will be used in. OUTPUT is true if
795 the function is invoked for the output part of an enclosing reload. */
797 static bool
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
800 rtx inner;
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
804 return false;
806 inner = SUBREG_REG (x);
808 /* If INNER is a constant or PLUS, then INNER will need reloading. */
809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810 return true;
812 /* If INNER is not a hard register, then INNER will not need reloading. */
813 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
814 return false;
816 /* If INNER is not ok for MODE, then INNER will need reloading. */
817 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
818 return true;
820 /* If this is for an output, and the outer part is a word or smaller,
821 INNER is larger than a word and the number of registers in INNER is
822 not the same as the number of words in INNER, then INNER will need
823 reloading (with an in-out reload). */
824 return (output
825 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
827 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
828 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
831 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
832 requiring an extra reload register. The caller has already found that
833 IN contains some reference to REGNO, so check that we can produce the
834 new value in a single step. E.g. if we have
835 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
836 instruction that adds one to a register, this should succeed.
837 However, if we have something like
838 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
839 needs to be loaded into a register first, we need a separate reload
840 register.
841 Such PLUS reloads are generated by find_reload_address_part.
842 The out-of-range PLUS expressions are usually introduced in the instruction
843 patterns by register elimination and substituting pseudos without a home
844 by their function-invariant equivalences. */
845 static int
846 can_reload_into (rtx in, int regno, enum machine_mode mode)
848 rtx dst, test_insn;
849 int r = 0;
850 struct recog_data save_recog_data;
852 /* For matching constraints, we often get notional input reloads where
853 we want to use the original register as the reload register. I.e.
854 technically this is a non-optional input-output reload, but IN is
855 already a valid register, and has been chosen as the reload register.
856 Speed this up, since it trivially works. */
857 if (REG_P (in))
858 return 1;
860 /* To test MEMs properly, we'd have to take into account all the reloads
861 that are already scheduled, which can become quite complicated.
862 And since we've already handled address reloads for this MEM, it
863 should always succeed anyway. */
864 if (MEM_P (in))
865 return 1;
867 /* If we can make a simple SET insn that does the job, everything should
868 be fine. */
869 dst = gen_rtx_REG (mode, regno);
870 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
871 save_recog_data = recog_data;
872 if (recog_memoized (test_insn) >= 0)
874 extract_insn (test_insn);
875 r = constrain_operands (1);
877 recog_data = save_recog_data;
878 return r;
881 /* Record one reload that needs to be performed.
882 IN is an rtx saying where the data are to be found before this instruction.
883 OUT says where they must be stored after the instruction.
884 (IN is zero for data not read, and OUT is zero for data not written.)
885 INLOC and OUTLOC point to the places in the instructions where
886 IN and OUT were found.
887 If IN and OUT are both nonzero, it means the same register must be used
888 to reload both IN and OUT.
890 RCLASS is a register class required for the reloaded data.
891 INMODE is the machine mode that the instruction requires
892 for the reg that replaces IN and OUTMODE is likewise for OUT.
894 If IN is zero, then OUT's location and mode should be passed as
895 INLOC and INMODE.
897 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
899 OPTIONAL nonzero means this reload does not need to be performed:
900 it can be discarded if that is more convenient.
902 OPNUM and TYPE say what the purpose of this reload is.
904 The return value is the reload-number for this reload.
906 If both IN and OUT are nonzero, in some rare cases we might
907 want to make two separate reloads. (Actually we never do this now.)
908 Therefore, the reload-number for OUT is stored in
909 output_reloadnum when we return; the return value applies to IN.
910 Usually (presently always), when IN and OUT are nonzero,
911 the two reload-numbers are equal, but the caller should be careful to
912 distinguish them. */
915 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
916 enum reg_class rclass, enum machine_mode inmode,
917 enum machine_mode outmode, int strict_low, int optional,
918 int opnum, enum reload_type type)
920 int i;
921 int dont_share = 0;
922 int dont_remove_subreg = 0;
923 #ifdef LIMIT_RELOAD_CLASS
924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 #endif
926 int secondary_in_reload = -1, secondary_out_reload = -1;
927 enum insn_code secondary_in_icode = CODE_FOR_nothing;
928 enum insn_code secondary_out_icode = CODE_FOR_nothing;
930 /* INMODE and/or OUTMODE could be VOIDmode if no mode
931 has been specified for the operand. In that case,
932 use the operand's mode as the mode to reload. */
933 if (inmode == VOIDmode && in != 0)
934 inmode = GET_MODE (in);
935 if (outmode == VOIDmode && out != 0)
936 outmode = GET_MODE (out);
938 /* If find_reloads and friends until now missed to replace a pseudo
939 with a constant of reg_equiv_constant something went wrong
940 beforehand.
941 Note that it can't simply be done here if we missed it earlier
942 since the constant might need to be pushed into the literal pool
943 and the resulting memref would probably need further
944 reloading. */
945 if (in != 0 && REG_P (in))
947 int regno = REGNO (in);
949 gcc_assert (regno < FIRST_PSEUDO_REGISTER
950 || reg_renumber[regno] >= 0
951 || reg_equiv_constant (regno) == NULL_RTX);
954 /* reg_equiv_constant only contains constants which are obviously
955 not appropriate as destination. So if we would need to replace
956 the destination pseudo with a constant we are in real
957 trouble. */
958 if (out != 0 && REG_P (out))
960 int regno = REGNO (out);
962 gcc_assert (regno < FIRST_PSEUDO_REGISTER
963 || reg_renumber[regno] >= 0
964 || reg_equiv_constant (regno) == NULL_RTX);
967 /* If we have a read-write operand with an address side-effect,
968 change either IN or OUT so the side-effect happens only once. */
969 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
970 switch (GET_CODE (XEXP (in, 0)))
972 case POST_INC: case POST_DEC: case POST_MODIFY:
973 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
974 break;
976 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
977 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
978 break;
980 default:
981 break;
984 /* If we are reloading a (SUBREG constant ...), really reload just the
985 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
986 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
987 a pseudo and hence will become a MEM) with M1 wider than M2 and the
988 register is a pseudo, also reload the inside expression.
989 For machines that extend byte loads, do this for any SUBREG of a pseudo
990 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
991 M2 is an integral mode that gets extended when loaded.
992 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
993 where either M1 is not valid for R or M2 is wider than a word but we
994 only need one register to store an M2-sized quantity in R.
995 (However, if OUT is nonzero, we need to reload the reg *and*
996 the subreg, so do nothing here, and let following statement handle it.)
998 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
999 we can't handle it here because CONST_INT does not indicate a mode.
1001 Similarly, we must reload the inside expression if we have a
1002 STRICT_LOW_PART (presumably, in == out in this case).
1004 Also reload the inner expression if it does not require a secondary
1005 reload but the SUBREG does.
1007 Finally, reload the inner expression if it is a register that is in
1008 the class whose registers cannot be referenced in a different size
1009 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1010 cannot reload just the inside since we might end up with the wrong
1011 register class. But if it is inside a STRICT_LOW_PART, we have
1012 no choice, so we hope we do get the right register class there. */
1014 if (in != 0 && GET_CODE (in) == SUBREG
1015 && (subreg_lowpart_p (in) || strict_low)
1016 #ifdef CANNOT_CHANGE_MODE_CLASS
1017 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1018 #endif
1019 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1020 && (CONSTANT_P (SUBREG_REG (in))
1021 || GET_CODE (SUBREG_REG (in)) == PLUS
1022 || strict_low
1023 || (((REG_P (SUBREG_REG (in))
1024 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1025 || MEM_P (SUBREG_REG (in)))
1026 && ((GET_MODE_PRECISION (inmode)
1027 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1028 #ifdef LOAD_EXTEND_OP
1029 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 <= UNITS_PER_WORD)
1032 && (GET_MODE_PRECISION (inmode)
1033 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1034 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1035 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1036 #endif
1037 #ifdef WORD_REGISTER_OPERATIONS
1038 || ((GET_MODE_PRECISION (inmode)
1039 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1040 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1041 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1042 / UNITS_PER_WORD)))
1043 #endif
1045 || (REG_P (SUBREG_REG (in))
1046 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1047 /* The case where out is nonzero
1048 is handled differently in the following statement. */
1049 && (out == 0 || subreg_lowpart_p (in))
1050 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1051 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1052 > UNITS_PER_WORD)
1053 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1054 / UNITS_PER_WORD)
1055 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1056 [GET_MODE (SUBREG_REG (in))]))
1057 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1058 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1059 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1060 SUBREG_REG (in))
1061 == NO_REGS))
1062 #ifdef CANNOT_CHANGE_MODE_CLASS
1063 || (REG_P (SUBREG_REG (in))
1064 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1065 && REG_CANNOT_CHANGE_MODE_P
1066 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1067 #endif
1070 #ifdef LIMIT_RELOAD_CLASS
1071 in_subreg_loc = inloc;
1072 #endif
1073 inloc = &SUBREG_REG (in);
1074 in = *inloc;
1075 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1076 if (MEM_P (in))
1077 /* This is supposed to happen only for paradoxical subregs made by
1078 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1079 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1080 #endif
1081 inmode = GET_MODE (in);
1084 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1085 where M1 is not valid for R if it was not handled by the code above.
1087 Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0.
1090 However, we must reload the inner reg *as well as* the subreg in
1091 that case. */
1093 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1095 enum reg_class in_class = rclass;
1097 if (REG_P (SUBREG_REG (in)))
1098 in_class
1099 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1100 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1101 GET_MODE (SUBREG_REG (in)),
1102 SUBREG_BYTE (in),
1103 GET_MODE (in)),
1104 REGNO (SUBREG_REG (in)));
1106 /* This relies on the fact that emit_reload_insns outputs the
1107 instructions for input reloads of type RELOAD_OTHER in the same
1108 order as the reloads. Thus if the outer reload is also of type
1109 RELOAD_OTHER, we are guaranteed that this inner reload will be
1110 output before the outer reload. */
1111 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1112 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1113 dont_remove_subreg = 1;
1116 /* Similarly for paradoxical and problematical SUBREGs on the output.
1117 Note that there is no reason we need worry about the previous value
1118 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1119 entitled to clobber it all (except in the case of a word mode subreg
1120 or of a STRICT_LOW_PART, in that latter case the constraint should
1121 label it input-output.) */
1122 if (out != 0 && GET_CODE (out) == SUBREG
1123 && (subreg_lowpart_p (out) || strict_low)
1124 #ifdef CANNOT_CHANGE_MODE_CLASS
1125 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1126 #endif
1127 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1128 && (CONSTANT_P (SUBREG_REG (out))
1129 || strict_low
1130 || (((REG_P (SUBREG_REG (out))
1131 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1132 || MEM_P (SUBREG_REG (out)))
1133 && ((GET_MODE_PRECISION (outmode)
1134 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1135 #ifdef WORD_REGISTER_OPERATIONS
1136 || ((GET_MODE_PRECISION (outmode)
1137 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1138 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1139 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1140 / UNITS_PER_WORD)))
1141 #endif
1143 || (REG_P (SUBREG_REG (out))
1144 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1145 /* The case of a word mode subreg
1146 is handled differently in the following statement. */
1147 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1148 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1149 > UNITS_PER_WORD))
1150 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1151 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1152 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #ifdef CANNOT_CHANGE_MODE_CLASS
1156 || (REG_P (SUBREG_REG (out))
1157 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1158 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1159 GET_MODE (SUBREG_REG (out)),
1160 outmode))
1161 #endif
1164 #ifdef LIMIT_RELOAD_CLASS
1165 out_subreg_loc = outloc;
1166 #endif
1167 outloc = &SUBREG_REG (out);
1168 out = *outloc;
1169 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1170 gcc_assert (!MEM_P (out)
1171 || GET_MODE_SIZE (GET_MODE (out))
1172 <= GET_MODE_SIZE (outmode));
1173 #endif
1174 outmode = GET_MODE (out);
1177 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1178 where either M1 is not valid for R or M2 is wider than a word but we
1179 only need one register to store an M2-sized quantity in R.
1181 However, we must reload the inner reg *as well as* the subreg in
1182 that case and the inner reg is an in-out reload. */
1184 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1186 enum reg_class in_out_class
1187 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1188 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1189 GET_MODE (SUBREG_REG (out)),
1190 SUBREG_BYTE (out),
1191 GET_MODE (out)),
1192 REGNO (SUBREG_REG (out)));
1194 /* This relies on the fact that emit_reload_insns outputs the
1195 instructions for output reloads of type RELOAD_OTHER in reverse
1196 order of the reloads. Thus if the outer reload is also of type
1197 RELOAD_OTHER, we are guaranteed that this inner reload will be
1198 output after the outer reload. */
1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1201 0, 0, opnum, RELOAD_OTHER);
1202 dont_remove_subreg = 1;
1205 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1206 if (in != 0 && out != 0 && MEM_P (out)
1207 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1208 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1209 dont_share = 1;
1211 /* If IN is a SUBREG of a hard register, make a new REG. This
1212 simplifies some of the cases below. */
1214 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1215 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1216 && ! dont_remove_subreg)
1217 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1219 /* Similarly for OUT. */
1220 if (out != 0 && GET_CODE (out) == SUBREG
1221 && REG_P (SUBREG_REG (out))
1222 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1223 && ! dont_remove_subreg)
1224 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1226 /* Narrow down the class of register wanted if that is
1227 desirable on this machine for efficiency. */
1229 reg_class_t preferred_class = rclass;
1231 if (in != 0)
1232 preferred_class = targetm.preferred_reload_class (in, rclass);
1234 /* Output reloads may need analogous treatment, different in detail. */
1235 if (out != 0)
1236 preferred_class
1237 = targetm.preferred_output_reload_class (out, preferred_class);
1239 /* Discard what the target said if we cannot do it. */
1240 if (preferred_class != NO_REGS
1241 || (optional && type == RELOAD_FOR_OUTPUT))
1242 rclass = (enum reg_class) preferred_class;
1245 /* Make sure we use a class that can handle the actual pseudo
1246 inside any subreg. For example, on the 386, QImode regs
1247 can appear within SImode subregs. Although GENERAL_REGS
1248 can handle SImode, QImode needs a smaller class. */
1249 #ifdef LIMIT_RELOAD_CLASS
1250 if (in_subreg_loc)
1251 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1252 else if (in != 0 && GET_CODE (in) == SUBREG)
1253 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1255 if (out_subreg_loc)
1256 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1257 if (out != 0 && GET_CODE (out) == SUBREG)
1258 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1259 #endif
1261 /* Verify that this class is at least possible for the mode that
1262 is specified. */
1263 if (this_insn_is_asm)
1265 enum machine_mode mode;
1266 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1267 mode = inmode;
1268 else
1269 mode = outmode;
1270 if (mode == VOIDmode)
1272 error_for_asm (this_insn, "cannot reload integer constant "
1273 "operand in %<asm%>");
1274 mode = word_mode;
1275 if (in != 0)
1276 inmode = word_mode;
1277 if (out != 0)
1278 outmode = word_mode;
1280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1281 if (HARD_REGNO_MODE_OK (i, mode)
1282 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1283 break;
1284 if (i == FIRST_PSEUDO_REGISTER)
1286 error_for_asm (this_insn, "impossible register constraint "
1287 "in %<asm%>");
1288 /* Avoid further trouble with this insn. */
1289 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1290 /* We used to continue here setting class to ALL_REGS, but it triggers
1291 sanity check on i386 for:
1292 void foo(long double d)
1294 asm("" :: "a" (d));
1296 Returning zero here ought to be safe as we take care in
1297 find_reloads to not process the reloads when instruction was
1298 replaced by USE. */
1300 return 0;
1304 /* Optional output reloads are always OK even if we have no register class,
1305 since the function of these reloads is only to have spill_reg_store etc.
1306 set, so that the storing insn can be deleted later. */
1307 gcc_assert (rclass != NO_REGS
1308 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1310 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1312 if (i == n_reloads)
1314 /* See if we need a secondary reload register to move between CLASS
1315 and IN or CLASS and OUT. Get the icode and push any required reloads
1316 needed for each of them if so. */
1318 if (in != 0)
1319 secondary_in_reload
1320 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1321 &secondary_in_icode, NULL);
1322 if (out != 0 && GET_CODE (out) != SCRATCH)
1323 secondary_out_reload
1324 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1325 type, &secondary_out_icode, NULL);
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
1332 if (in != 0
1333 && (REG_P (in)
1334 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1335 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1336 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1337 rclass, inmode))
1338 get_secondary_mem (in, inmode, opnum, type);
1339 #endif
1341 i = n_reloads;
1342 rld[i].in = in;
1343 rld[i].out = out;
1344 rld[i].rclass = rclass;
1345 rld[i].inmode = inmode;
1346 rld[i].outmode = outmode;
1347 rld[i].reg_rtx = 0;
1348 rld[i].optional = optional;
1349 rld[i].inc = 0;
1350 rld[i].nocombine = 0;
1351 rld[i].in_reg = inloc ? *inloc : 0;
1352 rld[i].out_reg = outloc ? *outloc : 0;
1353 rld[i].opnum = opnum;
1354 rld[i].when_needed = type;
1355 rld[i].secondary_in_reload = secondary_in_reload;
1356 rld[i].secondary_out_reload = secondary_out_reload;
1357 rld[i].secondary_in_icode = secondary_in_icode;
1358 rld[i].secondary_out_icode = secondary_out_icode;
1359 rld[i].secondary_p = 0;
1361 n_reloads++;
1363 #ifdef SECONDARY_MEMORY_NEEDED
1364 if (out != 0
1365 && (REG_P (out)
1366 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1367 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1368 && SECONDARY_MEMORY_NEEDED (rclass,
1369 REGNO_REG_CLASS (reg_or_subregno (out)),
1370 outmode))
1371 get_secondary_mem (out, outmode, opnum, type);
1372 #endif
1374 else
1376 /* We are reusing an existing reload,
1377 but we may have additional information for it.
1378 For example, we may now have both IN and OUT
1379 while the old one may have just one of them. */
1381 /* The modes can be different. If they are, we want to reload in
1382 the larger mode, so that the value is valid for both modes. */
1383 if (inmode != VOIDmode
1384 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1385 rld[i].inmode = inmode;
1386 if (outmode != VOIDmode
1387 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1388 rld[i].outmode = outmode;
1389 if (in != 0)
1391 rtx in_reg = inloc ? *inloc : 0;
1392 /* If we merge reloads for two distinct rtl expressions that
1393 are identical in content, there might be duplicate address
1394 reloads. Remove the extra set now, so that if we later find
1395 that we can inherit this reload, we can get rid of the
1396 address reloads altogether.
1398 Do not do this if both reloads are optional since the result
1399 would be an optional reload which could potentially leave
1400 unresolved address replacements.
1402 It is not sufficient to call transfer_replacements since
1403 choose_reload_regs will remove the replacements for address
1404 reloads of inherited reloads which results in the same
1405 problem. */
1406 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1407 && ! (rld[i].optional && optional))
1409 /* We must keep the address reload with the lower operand
1410 number alive. */
1411 if (opnum > rld[i].opnum)
1413 remove_address_replacements (in);
1414 in = rld[i].in;
1415 in_reg = rld[i].in_reg;
1417 else
1418 remove_address_replacements (rld[i].in);
1420 /* When emitting reloads we don't necessarily look at the in-
1421 and outmode, but also directly at the operands (in and out).
1422 So we can't simply overwrite them with whatever we have found
1423 for this (to-be-merged) reload, we have to "merge" that too.
1424 Reusing another reload already verified that we deal with the
1425 same operands, just possibly in different modes. So we
1426 overwrite the operands only when the new mode is larger.
1427 See also PR33613. */
1428 if (!rld[i].in
1429 || GET_MODE_SIZE (GET_MODE (in))
1430 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1431 rld[i].in = in;
1432 if (!rld[i].in_reg
1433 || (in_reg
1434 && GET_MODE_SIZE (GET_MODE (in_reg))
1435 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1436 rld[i].in_reg = in_reg;
1438 if (out != 0)
1440 if (!rld[i].out
1441 || (out
1442 && GET_MODE_SIZE (GET_MODE (out))
1443 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1444 rld[i].out = out;
1445 if (outloc
1446 && (!rld[i].out_reg
1447 || GET_MODE_SIZE (GET_MODE (*outloc))
1448 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1449 rld[i].out_reg = *outloc;
1451 if (reg_class_subset_p (rclass, rld[i].rclass))
1452 rld[i].rclass = rclass;
1453 rld[i].optional &= optional;
1454 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1455 opnum, rld[i].opnum))
1456 rld[i].when_needed = RELOAD_OTHER;
1457 rld[i].opnum = MIN (rld[i].opnum, opnum);
1460 /* If the ostensible rtx being reloaded differs from the rtx found
1461 in the location to substitute, this reload is not safe to combine
1462 because we cannot reliably tell whether it appears in the insn. */
1464 if (in != 0 && in != *inloc)
1465 rld[i].nocombine = 1;
1467 #if 0
1468 /* This was replaced by changes in find_reloads_address_1 and the new
1469 function inc_for_reload, which go with a new meaning of reload_inc. */
1471 /* If this is an IN/OUT reload in an insn that sets the CC,
1472 it must be for an autoincrement. It doesn't work to store
1473 the incremented value after the insn because that would clobber the CC.
1474 So we must do the increment of the value reloaded from,
1475 increment it, store it back, then decrement again. */
1476 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1478 out = 0;
1479 rld[i].out = 0;
1480 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1481 /* If we did not find a nonzero amount-to-increment-by,
1482 that contradicts the belief that IN is being incremented
1483 in an address in this insn. */
1484 gcc_assert (rld[i].inc != 0);
1486 #endif
1488 /* If we will replace IN and OUT with the reload-reg,
1489 record where they are located so that substitution need
1490 not do a tree walk. */
1492 if (replace_reloads)
1494 if (inloc != 0)
1496 struct replacement *r = &replacements[n_replacements++];
1497 r->what = i;
1498 r->where = inloc;
1499 r->mode = inmode;
1501 if (outloc != 0 && outloc != inloc)
1503 struct replacement *r = &replacements[n_replacements++];
1504 r->what = i;
1505 r->where = outloc;
1506 r->mode = outmode;
1510 /* If this reload is just being introduced and it has both
1511 an incoming quantity and an outgoing quantity that are
1512 supposed to be made to match, see if either one of the two
1513 can serve as the place to reload into.
1515 If one of them is acceptable, set rld[i].reg_rtx
1516 to that one. */
1518 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1520 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1521 inmode, outmode,
1522 rld[i].rclass, i,
1523 earlyclobber_operand_p (out));
1525 /* If the outgoing register already contains the same value
1526 as the incoming one, we can dispense with loading it.
1527 The easiest way to tell the caller that is to give a phony
1528 value for the incoming operand (same as outgoing one). */
1529 if (rld[i].reg_rtx == out
1530 && (REG_P (in) || CONSTANT_P (in))
1531 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1532 static_reload_reg_p, i, inmode))
1533 rld[i].in = out;
1536 /* If this is an input reload and the operand contains a register that
1537 dies in this insn and is used nowhere else, see if it is the right class
1538 to be used for this reload. Use it if so. (This occurs most commonly
1539 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1540 this if it is also an output reload that mentions the register unless
1541 the output is a SUBREG that clobbers an entire register.
1543 Note that the operand might be one of the spill regs, if it is a
1544 pseudo reg and we are in a block where spilling has not taken place.
1545 But if there is no spilling in this block, that is OK.
1546 An explicitly used hard reg cannot be a spill reg. */
1548 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1550 rtx note;
1551 int regno;
1552 enum machine_mode rel_mode = inmode;
1554 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1555 rel_mode = outmode;
1557 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1558 if (REG_NOTE_KIND (note) == REG_DEAD
1559 && REG_P (XEXP (note, 0))
1560 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1561 && reg_mentioned_p (XEXP (note, 0), in)
1562 /* Check that a former pseudo is valid; see find_dummy_reload. */
1563 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1564 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1565 ORIGINAL_REGNO (XEXP (note, 0)))
1566 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1567 && ! refers_to_regno_for_reload_p (regno,
1568 end_hard_regno (rel_mode,
1569 regno),
1570 PATTERN (this_insn), inloc)
1571 /* If this is also an output reload, IN cannot be used as
1572 the reload register if it is set in this insn unless IN
1573 is also OUT. */
1574 && (out == 0 || in == out
1575 || ! hard_reg_set_here_p (regno,
1576 end_hard_regno (rel_mode, regno),
1577 PATTERN (this_insn)))
1578 /* ??? Why is this code so different from the previous?
1579 Is there any simple coherent way to describe the two together?
1580 What's going on here. */
1581 && (in != out
1582 || (GET_CODE (in) == SUBREG
1583 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1584 / UNITS_PER_WORD)
1585 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1586 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1587 /* Make sure the operand fits in the reg that dies. */
1588 && (GET_MODE_SIZE (rel_mode)
1589 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1590 && HARD_REGNO_MODE_OK (regno, inmode)
1591 && HARD_REGNO_MODE_OK (regno, outmode))
1593 unsigned int offs;
1594 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1595 hard_regno_nregs[regno][outmode]);
1597 for (offs = 0; offs < nregs; offs++)
1598 if (fixed_regs[regno + offs]
1599 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1600 regno + offs))
1601 break;
1603 if (offs == nregs
1604 && (! (refers_to_regno_for_reload_p
1605 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1606 || can_reload_into (in, regno, inmode)))
1608 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1609 break;
1614 if (out)
1615 output_reloadnum = i;
1617 return i;
1620 /* Record an additional place we must replace a value
1621 for which we have already recorded a reload.
1622 RELOADNUM is the value returned by push_reload
1623 when the reload was recorded.
1624 This is used in insn patterns that use match_dup. */
1626 static void
1627 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1629 if (replace_reloads)
1631 struct replacement *r = &replacements[n_replacements++];
1632 r->what = reloadnum;
1633 r->where = loc;
1634 r->mode = mode;
1638 /* Duplicate any replacement we have recorded to apply at
1639 location ORIG_LOC to also be performed at DUP_LOC.
1640 This is used in insn patterns that use match_dup. */
1642 static void
1643 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1645 int i, n = n_replacements;
1647 for (i = 0; i < n; i++)
1649 struct replacement *r = &replacements[i];
1650 if (r->where == orig_loc)
1651 push_replacement (dup_loc, r->what, r->mode);
1655 /* Transfer all replacements that used to be in reload FROM to be in
1656 reload TO. */
1658 void
1659 transfer_replacements (int to, int from)
1661 int i;
1663 for (i = 0; i < n_replacements; i++)
1664 if (replacements[i].what == from)
1665 replacements[i].what = to;
1668 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1669 or a subpart of it. If we have any replacements registered for IN_RTX,
1670 cancel the reloads that were supposed to load them.
1671 Return nonzero if we canceled any reloads. */
1673 remove_address_replacements (rtx in_rtx)
1675 int i, j;
1676 char reload_flags[MAX_RELOADS];
1677 int something_changed = 0;
1679 memset (reload_flags, 0, sizeof reload_flags);
1680 for (i = 0, j = 0; i < n_replacements; i++)
1682 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1683 reload_flags[replacements[i].what] |= 1;
1684 else
1686 replacements[j++] = replacements[i];
1687 reload_flags[replacements[i].what] |= 2;
1690 /* Note that the following store must be done before the recursive calls. */
1691 n_replacements = j;
1693 for (i = n_reloads - 1; i >= 0; i--)
1695 if (reload_flags[i] == 1)
1697 deallocate_reload_reg (i);
1698 remove_address_replacements (rld[i].in);
1699 rld[i].in = 0;
1700 something_changed = 1;
1703 return something_changed;
1706 /* If there is only one output reload, and it is not for an earlyclobber
1707 operand, try to combine it with a (logically unrelated) input reload
1708 to reduce the number of reload registers needed.
1710 This is safe if the input reload does not appear in
1711 the value being output-reloaded, because this implies
1712 it is not needed any more once the original insn completes.
1714 If that doesn't work, see we can use any of the registers that
1715 die in this insn as a reload register. We can if it is of the right
1716 class and does not appear in the value being output-reloaded. */
1718 static void
1719 combine_reloads (void)
1721 int i, regno;
1722 int output_reload = -1;
1723 int secondary_out = -1;
1724 rtx note;
1726 /* Find the output reload; return unless there is exactly one
1727 and that one is mandatory. */
1729 for (i = 0; i < n_reloads; i++)
1730 if (rld[i].out != 0)
1732 if (output_reload >= 0)
1733 return;
1734 output_reload = i;
1737 if (output_reload < 0 || rld[output_reload].optional)
1738 return;
1740 /* An input-output reload isn't combinable. */
1742 if (rld[output_reload].in != 0)
1743 return;
1745 /* If this reload is for an earlyclobber operand, we can't do anything. */
1746 if (earlyclobber_operand_p (rld[output_reload].out))
1747 return;
1749 /* If there is a reload for part of the address of this operand, we would
1750 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1751 its life to the point where doing this combine would not lower the
1752 number of spill registers needed. */
1753 for (i = 0; i < n_reloads; i++)
1754 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1755 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1756 && rld[i].opnum == rld[output_reload].opnum)
1757 return;
1759 /* Check each input reload; can we combine it? */
1761 for (i = 0; i < n_reloads; i++)
1762 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1763 /* Life span of this reload must not extend past main insn. */
1764 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1765 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1766 && rld[i].when_needed != RELOAD_OTHER
1767 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1768 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1769 [(int) rld[output_reload].outmode])
1770 && rld[i].inc == 0
1771 && rld[i].reg_rtx == 0
1772 #ifdef SECONDARY_MEMORY_NEEDED
1773 /* Don't combine two reloads with different secondary
1774 memory locations. */
1775 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1776 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1777 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1778 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1779 #endif
1780 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1781 ? (rld[i].rclass == rld[output_reload].rclass)
1782 : (reg_class_subset_p (rld[i].rclass,
1783 rld[output_reload].rclass)
1784 || reg_class_subset_p (rld[output_reload].rclass,
1785 rld[i].rclass)))
1786 && (MATCHES (rld[i].in, rld[output_reload].out)
1787 /* Args reversed because the first arg seems to be
1788 the one that we imagine being modified
1789 while the second is the one that might be affected. */
1790 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1791 rld[i].in)
1792 /* However, if the input is a register that appears inside
1793 the output, then we also can't share.
1794 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1795 If the same reload reg is used for both reg 69 and the
1796 result to be stored in memory, then that result
1797 will clobber the address of the memory ref. */
1798 && ! (REG_P (rld[i].in)
1799 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1800 rld[output_reload].out))))
1801 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1802 rld[i].when_needed != RELOAD_FOR_INPUT)
1803 && (reg_class_size[(int) rld[i].rclass]
1804 || targetm.small_register_classes_for_mode_p (VOIDmode))
1805 /* We will allow making things slightly worse by combining an
1806 input and an output, but no worse than that. */
1807 && (rld[i].when_needed == RELOAD_FOR_INPUT
1808 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1810 int j;
1812 /* We have found a reload to combine with! */
1813 rld[i].out = rld[output_reload].out;
1814 rld[i].out_reg = rld[output_reload].out_reg;
1815 rld[i].outmode = rld[output_reload].outmode;
1816 /* Mark the old output reload as inoperative. */
1817 rld[output_reload].out = 0;
1818 /* The combined reload is needed for the entire insn. */
1819 rld[i].when_needed = RELOAD_OTHER;
1820 /* If the output reload had a secondary reload, copy it. */
1821 if (rld[output_reload].secondary_out_reload != -1)
1823 rld[i].secondary_out_reload
1824 = rld[output_reload].secondary_out_reload;
1825 rld[i].secondary_out_icode
1826 = rld[output_reload].secondary_out_icode;
1829 #ifdef SECONDARY_MEMORY_NEEDED
1830 /* Copy any secondary MEM. */
1831 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1833 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1834 #endif
1835 /* If required, minimize the register class. */
1836 if (reg_class_subset_p (rld[output_reload].rclass,
1837 rld[i].rclass))
1838 rld[i].rclass = rld[output_reload].rclass;
1840 /* Transfer all replacements from the old reload to the combined. */
1841 for (j = 0; j < n_replacements; j++)
1842 if (replacements[j].what == output_reload)
1843 replacements[j].what = i;
1845 return;
1848 /* If this insn has only one operand that is modified or written (assumed
1849 to be the first), it must be the one corresponding to this reload. It
1850 is safe to use anything that dies in this insn for that output provided
1851 that it does not occur in the output (we already know it isn't an
1852 earlyclobber. If this is an asm insn, give up. */
1854 if (INSN_CODE (this_insn) == -1)
1855 return;
1857 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1858 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1859 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1860 return;
1862 /* See if some hard register that dies in this insn and is not used in
1863 the output is the right class. Only works if the register we pick
1864 up can fully hold our output reload. */
1865 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1866 if (REG_NOTE_KIND (note) == REG_DEAD
1867 && REG_P (XEXP (note, 0))
1868 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1869 rld[output_reload].out)
1870 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1871 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1872 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1873 regno)
1874 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1875 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1876 /* Ensure that a secondary or tertiary reload for this output
1877 won't want this register. */
1878 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1879 || (!(TEST_HARD_REG_BIT
1880 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1881 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1882 || !(TEST_HARD_REG_BIT
1883 (reg_class_contents[(int) rld[secondary_out].rclass],
1884 regno)))))
1885 && !fixed_regs[regno]
1886 /* Check that a former pseudo is valid; see find_dummy_reload. */
1887 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1888 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1889 ORIGINAL_REGNO (XEXP (note, 0)))
1890 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1892 rld[output_reload].reg_rtx
1893 = gen_rtx_REG (rld[output_reload].outmode, regno);
1894 return;
1898 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1899 See if one of IN and OUT is a register that may be used;
1900 this is desirable since a spill-register won't be needed.
1901 If so, return the register rtx that proves acceptable.
1903 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1904 RCLASS is the register class required for the reload.
1906 If FOR_REAL is >= 0, it is the number of the reload,
1907 and in some cases when it can be discovered that OUT doesn't need
1908 to be computed, clear out rld[FOR_REAL].out.
1910 If FOR_REAL is -1, this should not be done, because this call
1911 is just to see if a register can be found, not to find and install it.
1913 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1914 puts an additional constraint on being able to use IN for OUT since
1915 IN must not appear elsewhere in the insn (it is assumed that IN itself
1916 is safe from the earlyclobber). */
1918 static rtx
1919 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1920 enum machine_mode inmode, enum machine_mode outmode,
1921 reg_class_t rclass, int for_real, int earlyclobber)
1923 rtx in = real_in;
1924 rtx out = real_out;
1925 int in_offset = 0;
1926 int out_offset = 0;
1927 rtx value = 0;
1929 /* If operands exceed a word, we can't use either of them
1930 unless they have the same size. */
1931 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1932 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1933 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1934 return 0;
1936 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1937 respectively refers to a hard register. */
1939 /* Find the inside of any subregs. */
1940 while (GET_CODE (out) == SUBREG)
1942 if (REG_P (SUBREG_REG (out))
1943 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1944 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1945 GET_MODE (SUBREG_REG (out)),
1946 SUBREG_BYTE (out),
1947 GET_MODE (out));
1948 out = SUBREG_REG (out);
1950 while (GET_CODE (in) == SUBREG)
1952 if (REG_P (SUBREG_REG (in))
1953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1954 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1955 GET_MODE (SUBREG_REG (in)),
1956 SUBREG_BYTE (in),
1957 GET_MODE (in));
1958 in = SUBREG_REG (in);
1961 /* Narrow down the reg class, the same way push_reload will;
1962 otherwise we might find a dummy now, but push_reload won't. */
1964 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1965 if (preferred_class != NO_REGS)
1966 rclass = (enum reg_class) preferred_class;
1969 /* See if OUT will do. */
1970 if (REG_P (out)
1971 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1973 unsigned int regno = REGNO (out) + out_offset;
1974 unsigned int nwords = hard_regno_nregs[regno][outmode];
1975 rtx saved_rtx;
1977 /* When we consider whether the insn uses OUT,
1978 ignore references within IN. They don't prevent us
1979 from copying IN into OUT, because those refs would
1980 move into the insn that reloads IN.
1982 However, we only ignore IN in its role as this reload.
1983 If the insn uses IN elsewhere and it contains OUT,
1984 that counts. We can't be sure it's the "same" operand
1985 so it might not go through this reload. */
1986 saved_rtx = *inloc;
1987 *inloc = const0_rtx;
1989 if (regno < FIRST_PSEUDO_REGISTER
1990 && HARD_REGNO_MODE_OK (regno, outmode)
1991 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1992 PATTERN (this_insn), outloc))
1994 unsigned int i;
1996 for (i = 0; i < nwords; i++)
1997 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1998 regno + i))
1999 break;
2001 if (i == nwords)
2003 if (REG_P (real_out))
2004 value = real_out;
2005 else
2006 value = gen_rtx_REG (outmode, regno);
2010 *inloc = saved_rtx;
2013 /* Consider using IN if OUT was not acceptable
2014 or if OUT dies in this insn (like the quotient in a divmod insn).
2015 We can't use IN unless it is dies in this insn,
2016 which means we must know accurately which hard regs are live.
2017 Also, the result can't go in IN if IN is used within OUT,
2018 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2019 if (hard_regs_live_known
2020 && REG_P (in)
2021 && REGNO (in) < FIRST_PSEUDO_REGISTER
2022 && (value == 0
2023 || find_reg_note (this_insn, REG_UNUSED, real_out))
2024 && find_reg_note (this_insn, REG_DEAD, real_in)
2025 && !fixed_regs[REGNO (in)]
2026 && HARD_REGNO_MODE_OK (REGNO (in),
2027 /* The only case where out and real_out might
2028 have different modes is where real_out
2029 is a subreg, and in that case, out
2030 has a real mode. */
2031 (GET_MODE (out) != VOIDmode
2032 ? GET_MODE (out) : outmode))
2033 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2034 /* However only do this if we can be sure that this input
2035 operand doesn't correspond with an uninitialized pseudo.
2036 global can assign some hardreg to it that is the same as
2037 the one assigned to a different, also live pseudo (as it
2038 can ignore the conflict). We must never introduce writes
2039 to such hardregs, as they would clobber the other live
2040 pseudo. See PR 20973. */
2041 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2042 ORIGINAL_REGNO (in))
2043 /* Similarly, only do this if we can be sure that the death
2044 note is still valid. global can assign some hardreg to
2045 the pseudo referenced in the note and simultaneously a
2046 subword of this hardreg to a different, also live pseudo,
2047 because only another subword of the hardreg is actually
2048 used in the insn. This cannot happen if the pseudo has
2049 been assigned exactly one hardreg. See PR 33732. */
2050 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2052 unsigned int regno = REGNO (in) + in_offset;
2053 unsigned int nwords = hard_regno_nregs[regno][inmode];
2055 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2056 && ! hard_reg_set_here_p (regno, regno + nwords,
2057 PATTERN (this_insn))
2058 && (! earlyclobber
2059 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2060 PATTERN (this_insn), inloc)))
2062 unsigned int i;
2064 for (i = 0; i < nwords; i++)
2065 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2066 regno + i))
2067 break;
2069 if (i == nwords)
2071 /* If we were going to use OUT as the reload reg
2072 and changed our mind, it means OUT is a dummy that
2073 dies here. So don't bother copying value to it. */
2074 if (for_real >= 0 && value == real_out)
2075 rld[for_real].out = 0;
2076 if (REG_P (real_in))
2077 value = real_in;
2078 else
2079 value = gen_rtx_REG (inmode, regno);
2084 return value;
2087 /* This page contains subroutines used mainly for determining
2088 whether the IN or an OUT of a reload can serve as the
2089 reload register. */
2091 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2094 earlyclobber_operand_p (rtx x)
2096 int i;
2098 for (i = 0; i < n_earlyclobbers; i++)
2099 if (reload_earlyclobbers[i] == x)
2100 return 1;
2102 return 0;
2105 /* Return 1 if expression X alters a hard reg in the range
2106 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2107 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2108 X should be the body of an instruction. */
2110 static int
2111 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2113 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2115 rtx op0 = SET_DEST (x);
2117 while (GET_CODE (op0) == SUBREG)
2118 op0 = SUBREG_REG (op0);
2119 if (REG_P (op0))
2121 unsigned int r = REGNO (op0);
2123 /* See if this reg overlaps range under consideration. */
2124 if (r < end_regno
2125 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2126 return 1;
2129 else if (GET_CODE (x) == PARALLEL)
2131 int i = XVECLEN (x, 0) - 1;
2133 for (; i >= 0; i--)
2134 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2135 return 1;
2138 return 0;
2141 /* Return 1 if ADDR is a valid memory address for mode MODE
2142 in address space AS, and check that each pseudo reg has the
2143 proper kind of hard reg. */
2146 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2147 rtx addr, addr_space_t as)
2149 #ifdef GO_IF_LEGITIMATE_ADDRESS
2150 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2151 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2152 return 0;
2154 win:
2155 return 1;
2156 #else
2157 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2158 #endif
2161 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2162 if they are the same hard reg, and has special hacks for
2163 autoincrement and autodecrement.
2164 This is specifically intended for find_reloads to use
2165 in determining whether two operands match.
2166 X is the operand whose number is the lower of the two.
2168 The value is 2 if Y contains a pre-increment that matches
2169 a non-incrementing address in X. */
2171 /* ??? To be completely correct, we should arrange to pass
2172 for X the output operand and for Y the input operand.
2173 For now, we assume that the output operand has the lower number
2174 because that is natural in (SET output (... input ...)). */
2177 operands_match_p (rtx x, rtx y)
2179 int i;
2180 RTX_CODE code = GET_CODE (x);
2181 const char *fmt;
2182 int success_2;
2184 if (x == y)
2185 return 1;
2186 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2187 && (REG_P (y) || (GET_CODE (y) == SUBREG
2188 && REG_P (SUBREG_REG (y)))))
2190 int j;
2192 if (code == SUBREG)
2194 i = REGNO (SUBREG_REG (x));
2195 if (i >= FIRST_PSEUDO_REGISTER)
2196 goto slow;
2197 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2198 GET_MODE (SUBREG_REG (x)),
2199 SUBREG_BYTE (x),
2200 GET_MODE (x));
2202 else
2203 i = REGNO (x);
2205 if (GET_CODE (y) == SUBREG)
2207 j = REGNO (SUBREG_REG (y));
2208 if (j >= FIRST_PSEUDO_REGISTER)
2209 goto slow;
2210 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2211 GET_MODE (SUBREG_REG (y)),
2212 SUBREG_BYTE (y),
2213 GET_MODE (y));
2215 else
2216 j = REGNO (y);
2218 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2219 multiple hard register group of scalar integer registers, so that
2220 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2221 register. */
2222 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2223 && SCALAR_INT_MODE_P (GET_MODE (x))
2224 && i < FIRST_PSEUDO_REGISTER)
2225 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2226 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2227 && SCALAR_INT_MODE_P (GET_MODE (y))
2228 && j < FIRST_PSEUDO_REGISTER)
2229 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2231 return i == j;
2233 /* If two operands must match, because they are really a single
2234 operand of an assembler insn, then two postincrements are invalid
2235 because the assembler insn would increment only once.
2236 On the other hand, a postincrement matches ordinary indexing
2237 if the postincrement is the output operand. */
2238 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2239 return operands_match_p (XEXP (x, 0), y);
2240 /* Two preincrements are invalid
2241 because the assembler insn would increment only once.
2242 On the other hand, a preincrement matches ordinary indexing
2243 if the preincrement is the input operand.
2244 In this case, return 2, since some callers need to do special
2245 things when this happens. */
2246 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2247 || GET_CODE (y) == PRE_MODIFY)
2248 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2250 slow:
2252 /* Now we have disposed of all the cases in which different rtx codes
2253 can match. */
2254 if (code != GET_CODE (y))
2255 return 0;
2257 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2258 if (GET_MODE (x) != GET_MODE (y))
2259 return 0;
2261 /* MEMs refering to different address space are not equivalent. */
2262 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2263 return 0;
2265 switch (code)
2267 case CONST_INT:
2268 case CONST_DOUBLE:
2269 case CONST_FIXED:
2270 return 0;
2272 case LABEL_REF:
2273 return XEXP (x, 0) == XEXP (y, 0);
2274 case SYMBOL_REF:
2275 return XSTR (x, 0) == XSTR (y, 0);
2277 default:
2278 break;
2281 /* Compare the elements. If any pair of corresponding elements
2282 fail to match, return 0 for the whole things. */
2284 success_2 = 0;
2285 fmt = GET_RTX_FORMAT (code);
2286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2288 int val, j;
2289 switch (fmt[i])
2291 case 'w':
2292 if (XWINT (x, i) != XWINT (y, i))
2293 return 0;
2294 break;
2296 case 'i':
2297 if (XINT (x, i) != XINT (y, i))
2298 return 0;
2299 break;
2301 case 'e':
2302 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2303 if (val == 0)
2304 return 0;
2305 /* If any subexpression returns 2,
2306 we should return 2 if we are successful. */
2307 if (val == 2)
2308 success_2 = 1;
2309 break;
2311 case '0':
2312 break;
2314 case 'E':
2315 if (XVECLEN (x, i) != XVECLEN (y, i))
2316 return 0;
2317 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2319 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2320 if (val == 0)
2321 return 0;
2322 if (val == 2)
2323 success_2 = 1;
2325 break;
2327 /* It is believed that rtx's at this level will never
2328 contain anything but integers and other rtx's,
2329 except for within LABEL_REFs and SYMBOL_REFs. */
2330 default:
2331 gcc_unreachable ();
2334 return 1 + success_2;
2337 /* Describe the range of registers or memory referenced by X.
2338 If X is a register, set REG_FLAG and put the first register
2339 number into START and the last plus one into END.
2340 If X is a memory reference, put a base address into BASE
2341 and a range of integer offsets into START and END.
2342 If X is pushing on the stack, we can assume it causes no trouble,
2343 so we set the SAFE field. */
2345 static struct decomposition
2346 decompose (rtx x)
2348 struct decomposition val;
2349 int all_const = 0;
2351 memset (&val, 0, sizeof (val));
2353 switch (GET_CODE (x))
2355 case MEM:
2357 rtx base = NULL_RTX, offset = 0;
2358 rtx addr = XEXP (x, 0);
2360 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2361 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2363 val.base = XEXP (addr, 0);
2364 val.start = -GET_MODE_SIZE (GET_MODE (x));
2365 val.end = GET_MODE_SIZE (GET_MODE (x));
2366 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2367 return val;
2370 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2372 if (GET_CODE (XEXP (addr, 1)) == PLUS
2373 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2374 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2376 val.base = XEXP (addr, 0);
2377 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2378 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2379 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2380 return val;
2384 if (GET_CODE (addr) == CONST)
2386 addr = XEXP (addr, 0);
2387 all_const = 1;
2389 if (GET_CODE (addr) == PLUS)
2391 if (CONSTANT_P (XEXP (addr, 0)))
2393 base = XEXP (addr, 1);
2394 offset = XEXP (addr, 0);
2396 else if (CONSTANT_P (XEXP (addr, 1)))
2398 base = XEXP (addr, 0);
2399 offset = XEXP (addr, 1);
2403 if (offset == 0)
2405 base = addr;
2406 offset = const0_rtx;
2408 if (GET_CODE (offset) == CONST)
2409 offset = XEXP (offset, 0);
2410 if (GET_CODE (offset) == PLUS)
2412 if (CONST_INT_P (XEXP (offset, 0)))
2414 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2415 offset = XEXP (offset, 0);
2417 else if (CONST_INT_P (XEXP (offset, 1)))
2419 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2420 offset = XEXP (offset, 1);
2422 else
2424 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2425 offset = const0_rtx;
2428 else if (!CONST_INT_P (offset))
2430 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2431 offset = const0_rtx;
2434 if (all_const && GET_CODE (base) == PLUS)
2435 base = gen_rtx_CONST (GET_MODE (base), base);
2437 gcc_assert (CONST_INT_P (offset));
2439 val.start = INTVAL (offset);
2440 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2441 val.base = base;
2443 break;
2445 case REG:
2446 val.reg_flag = 1;
2447 val.start = true_regnum (x);
2448 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2450 /* A pseudo with no hard reg. */
2451 val.start = REGNO (x);
2452 val.end = val.start + 1;
2454 else
2455 /* A hard reg. */
2456 val.end = end_hard_regno (GET_MODE (x), val.start);
2457 break;
2459 case SUBREG:
2460 if (!REG_P (SUBREG_REG (x)))
2461 /* This could be more precise, but it's good enough. */
2462 return decompose (SUBREG_REG (x));
2463 val.reg_flag = 1;
2464 val.start = true_regnum (x);
2465 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2466 return decompose (SUBREG_REG (x));
2467 else
2468 /* A hard reg. */
2469 val.end = val.start + subreg_nregs (x);
2470 break;
2472 case SCRATCH:
2473 /* This hasn't been assigned yet, so it can't conflict yet. */
2474 val.safe = 1;
2475 break;
2477 default:
2478 gcc_assert (CONSTANT_P (x));
2479 val.safe = 1;
2480 break;
2482 return val;
2485 /* Return 1 if altering Y will not modify the value of X.
2486 Y is also described by YDATA, which should be decompose (Y). */
2488 static int
2489 immune_p (rtx x, rtx y, struct decomposition ydata)
2491 struct decomposition xdata;
2493 if (ydata.reg_flag)
2494 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2495 if (ydata.safe)
2496 return 1;
2498 gcc_assert (MEM_P (y));
2499 /* If Y is memory and X is not, Y can't affect X. */
2500 if (!MEM_P (x))
2501 return 1;
2503 xdata = decompose (x);
2505 if (! rtx_equal_p (xdata.base, ydata.base))
2507 /* If bases are distinct symbolic constants, there is no overlap. */
2508 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2509 return 1;
2510 /* Constants and stack slots never overlap. */
2511 if (CONSTANT_P (xdata.base)
2512 && (ydata.base == frame_pointer_rtx
2513 || ydata.base == hard_frame_pointer_rtx
2514 || ydata.base == stack_pointer_rtx))
2515 return 1;
2516 if (CONSTANT_P (ydata.base)
2517 && (xdata.base == frame_pointer_rtx
2518 || xdata.base == hard_frame_pointer_rtx
2519 || xdata.base == stack_pointer_rtx))
2520 return 1;
2521 /* If either base is variable, we don't know anything. */
2522 return 0;
2525 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2528 /* Similar, but calls decompose. */
2531 safe_from_earlyclobber (rtx op, rtx clobber)
2533 struct decomposition early_data;
2535 early_data = decompose (clobber);
2536 return immune_p (op, clobber, early_data);
2539 /* Main entry point of this file: search the body of INSN
2540 for values that need reloading and record them with push_reload.
2541 REPLACE nonzero means record also where the values occur
2542 so that subst_reloads can be used.
2544 IND_LEVELS says how many levels of indirection are supported by this
2545 machine; a value of zero means that a memory reference is not a valid
2546 memory address.
2548 LIVE_KNOWN says we have valid information about which hard
2549 regs are live at each point in the program; this is true when
2550 we are called from global_alloc but false when stupid register
2551 allocation has been done.
2553 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2554 which is nonnegative if the reg has been commandeered for reloading into.
2555 It is copied into STATIC_RELOAD_REG_P and referenced from there
2556 by various subroutines.
2558 Return TRUE if some operands need to be changed, because of swapping
2559 commutative operands, reg_equiv_address substitution, or whatever. */
2562 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2563 short *reload_reg_p)
2565 int insn_code_number;
2566 int i, j;
2567 int noperands;
2568 /* These start out as the constraints for the insn
2569 and they are chewed up as we consider alternatives. */
2570 const char *constraints[MAX_RECOG_OPERANDS];
2571 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2572 a register. */
2573 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2574 char pref_or_nothing[MAX_RECOG_OPERANDS];
2575 /* Nonzero for a MEM operand whose entire address needs a reload.
2576 May be -1 to indicate the entire address may or may not need a reload. */
2577 int address_reloaded[MAX_RECOG_OPERANDS];
2578 /* Nonzero for an address operand that needs to be completely reloaded.
2579 May be -1 to indicate the entire operand may or may not need a reload. */
2580 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2581 /* Value of enum reload_type to use for operand. */
2582 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2583 /* Value of enum reload_type to use within address of operand. */
2584 enum reload_type address_type[MAX_RECOG_OPERANDS];
2585 /* Save the usage of each operand. */
2586 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2587 int no_input_reloads = 0, no_output_reloads = 0;
2588 int n_alternatives;
2589 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2590 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2591 char this_alternative_win[MAX_RECOG_OPERANDS];
2592 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2593 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2594 int this_alternative_matches[MAX_RECOG_OPERANDS];
2595 int swapped;
2596 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2597 int this_alternative_number;
2598 int goal_alternative_number = 0;
2599 int operand_reloadnum[MAX_RECOG_OPERANDS];
2600 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2601 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2602 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2603 char goal_alternative_win[MAX_RECOG_OPERANDS];
2604 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2605 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2606 int goal_alternative_swapped;
2607 int best;
2608 int commutative;
2609 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2610 rtx substed_operand[MAX_RECOG_OPERANDS];
2611 rtx body = PATTERN (insn);
2612 rtx set = single_set (insn);
2613 int goal_earlyclobber = 0, this_earlyclobber;
2614 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2615 int retval = 0;
2617 this_insn = insn;
2618 n_reloads = 0;
2619 n_replacements = 0;
2620 n_earlyclobbers = 0;
2621 replace_reloads = replace;
2622 hard_regs_live_known = live_known;
2623 static_reload_reg_p = reload_reg_p;
2625 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2626 neither are insns that SET cc0. Insns that use CC0 are not allowed
2627 to have any input reloads. */
2628 if (JUMP_P (insn) || CALL_P (insn))
2629 no_output_reloads = 1;
2631 #ifdef HAVE_cc0
2632 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2633 no_input_reloads = 1;
2634 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2635 no_output_reloads = 1;
2636 #endif
2638 #ifdef SECONDARY_MEMORY_NEEDED
2639 /* The eliminated forms of any secondary memory locations are per-insn, so
2640 clear them out here. */
2642 if (secondary_memlocs_elim_used)
2644 memset (secondary_memlocs_elim, 0,
2645 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2646 secondary_memlocs_elim_used = 0;
2648 #endif
2650 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2651 is cheap to move between them. If it is not, there may not be an insn
2652 to do the copy, so we may need a reload. */
2653 if (GET_CODE (body) == SET
2654 && REG_P (SET_DEST (body))
2655 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2656 && REG_P (SET_SRC (body))
2657 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2658 && register_move_cost (GET_MODE (SET_SRC (body)),
2659 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2660 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2661 return 0;
2663 extract_insn (insn);
2665 noperands = reload_n_operands = recog_data.n_operands;
2666 n_alternatives = recog_data.n_alternatives;
2668 /* Just return "no reloads" if insn has no operands with constraints. */
2669 if (noperands == 0 || n_alternatives == 0)
2670 return 0;
2672 insn_code_number = INSN_CODE (insn);
2673 this_insn_is_asm = insn_code_number < 0;
2675 memcpy (operand_mode, recog_data.operand_mode,
2676 noperands * sizeof (enum machine_mode));
2677 memcpy (constraints, recog_data.constraints,
2678 noperands * sizeof (const char *));
2680 commutative = -1;
2682 /* If we will need to know, later, whether some pair of operands
2683 are the same, we must compare them now and save the result.
2684 Reloading the base and index registers will clobber them
2685 and afterward they will fail to match. */
2687 for (i = 0; i < noperands; i++)
2689 const char *p;
2690 int c;
2691 char *end;
2693 substed_operand[i] = recog_data.operand[i];
2694 p = constraints[i];
2696 modified[i] = RELOAD_READ;
2698 /* Scan this operand's constraint to see if it is an output operand,
2699 an in-out operand, is commutative, or should match another. */
2701 while ((c = *p))
2703 p += CONSTRAINT_LEN (c, p);
2704 switch (c)
2706 case '=':
2707 modified[i] = RELOAD_WRITE;
2708 break;
2709 case '+':
2710 modified[i] = RELOAD_READ_WRITE;
2711 break;
2712 case '%':
2714 /* The last operand should not be marked commutative. */
2715 gcc_assert (i != noperands - 1);
2717 /* We currently only support one commutative pair of
2718 operands. Some existing asm code currently uses more
2719 than one pair. Previously, that would usually work,
2720 but sometimes it would crash the compiler. We
2721 continue supporting that case as well as we can by
2722 silently ignoring all but the first pair. In the
2723 future we may handle it correctly. */
2724 if (commutative < 0)
2725 commutative = i;
2726 else
2727 gcc_assert (this_insn_is_asm);
2729 break;
2730 /* Use of ISDIGIT is tempting here, but it may get expensive because
2731 of locale support we don't want. */
2732 case '0': case '1': case '2': case '3': case '4':
2733 case '5': case '6': case '7': case '8': case '9':
2735 c = strtoul (p - 1, &end, 10);
2736 p = end;
2738 operands_match[c][i]
2739 = operands_match_p (recog_data.operand[c],
2740 recog_data.operand[i]);
2742 /* An operand may not match itself. */
2743 gcc_assert (c != i);
2745 /* If C can be commuted with C+1, and C might need to match I,
2746 then C+1 might also need to match I. */
2747 if (commutative >= 0)
2749 if (c == commutative || c == commutative + 1)
2751 int other = c + (c == commutative ? 1 : -1);
2752 operands_match[other][i]
2753 = operands_match_p (recog_data.operand[other],
2754 recog_data.operand[i]);
2756 if (i == commutative || i == commutative + 1)
2758 int other = i + (i == commutative ? 1 : -1);
2759 operands_match[c][other]
2760 = operands_match_p (recog_data.operand[c],
2761 recog_data.operand[other]);
2763 /* Note that C is supposed to be less than I.
2764 No need to consider altering both C and I because in
2765 that case we would alter one into the other. */
2772 /* Examine each operand that is a memory reference or memory address
2773 and reload parts of the addresses into index registers.
2774 Also here any references to pseudo regs that didn't get hard regs
2775 but are equivalent to constants get replaced in the insn itself
2776 with those constants. Nobody will ever see them again.
2778 Finally, set up the preferred classes of each operand. */
2780 for (i = 0; i < noperands; i++)
2782 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2784 address_reloaded[i] = 0;
2785 address_operand_reloaded[i] = 0;
2786 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2787 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2788 : RELOAD_OTHER);
2789 address_type[i]
2790 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2791 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2792 : RELOAD_OTHER);
2794 if (*constraints[i] == 0)
2795 /* Ignore things like match_operator operands. */
2797 else if (constraints[i][0] == 'p'
2798 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2800 address_operand_reloaded[i]
2801 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2802 recog_data.operand[i],
2803 recog_data.operand_loc[i],
2804 i, operand_type[i], ind_levels, insn);
2806 /* If we now have a simple operand where we used to have a
2807 PLUS or MULT, re-recognize and try again. */
2808 if ((OBJECT_P (*recog_data.operand_loc[i])
2809 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2810 && (GET_CODE (recog_data.operand[i]) == MULT
2811 || GET_CODE (recog_data.operand[i]) == PLUS))
2813 INSN_CODE (insn) = -1;
2814 retval = find_reloads (insn, replace, ind_levels, live_known,
2815 reload_reg_p);
2816 return retval;
2819 recog_data.operand[i] = *recog_data.operand_loc[i];
2820 substed_operand[i] = recog_data.operand[i];
2822 /* Address operands are reloaded in their existing mode,
2823 no matter what is specified in the machine description. */
2824 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2826 /* If the address is a single CONST_INT pick address mode
2827 instead otherwise we will later not know in which mode
2828 the reload should be performed. */
2829 if (operand_mode[i] == VOIDmode)
2830 operand_mode[i] = Pmode;
2833 else if (code == MEM)
2835 address_reloaded[i]
2836 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2837 recog_data.operand_loc[i],
2838 XEXP (recog_data.operand[i], 0),
2839 &XEXP (recog_data.operand[i], 0),
2840 i, address_type[i], ind_levels, insn);
2841 recog_data.operand[i] = *recog_data.operand_loc[i];
2842 substed_operand[i] = recog_data.operand[i];
2844 else if (code == SUBREG)
2846 rtx reg = SUBREG_REG (recog_data.operand[i]);
2847 rtx op
2848 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2849 ind_levels,
2850 set != 0
2851 && &SET_DEST (set) == recog_data.operand_loc[i],
2852 insn,
2853 &address_reloaded[i]);
2855 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2856 that didn't get a hard register, emit a USE with a REG_EQUAL
2857 note in front so that we might inherit a previous, possibly
2858 wider reload. */
2860 if (replace
2861 && MEM_P (op)
2862 && REG_P (reg)
2863 && (GET_MODE_SIZE (GET_MODE (reg))
2864 >= GET_MODE_SIZE (GET_MODE (op)))
2865 && reg_equiv_constant (REGNO (reg)) == 0)
2866 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2867 insn),
2868 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2870 substed_operand[i] = recog_data.operand[i] = op;
2872 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2873 /* We can get a PLUS as an "operand" as a result of register
2874 elimination. See eliminate_regs and gen_reload. We handle
2875 a unary operator by reloading the operand. */
2876 substed_operand[i] = recog_data.operand[i]
2877 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2878 ind_levels, 0, insn,
2879 &address_reloaded[i]);
2880 else if (code == REG)
2882 /* This is equivalent to calling find_reloads_toplev.
2883 The code is duplicated for speed.
2884 When we find a pseudo always equivalent to a constant,
2885 we replace it by the constant. We must be sure, however,
2886 that we don't try to replace it in the insn in which it
2887 is being set. */
2888 int regno = REGNO (recog_data.operand[i]);
2889 if (reg_equiv_constant (regno) != 0
2890 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2892 /* Record the existing mode so that the check if constants are
2893 allowed will work when operand_mode isn't specified. */
2895 if (operand_mode[i] == VOIDmode)
2896 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2898 substed_operand[i] = recog_data.operand[i]
2899 = reg_equiv_constant (regno);
2901 if (reg_equiv_memory_loc (regno) != 0
2902 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2903 /* We need not give a valid is_set_dest argument since the case
2904 of a constant equivalence was checked above. */
2905 substed_operand[i] = recog_data.operand[i]
2906 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2907 ind_levels, 0, insn,
2908 &address_reloaded[i]);
2910 /* If the operand is still a register (we didn't replace it with an
2911 equivalent), get the preferred class to reload it into. */
2912 code = GET_CODE (recog_data.operand[i]);
2913 preferred_class[i]
2914 = ((code == REG && REGNO (recog_data.operand[i])
2915 >= FIRST_PSEUDO_REGISTER)
2916 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2917 : NO_REGS);
2918 pref_or_nothing[i]
2919 = (code == REG
2920 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2921 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2924 /* If this is simply a copy from operand 1 to operand 0, merge the
2925 preferred classes for the operands. */
2926 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2927 && recog_data.operand[1] == SET_SRC (set))
2929 preferred_class[0] = preferred_class[1]
2930 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2931 pref_or_nothing[0] |= pref_or_nothing[1];
2932 pref_or_nothing[1] |= pref_or_nothing[0];
2935 /* Now see what we need for pseudo-regs that didn't get hard regs
2936 or got the wrong kind of hard reg. For this, we must consider
2937 all the operands together against the register constraints. */
2939 best = MAX_RECOG_OPERANDS * 2 + 600;
2941 swapped = 0;
2942 goal_alternative_swapped = 0;
2943 try_swapped:
2945 /* The constraints are made of several alternatives.
2946 Each operand's constraint looks like foo,bar,... with commas
2947 separating the alternatives. The first alternatives for all
2948 operands go together, the second alternatives go together, etc.
2950 First loop over alternatives. */
2952 for (this_alternative_number = 0;
2953 this_alternative_number < n_alternatives;
2954 this_alternative_number++)
2956 /* Loop over operands for one constraint alternative. */
2957 /* LOSERS counts those that don't fit this alternative
2958 and would require loading. */
2959 int losers = 0;
2960 /* BAD is set to 1 if it some operand can't fit this alternative
2961 even after reloading. */
2962 int bad = 0;
2963 /* REJECT is a count of how undesirable this alternative says it is
2964 if any reloading is required. If the alternative matches exactly
2965 then REJECT is ignored, but otherwise it gets this much
2966 counted against it in addition to the reloading needed. Each
2967 ? counts three times here since we want the disparaging caused by
2968 a bad register class to only count 1/3 as much. */
2969 int reject = 0;
2971 if (!recog_data.alternative_enabled_p[this_alternative_number])
2973 int i;
2975 for (i = 0; i < recog_data.n_operands; i++)
2976 constraints[i] = skip_alternative (constraints[i]);
2978 continue;
2981 this_earlyclobber = 0;
2983 for (i = 0; i < noperands; i++)
2985 const char *p = constraints[i];
2986 char *end;
2987 int len;
2988 int win = 0;
2989 int did_match = 0;
2990 /* 0 => this operand can be reloaded somehow for this alternative. */
2991 int badop = 1;
2992 /* 0 => this operand can be reloaded if the alternative allows regs. */
2993 int winreg = 0;
2994 int c;
2995 int m;
2996 rtx operand = recog_data.operand[i];
2997 int offset = 0;
2998 /* Nonzero means this is a MEM that must be reloaded into a reg
2999 regardless of what the constraint says. */
3000 int force_reload = 0;
3001 int offmemok = 0;
3002 /* Nonzero if a constant forced into memory would be OK for this
3003 operand. */
3004 int constmemok = 0;
3005 int earlyclobber = 0;
3007 /* If the predicate accepts a unary operator, it means that
3008 we need to reload the operand, but do not do this for
3009 match_operator and friends. */
3010 if (UNARY_P (operand) && *p != 0)
3011 operand = XEXP (operand, 0);
3013 /* If the operand is a SUBREG, extract
3014 the REG or MEM (or maybe even a constant) within.
3015 (Constants can occur as a result of reg_equiv_constant.) */
3017 while (GET_CODE (operand) == SUBREG)
3019 /* Offset only matters when operand is a REG and
3020 it is a hard reg. This is because it is passed
3021 to reg_fits_class_p if it is a REG and all pseudos
3022 return 0 from that function. */
3023 if (REG_P (SUBREG_REG (operand))
3024 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3026 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3027 GET_MODE (SUBREG_REG (operand)),
3028 SUBREG_BYTE (operand),
3029 GET_MODE (operand)) < 0)
3030 force_reload = 1;
3031 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3032 GET_MODE (SUBREG_REG (operand)),
3033 SUBREG_BYTE (operand),
3034 GET_MODE (operand));
3036 operand = SUBREG_REG (operand);
3037 /* Force reload if this is a constant or PLUS or if there may
3038 be a problem accessing OPERAND in the outer mode. */
3039 if (CONSTANT_P (operand)
3040 || GET_CODE (operand) == PLUS
3041 /* We must force a reload of paradoxical SUBREGs
3042 of a MEM because the alignment of the inner value
3043 may not be enough to do the outer reference. On
3044 big-endian machines, it may also reference outside
3045 the object.
3047 On machines that extend byte operations and we have a
3048 SUBREG where both the inner and outer modes are no wider
3049 than a word and the inner mode is narrower, is integral,
3050 and gets extended when loaded from memory, combine.c has
3051 made assumptions about the behavior of the machine in such
3052 register access. If the data is, in fact, in memory we
3053 must always load using the size assumed to be in the
3054 register and let the insn do the different-sized
3055 accesses.
3057 This is doubly true if WORD_REGISTER_OPERATIONS. In
3058 this case eliminate_regs has left non-paradoxical
3059 subregs for push_reload to see. Make sure it does
3060 by forcing the reload.
3062 ??? When is it right at this stage to have a subreg
3063 of a mem that is _not_ to be handled specially? IMO
3064 those should have been reduced to just a mem. */
3065 || ((MEM_P (operand)
3066 || (REG_P (operand)
3067 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3068 #ifndef WORD_REGISTER_OPERATIONS
3069 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3070 < BIGGEST_ALIGNMENT)
3071 && (GET_MODE_SIZE (operand_mode[i])
3072 > GET_MODE_SIZE (GET_MODE (operand))))
3073 || BYTES_BIG_ENDIAN
3074 #ifdef LOAD_EXTEND_OP
3075 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3076 && (GET_MODE_SIZE (GET_MODE (operand))
3077 <= UNITS_PER_WORD)
3078 && (GET_MODE_SIZE (operand_mode[i])
3079 > GET_MODE_SIZE (GET_MODE (operand)))
3080 && INTEGRAL_MODE_P (GET_MODE (operand))
3081 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3082 #endif
3084 #endif
3087 force_reload = 1;
3090 this_alternative[i] = NO_REGS;
3091 this_alternative_win[i] = 0;
3092 this_alternative_match_win[i] = 0;
3093 this_alternative_offmemok[i] = 0;
3094 this_alternative_earlyclobber[i] = 0;
3095 this_alternative_matches[i] = -1;
3097 /* An empty constraint or empty alternative
3098 allows anything which matched the pattern. */
3099 if (*p == 0 || *p == ',')
3100 win = 1, badop = 0;
3102 /* Scan this alternative's specs for this operand;
3103 set WIN if the operand fits any letter in this alternative.
3104 Otherwise, clear BADOP if this operand could
3105 fit some letter after reloads,
3106 or set WINREG if this operand could fit after reloads
3107 provided the constraint allows some registers. */
3110 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3112 case '\0':
3113 len = 0;
3114 break;
3115 case ',':
3116 c = '\0';
3117 break;
3119 case '=': case '+': case '*':
3120 break;
3122 case '%':
3123 /* We only support one commutative marker, the first
3124 one. We already set commutative above. */
3125 break;
3127 case '?':
3128 reject += 6;
3129 break;
3131 case '!':
3132 reject = 600;
3133 break;
3135 case '#':
3136 /* Ignore rest of this alternative as far as
3137 reloading is concerned. */
3139 p++;
3140 while (*p && *p != ',');
3141 len = 0;
3142 break;
3144 case '0': case '1': case '2': case '3': case '4':
3145 case '5': case '6': case '7': case '8': case '9':
3146 m = strtoul (p, &end, 10);
3147 p = end;
3148 len = 0;
3150 this_alternative_matches[i] = m;
3151 /* We are supposed to match a previous operand.
3152 If we do, we win if that one did.
3153 If we do not, count both of the operands as losers.
3154 (This is too conservative, since most of the time
3155 only a single reload insn will be needed to make
3156 the two operands win. As a result, this alternative
3157 may be rejected when it is actually desirable.) */
3158 if ((swapped && (m != commutative || i != commutative + 1))
3159 /* If we are matching as if two operands were swapped,
3160 also pretend that operands_match had been computed
3161 with swapped.
3162 But if I is the second of those and C is the first,
3163 don't exchange them, because operands_match is valid
3164 only on one side of its diagonal. */
3165 ? (operands_match
3166 [(m == commutative || m == commutative + 1)
3167 ? 2 * commutative + 1 - m : m]
3168 [(i == commutative || i == commutative + 1)
3169 ? 2 * commutative + 1 - i : i])
3170 : operands_match[m][i])
3172 /* If we are matching a non-offsettable address where an
3173 offsettable address was expected, then we must reject
3174 this combination, because we can't reload it. */
3175 if (this_alternative_offmemok[m]
3176 && MEM_P (recog_data.operand[m])
3177 && this_alternative[m] == NO_REGS
3178 && ! this_alternative_win[m])
3179 bad = 1;
3181 did_match = this_alternative_win[m];
3183 else
3185 /* Operands don't match. */
3186 rtx value;
3187 int loc1, loc2;
3188 /* Retroactively mark the operand we had to match
3189 as a loser, if it wasn't already. */
3190 if (this_alternative_win[m])
3191 losers++;
3192 this_alternative_win[m] = 0;
3193 if (this_alternative[m] == NO_REGS)
3194 bad = 1;
3195 /* But count the pair only once in the total badness of
3196 this alternative, if the pair can be a dummy reload.
3197 The pointers in operand_loc are not swapped; swap
3198 them by hand if necessary. */
3199 if (swapped && i == commutative)
3200 loc1 = commutative + 1;
3201 else if (swapped && i == commutative + 1)
3202 loc1 = commutative;
3203 else
3204 loc1 = i;
3205 if (swapped && m == commutative)
3206 loc2 = commutative + 1;
3207 else if (swapped && m == commutative + 1)
3208 loc2 = commutative;
3209 else
3210 loc2 = m;
3211 value
3212 = find_dummy_reload (recog_data.operand[i],
3213 recog_data.operand[m],
3214 recog_data.operand_loc[loc1],
3215 recog_data.operand_loc[loc2],
3216 operand_mode[i], operand_mode[m],
3217 this_alternative[m], -1,
3218 this_alternative_earlyclobber[m]);
3220 if (value != 0)
3221 losers--;
3223 /* This can be fixed with reloads if the operand
3224 we are supposed to match can be fixed with reloads. */
3225 badop = 0;
3226 this_alternative[i] = this_alternative[m];
3228 /* If we have to reload this operand and some previous
3229 operand also had to match the same thing as this
3230 operand, we don't know how to do that. So reject this
3231 alternative. */
3232 if (! did_match || force_reload)
3233 for (j = 0; j < i; j++)
3234 if (this_alternative_matches[j]
3235 == this_alternative_matches[i])
3236 badop = 1;
3237 break;
3239 case 'p':
3240 /* All necessary reloads for an address_operand
3241 were handled in find_reloads_address. */
3242 this_alternative[i]
3243 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3244 ADDRESS, SCRATCH);
3245 win = 1;
3246 badop = 0;
3247 break;
3249 case TARGET_MEM_CONSTRAINT:
3250 if (force_reload)
3251 break;
3252 if (MEM_P (operand)
3253 || (REG_P (operand)
3254 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3255 && reg_renumber[REGNO (operand)] < 0))
3256 win = 1;
3257 if (CONST_POOL_OK_P (operand_mode[i], operand))
3258 badop = 0;
3259 constmemok = 1;
3260 break;
3262 case '<':
3263 if (MEM_P (operand)
3264 && ! address_reloaded[i]
3265 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3266 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3267 win = 1;
3268 break;
3270 case '>':
3271 if (MEM_P (operand)
3272 && ! address_reloaded[i]
3273 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3274 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3275 win = 1;
3276 break;
3278 /* Memory operand whose address is not offsettable. */
3279 case 'V':
3280 if (force_reload)
3281 break;
3282 if (MEM_P (operand)
3283 && ! (ind_levels ? offsettable_memref_p (operand)
3284 : offsettable_nonstrict_memref_p (operand))
3285 /* Certain mem addresses will become offsettable
3286 after they themselves are reloaded. This is important;
3287 we don't want our own handling of unoffsettables
3288 to override the handling of reg_equiv_address. */
3289 && !(REG_P (XEXP (operand, 0))
3290 && (ind_levels == 0
3291 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3292 win = 1;
3293 break;
3295 /* Memory operand whose address is offsettable. */
3296 case 'o':
3297 if (force_reload)
3298 break;
3299 if ((MEM_P (operand)
3300 /* If IND_LEVELS, find_reloads_address won't reload a
3301 pseudo that didn't get a hard reg, so we have to
3302 reject that case. */
3303 && ((ind_levels ? offsettable_memref_p (operand)
3304 : offsettable_nonstrict_memref_p (operand))
3305 /* A reloaded address is offsettable because it is now
3306 just a simple register indirect. */
3307 || address_reloaded[i] == 1))
3308 || (REG_P (operand)
3309 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3310 && reg_renumber[REGNO (operand)] < 0
3311 /* If reg_equiv_address is nonzero, we will be
3312 loading it into a register; hence it will be
3313 offsettable, but we cannot say that reg_equiv_mem
3314 is offsettable without checking. */
3315 && ((reg_equiv_mem (REGNO (operand)) != 0
3316 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3317 || (reg_equiv_address (REGNO (operand)) != 0))))
3318 win = 1;
3319 if (CONST_POOL_OK_P (operand_mode[i], operand)
3320 || MEM_P (operand))
3321 badop = 0;
3322 constmemok = 1;
3323 offmemok = 1;
3324 break;
3326 case '&':
3327 /* Output operand that is stored before the need for the
3328 input operands (and their index registers) is over. */
3329 earlyclobber = 1, this_earlyclobber = 1;
3330 break;
3332 case 'E':
3333 case 'F':
3334 if (GET_CODE (operand) == CONST_DOUBLE
3335 || (GET_CODE (operand) == CONST_VECTOR
3336 && (GET_MODE_CLASS (GET_MODE (operand))
3337 == MODE_VECTOR_FLOAT)))
3338 win = 1;
3339 break;
3341 case 'G':
3342 case 'H':
3343 if (GET_CODE (operand) == CONST_DOUBLE
3344 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3345 win = 1;
3346 break;
3348 case 's':
3349 if (CONST_INT_P (operand)
3350 || (GET_CODE (operand) == CONST_DOUBLE
3351 && GET_MODE (operand) == VOIDmode))
3352 break;
3353 case 'i':
3354 if (CONSTANT_P (operand)
3355 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3356 win = 1;
3357 break;
3359 case 'n':
3360 if (CONST_INT_P (operand)
3361 || (GET_CODE (operand) == CONST_DOUBLE
3362 && GET_MODE (operand) == VOIDmode))
3363 win = 1;
3364 break;
3366 case 'I':
3367 case 'J':
3368 case 'K':
3369 case 'L':
3370 case 'M':
3371 case 'N':
3372 case 'O':
3373 case 'P':
3374 if (CONST_INT_P (operand)
3375 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3376 win = 1;
3377 break;
3379 case 'X':
3380 force_reload = 0;
3381 win = 1;
3382 break;
3384 case 'g':
3385 if (! force_reload
3386 /* A PLUS is never a valid operand, but reload can make
3387 it from a register when eliminating registers. */
3388 && GET_CODE (operand) != PLUS
3389 /* A SCRATCH is not a valid operand. */
3390 && GET_CODE (operand) != SCRATCH
3391 && (! CONSTANT_P (operand)
3392 || ! flag_pic
3393 || LEGITIMATE_PIC_OPERAND_P (operand))
3394 && (GENERAL_REGS == ALL_REGS
3395 || !REG_P (operand)
3396 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3397 && reg_renumber[REGNO (operand)] < 0)))
3398 win = 1;
3399 /* Drop through into 'r' case. */
3401 case 'r':
3402 this_alternative[i]
3403 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3404 goto reg;
3406 default:
3407 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3409 #ifdef EXTRA_CONSTRAINT_STR
3410 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3412 if (force_reload)
3413 break;
3414 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3415 win = 1;
3416 /* If the address was already reloaded,
3417 we win as well. */
3418 else if (MEM_P (operand)
3419 && address_reloaded[i] == 1)
3420 win = 1;
3421 /* Likewise if the address will be reloaded because
3422 reg_equiv_address is nonzero. For reg_equiv_mem
3423 we have to check. */
3424 else if (REG_P (operand)
3425 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3426 && reg_renumber[REGNO (operand)] < 0
3427 && ((reg_equiv_mem (REGNO (operand)) != 0
3428 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3429 || (reg_equiv_address (REGNO (operand)) != 0)))
3430 win = 1;
3432 /* If we didn't already win, we can reload
3433 constants via force_const_mem, and other
3434 MEMs by reloading the address like for 'o'. */
3435 if (CONST_POOL_OK_P (operand_mode[i], operand)
3436 || MEM_P (operand))
3437 badop = 0;
3438 constmemok = 1;
3439 offmemok = 1;
3440 break;
3442 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3444 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3445 win = 1;
3447 /* If we didn't already win, we can reload
3448 the address into a base register. */
3449 this_alternative[i]
3450 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3451 ADDRESS, SCRATCH);
3452 badop = 0;
3453 break;
3456 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3457 win = 1;
3458 #endif
3459 break;
3462 this_alternative[i]
3463 = (reg_class_subunion
3464 [this_alternative[i]]
3465 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3466 reg:
3467 if (GET_MODE (operand) == BLKmode)
3468 break;
3469 winreg = 1;
3470 if (REG_P (operand)
3471 && reg_fits_class_p (operand, this_alternative[i],
3472 offset, GET_MODE (recog_data.operand[i])))
3473 win = 1;
3474 break;
3476 while ((p += len), c);
3478 constraints[i] = p;
3480 /* If this operand could be handled with a reg,
3481 and some reg is allowed, then this operand can be handled. */
3482 if (winreg && this_alternative[i] != NO_REGS
3483 && (win || !class_only_fixed_regs[this_alternative[i]]))
3484 badop = 0;
3486 /* Record which operands fit this alternative. */
3487 this_alternative_earlyclobber[i] = earlyclobber;
3488 if (win && ! force_reload)
3489 this_alternative_win[i] = 1;
3490 else if (did_match && ! force_reload)
3491 this_alternative_match_win[i] = 1;
3492 else
3494 int const_to_mem = 0;
3496 this_alternative_offmemok[i] = offmemok;
3497 losers++;
3498 if (badop)
3499 bad = 1;
3500 /* Alternative loses if it has no regs for a reg operand. */
3501 if (REG_P (operand)
3502 && this_alternative[i] == NO_REGS
3503 && this_alternative_matches[i] < 0)
3504 bad = 1;
3506 /* If this is a constant that is reloaded into the desired
3507 class by copying it to memory first, count that as another
3508 reload. This is consistent with other code and is
3509 required to avoid choosing another alternative when
3510 the constant is moved into memory by this function on
3511 an early reload pass. Note that the test here is
3512 precisely the same as in the code below that calls
3513 force_const_mem. */
3514 if (CONST_POOL_OK_P (operand_mode[i], operand)
3515 && ((targetm.preferred_reload_class (operand,
3516 this_alternative[i])
3517 == NO_REGS)
3518 || no_input_reloads))
3520 const_to_mem = 1;
3521 if (this_alternative[i] != NO_REGS)
3522 losers++;
3525 /* Alternative loses if it requires a type of reload not
3526 permitted for this insn. We can always reload SCRATCH
3527 and objects with a REG_UNUSED note. */
3528 if (GET_CODE (operand) != SCRATCH
3529 && modified[i] != RELOAD_READ && no_output_reloads
3530 && ! find_reg_note (insn, REG_UNUSED, operand))
3531 bad = 1;
3532 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3533 && ! const_to_mem)
3534 bad = 1;
3536 /* If we can't reload this value at all, reject this
3537 alternative. Note that we could also lose due to
3538 LIMIT_RELOAD_CLASS, but we don't check that
3539 here. */
3541 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3543 if (targetm.preferred_reload_class (operand, this_alternative[i])
3544 == NO_REGS)
3545 reject = 600;
3547 if (operand_type[i] == RELOAD_FOR_OUTPUT
3548 && (targetm.preferred_output_reload_class (operand,
3549 this_alternative[i])
3550 == NO_REGS))
3551 reject = 600;
3554 /* We prefer to reload pseudos over reloading other things,
3555 since such reloads may be able to be eliminated later.
3556 If we are reloading a SCRATCH, we won't be generating any
3557 insns, just using a register, so it is also preferred.
3558 So bump REJECT in other cases. Don't do this in the
3559 case where we are forcing a constant into memory and
3560 it will then win since we don't want to have a different
3561 alternative match then. */
3562 if (! (REG_P (operand)
3563 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3564 && GET_CODE (operand) != SCRATCH
3565 && ! (const_to_mem && constmemok))
3566 reject += 2;
3568 /* Input reloads can be inherited more often than output
3569 reloads can be removed, so penalize output reloads. */
3570 if (operand_type[i] != RELOAD_FOR_INPUT
3571 && GET_CODE (operand) != SCRATCH)
3572 reject++;
3575 /* If this operand is a pseudo register that didn't get a hard
3576 reg and this alternative accepts some register, see if the
3577 class that we want is a subset of the preferred class for this
3578 register. If not, but it intersects that class, use the
3579 preferred class instead. If it does not intersect the preferred
3580 class, show that usage of this alternative should be discouraged;
3581 it will be discouraged more still if the register is `preferred
3582 or nothing'. We do this because it increases the chance of
3583 reusing our spill register in a later insn and avoiding a pair
3584 of memory stores and loads.
3586 Don't bother with this if this alternative will accept this
3587 operand.
3589 Don't do this for a multiword operand, since it is only a
3590 small win and has the risk of requiring more spill registers,
3591 which could cause a large loss.
3593 Don't do this if the preferred class has only one register
3594 because we might otherwise exhaust the class. */
3596 if (! win && ! did_match
3597 && this_alternative[i] != NO_REGS
3598 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3599 && reg_class_size [(int) preferred_class[i]] > 0
3600 && ! small_register_class_p (preferred_class[i]))
3602 if (! reg_class_subset_p (this_alternative[i],
3603 preferred_class[i]))
3605 /* Since we don't have a way of forming the intersection,
3606 we just do something special if the preferred class
3607 is a subset of the class we have; that's the most
3608 common case anyway. */
3609 if (reg_class_subset_p (preferred_class[i],
3610 this_alternative[i]))
3611 this_alternative[i] = preferred_class[i];
3612 else
3613 reject += (2 + 2 * pref_or_nothing[i]);
3618 /* Now see if any output operands that are marked "earlyclobber"
3619 in this alternative conflict with any input operands
3620 or any memory addresses. */
3622 for (i = 0; i < noperands; i++)
3623 if (this_alternative_earlyclobber[i]
3624 && (this_alternative_win[i] || this_alternative_match_win[i]))
3626 struct decomposition early_data;
3628 early_data = decompose (recog_data.operand[i]);
3630 gcc_assert (modified[i] != RELOAD_READ);
3632 if (this_alternative[i] == NO_REGS)
3634 this_alternative_earlyclobber[i] = 0;
3635 gcc_assert (this_insn_is_asm);
3636 error_for_asm (this_insn,
3637 "%<&%> constraint used with no register class");
3640 for (j = 0; j < noperands; j++)
3641 /* Is this an input operand or a memory ref? */
3642 if ((MEM_P (recog_data.operand[j])
3643 || modified[j] != RELOAD_WRITE)
3644 && j != i
3645 /* Ignore things like match_operator operands. */
3646 && !recog_data.is_operator[j]
3647 /* Don't count an input operand that is constrained to match
3648 the early clobber operand. */
3649 && ! (this_alternative_matches[j] == i
3650 && rtx_equal_p (recog_data.operand[i],
3651 recog_data.operand[j]))
3652 /* Is it altered by storing the earlyclobber operand? */
3653 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3654 early_data))
3656 /* If the output is in a non-empty few-regs class,
3657 it's costly to reload it, so reload the input instead. */
3658 if (small_register_class_p (this_alternative[i])
3659 && (REG_P (recog_data.operand[j])
3660 || GET_CODE (recog_data.operand[j]) == SUBREG))
3662 losers++;
3663 this_alternative_win[j] = 0;
3664 this_alternative_match_win[j] = 0;
3666 else
3667 break;
3669 /* If an earlyclobber operand conflicts with something,
3670 it must be reloaded, so request this and count the cost. */
3671 if (j != noperands)
3673 losers++;
3674 this_alternative_win[i] = 0;
3675 this_alternative_match_win[j] = 0;
3676 for (j = 0; j < noperands; j++)
3677 if (this_alternative_matches[j] == i
3678 && this_alternative_match_win[j])
3680 this_alternative_win[j] = 0;
3681 this_alternative_match_win[j] = 0;
3682 losers++;
3687 /* If one alternative accepts all the operands, no reload required,
3688 choose that alternative; don't consider the remaining ones. */
3689 if (losers == 0)
3691 /* Unswap these so that they are never swapped at `finish'. */
3692 if (commutative >= 0)
3694 recog_data.operand[commutative] = substed_operand[commutative];
3695 recog_data.operand[commutative + 1]
3696 = substed_operand[commutative + 1];
3698 for (i = 0; i < noperands; i++)
3700 goal_alternative_win[i] = this_alternative_win[i];
3701 goal_alternative_match_win[i] = this_alternative_match_win[i];
3702 goal_alternative[i] = this_alternative[i];
3703 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3704 goal_alternative_matches[i] = this_alternative_matches[i];
3705 goal_alternative_earlyclobber[i]
3706 = this_alternative_earlyclobber[i];
3708 goal_alternative_number = this_alternative_number;
3709 goal_alternative_swapped = swapped;
3710 goal_earlyclobber = this_earlyclobber;
3711 goto finish;
3714 /* REJECT, set by the ! and ? constraint characters and when a register
3715 would be reloaded into a non-preferred class, discourages the use of
3716 this alternative for a reload goal. REJECT is incremented by six
3717 for each ? and two for each non-preferred class. */
3718 losers = losers * 6 + reject;
3720 /* If this alternative can be made to work by reloading,
3721 and it needs less reloading than the others checked so far,
3722 record it as the chosen goal for reloading. */
3723 if (! bad)
3725 if (best > losers)
3727 for (i = 0; i < noperands; i++)
3729 goal_alternative[i] = this_alternative[i];
3730 goal_alternative_win[i] = this_alternative_win[i];
3731 goal_alternative_match_win[i]
3732 = this_alternative_match_win[i];
3733 goal_alternative_offmemok[i]
3734 = this_alternative_offmemok[i];
3735 goal_alternative_matches[i] = this_alternative_matches[i];
3736 goal_alternative_earlyclobber[i]
3737 = this_alternative_earlyclobber[i];
3739 goal_alternative_swapped = swapped;
3740 best = losers;
3741 goal_alternative_number = this_alternative_number;
3742 goal_earlyclobber = this_earlyclobber;
3747 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3748 then we need to try each alternative twice,
3749 the second time matching those two operands
3750 as if we had exchanged them.
3751 To do this, really exchange them in operands.
3753 If we have just tried the alternatives the second time,
3754 return operands to normal and drop through. */
3756 if (commutative >= 0)
3758 swapped = !swapped;
3759 if (swapped)
3761 enum reg_class tclass;
3762 int t;
3764 recog_data.operand[commutative] = substed_operand[commutative + 1];
3765 recog_data.operand[commutative + 1] = substed_operand[commutative];
3766 /* Swap the duplicates too. */
3767 for (i = 0; i < recog_data.n_dups; i++)
3768 if (recog_data.dup_num[i] == commutative
3769 || recog_data.dup_num[i] == commutative + 1)
3770 *recog_data.dup_loc[i]
3771 = recog_data.operand[(int) recog_data.dup_num[i]];
3773 tclass = preferred_class[commutative];
3774 preferred_class[commutative] = preferred_class[commutative + 1];
3775 preferred_class[commutative + 1] = tclass;
3777 t = pref_or_nothing[commutative];
3778 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3779 pref_or_nothing[commutative + 1] = t;
3781 t = address_reloaded[commutative];
3782 address_reloaded[commutative] = address_reloaded[commutative + 1];
3783 address_reloaded[commutative + 1] = t;
3785 memcpy (constraints, recog_data.constraints,
3786 noperands * sizeof (const char *));
3787 goto try_swapped;
3789 else
3791 recog_data.operand[commutative] = substed_operand[commutative];
3792 recog_data.operand[commutative + 1]
3793 = substed_operand[commutative + 1];
3794 /* Unswap the duplicates too. */
3795 for (i = 0; i < recog_data.n_dups; i++)
3796 if (recog_data.dup_num[i] == commutative
3797 || recog_data.dup_num[i] == commutative + 1)
3798 *recog_data.dup_loc[i]
3799 = recog_data.operand[(int) recog_data.dup_num[i]];
3803 /* The operands don't meet the constraints.
3804 goal_alternative describes the alternative
3805 that we could reach by reloading the fewest operands.
3806 Reload so as to fit it. */
3808 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3810 /* No alternative works with reloads?? */
3811 if (insn_code_number >= 0)
3812 fatal_insn ("unable to generate reloads for:", insn);
3813 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3814 /* Avoid further trouble with this insn. */
3815 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3816 n_reloads = 0;
3817 return 0;
3820 /* Jump to `finish' from above if all operands are valid already.
3821 In that case, goal_alternative_win is all 1. */
3822 finish:
3824 /* Right now, for any pair of operands I and J that are required to match,
3825 with I < J,
3826 goal_alternative_matches[J] is I.
3827 Set up goal_alternative_matched as the inverse function:
3828 goal_alternative_matched[I] = J. */
3830 for (i = 0; i < noperands; i++)
3831 goal_alternative_matched[i] = -1;
3833 for (i = 0; i < noperands; i++)
3834 if (! goal_alternative_win[i]
3835 && goal_alternative_matches[i] >= 0)
3836 goal_alternative_matched[goal_alternative_matches[i]] = i;
3838 for (i = 0; i < noperands; i++)
3839 goal_alternative_win[i] |= goal_alternative_match_win[i];
3841 /* If the best alternative is with operands 1 and 2 swapped,
3842 consider them swapped before reporting the reloads. Update the
3843 operand numbers of any reloads already pushed. */
3845 if (goal_alternative_swapped)
3847 rtx tem;
3849 tem = substed_operand[commutative];
3850 substed_operand[commutative] = substed_operand[commutative + 1];
3851 substed_operand[commutative + 1] = tem;
3852 tem = recog_data.operand[commutative];
3853 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3854 recog_data.operand[commutative + 1] = tem;
3855 tem = *recog_data.operand_loc[commutative];
3856 *recog_data.operand_loc[commutative]
3857 = *recog_data.operand_loc[commutative + 1];
3858 *recog_data.operand_loc[commutative + 1] = tem;
3860 for (i = 0; i < n_reloads; i++)
3862 if (rld[i].opnum == commutative)
3863 rld[i].opnum = commutative + 1;
3864 else if (rld[i].opnum == commutative + 1)
3865 rld[i].opnum = commutative;
3869 for (i = 0; i < noperands; i++)
3871 operand_reloadnum[i] = -1;
3873 /* If this is an earlyclobber operand, we need to widen the scope.
3874 The reload must remain valid from the start of the insn being
3875 reloaded until after the operand is stored into its destination.
3876 We approximate this with RELOAD_OTHER even though we know that we
3877 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3879 One special case that is worth checking is when we have an
3880 output that is earlyclobber but isn't used past the insn (typically
3881 a SCRATCH). In this case, we only need have the reload live
3882 through the insn itself, but not for any of our input or output
3883 reloads.
3884 But we must not accidentally narrow the scope of an existing
3885 RELOAD_OTHER reload - leave these alone.
3887 In any case, anything needed to address this operand can remain
3888 however they were previously categorized. */
3890 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3891 operand_type[i]
3892 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3893 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3896 /* Any constants that aren't allowed and can't be reloaded
3897 into registers are here changed into memory references. */
3898 for (i = 0; i < noperands; i++)
3899 if (! goal_alternative_win[i])
3901 rtx op = recog_data.operand[i];
3902 rtx subreg = NULL_RTX;
3903 rtx plus = NULL_RTX;
3904 enum machine_mode mode = operand_mode[i];
3906 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3907 push_reload so we have to let them pass here. */
3908 if (GET_CODE (op) == SUBREG)
3910 subreg = op;
3911 op = SUBREG_REG (op);
3912 mode = GET_MODE (op);
3915 if (GET_CODE (op) == PLUS)
3917 plus = op;
3918 op = XEXP (op, 1);
3921 if (CONST_POOL_OK_P (mode, op)
3922 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3923 == NO_REGS)
3924 || no_input_reloads))
3926 int this_address_reloaded;
3927 rtx tem = force_const_mem (mode, op);
3929 /* If we stripped a SUBREG or a PLUS above add it back. */
3930 if (plus != NULL_RTX)
3931 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3933 if (subreg != NULL_RTX)
3934 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3936 this_address_reloaded = 0;
3937 substed_operand[i] = recog_data.operand[i]
3938 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3939 0, insn, &this_address_reloaded);
3941 /* If the alternative accepts constant pool refs directly
3942 there will be no reload needed at all. */
3943 if (plus == NULL_RTX
3944 && subreg == NULL_RTX
3945 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3946 ? substed_operand[i]
3947 : NULL,
3948 recog_data.constraints[i],
3949 goal_alternative_number))
3950 goal_alternative_win[i] = 1;
3954 /* Record the values of the earlyclobber operands for the caller. */
3955 if (goal_earlyclobber)
3956 for (i = 0; i < noperands; i++)
3957 if (goal_alternative_earlyclobber[i])
3958 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3960 /* Now record reloads for all the operands that need them. */
3961 for (i = 0; i < noperands; i++)
3962 if (! goal_alternative_win[i])
3964 /* Operands that match previous ones have already been handled. */
3965 if (goal_alternative_matches[i] >= 0)
3967 /* Handle an operand with a nonoffsettable address
3968 appearing where an offsettable address will do
3969 by reloading the address into a base register.
3971 ??? We can also do this when the operand is a register and
3972 reg_equiv_mem is not offsettable, but this is a bit tricky,
3973 so we don't bother with it. It may not be worth doing. */
3974 else if (goal_alternative_matched[i] == -1
3975 && goal_alternative_offmemok[i]
3976 && MEM_P (recog_data.operand[i]))
3978 /* If the address to be reloaded is a VOIDmode constant,
3979 use the default address mode as mode of the reload register,
3980 as would have been done by find_reloads_address. */
3981 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3982 enum machine_mode address_mode;
3983 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3984 if (address_mode == VOIDmode)
3985 address_mode = targetm.addr_space.address_mode (as);
3987 operand_reloadnum[i]
3988 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3989 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3990 base_reg_class (VOIDmode, as, MEM, SCRATCH),
3991 address_mode,
3992 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3993 rld[operand_reloadnum[i]].inc
3994 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3996 /* If this operand is an output, we will have made any
3997 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3998 now we are treating part of the operand as an input, so
3999 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4001 if (modified[i] == RELOAD_WRITE)
4003 for (j = 0; j < n_reloads; j++)
4005 if (rld[j].opnum == i)
4007 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4008 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4009 else if (rld[j].when_needed
4010 == RELOAD_FOR_OUTADDR_ADDRESS)
4011 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4016 else if (goal_alternative_matched[i] == -1)
4018 operand_reloadnum[i]
4019 = push_reload ((modified[i] != RELOAD_WRITE
4020 ? recog_data.operand[i] : 0),
4021 (modified[i] != RELOAD_READ
4022 ? recog_data.operand[i] : 0),
4023 (modified[i] != RELOAD_WRITE
4024 ? recog_data.operand_loc[i] : 0),
4025 (modified[i] != RELOAD_READ
4026 ? recog_data.operand_loc[i] : 0),
4027 (enum reg_class) goal_alternative[i],
4028 (modified[i] == RELOAD_WRITE
4029 ? VOIDmode : operand_mode[i]),
4030 (modified[i] == RELOAD_READ
4031 ? VOIDmode : operand_mode[i]),
4032 (insn_code_number < 0 ? 0
4033 : insn_data[insn_code_number].operand[i].strict_low),
4034 0, i, operand_type[i]);
4036 /* In a matching pair of operands, one must be input only
4037 and the other must be output only.
4038 Pass the input operand as IN and the other as OUT. */
4039 else if (modified[i] == RELOAD_READ
4040 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4042 operand_reloadnum[i]
4043 = push_reload (recog_data.operand[i],
4044 recog_data.operand[goal_alternative_matched[i]],
4045 recog_data.operand_loc[i],
4046 recog_data.operand_loc[goal_alternative_matched[i]],
4047 (enum reg_class) goal_alternative[i],
4048 operand_mode[i],
4049 operand_mode[goal_alternative_matched[i]],
4050 0, 0, i, RELOAD_OTHER);
4051 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4053 else if (modified[i] == RELOAD_WRITE
4054 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4056 operand_reloadnum[goal_alternative_matched[i]]
4057 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4058 recog_data.operand[i],
4059 recog_data.operand_loc[goal_alternative_matched[i]],
4060 recog_data.operand_loc[i],
4061 (enum reg_class) goal_alternative[i],
4062 operand_mode[goal_alternative_matched[i]],
4063 operand_mode[i],
4064 0, 0, i, RELOAD_OTHER);
4065 operand_reloadnum[i] = output_reloadnum;
4067 else
4069 gcc_assert (insn_code_number < 0);
4070 error_for_asm (insn, "inconsistent operand constraints "
4071 "in an %<asm%>");
4072 /* Avoid further trouble with this insn. */
4073 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4074 n_reloads = 0;
4075 return 0;
4078 else if (goal_alternative_matched[i] < 0
4079 && goal_alternative_matches[i] < 0
4080 && address_operand_reloaded[i] != 1
4081 && optimize)
4083 /* For each non-matching operand that's a MEM or a pseudo-register
4084 that didn't get a hard register, make an optional reload.
4085 This may get done even if the insn needs no reloads otherwise. */
4087 rtx operand = recog_data.operand[i];
4089 while (GET_CODE (operand) == SUBREG)
4090 operand = SUBREG_REG (operand);
4091 if ((MEM_P (operand)
4092 || (REG_P (operand)
4093 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4094 /* If this is only for an output, the optional reload would not
4095 actually cause us to use a register now, just note that
4096 something is stored here. */
4097 && (goal_alternative[i] != NO_REGS
4098 || modified[i] == RELOAD_WRITE)
4099 && ! no_input_reloads
4100 /* An optional output reload might allow to delete INSN later.
4101 We mustn't make in-out reloads on insns that are not permitted
4102 output reloads.
4103 If this is an asm, we can't delete it; we must not even call
4104 push_reload for an optional output reload in this case,
4105 because we can't be sure that the constraint allows a register,
4106 and push_reload verifies the constraints for asms. */
4107 && (modified[i] == RELOAD_READ
4108 || (! no_output_reloads && ! this_insn_is_asm)))
4109 operand_reloadnum[i]
4110 = push_reload ((modified[i] != RELOAD_WRITE
4111 ? recog_data.operand[i] : 0),
4112 (modified[i] != RELOAD_READ
4113 ? recog_data.operand[i] : 0),
4114 (modified[i] != RELOAD_WRITE
4115 ? recog_data.operand_loc[i] : 0),
4116 (modified[i] != RELOAD_READ
4117 ? recog_data.operand_loc[i] : 0),
4118 (enum reg_class) goal_alternative[i],
4119 (modified[i] == RELOAD_WRITE
4120 ? VOIDmode : operand_mode[i]),
4121 (modified[i] == RELOAD_READ
4122 ? VOIDmode : operand_mode[i]),
4123 (insn_code_number < 0 ? 0
4124 : insn_data[insn_code_number].operand[i].strict_low),
4125 1, i, operand_type[i]);
4126 /* If a memory reference remains (either as a MEM or a pseudo that
4127 did not get a hard register), yet we can't make an optional
4128 reload, check if this is actually a pseudo register reference;
4129 we then need to emit a USE and/or a CLOBBER so that reload
4130 inheritance will do the right thing. */
4131 else if (replace
4132 && (MEM_P (operand)
4133 || (REG_P (operand)
4134 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4135 && reg_renumber [REGNO (operand)] < 0)))
4137 operand = *recog_data.operand_loc[i];
4139 while (GET_CODE (operand) == SUBREG)
4140 operand = SUBREG_REG (operand);
4141 if (REG_P (operand))
4143 if (modified[i] != RELOAD_WRITE)
4144 /* We mark the USE with QImode so that we recognize
4145 it as one that can be safely deleted at the end
4146 of reload. */
4147 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4148 insn), QImode);
4149 if (modified[i] != RELOAD_READ)
4150 emit_insn_after (gen_clobber (operand), insn);
4154 else if (goal_alternative_matches[i] >= 0
4155 && goal_alternative_win[goal_alternative_matches[i]]
4156 && modified[i] == RELOAD_READ
4157 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4158 && ! no_input_reloads && ! no_output_reloads
4159 && optimize)
4161 /* Similarly, make an optional reload for a pair of matching
4162 objects that are in MEM or a pseudo that didn't get a hard reg. */
4164 rtx operand = recog_data.operand[i];
4166 while (GET_CODE (operand) == SUBREG)
4167 operand = SUBREG_REG (operand);
4168 if ((MEM_P (operand)
4169 || (REG_P (operand)
4170 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4171 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4172 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4173 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4174 recog_data.operand[i],
4175 recog_data.operand_loc[goal_alternative_matches[i]],
4176 recog_data.operand_loc[i],
4177 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4178 operand_mode[goal_alternative_matches[i]],
4179 operand_mode[i],
4180 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4183 /* Perform whatever substitutions on the operands we are supposed
4184 to make due to commutativity or replacement of registers
4185 with equivalent constants or memory slots. */
4187 for (i = 0; i < noperands; i++)
4189 /* We only do this on the last pass through reload, because it is
4190 possible for some data (like reg_equiv_address) to be changed during
4191 later passes. Moreover, we lose the opportunity to get a useful
4192 reload_{in,out}_reg when we do these replacements. */
4194 if (replace)
4196 rtx substitution = substed_operand[i];
4198 *recog_data.operand_loc[i] = substitution;
4200 /* If we're replacing an operand with a LABEL_REF, we need to
4201 make sure that there's a REG_LABEL_OPERAND note attached to
4202 this instruction. */
4203 if (GET_CODE (substitution) == LABEL_REF
4204 && !find_reg_note (insn, REG_LABEL_OPERAND,
4205 XEXP (substitution, 0))
4206 /* For a JUMP_P, if it was a branch target it must have
4207 already been recorded as such. */
4208 && (!JUMP_P (insn)
4209 || !label_is_jump_target_p (XEXP (substitution, 0),
4210 insn)))
4211 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4213 else
4214 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4217 /* If this insn pattern contains any MATCH_DUP's, make sure that
4218 they will be substituted if the operands they match are substituted.
4219 Also do now any substitutions we already did on the operands.
4221 Don't do this if we aren't making replacements because we might be
4222 propagating things allocated by frame pointer elimination into places
4223 it doesn't expect. */
4225 if (insn_code_number >= 0 && replace)
4226 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4228 int opno = recog_data.dup_num[i];
4229 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4230 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4233 #if 0
4234 /* This loses because reloading of prior insns can invalidate the equivalence
4235 (or at least find_equiv_reg isn't smart enough to find it any more),
4236 causing this insn to need more reload regs than it needed before.
4237 It may be too late to make the reload regs available.
4238 Now this optimization is done safely in choose_reload_regs. */
4240 /* For each reload of a reg into some other class of reg,
4241 search for an existing equivalent reg (same value now) in the right class.
4242 We can use it as long as we don't need to change its contents. */
4243 for (i = 0; i < n_reloads; i++)
4244 if (rld[i].reg_rtx == 0
4245 && rld[i].in != 0
4246 && REG_P (rld[i].in)
4247 && rld[i].out == 0)
4249 rld[i].reg_rtx
4250 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4251 static_reload_reg_p, 0, rld[i].inmode);
4252 /* Prevent generation of insn to load the value
4253 because the one we found already has the value. */
4254 if (rld[i].reg_rtx)
4255 rld[i].in = rld[i].reg_rtx;
4257 #endif
4259 /* If we detected error and replaced asm instruction by USE, forget about the
4260 reloads. */
4261 if (GET_CODE (PATTERN (insn)) == USE
4262 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4263 n_reloads = 0;
4265 /* Perhaps an output reload can be combined with another
4266 to reduce needs by one. */
4267 if (!goal_earlyclobber)
4268 combine_reloads ();
4270 /* If we have a pair of reloads for parts of an address, they are reloading
4271 the same object, the operands themselves were not reloaded, and they
4272 are for two operands that are supposed to match, merge the reloads and
4273 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4275 for (i = 0; i < n_reloads; i++)
4277 int k;
4279 for (j = i + 1; j < n_reloads; j++)
4280 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4281 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4282 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4283 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4284 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4285 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4286 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4287 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4288 && rtx_equal_p (rld[i].in, rld[j].in)
4289 && (operand_reloadnum[rld[i].opnum] < 0
4290 || rld[operand_reloadnum[rld[i].opnum]].optional)
4291 && (operand_reloadnum[rld[j].opnum] < 0
4292 || rld[operand_reloadnum[rld[j].opnum]].optional)
4293 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4294 || (goal_alternative_matches[rld[j].opnum]
4295 == rld[i].opnum)))
4297 for (k = 0; k < n_replacements; k++)
4298 if (replacements[k].what == j)
4299 replacements[k].what = i;
4301 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4302 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4303 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4304 else
4305 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4306 rld[j].in = 0;
4310 /* Scan all the reloads and update their type.
4311 If a reload is for the address of an operand and we didn't reload
4312 that operand, change the type. Similarly, change the operand number
4313 of a reload when two operands match. If a reload is optional, treat it
4314 as though the operand isn't reloaded.
4316 ??? This latter case is somewhat odd because if we do the optional
4317 reload, it means the object is hanging around. Thus we need only
4318 do the address reload if the optional reload was NOT done.
4320 Change secondary reloads to be the address type of their operand, not
4321 the normal type.
4323 If an operand's reload is now RELOAD_OTHER, change any
4324 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4325 RELOAD_FOR_OTHER_ADDRESS. */
4327 for (i = 0; i < n_reloads; i++)
4329 if (rld[i].secondary_p
4330 && rld[i].when_needed == operand_type[rld[i].opnum])
4331 rld[i].when_needed = address_type[rld[i].opnum];
4333 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4334 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4335 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4336 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4337 && (operand_reloadnum[rld[i].opnum] < 0
4338 || rld[operand_reloadnum[rld[i].opnum]].optional))
4340 /* If we have a secondary reload to go along with this reload,
4341 change its type to RELOAD_FOR_OPADDR_ADDR. */
4343 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4344 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4345 && rld[i].secondary_in_reload != -1)
4347 int secondary_in_reload = rld[i].secondary_in_reload;
4349 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4351 /* If there's a tertiary reload we have to change it also. */
4352 if (secondary_in_reload > 0
4353 && rld[secondary_in_reload].secondary_in_reload != -1)
4354 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4355 = RELOAD_FOR_OPADDR_ADDR;
4358 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4359 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4360 && rld[i].secondary_out_reload != -1)
4362 int secondary_out_reload = rld[i].secondary_out_reload;
4364 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4366 /* If there's a tertiary reload we have to change it also. */
4367 if (secondary_out_reload
4368 && rld[secondary_out_reload].secondary_out_reload != -1)
4369 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4370 = RELOAD_FOR_OPADDR_ADDR;
4373 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4374 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4375 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4376 else
4377 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4380 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4381 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4382 && operand_reloadnum[rld[i].opnum] >= 0
4383 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4384 == RELOAD_OTHER))
4385 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4387 if (goal_alternative_matches[rld[i].opnum] >= 0)
4388 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4391 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4392 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4393 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4395 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4396 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4397 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4398 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4399 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4400 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4401 This is complicated by the fact that a single operand can have more
4402 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4403 choose_reload_regs without affecting code quality, and cases that
4404 actually fail are extremely rare, so it turns out to be better to fix
4405 the problem here by not generating cases that choose_reload_regs will
4406 fail for. */
4407 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4408 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4409 a single operand.
4410 We can reduce the register pressure by exploiting that a
4411 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4412 does not conflict with any of them, if it is only used for the first of
4413 the RELOAD_FOR_X_ADDRESS reloads. */
4415 int first_op_addr_num = -2;
4416 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4417 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4418 int need_change = 0;
4419 /* We use last_op_addr_reload and the contents of the above arrays
4420 first as flags - -2 means no instance encountered, -1 means exactly
4421 one instance encountered.
4422 If more than one instance has been encountered, we store the reload
4423 number of the first reload of the kind in question; reload numbers
4424 are known to be non-negative. */
4425 for (i = 0; i < noperands; i++)
4426 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4427 for (i = n_reloads - 1; i >= 0; i--)
4429 switch (rld[i].when_needed)
4431 case RELOAD_FOR_OPERAND_ADDRESS:
4432 if (++first_op_addr_num >= 0)
4434 first_op_addr_num = i;
4435 need_change = 1;
4437 break;
4438 case RELOAD_FOR_INPUT_ADDRESS:
4439 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4441 first_inpaddr_num[rld[i].opnum] = i;
4442 need_change = 1;
4444 break;
4445 case RELOAD_FOR_OUTPUT_ADDRESS:
4446 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4448 first_outpaddr_num[rld[i].opnum] = i;
4449 need_change = 1;
4451 break;
4452 default:
4453 break;
4457 if (need_change)
4459 for (i = 0; i < n_reloads; i++)
4461 int first_num;
4462 enum reload_type type;
4464 switch (rld[i].when_needed)
4466 case RELOAD_FOR_OPADDR_ADDR:
4467 first_num = first_op_addr_num;
4468 type = RELOAD_FOR_OPERAND_ADDRESS;
4469 break;
4470 case RELOAD_FOR_INPADDR_ADDRESS:
4471 first_num = first_inpaddr_num[rld[i].opnum];
4472 type = RELOAD_FOR_INPUT_ADDRESS;
4473 break;
4474 case RELOAD_FOR_OUTADDR_ADDRESS:
4475 first_num = first_outpaddr_num[rld[i].opnum];
4476 type = RELOAD_FOR_OUTPUT_ADDRESS;
4477 break;
4478 default:
4479 continue;
4481 if (first_num < 0)
4482 continue;
4483 else if (i > first_num)
4484 rld[i].when_needed = type;
4485 else
4487 /* Check if the only TYPE reload that uses reload I is
4488 reload FIRST_NUM. */
4489 for (j = n_reloads - 1; j > first_num; j--)
4491 if (rld[j].when_needed == type
4492 && (rld[i].secondary_p
4493 ? rld[j].secondary_in_reload == i
4494 : reg_mentioned_p (rld[i].in, rld[j].in)))
4496 rld[i].when_needed = type;
4497 break;
4505 /* See if we have any reloads that are now allowed to be merged
4506 because we've changed when the reload is needed to
4507 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4508 check for the most common cases. */
4510 for (i = 0; i < n_reloads; i++)
4511 if (rld[i].in != 0 && rld[i].out == 0
4512 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4513 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4514 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4515 for (j = 0; j < n_reloads; j++)
4516 if (i != j && rld[j].in != 0 && rld[j].out == 0
4517 && rld[j].when_needed == rld[i].when_needed
4518 && MATCHES (rld[i].in, rld[j].in)
4519 && rld[i].rclass == rld[j].rclass
4520 && !rld[i].nocombine && !rld[j].nocombine
4521 && rld[i].reg_rtx == rld[j].reg_rtx)
4523 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4524 transfer_replacements (i, j);
4525 rld[j].in = 0;
4528 #ifdef HAVE_cc0
4529 /* If we made any reloads for addresses, see if they violate a
4530 "no input reloads" requirement for this insn. But loads that we
4531 do after the insn (such as for output addresses) are fine. */
4532 if (no_input_reloads)
4533 for (i = 0; i < n_reloads; i++)
4534 gcc_assert (rld[i].in == 0
4535 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4536 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4537 #endif
4539 /* Compute reload_mode and reload_nregs. */
4540 for (i = 0; i < n_reloads; i++)
4542 rld[i].mode
4543 = (rld[i].inmode == VOIDmode
4544 || (GET_MODE_SIZE (rld[i].outmode)
4545 > GET_MODE_SIZE (rld[i].inmode)))
4546 ? rld[i].outmode : rld[i].inmode;
4548 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4551 /* Special case a simple move with an input reload and a
4552 destination of a hard reg, if the hard reg is ok, use it. */
4553 for (i = 0; i < n_reloads; i++)
4554 if (rld[i].when_needed == RELOAD_FOR_INPUT
4555 && GET_CODE (PATTERN (insn)) == SET
4556 && REG_P (SET_DEST (PATTERN (insn)))
4557 && (SET_SRC (PATTERN (insn)) == rld[i].in
4558 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4559 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4561 rtx dest = SET_DEST (PATTERN (insn));
4562 unsigned int regno = REGNO (dest);
4564 if (regno < FIRST_PSEUDO_REGISTER
4565 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4566 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4568 int nr = hard_regno_nregs[regno][rld[i].mode];
4569 int ok = 1, nri;
4571 for (nri = 1; nri < nr; nri ++)
4572 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4573 ok = 0;
4575 if (ok)
4576 rld[i].reg_rtx = dest;
4580 return retval;
4583 /* Return true if alternative number ALTNUM in constraint-string
4584 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4585 MEM gives the reference if it didn't need any reloads, otherwise it
4586 is null. */
4588 static bool
4589 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4590 const char *constraint, int altnum)
4592 int c;
4594 /* Skip alternatives before the one requested. */
4595 while (altnum > 0)
4597 while (*constraint++ != ',')
4599 altnum--;
4601 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4602 If one of them is present, this alternative accepts the result of
4603 passing a constant-pool reference through find_reloads_toplev.
4605 The same is true of extra memory constraints if the address
4606 was reloaded into a register. However, the target may elect
4607 to disallow the original constant address, forcing it to be
4608 reloaded into a register instead. */
4609 for (; (c = *constraint) && c != ',' && c != '#';
4610 constraint += CONSTRAINT_LEN (c, constraint))
4612 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4613 return true;
4614 #ifdef EXTRA_CONSTRAINT_STR
4615 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4616 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4617 return true;
4618 #endif
4620 return false;
4623 /* Scan X for memory references and scan the addresses for reloading.
4624 Also checks for references to "constant" regs that we want to eliminate
4625 and replaces them with the values they stand for.
4626 We may alter X destructively if it contains a reference to such.
4627 If X is just a constant reg, we return the equivalent value
4628 instead of X.
4630 IND_LEVELS says how many levels of indirect addressing this machine
4631 supports.
4633 OPNUM and TYPE identify the purpose of the reload.
4635 IS_SET_DEST is true if X is the destination of a SET, which is not
4636 appropriate to be replaced by a constant.
4638 INSN, if nonzero, is the insn in which we do the reload. It is used
4639 to determine if we may generate output reloads, and where to put USEs
4640 for pseudos that we have to replace with stack slots.
4642 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4643 result of find_reloads_address. */
4645 static rtx
4646 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4647 int ind_levels, int is_set_dest, rtx insn,
4648 int *address_reloaded)
4650 RTX_CODE code = GET_CODE (x);
4652 const char *fmt = GET_RTX_FORMAT (code);
4653 int i;
4654 int copied;
4656 if (code == REG)
4658 /* This code is duplicated for speed in find_reloads. */
4659 int regno = REGNO (x);
4660 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4661 x = reg_equiv_constant (regno);
4662 #if 0
4663 /* This creates (subreg (mem...)) which would cause an unnecessary
4664 reload of the mem. */
4665 else if (reg_equiv_mem (regno) != 0)
4666 x = reg_equiv_mem (regno);
4667 #endif
4668 else if (reg_equiv_memory_loc (regno)
4669 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4671 rtx mem = make_memloc (x, regno);
4672 if (reg_equiv_address (regno)
4673 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4675 /* If this is not a toplevel operand, find_reloads doesn't see
4676 this substitution. We have to emit a USE of the pseudo so
4677 that delete_output_reload can see it. */
4678 if (replace_reloads && recog_data.operand[opnum] != x)
4679 /* We mark the USE with QImode so that we recognize it
4680 as one that can be safely deleted at the end of
4681 reload. */
4682 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4683 QImode);
4684 x = mem;
4685 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4686 opnum, type, ind_levels, insn);
4687 if (!rtx_equal_p (x, mem))
4688 push_reg_equiv_alt_mem (regno, x);
4689 if (address_reloaded)
4690 *address_reloaded = i;
4693 return x;
4695 if (code == MEM)
4697 rtx tem = x;
4699 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4700 opnum, type, ind_levels, insn);
4701 if (address_reloaded)
4702 *address_reloaded = i;
4704 return tem;
4707 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4709 /* Check for SUBREG containing a REG that's equivalent to a
4710 constant. If the constant has a known value, truncate it
4711 right now. Similarly if we are extracting a single-word of a
4712 multi-word constant. If the constant is symbolic, allow it
4713 to be substituted normally. push_reload will strip the
4714 subreg later. The constant must not be VOIDmode, because we
4715 will lose the mode of the register (this should never happen
4716 because one of the cases above should handle it). */
4718 int regno = REGNO (SUBREG_REG (x));
4719 rtx tem;
4721 if (regno >= FIRST_PSEUDO_REGISTER
4722 && reg_renumber[regno] < 0
4723 && reg_equiv_constant (regno) != 0)
4725 tem =
4726 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4727 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4728 gcc_assert (tem);
4729 if (CONSTANT_P (tem)
4730 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4732 tem = force_const_mem (GET_MODE (x), tem);
4733 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4734 &XEXP (tem, 0), opnum, type,
4735 ind_levels, insn);
4736 if (address_reloaded)
4737 *address_reloaded = i;
4739 return tem;
4742 /* If the subreg contains a reg that will be converted to a mem,
4743 convert the subreg to a narrower memref now.
4744 Otherwise, we would get (subreg (mem ...) ...),
4745 which would force reload of the mem.
4747 We also need to do this if there is an equivalent MEM that is
4748 not offsettable. In that case, alter_subreg would produce an
4749 invalid address on big-endian machines.
4751 For machines that extend byte loads, we must not reload using
4752 a wider mode if we have a paradoxical SUBREG. find_reloads will
4753 force a reload in that case. So we should not do anything here. */
4755 if (regno >= FIRST_PSEUDO_REGISTER
4756 #ifdef LOAD_EXTEND_OP
4757 && !paradoxical_subreg_p (x)
4758 #endif
4759 && (reg_equiv_address (regno) != 0
4760 || (reg_equiv_mem (regno) != 0
4761 && (! strict_memory_address_addr_space_p
4762 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4763 MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4764 || ! offsettable_memref_p (reg_equiv_mem (regno))
4765 || num_not_at_initial_offset))))
4766 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4767 insn, address_reloaded);
4770 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4772 if (fmt[i] == 'e')
4774 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4775 ind_levels, is_set_dest, insn,
4776 address_reloaded);
4777 /* If we have replaced a reg with it's equivalent memory loc -
4778 that can still be handled here e.g. if it's in a paradoxical
4779 subreg - we must make the change in a copy, rather than using
4780 a destructive change. This way, find_reloads can still elect
4781 not to do the change. */
4782 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4784 x = shallow_copy_rtx (x);
4785 copied = 1;
4787 XEXP (x, i) = new_part;
4790 return x;
4793 /* Return a mem ref for the memory equivalent of reg REGNO.
4794 This mem ref is not shared with anything. */
4796 static rtx
4797 make_memloc (rtx ad, int regno)
4799 /* We must rerun eliminate_regs, in case the elimination
4800 offsets have changed. */
4801 rtx tem
4802 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4805 /* If TEM might contain a pseudo, we must copy it to avoid
4806 modifying it when we do the substitution for the reload. */
4807 if (rtx_varies_p (tem, 0))
4808 tem = copy_rtx (tem);
4810 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4811 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4813 /* Copy the result if it's still the same as the equivalence, to avoid
4814 modifying it when we do the substitution for the reload. */
4815 if (tem == reg_equiv_memory_loc (regno))
4816 tem = copy_rtx (tem);
4817 return tem;
4820 /* Returns true if AD could be turned into a valid memory reference
4821 to mode MODE in address space AS by reloading the part pointed to
4822 by PART into a register. */
4824 static int
4825 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4826 addr_space_t as, rtx *part)
4828 int retv;
4829 rtx tem = *part;
4830 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4832 *part = reg;
4833 retv = memory_address_addr_space_p (mode, ad, as);
4834 *part = tem;
4836 return retv;
4839 /* Record all reloads needed for handling memory address AD
4840 which appears in *LOC in a memory reference to mode MODE
4841 which itself is found in location *MEMREFLOC.
4842 Note that we take shortcuts assuming that no multi-reg machine mode
4843 occurs as part of an address.
4845 OPNUM and TYPE specify the purpose of this reload.
4847 IND_LEVELS says how many levels of indirect addressing this machine
4848 supports.
4850 INSN, if nonzero, is the insn in which we do the reload. It is used
4851 to determine if we may generate output reloads, and where to put USEs
4852 for pseudos that we have to replace with stack slots.
4854 Value is one if this address is reloaded or replaced as a whole; it is
4855 zero if the top level of this address was not reloaded or replaced, and
4856 it is -1 if it may or may not have been reloaded or replaced.
4858 Note that there is no verification that the address will be valid after
4859 this routine does its work. Instead, we rely on the fact that the address
4860 was valid when reload started. So we need only undo things that reload
4861 could have broken. These are wrong register types, pseudos not allocated
4862 to a hard register, and frame pointer elimination. */
4864 static int
4865 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4866 rtx *loc, int opnum, enum reload_type type,
4867 int ind_levels, rtx insn)
4869 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4870 : ADDR_SPACE_GENERIC;
4871 int regno;
4872 int removed_and = 0;
4873 int op_index;
4874 rtx tem;
4876 /* If the address is a register, see if it is a legitimate address and
4877 reload if not. We first handle the cases where we need not reload
4878 or where we must reload in a non-standard way. */
4880 if (REG_P (ad))
4882 regno = REGNO (ad);
4884 if (reg_equiv_constant (regno) != 0)
4886 find_reloads_address_part (reg_equiv_constant (regno), loc,
4887 base_reg_class (mode, as, MEM, SCRATCH),
4888 GET_MODE (ad), opnum, type, ind_levels);
4889 return 1;
4892 tem = reg_equiv_memory_loc (regno);
4893 if (tem != 0)
4895 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4897 tem = make_memloc (ad, regno);
4898 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4899 XEXP (tem, 0),
4900 MEM_ADDR_SPACE (tem)))
4902 rtx orig = tem;
4904 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4905 &XEXP (tem, 0), opnum,
4906 ADDR_TYPE (type), ind_levels, insn);
4907 if (!rtx_equal_p (tem, orig))
4908 push_reg_equiv_alt_mem (regno, tem);
4910 /* We can avoid a reload if the register's equivalent memory
4911 expression is valid as an indirect memory address.
4912 But not all addresses are valid in a mem used as an indirect
4913 address: only reg or reg+constant. */
4915 if (ind_levels > 0
4916 && strict_memory_address_addr_space_p (mode, tem, as)
4917 && (REG_P (XEXP (tem, 0))
4918 || (GET_CODE (XEXP (tem, 0)) == PLUS
4919 && REG_P (XEXP (XEXP (tem, 0), 0))
4920 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4922 /* TEM is not the same as what we'll be replacing the
4923 pseudo with after reload, put a USE in front of INSN
4924 in the final reload pass. */
4925 if (replace_reloads
4926 && num_not_at_initial_offset
4927 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4929 *loc = tem;
4930 /* We mark the USE with QImode so that we
4931 recognize it as one that can be safely
4932 deleted at the end of reload. */
4933 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4934 insn), QImode);
4936 /* This doesn't really count as replacing the address
4937 as a whole, since it is still a memory access. */
4939 return 0;
4941 ad = tem;
4945 /* The only remaining case where we can avoid a reload is if this is a
4946 hard register that is valid as a base register and which is not the
4947 subject of a CLOBBER in this insn. */
4949 else if (regno < FIRST_PSEUDO_REGISTER
4950 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4951 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4952 return 0;
4954 /* If we do not have one of the cases above, we must do the reload. */
4955 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4956 base_reg_class (mode, as, MEM, SCRATCH),
4957 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4958 return 1;
4961 if (strict_memory_address_addr_space_p (mode, ad, as))
4963 /* The address appears valid, so reloads are not needed.
4964 But the address may contain an eliminable register.
4965 This can happen because a machine with indirect addressing
4966 may consider a pseudo register by itself a valid address even when
4967 it has failed to get a hard reg.
4968 So do a tree-walk to find and eliminate all such regs. */
4970 /* But first quickly dispose of a common case. */
4971 if (GET_CODE (ad) == PLUS
4972 && CONST_INT_P (XEXP (ad, 1))
4973 && REG_P (XEXP (ad, 0))
4974 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4975 return 0;
4977 subst_reg_equivs_changed = 0;
4978 *loc = subst_reg_equivs (ad, insn);
4980 if (! subst_reg_equivs_changed)
4981 return 0;
4983 /* Check result for validity after substitution. */
4984 if (strict_memory_address_addr_space_p (mode, ad, as))
4985 return 0;
4988 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4991 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4993 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4994 ind_levels, win);
4996 break;
4997 win:
4998 *memrefloc = copy_rtx (*memrefloc);
4999 XEXP (*memrefloc, 0) = ad;
5000 move_replacements (&ad, &XEXP (*memrefloc, 0));
5001 return -1;
5003 while (0);
5004 #endif
5006 /* The address is not valid. We have to figure out why. First see if
5007 we have an outer AND and remove it if so. Then analyze what's inside. */
5009 if (GET_CODE (ad) == AND)
5011 removed_and = 1;
5012 loc = &XEXP (ad, 0);
5013 ad = *loc;
5016 /* One possibility for why the address is invalid is that it is itself
5017 a MEM. This can happen when the frame pointer is being eliminated, a
5018 pseudo is not allocated to a hard register, and the offset between the
5019 frame and stack pointers is not its initial value. In that case the
5020 pseudo will have been replaced by a MEM referring to the
5021 stack pointer. */
5022 if (MEM_P (ad))
5024 /* First ensure that the address in this MEM is valid. Then, unless
5025 indirect addresses are valid, reload the MEM into a register. */
5026 tem = ad;
5027 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5028 opnum, ADDR_TYPE (type),
5029 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5031 /* If tem was changed, then we must create a new memory reference to
5032 hold it and store it back into memrefloc. */
5033 if (tem != ad && memrefloc)
5035 *memrefloc = copy_rtx (*memrefloc);
5036 copy_replacements (tem, XEXP (*memrefloc, 0));
5037 loc = &XEXP (*memrefloc, 0);
5038 if (removed_and)
5039 loc = &XEXP (*loc, 0);
5042 /* Check similar cases as for indirect addresses as above except
5043 that we can allow pseudos and a MEM since they should have been
5044 taken care of above. */
5046 if (ind_levels == 0
5047 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5048 || MEM_P (XEXP (tem, 0))
5049 || ! (REG_P (XEXP (tem, 0))
5050 || (GET_CODE (XEXP (tem, 0)) == PLUS
5051 && REG_P (XEXP (XEXP (tem, 0), 0))
5052 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5054 /* Must use TEM here, not AD, since it is the one that will
5055 have any subexpressions reloaded, if needed. */
5056 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5057 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5058 VOIDmode, 0,
5059 0, opnum, type);
5060 return ! removed_and;
5062 else
5063 return 0;
5066 /* If we have address of a stack slot but it's not valid because the
5067 displacement is too large, compute the sum in a register.
5068 Handle all base registers here, not just fp/ap/sp, because on some
5069 targets (namely SH) we can also get too large displacements from
5070 big-endian corrections. */
5071 else if (GET_CODE (ad) == PLUS
5072 && REG_P (XEXP (ad, 0))
5073 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5074 && CONST_INT_P (XEXP (ad, 1))
5075 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5076 CONST_INT)
5077 /* Similarly, if we were to reload the base register and the
5078 mem+offset address is still invalid, then we want to reload
5079 the whole address, not just the base register. */
5080 || ! maybe_memory_address_addr_space_p
5081 (mode, ad, as, &(XEXP (ad, 0)))))
5084 /* Unshare the MEM rtx so we can safely alter it. */
5085 if (memrefloc)
5087 *memrefloc = copy_rtx (*memrefloc);
5088 loc = &XEXP (*memrefloc, 0);
5089 if (removed_and)
5090 loc = &XEXP (*loc, 0);
5093 if (double_reg_address_ok
5094 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5095 PLUS, CONST_INT))
5097 /* Unshare the sum as well. */
5098 *loc = ad = copy_rtx (ad);
5100 /* Reload the displacement into an index reg.
5101 We assume the frame pointer or arg pointer is a base reg. */
5102 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5103 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5104 type, ind_levels);
5105 return 0;
5107 else
5109 /* If the sum of two regs is not necessarily valid,
5110 reload the sum into a base reg.
5111 That will at least work. */
5112 find_reloads_address_part (ad, loc,
5113 base_reg_class (mode, as, MEM, SCRATCH),
5114 GET_MODE (ad), opnum, type, ind_levels);
5116 return ! removed_and;
5119 /* If we have an indexed stack slot, there are three possible reasons why
5120 it might be invalid: The index might need to be reloaded, the address
5121 might have been made by frame pointer elimination and hence have a
5122 constant out of range, or both reasons might apply.
5124 We can easily check for an index needing reload, but even if that is the
5125 case, we might also have an invalid constant. To avoid making the
5126 conservative assumption and requiring two reloads, we see if this address
5127 is valid when not interpreted strictly. If it is, the only problem is
5128 that the index needs a reload and find_reloads_address_1 will take care
5129 of it.
5131 Handle all base registers here, not just fp/ap/sp, because on some
5132 targets (namely SPARC) we can also get invalid addresses from preventive
5133 subreg big-endian corrections made by find_reloads_toplev. We
5134 can also get expressions involving LO_SUM (rather than PLUS) from
5135 find_reloads_subreg_address.
5137 If we decide to do something, it must be that `double_reg_address_ok'
5138 is true. We generate a reload of the base register + constant and
5139 rework the sum so that the reload register will be added to the index.
5140 This is safe because we know the address isn't shared.
5142 We check for the base register as both the first and second operand of
5143 the innermost PLUS and/or LO_SUM. */
5145 for (op_index = 0; op_index < 2; ++op_index)
5147 rtx operand, addend;
5148 enum rtx_code inner_code;
5150 if (GET_CODE (ad) != PLUS)
5151 continue;
5153 inner_code = GET_CODE (XEXP (ad, 0));
5154 if (!(GET_CODE (ad) == PLUS
5155 && CONST_INT_P (XEXP (ad, 1))
5156 && (inner_code == PLUS || inner_code == LO_SUM)))
5157 continue;
5159 operand = XEXP (XEXP (ad, 0), op_index);
5160 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5161 continue;
5163 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5165 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5166 GET_CODE (addend))
5167 || operand == frame_pointer_rtx
5168 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5169 || operand == hard_frame_pointer_rtx
5170 #endif
5171 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5172 || operand == arg_pointer_rtx
5173 #endif
5174 || operand == stack_pointer_rtx)
5175 && ! maybe_memory_address_addr_space_p
5176 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5178 rtx offset_reg;
5179 enum reg_class cls;
5181 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5183 /* Form the adjusted address. */
5184 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5185 ad = gen_rtx_PLUS (GET_MODE (ad),
5186 op_index == 0 ? offset_reg : addend,
5187 op_index == 0 ? addend : offset_reg);
5188 else
5189 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5190 op_index == 0 ? offset_reg : addend,
5191 op_index == 0 ? addend : offset_reg);
5192 *loc = ad;
5194 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5195 find_reloads_address_part (XEXP (ad, op_index),
5196 &XEXP (ad, op_index), cls,
5197 GET_MODE (ad), opnum, type, ind_levels);
5198 find_reloads_address_1 (mode, as,
5199 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5200 GET_CODE (XEXP (ad, op_index)),
5201 &XEXP (ad, 1 - op_index), opnum,
5202 type, 0, insn);
5204 return 0;
5208 /* See if address becomes valid when an eliminable register
5209 in a sum is replaced. */
5211 tem = ad;
5212 if (GET_CODE (ad) == PLUS)
5213 tem = subst_indexed_address (ad);
5214 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5216 /* Ok, we win that way. Replace any additional eliminable
5217 registers. */
5219 subst_reg_equivs_changed = 0;
5220 tem = subst_reg_equivs (tem, insn);
5222 /* Make sure that didn't make the address invalid again. */
5224 if (! subst_reg_equivs_changed
5225 || strict_memory_address_addr_space_p (mode, tem, as))
5227 *loc = tem;
5228 return 0;
5232 /* If constants aren't valid addresses, reload the constant address
5233 into a register. */
5234 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5236 enum machine_mode address_mode = GET_MODE (ad);
5237 if (address_mode == VOIDmode)
5238 address_mode = targetm.addr_space.address_mode (as);
5240 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5241 Unshare it so we can safely alter it. */
5242 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5243 && CONSTANT_POOL_ADDRESS_P (ad))
5245 *memrefloc = copy_rtx (*memrefloc);
5246 loc = &XEXP (*memrefloc, 0);
5247 if (removed_and)
5248 loc = &XEXP (*loc, 0);
5251 find_reloads_address_part (ad, loc,
5252 base_reg_class (mode, as, MEM, SCRATCH),
5253 address_mode, opnum, type, ind_levels);
5254 return ! removed_and;
5257 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5258 opnum, type, ind_levels, insn);
5261 /* Find all pseudo regs appearing in AD
5262 that are eliminable in favor of equivalent values
5263 and do not have hard regs; replace them by their equivalents.
5264 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5265 front of it for pseudos that we have to replace with stack slots. */
5267 static rtx
5268 subst_reg_equivs (rtx ad, rtx insn)
5270 RTX_CODE code = GET_CODE (ad);
5271 int i;
5272 const char *fmt;
5274 switch (code)
5276 case HIGH:
5277 case CONST_INT:
5278 case CONST:
5279 case CONST_DOUBLE:
5280 case CONST_FIXED:
5281 case CONST_VECTOR:
5282 case SYMBOL_REF:
5283 case LABEL_REF:
5284 case PC:
5285 case CC0:
5286 return ad;
5288 case REG:
5290 int regno = REGNO (ad);
5292 if (reg_equiv_constant (regno) != 0)
5294 subst_reg_equivs_changed = 1;
5295 return reg_equiv_constant (regno);
5297 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5299 rtx mem = make_memloc (ad, regno);
5300 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5302 subst_reg_equivs_changed = 1;
5303 /* We mark the USE with QImode so that we recognize it
5304 as one that can be safely deleted at the end of
5305 reload. */
5306 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5307 QImode);
5308 return mem;
5312 return ad;
5314 case PLUS:
5315 /* Quickly dispose of a common case. */
5316 if (XEXP (ad, 0) == frame_pointer_rtx
5317 && CONST_INT_P (XEXP (ad, 1)))
5318 return ad;
5319 break;
5321 default:
5322 break;
5325 fmt = GET_RTX_FORMAT (code);
5326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5327 if (fmt[i] == 'e')
5328 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5329 return ad;
5332 /* Compute the sum of X and Y, making canonicalizations assumed in an
5333 address, namely: sum constant integers, surround the sum of two
5334 constants with a CONST, put the constant as the second operand, and
5335 group the constant on the outermost sum.
5337 This routine assumes both inputs are already in canonical form. */
5340 form_sum (enum machine_mode mode, rtx x, rtx y)
5342 rtx tem;
5344 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5345 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5347 if (CONST_INT_P (x))
5348 return plus_constant (y, INTVAL (x));
5349 else if (CONST_INT_P (y))
5350 return plus_constant (x, INTVAL (y));
5351 else if (CONSTANT_P (x))
5352 tem = x, x = y, y = tem;
5354 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5355 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5357 /* Note that if the operands of Y are specified in the opposite
5358 order in the recursive calls below, infinite recursion will occur. */
5359 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5360 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5362 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5363 constant will have been placed second. */
5364 if (CONSTANT_P (x) && CONSTANT_P (y))
5366 if (GET_CODE (x) == CONST)
5367 x = XEXP (x, 0);
5368 if (GET_CODE (y) == CONST)
5369 y = XEXP (y, 0);
5371 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5374 return gen_rtx_PLUS (mode, x, y);
5377 /* If ADDR is a sum containing a pseudo register that should be
5378 replaced with a constant (from reg_equiv_constant),
5379 return the result of doing so, and also apply the associative
5380 law so that the result is more likely to be a valid address.
5381 (But it is not guaranteed to be one.)
5383 Note that at most one register is replaced, even if more are
5384 replaceable. Also, we try to put the result into a canonical form
5385 so it is more likely to be a valid address.
5387 In all other cases, return ADDR. */
5389 static rtx
5390 subst_indexed_address (rtx addr)
5392 rtx op0 = 0, op1 = 0, op2 = 0;
5393 rtx tem;
5394 int regno;
5396 if (GET_CODE (addr) == PLUS)
5398 /* Try to find a register to replace. */
5399 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5400 if (REG_P (op0)
5401 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5402 && reg_renumber[regno] < 0
5403 && reg_equiv_constant (regno) != 0)
5404 op0 = reg_equiv_constant (regno);
5405 else if (REG_P (op1)
5406 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5407 && reg_renumber[regno] < 0
5408 && reg_equiv_constant (regno) != 0)
5409 op1 = reg_equiv_constant (regno);
5410 else if (GET_CODE (op0) == PLUS
5411 && (tem = subst_indexed_address (op0)) != op0)
5412 op0 = tem;
5413 else if (GET_CODE (op1) == PLUS
5414 && (tem = subst_indexed_address (op1)) != op1)
5415 op1 = tem;
5416 else
5417 return addr;
5419 /* Pick out up to three things to add. */
5420 if (GET_CODE (op1) == PLUS)
5421 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5422 else if (GET_CODE (op0) == PLUS)
5423 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5425 /* Compute the sum. */
5426 if (op2 != 0)
5427 op1 = form_sum (GET_MODE (addr), op1, op2);
5428 if (op1 != 0)
5429 op0 = form_sum (GET_MODE (addr), op0, op1);
5431 return op0;
5433 return addr;
5436 /* Update the REG_INC notes for an insn. It updates all REG_INC
5437 notes for the instruction which refer to REGNO the to refer
5438 to the reload number.
5440 INSN is the insn for which any REG_INC notes need updating.
5442 REGNO is the register number which has been reloaded.
5444 RELOADNUM is the reload number. */
5446 static void
5447 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5448 int reloadnum ATTRIBUTE_UNUSED)
5450 #ifdef AUTO_INC_DEC
5451 rtx link;
5453 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5454 if (REG_NOTE_KIND (link) == REG_INC
5455 && (int) REGNO (XEXP (link, 0)) == regno)
5456 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5457 #endif
5460 /* Record the pseudo registers we must reload into hard registers in a
5461 subexpression of a would-be memory address, X referring to a value
5462 in mode MODE. (This function is not called if the address we find
5463 is strictly valid.)
5465 CONTEXT = 1 means we are considering regs as index regs,
5466 = 0 means we are considering them as base regs.
5467 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5468 or an autoinc code.
5469 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5470 is the code of the index part of the address. Otherwise, pass SCRATCH
5471 for this argument.
5472 OPNUM and TYPE specify the purpose of any reloads made.
5474 IND_LEVELS says how many levels of indirect addressing are
5475 supported at this point in the address.
5477 INSN, if nonzero, is the insn in which we do the reload. It is used
5478 to determine if we may generate output reloads.
5480 We return nonzero if X, as a whole, is reloaded or replaced. */
5482 /* Note that we take shortcuts assuming that no multi-reg machine mode
5483 occurs as part of an address.
5484 Also, this is not fully machine-customizable; it works for machines
5485 such as VAXen and 68000's and 32000's, but other possible machines
5486 could have addressing modes that this does not handle right.
5487 If you add push_reload calls here, you need to make sure gen_reload
5488 handles those cases gracefully. */
5490 static int
5491 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5492 rtx x, int context,
5493 enum rtx_code outer_code, enum rtx_code index_code,
5494 rtx *loc, int opnum, enum reload_type type,
5495 int ind_levels, rtx insn)
5497 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5498 ((CONTEXT) == 0 \
5499 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5500 : REGNO_OK_FOR_INDEX_P (REGNO))
5502 enum reg_class context_reg_class;
5503 RTX_CODE code = GET_CODE (x);
5505 if (context == 1)
5506 context_reg_class = INDEX_REG_CLASS;
5507 else
5508 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5510 switch (code)
5512 case PLUS:
5514 rtx orig_op0 = XEXP (x, 0);
5515 rtx orig_op1 = XEXP (x, 1);
5516 RTX_CODE code0 = GET_CODE (orig_op0);
5517 RTX_CODE code1 = GET_CODE (orig_op1);
5518 rtx op0 = orig_op0;
5519 rtx op1 = orig_op1;
5521 if (GET_CODE (op0) == SUBREG)
5523 op0 = SUBREG_REG (op0);
5524 code0 = GET_CODE (op0);
5525 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5526 op0 = gen_rtx_REG (word_mode,
5527 (REGNO (op0) +
5528 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5529 GET_MODE (SUBREG_REG (orig_op0)),
5530 SUBREG_BYTE (orig_op0),
5531 GET_MODE (orig_op0))));
5534 if (GET_CODE (op1) == SUBREG)
5536 op1 = SUBREG_REG (op1);
5537 code1 = GET_CODE (op1);
5538 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5539 /* ??? Why is this given op1's mode and above for
5540 ??? op0 SUBREGs we use word_mode? */
5541 op1 = gen_rtx_REG (GET_MODE (op1),
5542 (REGNO (op1) +
5543 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5544 GET_MODE (SUBREG_REG (orig_op1)),
5545 SUBREG_BYTE (orig_op1),
5546 GET_MODE (orig_op1))));
5548 /* Plus in the index register may be created only as a result of
5549 register rematerialization for expression like &localvar*4. Reload it.
5550 It may be possible to combine the displacement on the outer level,
5551 but it is probably not worthwhile to do so. */
5552 if (context == 1)
5554 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5555 opnum, ADDR_TYPE (type), ind_levels, insn);
5556 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5557 context_reg_class,
5558 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5559 return 1;
5562 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5563 || code0 == ZERO_EXTEND || code1 == MEM)
5565 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5566 &XEXP (x, 0), opnum, type, ind_levels,
5567 insn);
5568 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5569 &XEXP (x, 1), opnum, type, ind_levels,
5570 insn);
5573 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5574 || code1 == ZERO_EXTEND || code0 == MEM)
5576 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5577 &XEXP (x, 0), opnum, type, ind_levels,
5578 insn);
5579 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5580 &XEXP (x, 1), opnum, type, ind_levels,
5581 insn);
5584 else if (code0 == CONST_INT || code0 == CONST
5585 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5586 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5587 &XEXP (x, 1), opnum, type, ind_levels,
5588 insn);
5590 else if (code1 == CONST_INT || code1 == CONST
5591 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5592 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5593 &XEXP (x, 0), opnum, type, ind_levels,
5594 insn);
5596 else if (code0 == REG && code1 == REG)
5598 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5599 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5600 return 0;
5601 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5602 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5603 return 0;
5604 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5605 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5606 &XEXP (x, 1), opnum, type, ind_levels,
5607 insn);
5608 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5609 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5610 &XEXP (x, 0), opnum, type, ind_levels,
5611 insn);
5612 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5613 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5614 &XEXP (x, 0), opnum, type, ind_levels,
5615 insn);
5616 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5617 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5618 &XEXP (x, 1), opnum, type, ind_levels,
5619 insn);
5620 else
5622 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5623 &XEXP (x, 0), opnum, type, ind_levels,
5624 insn);
5625 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5626 &XEXP (x, 1), opnum, type, ind_levels,
5627 insn);
5631 else if (code0 == REG)
5633 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5634 &XEXP (x, 0), opnum, type, ind_levels,
5635 insn);
5636 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5637 &XEXP (x, 1), opnum, type, ind_levels,
5638 insn);
5641 else if (code1 == REG)
5643 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5644 &XEXP (x, 1), opnum, type, ind_levels,
5645 insn);
5646 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5647 &XEXP (x, 0), opnum, type, ind_levels,
5648 insn);
5652 return 0;
5654 case POST_MODIFY:
5655 case PRE_MODIFY:
5657 rtx op0 = XEXP (x, 0);
5658 rtx op1 = XEXP (x, 1);
5659 enum rtx_code index_code;
5660 int regno;
5661 int reloadnum;
5663 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5664 return 0;
5666 /* Currently, we only support {PRE,POST}_MODIFY constructs
5667 where a base register is {inc,dec}remented by the contents
5668 of another register or by a constant value. Thus, these
5669 operands must match. */
5670 gcc_assert (op0 == XEXP (op1, 0));
5672 /* Require index register (or constant). Let's just handle the
5673 register case in the meantime... If the target allows
5674 auto-modify by a constant then we could try replacing a pseudo
5675 register with its equivalent constant where applicable.
5677 We also handle the case where the register was eliminated
5678 resulting in a PLUS subexpression.
5680 If we later decide to reload the whole PRE_MODIFY or
5681 POST_MODIFY, inc_for_reload might clobber the reload register
5682 before reading the index. The index register might therefore
5683 need to live longer than a TYPE reload normally would, so be
5684 conservative and class it as RELOAD_OTHER. */
5685 if ((REG_P (XEXP (op1, 1))
5686 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5687 || GET_CODE (XEXP (op1, 1)) == PLUS)
5688 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5689 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5690 ind_levels, insn);
5692 gcc_assert (REG_P (XEXP (op1, 0)));
5694 regno = REGNO (XEXP (op1, 0));
5695 index_code = GET_CODE (XEXP (op1, 1));
5697 /* A register that is incremented cannot be constant! */
5698 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5699 || reg_equiv_constant (regno) == 0);
5701 /* Handle a register that is equivalent to a memory location
5702 which cannot be addressed directly. */
5703 if (reg_equiv_memory_loc (regno) != 0
5704 && (reg_equiv_address (regno) != 0
5705 || num_not_at_initial_offset))
5707 rtx tem = make_memloc (XEXP (x, 0), regno);
5709 if (reg_equiv_address (regno)
5710 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5712 rtx orig = tem;
5714 /* First reload the memory location's address.
5715 We can't use ADDR_TYPE (type) here, because we need to
5716 write back the value after reading it, hence we actually
5717 need two registers. */
5718 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5719 &XEXP (tem, 0), opnum,
5720 RELOAD_OTHER,
5721 ind_levels, insn);
5723 if (!rtx_equal_p (tem, orig))
5724 push_reg_equiv_alt_mem (regno, tem);
5726 /* Then reload the memory location into a base
5727 register. */
5728 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5729 &XEXP (op1, 0),
5730 base_reg_class (mode, as,
5731 code, index_code),
5732 GET_MODE (x), GET_MODE (x), 0,
5733 0, opnum, RELOAD_OTHER);
5735 update_auto_inc_notes (this_insn, regno, reloadnum);
5736 return 0;
5740 if (reg_renumber[regno] >= 0)
5741 regno = reg_renumber[regno];
5743 /* We require a base register here... */
5744 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5746 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5747 &XEXP (op1, 0), &XEXP (x, 0),
5748 base_reg_class (mode, as,
5749 code, index_code),
5750 GET_MODE (x), GET_MODE (x), 0, 0,
5751 opnum, RELOAD_OTHER);
5753 update_auto_inc_notes (this_insn, regno, reloadnum);
5754 return 0;
5757 return 0;
5759 case POST_INC:
5760 case POST_DEC:
5761 case PRE_INC:
5762 case PRE_DEC:
5763 if (REG_P (XEXP (x, 0)))
5765 int regno = REGNO (XEXP (x, 0));
5766 int value = 0;
5767 rtx x_orig = x;
5769 /* A register that is incremented cannot be constant! */
5770 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5771 || reg_equiv_constant (regno) == 0);
5773 /* Handle a register that is equivalent to a memory location
5774 which cannot be addressed directly. */
5775 if (reg_equiv_memory_loc (regno) != 0
5776 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5778 rtx tem = make_memloc (XEXP (x, 0), regno);
5779 if (reg_equiv_address (regno)
5780 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5782 rtx orig = tem;
5784 /* First reload the memory location's address.
5785 We can't use ADDR_TYPE (type) here, because we need to
5786 write back the value after reading it, hence we actually
5787 need two registers. */
5788 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5789 &XEXP (tem, 0), opnum, type,
5790 ind_levels, insn);
5791 if (!rtx_equal_p (tem, orig))
5792 push_reg_equiv_alt_mem (regno, tem);
5793 /* Put this inside a new increment-expression. */
5794 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5795 /* Proceed to reload that, as if it contained a register. */
5799 /* If we have a hard register that is ok in this incdec context,
5800 don't make a reload. If the register isn't nice enough for
5801 autoincdec, we can reload it. But, if an autoincrement of a
5802 register that we here verified as playing nice, still outside
5803 isn't "valid", it must be that no autoincrement is "valid".
5804 If that is true and something made an autoincrement anyway,
5805 this must be a special context where one is allowed.
5806 (For example, a "push" instruction.)
5807 We can't improve this address, so leave it alone. */
5809 /* Otherwise, reload the autoincrement into a suitable hard reg
5810 and record how much to increment by. */
5812 if (reg_renumber[regno] >= 0)
5813 regno = reg_renumber[regno];
5814 if (regno >= FIRST_PSEUDO_REGISTER
5815 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5816 index_code))
5818 int reloadnum;
5820 /* If we can output the register afterwards, do so, this
5821 saves the extra update.
5822 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5823 CALL_INSN - and it does not set CC0.
5824 But don't do this if we cannot directly address the
5825 memory location, since this will make it harder to
5826 reuse address reloads, and increases register pressure.
5827 Also don't do this if we can probably update x directly. */
5828 rtx equiv = (MEM_P (XEXP (x, 0))
5829 ? XEXP (x, 0)
5830 : reg_equiv_mem (regno));
5831 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5832 if (insn && NONJUMP_INSN_P (insn) && equiv
5833 && memory_operand (equiv, GET_MODE (equiv))
5834 #ifdef HAVE_cc0
5835 && ! sets_cc0_p (PATTERN (insn))
5836 #endif
5837 && ! (icode != CODE_FOR_nothing
5838 && insn_operand_matches (icode, 0, equiv)
5839 && insn_operand_matches (icode, 1, equiv)))
5841 /* We use the original pseudo for loc, so that
5842 emit_reload_insns() knows which pseudo this
5843 reload refers to and updates the pseudo rtx, not
5844 its equivalent memory location, as well as the
5845 corresponding entry in reg_last_reload_reg. */
5846 loc = &XEXP (x_orig, 0);
5847 x = XEXP (x, 0);
5848 reloadnum
5849 = push_reload (x, x, loc, loc,
5850 context_reg_class,
5851 GET_MODE (x), GET_MODE (x), 0, 0,
5852 opnum, RELOAD_OTHER);
5854 else
5856 reloadnum
5857 = push_reload (x, x, loc, (rtx*) 0,
5858 context_reg_class,
5859 GET_MODE (x), GET_MODE (x), 0, 0,
5860 opnum, type);
5861 rld[reloadnum].inc
5862 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5864 value = 1;
5867 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5868 reloadnum);
5870 return value;
5872 return 0;
5874 case TRUNCATE:
5875 case SIGN_EXTEND:
5876 case ZERO_EXTEND:
5877 /* Look for parts to reload in the inner expression and reload them
5878 too, in addition to this operation. Reloading all inner parts in
5879 addition to this one shouldn't be necessary, but at this point,
5880 we don't know if we can possibly omit any part that *can* be
5881 reloaded. Targets that are better off reloading just either part
5882 (or perhaps even a different part of an outer expression), should
5883 define LEGITIMIZE_RELOAD_ADDRESS. */
5884 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5885 context, code, SCRATCH, &XEXP (x, 0), opnum,
5886 type, ind_levels, insn);
5887 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5888 context_reg_class,
5889 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5890 return 1;
5892 case MEM:
5893 /* This is probably the result of a substitution, by eliminate_regs, of
5894 an equivalent address for a pseudo that was not allocated to a hard
5895 register. Verify that the specified address is valid and reload it
5896 into a register.
5898 Since we know we are going to reload this item, don't decrement for
5899 the indirection level.
5901 Note that this is actually conservative: it would be slightly more
5902 efficient to use the value of SPILL_INDIRECT_LEVELS from
5903 reload1.c here. */
5905 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5906 opnum, ADDR_TYPE (type), ind_levels, insn);
5907 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5908 context_reg_class,
5909 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5910 return 1;
5912 case REG:
5914 int regno = REGNO (x);
5916 if (reg_equiv_constant (regno) != 0)
5918 find_reloads_address_part (reg_equiv_constant (regno), loc,
5919 context_reg_class,
5920 GET_MODE (x), opnum, type, ind_levels);
5921 return 1;
5924 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5925 that feeds this insn. */
5926 if (reg_equiv_mem (regno) != 0)
5928 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5929 context_reg_class,
5930 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5931 return 1;
5933 #endif
5935 if (reg_equiv_memory_loc (regno)
5936 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5938 rtx tem = make_memloc (x, regno);
5939 if (reg_equiv_address (regno) != 0
5940 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5942 x = tem;
5943 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5944 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5945 ind_levels, insn);
5946 if (!rtx_equal_p (x, tem))
5947 push_reg_equiv_alt_mem (regno, x);
5951 if (reg_renumber[regno] >= 0)
5952 regno = reg_renumber[regno];
5954 if (regno >= FIRST_PSEUDO_REGISTER
5955 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5956 index_code))
5958 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5959 context_reg_class,
5960 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5961 return 1;
5964 /* If a register appearing in an address is the subject of a CLOBBER
5965 in this insn, reload it into some other register to be safe.
5966 The CLOBBER is supposed to make the register unavailable
5967 from before this insn to after it. */
5968 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5970 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5971 context_reg_class,
5972 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5973 return 1;
5976 return 0;
5978 case SUBREG:
5979 if (REG_P (SUBREG_REG (x)))
5981 /* If this is a SUBREG of a hard register and the resulting register
5982 is of the wrong class, reload the whole SUBREG. This avoids
5983 needless copies if SUBREG_REG is multi-word. */
5984 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5986 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5988 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5989 index_code))
5991 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5992 context_reg_class,
5993 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5994 return 1;
5997 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5998 is larger than the class size, then reload the whole SUBREG. */
5999 else
6001 enum reg_class rclass = context_reg_class;
6002 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6003 > reg_class_size[(int) rclass])
6005 x = find_reloads_subreg_address (x, 0, opnum,
6006 ADDR_TYPE (type),
6007 ind_levels, insn, NULL);
6008 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6009 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6010 return 1;
6014 break;
6016 default:
6017 break;
6021 const char *fmt = GET_RTX_FORMAT (code);
6022 int i;
6024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6026 if (fmt[i] == 'e')
6027 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6028 we get here. */
6029 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6030 code, SCRATCH, &XEXP (x, i),
6031 opnum, type, ind_levels, insn);
6035 #undef REG_OK_FOR_CONTEXT
6036 return 0;
6039 /* X, which is found at *LOC, is a part of an address that needs to be
6040 reloaded into a register of class RCLASS. If X is a constant, or if
6041 X is a PLUS that contains a constant, check that the constant is a
6042 legitimate operand and that we are supposed to be able to load
6043 it into the register.
6045 If not, force the constant into memory and reload the MEM instead.
6047 MODE is the mode to use, in case X is an integer constant.
6049 OPNUM and TYPE describe the purpose of any reloads made.
6051 IND_LEVELS says how many levels of indirect addressing this machine
6052 supports. */
6054 static void
6055 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6056 enum machine_mode mode, int opnum,
6057 enum reload_type type, int ind_levels)
6059 if (CONSTANT_P (x)
6060 && (!targetm.legitimate_constant_p (mode, x)
6061 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6063 x = force_const_mem (mode, x);
6064 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6065 opnum, type, ind_levels, 0);
6068 else if (GET_CODE (x) == PLUS
6069 && CONSTANT_P (XEXP (x, 1))
6070 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6071 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6072 == NO_REGS))
6074 rtx tem;
6076 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6077 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6078 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6079 opnum, type, ind_levels, 0);
6082 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6083 mode, VOIDmode, 0, 0, opnum, type);
6086 /* X, a subreg of a pseudo, is a part of an address that needs to be
6087 reloaded.
6089 If the pseudo is equivalent to a memory location that cannot be directly
6090 addressed, make the necessary address reloads.
6092 If address reloads have been necessary, or if the address is changed
6093 by register elimination, return the rtx of the memory location;
6094 otherwise, return X.
6096 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6097 memory location.
6099 OPNUM and TYPE identify the purpose of the reload.
6101 IND_LEVELS says how many levels of indirect addressing are
6102 supported at this point in the address.
6104 INSN, if nonzero, is the insn in which we do the reload. It is used
6105 to determine where to put USEs for pseudos that we have to replace with
6106 stack slots. */
6108 static rtx
6109 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6110 enum reload_type type, int ind_levels, rtx insn,
6111 int *address_reloaded)
6113 int regno = REGNO (SUBREG_REG (x));
6114 int reloaded = 0;
6116 if (reg_equiv_memory_loc (regno))
6118 /* If the address is not directly addressable, or if the address is not
6119 offsettable, then it must be replaced. */
6120 if (! force_replace
6121 && (reg_equiv_address (regno)
6122 || ! offsettable_memref_p (reg_equiv_mem (regno))))
6123 force_replace = 1;
6125 if (force_replace || num_not_at_initial_offset)
6127 rtx tem = make_memloc (SUBREG_REG (x), regno);
6129 /* If the address changes because of register elimination, then
6130 it must be replaced. */
6131 if (force_replace
6132 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6134 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6135 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6136 int offset;
6137 rtx orig = tem;
6139 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6140 hold the correct (negative) byte offset. */
6141 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6142 offset = inner_size - outer_size;
6143 else
6144 offset = SUBREG_BYTE (x);
6146 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6147 PUT_MODE (tem, GET_MODE (x));
6148 if (MEM_OFFSET_KNOWN_P (tem))
6149 set_mem_offset (tem, MEM_OFFSET (tem) + offset);
6150 if (MEM_SIZE_KNOWN_P (tem)
6151 && MEM_SIZE (tem) != (HOST_WIDE_INT) outer_size)
6152 set_mem_size (tem, outer_size);
6154 /* If this was a paradoxical subreg that we replaced, the
6155 resulting memory must be sufficiently aligned to allow
6156 us to widen the mode of the memory. */
6157 if (outer_size > inner_size)
6159 rtx base;
6161 base = XEXP (tem, 0);
6162 if (GET_CODE (base) == PLUS)
6164 if (CONST_INT_P (XEXP (base, 1))
6165 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6166 return x;
6167 base = XEXP (base, 0);
6169 if (!REG_P (base)
6170 || (REGNO_POINTER_ALIGN (REGNO (base))
6171 < outer_size * BITS_PER_UNIT))
6172 return x;
6175 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6176 XEXP (tem, 0), &XEXP (tem, 0),
6177 opnum, type, ind_levels, insn);
6178 /* ??? Do we need to handle nonzero offsets somehow? */
6179 if (!offset && !rtx_equal_p (tem, orig))
6180 push_reg_equiv_alt_mem (regno, tem);
6182 /* For some processors an address may be valid in the
6183 original mode but not in a smaller mode. For
6184 example, ARM accepts a scaled index register in
6185 SImode but not in HImode. Note that this is only
6186 a problem if the address in reg_equiv_mem is already
6187 invalid in the new mode; other cases would be fixed
6188 by find_reloads_address as usual.
6190 ??? We attempt to handle such cases here by doing an
6191 additional reload of the full address after the
6192 usual processing by find_reloads_address. Note that
6193 this may not work in the general case, but it seems
6194 to cover the cases where this situation currently
6195 occurs. A more general fix might be to reload the
6196 *value* instead of the address, but this would not
6197 be expected by the callers of this routine as-is.
6199 If find_reloads_address already completed replaced
6200 the address, there is nothing further to do. */
6201 if (reloaded == 0
6202 && reg_equiv_mem (regno) != 0
6203 && !strict_memory_address_addr_space_p
6204 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6205 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6207 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6208 base_reg_class (GET_MODE (tem),
6209 MEM_ADDR_SPACE (tem),
6210 MEM, SCRATCH),
6211 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6212 opnum, type);
6213 reloaded = 1;
6215 /* If this is not a toplevel operand, find_reloads doesn't see
6216 this substitution. We have to emit a USE of the pseudo so
6217 that delete_output_reload can see it. */
6218 if (replace_reloads && recog_data.operand[opnum] != x)
6219 /* We mark the USE with QImode so that we recognize it
6220 as one that can be safely deleted at the end of
6221 reload. */
6222 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6223 SUBREG_REG (x)),
6224 insn), QImode);
6225 x = tem;
6229 if (reloaded && address_reloaded)
6230 *address_reloaded = 1;
6232 return x;
6235 /* Substitute into the current INSN the registers into which we have reloaded
6236 the things that need reloading. The array `replacements'
6237 contains the locations of all pointers that must be changed
6238 and says what to replace them with.
6240 Return the rtx that X translates into; usually X, but modified. */
6242 void
6243 subst_reloads (rtx insn)
6245 int i;
6247 for (i = 0; i < n_replacements; i++)
6249 struct replacement *r = &replacements[i];
6250 rtx reloadreg = rld[r->what].reg_rtx;
6251 if (reloadreg)
6253 #ifdef DEBUG_RELOAD
6254 /* This checking takes a very long time on some platforms
6255 causing the gcc.c-torture/compile/limits-fnargs.c test
6256 to time out during testing. See PR 31850.
6258 Internal consistency test. Check that we don't modify
6259 anything in the equivalence arrays. Whenever something from
6260 those arrays needs to be reloaded, it must be unshared before
6261 being substituted into; the equivalence must not be modified.
6262 Otherwise, if the equivalence is used after that, it will
6263 have been modified, and the thing substituted (probably a
6264 register) is likely overwritten and not a usable equivalence. */
6265 int check_regno;
6267 for (check_regno = 0; check_regno < max_regno; check_regno++)
6269 #define CHECK_MODF(ARRAY) \
6270 gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY \
6271 || !loc_mentioned_in_p (r->where, \
6272 VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
6274 CHECK_MODF (equiv_constant);
6275 CHECK_MODF (equiv_memory_loc);
6276 CHECK_MODF (equiv_address);
6277 CHECK_MODF (equiv_mem);
6278 #undef CHECK_MODF
6280 #endif /* DEBUG_RELOAD */
6282 /* If we're replacing a LABEL_REF with a register, there must
6283 already be an indication (to e.g. flow) which label this
6284 register refers to. */
6285 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6286 || !JUMP_P (insn)
6287 || find_reg_note (insn,
6288 REG_LABEL_OPERAND,
6289 XEXP (*r->where, 0))
6290 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6292 /* Encapsulate RELOADREG so its machine mode matches what
6293 used to be there. Note that gen_lowpart_common will
6294 do the wrong thing if RELOADREG is multi-word. RELOADREG
6295 will always be a REG here. */
6296 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6297 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6299 *r->where = reloadreg;
6301 /* If reload got no reg and isn't optional, something's wrong. */
6302 else
6303 gcc_assert (rld[r->what].optional);
6307 /* Make a copy of any replacements being done into X and move those
6308 copies to locations in Y, a copy of X. */
6310 void
6311 copy_replacements (rtx x, rtx y)
6313 copy_replacements_1 (&x, &y, n_replacements);
6316 static void
6317 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6319 int i, j;
6320 rtx x, y;
6321 struct replacement *r;
6322 enum rtx_code code;
6323 const char *fmt;
6325 for (j = 0; j < orig_replacements; j++)
6326 if (replacements[j].where == px)
6328 r = &replacements[n_replacements++];
6329 r->where = py;
6330 r->what = replacements[j].what;
6331 r->mode = replacements[j].mode;
6334 x = *px;
6335 y = *py;
6336 code = GET_CODE (x);
6337 fmt = GET_RTX_FORMAT (code);
6339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6341 if (fmt[i] == 'e')
6342 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6343 else if (fmt[i] == 'E')
6344 for (j = XVECLEN (x, i); --j >= 0; )
6345 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6346 orig_replacements);
6350 /* Change any replacements being done to *X to be done to *Y. */
6352 void
6353 move_replacements (rtx *x, rtx *y)
6355 int i;
6357 for (i = 0; i < n_replacements; i++)
6358 if (replacements[i].where == x)
6359 replacements[i].where = y;
6362 /* If LOC was scheduled to be replaced by something, return the replacement.
6363 Otherwise, return *LOC. */
6366 find_replacement (rtx *loc)
6368 struct replacement *r;
6370 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6372 rtx reloadreg = rld[r->what].reg_rtx;
6374 if (reloadreg && r->where == loc)
6376 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6377 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6379 return reloadreg;
6381 else if (reloadreg && GET_CODE (*loc) == SUBREG
6382 && r->where == &SUBREG_REG (*loc))
6384 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6385 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6387 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6388 GET_MODE (SUBREG_REG (*loc)),
6389 SUBREG_BYTE (*loc));
6393 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6394 what's inside and make a new rtl if so. */
6395 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6396 || GET_CODE (*loc) == MULT)
6398 rtx x = find_replacement (&XEXP (*loc, 0));
6399 rtx y = find_replacement (&XEXP (*loc, 1));
6401 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6402 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6405 return *loc;
6408 /* Return nonzero if register in range [REGNO, ENDREGNO)
6409 appears either explicitly or implicitly in X
6410 other than being stored into (except for earlyclobber operands).
6412 References contained within the substructure at LOC do not count.
6413 LOC may be zero, meaning don't ignore anything.
6415 This is similar to refers_to_regno_p in rtlanal.c except that we
6416 look at equivalences for pseudos that didn't get hard registers. */
6418 static int
6419 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6420 rtx x, rtx *loc)
6422 int i;
6423 unsigned int r;
6424 RTX_CODE code;
6425 const char *fmt;
6427 if (x == 0)
6428 return 0;
6430 repeat:
6431 code = GET_CODE (x);
6433 switch (code)
6435 case REG:
6436 r = REGNO (x);
6438 /* If this is a pseudo, a hard register must not have been allocated.
6439 X must therefore either be a constant or be in memory. */
6440 if (r >= FIRST_PSEUDO_REGISTER)
6442 if (reg_equiv_memory_loc (r))
6443 return refers_to_regno_for_reload_p (regno, endregno,
6444 reg_equiv_memory_loc (r),
6445 (rtx*) 0);
6447 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6448 return 0;
6451 return (endregno > r
6452 && regno < r + (r < FIRST_PSEUDO_REGISTER
6453 ? hard_regno_nregs[r][GET_MODE (x)]
6454 : 1));
6456 case SUBREG:
6457 /* If this is a SUBREG of a hard reg, we can see exactly which
6458 registers are being modified. Otherwise, handle normally. */
6459 if (REG_P (SUBREG_REG (x))
6460 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6462 unsigned int inner_regno = subreg_regno (x);
6463 unsigned int inner_endregno
6464 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6465 ? subreg_nregs (x) : 1);
6467 return endregno > inner_regno && regno < inner_endregno;
6469 break;
6471 case CLOBBER:
6472 case SET:
6473 if (&SET_DEST (x) != loc
6474 /* Note setting a SUBREG counts as referring to the REG it is in for
6475 a pseudo but not for hard registers since we can
6476 treat each word individually. */
6477 && ((GET_CODE (SET_DEST (x)) == SUBREG
6478 && loc != &SUBREG_REG (SET_DEST (x))
6479 && REG_P (SUBREG_REG (SET_DEST (x)))
6480 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6481 && refers_to_regno_for_reload_p (regno, endregno,
6482 SUBREG_REG (SET_DEST (x)),
6483 loc))
6484 /* If the output is an earlyclobber operand, this is
6485 a conflict. */
6486 || ((!REG_P (SET_DEST (x))
6487 || earlyclobber_operand_p (SET_DEST (x)))
6488 && refers_to_regno_for_reload_p (regno, endregno,
6489 SET_DEST (x), loc))))
6490 return 1;
6492 if (code == CLOBBER || loc == &SET_SRC (x))
6493 return 0;
6494 x = SET_SRC (x);
6495 goto repeat;
6497 default:
6498 break;
6501 /* X does not match, so try its subexpressions. */
6503 fmt = GET_RTX_FORMAT (code);
6504 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6506 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6508 if (i == 0)
6510 x = XEXP (x, 0);
6511 goto repeat;
6513 else
6514 if (refers_to_regno_for_reload_p (regno, endregno,
6515 XEXP (x, i), loc))
6516 return 1;
6518 else if (fmt[i] == 'E')
6520 int j;
6521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6522 if (loc != &XVECEXP (x, i, j)
6523 && refers_to_regno_for_reload_p (regno, endregno,
6524 XVECEXP (x, i, j), loc))
6525 return 1;
6528 return 0;
6531 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6532 we check if any register number in X conflicts with the relevant register
6533 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6534 contains a MEM (we don't bother checking for memory addresses that can't
6535 conflict because we expect this to be a rare case.
6537 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6538 that we look at equivalences for pseudos that didn't get hard registers. */
6541 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6543 int regno, endregno;
6545 /* Overly conservative. */
6546 if (GET_CODE (x) == STRICT_LOW_PART
6547 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6548 x = XEXP (x, 0);
6550 /* If either argument is a constant, then modifying X can not affect IN. */
6551 if (CONSTANT_P (x) || CONSTANT_P (in))
6552 return 0;
6553 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6554 return refers_to_mem_for_reload_p (in);
6555 else if (GET_CODE (x) == SUBREG)
6557 regno = REGNO (SUBREG_REG (x));
6558 if (regno < FIRST_PSEUDO_REGISTER)
6559 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6560 GET_MODE (SUBREG_REG (x)),
6561 SUBREG_BYTE (x),
6562 GET_MODE (x));
6563 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6564 ? subreg_nregs (x) : 1);
6566 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6568 else if (REG_P (x))
6570 regno = REGNO (x);
6572 /* If this is a pseudo, it must not have been assigned a hard register.
6573 Therefore, it must either be in memory or be a constant. */
6575 if (regno >= FIRST_PSEUDO_REGISTER)
6577 if (reg_equiv_memory_loc (regno))
6578 return refers_to_mem_for_reload_p (in);
6579 gcc_assert (reg_equiv_constant (regno));
6580 return 0;
6583 endregno = END_HARD_REGNO (x);
6585 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6587 else if (MEM_P (x))
6588 return refers_to_mem_for_reload_p (in);
6589 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6590 || GET_CODE (x) == CC0)
6591 return reg_mentioned_p (x, in);
6592 else
6594 gcc_assert (GET_CODE (x) == PLUS);
6596 /* We actually want to know if X is mentioned somewhere inside IN.
6597 We must not say that (plus (sp) (const_int 124)) is in
6598 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6599 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6600 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6601 while (MEM_P (in))
6602 in = XEXP (in, 0);
6603 if (REG_P (in))
6604 return 0;
6605 else if (GET_CODE (in) == PLUS)
6606 return (rtx_equal_p (x, in)
6607 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6608 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6609 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6610 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6613 gcc_unreachable ();
6616 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6617 registers. */
6619 static int
6620 refers_to_mem_for_reload_p (rtx x)
6622 const char *fmt;
6623 int i;
6625 if (MEM_P (x))
6626 return 1;
6628 if (REG_P (x))
6629 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6630 && reg_equiv_memory_loc (REGNO (x)));
6632 fmt = GET_RTX_FORMAT (GET_CODE (x));
6633 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6634 if (fmt[i] == 'e'
6635 && (MEM_P (XEXP (x, i))
6636 || refers_to_mem_for_reload_p (XEXP (x, i))))
6637 return 1;
6639 return 0;
6642 /* Check the insns before INSN to see if there is a suitable register
6643 containing the same value as GOAL.
6644 If OTHER is -1, look for a register in class RCLASS.
6645 Otherwise, just see if register number OTHER shares GOAL's value.
6647 Return an rtx for the register found, or zero if none is found.
6649 If RELOAD_REG_P is (short *)1,
6650 we reject any hard reg that appears in reload_reg_rtx
6651 because such a hard reg is also needed coming into this insn.
6653 If RELOAD_REG_P is any other nonzero value,
6654 it is a vector indexed by hard reg number
6655 and we reject any hard reg whose element in the vector is nonnegative
6656 as well as any that appears in reload_reg_rtx.
6658 If GOAL is zero, then GOALREG is a register number; we look
6659 for an equivalent for that register.
6661 MODE is the machine mode of the value we want an equivalence for.
6662 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6664 This function is used by jump.c as well as in the reload pass.
6666 If GOAL is the sum of the stack pointer and a constant, we treat it
6667 as if it were a constant except that sp is required to be unchanging. */
6670 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6671 short *reload_reg_p, int goalreg, enum machine_mode mode)
6673 rtx p = insn;
6674 rtx goaltry, valtry, value, where;
6675 rtx pat;
6676 int regno = -1;
6677 int valueno;
6678 int goal_mem = 0;
6679 int goal_const = 0;
6680 int goal_mem_addr_varies = 0;
6681 int need_stable_sp = 0;
6682 int nregs;
6683 int valuenregs;
6684 int num = 0;
6686 if (goal == 0)
6687 regno = goalreg;
6688 else if (REG_P (goal))
6689 regno = REGNO (goal);
6690 else if (MEM_P (goal))
6692 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6693 if (MEM_VOLATILE_P (goal))
6694 return 0;
6695 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6696 return 0;
6697 /* An address with side effects must be reexecuted. */
6698 switch (code)
6700 case POST_INC:
6701 case PRE_INC:
6702 case POST_DEC:
6703 case PRE_DEC:
6704 case POST_MODIFY:
6705 case PRE_MODIFY:
6706 return 0;
6707 default:
6708 break;
6710 goal_mem = 1;
6712 else if (CONSTANT_P (goal))
6713 goal_const = 1;
6714 else if (GET_CODE (goal) == PLUS
6715 && XEXP (goal, 0) == stack_pointer_rtx
6716 && CONSTANT_P (XEXP (goal, 1)))
6717 goal_const = need_stable_sp = 1;
6718 else if (GET_CODE (goal) == PLUS
6719 && XEXP (goal, 0) == frame_pointer_rtx
6720 && CONSTANT_P (XEXP (goal, 1)))
6721 goal_const = 1;
6722 else
6723 return 0;
6725 num = 0;
6726 /* Scan insns back from INSN, looking for one that copies
6727 a value into or out of GOAL.
6728 Stop and give up if we reach a label. */
6730 while (1)
6732 p = PREV_INSN (p);
6733 if (p && DEBUG_INSN_P (p))
6734 continue;
6735 num++;
6736 if (p == 0 || LABEL_P (p)
6737 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6738 return 0;
6740 /* Don't reuse register contents from before a setjmp-type
6741 function call; on the second return (from the longjmp) it
6742 might have been clobbered by a later reuse. It doesn't
6743 seem worthwhile to actually go and see if it is actually
6744 reused even if that information would be readily available;
6745 just don't reuse it across the setjmp call. */
6746 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6747 return 0;
6749 if (NONJUMP_INSN_P (p)
6750 /* If we don't want spill regs ... */
6751 && (! (reload_reg_p != 0
6752 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6753 /* ... then ignore insns introduced by reload; they aren't
6754 useful and can cause results in reload_as_needed to be
6755 different from what they were when calculating the need for
6756 spills. If we notice an input-reload insn here, we will
6757 reject it below, but it might hide a usable equivalent.
6758 That makes bad code. It may even fail: perhaps no reg was
6759 spilled for this insn because it was assumed we would find
6760 that equivalent. */
6761 || INSN_UID (p) < reload_first_uid))
6763 rtx tem;
6764 pat = single_set (p);
6766 /* First check for something that sets some reg equal to GOAL. */
6767 if (pat != 0
6768 && ((regno >= 0
6769 && true_regnum (SET_SRC (pat)) == regno
6770 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6772 (regno >= 0
6773 && true_regnum (SET_DEST (pat)) == regno
6774 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6776 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6777 /* When looking for stack pointer + const,
6778 make sure we don't use a stack adjust. */
6779 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6780 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6781 || (goal_mem
6782 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6783 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6784 || (goal_mem
6785 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6786 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6787 /* If we are looking for a constant,
6788 and something equivalent to that constant was copied
6789 into a reg, we can use that reg. */
6790 || (goal_const && REG_NOTES (p) != 0
6791 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6792 && ((rtx_equal_p (XEXP (tem, 0), goal)
6793 && (valueno
6794 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6795 || (REG_P (SET_DEST (pat))
6796 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6797 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6798 && CONST_INT_P (goal)
6799 && 0 != (goaltry
6800 = operand_subword (XEXP (tem, 0), 0, 0,
6801 VOIDmode))
6802 && rtx_equal_p (goal, goaltry)
6803 && (valtry
6804 = operand_subword (SET_DEST (pat), 0, 0,
6805 VOIDmode))
6806 && (valueno = true_regnum (valtry)) >= 0)))
6807 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6808 NULL_RTX))
6809 && REG_P (SET_DEST (pat))
6810 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6811 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6812 && CONST_INT_P (goal)
6813 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6814 VOIDmode))
6815 && rtx_equal_p (goal, goaltry)
6816 && (valtry
6817 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6818 && (valueno = true_regnum (valtry)) >= 0)))
6820 if (other >= 0)
6822 if (valueno != other)
6823 continue;
6825 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6826 continue;
6827 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6828 mode, valueno))
6829 continue;
6830 value = valtry;
6831 where = p;
6832 break;
6837 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6838 (or copying VALUE into GOAL, if GOAL is also a register).
6839 Now verify that VALUE is really valid. */
6841 /* VALUENO is the register number of VALUE; a hard register. */
6843 /* Don't try to re-use something that is killed in this insn. We want
6844 to be able to trust REG_UNUSED notes. */
6845 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6846 return 0;
6848 /* If we propose to get the value from the stack pointer or if GOAL is
6849 a MEM based on the stack pointer, we need a stable SP. */
6850 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6851 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6852 goal)))
6853 need_stable_sp = 1;
6855 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6856 if (GET_MODE (value) != mode)
6857 return 0;
6859 /* Reject VALUE if it was loaded from GOAL
6860 and is also a register that appears in the address of GOAL. */
6862 if (goal_mem && value == SET_DEST (single_set (where))
6863 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6864 goal, (rtx*) 0))
6865 return 0;
6867 /* Reject registers that overlap GOAL. */
6869 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6870 nregs = hard_regno_nregs[regno][mode];
6871 else
6872 nregs = 1;
6873 valuenregs = hard_regno_nregs[valueno][mode];
6875 if (!goal_mem && !goal_const
6876 && regno + nregs > valueno && regno < valueno + valuenregs)
6877 return 0;
6879 /* Reject VALUE if it is one of the regs reserved for reloads.
6880 Reload1 knows how to reuse them anyway, and it would get
6881 confused if we allocated one without its knowledge.
6882 (Now that insns introduced by reload are ignored above,
6883 this case shouldn't happen, but I'm not positive.) */
6885 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6887 int i;
6888 for (i = 0; i < valuenregs; ++i)
6889 if (reload_reg_p[valueno + i] >= 0)
6890 return 0;
6893 /* Reject VALUE if it is a register being used for an input reload
6894 even if it is not one of those reserved. */
6896 if (reload_reg_p != 0)
6898 int i;
6899 for (i = 0; i < n_reloads; i++)
6900 if (rld[i].reg_rtx != 0 && rld[i].in)
6902 int regno1 = REGNO (rld[i].reg_rtx);
6903 int nregs1 = hard_regno_nregs[regno1]
6904 [GET_MODE (rld[i].reg_rtx)];
6905 if (regno1 < valueno + valuenregs
6906 && regno1 + nregs1 > valueno)
6907 return 0;
6911 if (goal_mem)
6912 /* We must treat frame pointer as varying here,
6913 since it can vary--in a nonlocal goto as generated by expand_goto. */
6914 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6916 /* Now verify that the values of GOAL and VALUE remain unaltered
6917 until INSN is reached. */
6919 p = insn;
6920 while (1)
6922 p = PREV_INSN (p);
6923 if (p == where)
6924 return value;
6926 /* Don't trust the conversion past a function call
6927 if either of the two is in a call-clobbered register, or memory. */
6928 if (CALL_P (p))
6930 int i;
6932 if (goal_mem || need_stable_sp)
6933 return 0;
6935 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6936 for (i = 0; i < nregs; ++i)
6937 if (call_used_regs[regno + i]
6938 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6939 return 0;
6941 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6942 for (i = 0; i < valuenregs; ++i)
6943 if (call_used_regs[valueno + i]
6944 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6945 return 0;
6948 if (INSN_P (p))
6950 pat = PATTERN (p);
6952 /* Watch out for unspec_volatile, and volatile asms. */
6953 if (volatile_insn_p (pat))
6954 return 0;
6956 /* If this insn P stores in either GOAL or VALUE, return 0.
6957 If GOAL is a memory ref and this insn writes memory, return 0.
6958 If GOAL is a memory ref and its address is not constant,
6959 and this insn P changes a register used in GOAL, return 0. */
6961 if (GET_CODE (pat) == COND_EXEC)
6962 pat = COND_EXEC_CODE (pat);
6963 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6965 rtx dest = SET_DEST (pat);
6966 while (GET_CODE (dest) == SUBREG
6967 || GET_CODE (dest) == ZERO_EXTRACT
6968 || GET_CODE (dest) == STRICT_LOW_PART)
6969 dest = XEXP (dest, 0);
6970 if (REG_P (dest))
6972 int xregno = REGNO (dest);
6973 int xnregs;
6974 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6975 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6976 else
6977 xnregs = 1;
6978 if (xregno < regno + nregs && xregno + xnregs > regno)
6979 return 0;
6980 if (xregno < valueno + valuenregs
6981 && xregno + xnregs > valueno)
6982 return 0;
6983 if (goal_mem_addr_varies
6984 && reg_overlap_mentioned_for_reload_p (dest, goal))
6985 return 0;
6986 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6987 return 0;
6989 else if (goal_mem && MEM_P (dest)
6990 && ! push_operand (dest, GET_MODE (dest)))
6991 return 0;
6992 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6993 && reg_equiv_memory_loc (regno) != 0)
6994 return 0;
6995 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6996 return 0;
6998 else if (GET_CODE (pat) == PARALLEL)
7000 int i;
7001 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7003 rtx v1 = XVECEXP (pat, 0, i);
7004 if (GET_CODE (v1) == COND_EXEC)
7005 v1 = COND_EXEC_CODE (v1);
7006 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7008 rtx dest = SET_DEST (v1);
7009 while (GET_CODE (dest) == SUBREG
7010 || GET_CODE (dest) == ZERO_EXTRACT
7011 || GET_CODE (dest) == STRICT_LOW_PART)
7012 dest = XEXP (dest, 0);
7013 if (REG_P (dest))
7015 int xregno = REGNO (dest);
7016 int xnregs;
7017 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7018 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7019 else
7020 xnregs = 1;
7021 if (xregno < regno + nregs
7022 && xregno + xnregs > regno)
7023 return 0;
7024 if (xregno < valueno + valuenregs
7025 && xregno + xnregs > valueno)
7026 return 0;
7027 if (goal_mem_addr_varies
7028 && reg_overlap_mentioned_for_reload_p (dest,
7029 goal))
7030 return 0;
7031 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7032 return 0;
7034 else if (goal_mem && MEM_P (dest)
7035 && ! push_operand (dest, GET_MODE (dest)))
7036 return 0;
7037 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7038 && reg_equiv_memory_loc (regno) != 0)
7039 return 0;
7040 else if (need_stable_sp
7041 && push_operand (dest, GET_MODE (dest)))
7042 return 0;
7047 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7049 rtx link;
7051 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7052 link = XEXP (link, 1))
7054 pat = XEXP (link, 0);
7055 if (GET_CODE (pat) == CLOBBER)
7057 rtx dest = SET_DEST (pat);
7059 if (REG_P (dest))
7061 int xregno = REGNO (dest);
7062 int xnregs
7063 = hard_regno_nregs[xregno][GET_MODE (dest)];
7065 if (xregno < regno + nregs
7066 && xregno + xnregs > regno)
7067 return 0;
7068 else if (xregno < valueno + valuenregs
7069 && xregno + xnregs > valueno)
7070 return 0;
7071 else if (goal_mem_addr_varies
7072 && reg_overlap_mentioned_for_reload_p (dest,
7073 goal))
7074 return 0;
7077 else if (goal_mem && MEM_P (dest)
7078 && ! push_operand (dest, GET_MODE (dest)))
7079 return 0;
7080 else if (need_stable_sp
7081 && push_operand (dest, GET_MODE (dest)))
7082 return 0;
7087 #ifdef AUTO_INC_DEC
7088 /* If this insn auto-increments or auto-decrements
7089 either regno or valueno, return 0 now.
7090 If GOAL is a memory ref and its address is not constant,
7091 and this insn P increments a register used in GOAL, return 0. */
7093 rtx link;
7095 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7096 if (REG_NOTE_KIND (link) == REG_INC
7097 && REG_P (XEXP (link, 0)))
7099 int incno = REGNO (XEXP (link, 0));
7100 if (incno < regno + nregs && incno >= regno)
7101 return 0;
7102 if (incno < valueno + valuenregs && incno >= valueno)
7103 return 0;
7104 if (goal_mem_addr_varies
7105 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7106 goal))
7107 return 0;
7110 #endif
7115 /* Find a place where INCED appears in an increment or decrement operator
7116 within X, and return the amount INCED is incremented or decremented by.
7117 The value is always positive. */
7119 static int
7120 find_inc_amount (rtx x, rtx inced)
7122 enum rtx_code code = GET_CODE (x);
7123 const char *fmt;
7124 int i;
7126 if (code == MEM)
7128 rtx addr = XEXP (x, 0);
7129 if ((GET_CODE (addr) == PRE_DEC
7130 || GET_CODE (addr) == POST_DEC
7131 || GET_CODE (addr) == PRE_INC
7132 || GET_CODE (addr) == POST_INC)
7133 && XEXP (addr, 0) == inced)
7134 return GET_MODE_SIZE (GET_MODE (x));
7135 else if ((GET_CODE (addr) == PRE_MODIFY
7136 || GET_CODE (addr) == POST_MODIFY)
7137 && GET_CODE (XEXP (addr, 1)) == PLUS
7138 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7139 && XEXP (addr, 0) == inced
7140 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7142 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7143 return i < 0 ? -i : i;
7147 fmt = GET_RTX_FORMAT (code);
7148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7150 if (fmt[i] == 'e')
7152 int tem = find_inc_amount (XEXP (x, i), inced);
7153 if (tem != 0)
7154 return tem;
7156 if (fmt[i] == 'E')
7158 int j;
7159 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7161 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7162 if (tem != 0)
7163 return tem;
7168 return 0;
7171 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7172 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7174 #ifdef AUTO_INC_DEC
7175 static int
7176 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7177 rtx insn)
7179 rtx link;
7181 gcc_assert (insn);
7183 if (! INSN_P (insn))
7184 return 0;
7186 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7187 if (REG_NOTE_KIND (link) == REG_INC)
7189 unsigned int test = (int) REGNO (XEXP (link, 0));
7190 if (test >= regno && test < endregno)
7191 return 1;
7193 return 0;
7195 #else
7197 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7199 #endif
7201 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7202 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7203 REG_INC. REGNO must refer to a hard register. */
7206 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7207 int sets)
7209 unsigned int nregs, endregno;
7211 /* regno must be a hard register. */
7212 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7214 nregs = hard_regno_nregs[regno][mode];
7215 endregno = regno + nregs;
7217 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7218 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7219 && REG_P (XEXP (PATTERN (insn), 0)))
7221 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7223 return test >= regno && test < endregno;
7226 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7227 return 1;
7229 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7231 int i = XVECLEN (PATTERN (insn), 0) - 1;
7233 for (; i >= 0; i--)
7235 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7236 if ((GET_CODE (elt) == CLOBBER
7237 || (sets == 1 && GET_CODE (elt) == SET))
7238 && REG_P (XEXP (elt, 0)))
7240 unsigned int test = REGNO (XEXP (elt, 0));
7242 if (test >= regno && test < endregno)
7243 return 1;
7245 if (sets == 2
7246 && reg_inc_found_and_valid_p (regno, endregno, elt))
7247 return 1;
7251 return 0;
7254 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7256 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7258 int regno;
7260 if (GET_MODE (reloadreg) == mode)
7261 return reloadreg;
7263 regno = REGNO (reloadreg);
7265 if (REG_WORDS_BIG_ENDIAN)
7266 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7267 - (int) hard_regno_nregs[regno][mode];
7269 return gen_rtx_REG (mode, regno);
7272 static const char *const reload_when_needed_name[] =
7274 "RELOAD_FOR_INPUT",
7275 "RELOAD_FOR_OUTPUT",
7276 "RELOAD_FOR_INSN",
7277 "RELOAD_FOR_INPUT_ADDRESS",
7278 "RELOAD_FOR_INPADDR_ADDRESS",
7279 "RELOAD_FOR_OUTPUT_ADDRESS",
7280 "RELOAD_FOR_OUTADDR_ADDRESS",
7281 "RELOAD_FOR_OPERAND_ADDRESS",
7282 "RELOAD_FOR_OPADDR_ADDR",
7283 "RELOAD_OTHER",
7284 "RELOAD_FOR_OTHER_ADDRESS"
7287 /* These functions are used to print the variables set by 'find_reloads' */
7289 DEBUG_FUNCTION void
7290 debug_reload_to_stream (FILE *f)
7292 int r;
7293 const char *prefix;
7295 if (! f)
7296 f = stderr;
7297 for (r = 0; r < n_reloads; r++)
7299 fprintf (f, "Reload %d: ", r);
7301 if (rld[r].in != 0)
7303 fprintf (f, "reload_in (%s) = ",
7304 GET_MODE_NAME (rld[r].inmode));
7305 print_inline_rtx (f, rld[r].in, 24);
7306 fprintf (f, "\n\t");
7309 if (rld[r].out != 0)
7311 fprintf (f, "reload_out (%s) = ",
7312 GET_MODE_NAME (rld[r].outmode));
7313 print_inline_rtx (f, rld[r].out, 24);
7314 fprintf (f, "\n\t");
7317 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7319 fprintf (f, "%s (opnum = %d)",
7320 reload_when_needed_name[(int) rld[r].when_needed],
7321 rld[r].opnum);
7323 if (rld[r].optional)
7324 fprintf (f, ", optional");
7326 if (rld[r].nongroup)
7327 fprintf (f, ", nongroup");
7329 if (rld[r].inc != 0)
7330 fprintf (f, ", inc by %d", rld[r].inc);
7332 if (rld[r].nocombine)
7333 fprintf (f, ", can't combine");
7335 if (rld[r].secondary_p)
7336 fprintf (f, ", secondary_reload_p");
7338 if (rld[r].in_reg != 0)
7340 fprintf (f, "\n\treload_in_reg: ");
7341 print_inline_rtx (f, rld[r].in_reg, 24);
7344 if (rld[r].out_reg != 0)
7346 fprintf (f, "\n\treload_out_reg: ");
7347 print_inline_rtx (f, rld[r].out_reg, 24);
7350 if (rld[r].reg_rtx != 0)
7352 fprintf (f, "\n\treload_reg_rtx: ");
7353 print_inline_rtx (f, rld[r].reg_rtx, 24);
7356 prefix = "\n\t";
7357 if (rld[r].secondary_in_reload != -1)
7359 fprintf (f, "%ssecondary_in_reload = %d",
7360 prefix, rld[r].secondary_in_reload);
7361 prefix = ", ";
7364 if (rld[r].secondary_out_reload != -1)
7365 fprintf (f, "%ssecondary_out_reload = %d\n",
7366 prefix, rld[r].secondary_out_reload);
7368 prefix = "\n\t";
7369 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7371 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7372 insn_data[rld[r].secondary_in_icode].name);
7373 prefix = ", ";
7376 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7377 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7378 insn_data[rld[r].secondary_out_icode].name);
7380 fprintf (f, "\n");
7384 DEBUG_FUNCTION void
7385 debug_reload (void)
7387 debug_reload_to_stream (stderr);