1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
93 #include "insn-attr.h"
95 #include "diagnostic-core.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
104 #include "tree-pass.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts
;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges
;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras
;
121 /* Number of instructions combined in this function. */
123 static int combine_successes
;
125 /* Totals over entire compilation. */
127 static int total_attempts
, total_merges
, total_extras
, total_successes
;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs
;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs
;
146 typedef struct reg_stat_struct
{
147 /* Record last point of death of (hard or pseudo) register n. */
150 /* Record last point of modification of (hard or pseudo) register n. */
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick
;
205 /* Record the value of label_tick when the value for register n is placed in
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
216 char last_set_sign_bit_copies
;
217 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid
;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies
;
239 unsigned HOST_WIDE_INT nonzero_bits
;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label
;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
252 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 DEF_VEC_O(reg_stat_type
);
256 DEF_VEC_ALLOC_O(reg_stat_type
,heap
);
258 static VEC(reg_stat_type
,heap
) *reg_stat
;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set
;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid
;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn
;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid
;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs
;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
296 static rtx added_links_insn
;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block
;
300 static bool optimize_this_for_speed_p
;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known
;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost
;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as struct insn_link pointers. */
317 struct insn_link
*next
;
320 static struct insn_link
**uid_log_links
;
322 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
323 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
325 #define FOR_EACH_LOG_LINK(L, INSN) \
326 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
328 /* Links for LOG_LINKS are allocated from this obstack. */
330 static struct obstack insn_link_obstack
;
332 /* Allocate a link. */
334 static inline struct insn_link
*
335 alloc_insn_link (rtx insn
, struct insn_link
*next
)
338 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
339 sizeof (struct insn_link
));
345 /* Incremented for each basic block. */
347 static int label_tick
;
349 /* Reset to label_tick for each extended basic block in scanning order. */
351 static int label_tick_ebb_start
;
353 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
354 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
356 static enum machine_mode nonzero_bits_mode
;
358 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
359 be safely used. It is zero while computing them and after combine has
360 completed. This former test prevents propagating values based on
361 previously set values, which can be incorrect if a variable is modified
364 static int nonzero_sign_valid
;
367 /* Record one modification to rtl structure
368 to be undone by storing old_contents into *where. */
370 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
};
376 union { rtx r
; int i
; enum machine_mode m
; } old_contents
;
377 union { rtx
*r
; int *i
; } where
;
380 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
381 num_undo says how many are currently recorded.
383 other_insn is nonzero if we have modified some other insn in the process
384 of working on subst_insn. It must be verified too. */
393 static struct undobuf undobuf
;
395 /* Number of times the pseudo being substituted for
396 was found and replaced. */
398 static int n_occurrences
;
400 static rtx
reg_nonzero_bits_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
402 unsigned HOST_WIDE_INT
,
403 unsigned HOST_WIDE_INT
*);
404 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
406 unsigned int, unsigned int *);
407 static void do_SUBST (rtx
*, rtx
);
408 static void do_SUBST_INT (int *, int);
409 static void init_reg_last (void);
410 static void setup_incoming_promotions (rtx
);
411 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
412 static int cant_combine_insn_p (rtx
);
413 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
414 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
415 static int contains_muldiv (rtx
);
416 static rtx
try_combine (rtx
, rtx
, rtx
, rtx
, int *, rtx
);
417 static void undo_all (void);
418 static void undo_commit (void);
419 static rtx
*find_split_point (rtx
*, rtx
, bool);
420 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
421 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int, int);
422 static rtx
simplify_if_then_else (rtx
);
423 static rtx
simplify_set (rtx
);
424 static rtx
simplify_logical (rtx
);
425 static rtx
expand_compound_operation (rtx
);
426 static const_rtx
expand_field_assignment (const_rtx
);
427 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
428 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
429 static rtx
extract_left_shift (rtx
, int);
430 static rtx
make_compound_operation (rtx
, enum rtx_code
);
431 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
432 unsigned HOST_WIDE_INT
*);
433 static rtx
canon_reg_for_combine (rtx
, rtx
);
434 static rtx
force_to_mode (rtx
, enum machine_mode
,
435 unsigned HOST_WIDE_INT
, int);
436 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
437 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
438 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
439 static rtx
make_field_assignment (rtx
);
440 static rtx
apply_distributive_law (rtx
);
441 static rtx
distribute_and_simplify_rtx (rtx
, int);
442 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
443 unsigned HOST_WIDE_INT
);
444 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
445 unsigned HOST_WIDE_INT
);
446 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
447 HOST_WIDE_INT
, enum machine_mode
, int *);
448 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
449 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
451 static int recog_for_combine (rtx
*, rtx
, rtx
*);
452 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
453 static enum rtx_code
simplify_compare_const (enum rtx_code
, rtx
, rtx
*);
454 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
455 static void update_table_tick (rtx
);
456 static void record_value_for_reg (rtx
, rtx
, rtx
);
457 static void check_promoted_subreg (rtx
, rtx
);
458 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
459 static void record_dead_and_set_regs (rtx
);
460 static int get_last_value_validate (rtx
*, rtx
, int, int);
461 static rtx
get_last_value (const_rtx
);
462 static int use_crosses_set_p (const_rtx
, int);
463 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
464 static int reg_dead_at_p (rtx
, rtx
);
465 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
466 static int reg_bitfield_target_p (rtx
, rtx
);
467 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
468 static void distribute_links (struct insn_link
*);
469 static void mark_used_regs_combine (rtx
);
470 static void record_promoted_value (rtx
, rtx
);
471 static int unmentioned_reg_p_1 (rtx
*, void *);
472 static bool unmentioned_reg_p (rtx
, rtx
);
473 static int record_truncated_value (rtx
*, void *);
474 static void record_truncated_values (rtx
*, void *);
475 static bool reg_truncated_to_mode (enum machine_mode
, const_rtx
);
476 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
479 /* It is not safe to use ordinary gen_lowpart in combine.
480 See comments in gen_lowpart_for_combine. */
481 #undef RTL_HOOKS_GEN_LOWPART
482 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
484 /* Our implementation of gen_lowpart never emits a new pseudo. */
485 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
486 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
488 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
489 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
491 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
492 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
494 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
495 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
497 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
500 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
501 PATTERN can not be split. Otherwise, it returns an insn sequence.
502 This is a wrapper around split_insns which ensures that the
503 reg_stat vector is made larger if the splitter creates a new
507 combine_split_insns (rtx pattern
, rtx insn
)
512 ret
= split_insns (pattern
, insn
);
513 nregs
= max_reg_num ();
514 if (nregs
> VEC_length (reg_stat_type
, reg_stat
))
515 VEC_safe_grow_cleared (reg_stat_type
, heap
, reg_stat
, nregs
);
519 /* This is used by find_single_use to locate an rtx in LOC that
520 contains exactly one use of DEST, which is typically either a REG
521 or CC0. It returns a pointer to the innermost rtx expression
522 containing DEST. Appearances of DEST that are being used to
523 totally replace it are not counted. */
526 find_single_use_1 (rtx dest
, rtx
*loc
)
529 enum rtx_code code
= GET_CODE (x
);
547 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
548 of a REG that occupies all of the REG, the insn uses DEST if
549 it is mentioned in the destination or the source. Otherwise, we
550 need just check the source. */
551 if (GET_CODE (SET_DEST (x
)) != CC0
552 && GET_CODE (SET_DEST (x
)) != PC
553 && !REG_P (SET_DEST (x
))
554 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
555 && REG_P (SUBREG_REG (SET_DEST (x
)))
556 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
557 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
558 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
559 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
562 return find_single_use_1 (dest
, &SET_SRC (x
));
566 return find_single_use_1 (dest
, &XEXP (x
, 0));
572 /* If it wasn't one of the common cases above, check each expression and
573 vector of this code. Look for a unique usage of DEST. */
575 fmt
= GET_RTX_FORMAT (code
);
576 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
580 if (dest
== XEXP (x
, i
)
581 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
582 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
585 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
588 result
= this_result
;
589 else if (this_result
)
590 /* Duplicate usage. */
593 else if (fmt
[i
] == 'E')
597 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
599 if (XVECEXP (x
, i
, j
) == dest
601 && REG_P (XVECEXP (x
, i
, j
))
602 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
605 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
608 result
= this_result
;
609 else if (this_result
)
619 /* See if DEST, produced in INSN, is used only a single time in the
620 sequel. If so, return a pointer to the innermost rtx expression in which
623 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
625 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
626 care about REG_DEAD notes or LOG_LINKS.
628 Otherwise, we find the single use by finding an insn that has a
629 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
630 only referenced once in that insn, we know that it must be the first
631 and last insn referencing DEST. */
634 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
639 struct insn_link
*link
;
644 next
= NEXT_INSN (insn
);
646 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
649 result
= find_single_use_1 (dest
, &PATTERN (next
));
659 bb
= BLOCK_FOR_INSN (insn
);
660 for (next
= NEXT_INSN (insn
);
661 next
&& BLOCK_FOR_INSN (next
) == bb
;
662 next
= NEXT_INSN (next
))
663 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
665 FOR_EACH_LOG_LINK (link
, next
)
666 if (link
->insn
== insn
)
671 result
= find_single_use_1 (dest
, &PATTERN (next
));
681 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
682 insn. The substitution can be undone by undo_all. If INTO is already
683 set to NEWVAL, do not record this change. Because computing NEWVAL might
684 also call SUBST, we have to compute it before we put anything into
688 do_SUBST (rtx
*into
, rtx newval
)
693 if (oldval
== newval
)
696 /* We'd like to catch as many invalid transformations here as
697 possible. Unfortunately, there are way too many mode changes
698 that are perfectly valid, so we'd waste too much effort for
699 little gain doing the checks here. Focus on catching invalid
700 transformations involving integer constants. */
701 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
702 && CONST_INT_P (newval
))
704 /* Sanity check that we're replacing oldval with a CONST_INT
705 that is a valid sign-extension for the original mode. */
706 gcc_assert (INTVAL (newval
)
707 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
709 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
710 CONST_INT is not valid, because after the replacement, the
711 original mode would be gone. Unfortunately, we can't tell
712 when do_SUBST is called to replace the operand thereof, so we
713 perform this test on oldval instead, checking whether an
714 invalid replacement took place before we got here. */
715 gcc_assert (!(GET_CODE (oldval
) == SUBREG
716 && CONST_INT_P (SUBREG_REG (oldval
))));
717 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
718 && CONST_INT_P (XEXP (oldval
, 0))));
722 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
724 buf
= XNEW (struct undo
);
726 buf
->kind
= UNDO_RTX
;
728 buf
->old_contents
.r
= oldval
;
731 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
734 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
736 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
737 for the value of a HOST_WIDE_INT value (including CONST_INT) is
741 do_SUBST_INT (int *into
, int newval
)
746 if (oldval
== newval
)
750 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
752 buf
= XNEW (struct undo
);
754 buf
->kind
= UNDO_INT
;
756 buf
->old_contents
.i
= oldval
;
759 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
762 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
764 /* Similar to SUBST, but just substitute the mode. This is used when
765 changing the mode of a pseudo-register, so that any other
766 references to the entry in the regno_reg_rtx array will change as
770 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
773 enum machine_mode oldval
= GET_MODE (*into
);
775 if (oldval
== newval
)
779 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
781 buf
= XNEW (struct undo
);
783 buf
->kind
= UNDO_MODE
;
785 buf
->old_contents
.m
= oldval
;
786 adjust_reg_mode (*into
, newval
);
788 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
791 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
793 /* Subroutine of try_combine. Determine whether the replacement patterns
794 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
795 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
796 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
797 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
798 of all the instructions can be estimated and the replacements are more
799 expensive than the original sequence. */
802 combine_validate_cost (rtx i0
, rtx i1
, rtx i2
, rtx i3
, rtx newpat
,
803 rtx newi2pat
, rtx newotherpat
)
805 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
806 int new_i2_cost
, new_i3_cost
;
807 int old_cost
, new_cost
;
809 /* Lookup the original insn_rtx_costs. */
810 i2_cost
= INSN_COST (i2
);
811 i3_cost
= INSN_COST (i3
);
815 i1_cost
= INSN_COST (i1
);
818 i0_cost
= INSN_COST (i0
);
819 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
820 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
824 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
825 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
831 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
832 i1_cost
= i0_cost
= 0;
835 /* Calculate the replacement insn_rtx_costs. */
836 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
839 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
840 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
841 ? new_i2_cost
+ new_i3_cost
: 0;
845 new_cost
= new_i3_cost
;
849 if (undobuf
.other_insn
)
851 int old_other_cost
, new_other_cost
;
853 old_other_cost
= INSN_COST (undobuf
.other_insn
);
854 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
855 if (old_other_cost
> 0 && new_other_cost
> 0)
857 old_cost
+= old_other_cost
;
858 new_cost
+= new_other_cost
;
864 /* Disallow this combination if both new_cost and old_cost are greater than
865 zero, and new_cost is greater than old cost. */
866 if (old_cost
> 0 && new_cost
> old_cost
)
873 "rejecting combination of insns %d, %d, %d and %d\n",
874 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
),
876 fprintf (dump_file
, "original costs %d + %d + %d + %d = %d\n",
877 i0_cost
, i1_cost
, i2_cost
, i3_cost
, old_cost
);
882 "rejecting combination of insns %d, %d and %d\n",
883 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
884 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
885 i1_cost
, i2_cost
, i3_cost
, old_cost
);
890 "rejecting combination of insns %d and %d\n",
891 INSN_UID (i2
), INSN_UID (i3
));
892 fprintf (dump_file
, "original costs %d + %d = %d\n",
893 i2_cost
, i3_cost
, old_cost
);
898 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
899 new_i2_cost
, new_i3_cost
, new_cost
);
902 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
908 /* Update the uid_insn_cost array with the replacement costs. */
909 INSN_COST (i2
) = new_i2_cost
;
910 INSN_COST (i3
) = new_i3_cost
;
922 /* Delete any insns that copy a register to itself. */
925 delete_noop_moves (void)
932 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
934 next
= NEXT_INSN (insn
);
935 if (INSN_P (insn
) && noop_move_p (insn
))
938 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
940 delete_insn_and_edges (insn
);
947 /* Fill in log links field for all insns. */
950 create_log_links (void)
954 df_ref
*def_vec
, *use_vec
;
956 next_use
= XCNEWVEC (rtx
, max_reg_num ());
958 /* Pass through each block from the end, recording the uses of each
959 register and establishing log links when def is encountered.
960 Note that we do not clear next_use array in order to save time,
961 so we have to test whether the use is in the same basic block as def.
963 There are a few cases below when we do not consider the definition or
964 usage -- these are taken from original flow.c did. Don't ask me why it is
965 done this way; I don't know and if it works, I don't want to know. */
969 FOR_BB_INSNS_REVERSE (bb
, insn
)
971 if (!NONDEBUG_INSN_P (insn
))
974 /* Log links are created only once. */
975 gcc_assert (!LOG_LINKS (insn
));
977 for (def_vec
= DF_INSN_DEFS (insn
); *def_vec
; def_vec
++)
979 df_ref def
= *def_vec
;
980 int regno
= DF_REF_REGNO (def
);
983 if (!next_use
[regno
])
986 /* Do not consider if it is pre/post modification in MEM. */
987 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
990 /* Do not make the log link for frame pointer. */
991 if ((regno
== FRAME_POINTER_REGNUM
992 && (! reload_completed
|| frame_pointer_needed
))
993 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
994 || (regno
== HARD_FRAME_POINTER_REGNUM
995 && (! reload_completed
|| frame_pointer_needed
))
997 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
1003 use_insn
= next_use
[regno
];
1004 if (BLOCK_FOR_INSN (use_insn
) == bb
)
1008 We don't build a LOG_LINK for hard registers contained
1009 in ASM_OPERANDs. If these registers get replaced,
1010 we might wind up changing the semantics of the insn,
1011 even if reload can make what appear to be valid
1012 assignments later. */
1013 if (regno
>= FIRST_PSEUDO_REGISTER
1014 || asm_noperands (PATTERN (use_insn
)) < 0)
1016 /* Don't add duplicate links between instructions. */
1017 struct insn_link
*links
;
1018 FOR_EACH_LOG_LINK (links
, use_insn
)
1019 if (insn
== links
->insn
)
1023 LOG_LINKS (use_insn
)
1024 = alloc_insn_link (insn
, LOG_LINKS (use_insn
));
1027 next_use
[regno
] = NULL_RTX
;
1030 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1032 df_ref use
= *use_vec
;
1033 int regno
= DF_REF_REGNO (use
);
1035 /* Do not consider the usage of the stack pointer
1036 by function call. */
1037 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1040 next_use
[regno
] = insn
;
1048 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1049 true if we found a LOG_LINK that proves that A feeds B. This only works
1050 if there are no instructions between A and B which could have a link
1051 depending on A, since in that case we would not record a link for B.
1052 We also check the implicit dependency created by a cc0 setter/user
1056 insn_a_feeds_b (rtx a
, rtx b
)
1058 struct insn_link
*links
;
1059 FOR_EACH_LOG_LINK (links
, b
)
1060 if (links
->insn
== a
)
1069 /* Main entry point for combiner. F is the first insn of the function.
1070 NREGS is the first unused pseudo-reg number.
1072 Return nonzero if the combiner has turned an indirect jump
1073 instruction into a direct jump. */
1075 combine_instructions (rtx f
, unsigned int nregs
)
1081 struct insn_link
*links
, *nextlinks
;
1083 basic_block last_bb
;
1085 int new_direct_jump_p
= 0;
1087 for (first
= f
; first
&& !INSN_P (first
); )
1088 first
= NEXT_INSN (first
);
1092 combine_attempts
= 0;
1095 combine_successes
= 0;
1097 rtl_hooks
= combine_rtl_hooks
;
1099 VEC_safe_grow_cleared (reg_stat_type
, heap
, reg_stat
, nregs
);
1101 init_recog_no_volatile ();
1103 /* Allocate array for insn info. */
1104 max_uid_known
= get_max_uid ();
1105 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1106 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1107 gcc_obstack_init (&insn_link_obstack
);
1109 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1111 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1112 problems when, for example, we have j <<= 1 in a loop. */
1114 nonzero_sign_valid
= 0;
1115 label_tick
= label_tick_ebb_start
= 1;
1117 /* Scan all SETs and see if we can deduce anything about what
1118 bits are known to be zero for some registers and how many copies
1119 of the sign bit are known to exist for those registers.
1121 Also set any known values so that we can use it while searching
1122 for what bits are known to be set. */
1124 setup_incoming_promotions (first
);
1125 /* Allow the entry block and the first block to fall into the same EBB.
1126 Conceptually the incoming promotions are assigned to the entry block. */
1127 last_bb
= ENTRY_BLOCK_PTR
;
1129 create_log_links ();
1130 FOR_EACH_BB (this_basic_block
)
1132 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1137 if (!single_pred_p (this_basic_block
)
1138 || single_pred (this_basic_block
) != last_bb
)
1139 label_tick_ebb_start
= label_tick
;
1140 last_bb
= this_basic_block
;
1142 FOR_BB_INSNS (this_basic_block
, insn
)
1143 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1149 subst_low_luid
= DF_INSN_LUID (insn
);
1152 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1154 record_dead_and_set_regs (insn
);
1157 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1158 if (REG_NOTE_KIND (links
) == REG_INC
)
1159 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1163 /* Record the current insn_rtx_cost of this instruction. */
1164 if (NONJUMP_INSN_P (insn
))
1165 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1166 optimize_this_for_speed_p
);
1168 fprintf(dump_file
, "insn_cost %d: %d\n",
1169 INSN_UID (insn
), INSN_COST (insn
));
1173 nonzero_sign_valid
= 1;
1175 /* Now scan all the insns in forward order. */
1176 label_tick
= label_tick_ebb_start
= 1;
1178 setup_incoming_promotions (first
);
1179 last_bb
= ENTRY_BLOCK_PTR
;
1181 FOR_EACH_BB (this_basic_block
)
1183 rtx last_combined_insn
= NULL_RTX
;
1184 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1189 if (!single_pred_p (this_basic_block
)
1190 || single_pred (this_basic_block
) != last_bb
)
1191 label_tick_ebb_start
= label_tick
;
1192 last_bb
= this_basic_block
;
1194 rtl_profile_for_bb (this_basic_block
);
1195 for (insn
= BB_HEAD (this_basic_block
);
1196 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1197 insn
= next
? next
: NEXT_INSN (insn
))
1200 if (NONDEBUG_INSN_P (insn
))
1202 while (last_combined_insn
1203 && INSN_DELETED_P (last_combined_insn
))
1204 last_combined_insn
= PREV_INSN (last_combined_insn
);
1205 if (last_combined_insn
== NULL_RTX
1206 || BARRIER_P (last_combined_insn
)
1207 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1208 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1209 last_combined_insn
= insn
;
1211 /* See if we know about function return values before this
1212 insn based upon SUBREG flags. */
1213 check_promoted_subreg (insn
, PATTERN (insn
));
1215 /* See if we can find hardregs and subreg of pseudos in
1216 narrower modes. This could help turning TRUNCATEs
1218 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1220 /* Try this insn with each insn it links back to. */
1222 FOR_EACH_LOG_LINK (links
, insn
)
1223 if ((next
= try_combine (insn
, links
->insn
, NULL_RTX
,
1224 NULL_RTX
, &new_direct_jump_p
,
1225 last_combined_insn
)) != 0)
1228 /* Try each sequence of three linked insns ending with this one. */
1230 FOR_EACH_LOG_LINK (links
, insn
)
1232 rtx link
= links
->insn
;
1234 /* If the linked insn has been replaced by a note, then there
1235 is no point in pursuing this chain any further. */
1239 FOR_EACH_LOG_LINK (nextlinks
, link
)
1240 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1241 NULL_RTX
, &new_direct_jump_p
,
1242 last_combined_insn
)) != 0)
1247 /* Try to combine a jump insn that uses CC0
1248 with a preceding insn that sets CC0, and maybe with its
1249 logical predecessor as well.
1250 This is how we make decrement-and-branch insns.
1251 We need this special code because data flow connections
1252 via CC0 do not get entered in LOG_LINKS. */
1255 && (prev
= prev_nonnote_insn (insn
)) != 0
1256 && NONJUMP_INSN_P (prev
)
1257 && sets_cc0_p (PATTERN (prev
)))
1259 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1261 last_combined_insn
)) != 0)
1264 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1265 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1266 NULL_RTX
, &new_direct_jump_p
,
1267 last_combined_insn
)) != 0)
1271 /* Do the same for an insn that explicitly references CC0. */
1272 if (NONJUMP_INSN_P (insn
)
1273 && (prev
= prev_nonnote_insn (insn
)) != 0
1274 && NONJUMP_INSN_P (prev
)
1275 && sets_cc0_p (PATTERN (prev
))
1276 && GET_CODE (PATTERN (insn
)) == SET
1277 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1279 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1281 last_combined_insn
)) != 0)
1284 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1285 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1286 NULL_RTX
, &new_direct_jump_p
,
1287 last_combined_insn
)) != 0)
1291 /* Finally, see if any of the insns that this insn links to
1292 explicitly references CC0. If so, try this insn, that insn,
1293 and its predecessor if it sets CC0. */
1294 FOR_EACH_LOG_LINK (links
, insn
)
1295 if (NONJUMP_INSN_P (links
->insn
)
1296 && GET_CODE (PATTERN (links
->insn
)) == SET
1297 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1298 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1299 && NONJUMP_INSN_P (prev
)
1300 && sets_cc0_p (PATTERN (prev
))
1301 && (next
= try_combine (insn
, links
->insn
,
1302 prev
, NULL_RTX
, &new_direct_jump_p
,
1303 last_combined_insn
)) != 0)
1307 /* Try combining an insn with two different insns whose results it
1309 FOR_EACH_LOG_LINK (links
, insn
)
1310 for (nextlinks
= links
->next
; nextlinks
;
1311 nextlinks
= nextlinks
->next
)
1312 if ((next
= try_combine (insn
, links
->insn
,
1313 nextlinks
->insn
, NULL_RTX
,
1315 last_combined_insn
)) != 0)
1318 /* Try four-instruction combinations. */
1319 FOR_EACH_LOG_LINK (links
, insn
)
1321 struct insn_link
*next1
;
1322 rtx link
= links
->insn
;
1324 /* If the linked insn has been replaced by a note, then there
1325 is no point in pursuing this chain any further. */
1329 FOR_EACH_LOG_LINK (next1
, link
)
1331 rtx link1
= next1
->insn
;
1334 /* I0 -> I1 -> I2 -> I3. */
1335 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1336 if ((next
= try_combine (insn
, link
, link1
,
1339 last_combined_insn
)) != 0)
1341 /* I0, I1 -> I2, I2 -> I3. */
1342 for (nextlinks
= next1
->next
; nextlinks
;
1343 nextlinks
= nextlinks
->next
)
1344 if ((next
= try_combine (insn
, link
, link1
,
1347 last_combined_insn
)) != 0)
1351 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1353 rtx link1
= next1
->insn
;
1356 /* I0 -> I2; I1, I2 -> I3. */
1357 FOR_EACH_LOG_LINK (nextlinks
, link
)
1358 if ((next
= try_combine (insn
, link
, link1
,
1361 last_combined_insn
)) != 0)
1363 /* I0 -> I1; I1, I2 -> I3. */
1364 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1365 if ((next
= try_combine (insn
, link
, link1
,
1368 last_combined_insn
)) != 0)
1373 /* Try this insn with each REG_EQUAL note it links back to. */
1374 FOR_EACH_LOG_LINK (links
, insn
)
1377 rtx temp
= links
->insn
;
1378 if ((set
= single_set (temp
)) != 0
1379 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1380 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1381 /* Avoid using a register that may already been marked
1382 dead by an earlier instruction. */
1383 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1384 && (GET_MODE (note
) == VOIDmode
1385 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1386 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
1388 /* Temporarily replace the set's source with the
1389 contents of the REG_EQUAL note. The insn will
1390 be deleted or recognized by try_combine. */
1391 rtx orig
= SET_SRC (set
);
1392 SET_SRC (set
) = note
;
1394 i2mod_old_rhs
= copy_rtx (orig
);
1395 i2mod_new_rhs
= copy_rtx (note
);
1396 next
= try_combine (insn
, i2mod
, NULL_RTX
, NULL_RTX
,
1398 last_combined_insn
);
1402 SET_SRC (set
) = orig
;
1407 record_dead_and_set_regs (insn
);
1415 default_rtl_profile ();
1417 new_direct_jump_p
|= purge_all_dead_edges ();
1418 delete_noop_moves ();
1421 obstack_free (&insn_link_obstack
, NULL
);
1422 free (uid_log_links
);
1423 free (uid_insn_cost
);
1424 VEC_free (reg_stat_type
, heap
, reg_stat
);
1427 struct undo
*undo
, *next
;
1428 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1436 total_attempts
+= combine_attempts
;
1437 total_merges
+= combine_merges
;
1438 total_extras
+= combine_extras
;
1439 total_successes
+= combine_successes
;
1441 nonzero_sign_valid
= 0;
1442 rtl_hooks
= general_rtl_hooks
;
1444 /* Make recognizer allow volatile MEMs again. */
1447 return new_direct_jump_p
;
1450 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1453 init_reg_last (void)
1458 FOR_EACH_VEC_ELT (reg_stat_type
, reg_stat
, i
, p
)
1459 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1462 /* Set up any promoted values for incoming argument registers. */
1465 setup_incoming_promotions (rtx first
)
1468 bool strictly_local
= false;
1470 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1471 arg
= DECL_CHAIN (arg
))
1473 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1475 enum machine_mode mode1
, mode2
, mode3
, mode4
;
1477 /* Only continue if the incoming argument is in a register. */
1481 /* Determine, if possible, whether all call sites of the current
1482 function lie within the current compilation unit. (This does
1483 take into account the exporting of a function via taking its
1484 address, and so forth.) */
1485 strictly_local
= cgraph_local_info (current_function_decl
)->local
;
1487 /* The mode and signedness of the argument before any promotions happen
1488 (equal to the mode of the pseudo holding it at that stage). */
1489 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1490 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1492 /* The mode and signedness of the argument after any source language and
1493 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1494 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1495 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1497 /* The mode and signedness of the argument as it is actually passed,
1498 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1499 mode3
= promote_function_mode (DECL_ARG_TYPE (arg
), mode2
, &uns3
,
1500 TREE_TYPE (cfun
->decl
), 0);
1502 /* The mode of the register in which the argument is being passed. */
1503 mode4
= GET_MODE (reg
);
1505 /* Eliminate sign extensions in the callee when:
1506 (a) A mode promotion has occurred; */
1509 /* (b) The mode of the register is the same as the mode of
1510 the argument as it is passed; */
1513 /* (c) There's no language level extension; */
1516 /* (c.1) All callers are from the current compilation unit. If that's
1517 the case we don't have to rely on an ABI, we only have to know
1518 what we're generating right now, and we know that we will do the
1519 mode1 to mode2 promotion with the given sign. */
1520 else if (!strictly_local
)
1522 /* (c.2) The combination of the two promotions is useful. This is
1523 true when the signs match, or if the first promotion is unsigned.
1524 In the later case, (sign_extend (zero_extend x)) is the same as
1525 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1531 /* Record that the value was promoted from mode1 to mode3,
1532 so that any sign extension at the head of the current
1533 function may be eliminated. */
1534 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1535 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1536 record_value_for_reg (reg
, first
, x
);
1540 /* Called via note_stores. If X is a pseudo that is narrower than
1541 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1543 If we are setting only a portion of X and we can't figure out what
1544 portion, assume all bits will be used since we don't know what will
1547 Similarly, set how many bits of X are known to be copies of the sign bit
1548 at all locations in the function. This is the smallest number implied
1552 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1554 rtx insn
= (rtx
) data
;
1558 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1559 /* If this register is undefined at the start of the file, we can't
1560 say what its contents were. */
1561 && ! REGNO_REG_SET_P
1562 (DF_LR_IN (ENTRY_BLOCK_PTR
->next_bb
), REGNO (x
))
1563 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1565 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, REGNO (x
));
1567 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1569 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1570 rsp
->sign_bit_copies
= 1;
1574 /* If this register is being initialized using itself, and the
1575 register is uninitialized in this basic block, and there are
1576 no LOG_LINKS which set the register, then part of the
1577 register is uninitialized. In that case we can't assume
1578 anything about the number of nonzero bits.
1580 ??? We could do better if we checked this in
1581 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1582 could avoid making assumptions about the insn which initially
1583 sets the register, while still using the information in other
1584 insns. We would have to be careful to check every insn
1585 involved in the combination. */
1588 && reg_referenced_p (x
, PATTERN (insn
))
1589 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1592 struct insn_link
*link
;
1594 FOR_EACH_LOG_LINK (link
, insn
)
1595 if (dead_or_set_p (link
->insn
, x
))
1599 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1600 rsp
->sign_bit_copies
= 1;
1605 /* If this is a complex assignment, see if we can convert it into a
1606 simple assignment. */
1607 set
= expand_field_assignment (set
);
1609 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1610 set what we know about X. */
1612 if (SET_DEST (set
) == x
1613 || (paradoxical_subreg_p (SET_DEST (set
))
1614 && SUBREG_REG (SET_DEST (set
)) == x
))
1616 rtx src
= SET_SRC (set
);
1618 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1619 /* If X is narrower than a word and SRC is a non-negative
1620 constant that would appear negative in the mode of X,
1621 sign-extend it for use in reg_stat[].nonzero_bits because some
1622 machines (maybe most) will actually do the sign-extension
1623 and this is the conservative approach.
1625 ??? For 2.5, try to tighten up the MD files in this regard
1626 instead of this kludge. */
1628 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
1629 && CONST_INT_P (src
)
1631 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (src
)))
1632 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (GET_MODE (x
)));
1635 /* Don't call nonzero_bits if it cannot change anything. */
1636 if (rsp
->nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1637 rsp
->nonzero_bits
|= nonzero_bits (src
, nonzero_bits_mode
);
1638 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1639 if (rsp
->sign_bit_copies
== 0
1640 || rsp
->sign_bit_copies
> num
)
1641 rsp
->sign_bit_copies
= num
;
1645 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1646 rsp
->sign_bit_copies
= 1;
1651 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1652 optionally insns that were previously combined into I3 or that will be
1653 combined into the merger of INSN and I3. The order is PRED, PRED2,
1654 INSN, SUCC, SUCC2, I3.
1656 Return 0 if the combination is not allowed for any reason.
1658 If the combination is allowed, *PDEST will be set to the single
1659 destination of INSN and *PSRC to the single source, and this function
1663 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
,
1664 rtx pred2 ATTRIBUTE_UNUSED
, rtx succ
, rtx succ2
,
1665 rtx
*pdest
, rtx
*psrc
)
1674 bool all_adjacent
= true;
1680 if (next_active_insn (succ2
) != i3
)
1681 all_adjacent
= false;
1682 if (next_active_insn (succ
) != succ2
)
1683 all_adjacent
= false;
1685 else if (next_active_insn (succ
) != i3
)
1686 all_adjacent
= false;
1687 if (next_active_insn (insn
) != succ
)
1688 all_adjacent
= false;
1690 else if (next_active_insn (insn
) != i3
)
1691 all_adjacent
= false;
1693 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1694 or a PARALLEL consisting of such a SET and CLOBBERs.
1696 If INSN has CLOBBER parallel parts, ignore them for our processing.
1697 By definition, these happen during the execution of the insn. When it
1698 is merged with another insn, all bets are off. If they are, in fact,
1699 needed and aren't also supplied in I3, they may be added by
1700 recog_for_combine. Otherwise, it won't match.
1702 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1705 Get the source and destination of INSN. If more than one, can't
1708 if (GET_CODE (PATTERN (insn
)) == SET
)
1709 set
= PATTERN (insn
);
1710 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1711 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1713 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1715 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1717 switch (GET_CODE (elt
))
1719 /* This is important to combine floating point insns
1720 for the SH4 port. */
1722 /* Combining an isolated USE doesn't make sense.
1723 We depend here on combinable_i3pat to reject them. */
1724 /* The code below this loop only verifies that the inputs of
1725 the SET in INSN do not change. We call reg_set_between_p
1726 to verify that the REG in the USE does not change between
1728 If the USE in INSN was for a pseudo register, the matching
1729 insn pattern will likely match any register; combining this
1730 with any other USE would only be safe if we knew that the
1731 used registers have identical values, or if there was
1732 something to tell them apart, e.g. different modes. For
1733 now, we forgo such complicated tests and simply disallow
1734 combining of USES of pseudo registers with any other USE. */
1735 if (REG_P (XEXP (elt
, 0))
1736 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1738 rtx i3pat
= PATTERN (i3
);
1739 int i
= XVECLEN (i3pat
, 0) - 1;
1740 unsigned int regno
= REGNO (XEXP (elt
, 0));
1744 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1746 if (GET_CODE (i3elt
) == USE
1747 && REG_P (XEXP (i3elt
, 0))
1748 && (REGNO (XEXP (i3elt
, 0)) == regno
1749 ? reg_set_between_p (XEXP (elt
, 0),
1750 PREV_INSN (insn
), i3
)
1751 : regno
>= FIRST_PSEUDO_REGISTER
))
1758 /* We can ignore CLOBBERs. */
1763 /* Ignore SETs whose result isn't used but not those that
1764 have side-effects. */
1765 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1766 && insn_nothrow_p (insn
)
1767 && !side_effects_p (elt
))
1770 /* If we have already found a SET, this is a second one and
1771 so we cannot combine with this insn. */
1779 /* Anything else means we can't combine. */
1785 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1786 so don't do anything with it. */
1787 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1796 set
= expand_field_assignment (set
);
1797 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1799 /* Don't eliminate a store in the stack pointer. */
1800 if (dest
== stack_pointer_rtx
1801 /* Don't combine with an insn that sets a register to itself if it has
1802 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1803 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1804 /* Can't merge an ASM_OPERANDS. */
1805 || GET_CODE (src
) == ASM_OPERANDS
1806 /* Can't merge a function call. */
1807 || GET_CODE (src
) == CALL
1808 /* Don't eliminate a function call argument. */
1810 && (find_reg_fusage (i3
, USE
, dest
)
1812 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1813 && global_regs
[REGNO (dest
)])))
1814 /* Don't substitute into an incremented register. */
1815 || FIND_REG_INC_NOTE (i3
, dest
)
1816 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1817 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1818 /* Don't substitute into a non-local goto, this confuses CFG. */
1819 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1820 /* Make sure that DEST is not used after SUCC but before I3. */
1823 && (reg_used_between_p (dest
, succ2
, i3
)
1824 || reg_used_between_p (dest
, succ
, succ2
)))
1825 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1826 /* Make sure that the value that is to be substituted for the register
1827 does not use any registers whose values alter in between. However,
1828 If the insns are adjacent, a use can't cross a set even though we
1829 think it might (this can happen for a sequence of insns each setting
1830 the same destination; last_set of that register might point to
1831 a NOTE). If INSN has a REG_EQUIV note, the register is always
1832 equivalent to the memory so the substitution is valid even if there
1833 are intervening stores. Also, don't move a volatile asm or
1834 UNSPEC_VOLATILE across any other insns. */
1837 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1838 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1839 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1840 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1841 /* Don't combine across a CALL_INSN, because that would possibly
1842 change whether the life span of some REGs crosses calls or not,
1843 and it is a pain to update that information.
1844 Exception: if source is a constant, moving it later can't hurt.
1845 Accept that as a special case. */
1846 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1849 /* DEST must either be a REG or CC0. */
1852 /* If register alignment is being enforced for multi-word items in all
1853 cases except for parameters, it is possible to have a register copy
1854 insn referencing a hard register that is not allowed to contain the
1855 mode being copied and which would not be valid as an operand of most
1856 insns. Eliminate this problem by not combining with such an insn.
1858 Also, on some machines we don't want to extend the life of a hard
1862 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1863 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1864 /* Don't extend the life of a hard register unless it is
1865 user variable (if we have few registers) or it can't
1866 fit into the desired register (meaning something special
1868 Also avoid substituting a return register into I3, because
1869 reload can't handle a conflict with constraints of other
1871 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1872 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1875 else if (GET_CODE (dest
) != CC0
)
1879 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1880 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1881 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1883 /* Don't substitute for a register intended as a clobberable
1885 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1886 if (rtx_equal_p (reg
, dest
))
1889 /* If the clobber represents an earlyclobber operand, we must not
1890 substitute an expression containing the clobbered register.
1891 As we do not analyze the constraint strings here, we have to
1892 make the conservative assumption. However, if the register is
1893 a fixed hard reg, the clobber cannot represent any operand;
1894 we leave it up to the machine description to either accept or
1895 reject use-and-clobber patterns. */
1897 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1898 || !fixed_regs
[REGNO (reg
)])
1899 if (reg_overlap_mentioned_p (reg
, src
))
1903 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1904 or not), reject, unless nothing volatile comes between it and I3 */
1906 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1908 /* Make sure neither succ nor succ2 contains a volatile reference. */
1909 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1911 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1913 /* We'll check insns between INSN and I3 below. */
1916 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1917 to be an explicit register variable, and was chosen for a reason. */
1919 if (GET_CODE (src
) == ASM_OPERANDS
1920 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1923 /* If there are any volatile insns between INSN and I3, reject, because
1924 they might affect machine state. */
1926 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1927 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& volatile_insn_p (PATTERN (p
)))
1930 /* If INSN contains an autoincrement or autodecrement, make sure that
1931 register is not used between there and I3, and not already used in
1932 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1933 Also insist that I3 not be a jump; if it were one
1934 and the incremented register were spilled, we would lose. */
1937 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1938 if (REG_NOTE_KIND (link
) == REG_INC
1940 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1941 || (pred
!= NULL_RTX
1942 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
1943 || (pred2
!= NULL_RTX
1944 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
1945 || (succ
!= NULL_RTX
1946 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
1947 || (succ2
!= NULL_RTX
1948 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
1949 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1954 /* Don't combine an insn that follows a CC0-setting insn.
1955 An insn that uses CC0 must not be separated from the one that sets it.
1956 We do, however, allow I2 to follow a CC0-setting insn if that insn
1957 is passed as I1; in that case it will be deleted also.
1958 We also allow combining in this case if all the insns are adjacent
1959 because that would leave the two CC0 insns adjacent as well.
1960 It would be more logical to test whether CC0 occurs inside I1 or I2,
1961 but that would be much slower, and this ought to be equivalent. */
1963 p
= prev_nonnote_insn (insn
);
1964 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
1969 /* If we get here, we have passed all the tests and the combination is
1978 /* LOC is the location within I3 that contains its pattern or the component
1979 of a PARALLEL of the pattern. We validate that it is valid for combining.
1981 One problem is if I3 modifies its output, as opposed to replacing it
1982 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1983 doing so would produce an insn that is not equivalent to the original insns.
1987 (set (reg:DI 101) (reg:DI 100))
1988 (set (subreg:SI (reg:DI 101) 0) <foo>)
1990 This is NOT equivalent to:
1992 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1993 (set (reg:DI 101) (reg:DI 100))])
1995 Not only does this modify 100 (in which case it might still be valid
1996 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1998 We can also run into a problem if I2 sets a register that I1
1999 uses and I1 gets directly substituted into I3 (not via I2). In that
2000 case, we would be getting the wrong value of I2DEST into I3, so we
2001 must reject the combination. This case occurs when I2 and I1 both
2002 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2003 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2004 of a SET must prevent combination from occurring. The same situation
2005 can occur for I0, in which case I0_NOT_IN_SRC is set.
2007 Before doing the above check, we first try to expand a field assignment
2008 into a set of logical operations.
2010 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2011 we place a register that is both set and used within I3. If more than one
2012 such register is detected, we fail.
2014 Return 1 if the combination is valid, zero otherwise. */
2017 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2018 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2022 if (GET_CODE (x
) == SET
)
2025 rtx dest
= SET_DEST (set
);
2026 rtx src
= SET_SRC (set
);
2027 rtx inner_dest
= dest
;
2030 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2031 || GET_CODE (inner_dest
) == SUBREG
2032 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2033 inner_dest
= XEXP (inner_dest
, 0);
2035 /* Check for the case where I3 modifies its output, as discussed
2036 above. We don't want to prevent pseudos from being combined
2037 into the address of a MEM, so only prevent the combination if
2038 i1 or i2 set the same MEM. */
2039 if ((inner_dest
!= dest
&&
2040 (!MEM_P (inner_dest
)
2041 || rtx_equal_p (i2dest
, inner_dest
)
2042 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2043 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2044 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2045 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2046 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2048 /* This is the same test done in can_combine_p except we can't test
2049 all_adjacent; we don't have to, since this instruction will stay
2050 in place, thus we are not considering increasing the lifetime of
2053 Also, if this insn sets a function argument, combining it with
2054 something that might need a spill could clobber a previous
2055 function argument; the all_adjacent test in can_combine_p also
2056 checks this; here, we do a more specific test for this case. */
2058 || (REG_P (inner_dest
)
2059 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2060 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2061 GET_MODE (inner_dest
))))
2062 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2063 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2066 /* If DEST is used in I3, it is being killed in this insn, so
2067 record that for later. We have to consider paradoxical
2068 subregs here, since they kill the whole register, but we
2069 ignore partial subregs, STRICT_LOW_PART, etc.
2070 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2071 STACK_POINTER_REGNUM, since these are always considered to be
2072 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2074 if (GET_CODE (subdest
) == SUBREG
2075 && (GET_MODE_SIZE (GET_MODE (subdest
))
2076 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2077 subdest
= SUBREG_REG (subdest
);
2080 && reg_referenced_p (subdest
, PATTERN (i3
))
2081 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2082 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2083 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
2085 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2086 && (REGNO (subdest
) != ARG_POINTER_REGNUM
2087 || ! fixed_regs
[REGNO (subdest
)])
2089 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2091 if (*pi3dest_killed
)
2094 *pi3dest_killed
= subdest
;
2098 else if (GET_CODE (x
) == PARALLEL
)
2102 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2103 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2104 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2111 /* Return 1 if X is an arithmetic expression that contains a multiplication
2112 and division. We don't count multiplications by powers of two here. */
2115 contains_muldiv (rtx x
)
2117 switch (GET_CODE (x
))
2119 case MOD
: case DIV
: case UMOD
: case UDIV
:
2123 return ! (CONST_INT_P (XEXP (x
, 1))
2124 && exact_log2 (UINTVAL (XEXP (x
, 1))) >= 0);
2127 return contains_muldiv (XEXP (x
, 0))
2128 || contains_muldiv (XEXP (x
, 1));
2131 return contains_muldiv (XEXP (x
, 0));
2137 /* Determine whether INSN can be used in a combination. Return nonzero if
2138 not. This is used in try_combine to detect early some cases where we
2139 can't perform combinations. */
2142 cant_combine_insn_p (rtx insn
)
2147 /* If this isn't really an insn, we can't do anything.
2148 This can occur when flow deletes an insn that it has merged into an
2149 auto-increment address. */
2150 if (! INSN_P (insn
))
2153 /* Never combine loads and stores involving hard regs that are likely
2154 to be spilled. The register allocator can usually handle such
2155 reg-reg moves by tying. If we allow the combiner to make
2156 substitutions of likely-spilled regs, reload might die.
2157 As an exception, we allow combinations involving fixed regs; these are
2158 not available to the register allocator so there's no risk involved. */
2160 set
= single_set (insn
);
2163 src
= SET_SRC (set
);
2164 dest
= SET_DEST (set
);
2165 if (GET_CODE (src
) == SUBREG
)
2166 src
= SUBREG_REG (src
);
2167 if (GET_CODE (dest
) == SUBREG
)
2168 dest
= SUBREG_REG (dest
);
2169 if (REG_P (src
) && REG_P (dest
)
2170 && ((HARD_REGISTER_P (src
)
2171 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2172 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2173 || (HARD_REGISTER_P (dest
)
2174 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2175 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2181 struct likely_spilled_retval_info
2183 unsigned regno
, nregs
;
2187 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2188 hard registers that are known to be written to / clobbered in full. */
2190 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2192 struct likely_spilled_retval_info
*const info
=
2193 (struct likely_spilled_retval_info
*) data
;
2194 unsigned regno
, nregs
;
2197 if (!REG_P (XEXP (set
, 0)))
2200 if (regno
>= info
->regno
+ info
->nregs
)
2202 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
2203 if (regno
+ nregs
<= info
->regno
)
2205 new_mask
= (2U << (nregs
- 1)) - 1;
2206 if (regno
< info
->regno
)
2207 new_mask
>>= info
->regno
- regno
;
2209 new_mask
<<= regno
- info
->regno
;
2210 info
->mask
&= ~new_mask
;
2213 /* Return nonzero iff part of the return value is live during INSN, and
2214 it is likely spilled. This can happen when more than one insn is needed
2215 to copy the return value, e.g. when we consider to combine into the
2216 second copy insn for a complex value. */
2219 likely_spilled_retval_p (rtx insn
)
2221 rtx use
= BB_END (this_basic_block
);
2223 unsigned regno
, nregs
;
2224 /* We assume here that no machine mode needs more than
2225 32 hard registers when the value overlaps with a register
2226 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2228 struct likely_spilled_retval_info info
;
2230 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2232 reg
= XEXP (PATTERN (use
), 0);
2233 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2235 regno
= REGNO (reg
);
2236 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2239 mask
= (2U << (nregs
- 1)) - 1;
2241 /* Disregard parts of the return value that are set later. */
2245 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2247 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2250 /* Check if any of the (probably) live return value registers is
2255 if ((mask
& 1 << nregs
)
2256 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2262 /* Adjust INSN after we made a change to its destination.
2264 Changing the destination can invalidate notes that say something about
2265 the results of the insn and a LOG_LINK pointing to the insn. */
2268 adjust_for_new_dest (rtx insn
)
2270 /* For notes, be conservative and simply remove them. */
2271 remove_reg_equal_equiv_notes (insn
);
2273 /* The new insn will have a destination that was previously the destination
2274 of an insn just above it. Call distribute_links to make a LOG_LINK from
2275 the next use of that destination. */
2276 distribute_links (alloc_insn_link (insn
, NULL
));
2278 df_insn_rescan (insn
);
2281 /* Return TRUE if combine can reuse reg X in mode MODE.
2282 ADDED_SETS is nonzero if the original set is still required. */
2284 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
2292 /* Allow hard registers if the new mode is legal, and occupies no more
2293 registers than the old mode. */
2294 if (regno
< FIRST_PSEUDO_REGISTER
)
2295 return (HARD_REGNO_MODE_OK (regno
, mode
)
2296 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
2297 >= hard_regno_nregs
[regno
][mode
]));
2299 /* Or a pseudo that is only used once. */
2300 return (REG_N_SETS (regno
) == 1 && !added_sets
2301 && !REG_USERVAR_P (x
));
2305 /* Check whether X, the destination of a set, refers to part of
2306 the register specified by REG. */
2309 reg_subword_p (rtx x
, rtx reg
)
2311 /* Check that reg is an integer mode register. */
2312 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2315 if (GET_CODE (x
) == STRICT_LOW_PART
2316 || GET_CODE (x
) == ZERO_EXTRACT
)
2319 return GET_CODE (x
) == SUBREG
2320 && SUBREG_REG (x
) == reg
2321 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2325 /* Replace auto-increment addressing modes with explicit operations to access
2326 the same addresses without modifying the corresponding registers. */
2329 cleanup_auto_inc_dec (rtx src
, enum machine_mode mem_mode
)
2332 const RTX_CODE code
= GET_CODE (x
);
2348 /* SCRATCH must be shared because they represent distinct values. */
2351 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2356 if (shared_const_p (x
))
2361 mem_mode
= GET_MODE (x
);
2366 gcc_assert (mem_mode
!= VOIDmode
&& mem_mode
!= BLKmode
);
2367 return gen_rtx_PLUS (GET_MODE (x
),
2368 cleanup_auto_inc_dec (XEXP (x
, 0), mem_mode
),
2369 GEN_INT (code
== PRE_INC
2370 ? GET_MODE_SIZE (mem_mode
)
2371 : -GET_MODE_SIZE (mem_mode
)));
2377 return cleanup_auto_inc_dec (code
== PRE_MODIFY
2378 ? XEXP (x
, 1) : XEXP (x
, 0),
2385 /* Copy the various flags, fields, and other information. We assume
2386 that all fields need copying, and then clear the fields that should
2387 not be copied. That is the sensible default behavior, and forces
2388 us to explicitly document why we are *not* copying a flag. */
2389 x
= shallow_copy_rtx (x
);
2391 /* We do not copy the USED flag, which is used as a mark bit during
2392 walks over the RTL. */
2393 RTX_FLAG (x
, used
) = 0;
2395 /* We do not copy FRAME_RELATED for INSNs. */
2397 RTX_FLAG (x
, frame_related
) = 0;
2399 fmt
= GET_RTX_FORMAT (code
);
2400 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2402 XEXP (x
, i
) = cleanup_auto_inc_dec (XEXP (x
, i
), mem_mode
);
2403 else if (fmt
[i
] == 'E' || fmt
[i
] == 'V')
2406 XVEC (x
, i
) = rtvec_alloc (XVECLEN (x
, i
));
2407 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2409 = cleanup_auto_inc_dec (XVECEXP (src
, i
, j
), mem_mode
);
2416 /* Auxiliary data structure for propagate_for_debug_stmt. */
2418 struct rtx_subst_pair
2424 /* DATA points to an rtx_subst_pair. Return the value that should be
2428 propagate_for_debug_subst (rtx from
, const_rtx old_rtx
, void *data
)
2430 struct rtx_subst_pair
*pair
= (struct rtx_subst_pair
*)data
;
2432 if (!rtx_equal_p (from
, old_rtx
))
2434 if (!pair
->adjusted
)
2436 pair
->adjusted
= true;
2438 pair
->to
= cleanup_auto_inc_dec (pair
->to
, VOIDmode
);
2440 pair
->to
= copy_rtx (pair
->to
);
2442 pair
->to
= make_compound_operation (pair
->to
, SET
);
2445 return copy_rtx (pair
->to
);
2448 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2449 and LAST, not including INSN, but including LAST. Also stop at the end
2450 of THIS_BASIC_BLOCK. */
2453 propagate_for_debug (rtx insn
, rtx last
, rtx dest
, rtx src
)
2455 rtx next
, loc
, end
= NEXT_INSN (BB_END (this_basic_block
));
2457 struct rtx_subst_pair p
;
2461 next
= NEXT_INSN (insn
);
2462 last
= NEXT_INSN (last
);
2463 while (next
!= last
&& next
!= end
)
2466 next
= NEXT_INSN (insn
);
2467 if (DEBUG_INSN_P (insn
))
2469 loc
= simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn
),
2470 dest
, propagate_for_debug_subst
, &p
);
2471 if (loc
== INSN_VAR_LOCATION_LOC (insn
))
2473 INSN_VAR_LOCATION_LOC (insn
) = loc
;
2474 df_insn_rescan (insn
);
2479 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2480 Note that the INSN should be deleted *after* removing dead edges, so
2481 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2482 but not for a (set (pc) (label_ref FOO)). */
2485 update_cfg_for_uncondjump (rtx insn
)
2487 basic_block bb
= BLOCK_FOR_INSN (insn
);
2488 gcc_assert (BB_END (bb
) == insn
);
2490 purge_dead_edges (bb
);
2493 if (EDGE_COUNT (bb
->succs
) == 1)
2497 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2499 /* Remove barriers from the footer if there are any. */
2500 for (insn
= bb
->il
.rtl
->footer
; insn
; insn
= NEXT_INSN (insn
))
2501 if (BARRIER_P (insn
))
2503 if (PREV_INSN (insn
))
2504 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2506 bb
->il
.rtl
->footer
= NEXT_INSN (insn
);
2507 if (NEXT_INSN (insn
))
2508 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2510 else if (LABEL_P (insn
))
2515 /* Try to combine the insns I0, I1 and I2 into I3.
2516 Here I0, I1 and I2 appear earlier than I3.
2517 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2520 If we are combining more than two insns and the resulting insn is not
2521 recognized, try splitting it into two insns. If that happens, I2 and I3
2522 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2523 Otherwise, I0, I1 and I2 are pseudo-deleted.
2525 Return 0 if the combination does not work. Then nothing is changed.
2526 If we did the combination, return the insn at which combine should
2529 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2530 new direct jump instruction.
2532 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2533 been I3 passed to an earlier try_combine within the same basic
2537 try_combine (rtx i3
, rtx i2
, rtx i1
, rtx i0
, int *new_direct_jump_p
,
2538 rtx last_combined_insn
)
2540 /* New patterns for I3 and I2, respectively. */
2541 rtx newpat
, newi2pat
= 0;
2542 rtvec newpat_vec_with_clobbers
= 0;
2543 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2544 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2546 int added_sets_0
, added_sets_1
, added_sets_2
;
2547 /* Total number of SETs to put into I3. */
2549 /* Nonzero if I2's or I1's body now appears in I3. */
2550 int i2_is_used
= 0, i1_is_used
= 0;
2551 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2552 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2553 /* Contains I3 if the destination of I3 is used in its source, which means
2554 that the old life of I3 is being killed. If that usage is placed into
2555 I2 and not in I3, a REG_DEAD note must be made. */
2556 rtx i3dest_killed
= 0;
2557 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2558 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2559 /* Copy of SET_SRC of I1, if needed. */
2561 /* Set if I2DEST was reused as a scratch register. */
2562 bool i2scratch
= false;
2563 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2564 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2565 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2566 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2567 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2568 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2569 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2570 /* Notes that must be added to REG_NOTES in I3 and I2. */
2571 rtx new_i3_notes
, new_i2_notes
;
2572 /* Notes that we substituted I3 into I2 instead of the normal case. */
2573 int i3_subst_into_i2
= 0;
2574 /* Notes that I1, I2 or I3 is a MULT operation. */
2577 int changed_i3_dest
= 0;
2581 struct insn_link
*link
;
2583 rtx new_other_notes
;
2586 /* Only try four-insn combinations when there's high likelihood of
2587 success. Look for simple insns, such as loads of constants or
2588 binary operations involving a constant. */
2595 if (!flag_expensive_optimizations
)
2598 for (i
= 0; i
< 4; i
++)
2600 rtx insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2601 rtx set
= single_set (insn
);
2605 src
= SET_SRC (set
);
2606 if (CONSTANT_P (src
))
2611 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2613 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2614 || GET_CODE (src
) == LSHIFTRT
)
2617 if (ngood
< 2 && nshift
< 2)
2621 /* Exit early if one of the insns involved can't be used for
2623 if (cant_combine_insn_p (i3
)
2624 || cant_combine_insn_p (i2
)
2625 || (i1
&& cant_combine_insn_p (i1
))
2626 || (i0
&& cant_combine_insn_p (i0
))
2627 || likely_spilled_retval_p (i3
))
2631 undobuf
.other_insn
= 0;
2633 /* Reset the hard register usage information. */
2634 CLEAR_HARD_REG_SET (newpat_used_regs
);
2636 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2639 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2640 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2642 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2643 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2645 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2646 INSN_UID (i2
), INSN_UID (i3
));
2649 /* If multiple insns feed into one of I2 or I3, they can be in any
2650 order. To simplify the code below, reorder them in sequence. */
2651 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2652 temp
= i2
, i2
= i0
, i0
= temp
;
2653 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2654 temp
= i1
, i1
= i0
, i0
= temp
;
2655 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2656 temp
= i1
, i1
= i2
, i2
= temp
;
2658 added_links_insn
= 0;
2660 /* First check for one important special case that the code below will
2661 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2662 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2663 we may be able to replace that destination with the destination of I3.
2664 This occurs in the common code where we compute both a quotient and
2665 remainder into a structure, in which case we want to do the computation
2666 directly into the structure to avoid register-register copies.
2668 Note that this case handles both multiple sets in I2 and also cases
2669 where I2 has a number of CLOBBERs inside the PARALLEL.
2671 We make very conservative checks below and only try to handle the
2672 most common cases of this. For example, we only handle the case
2673 where I2 and I3 are adjacent to avoid making difficult register
2676 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2677 && REG_P (SET_SRC (PATTERN (i3
)))
2678 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2679 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2680 && GET_CODE (PATTERN (i2
)) == PARALLEL
2681 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2682 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2683 below would need to check what is inside (and reg_overlap_mentioned_p
2684 doesn't support those codes anyway). Don't allow those destinations;
2685 the resulting insn isn't likely to be recognized anyway. */
2686 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2687 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2688 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2689 SET_DEST (PATTERN (i3
)))
2690 && next_active_insn (i2
) == i3
)
2692 rtx p2
= PATTERN (i2
);
2694 /* Make sure that the destination of I3,
2695 which we are going to substitute into one output of I2,
2696 is not used within another output of I2. We must avoid making this:
2697 (parallel [(set (mem (reg 69)) ...)
2698 (set (reg 69) ...)])
2699 which is not well-defined as to order of actions.
2700 (Besides, reload can't handle output reloads for this.)
2702 The problem can also happen if the dest of I3 is a memory ref,
2703 if another dest in I2 is an indirect memory ref. */
2704 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2705 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2706 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2707 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2708 SET_DEST (XVECEXP (p2
, 0, i
))))
2711 if (i
== XVECLEN (p2
, 0))
2712 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2713 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2714 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2719 subst_low_luid
= DF_INSN_LUID (i2
);
2721 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2722 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2723 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2724 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2726 /* Replace the dest in I2 with our dest and make the resulting
2727 insn the new pattern for I3. Then skip to where we validate
2728 the pattern. Everything was set up above. */
2729 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2731 i3_subst_into_i2
= 1;
2732 goto validate_replacement
;
2736 /* If I2 is setting a pseudo to a constant and I3 is setting some
2737 sub-part of it to another constant, merge them by making a new
2740 && (temp
= single_set (i2
)) != 0
2741 && (CONST_INT_P (SET_SRC (temp
))
2742 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
2743 && GET_CODE (PATTERN (i3
)) == SET
2744 && (CONST_INT_P (SET_SRC (PATTERN (i3
)))
2745 || GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_DOUBLE
)
2746 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
2748 rtx dest
= SET_DEST (PATTERN (i3
));
2752 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2754 if (CONST_INT_P (XEXP (dest
, 1))
2755 && CONST_INT_P (XEXP (dest
, 2)))
2757 width
= INTVAL (XEXP (dest
, 1));
2758 offset
= INTVAL (XEXP (dest
, 2));
2759 dest
= XEXP (dest
, 0);
2760 if (BITS_BIG_ENDIAN
)
2761 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2766 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2767 dest
= XEXP (dest
, 0);
2768 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2774 /* If this is the low part, we're done. */
2775 if (subreg_lowpart_p (dest
))
2777 /* Handle the case where inner is twice the size of outer. */
2778 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2779 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2780 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2781 /* Otherwise give up for now. */
2787 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2788 <= HOST_BITS_PER_DOUBLE_INT
))
2791 rtx inner
= SET_SRC (PATTERN (i3
));
2792 rtx outer
= SET_SRC (temp
);
2794 o
= rtx_to_double_int (outer
);
2795 i
= rtx_to_double_int (inner
);
2797 m
= double_int_mask (width
);
2798 i
= double_int_and (i
, m
);
2799 m
= double_int_lshift (m
, offset
, HOST_BITS_PER_DOUBLE_INT
, false);
2800 i
= double_int_lshift (i
, offset
, HOST_BITS_PER_DOUBLE_INT
, false);
2801 o
= double_int_ior (double_int_and_not (o
, m
), i
);
2805 subst_low_luid
= DF_INSN_LUID (i2
);
2806 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2807 i2dest
= SET_DEST (temp
);
2808 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2810 /* Replace the source in I2 with the new constant and make the
2811 resulting insn the new pattern for I3. Then skip to where we
2812 validate the pattern. Everything was set up above. */
2813 SUBST (SET_SRC (temp
),
2814 immed_double_int_const (o
, GET_MODE (SET_DEST (temp
))));
2816 newpat
= PATTERN (i2
);
2818 /* The dest of I3 has been replaced with the dest of I2. */
2819 changed_i3_dest
= 1;
2820 goto validate_replacement
;
2825 /* If we have no I1 and I2 looks like:
2826 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2828 make up a dummy I1 that is
2831 (set (reg:CC X) (compare:CC Y (const_int 0)))
2833 (We can ignore any trailing CLOBBERs.)
2835 This undoes a previous combination and allows us to match a branch-and-
2838 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2839 && XVECLEN (PATTERN (i2
), 0) >= 2
2840 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2841 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2843 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2844 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2845 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2846 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2847 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2848 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2850 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2851 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2856 /* We make I1 with the same INSN_UID as I2. This gives it
2857 the same DF_INSN_LUID for value tracking. Our fake I1 will
2858 never appear in the insn stream so giving it the same INSN_UID
2859 as I2 will not cause a problem. */
2861 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
2862 BLOCK_FOR_INSN (i2
), XVECEXP (PATTERN (i2
), 0, 1),
2863 INSN_LOCATOR (i2
), -1, NULL_RTX
);
2865 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2866 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2867 SET_DEST (PATTERN (i1
)));
2872 /* Verify that I2 and I1 are valid for combining. */
2873 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL_RTX
, NULL_RTX
, &i2dest
, &i2src
)
2874 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL_RTX
, i2
, NULL_RTX
,
2876 || (i0
&& ! can_combine_p (i0
, i3
, NULL_RTX
, NULL_RTX
, i1
, i2
,
2883 /* Record whether I2DEST is used in I2SRC and similarly for the other
2884 cases. Knowing this will help in register status updating below. */
2885 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2886 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2887 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2888 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2889 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2890 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2891 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2892 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2893 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2895 /* For the earlier insns, determine which of the subsequent ones they
2897 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2898 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2899 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2900 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2901 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2903 /* Ensure that I3's pattern can be the destination of combines. */
2904 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2905 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2906 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2907 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2914 /* See if any of the insns is a MULT operation. Unless one is, we will
2915 reject a combination that is, since it must be slower. Be conservative
2917 if (GET_CODE (i2src
) == MULT
2918 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2919 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2920 || (GET_CODE (PATTERN (i3
)) == SET
2921 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2924 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2925 We used to do this EXCEPT in one case: I3 has a post-inc in an
2926 output operand. However, that exception can give rise to insns like
2928 which is a famous insn on the PDP-11 where the value of r3 used as the
2929 source was model-dependent. Avoid this sort of thing. */
2932 if (!(GET_CODE (PATTERN (i3
)) == SET
2933 && REG_P (SET_SRC (PATTERN (i3
)))
2934 && MEM_P (SET_DEST (PATTERN (i3
)))
2935 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2936 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2937 /* It's not the exception. */
2942 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2943 if (REG_NOTE_KIND (link
) == REG_INC
2944 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2946 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2954 /* See if the SETs in I1 or I2 need to be kept around in the merged
2955 instruction: whenever the value set there is still needed past I3.
2956 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2958 For the SET in I1, we have two cases: If I1 and I2 independently
2959 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2960 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2961 in I1 needs to be kept around unless I1DEST dies or is set in either
2962 I2 or I3. The same consideration applies to I0. */
2964 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
2967 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
2968 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
2973 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
2974 || (i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
2975 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)));
2979 /* We are about to copy insns for the case where they need to be kept
2980 around. Check that they can be copied in the merged instruction. */
2982 if (targetm
.cannot_copy_insn_p
2983 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
2984 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
2985 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
2991 /* If the set in I2 needs to be kept around, we must make a copy of
2992 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2993 PATTERN (I2), we are only substituting for the original I1DEST, not into
2994 an already-substituted copy. This also prevents making self-referential
2995 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3000 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3001 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
3003 i2pat
= copy_rtx (PATTERN (i2
));
3008 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3009 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
3011 i1pat
= copy_rtx (PATTERN (i1
));
3016 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3017 i0pat
= gen_rtx_SET (VOIDmode
, i0dest
, copy_rtx (i0src
));
3019 i0pat
= copy_rtx (PATTERN (i0
));
3024 /* Substitute in the latest insn for the regs set by the earlier ones. */
3026 maxreg
= max_reg_num ();
3031 /* Many machines that don't use CC0 have insns that can both perform an
3032 arithmetic operation and set the condition code. These operations will
3033 be represented as a PARALLEL with the first element of the vector
3034 being a COMPARE of an arithmetic operation with the constant zero.
3035 The second element of the vector will set some pseudo to the result
3036 of the same arithmetic operation. If we simplify the COMPARE, we won't
3037 match such a pattern and so will generate an extra insn. Here we test
3038 for this case, where both the comparison and the operation result are
3039 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3040 I2SRC. Later we will make the PARALLEL that contains I2. */
3042 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3043 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3044 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3045 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3048 rtx
*cc_use_loc
= NULL
, cc_use_insn
= NULL_RTX
;
3049 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3050 enum machine_mode compare_mode
, orig_compare_mode
;
3051 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3053 newpat
= PATTERN (i3
);
3054 newpat_dest
= SET_DEST (newpat
);
3055 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3057 if (undobuf
.other_insn
== 0
3058 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3061 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3062 compare_code
= simplify_compare_const (compare_code
,
3064 #ifdef CANONICALIZE_COMPARISON
3065 CANONICALIZE_COMPARISON (compare_code
, op0
, op1
);
3069 /* Do the rest only if op1 is const0_rtx, which may be the
3070 result of simplification. */
3071 if (op1
== const0_rtx
)
3073 /* If a single use of the CC is found, prepare to modify it
3074 when SELECT_CC_MODE returns a new CC-class mode, or when
3075 the above simplify_compare_const() returned a new comparison
3076 operator. undobuf.other_insn is assigned the CC use insn
3077 when modifying it. */
3080 #ifdef SELECT_CC_MODE
3081 enum machine_mode new_mode
3082 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3083 if (new_mode
!= orig_compare_mode
3084 && can_change_dest_mode (SET_DEST (newpat
),
3085 added_sets_2
, new_mode
))
3087 unsigned int regno
= REGNO (newpat_dest
);
3088 compare_mode
= new_mode
;
3089 if (regno
< FIRST_PSEUDO_REGISTER
)
3090 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3093 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3094 newpat_dest
= regno_reg_rtx
[regno
];
3098 /* Cases for modifying the CC-using comparison. */
3099 if (compare_code
!= orig_compare_code
3100 /* ??? Do we need to verify the zero rtx? */
3101 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3103 /* Replace cc_use_loc with entire new RTX. */
3105 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3106 newpat_dest
, const0_rtx
));
3107 undobuf
.other_insn
= cc_use_insn
;
3109 else if (compare_mode
!= orig_compare_mode
)
3111 /* Just replace the CC reg with a new mode. */
3112 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3113 undobuf
.other_insn
= cc_use_insn
;
3117 /* Now we modify the current newpat:
3118 First, SET_DEST(newpat) is updated if the CC mode has been
3119 altered. For targets without SELECT_CC_MODE, this should be
3121 if (compare_mode
!= orig_compare_mode
)
3122 SUBST (SET_DEST (newpat
), newpat_dest
);
3123 /* This is always done to propagate i2src into newpat. */
3124 SUBST (SET_SRC (newpat
),
3125 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3126 /* Create new version of i2pat if needed; the below PARALLEL
3127 creation needs this to work correctly. */
3128 if (! rtx_equal_p (i2src
, op0
))
3129 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, op0
);
3135 if (i2_is_used
== 0)
3137 /* It is possible that the source of I2 or I1 may be performing
3138 an unneeded operation, such as a ZERO_EXTEND of something
3139 that is known to have the high part zero. Handle that case
3140 by letting subst look at the inner insns.
3142 Another way to do this would be to have a function that tries
3143 to simplify a single insn instead of merging two or more
3144 insns. We don't do this because of the potential of infinite
3145 loops and because of the potential extra memory required.
3146 However, doing it the way we are is a bit of a kludge and
3147 doesn't catch all cases.
3149 But only do this if -fexpensive-optimizations since it slows
3150 things down and doesn't usually win.
3152 This is not done in the COMPARE case above because the
3153 unmodified I2PAT is used in the PARALLEL and so a pattern
3154 with a modified I2SRC would not match. */
3156 if (flag_expensive_optimizations
)
3158 /* Pass pc_rtx so no substitutions are done, just
3162 subst_low_luid
= DF_INSN_LUID (i1
);
3163 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3166 subst_low_luid
= DF_INSN_LUID (i2
);
3167 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3170 n_occurrences
= 0; /* `subst' counts here */
3171 subst_low_luid
= DF_INSN_LUID (i2
);
3173 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3174 copy of I2SRC each time we substitute it, in order to avoid creating
3175 self-referential RTL when we will be substituting I1SRC for I1DEST
3176 later. Likewise if I0 feeds into I2, either directly or indirectly
3177 through I1, and I0DEST is in I0SRC. */
3178 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3179 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3180 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3181 && i0dest_in_i0src
));
3184 /* Record whether I2's body now appears within I3's body. */
3185 i2_is_used
= n_occurrences
;
3188 /* If we already got a failure, don't try to do more. Otherwise, try to
3189 substitute I1 if we have it. */
3191 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3193 /* Check that an autoincrement side-effect on I1 has not been lost.
3194 This happens if I1DEST is mentioned in I2 and dies there, and
3195 has disappeared from the new pattern. */
3196 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3198 && dead_or_set_p (i2
, i1dest
)
3199 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3200 /* Before we can do this substitution, we must redo the test done
3201 above (see detailed comments there) that ensures I1DEST isn't
3202 mentioned in any SETs in NEWPAT that are field assignments. */
3203 || !combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3211 subst_low_luid
= DF_INSN_LUID (i1
);
3213 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3214 copy of I1SRC each time we substitute it, in order to avoid creating
3215 self-referential RTL when we will be substituting I0SRC for I0DEST
3217 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3218 i0_feeds_i1_n
&& i0dest_in_i0src
);
3221 /* Record whether I1's body now appears within I3's body. */
3222 i1_is_used
= n_occurrences
;
3225 /* Likewise for I0 if we have it. */
3227 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3229 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3230 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3231 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3232 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3233 || !combinable_i3pat (NULL_RTX
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3240 /* If the following substitution will modify I1SRC, make a copy of it
3241 for the case where it is substituted for I1DEST in I2PAT later. */
3242 if (i0_feeds_i1_n
&& added_sets_2
&& i1_feeds_i2_n
)
3243 i1src_copy
= copy_rtx (i1src
);
3246 subst_low_luid
= DF_INSN_LUID (i0
);
3247 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3251 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3252 to count all the ways that I2SRC and I1SRC can be used. */
3253 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3254 && i2_is_used
+ added_sets_2
> 1)
3255 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3256 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3258 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3259 && (n_occurrences
+ added_sets_0
3260 + (added_sets_1
&& i0_feeds_i1_n
)
3261 + (added_sets_2
&& i0_feeds_i2_n
)
3263 /* Fail if we tried to make a new register. */
3264 || max_reg_num () != maxreg
3265 /* Fail if we couldn't do something and have a CLOBBER. */
3266 || GET_CODE (newpat
) == CLOBBER
3267 /* Fail if this new pattern is a MULT and we didn't have one before
3268 at the outer level. */
3269 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3276 /* If the actions of the earlier insns must be kept
3277 in addition to substituting them into the latest one,
3278 we must make a new PARALLEL for the latest insn
3279 to hold additional the SETs. */
3281 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3283 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3286 if (GET_CODE (newpat
) == PARALLEL
)
3288 rtvec old
= XVEC (newpat
, 0);
3289 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3290 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3291 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3292 sizeof (old
->elem
[0]) * old
->num_elem
);
3297 total_sets
= 1 + extra_sets
;
3298 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3299 XVECEXP (newpat
, 0, 0) = old
;
3303 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3309 t
= subst (t
, i0dest
, i0src
, 0, 0, 0);
3311 XVECEXP (newpat
, 0, --total_sets
) = t
;
3317 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3318 i0_feeds_i1_n
&& i0dest_in_i0src
);
3319 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3320 t
= subst (t
, i0dest
, i0src
, 0, 0, 0);
3322 XVECEXP (newpat
, 0, --total_sets
) = t
;
3326 validate_replacement
:
3328 /* Note which hard regs this insn has as inputs. */
3329 mark_used_regs_combine (newpat
);
3331 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3332 consider splitting this pattern, we might need these clobbers. */
3333 if (i1
&& GET_CODE (newpat
) == PARALLEL
3334 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3336 int len
= XVECLEN (newpat
, 0);
3338 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3339 for (i
= 0; i
< len
; i
++)
3340 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3343 /* Is the result of combination a valid instruction? */
3344 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3346 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3347 the second SET's destination is a register that is unused and isn't
3348 marked as an instruction that might trap in an EH region. In that case,
3349 we just need the first SET. This can occur when simplifying a divmod
3350 insn. We *must* test for this case here because the code below that
3351 splits two independent SETs doesn't handle this case correctly when it
3352 updates the register status.
3354 It's pointless doing this if we originally had two sets, one from
3355 i3, and one from i2. Combining then splitting the parallel results
3356 in the original i2 again plus an invalid insn (which we delete).
3357 The net effect is only to move instructions around, which makes
3358 debug info less accurate.
3360 Also check the case where the first SET's destination is unused.
3361 That would not cause incorrect code, but does cause an unneeded
3364 if (insn_code_number
< 0
3365 && !(added_sets_2
&& i1
== 0)
3366 && GET_CODE (newpat
) == PARALLEL
3367 && XVECLEN (newpat
, 0) == 2
3368 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3369 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3370 && asm_noperands (newpat
) < 0)
3372 rtx set0
= XVECEXP (newpat
, 0, 0);
3373 rtx set1
= XVECEXP (newpat
, 0, 1);
3375 if (((REG_P (SET_DEST (set1
))
3376 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3377 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3378 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3379 && insn_nothrow_p (i3
)
3380 && !side_effects_p (SET_SRC (set1
)))
3383 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3386 else if (((REG_P (SET_DEST (set0
))
3387 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3388 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3389 && find_reg_note (i3
, REG_UNUSED
,
3390 SUBREG_REG (SET_DEST (set0
)))))
3391 && insn_nothrow_p (i3
)
3392 && !side_effects_p (SET_SRC (set0
)))
3395 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3397 if (insn_code_number
>= 0)
3398 changed_i3_dest
= 1;
3402 /* If we were combining three insns and the result is a simple SET
3403 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3404 insns. There are two ways to do this. It can be split using a
3405 machine-specific method (like when you have an addition of a large
3406 constant) or by combine in the function find_split_point. */
3408 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3409 && asm_noperands (newpat
) < 0)
3411 rtx parallel
, m_split
, *split
;
3413 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3414 use I2DEST as a scratch register will help. In the latter case,
3415 convert I2DEST to the mode of the source of NEWPAT if we can. */
3417 m_split
= combine_split_insns (newpat
, i3
);
3419 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3420 inputs of NEWPAT. */
3422 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3423 possible to try that as a scratch reg. This would require adding
3424 more code to make it work though. */
3426 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3428 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3430 /* First try to split using the original register as a
3431 scratch register. */
3432 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3433 gen_rtvec (2, newpat
,
3434 gen_rtx_CLOBBER (VOIDmode
,
3436 m_split
= combine_split_insns (parallel
, i3
);
3438 /* If that didn't work, try changing the mode of I2DEST if
3441 && new_mode
!= GET_MODE (i2dest
)
3442 && new_mode
!= VOIDmode
3443 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3445 enum machine_mode old_mode
= GET_MODE (i2dest
);
3448 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3449 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3452 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3453 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3456 parallel
= (gen_rtx_PARALLEL
3458 gen_rtvec (2, newpat
,
3459 gen_rtx_CLOBBER (VOIDmode
,
3461 m_split
= combine_split_insns (parallel
, i3
);
3464 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3468 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3469 buf
= undobuf
.undos
;
3470 undobuf
.undos
= buf
->next
;
3471 buf
->next
= undobuf
.frees
;
3472 undobuf
.frees
= buf
;
3476 i2scratch
= m_split
!= 0;
3479 /* If recog_for_combine has discarded clobbers, try to use them
3480 again for the split. */
3481 if (m_split
== 0 && newpat_vec_with_clobbers
)
3483 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3484 m_split
= combine_split_insns (parallel
, i3
);
3487 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
3489 m_split
= PATTERN (m_split
);
3490 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
3491 if (insn_code_number
>= 0)
3494 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
3495 && (next_nonnote_nondebug_insn (i2
) == i3
3496 || ! use_crosses_set_p (PATTERN (m_split
), DF_INSN_LUID (i2
))))
3499 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
3500 newi2pat
= PATTERN (m_split
);
3502 i3set
= single_set (NEXT_INSN (m_split
));
3503 i2set
= single_set (m_split
);
3505 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3507 /* If I2 or I3 has multiple SETs, we won't know how to track
3508 register status, so don't use these insns. If I2's destination
3509 is used between I2 and I3, we also can't use these insns. */
3511 if (i2_code_number
>= 0 && i2set
&& i3set
3512 && (next_nonnote_nondebug_insn (i2
) == i3
3513 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3514 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3516 if (insn_code_number
>= 0)
3519 /* It is possible that both insns now set the destination of I3.
3520 If so, we must show an extra use of it. */
3522 if (insn_code_number
>= 0)
3524 rtx new_i3_dest
= SET_DEST (i3set
);
3525 rtx new_i2_dest
= SET_DEST (i2set
);
3527 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3528 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3529 || GET_CODE (new_i3_dest
) == SUBREG
)
3530 new_i3_dest
= XEXP (new_i3_dest
, 0);
3532 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3533 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3534 || GET_CODE (new_i2_dest
) == SUBREG
)
3535 new_i2_dest
= XEXP (new_i2_dest
, 0);
3537 if (REG_P (new_i3_dest
)
3538 && REG_P (new_i2_dest
)
3539 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
3540 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3544 /* If we can split it and use I2DEST, go ahead and see if that
3545 helps things be recognized. Verify that none of the registers
3546 are set between I2 and I3. */
3547 if (insn_code_number
< 0
3548 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3552 /* We need I2DEST in the proper mode. If it is a hard register
3553 or the only use of a pseudo, we can change its mode.
3554 Make sure we don't change a hard register to have a mode that
3555 isn't valid for it, or change the number of registers. */
3556 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3557 || GET_MODE (*split
) == VOIDmode
3558 || can_change_dest_mode (i2dest
, added_sets_2
,
3560 && (next_nonnote_nondebug_insn (i2
) == i3
3561 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3562 /* We can't overwrite I2DEST if its value is still used by
3564 && ! reg_referenced_p (i2dest
, newpat
))
3566 rtx newdest
= i2dest
;
3567 enum rtx_code split_code
= GET_CODE (*split
);
3568 enum machine_mode split_mode
= GET_MODE (*split
);
3569 bool subst_done
= false;
3570 newi2pat
= NULL_RTX
;
3574 /* *SPLIT may be part of I2SRC, so make sure we have the
3575 original expression around for later debug processing.
3576 We should not need I2SRC any more in other cases. */
3577 if (MAY_HAVE_DEBUG_INSNS
)
3578 i2src
= copy_rtx (i2src
);
3582 /* Get NEWDEST as a register in the proper mode. We have already
3583 validated that we can do this. */
3584 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3586 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3587 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3590 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3591 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3595 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3596 an ASHIFT. This can occur if it was inside a PLUS and hence
3597 appeared to be a memory address. This is a kludge. */
3598 if (split_code
== MULT
3599 && CONST_INT_P (XEXP (*split
, 1))
3600 && INTVAL (XEXP (*split
, 1)) > 0
3601 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3603 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3604 XEXP (*split
, 0), GEN_INT (i
)));
3605 /* Update split_code because we may not have a multiply
3607 split_code
= GET_CODE (*split
);
3610 #ifdef INSN_SCHEDULING
3611 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3612 be written as a ZERO_EXTEND. */
3613 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3615 #ifdef LOAD_EXTEND_OP
3616 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3617 what it really is. */
3618 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
3620 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3621 SUBREG_REG (*split
)));
3624 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3625 SUBREG_REG (*split
)));
3629 /* Attempt to split binary operators using arithmetic identities. */
3630 if (BINARY_P (SET_SRC (newpat
))
3631 && split_mode
== GET_MODE (SET_SRC (newpat
))
3632 && ! side_effects_p (SET_SRC (newpat
)))
3634 rtx setsrc
= SET_SRC (newpat
);
3635 enum machine_mode mode
= GET_MODE (setsrc
);
3636 enum rtx_code code
= GET_CODE (setsrc
);
3637 rtx src_op0
= XEXP (setsrc
, 0);
3638 rtx src_op1
= XEXP (setsrc
, 1);
3640 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3641 if (rtx_equal_p (src_op0
, src_op1
))
3643 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
3644 SUBST (XEXP (setsrc
, 0), newdest
);
3645 SUBST (XEXP (setsrc
, 1), newdest
);
3648 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3649 else if ((code
== PLUS
|| code
== MULT
)
3650 && GET_CODE (src_op0
) == code
3651 && GET_CODE (XEXP (src_op0
, 0)) == code
3652 && (INTEGRAL_MODE_P (mode
)
3653 || (FLOAT_MODE_P (mode
)
3654 && flag_unsafe_math_optimizations
)))
3656 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3657 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3658 rtx r
= XEXP (src_op0
, 1);
3661 /* Split both "((X op Y) op X) op Y" and
3662 "((X op Y) op Y) op X" as "T op T" where T is
3664 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3665 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3667 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
3669 SUBST (XEXP (setsrc
, 0), newdest
);
3670 SUBST (XEXP (setsrc
, 1), newdest
);
3673 /* Split "((X op X) op Y) op Y)" as "T op T" where
3675 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3677 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3678 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
3679 SUBST (XEXP (setsrc
, 0), newdest
);
3680 SUBST (XEXP (setsrc
, 1), newdest
);
3688 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
3689 SUBST (*split
, newdest
);
3692 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3694 /* recog_for_combine might have added CLOBBERs to newi2pat.
3695 Make sure NEWPAT does not depend on the clobbered regs. */
3696 if (GET_CODE (newi2pat
) == PARALLEL
)
3697 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3698 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3700 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3701 if (reg_overlap_mentioned_p (reg
, newpat
))
3708 /* If the split point was a MULT and we didn't have one before,
3709 don't use one now. */
3710 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3711 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3715 /* Check for a case where we loaded from memory in a narrow mode and
3716 then sign extended it, but we need both registers. In that case,
3717 we have a PARALLEL with both loads from the same memory location.
3718 We can split this into a load from memory followed by a register-register
3719 copy. This saves at least one insn, more if register allocation can
3722 We cannot do this if the destination of the first assignment is a
3723 condition code register or cc0. We eliminate this case by making sure
3724 the SET_DEST and SET_SRC have the same mode.
3726 We cannot do this if the destination of the second assignment is
3727 a register that we have already assumed is zero-extended. Similarly
3728 for a SUBREG of such a register. */
3730 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3731 && GET_CODE (newpat
) == PARALLEL
3732 && XVECLEN (newpat
, 0) == 2
3733 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3734 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3735 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3736 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3737 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3738 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3739 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3740 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3742 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3743 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3744 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3746 && VEC_index (reg_stat_type
, reg_stat
,
3747 REGNO (temp
))->nonzero_bits
!= 0
3748 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3749 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3750 && (VEC_index (reg_stat_type
, reg_stat
,
3751 REGNO (temp
))->nonzero_bits
3752 != GET_MODE_MASK (word_mode
))))
3753 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3754 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3756 && VEC_index (reg_stat_type
, reg_stat
,
3757 REGNO (temp
))->nonzero_bits
!= 0
3758 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3759 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3760 && (VEC_index (reg_stat_type
, reg_stat
,
3761 REGNO (temp
))->nonzero_bits
3762 != GET_MODE_MASK (word_mode
)))))
3763 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3764 SET_SRC (XVECEXP (newpat
, 0, 1)))
3765 && ! find_reg_note (i3
, REG_UNUSED
,
3766 SET_DEST (XVECEXP (newpat
, 0, 0))))
3770 newi2pat
= XVECEXP (newpat
, 0, 0);
3771 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3772 newpat
= XVECEXP (newpat
, 0, 1);
3773 SUBST (SET_SRC (newpat
),
3774 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3775 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3777 if (i2_code_number
>= 0)
3778 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3780 if (insn_code_number
>= 0)
3784 /* Similarly, check for a case where we have a PARALLEL of two independent
3785 SETs but we started with three insns. In this case, we can do the sets
3786 as two separate insns. This case occurs when some SET allows two
3787 other insns to combine, but the destination of that SET is still live. */
3789 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3790 && GET_CODE (newpat
) == PARALLEL
3791 && XVECLEN (newpat
, 0) == 2
3792 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3793 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3794 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3795 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3796 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3797 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3798 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3799 XVECEXP (newpat
, 0, 0))
3800 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3801 XVECEXP (newpat
, 0, 1))
3802 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3803 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3805 /* Normally, it doesn't matter which of the two is done first,
3806 but the one that references cc0 can't be the second, and
3807 one which uses any regs/memory set in between i2 and i3 can't
3809 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3812 && !reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0))
3816 newi2pat
= XVECEXP (newpat
, 0, 1);
3817 newpat
= XVECEXP (newpat
, 0, 0);
3819 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 0)),
3822 && !reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 1))
3826 newi2pat
= XVECEXP (newpat
, 0, 0);
3827 newpat
= XVECEXP (newpat
, 0, 1);
3835 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3837 if (i2_code_number
>= 0)
3839 /* recog_for_combine might have added CLOBBERs to newi2pat.
3840 Make sure NEWPAT does not depend on the clobbered regs. */
3841 if (GET_CODE (newi2pat
) == PARALLEL
)
3843 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3844 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3846 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3847 if (reg_overlap_mentioned_p (reg
, newpat
))
3855 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3859 /* If it still isn't recognized, fail and change things back the way they
3861 if ((insn_code_number
< 0
3862 /* Is the result a reasonable ASM_OPERANDS? */
3863 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
3869 /* If we had to change another insn, make sure it is valid also. */
3870 if (undobuf
.other_insn
)
3872 CLEAR_HARD_REG_SET (newpat_used_regs
);
3874 other_pat
= PATTERN (undobuf
.other_insn
);
3875 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
3878 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
3886 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3887 they are adjacent to each other or not. */
3889 rtx p
= prev_nonnote_insn (i3
);
3890 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3891 && sets_cc0_p (newi2pat
))
3899 /* Only allow this combination if insn_rtx_costs reports that the
3900 replacement instructions are cheaper than the originals. */
3901 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
3907 if (MAY_HAVE_DEBUG_INSNS
)
3911 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
3912 if (undo
->kind
== UNDO_MODE
)
3914 rtx reg
= *undo
->where
.r
;
3915 enum machine_mode new_mode
= GET_MODE (reg
);
3916 enum machine_mode old_mode
= undo
->old_contents
.m
;
3918 /* Temporarily revert mode back. */
3919 adjust_reg_mode (reg
, old_mode
);
3921 if (reg
== i2dest
&& i2scratch
)
3923 /* If we used i2dest as a scratch register with a
3924 different mode, substitute it for the original
3925 i2src while its original mode is temporarily
3926 restored, and then clear i2scratch so that we don't
3927 do it again later. */
3928 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
);
3930 /* Put back the new mode. */
3931 adjust_reg_mode (reg
, new_mode
);
3935 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
3941 last
= last_combined_insn
;
3946 last
= undobuf
.other_insn
;
3948 if (DF_INSN_LUID (last
)
3949 < DF_INSN_LUID (last_combined_insn
))
3950 last
= last_combined_insn
;
3953 /* We're dealing with a reg that changed mode but not
3954 meaning, so we want to turn it into a subreg for
3955 the new mode. However, because of REG sharing and
3956 because its mode had already changed, we have to do
3957 it in two steps. First, replace any debug uses of
3958 reg, with its original mode temporarily restored,
3959 with this copy we have created; then, replace the
3960 copy with the SUBREG of the original shared reg,
3961 once again changed to the new mode. */
3962 propagate_for_debug (first
, last
, reg
, tempreg
);
3963 adjust_reg_mode (reg
, new_mode
);
3964 propagate_for_debug (first
, last
, tempreg
,
3965 lowpart_subreg (old_mode
, reg
, new_mode
));
3970 /* If we will be able to accept this, we have made a
3971 change to the destination of I3. This requires us to
3972 do a few adjustments. */
3974 if (changed_i3_dest
)
3976 PATTERN (i3
) = newpat
;
3977 adjust_for_new_dest (i3
);
3980 /* We now know that we can do this combination. Merge the insns and
3981 update the status of registers and LOG_LINKS. */
3983 if (undobuf
.other_insn
)
3987 PATTERN (undobuf
.other_insn
) = other_pat
;
3989 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3990 are still valid. Then add any non-duplicate notes added by
3991 recog_for_combine. */
3992 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
3994 next
= XEXP (note
, 1);
3996 if (REG_NOTE_KIND (note
) == REG_UNUSED
3997 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
3998 remove_note (undobuf
.other_insn
, note
);
4001 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4002 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4009 struct insn_link
*link
;
4012 /* I3 now uses what used to be its destination and which is now
4013 I2's destination. This requires us to do a few adjustments. */
4014 PATTERN (i3
) = newpat
;
4015 adjust_for_new_dest (i3
);
4017 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4020 However, some later insn might be using I2's dest and have
4021 a LOG_LINK pointing at I3. We must remove this link.
4022 The simplest way to remove the link is to point it at I1,
4023 which we know will be a NOTE. */
4025 /* newi2pat is usually a SET here; however, recog_for_combine might
4026 have added some clobbers. */
4027 if (GET_CODE (newi2pat
) == PARALLEL
)
4028 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
4030 ni2dest
= SET_DEST (newi2pat
);
4032 for (insn
= NEXT_INSN (i3
);
4033 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
4034 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
4035 insn
= NEXT_INSN (insn
))
4037 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
4039 FOR_EACH_LOG_LINK (link
, insn
)
4040 if (link
->insn
== i3
)
4049 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4050 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4053 /* Compute which registers we expect to eliminate. newi2pat may be setting
4054 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4055 same as i3dest, in which case newi2pat may be setting i1dest. */
4056 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4057 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4060 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4061 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4064 rtx elim_i0
= (i0
== 0 || i0dest_in_i0src
4065 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4069 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4071 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4072 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4074 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4076 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4078 /* Ensure that we do not have something that should not be shared but
4079 occurs multiple times in the new insns. Check this by first
4080 resetting all the `used' flags and then copying anything is shared. */
4082 reset_used_flags (i3notes
);
4083 reset_used_flags (i2notes
);
4084 reset_used_flags (i1notes
);
4085 reset_used_flags (i0notes
);
4086 reset_used_flags (newpat
);
4087 reset_used_flags (newi2pat
);
4088 if (undobuf
.other_insn
)
4089 reset_used_flags (PATTERN (undobuf
.other_insn
));
4091 i3notes
= copy_rtx_if_shared (i3notes
);
4092 i2notes
= copy_rtx_if_shared (i2notes
);
4093 i1notes
= copy_rtx_if_shared (i1notes
);
4094 i0notes
= copy_rtx_if_shared (i0notes
);
4095 newpat
= copy_rtx_if_shared (newpat
);
4096 newi2pat
= copy_rtx_if_shared (newi2pat
);
4097 if (undobuf
.other_insn
)
4098 reset_used_flags (PATTERN (undobuf
.other_insn
));
4100 INSN_CODE (i3
) = insn_code_number
;
4101 PATTERN (i3
) = newpat
;
4103 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4105 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4107 reset_used_flags (call_usage
);
4108 call_usage
= copy_rtx (call_usage
);
4112 /* I2SRC must still be meaningful at this point. Some splitting
4113 operations can invalidate I2SRC, but those operations do not
4116 replace_rtx (call_usage
, i2dest
, i2src
);
4120 replace_rtx (call_usage
, i1dest
, i1src
);
4122 replace_rtx (call_usage
, i0dest
, i0src
);
4124 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4127 if (undobuf
.other_insn
)
4128 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4130 /* We had one special case above where I2 had more than one set and
4131 we replaced a destination of one of those sets with the destination
4132 of I3. In that case, we have to update LOG_LINKS of insns later
4133 in this basic block. Note that this (expensive) case is rare.
4135 Also, in this case, we must pretend that all REG_NOTEs for I2
4136 actually came from I3, so that REG_UNUSED notes from I2 will be
4137 properly handled. */
4139 if (i3_subst_into_i2
)
4141 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4142 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4143 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4144 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4145 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4146 && ! find_reg_note (i2
, REG_UNUSED
,
4147 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4148 for (temp
= NEXT_INSN (i2
);
4149 temp
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
4150 || BB_HEAD (this_basic_block
) != temp
);
4151 temp
= NEXT_INSN (temp
))
4152 if (temp
!= i3
&& INSN_P (temp
))
4153 FOR_EACH_LOG_LINK (link
, temp
)
4154 if (link
->insn
== i2
)
4160 while (XEXP (link
, 1))
4161 link
= XEXP (link
, 1);
4162 XEXP (link
, 1) = i2notes
;
4169 LOG_LINKS (i3
) = NULL
;
4171 LOG_LINKS (i2
) = NULL
;
4176 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4177 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
);
4178 INSN_CODE (i2
) = i2_code_number
;
4179 PATTERN (i2
) = newi2pat
;
4183 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4184 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
);
4185 SET_INSN_DELETED (i2
);
4190 LOG_LINKS (i1
) = NULL
;
4192 if (MAY_HAVE_DEBUG_INSNS
)
4193 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
);
4194 SET_INSN_DELETED (i1
);
4199 LOG_LINKS (i0
) = NULL
;
4201 if (MAY_HAVE_DEBUG_INSNS
)
4202 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
);
4203 SET_INSN_DELETED (i0
);
4206 /* Get death notes for everything that is now used in either I3 or
4207 I2 and used to die in a previous insn. If we built two new
4208 patterns, move from I1 to I2 then I2 to I3 so that we get the
4209 proper movement on registers that I2 modifies. */
4212 from_luid
= DF_INSN_LUID (i0
);
4214 from_luid
= DF_INSN_LUID (i1
);
4216 from_luid
= DF_INSN_LUID (i2
);
4218 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4219 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4221 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4223 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
4224 elim_i2
, elim_i1
, elim_i0
);
4226 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
4227 elim_i2
, elim_i1
, elim_i0
);
4229 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
4230 elim_i2
, elim_i1
, elim_i0
);
4232 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL_RTX
,
4233 elim_i2
, elim_i1
, elim_i0
);
4235 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4236 elim_i2
, elim_i1
, elim_i0
);
4238 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4239 know these are REG_UNUSED and want them to go to the desired insn,
4240 so we always pass it as i3. */
4242 if (newi2pat
&& new_i2_notes
)
4243 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4247 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4250 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4251 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4252 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4253 in that case, it might delete I2. Similarly for I2 and I1.
4254 Show an additional death due to the REG_DEAD note we make here. If
4255 we discard it in distribute_notes, we will decrement it again. */
4259 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4260 distribute_notes (alloc_reg_note (REG_DEAD
, i3dest_killed
,
4262 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
, elim_i0
);
4264 distribute_notes (alloc_reg_note (REG_DEAD
, i3dest_killed
,
4266 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4267 elim_i2
, elim_i1
, elim_i0
);
4270 if (i2dest_in_i2src
)
4272 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4273 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4274 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4275 NULL_RTX
, NULL_RTX
);
4277 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4278 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4281 if (i1dest_in_i1src
)
4283 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4284 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4285 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4286 NULL_RTX
, NULL_RTX
);
4288 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4289 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4292 if (i0dest_in_i0src
)
4294 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4295 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4296 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4297 NULL_RTX
, NULL_RTX
);
4299 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4300 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4303 distribute_links (i3links
);
4304 distribute_links (i2links
);
4305 distribute_links (i1links
);
4306 distribute_links (i0links
);
4310 struct insn_link
*link
;
4311 rtx i2_insn
= 0, i2_val
= 0, set
;
4313 /* The insn that used to set this register doesn't exist, and
4314 this life of the register may not exist either. See if one of
4315 I3's links points to an insn that sets I2DEST. If it does,
4316 that is now the last known value for I2DEST. If we don't update
4317 this and I2 set the register to a value that depended on its old
4318 contents, we will get confused. If this insn is used, thing
4319 will be set correctly in combine_instructions. */
4320 FOR_EACH_LOG_LINK (link
, i3
)
4321 if ((set
= single_set (link
->insn
)) != 0
4322 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4323 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4325 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4327 /* If the reg formerly set in I2 died only once and that was in I3,
4328 zero its use count so it won't make `reload' do any work. */
4330 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4331 && ! i2dest_in_i2src
)
4332 INC_REG_N_SETS (REGNO (i2dest
), -1);
4335 if (i1
&& REG_P (i1dest
))
4337 struct insn_link
*link
;
4338 rtx i1_insn
= 0, i1_val
= 0, set
;
4340 FOR_EACH_LOG_LINK (link
, i3
)
4341 if ((set
= single_set (link
->insn
)) != 0
4342 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4343 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4345 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4347 if (! added_sets_1
&& ! i1dest_in_i1src
)
4348 INC_REG_N_SETS (REGNO (i1dest
), -1);
4351 if (i0
&& REG_P (i0dest
))
4353 struct insn_link
*link
;
4354 rtx i0_insn
= 0, i0_val
= 0, set
;
4356 FOR_EACH_LOG_LINK (link
, i3
)
4357 if ((set
= single_set (link
->insn
)) != 0
4358 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4359 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4361 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4363 if (! added_sets_0
&& ! i0dest_in_i0src
)
4364 INC_REG_N_SETS (REGNO (i0dest
), -1);
4367 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4368 been made to this insn. The order of
4369 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4370 can affect nonzero_bits of newpat */
4372 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4373 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4376 if (undobuf
.other_insn
!= NULL_RTX
)
4380 fprintf (dump_file
, "modifying other_insn ");
4381 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4383 df_insn_rescan (undobuf
.other_insn
);
4386 if (i0
&& !(NOTE_P(i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4390 fprintf (dump_file
, "modifying insn i1 ");
4391 dump_insn_slim (dump_file
, i0
);
4393 df_insn_rescan (i0
);
4396 if (i1
&& !(NOTE_P(i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4400 fprintf (dump_file
, "modifying insn i1 ");
4401 dump_insn_slim (dump_file
, i1
);
4403 df_insn_rescan (i1
);
4406 if (i2
&& !(NOTE_P(i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4410 fprintf (dump_file
, "modifying insn i2 ");
4411 dump_insn_slim (dump_file
, i2
);
4413 df_insn_rescan (i2
);
4416 if (i3
&& !(NOTE_P(i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4420 fprintf (dump_file
, "modifying insn i3 ");
4421 dump_insn_slim (dump_file
, i3
);
4423 df_insn_rescan (i3
);
4426 /* Set new_direct_jump_p if a new return or simple jump instruction
4427 has been created. Adjust the CFG accordingly. */
4429 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4431 *new_direct_jump_p
= 1;
4432 mark_jump_label (PATTERN (i3
), i3
, 0);
4433 update_cfg_for_uncondjump (i3
);
4436 if (undobuf
.other_insn
!= NULL_RTX
4437 && (returnjump_p (undobuf
.other_insn
)
4438 || any_uncondjump_p (undobuf
.other_insn
)))
4440 *new_direct_jump_p
= 1;
4441 update_cfg_for_uncondjump (undobuf
.other_insn
);
4444 /* A noop might also need cleaning up of CFG, if it comes from the
4445 simplification of a jump. */
4447 && GET_CODE (newpat
) == SET
4448 && SET_SRC (newpat
) == pc_rtx
4449 && SET_DEST (newpat
) == pc_rtx
)
4451 *new_direct_jump_p
= 1;
4452 update_cfg_for_uncondjump (i3
);
4455 if (undobuf
.other_insn
!= NULL_RTX
4456 && JUMP_P (undobuf
.other_insn
)
4457 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4458 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4459 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4461 *new_direct_jump_p
= 1;
4462 update_cfg_for_uncondjump (undobuf
.other_insn
);
4465 combine_successes
++;
4468 if (added_links_insn
4469 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4470 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4471 return added_links_insn
;
4473 return newi2pat
? i2
: i3
;
4476 /* Undo all the modifications recorded in undobuf. */
4481 struct undo
*undo
, *next
;
4483 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4489 *undo
->where
.r
= undo
->old_contents
.r
;
4492 *undo
->where
.i
= undo
->old_contents
.i
;
4495 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4501 undo
->next
= undobuf
.frees
;
4502 undobuf
.frees
= undo
;
4508 /* We've committed to accepting the changes we made. Move all
4509 of the undos to the free list. */
4514 struct undo
*undo
, *next
;
4516 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4519 undo
->next
= undobuf
.frees
;
4520 undobuf
.frees
= undo
;
4525 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4526 where we have an arithmetic expression and return that point. LOC will
4529 try_combine will call this function to see if an insn can be split into
4533 find_split_point (rtx
*loc
, rtx insn
, bool set_src
)
4536 enum rtx_code code
= GET_CODE (x
);
4538 unsigned HOST_WIDE_INT len
= 0;
4539 HOST_WIDE_INT pos
= 0;
4541 rtx inner
= NULL_RTX
;
4543 /* First special-case some codes. */
4547 #ifdef INSN_SCHEDULING
4548 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4550 if (MEM_P (SUBREG_REG (x
)))
4553 return find_split_point (&SUBREG_REG (x
), insn
, false);
4557 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4558 using LO_SUM and HIGH. */
4559 if (GET_CODE (XEXP (x
, 0)) == CONST
4560 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
4562 enum machine_mode address_mode
4563 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (x
));
4566 gen_rtx_LO_SUM (address_mode
,
4567 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4569 return &XEXP (XEXP (x
, 0), 0);
4573 /* If we have a PLUS whose second operand is a constant and the
4574 address is not valid, perhaps will can split it up using
4575 the machine-specific way to split large constants. We use
4576 the first pseudo-reg (one of the virtual regs) as a placeholder;
4577 it will not remain in the result. */
4578 if (GET_CODE (XEXP (x
, 0)) == PLUS
4579 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4580 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4581 MEM_ADDR_SPACE (x
)))
4583 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4584 rtx seq
= combine_split_insns (gen_rtx_SET (VOIDmode
, reg
,
4588 /* This should have produced two insns, each of which sets our
4589 placeholder. If the source of the second is a valid address,
4590 we can make put both sources together and make a split point
4594 && NEXT_INSN (seq
) != NULL_RTX
4595 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4596 && NONJUMP_INSN_P (seq
)
4597 && GET_CODE (PATTERN (seq
)) == SET
4598 && SET_DEST (PATTERN (seq
)) == reg
4599 && ! reg_mentioned_p (reg
,
4600 SET_SRC (PATTERN (seq
)))
4601 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4602 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4603 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4604 && memory_address_addr_space_p
4605 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4606 MEM_ADDR_SPACE (x
)))
4608 rtx src1
= SET_SRC (PATTERN (seq
));
4609 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4611 /* Replace the placeholder in SRC2 with SRC1. If we can
4612 find where in SRC2 it was placed, that can become our
4613 split point and we can replace this address with SRC2.
4614 Just try two obvious places. */
4616 src2
= replace_rtx (src2
, reg
, src1
);
4618 if (XEXP (src2
, 0) == src1
)
4619 split
= &XEXP (src2
, 0);
4620 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4621 && XEXP (XEXP (src2
, 0), 0) == src1
)
4622 split
= &XEXP (XEXP (src2
, 0), 0);
4626 SUBST (XEXP (x
, 0), src2
);
4631 /* If that didn't work, perhaps the first operand is complex and
4632 needs to be computed separately, so make a split point there.
4633 This will occur on machines that just support REG + CONST
4634 and have a constant moved through some previous computation. */
4636 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4637 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4638 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4639 return &XEXP (XEXP (x
, 0), 0);
4642 /* If we have a PLUS whose first operand is complex, try computing it
4643 separately by making a split there. */
4644 if (GET_CODE (XEXP (x
, 0)) == PLUS
4645 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4647 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4648 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4649 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4650 return &XEXP (XEXP (x
, 0), 0);
4655 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4656 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4657 we need to put the operand into a register. So split at that
4660 if (SET_DEST (x
) == cc0_rtx
4661 && GET_CODE (SET_SRC (x
)) != COMPARE
4662 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4663 && !OBJECT_P (SET_SRC (x
))
4664 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4665 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4666 return &SET_SRC (x
);
4669 /* See if we can split SET_SRC as it stands. */
4670 split
= find_split_point (&SET_SRC (x
), insn
, true);
4671 if (split
&& split
!= &SET_SRC (x
))
4674 /* See if we can split SET_DEST as it stands. */
4675 split
= find_split_point (&SET_DEST (x
), insn
, false);
4676 if (split
&& split
!= &SET_DEST (x
))
4679 /* See if this is a bitfield assignment with everything constant. If
4680 so, this is an IOR of an AND, so split it into that. */
4681 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4682 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4683 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4684 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4685 && CONST_INT_P (SET_SRC (x
))
4686 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4687 + INTVAL (XEXP (SET_DEST (x
), 2)))
4688 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4689 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4691 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4692 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4693 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4694 rtx dest
= XEXP (SET_DEST (x
), 0);
4695 enum machine_mode mode
= GET_MODE (dest
);
4696 unsigned HOST_WIDE_INT mask
4697 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4700 if (BITS_BIG_ENDIAN
)
4701 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4703 or_mask
= gen_int_mode (src
<< pos
, mode
);
4706 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4709 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4711 simplify_gen_binary (IOR
, mode
,
4712 simplify_gen_binary (AND
, mode
,
4717 SUBST (SET_DEST (x
), dest
);
4719 split
= find_split_point (&SET_SRC (x
), insn
, true);
4720 if (split
&& split
!= &SET_SRC (x
))
4724 /* Otherwise, see if this is an operation that we can split into two.
4725 If so, try to split that. */
4726 code
= GET_CODE (SET_SRC (x
));
4731 /* If we are AND'ing with a large constant that is only a single
4732 bit and the result is only being used in a context where we
4733 need to know if it is zero or nonzero, replace it with a bit
4734 extraction. This will avoid the large constant, which might
4735 have taken more than one insn to make. If the constant were
4736 not a valid argument to the AND but took only one insn to make,
4737 this is no worse, but if it took more than one insn, it will
4740 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4741 && REG_P (XEXP (SET_SRC (x
), 0))
4742 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4743 && REG_P (SET_DEST (x
))
4744 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
4745 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4746 && XEXP (*split
, 0) == SET_DEST (x
)
4747 && XEXP (*split
, 1) == const0_rtx
)
4749 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4750 XEXP (SET_SRC (x
), 0),
4751 pos
, NULL_RTX
, 1, 1, 0, 0);
4752 if (extraction
!= 0)
4754 SUBST (SET_SRC (x
), extraction
);
4755 return find_split_point (loc
, insn
, false);
4761 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4762 is known to be on, this can be converted into a NEG of a shift. */
4763 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
4764 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
4765 && 1 <= (pos
= exact_log2
4766 (nonzero_bits (XEXP (SET_SRC (x
), 0),
4767 GET_MODE (XEXP (SET_SRC (x
), 0))))))
4769 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
4773 gen_rtx_LSHIFTRT (mode
,
4774 XEXP (SET_SRC (x
), 0),
4777 split
= find_split_point (&SET_SRC (x
), insn
, true);
4778 if (split
&& split
!= &SET_SRC (x
))
4784 inner
= XEXP (SET_SRC (x
), 0);
4786 /* We can't optimize if either mode is a partial integer
4787 mode as we don't know how many bits are significant
4789 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
4790 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
4794 len
= GET_MODE_PRECISION (GET_MODE (inner
));
4800 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4801 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
4803 inner
= XEXP (SET_SRC (x
), 0);
4804 len
= INTVAL (XEXP (SET_SRC (x
), 1));
4805 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
4807 if (BITS_BIG_ENDIAN
)
4808 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
4809 unsignedp
= (code
== ZERO_EXTRACT
);
4818 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
4820 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
4822 /* For unsigned, we have a choice of a shift followed by an
4823 AND or two shifts. Use two shifts for field sizes where the
4824 constant might be too large. We assume here that we can
4825 always at least get 8-bit constants in an AND insn, which is
4826 true for every current RISC. */
4828 if (unsignedp
&& len
<= 8)
4833 (mode
, gen_lowpart (mode
, inner
),
4835 GEN_INT (((unsigned HOST_WIDE_INT
) 1 << len
)
4838 split
= find_split_point (&SET_SRC (x
), insn
, true);
4839 if (split
&& split
!= &SET_SRC (x
))
4846 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
4847 gen_rtx_ASHIFT (mode
,
4848 gen_lowpart (mode
, inner
),
4849 GEN_INT (GET_MODE_PRECISION (mode
)
4851 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
4853 split
= find_split_point (&SET_SRC (x
), insn
, true);
4854 if (split
&& split
!= &SET_SRC (x
))
4859 /* See if this is a simple operation with a constant as the second
4860 operand. It might be that this constant is out of range and hence
4861 could be used as a split point. */
4862 if (BINARY_P (SET_SRC (x
))
4863 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
4864 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
4865 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
4866 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
4867 return &XEXP (SET_SRC (x
), 1);
4869 /* Finally, see if this is a simple operation with its first operand
4870 not in a register. The operation might require this operand in a
4871 register, so return it as a split point. We can always do this
4872 because if the first operand were another operation, we would have
4873 already found it as a split point. */
4874 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
4875 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
4876 return &XEXP (SET_SRC (x
), 0);
4882 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4883 it is better to write this as (not (ior A B)) so we can split it.
4884 Similarly for IOR. */
4885 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
4888 gen_rtx_NOT (GET_MODE (x
),
4889 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
4891 XEXP (XEXP (x
, 0), 0),
4892 XEXP (XEXP (x
, 1), 0))));
4893 return find_split_point (loc
, insn
, set_src
);
4896 /* Many RISC machines have a large set of logical insns. If the
4897 second operand is a NOT, put it first so we will try to split the
4898 other operand first. */
4899 if (GET_CODE (XEXP (x
, 1)) == NOT
)
4901 rtx tem
= XEXP (x
, 0);
4902 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4903 SUBST (XEXP (x
, 1), tem
);
4909 /* Canonicalization can produce (minus A (mult B C)), where C is a
4910 constant. It may be better to try splitting (plus (mult B -C) A)
4911 instead if this isn't a multiply by a power of two. */
4912 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
4913 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4914 && exact_log2 (INTVAL (XEXP (XEXP (x
, 1), 1))) < 0)
4916 enum machine_mode mode
= GET_MODE (x
);
4917 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
4918 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
4919 SUBST (*loc
, gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
4920 XEXP (XEXP (x
, 1), 0),
4921 GEN_INT (other_int
)),
4923 return find_split_point (loc
, insn
, set_src
);
4926 /* Split at a multiply-accumulate instruction. However if this is
4927 the SET_SRC, we likely do not have such an instruction and it's
4928 worthless to try this split. */
4929 if (!set_src
&& GET_CODE (XEXP (x
, 0)) == MULT
)
4936 /* Otherwise, select our actions depending on our rtx class. */
4937 switch (GET_RTX_CLASS (code
))
4939 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4941 split
= find_split_point (&XEXP (x
, 2), insn
, false);
4944 /* ... fall through ... */
4946 case RTX_COMM_ARITH
:
4948 case RTX_COMM_COMPARE
:
4949 split
= find_split_point (&XEXP (x
, 1), insn
, false);
4952 /* ... fall through ... */
4954 /* Some machines have (and (shift ...) ...) insns. If X is not
4955 an AND, but XEXP (X, 0) is, use it as our split point. */
4956 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
4957 return &XEXP (x
, 0);
4959 split
= find_split_point (&XEXP (x
, 0), insn
, false);
4965 /* Otherwise, we don't have a split point. */
4970 /* Throughout X, replace FROM with TO, and return the result.
4971 The result is TO if X is FROM;
4972 otherwise the result is X, but its contents may have been modified.
4973 If they were modified, a record was made in undobuf so that
4974 undo_all will (among other things) return X to its original state.
4976 If the number of changes necessary is too much to record to undo,
4977 the excess changes are not made, so the result is invalid.
4978 The changes already made can still be undone.
4979 undobuf.num_undo is incremented for such changes, so by testing that
4980 the caller can tell whether the result is valid.
4982 `n_occurrences' is incremented each time FROM is replaced.
4984 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4986 IN_COND is nonzero if we are at the top level of a condition.
4988 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4989 by copying if `n_occurrences' is nonzero. */
4992 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
4994 enum rtx_code code
= GET_CODE (x
);
4995 enum machine_mode op0_mode
= VOIDmode
;
5000 /* Two expressions are equal if they are identical copies of a shared
5001 RTX or if they are both registers with the same register number
5004 #define COMBINE_RTX_EQUAL_P(X,Y) \
5006 || (REG_P (X) && REG_P (Y) \
5007 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5009 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5012 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5015 /* If X and FROM are the same register but different modes, they
5016 will not have been seen as equal above. However, the log links code
5017 will make a LOG_LINKS entry for that case. If we do nothing, we
5018 will try to rerecognize our original insn and, when it succeeds,
5019 we will delete the feeding insn, which is incorrect.
5021 So force this insn not to match in this (rare) case. */
5022 if (! in_dest
&& code
== REG
&& REG_P (from
)
5023 && reg_overlap_mentioned_p (x
, from
))
5024 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5026 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5027 of which may contain things that can be combined. */
5028 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5031 /* It is possible to have a subexpression appear twice in the insn.
5032 Suppose that FROM is a register that appears within TO.
5033 Then, after that subexpression has been scanned once by `subst',
5034 the second time it is scanned, TO may be found. If we were
5035 to scan TO here, we would find FROM within it and create a
5036 self-referent rtl structure which is completely wrong. */
5037 if (COMBINE_RTX_EQUAL_P (x
, to
))
5040 /* Parallel asm_operands need special attention because all of the
5041 inputs are shared across the arms. Furthermore, unsharing the
5042 rtl results in recognition failures. Failure to handle this case
5043 specially can result in circular rtl.
5045 Solve this by doing a normal pass across the first entry of the
5046 parallel, and only processing the SET_DESTs of the subsequent
5049 if (code
== PARALLEL
5050 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5051 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5053 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5055 /* If this substitution failed, this whole thing fails. */
5056 if (GET_CODE (new_rtx
) == CLOBBER
5057 && XEXP (new_rtx
, 0) == const0_rtx
)
5060 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5062 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5064 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5067 && GET_CODE (dest
) != CC0
5068 && GET_CODE (dest
) != PC
)
5070 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5072 /* If this substitution failed, this whole thing fails. */
5073 if (GET_CODE (new_rtx
) == CLOBBER
5074 && XEXP (new_rtx
, 0) == const0_rtx
)
5077 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5083 len
= GET_RTX_LENGTH (code
);
5084 fmt
= GET_RTX_FORMAT (code
);
5086 /* We don't need to process a SET_DEST that is a register, CC0,
5087 or PC, so set up to skip this common case. All other cases
5088 where we want to suppress replacing something inside a
5089 SET_SRC are handled via the IN_DEST operand. */
5091 && (REG_P (SET_DEST (x
))
5092 || GET_CODE (SET_DEST (x
)) == CC0
5093 || GET_CODE (SET_DEST (x
)) == PC
))
5096 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5099 op0_mode
= GET_MODE (XEXP (x
, 0));
5101 for (i
= 0; i
< len
; i
++)
5106 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5108 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5110 new_rtx
= (unique_copy
&& n_occurrences
5111 ? copy_rtx (to
) : to
);
5116 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5119 /* If this substitution failed, this whole thing
5121 if (GET_CODE (new_rtx
) == CLOBBER
5122 && XEXP (new_rtx
, 0) == const0_rtx
)
5126 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5129 else if (fmt
[i
] == 'e')
5131 /* If this is a register being set, ignore it. */
5132 new_rtx
= XEXP (x
, i
);
5135 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5137 || code
== STRICT_LOW_PART
))
5140 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5142 /* In general, don't install a subreg involving two
5143 modes not tieable. It can worsen register
5144 allocation, and can even make invalid reload
5145 insns, since the reg inside may need to be copied
5146 from in the outside mode, and that may be invalid
5147 if it is an fp reg copied in integer mode.
5149 We allow two exceptions to this: It is valid if
5150 it is inside another SUBREG and the mode of that
5151 SUBREG and the mode of the inside of TO is
5152 tieable and it is valid if X is a SET that copies
5155 if (GET_CODE (to
) == SUBREG
5156 && ! MODES_TIEABLE_P (GET_MODE (to
),
5157 GET_MODE (SUBREG_REG (to
)))
5158 && ! (code
== SUBREG
5159 && MODES_TIEABLE_P (GET_MODE (x
),
5160 GET_MODE (SUBREG_REG (to
))))
5162 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
5165 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5167 #ifdef CANNOT_CHANGE_MODE_CLASS
5170 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5171 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
5174 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5177 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5181 /* If we are in a SET_DEST, suppress most cases unless we
5182 have gone inside a MEM, in which case we want to
5183 simplify the address. We assume here that things that
5184 are actually part of the destination have their inner
5185 parts in the first expression. This is true for SUBREG,
5186 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5187 things aside from REG and MEM that should appear in a
5189 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5191 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5192 || code
== ZERO_EXTRACT
))
5195 code
== IF_THEN_ELSE
&& i
== 0,
5198 /* If we found that we will have to reject this combination,
5199 indicate that by returning the CLOBBER ourselves, rather than
5200 an expression containing it. This will speed things up as
5201 well as prevent accidents where two CLOBBERs are considered
5202 to be equal, thus producing an incorrect simplification. */
5204 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5207 if (GET_CODE (x
) == SUBREG
5208 && (CONST_INT_P (new_rtx
)
5209 || GET_CODE (new_rtx
) == CONST_DOUBLE
))
5211 enum machine_mode mode
= GET_MODE (x
);
5213 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5214 GET_MODE (SUBREG_REG (x
)),
5217 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5219 else if (CONST_INT_P (new_rtx
)
5220 && GET_CODE (x
) == ZERO_EXTEND
)
5222 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5223 new_rtx
, GET_MODE (XEXP (x
, 0)));
5227 SUBST (XEXP (x
, i
), new_rtx
);
5232 /* Check if we are loading something from the constant pool via float
5233 extension; in this case we would undo compress_float_constant
5234 optimization and degenerate constant load to an immediate value. */
5235 if (GET_CODE (x
) == FLOAT_EXTEND
5236 && MEM_P (XEXP (x
, 0))
5237 && MEM_READONLY_P (XEXP (x
, 0)))
5239 rtx tmp
= avoid_constant_pool_reference (x
);
5244 /* Try to simplify X. If the simplification changed the code, it is likely
5245 that further simplification will help, so loop, but limit the number
5246 of repetitions that will be performed. */
5248 for (i
= 0; i
< 4; i
++)
5250 /* If X is sufficiently simple, don't bother trying to do anything
5252 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5253 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5255 if (GET_CODE (x
) == code
)
5258 code
= GET_CODE (x
);
5260 /* We no longer know the original mode of operand 0 since we
5261 have changed the form of X) */
5262 op0_mode
= VOIDmode
;
5268 /* Simplify X, a piece of RTL. We just operate on the expression at the
5269 outer level; call `subst' to simplify recursively. Return the new
5272 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5273 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5277 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
,
5280 enum rtx_code code
= GET_CODE (x
);
5281 enum machine_mode mode
= GET_MODE (x
);
5285 /* If this is a commutative operation, put a constant last and a complex
5286 expression first. We don't need to do this for comparisons here. */
5287 if (COMMUTATIVE_ARITH_P (x
)
5288 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5291 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5292 SUBST (XEXP (x
, 1), temp
);
5295 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5296 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5297 things. Check for cases where both arms are testing the same
5300 Don't do anything if all operands are very simple. */
5303 && ((!OBJECT_P (XEXP (x
, 0))
5304 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5305 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5306 || (!OBJECT_P (XEXP (x
, 1))
5307 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5308 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5310 && (!OBJECT_P (XEXP (x
, 0))
5311 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5312 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5314 rtx cond
, true_rtx
, false_rtx
;
5316 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5318 /* If everything is a comparison, what we have is highly unlikely
5319 to be simpler, so don't use it. */
5320 && ! (COMPARISON_P (x
)
5321 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5323 rtx cop1
= const0_rtx
;
5324 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5326 if (cond_code
== NE
&& COMPARISON_P (cond
))
5329 /* Simplify the alternative arms; this may collapse the true and
5330 false arms to store-flag values. Be careful to use copy_rtx
5331 here since true_rtx or false_rtx might share RTL with x as a
5332 result of the if_then_else_cond call above. */
5333 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5334 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5336 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5337 is unlikely to be simpler. */
5338 if (general_operand (true_rtx
, VOIDmode
)
5339 && general_operand (false_rtx
, VOIDmode
))
5341 enum rtx_code reversed
;
5343 /* Restarting if we generate a store-flag expression will cause
5344 us to loop. Just drop through in this case. */
5346 /* If the result values are STORE_FLAG_VALUE and zero, we can
5347 just make the comparison operation. */
5348 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5349 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5351 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5352 && ((reversed
= reversed_comparison_code_parts
5353 (cond_code
, cond
, cop1
, NULL
))
5355 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5358 /* Likewise, we can make the negate of a comparison operation
5359 if the result values are - STORE_FLAG_VALUE and zero. */
5360 else if (CONST_INT_P (true_rtx
)
5361 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5362 && false_rtx
== const0_rtx
)
5363 x
= simplify_gen_unary (NEG
, mode
,
5364 simplify_gen_relational (cond_code
,
5368 else if (CONST_INT_P (false_rtx
)
5369 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5370 && true_rtx
== const0_rtx
5371 && ((reversed
= reversed_comparison_code_parts
5372 (cond_code
, cond
, cop1
, NULL
))
5374 x
= simplify_gen_unary (NEG
, mode
,
5375 simplify_gen_relational (reversed
,
5380 return gen_rtx_IF_THEN_ELSE (mode
,
5381 simplify_gen_relational (cond_code
,
5386 true_rtx
, false_rtx
);
5388 code
= GET_CODE (x
);
5389 op0_mode
= VOIDmode
;
5394 /* Try to fold this expression in case we have constants that weren't
5397 switch (GET_RTX_CLASS (code
))
5400 if (op0_mode
== VOIDmode
)
5401 op0_mode
= GET_MODE (XEXP (x
, 0));
5402 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5405 case RTX_COMM_COMPARE
:
5407 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5408 if (cmp_mode
== VOIDmode
)
5410 cmp_mode
= GET_MODE (XEXP (x
, 1));
5411 if (cmp_mode
== VOIDmode
)
5412 cmp_mode
= op0_mode
;
5414 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5415 XEXP (x
, 0), XEXP (x
, 1));
5418 case RTX_COMM_ARITH
:
5420 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5422 case RTX_BITFIELD_OPS
:
5424 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5425 XEXP (x
, 1), XEXP (x
, 2));
5434 code
= GET_CODE (temp
);
5435 op0_mode
= VOIDmode
;
5436 mode
= GET_MODE (temp
);
5439 /* First see if we can apply the inverse distributive law. */
5440 if (code
== PLUS
|| code
== MINUS
5441 || code
== AND
|| code
== IOR
|| code
== XOR
)
5443 x
= apply_distributive_law (x
);
5444 code
= GET_CODE (x
);
5445 op0_mode
= VOIDmode
;
5448 /* If CODE is an associative operation not otherwise handled, see if we
5449 can associate some operands. This can win if they are constants or
5450 if they are logically related (i.e. (a & b) & a). */
5451 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5452 || code
== AND
|| code
== IOR
|| code
== XOR
5453 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5454 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5455 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5457 if (GET_CODE (XEXP (x
, 0)) == code
)
5459 rtx other
= XEXP (XEXP (x
, 0), 0);
5460 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5461 rtx inner_op1
= XEXP (x
, 1);
5464 /* Make sure we pass the constant operand if any as the second
5465 one if this is a commutative operation. */
5466 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5468 rtx tem
= inner_op0
;
5469 inner_op0
= inner_op1
;
5472 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5473 : code
== DIV
? MULT
5475 mode
, inner_op0
, inner_op1
);
5477 /* For commutative operations, try the other pair if that one
5479 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5481 other
= XEXP (XEXP (x
, 0), 1);
5482 inner
= simplify_binary_operation (code
, mode
,
5483 XEXP (XEXP (x
, 0), 0),
5488 return simplify_gen_binary (code
, mode
, other
, inner
);
5492 /* A little bit of algebraic simplification here. */
5496 /* Ensure that our address has any ASHIFTs converted to MULT in case
5497 address-recognizing predicates are called later. */
5498 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5499 SUBST (XEXP (x
, 0), temp
);
5503 if (op0_mode
== VOIDmode
)
5504 op0_mode
= GET_MODE (SUBREG_REG (x
));
5506 /* See if this can be moved to simplify_subreg. */
5507 if (CONSTANT_P (SUBREG_REG (x
))
5508 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5509 /* Don't call gen_lowpart if the inner mode
5510 is VOIDmode and we cannot simplify it, as SUBREG without
5511 inner mode is invalid. */
5512 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5513 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5514 return gen_lowpart (mode
, SUBREG_REG (x
));
5516 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5520 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5526 /* Don't change the mode of the MEM if that would change the meaning
5528 if (MEM_P (SUBREG_REG (x
))
5529 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5530 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0))))
5531 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5533 /* Note that we cannot do any narrowing for non-constants since
5534 we might have been counting on using the fact that some bits were
5535 zero. We now do this in the SET. */
5540 temp
= expand_compound_operation (XEXP (x
, 0));
5542 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5543 replaced by (lshiftrt X C). This will convert
5544 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5546 if (GET_CODE (temp
) == ASHIFTRT
5547 && CONST_INT_P (XEXP (temp
, 1))
5548 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5549 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5550 INTVAL (XEXP (temp
, 1)));
5552 /* If X has only a single bit that might be nonzero, say, bit I, convert
5553 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5554 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5555 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5556 or a SUBREG of one since we'd be making the expression more
5557 complex if it was just a register. */
5560 && ! (GET_CODE (temp
) == SUBREG
5561 && REG_P (SUBREG_REG (temp
)))
5562 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5564 rtx temp1
= simplify_shift_const
5565 (NULL_RTX
, ASHIFTRT
, mode
,
5566 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5567 GET_MODE_PRECISION (mode
) - 1 - i
),
5568 GET_MODE_PRECISION (mode
) - 1 - i
);
5570 /* If all we did was surround TEMP with the two shifts, we
5571 haven't improved anything, so don't use it. Otherwise,
5572 we are better off with TEMP1. */
5573 if (GET_CODE (temp1
) != ASHIFTRT
5574 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5575 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5581 /* We can't handle truncation to a partial integer mode here
5582 because we don't know the real bitsize of the partial
5584 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5587 if (HWI_COMPUTABLE_MODE_P (mode
))
5589 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5590 GET_MODE_MASK (mode
), 0));
5592 /* We can truncate a constant value and return it. */
5593 if (CONST_INT_P (XEXP (x
, 0)))
5594 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5596 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5597 whose value is a comparison can be replaced with a subreg if
5598 STORE_FLAG_VALUE permits. */
5599 if (HWI_COMPUTABLE_MODE_P (mode
)
5600 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5601 && (temp
= get_last_value (XEXP (x
, 0)))
5602 && COMPARISON_P (temp
))
5603 return gen_lowpart (mode
, XEXP (x
, 0));
5607 /* (const (const X)) can become (const X). Do it this way rather than
5608 returning the inner CONST since CONST can be shared with a
5610 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5611 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5616 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5617 can add in an offset. find_split_point will split this address up
5618 again if it doesn't match. */
5619 if (GET_CODE (XEXP (x
, 0)) == HIGH
5620 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5626 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5627 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5628 bit-field and can be replaced by either a sign_extend or a
5629 sign_extract. The `and' may be a zero_extend and the two
5630 <c>, -<c> constants may be reversed. */
5631 if (GET_CODE (XEXP (x
, 0)) == XOR
5632 && CONST_INT_P (XEXP (x
, 1))
5633 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5634 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5635 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5636 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5637 && HWI_COMPUTABLE_MODE_P (mode
)
5638 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5639 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5640 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5641 == ((unsigned HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
5642 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5643 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5644 == (unsigned int) i
+ 1))))
5645 return simplify_shift_const
5646 (NULL_RTX
, ASHIFTRT
, mode
,
5647 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5648 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5649 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5650 GET_MODE_PRECISION (mode
) - (i
+ 1));
5652 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5653 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5654 the bitsize of the mode - 1. This allows simplification of
5655 "a = (b & 8) == 0;" */
5656 if (XEXP (x
, 1) == constm1_rtx
5657 && !REG_P (XEXP (x
, 0))
5658 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5659 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5660 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5661 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5662 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5663 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5664 GET_MODE_PRECISION (mode
) - 1),
5665 GET_MODE_PRECISION (mode
) - 1);
5667 /* If we are adding two things that have no bits in common, convert
5668 the addition into an IOR. This will often be further simplified,
5669 for example in cases like ((a & 1) + (a & 2)), which can
5672 if (HWI_COMPUTABLE_MODE_P (mode
)
5673 && (nonzero_bits (XEXP (x
, 0), mode
)
5674 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5676 /* Try to simplify the expression further. */
5677 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5678 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5680 /* If we could, great. If not, do not go ahead with the IOR
5681 replacement, since PLUS appears in many special purpose
5682 address arithmetic instructions. */
5683 if (GET_CODE (temp
) != CLOBBER
5684 && (GET_CODE (temp
) != IOR
5685 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5686 || XEXP (temp
, 1) != XEXP (x
, 1))
5687 && (XEXP (temp
, 0) != XEXP (x
, 1)
5688 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5694 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5695 (and <foo> (const_int pow2-1)) */
5696 if (GET_CODE (XEXP (x
, 1)) == AND
5697 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5698 && exact_log2 (-UINTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
5699 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5700 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5701 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5705 /* If we have (mult (plus A B) C), apply the distributive law and then
5706 the inverse distributive law to see if things simplify. This
5707 occurs mostly in addresses, often when unrolling loops. */
5709 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5711 rtx result
= distribute_and_simplify_rtx (x
, 0);
5716 /* Try simplify a*(b/c) as (a*b)/c. */
5717 if (FLOAT_MODE_P (mode
) && flag_associative_math
5718 && GET_CODE (XEXP (x
, 0)) == DIV
)
5720 rtx tem
= simplify_binary_operation (MULT
, mode
,
5721 XEXP (XEXP (x
, 0), 0),
5724 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
5729 /* If this is a divide by a power of two, treat it as a shift if
5730 its first operand is a shift. */
5731 if (CONST_INT_P (XEXP (x
, 1))
5732 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
5733 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
5734 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
5735 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
5736 || GET_CODE (XEXP (x
, 0)) == ROTATE
5737 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
5738 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
5742 case GT
: case GTU
: case GE
: case GEU
:
5743 case LT
: case LTU
: case LE
: case LEU
:
5744 case UNEQ
: case LTGT
:
5745 case UNGT
: case UNGE
:
5746 case UNLT
: case UNLE
:
5747 case UNORDERED
: case ORDERED
:
5748 /* If the first operand is a condition code, we can't do anything
5750 if (GET_CODE (XEXP (x
, 0)) == COMPARE
5751 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
5752 && ! CC0_P (XEXP (x
, 0))))
5754 rtx op0
= XEXP (x
, 0);
5755 rtx op1
= XEXP (x
, 1);
5756 enum rtx_code new_code
;
5758 if (GET_CODE (op0
) == COMPARE
)
5759 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5761 /* Simplify our comparison, if possible. */
5762 new_code
= simplify_comparison (code
, &op0
, &op1
);
5764 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5765 if only the low-order bit is possibly nonzero in X (such as when
5766 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5767 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5768 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5771 Remove any ZERO_EXTRACT we made when thinking this was a
5772 comparison. It may now be simpler to use, e.g., an AND. If a
5773 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5774 the call to make_compound_operation in the SET case.
5776 Don't apply these optimizations if the caller would
5777 prefer a comparison rather than a value.
5778 E.g., for the condition in an IF_THEN_ELSE most targets need
5779 an explicit comparison. */
5784 else if (STORE_FLAG_VALUE
== 1
5785 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5786 && op1
== const0_rtx
5787 && mode
== GET_MODE (op0
)
5788 && nonzero_bits (op0
, mode
) == 1)
5789 return gen_lowpart (mode
,
5790 expand_compound_operation (op0
));
5792 else if (STORE_FLAG_VALUE
== 1
5793 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5794 && op1
== const0_rtx
5795 && mode
== GET_MODE (op0
)
5796 && (num_sign_bit_copies (op0
, mode
)
5797 == GET_MODE_PRECISION (mode
)))
5799 op0
= expand_compound_operation (op0
);
5800 return simplify_gen_unary (NEG
, mode
,
5801 gen_lowpart (mode
, op0
),
5805 else if (STORE_FLAG_VALUE
== 1
5806 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5807 && op1
== const0_rtx
5808 && mode
== GET_MODE (op0
)
5809 && nonzero_bits (op0
, mode
) == 1)
5811 op0
= expand_compound_operation (op0
);
5812 return simplify_gen_binary (XOR
, mode
,
5813 gen_lowpart (mode
, op0
),
5817 else if (STORE_FLAG_VALUE
== 1
5818 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5819 && op1
== const0_rtx
5820 && mode
== GET_MODE (op0
)
5821 && (num_sign_bit_copies (op0
, mode
)
5822 == GET_MODE_PRECISION (mode
)))
5824 op0
= expand_compound_operation (op0
);
5825 return plus_constant (gen_lowpart (mode
, op0
), 1);
5828 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5833 else if (STORE_FLAG_VALUE
== -1
5834 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5835 && op1
== const0_rtx
5836 && (num_sign_bit_copies (op0
, mode
)
5837 == GET_MODE_PRECISION (mode
)))
5838 return gen_lowpart (mode
,
5839 expand_compound_operation (op0
));
5841 else if (STORE_FLAG_VALUE
== -1
5842 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5843 && op1
== const0_rtx
5844 && mode
== GET_MODE (op0
)
5845 && nonzero_bits (op0
, mode
) == 1)
5847 op0
= expand_compound_operation (op0
);
5848 return simplify_gen_unary (NEG
, mode
,
5849 gen_lowpart (mode
, op0
),
5853 else if (STORE_FLAG_VALUE
== -1
5854 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5855 && op1
== const0_rtx
5856 && mode
== GET_MODE (op0
)
5857 && (num_sign_bit_copies (op0
, mode
)
5858 == GET_MODE_PRECISION (mode
)))
5860 op0
= expand_compound_operation (op0
);
5861 return simplify_gen_unary (NOT
, mode
,
5862 gen_lowpart (mode
, op0
),
5866 /* If X is 0/1, (eq X 0) is X-1. */
5867 else if (STORE_FLAG_VALUE
== -1
5868 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5869 && op1
== const0_rtx
5870 && mode
== GET_MODE (op0
)
5871 && nonzero_bits (op0
, mode
) == 1)
5873 op0
= expand_compound_operation (op0
);
5874 return plus_constant (gen_lowpart (mode
, op0
), -1);
5877 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5878 one bit that might be nonzero, we can convert (ne x 0) to
5879 (ashift x c) where C puts the bit in the sign bit. Remove any
5880 AND with STORE_FLAG_VALUE when we are done, since we are only
5881 going to test the sign bit. */
5882 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5883 && HWI_COMPUTABLE_MODE_P (mode
)
5884 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
5885 && op1
== const0_rtx
5886 && mode
== GET_MODE (op0
)
5887 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
5889 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5890 expand_compound_operation (op0
),
5891 GET_MODE_PRECISION (mode
) - 1 - i
);
5892 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
5898 /* If the code changed, return a whole new comparison. */
5899 if (new_code
!= code
)
5900 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
5902 /* Otherwise, keep this operation, but maybe change its operands.
5903 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5904 SUBST (XEXP (x
, 0), op0
);
5905 SUBST (XEXP (x
, 1), op1
);
5910 return simplify_if_then_else (x
);
5916 /* If we are processing SET_DEST, we are done. */
5920 return expand_compound_operation (x
);
5923 return simplify_set (x
);
5927 return simplify_logical (x
);
5934 /* If this is a shift by a constant amount, simplify it. */
5935 if (CONST_INT_P (XEXP (x
, 1)))
5936 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
5937 INTVAL (XEXP (x
, 1)));
5939 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
5941 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
5942 ((unsigned HOST_WIDE_INT
) 1
5943 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
5955 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5958 simplify_if_then_else (rtx x
)
5960 enum machine_mode mode
= GET_MODE (x
);
5961 rtx cond
= XEXP (x
, 0);
5962 rtx true_rtx
= XEXP (x
, 1);
5963 rtx false_rtx
= XEXP (x
, 2);
5964 enum rtx_code true_code
= GET_CODE (cond
);
5965 int comparison_p
= COMPARISON_P (cond
);
5968 enum rtx_code false_code
;
5971 /* Simplify storing of the truth value. */
5972 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5973 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
5974 XEXP (cond
, 0), XEXP (cond
, 1));
5976 /* Also when the truth value has to be reversed. */
5978 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5979 && (reversed
= reversed_comparison (cond
, mode
)))
5982 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5983 in it is being compared against certain values. Get the true and false
5984 comparisons and see if that says anything about the value of each arm. */
5987 && ((false_code
= reversed_comparison_code (cond
, NULL
))
5989 && REG_P (XEXP (cond
, 0)))
5992 rtx from
= XEXP (cond
, 0);
5993 rtx true_val
= XEXP (cond
, 1);
5994 rtx false_val
= true_val
;
5997 /* If FALSE_CODE is EQ, swap the codes and arms. */
5999 if (false_code
== EQ
)
6001 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6002 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6005 /* If we are comparing against zero and the expression being tested has
6006 only a single bit that might be nonzero, that is its value when it is
6007 not equal to zero. Similarly if it is known to be -1 or 0. */
6009 if (true_code
== EQ
&& true_val
== const0_rtx
6010 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
6013 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
6015 else if (true_code
== EQ
&& true_val
== const0_rtx
6016 && (num_sign_bit_copies (from
, GET_MODE (from
))
6017 == GET_MODE_PRECISION (GET_MODE (from
))))
6020 false_val
= constm1_rtx
;
6023 /* Now simplify an arm if we know the value of the register in the
6024 branch and it is used in the arm. Be careful due to the potential
6025 of locally-shared RTL. */
6027 if (reg_mentioned_p (from
, true_rtx
))
6028 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6030 pc_rtx
, pc_rtx
, 0, 0, 0);
6031 if (reg_mentioned_p (from
, false_rtx
))
6032 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6034 pc_rtx
, pc_rtx
, 0, 0, 0);
6036 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6037 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6039 true_rtx
= XEXP (x
, 1);
6040 false_rtx
= XEXP (x
, 2);
6041 true_code
= GET_CODE (cond
);
6044 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6045 reversed, do so to avoid needing two sets of patterns for
6046 subtract-and-branch insns. Similarly if we have a constant in the true
6047 arm, the false arm is the same as the first operand of the comparison, or
6048 the false arm is more complicated than the true arm. */
6051 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6052 && (true_rtx
== pc_rtx
6053 || (CONSTANT_P (true_rtx
)
6054 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6055 || true_rtx
== const0_rtx
6056 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6057 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6058 && !OBJECT_P (false_rtx
))
6059 || reg_mentioned_p (true_rtx
, false_rtx
)
6060 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6062 true_code
= reversed_comparison_code (cond
, NULL
);
6063 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6064 SUBST (XEXP (x
, 1), false_rtx
);
6065 SUBST (XEXP (x
, 2), true_rtx
);
6067 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6070 /* It is possible that the conditional has been simplified out. */
6071 true_code
= GET_CODE (cond
);
6072 comparison_p
= COMPARISON_P (cond
);
6075 /* If the two arms are identical, we don't need the comparison. */
6077 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6080 /* Convert a == b ? b : a to "a". */
6081 if (true_code
== EQ
&& ! side_effects_p (cond
)
6082 && !HONOR_NANS (mode
)
6083 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6084 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6086 else if (true_code
== NE
&& ! side_effects_p (cond
)
6087 && !HONOR_NANS (mode
)
6088 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6089 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6092 /* Look for cases where we have (abs x) or (neg (abs X)). */
6094 if (GET_MODE_CLASS (mode
) == MODE_INT
6096 && XEXP (cond
, 1) == const0_rtx
6097 && GET_CODE (false_rtx
) == NEG
6098 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6099 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6100 && ! side_effects_p (true_rtx
))
6105 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6109 simplify_gen_unary (NEG
, mode
,
6110 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6116 /* Look for MIN or MAX. */
6118 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6120 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6121 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6122 && ! side_effects_p (cond
))
6127 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6130 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6133 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6136 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6141 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6142 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6143 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6144 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6145 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6146 neither 1 or -1, but it isn't worth checking for. */
6148 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6150 && GET_MODE_CLASS (mode
) == MODE_INT
6151 && ! side_effects_p (x
))
6153 rtx t
= make_compound_operation (true_rtx
, SET
);
6154 rtx f
= make_compound_operation (false_rtx
, SET
);
6155 rtx cond_op0
= XEXP (cond
, 0);
6156 rtx cond_op1
= XEXP (cond
, 1);
6157 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6158 enum machine_mode m
= mode
;
6159 rtx z
= 0, c1
= NULL_RTX
;
6161 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6162 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6163 || GET_CODE (t
) == ASHIFT
6164 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6165 && rtx_equal_p (XEXP (t
, 0), f
))
6166 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6168 /* If an identity-zero op is commutative, check whether there
6169 would be a match if we swapped the operands. */
6170 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6171 || GET_CODE (t
) == XOR
)
6172 && rtx_equal_p (XEXP (t
, 1), f
))
6173 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6174 else if (GET_CODE (t
) == SIGN_EXTEND
6175 && (GET_CODE (XEXP (t
, 0)) == PLUS
6176 || GET_CODE (XEXP (t
, 0)) == MINUS
6177 || GET_CODE (XEXP (t
, 0)) == IOR
6178 || GET_CODE (XEXP (t
, 0)) == XOR
6179 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6180 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6181 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6182 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6183 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6184 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6185 && (num_sign_bit_copies (f
, GET_MODE (f
))
6187 (GET_MODE_PRECISION (mode
)
6188 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6190 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6191 extend_op
= SIGN_EXTEND
;
6192 m
= GET_MODE (XEXP (t
, 0));
6194 else if (GET_CODE (t
) == SIGN_EXTEND
6195 && (GET_CODE (XEXP (t
, 0)) == PLUS
6196 || GET_CODE (XEXP (t
, 0)) == IOR
6197 || GET_CODE (XEXP (t
, 0)) == XOR
)
6198 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6199 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6200 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6201 && (num_sign_bit_copies (f
, GET_MODE (f
))
6203 (GET_MODE_PRECISION (mode
)
6204 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6206 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6207 extend_op
= SIGN_EXTEND
;
6208 m
= GET_MODE (XEXP (t
, 0));
6210 else if (GET_CODE (t
) == ZERO_EXTEND
6211 && (GET_CODE (XEXP (t
, 0)) == PLUS
6212 || GET_CODE (XEXP (t
, 0)) == MINUS
6213 || GET_CODE (XEXP (t
, 0)) == IOR
6214 || GET_CODE (XEXP (t
, 0)) == XOR
6215 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6216 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6217 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6218 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6219 && HWI_COMPUTABLE_MODE_P (mode
)
6220 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6221 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6222 && ((nonzero_bits (f
, GET_MODE (f
))
6223 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6226 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6227 extend_op
= ZERO_EXTEND
;
6228 m
= GET_MODE (XEXP (t
, 0));
6230 else if (GET_CODE (t
) == ZERO_EXTEND
6231 && (GET_CODE (XEXP (t
, 0)) == PLUS
6232 || GET_CODE (XEXP (t
, 0)) == IOR
6233 || GET_CODE (XEXP (t
, 0)) == XOR
)
6234 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6235 && HWI_COMPUTABLE_MODE_P (mode
)
6236 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6237 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6238 && ((nonzero_bits (f
, GET_MODE (f
))
6239 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6242 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6243 extend_op
= ZERO_EXTEND
;
6244 m
= GET_MODE (XEXP (t
, 0));
6249 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6250 cond_op0
, cond_op1
),
6251 pc_rtx
, pc_rtx
, 0, 0, 0);
6252 temp
= simplify_gen_binary (MULT
, m
, temp
,
6253 simplify_gen_binary (MULT
, m
, c1
,
6255 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6256 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6258 if (extend_op
!= UNKNOWN
)
6259 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6265 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6266 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6267 negation of a single bit, we can convert this operation to a shift. We
6268 can actually do this more generally, but it doesn't seem worth it. */
6270 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6271 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6272 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6273 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6274 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6275 == GET_MODE_PRECISION (mode
))
6276 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6278 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6279 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6281 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6282 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6283 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6284 && GET_MODE (XEXP (cond
, 0)) == mode
6285 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6286 == nonzero_bits (XEXP (cond
, 0), mode
)
6287 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6288 return XEXP (cond
, 0);
6293 /* Simplify X, a SET expression. Return the new expression. */
6296 simplify_set (rtx x
)
6298 rtx src
= SET_SRC (x
);
6299 rtx dest
= SET_DEST (x
);
6300 enum machine_mode mode
6301 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6305 /* (set (pc) (return)) gets written as (return). */
6306 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6309 /* Now that we know for sure which bits of SRC we are using, see if we can
6310 simplify the expression for the object knowing that we only need the
6313 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6315 src
= force_to_mode (src
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
6316 SUBST (SET_SRC (x
), src
);
6319 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6320 the comparison result and try to simplify it unless we already have used
6321 undobuf.other_insn. */
6322 if ((GET_MODE_CLASS (mode
) == MODE_CC
6323 || GET_CODE (src
) == COMPARE
6325 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6326 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6327 && COMPARISON_P (*cc_use
)
6328 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6330 enum rtx_code old_code
= GET_CODE (*cc_use
);
6331 enum rtx_code new_code
;
6333 int other_changed
= 0;
6334 rtx inner_compare
= NULL_RTX
;
6335 enum machine_mode compare_mode
= GET_MODE (dest
);
6337 if (GET_CODE (src
) == COMPARE
)
6339 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6340 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6342 inner_compare
= op0
;
6343 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6347 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6349 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6352 new_code
= old_code
;
6353 else if (!CONSTANT_P (tmp
))
6355 new_code
= GET_CODE (tmp
);
6356 op0
= XEXP (tmp
, 0);
6357 op1
= XEXP (tmp
, 1);
6361 rtx pat
= PATTERN (other_insn
);
6362 undobuf
.other_insn
= other_insn
;
6363 SUBST (*cc_use
, tmp
);
6365 /* Attempt to simplify CC user. */
6366 if (GET_CODE (pat
) == SET
)
6368 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6369 if (new_rtx
!= NULL_RTX
)
6370 SUBST (SET_SRC (pat
), new_rtx
);
6373 /* Convert X into a no-op move. */
6374 SUBST (SET_DEST (x
), pc_rtx
);
6375 SUBST (SET_SRC (x
), pc_rtx
);
6379 /* Simplify our comparison, if possible. */
6380 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6382 #ifdef SELECT_CC_MODE
6383 /* If this machine has CC modes other than CCmode, check to see if we
6384 need to use a different CC mode here. */
6385 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6386 compare_mode
= GET_MODE (op0
);
6387 else if (inner_compare
6388 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6389 && new_code
== old_code
6390 && op0
== XEXP (inner_compare
, 0)
6391 && op1
== XEXP (inner_compare
, 1))
6392 compare_mode
= GET_MODE (inner_compare
);
6394 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6397 /* If the mode changed, we have to change SET_DEST, the mode in the
6398 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6399 a hard register, just build new versions with the proper mode. If it
6400 is a pseudo, we lose unless it is only time we set the pseudo, in
6401 which case we can safely change its mode. */
6402 if (compare_mode
!= GET_MODE (dest
))
6404 if (can_change_dest_mode (dest
, 0, compare_mode
))
6406 unsigned int regno
= REGNO (dest
);
6409 if (regno
< FIRST_PSEUDO_REGISTER
)
6410 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6413 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6414 new_dest
= regno_reg_rtx
[regno
];
6417 SUBST (SET_DEST (x
), new_dest
);
6418 SUBST (XEXP (*cc_use
, 0), new_dest
);
6425 #endif /* SELECT_CC_MODE */
6427 /* If the code changed, we have to build a new comparison in
6428 undobuf.other_insn. */
6429 if (new_code
!= old_code
)
6431 int other_changed_previously
= other_changed
;
6432 unsigned HOST_WIDE_INT mask
;
6433 rtx old_cc_use
= *cc_use
;
6435 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6439 /* If the only change we made was to change an EQ into an NE or
6440 vice versa, OP0 has only one bit that might be nonzero, and OP1
6441 is zero, check if changing the user of the condition code will
6442 produce a valid insn. If it won't, we can keep the original code
6443 in that insn by surrounding our operation with an XOR. */
6445 if (((old_code
== NE
&& new_code
== EQ
)
6446 || (old_code
== EQ
&& new_code
== NE
))
6447 && ! other_changed_previously
&& op1
== const0_rtx
6448 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6449 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
6451 rtx pat
= PATTERN (other_insn
), note
= 0;
6453 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6454 && ! check_asm_operands (pat
)))
6456 *cc_use
= old_cc_use
;
6459 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
),
6460 op0
, GEN_INT (mask
));
6466 undobuf
.other_insn
= other_insn
;
6468 /* Otherwise, if we didn't previously have a COMPARE in the
6469 correct mode, we need one. */
6470 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
6472 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6475 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6477 SUBST (SET_SRC (x
), op0
);
6480 /* Otherwise, update the COMPARE if needed. */
6481 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6483 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6489 /* Get SET_SRC in a form where we have placed back any
6490 compound expressions. Then do the checks below. */
6491 src
= make_compound_operation (src
, SET
);
6492 SUBST (SET_SRC (x
), src
);
6495 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6496 and X being a REG or (subreg (reg)), we may be able to convert this to
6497 (set (subreg:m2 x) (op)).
6499 We can always do this if M1 is narrower than M2 because that means that
6500 we only care about the low bits of the result.
6502 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6503 perform a narrower operation than requested since the high-order bits will
6504 be undefined. On machine where it is defined, this transformation is safe
6505 as long as M1 and M2 have the same number of words. */
6507 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6508 && !OBJECT_P (SUBREG_REG (src
))
6509 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6512 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6513 #ifndef WORD_REGISTER_OPERATIONS
6514 && (GET_MODE_SIZE (GET_MODE (src
))
6515 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
6517 #ifdef CANNOT_CHANGE_MODE_CLASS
6518 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6519 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6520 GET_MODE (SUBREG_REG (src
)),
6524 || (GET_CODE (dest
) == SUBREG
6525 && REG_P (SUBREG_REG (dest
)))))
6527 SUBST (SET_DEST (x
),
6528 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6530 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6532 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6536 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6539 && GET_CODE (src
) == SUBREG
6540 && subreg_lowpart_p (src
)
6541 && (GET_MODE_PRECISION (GET_MODE (src
))
6542 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6544 rtx inner
= SUBREG_REG (src
);
6545 enum machine_mode inner_mode
= GET_MODE (inner
);
6547 /* Here we make sure that we don't have a sign bit on. */
6548 if (val_signbit_known_clear_p (GET_MODE (src
),
6549 nonzero_bits (inner
, inner_mode
)))
6551 SUBST (SET_SRC (x
), inner
);
6557 #ifdef LOAD_EXTEND_OP
6558 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6559 would require a paradoxical subreg. Replace the subreg with a
6560 zero_extend to avoid the reload that would otherwise be required. */
6562 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6563 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src
)))
6564 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
6565 && SUBREG_BYTE (src
) == 0
6566 && paradoxical_subreg_p (src
)
6567 && MEM_P (SUBREG_REG (src
)))
6570 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
6571 GET_MODE (src
), SUBREG_REG (src
)));
6577 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6578 are comparing an item known to be 0 or -1 against 0, use a logical
6579 operation instead. Check for one of the arms being an IOR of the other
6580 arm with some value. We compute three terms to be IOR'ed together. In
6581 practice, at most two will be nonzero. Then we do the IOR's. */
6583 if (GET_CODE (dest
) != PC
6584 && GET_CODE (src
) == IF_THEN_ELSE
6585 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6586 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6587 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6588 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6589 #ifdef HAVE_conditional_move
6590 && ! can_conditionally_move_p (GET_MODE (src
))
6592 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6593 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6594 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6595 && ! side_effects_p (src
))
6597 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6598 ? XEXP (src
, 1) : XEXP (src
, 2));
6599 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6600 ? XEXP (src
, 2) : XEXP (src
, 1));
6601 rtx term1
= const0_rtx
, term2
, term3
;
6603 if (GET_CODE (true_rtx
) == IOR
6604 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6605 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6606 else if (GET_CODE (true_rtx
) == IOR
6607 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6608 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6609 else if (GET_CODE (false_rtx
) == IOR
6610 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6611 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6612 else if (GET_CODE (false_rtx
) == IOR
6613 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6614 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6616 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6617 XEXP (XEXP (src
, 0), 0), true_rtx
);
6618 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6619 simplify_gen_unary (NOT
, GET_MODE (src
),
6620 XEXP (XEXP (src
, 0), 0),
6625 simplify_gen_binary (IOR
, GET_MODE (src
),
6626 simplify_gen_binary (IOR
, GET_MODE (src
),
6633 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6634 whole thing fail. */
6635 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6637 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6640 /* Convert this into a field assignment operation, if possible. */
6641 return make_field_assignment (x
);
6644 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6648 simplify_logical (rtx x
)
6650 enum machine_mode mode
= GET_MODE (x
);
6651 rtx op0
= XEXP (x
, 0);
6652 rtx op1
= XEXP (x
, 1);
6654 switch (GET_CODE (x
))
6657 /* We can call simplify_and_const_int only if we don't lose
6658 any (sign) bits when converting INTVAL (op1) to
6659 "unsigned HOST_WIDE_INT". */
6660 if (CONST_INT_P (op1
)
6661 && (HWI_COMPUTABLE_MODE_P (mode
)
6662 || INTVAL (op1
) > 0))
6664 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6665 if (GET_CODE (x
) != AND
)
6672 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6673 apply the distributive law and then the inverse distributive
6674 law to see if things simplify. */
6675 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6677 rtx result
= distribute_and_simplify_rtx (x
, 0);
6681 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6683 rtx result
= distribute_and_simplify_rtx (x
, 1);
6690 /* If we have (ior (and A B) C), apply the distributive law and then
6691 the inverse distributive law to see if things simplify. */
6693 if (GET_CODE (op0
) == AND
)
6695 rtx result
= distribute_and_simplify_rtx (x
, 0);
6700 if (GET_CODE (op1
) == AND
)
6702 rtx result
= distribute_and_simplify_rtx (x
, 1);
6715 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6716 operations" because they can be replaced with two more basic operations.
6717 ZERO_EXTEND is also considered "compound" because it can be replaced with
6718 an AND operation, which is simpler, though only one operation.
6720 The function expand_compound_operation is called with an rtx expression
6721 and will convert it to the appropriate shifts and AND operations,
6722 simplifying at each stage.
6724 The function make_compound_operation is called to convert an expression
6725 consisting of shifts and ANDs into the equivalent compound expression.
6726 It is the inverse of this function, loosely speaking. */
6729 expand_compound_operation (rtx x
)
6731 unsigned HOST_WIDE_INT pos
= 0, len
;
6733 unsigned int modewidth
;
6736 switch (GET_CODE (x
))
6741 /* We can't necessarily use a const_int for a multiword mode;
6742 it depends on implicitly extending the value.
6743 Since we don't know the right way to extend it,
6744 we can't tell whether the implicit way is right.
6746 Even for a mode that is no wider than a const_int,
6747 we can't win, because we need to sign extend one of its bits through
6748 the rest of it, and we don't know which bit. */
6749 if (CONST_INT_P (XEXP (x
, 0)))
6752 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6753 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6754 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6755 reloaded. If not for that, MEM's would very rarely be safe.
6757 Reject MODEs bigger than a word, because we might not be able
6758 to reference a two-register group starting with an arbitrary register
6759 (and currently gen_lowpart might crash for a SUBREG). */
6761 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
6764 /* Reject MODEs that aren't scalar integers because turning vector
6765 or complex modes into shifts causes problems. */
6767 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6770 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
6771 /* If the inner object has VOIDmode (the only way this can happen
6772 is if it is an ASM_OPERANDS), we can't do anything since we don't
6773 know how much masking to do. */
6782 /* ... fall through ... */
6785 /* If the operand is a CLOBBER, just return it. */
6786 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6789 if (!CONST_INT_P (XEXP (x
, 1))
6790 || !CONST_INT_P (XEXP (x
, 2))
6791 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
6794 /* Reject MODEs that aren't scalar integers because turning vector
6795 or complex modes into shifts causes problems. */
6797 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6800 len
= INTVAL (XEXP (x
, 1));
6801 pos
= INTVAL (XEXP (x
, 2));
6803 /* This should stay within the object being extracted, fail otherwise. */
6804 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
6807 if (BITS_BIG_ENDIAN
)
6808 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
6815 /* Convert sign extension to zero extension, if we know that the high
6816 bit is not set, as this is easier to optimize. It will be converted
6817 back to cheaper alternative in make_extraction. */
6818 if (GET_CODE (x
) == SIGN_EXTEND
6819 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6820 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6821 & ~(((unsigned HOST_WIDE_INT
)
6822 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
6826 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
6827 rtx temp2
= expand_compound_operation (temp
);
6829 /* Make sure this is a profitable operation. */
6830 if (set_src_cost (x
, optimize_this_for_speed_p
)
6831 > set_src_cost (temp2
, optimize_this_for_speed_p
))
6833 else if (set_src_cost (x
, optimize_this_for_speed_p
)
6834 > set_src_cost (temp
, optimize_this_for_speed_p
))
6840 /* We can optimize some special cases of ZERO_EXTEND. */
6841 if (GET_CODE (x
) == ZERO_EXTEND
)
6843 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6844 know that the last value didn't have any inappropriate bits
6846 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6847 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6848 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6849 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
6850 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6851 return XEXP (XEXP (x
, 0), 0);
6853 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6854 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6855 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6856 && subreg_lowpart_p (XEXP (x
, 0))
6857 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6858 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
6859 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6860 return SUBREG_REG (XEXP (x
, 0));
6862 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6863 is a comparison and STORE_FLAG_VALUE permits. This is like
6864 the first case, but it works even when GET_MODE (x) is larger
6865 than HOST_WIDE_INT. */
6866 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6867 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6868 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
6869 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6870 <= HOST_BITS_PER_WIDE_INT
)
6871 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6872 return XEXP (XEXP (x
, 0), 0);
6874 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6875 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6876 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6877 && subreg_lowpart_p (XEXP (x
, 0))
6878 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
6879 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6880 <= HOST_BITS_PER_WIDE_INT
)
6881 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6882 return SUBREG_REG (XEXP (x
, 0));
6886 /* If we reach here, we want to return a pair of shifts. The inner
6887 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6888 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6889 logical depending on the value of UNSIGNEDP.
6891 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6892 converted into an AND of a shift.
6894 We must check for the case where the left shift would have a negative
6895 count. This can happen in a case like (x >> 31) & 255 on machines
6896 that can't shift by a constant. On those machines, we would first
6897 combine the shift with the AND to produce a variable-position
6898 extraction. Then the constant of 31 would be substituted in
6899 to produce such a position. */
6901 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
6902 if (modewidth
>= pos
+ len
)
6904 enum machine_mode mode
= GET_MODE (x
);
6905 tem
= gen_lowpart (mode
, XEXP (x
, 0));
6906 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
6908 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6909 tem
, modewidth
- pos
- len
);
6910 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
6911 mode
, tem
, modewidth
- len
);
6913 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
6914 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
6915 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
6918 ((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
6920 /* Any other cases we can't handle. */
6923 /* If we couldn't do this for some reason, return the original
6925 if (GET_CODE (tem
) == CLOBBER
)
6931 /* X is a SET which contains an assignment of one object into
6932 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6933 or certain SUBREGS). If possible, convert it into a series of
6936 We half-heartedly support variable positions, but do not at all
6937 support variable lengths. */
6940 expand_field_assignment (const_rtx x
)
6943 rtx pos
; /* Always counts from low bit. */
6945 rtx mask
, cleared
, masked
;
6946 enum machine_mode compute_mode
;
6948 /* Loop until we find something we can't simplify. */
6951 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6952 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
6954 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
6955 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
6956 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
6958 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
6959 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
6961 inner
= XEXP (SET_DEST (x
), 0);
6962 len
= INTVAL (XEXP (SET_DEST (x
), 1));
6963 pos
= XEXP (SET_DEST (x
), 2);
6965 /* A constant position should stay within the width of INNER. */
6966 if (CONST_INT_P (pos
)
6967 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
6970 if (BITS_BIG_ENDIAN
)
6972 if (CONST_INT_P (pos
))
6973 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
6975 else if (GET_CODE (pos
) == MINUS
6976 && CONST_INT_P (XEXP (pos
, 1))
6977 && (INTVAL (XEXP (pos
, 1))
6978 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
6979 /* If position is ADJUST - X, new position is X. */
6980 pos
= XEXP (pos
, 0);
6982 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
6983 GEN_INT (GET_MODE_PRECISION (
6990 /* A SUBREG between two modes that occupy the same numbers of words
6991 can be done by moving the SUBREG to the source. */
6992 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6993 /* We need SUBREGs to compute nonzero_bits properly. */
6994 && nonzero_sign_valid
6995 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6996 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6997 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6998 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
7000 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
7002 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7009 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7010 inner
= SUBREG_REG (inner
);
7012 compute_mode
= GET_MODE (inner
);
7014 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7015 if (! SCALAR_INT_MODE_P (compute_mode
))
7017 enum machine_mode imode
;
7019 /* Don't do anything for vector or complex integral types. */
7020 if (! FLOAT_MODE_P (compute_mode
))
7023 /* Try to find an integral mode to pun with. */
7024 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
7025 if (imode
== BLKmode
)
7028 compute_mode
= imode
;
7029 inner
= gen_lowpart (imode
, inner
);
7032 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7033 if (len
>= HOST_BITS_PER_WIDE_INT
)
7036 /* Now compute the equivalent expression. Make a copy of INNER
7037 for the SET_DEST in case it is a MEM into which we will substitute;
7038 we don't want shared RTL in that case. */
7039 mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
7040 cleared
= simplify_gen_binary (AND
, compute_mode
,
7041 simplify_gen_unary (NOT
, compute_mode
,
7042 simplify_gen_binary (ASHIFT
,
7047 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7048 simplify_gen_binary (
7050 gen_lowpart (compute_mode
, SET_SRC (x
)),
7054 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
7055 simplify_gen_binary (IOR
, compute_mode
,
7062 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7063 it is an RTX that represents a variable starting position; otherwise,
7064 POS is the (constant) starting bit position (counted from the LSB).
7066 UNSIGNEDP is nonzero for an unsigned reference and zero for a
7069 IN_DEST is nonzero if this is a reference in the destination of a
7070 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7071 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7074 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7075 ZERO_EXTRACT should be built even for bits starting at bit 0.
7077 MODE is the desired mode of the result (if IN_DEST == 0).
7079 The result is an RTX for the extraction or NULL_RTX if the target
7083 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7084 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7085 int in_dest
, int in_compare
)
7087 /* This mode describes the size of the storage area
7088 to fetch the overall value from. Within that, we
7089 ignore the POS lowest bits, etc. */
7090 enum machine_mode is_mode
= GET_MODE (inner
);
7091 enum machine_mode inner_mode
;
7092 enum machine_mode wanted_inner_mode
;
7093 enum machine_mode wanted_inner_reg_mode
= word_mode
;
7094 enum machine_mode pos_mode
= word_mode
;
7095 enum machine_mode extraction_mode
= word_mode
;
7096 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7098 rtx orig_pos_rtx
= pos_rtx
;
7099 HOST_WIDE_INT orig_pos
;
7101 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7103 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7104 consider just the QI as the memory to extract from.
7105 The subreg adds or removes high bits; its mode is
7106 irrelevant to the meaning of this extraction,
7107 since POS and LEN count from the lsb. */
7108 if (MEM_P (SUBREG_REG (inner
)))
7109 is_mode
= GET_MODE (SUBREG_REG (inner
));
7110 inner
= SUBREG_REG (inner
);
7112 else if (GET_CODE (inner
) == ASHIFT
7113 && CONST_INT_P (XEXP (inner
, 1))
7114 && pos_rtx
== 0 && pos
== 0
7115 && len
> UINTVAL (XEXP (inner
, 1)))
7117 /* We're extracting the least significant bits of an rtx
7118 (ashift X (const_int C)), where LEN > C. Extract the
7119 least significant (LEN - C) bits of X, giving an rtx
7120 whose mode is MODE, then shift it left C times. */
7121 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7122 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7123 unsignedp
, in_dest
, in_compare
);
7125 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7128 inner_mode
= GET_MODE (inner
);
7130 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7131 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7133 /* See if this can be done without an extraction. We never can if the
7134 width of the field is not the same as that of some integer mode. For
7135 registers, we can only avoid the extraction if the position is at the
7136 low-order bit and this is either not in the destination or we have the
7137 appropriate STRICT_LOW_PART operation available.
7139 For MEM, we can avoid an extract if the field starts on an appropriate
7140 boundary and we can change the mode of the memory reference. */
7142 if (tmode
!= BLKmode
7143 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7145 && (inner_mode
== tmode
7147 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7148 || reg_truncated_to_mode (tmode
, inner
))
7151 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7152 || (MEM_P (inner
) && pos_rtx
== 0
7154 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7155 : BITS_PER_UNIT
)) == 0
7156 /* We can't do this if we are widening INNER_MODE (it
7157 may not be aligned, for one thing). */
7158 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7159 && (inner_mode
== tmode
7160 || (! mode_dependent_address_p (XEXP (inner
, 0))
7161 && ! MEM_VOLATILE_P (inner
))))))
7163 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7164 field. If the original and current mode are the same, we need not
7165 adjust the offset. Otherwise, we do if bytes big endian.
7167 If INNER is not a MEM, get a piece consisting of just the field
7168 of interest (in this case POS % BITS_PER_WORD must be 0). */
7172 HOST_WIDE_INT offset
;
7174 /* POS counts from lsb, but make OFFSET count in memory order. */
7175 if (BYTES_BIG_ENDIAN
)
7176 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7178 offset
= pos
/ BITS_PER_UNIT
;
7180 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7182 else if (REG_P (inner
))
7184 if (tmode
!= inner_mode
)
7186 /* We can't call gen_lowpart in a DEST since we
7187 always want a SUBREG (see below) and it would sometimes
7188 return a new hard register. */
7191 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7193 if (WORDS_BIG_ENDIAN
7194 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7195 final_word
= ((GET_MODE_SIZE (inner_mode
)
7196 - GET_MODE_SIZE (tmode
))
7197 / UNITS_PER_WORD
) - final_word
;
7199 final_word
*= UNITS_PER_WORD
;
7200 if (BYTES_BIG_ENDIAN
&&
7201 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7202 final_word
+= (GET_MODE_SIZE (inner_mode
)
7203 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7205 /* Avoid creating invalid subregs, for example when
7206 simplifying (x>>32)&255. */
7207 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7210 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7213 new_rtx
= gen_lowpart (tmode
, inner
);
7219 new_rtx
= force_to_mode (inner
, tmode
,
7220 len
>= HOST_BITS_PER_WIDE_INT
7221 ? ~(unsigned HOST_WIDE_INT
) 0
7222 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7225 /* If this extraction is going into the destination of a SET,
7226 make a STRICT_LOW_PART unless we made a MEM. */
7229 return (MEM_P (new_rtx
) ? new_rtx
7230 : (GET_CODE (new_rtx
) != SUBREG
7231 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7232 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7237 if (CONST_INT_P (new_rtx
)
7238 || GET_CODE (new_rtx
) == CONST_DOUBLE
)
7239 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7240 mode
, new_rtx
, tmode
);
7242 /* If we know that no extraneous bits are set, and that the high
7243 bit is not set, convert the extraction to the cheaper of
7244 sign and zero extension, that are equivalent in these cases. */
7245 if (flag_expensive_optimizations
7246 && (HWI_COMPUTABLE_MODE_P (tmode
)
7247 && ((nonzero_bits (new_rtx
, tmode
)
7248 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7251 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7252 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7254 /* Prefer ZERO_EXTENSION, since it gives more information to
7256 if (set_src_cost (temp
, optimize_this_for_speed_p
)
7257 <= set_src_cost (temp1
, optimize_this_for_speed_p
))
7262 /* Otherwise, sign- or zero-extend unless we already are in the
7265 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7269 /* Unless this is a COMPARE or we have a funny memory reference,
7270 don't do anything with zero-extending field extracts starting at
7271 the low-order bit since they are simple AND operations. */
7272 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7273 && ! in_compare
&& unsignedp
)
7276 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7277 if the position is not a constant and the length is not 1. In all
7278 other cases, we would only be going outside our object in cases when
7279 an original shift would have been undefined. */
7281 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7282 || (pos_rtx
!= 0 && len
!= 1)))
7285 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7286 and the mode for the result. */
7287 if (in_dest
&& mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
7289 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
7290 pos_mode
= mode_for_extraction (EP_insv
, 2);
7291 extraction_mode
= mode_for_extraction (EP_insv
, 3);
7294 if (! in_dest
&& unsignedp
7295 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
7297 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
7298 pos_mode
= mode_for_extraction (EP_extzv
, 3);
7299 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
7302 if (! in_dest
&& ! unsignedp
7303 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
7305 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
7306 pos_mode
= mode_for_extraction (EP_extv
, 3);
7307 extraction_mode
= mode_for_extraction (EP_extv
, 0);
7310 /* Never narrow an object, since that might not be safe. */
7312 if (mode
!= VOIDmode
7313 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7314 extraction_mode
= mode
;
7316 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
7317 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7318 pos_mode
= GET_MODE (pos_rtx
);
7320 /* If this is not from memory, the desired mode is the preferred mode
7321 for an extraction pattern's first input operand, or word_mode if there
7324 wanted_inner_mode
= wanted_inner_reg_mode
;
7327 /* Be careful not to go beyond the extracted object and maintain the
7328 natural alignment of the memory. */
7329 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7330 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7331 > GET_MODE_BITSIZE (wanted_inner_mode
))
7333 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7334 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7337 /* If we have to change the mode of memory and cannot, the desired mode
7338 is EXTRACTION_MODE. */
7339 if (inner_mode
!= wanted_inner_mode
7340 && (mode_dependent_address_p (XEXP (inner
, 0))
7341 || MEM_VOLATILE_P (inner
)
7343 wanted_inner_mode
= extraction_mode
;
7348 if (BITS_BIG_ENDIAN
)
7350 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7351 BITS_BIG_ENDIAN style. If position is constant, compute new
7352 position. Otherwise, build subtraction.
7353 Note that POS is relative to the mode of the original argument.
7354 If it's a MEM we need to recompute POS relative to that.
7355 However, if we're extracting from (or inserting into) a register,
7356 we want to recompute POS relative to wanted_inner_mode. */
7357 int width
= (MEM_P (inner
)
7358 ? GET_MODE_BITSIZE (is_mode
)
7359 : GET_MODE_BITSIZE (wanted_inner_mode
));
7362 pos
= width
- len
- pos
;
7365 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
7366 /* POS may be less than 0 now, but we check for that below.
7367 Note that it can only be less than 0 if !MEM_P (inner). */
7370 /* If INNER has a wider mode, and this is a constant extraction, try to
7371 make it smaller and adjust the byte to point to the byte containing
7373 if (wanted_inner_mode
!= VOIDmode
7374 && inner_mode
!= wanted_inner_mode
7376 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7378 && ! mode_dependent_address_p (XEXP (inner
, 0))
7379 && ! MEM_VOLATILE_P (inner
))
7383 /* The computations below will be correct if the machine is big
7384 endian in both bits and bytes or little endian in bits and bytes.
7385 If it is mixed, we must adjust. */
7387 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7388 adjust OFFSET to compensate. */
7389 if (BYTES_BIG_ENDIAN
7390 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7391 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7393 /* We can now move to the desired byte. */
7394 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7395 * GET_MODE_SIZE (wanted_inner_mode
);
7396 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7398 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7399 && is_mode
!= wanted_inner_mode
)
7400 offset
= (GET_MODE_SIZE (is_mode
)
7401 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7403 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7406 /* If INNER is not memory, get it into the proper mode. If we are changing
7407 its mode, POS must be a constant and smaller than the size of the new
7409 else if (!MEM_P (inner
))
7411 /* On the LHS, don't create paradoxical subregs implicitely truncating
7412 the register unless TRULY_NOOP_TRUNCATION. */
7414 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7418 if (GET_MODE (inner
) != wanted_inner_mode
7420 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7426 inner
= force_to_mode (inner
, wanted_inner_mode
,
7428 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7429 ? ~(unsigned HOST_WIDE_INT
) 0
7430 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
7435 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7436 have to zero extend. Otherwise, we can just use a SUBREG. */
7438 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7440 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
7442 /* If we know that no extraneous bits are set, and that the high
7443 bit is not set, convert extraction to cheaper one - either
7444 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7446 if (flag_expensive_optimizations
7447 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7448 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7449 & ~(((unsigned HOST_WIDE_INT
)
7450 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7454 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
7456 /* Prefer ZERO_EXTENSION, since it gives more information to
7458 if (set_src_cost (temp1
, optimize_this_for_speed_p
)
7459 < set_src_cost (temp
, optimize_this_for_speed_p
))
7464 else if (pos_rtx
!= 0
7465 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7466 pos_rtx
= gen_lowpart (pos_mode
, pos_rtx
);
7468 /* Make POS_RTX unless we already have it and it is correct. If we don't
7469 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7471 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7472 pos_rtx
= orig_pos_rtx
;
7474 else if (pos_rtx
== 0)
7475 pos_rtx
= GEN_INT (pos
);
7477 /* Make the required operation. See if we can use existing rtx. */
7478 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7479 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7481 new_rtx
= gen_lowpart (mode
, new_rtx
);
7486 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7487 with any other operations in X. Return X without that shift if so. */
7490 extract_left_shift (rtx x
, int count
)
7492 enum rtx_code code
= GET_CODE (x
);
7493 enum machine_mode mode
= GET_MODE (x
);
7499 /* This is the shift itself. If it is wide enough, we will return
7500 either the value being shifted if the shift count is equal to
7501 COUNT or a shift for the difference. */
7502 if (CONST_INT_P (XEXP (x
, 1))
7503 && INTVAL (XEXP (x
, 1)) >= count
)
7504 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7505 INTVAL (XEXP (x
, 1)) - count
);
7509 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7510 return simplify_gen_unary (code
, mode
, tem
, mode
);
7514 case PLUS
: case IOR
: case XOR
: case AND
:
7515 /* If we can safely shift this constant and we find the inner shift,
7516 make a new operation. */
7517 if (CONST_INT_P (XEXP (x
, 1))
7518 && (UINTVAL (XEXP (x
, 1))
7519 & ((((unsigned HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
7520 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7521 return simplify_gen_binary (code
, mode
, tem
,
7522 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
7533 /* Look at the expression rooted at X. Look for expressions
7534 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7535 Form these expressions.
7537 Return the new rtx, usually just X.
7539 Also, for machines like the VAX that don't have logical shift insns,
7540 try to convert logical to arithmetic shift operations in cases where
7541 they are equivalent. This undoes the canonicalizations to logical
7542 shifts done elsewhere.
7544 We try, as much as possible, to re-use rtl expressions to save memory.
7546 IN_CODE says what kind of expression we are processing. Normally, it is
7547 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7548 being kludges), it is MEM. When processing the arguments of a comparison
7549 or a COMPARE against zero, it is COMPARE. */
7552 make_compound_operation (rtx x
, enum rtx_code in_code
)
7554 enum rtx_code code
= GET_CODE (x
);
7555 enum machine_mode mode
= GET_MODE (x
);
7556 int mode_width
= GET_MODE_PRECISION (mode
);
7558 enum rtx_code next_code
;
7564 /* Select the code to be used in recursive calls. Once we are inside an
7565 address, we stay there. If we have a comparison, set to COMPARE,
7566 but once inside, go back to our default of SET. */
7568 next_code
= (code
== MEM
? MEM
7569 : ((code
== PLUS
|| code
== MINUS
)
7570 && SCALAR_INT_MODE_P (mode
)) ? MEM
7571 : ((code
== COMPARE
|| COMPARISON_P (x
))
7572 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
7573 : in_code
== COMPARE
? SET
: in_code
);
7575 /* Process depending on the code of this operation. If NEW is set
7576 nonzero, it will be returned. */
7581 /* Convert shifts by constants into multiplications if inside
7583 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7584 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7585 && INTVAL (XEXP (x
, 1)) >= 0
7586 && SCALAR_INT_MODE_P (mode
))
7588 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7589 HOST_WIDE_INT multval
= (HOST_WIDE_INT
) 1 << count
;
7591 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7592 if (GET_CODE (new_rtx
) == NEG
)
7594 new_rtx
= XEXP (new_rtx
, 0);
7597 multval
= trunc_int_for_mode (multval
, mode
);
7598 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, GEN_INT (multval
));
7605 lhs
= make_compound_operation (lhs
, next_code
);
7606 rhs
= make_compound_operation (rhs
, next_code
);
7607 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
7608 && SCALAR_INT_MODE_P (mode
))
7610 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7612 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7614 else if (GET_CODE (lhs
) == MULT
7615 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7617 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7618 simplify_gen_unary (NEG
, mode
,
7621 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7625 SUBST (XEXP (x
, 0), lhs
);
7626 SUBST (XEXP (x
, 1), rhs
);
7629 x
= gen_lowpart (mode
, new_rtx
);
7635 lhs
= make_compound_operation (lhs
, next_code
);
7636 rhs
= make_compound_operation (rhs
, next_code
);
7637 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
7638 && SCALAR_INT_MODE_P (mode
))
7640 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7642 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7644 else if (GET_CODE (rhs
) == MULT
7645 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7647 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7648 simplify_gen_unary (NEG
, mode
,
7651 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7655 SUBST (XEXP (x
, 0), lhs
);
7656 SUBST (XEXP (x
, 1), rhs
);
7659 return gen_lowpart (mode
, new_rtx
);
7662 /* If the second operand is not a constant, we can't do anything
7664 if (!CONST_INT_P (XEXP (x
, 1)))
7667 /* If the constant is a power of two minus one and the first operand
7668 is a logical right shift, make an extraction. */
7669 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7670 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7672 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7673 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7674 0, in_code
== COMPARE
);
7677 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7678 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7679 && subreg_lowpart_p (XEXP (x
, 0))
7680 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7681 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7683 new_rtx
= make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
7685 new_rtx
= make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new_rtx
, 0,
7686 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
7687 0, in_code
== COMPARE
);
7689 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7690 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7691 || GET_CODE (XEXP (x
, 0)) == IOR
)
7692 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7693 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7694 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7696 /* Apply the distributive law, and then try to make extractions. */
7697 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7698 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7700 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7702 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7705 /* If we are have (and (rotate X C) M) and C is larger than the number
7706 of bits in M, this is an extraction. */
7708 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7709 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7710 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7711 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7713 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7714 new_rtx
= make_extraction (mode
, new_rtx
,
7715 (GET_MODE_PRECISION (mode
)
7716 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7717 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7720 /* On machines without logical shifts, if the operand of the AND is
7721 a logical shift and our mask turns off all the propagated sign
7722 bits, we can replace the logical shift with an arithmetic shift. */
7723 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7724 && !have_insn_for (LSHIFTRT
, mode
)
7725 && have_insn_for (ASHIFTRT
, mode
)
7726 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7727 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7728 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7729 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7731 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
7733 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
7734 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
7736 gen_rtx_ASHIFTRT (mode
,
7737 make_compound_operation
7738 (XEXP (XEXP (x
, 0), 0), next_code
),
7739 XEXP (XEXP (x
, 0), 1)));
7742 /* If the constant is one less than a power of two, this might be
7743 representable by an extraction even if no shift is present.
7744 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7745 we are in a COMPARE. */
7746 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7747 new_rtx
= make_extraction (mode
,
7748 make_compound_operation (XEXP (x
, 0),
7750 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7752 /* If we are in a comparison and this is an AND with a power of two,
7753 convert this into the appropriate bit extract. */
7754 else if (in_code
== COMPARE
7755 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
7756 new_rtx
= make_extraction (mode
,
7757 make_compound_operation (XEXP (x
, 0),
7759 i
, NULL_RTX
, 1, 1, 0, 1);
7764 /* If the sign bit is known to be zero, replace this with an
7765 arithmetic shift. */
7766 if (have_insn_for (ASHIFTRT
, mode
)
7767 && ! have_insn_for (LSHIFTRT
, mode
)
7768 && mode_width
<= HOST_BITS_PER_WIDE_INT
7769 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
7771 new_rtx
= gen_rtx_ASHIFTRT (mode
,
7772 make_compound_operation (XEXP (x
, 0),
7778 /* ... fall through ... */
7784 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7785 this is a SIGN_EXTRACT. */
7786 if (CONST_INT_P (rhs
)
7787 && GET_CODE (lhs
) == ASHIFT
7788 && CONST_INT_P (XEXP (lhs
, 1))
7789 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
7790 && INTVAL (XEXP (lhs
, 1)) >= 0
7791 && INTVAL (rhs
) < mode_width
)
7793 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
7794 new_rtx
= make_extraction (mode
, new_rtx
,
7795 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
7796 NULL_RTX
, mode_width
- INTVAL (rhs
),
7797 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7801 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7802 If so, try to merge the shifts into a SIGN_EXTEND. We could
7803 also do this for some cases of SIGN_EXTRACT, but it doesn't
7804 seem worth the effort; the case checked for occurs on Alpha. */
7807 && ! (GET_CODE (lhs
) == SUBREG
7808 && (OBJECT_P (SUBREG_REG (lhs
))))
7809 && CONST_INT_P (rhs
)
7810 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
7811 && INTVAL (rhs
) < mode_width
7812 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
7813 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
7814 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
7815 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7820 /* Call ourselves recursively on the inner expression. If we are
7821 narrowing the object and it has a different RTL code from
7822 what it originally did, do this SUBREG as a force_to_mode. */
7824 rtx inner
= SUBREG_REG (x
), simplified
;
7826 tem
= make_compound_operation (inner
, in_code
);
7829 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
7833 if (GET_CODE (tem
) != GET_CODE (inner
)
7834 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7835 && subreg_lowpart_p (x
))
7838 = force_to_mode (tem
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
7840 /* If we have something other than a SUBREG, we might have
7841 done an expansion, so rerun ourselves. */
7842 if (GET_CODE (newer
) != SUBREG
)
7843 newer
= make_compound_operation (newer
, in_code
);
7845 /* force_to_mode can expand compounds. If it just re-expanded the
7846 compound, use gen_lowpart to convert to the desired mode. */
7847 if (rtx_equal_p (newer
, x
)
7848 /* Likewise if it re-expanded the compound only partially.
7849 This happens for SUBREG of ZERO_EXTRACT if they extract
7850 the same number of bits. */
7851 || (GET_CODE (newer
) == SUBREG
7852 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
7853 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
7854 && GET_CODE (inner
) == AND
7855 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
7856 return gen_lowpart (GET_MODE (x
), tem
);
7872 x
= gen_lowpart (mode
, new_rtx
);
7873 code
= GET_CODE (x
);
7876 /* Now recursively process each operand of this operation. We need to
7877 handle ZERO_EXTEND specially so that we don't lose track of the
7879 if (GET_CODE (x
) == ZERO_EXTEND
)
7881 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7882 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7883 new_rtx
, GET_MODE (XEXP (x
, 0)));
7886 SUBST (XEXP (x
, 0), new_rtx
);
7890 fmt
= GET_RTX_FORMAT (code
);
7891 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7894 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
7895 SUBST (XEXP (x
, i
), new_rtx
);
7897 else if (fmt
[i
] == 'E')
7898 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7900 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
7901 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
7905 /* If this is a commutative operation, the changes to the operands
7906 may have made it noncanonical. */
7907 if (COMMUTATIVE_ARITH_P (x
)
7908 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
7911 SUBST (XEXP (x
, 0), XEXP (x
, 1));
7912 SUBST (XEXP (x
, 1), tem
);
7918 /* Given M see if it is a value that would select a field of bits
7919 within an item, but not the entire word. Return -1 if not.
7920 Otherwise, return the starting position of the field, where 0 is the
7923 *PLEN is set to the length of the field. */
7926 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
7928 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7929 int pos
= m
? ctz_hwi (m
) : -1;
7933 /* Now shift off the low-order zero bits and see if we have a
7934 power of two minus 1. */
7935 len
= exact_log2 ((m
>> pos
) + 1);
7944 /* If X refers to a register that equals REG in value, replace these
7945 references with REG. */
7947 canon_reg_for_combine (rtx x
, rtx reg
)
7954 enum rtx_code code
= GET_CODE (x
);
7955 switch (GET_RTX_CLASS (code
))
7958 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7959 if (op0
!= XEXP (x
, 0))
7960 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
7965 case RTX_COMM_ARITH
:
7966 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7967 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7968 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7969 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
7973 case RTX_COMM_COMPARE
:
7974 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7975 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7976 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7977 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
7978 GET_MODE (op0
), op0
, op1
);
7982 case RTX_BITFIELD_OPS
:
7983 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7984 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7985 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
7986 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
7987 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
7988 GET_MODE (op0
), op0
, op1
, op2
);
7993 if (rtx_equal_p (get_last_value (reg
), x
)
7994 || rtx_equal_p (reg
, get_last_value (x
)))
8003 fmt
= GET_RTX_FORMAT (code
);
8005 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8008 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8009 if (op
!= XEXP (x
, i
))
8019 else if (fmt
[i
] == 'E')
8022 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8024 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8025 if (op
!= XVECEXP (x
, i
, j
))
8032 XVECEXP (x
, i
, j
) = op
;
8043 /* Return X converted to MODE. If the value is already truncated to
8044 MODE we can just return a subreg even though in the general case we
8045 would need an explicit truncation. */
8048 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
8050 if (!CONST_INT_P (x
)
8051 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
8052 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8053 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8055 /* Bit-cast X into an integer mode. */
8056 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8057 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
8058 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
8062 return gen_lowpart (mode
, x
);
8065 /* See if X can be simplified knowing that we will only refer to it in
8066 MODE and will only refer to those bits that are nonzero in MASK.
8067 If other bits are being computed or if masking operations are done
8068 that select a superset of the bits in MASK, they can sometimes be
8071 Return a possibly simplified expression, but always convert X to
8072 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8074 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8075 are all off in X. This is used when X will be complemented, by either
8076 NOT, NEG, or XOR. */
8079 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8082 enum rtx_code code
= GET_CODE (x
);
8083 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8084 enum machine_mode op_mode
;
8085 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8088 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8089 code below will do the wrong thing since the mode of such an
8090 expression is VOIDmode.
8092 Also do nothing if X is a CLOBBER; this can happen if X was
8093 the return value from a call to gen_lowpart. */
8094 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8097 /* We want to perform the operation is its present mode unless we know
8098 that the operation is valid in MODE, in which case we do the operation
8100 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8101 && have_insn_for (code
, mode
))
8102 ? mode
: GET_MODE (x
));
8104 /* It is not valid to do a right-shift in a narrower mode
8105 than the one it came in with. */
8106 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8107 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8108 op_mode
= GET_MODE (x
);
8110 /* Truncate MASK to fit OP_MODE. */
8112 mask
&= GET_MODE_MASK (op_mode
);
8114 /* When we have an arithmetic operation, or a shift whose count we
8115 do not know, we need to assume that all bits up to the highest-order
8116 bit in MASK will be needed. This is how we form such a mask. */
8117 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
8118 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
8120 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
8123 /* Determine what bits of X are guaranteed to be (non)zero. */
8124 nonzero
= nonzero_bits (x
, mode
);
8126 /* If none of the bits in X are needed, return a zero. */
8127 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8130 /* If X is a CONST_INT, return a new one. Do this here since the
8131 test below will fail. */
8132 if (CONST_INT_P (x
))
8134 if (SCALAR_INT_MODE_P (mode
))
8135 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8138 x
= GEN_INT (INTVAL (x
) & mask
);
8139 return gen_lowpart_common (mode
, x
);
8143 /* If X is narrower than MODE and we want all the bits in X's mode, just
8144 get X in the proper mode. */
8145 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8146 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8147 return gen_lowpart (mode
, x
);
8149 /* We can ignore the effect of a SUBREG if it narrows the mode or
8150 if the constant masks to zero all the bits the mode doesn't have. */
8151 if (GET_CODE (x
) == SUBREG
8152 && subreg_lowpart_p (x
)
8153 && ((GET_MODE_SIZE (GET_MODE (x
))
8154 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8156 & GET_MODE_MASK (GET_MODE (x
))
8157 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8158 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8160 /* The arithmetic simplifications here only work for scalar integer modes. */
8161 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8162 return gen_lowpart_or_truncate (mode
, x
);
8167 /* If X is a (clobber (const_int)), return it since we know we are
8168 generating something that won't match. */
8175 x
= expand_compound_operation (x
);
8176 if (GET_CODE (x
) != code
)
8177 return force_to_mode (x
, mode
, mask
, next_select
);
8181 /* Similarly for a truncate. */
8182 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8185 /* If this is an AND with a constant, convert it into an AND
8186 whose constant is the AND of that constant with MASK. If it
8187 remains an AND of MASK, delete it since it is redundant. */
8189 if (CONST_INT_P (XEXP (x
, 1)))
8191 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8192 mask
& INTVAL (XEXP (x
, 1)));
8194 /* If X is still an AND, see if it is an AND with a mask that
8195 is just some low-order bits. If so, and it is MASK, we don't
8198 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8199 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8203 /* If it remains an AND, try making another AND with the bits
8204 in the mode mask that aren't in MASK turned on. If the
8205 constant in the AND is wide enough, this might make a
8206 cheaper constant. */
8208 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8209 && GET_MODE_MASK (GET_MODE (x
)) != mask
8210 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8212 unsigned HOST_WIDE_INT cval
8213 = UINTVAL (XEXP (x
, 1))
8214 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8215 int width
= GET_MODE_PRECISION (GET_MODE (x
));
8218 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8219 number, sign extend it. */
8220 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
8221 && (cval
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
8222 cval
|= (unsigned HOST_WIDE_INT
) -1 << width
;
8224 y
= simplify_gen_binary (AND
, GET_MODE (x
),
8225 XEXP (x
, 0), GEN_INT (cval
));
8226 if (set_src_cost (y
, optimize_this_for_speed_p
)
8227 < set_src_cost (x
, optimize_this_for_speed_p
))
8237 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8238 low-order bits (as in an alignment operation) and FOO is already
8239 aligned to that boundary, mask C1 to that boundary as well.
8240 This may eliminate that PLUS and, later, the AND. */
8243 unsigned int width
= GET_MODE_PRECISION (mode
);
8244 unsigned HOST_WIDE_INT smask
= mask
;
8246 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8247 number, sign extend it. */
8249 if (width
< HOST_BITS_PER_WIDE_INT
8250 && (smask
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
8251 smask
|= (unsigned HOST_WIDE_INT
) (-1) << width
;
8253 if (CONST_INT_P (XEXP (x
, 1))
8254 && exact_log2 (- smask
) >= 0
8255 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8256 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8257 return force_to_mode (plus_constant (XEXP (x
, 0),
8258 (INTVAL (XEXP (x
, 1)) & smask
)),
8259 mode
, smask
, next_select
);
8262 /* ... fall through ... */
8265 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8266 most significant bit in MASK since carries from those bits will
8267 affect the bits we are interested in. */
8272 /* If X is (minus C Y) where C's least set bit is larger than any bit
8273 in the mask, then we may replace with (neg Y). */
8274 if (CONST_INT_P (XEXP (x
, 0))
8275 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
8276 & -INTVAL (XEXP (x
, 0))))
8279 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8281 return force_to_mode (x
, mode
, mask
, next_select
);
8284 /* Similarly, if C contains every bit in the fuller_mask, then we may
8285 replace with (not Y). */
8286 if (CONST_INT_P (XEXP (x
, 0))
8287 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8289 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8290 XEXP (x
, 1), GET_MODE (x
));
8291 return force_to_mode (x
, mode
, mask
, next_select
);
8299 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8300 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8301 operation which may be a bitfield extraction. Ensure that the
8302 constant we form is not wider than the mode of X. */
8304 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8305 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8306 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8307 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8308 && CONST_INT_P (XEXP (x
, 1))
8309 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8310 + floor_log2 (INTVAL (XEXP (x
, 1))))
8311 < GET_MODE_PRECISION (GET_MODE (x
)))
8312 && (UINTVAL (XEXP (x
, 1))
8313 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8315 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
8316 << INTVAL (XEXP (XEXP (x
, 0), 1)));
8317 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8318 XEXP (XEXP (x
, 0), 0), temp
);
8319 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8320 XEXP (XEXP (x
, 0), 1));
8321 return force_to_mode (x
, mode
, mask
, next_select
);
8325 /* For most binary operations, just propagate into the operation and
8326 change the mode if we have an operation of that mode. */
8328 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8329 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8331 /* If we ended up truncating both operands, truncate the result of the
8332 operation instead. */
8333 if (GET_CODE (op0
) == TRUNCATE
8334 && GET_CODE (op1
) == TRUNCATE
)
8336 op0
= XEXP (op0
, 0);
8337 op1
= XEXP (op1
, 0);
8340 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8341 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8343 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8344 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8348 /* For left shifts, do the same, but just for the first operand.
8349 However, we cannot do anything with shifts where we cannot
8350 guarantee that the counts are smaller than the size of the mode
8351 because such a count will have a different meaning in a
8354 if (! (CONST_INT_P (XEXP (x
, 1))
8355 && INTVAL (XEXP (x
, 1)) >= 0
8356 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8357 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8358 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8359 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8362 /* If the shift count is a constant and we can do arithmetic in
8363 the mode of the shift, refine which bits we need. Otherwise, use the
8364 conservative form of the mask. */
8365 if (CONST_INT_P (XEXP (x
, 1))
8366 && INTVAL (XEXP (x
, 1)) >= 0
8367 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8368 && HWI_COMPUTABLE_MODE_P (op_mode
))
8369 mask
>>= INTVAL (XEXP (x
, 1));
8373 op0
= gen_lowpart_or_truncate (op_mode
,
8374 force_to_mode (XEXP (x
, 0), op_mode
,
8375 mask
, next_select
));
8377 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8378 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8382 /* Here we can only do something if the shift count is a constant,
8383 this shift constant is valid for the host, and we can do arithmetic
8386 if (CONST_INT_P (XEXP (x
, 1))
8387 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8388 && HWI_COMPUTABLE_MODE_P (op_mode
))
8390 rtx inner
= XEXP (x
, 0);
8391 unsigned HOST_WIDE_INT inner_mask
;
8393 /* Select the mask of the bits we need for the shift operand. */
8394 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8396 /* We can only change the mode of the shift if we can do arithmetic
8397 in the mode of the shift and INNER_MASK is no wider than the
8398 width of X's mode. */
8399 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8400 op_mode
= GET_MODE (x
);
8402 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8404 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8405 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8408 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8409 shift and AND produces only copies of the sign bit (C2 is one less
8410 than a power of two), we can do this with just a shift. */
8412 if (GET_CODE (x
) == LSHIFTRT
8413 && CONST_INT_P (XEXP (x
, 1))
8414 /* The shift puts one of the sign bit copies in the least significant
8416 && ((INTVAL (XEXP (x
, 1))
8417 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8418 >= GET_MODE_PRECISION (GET_MODE (x
)))
8419 && exact_log2 (mask
+ 1) >= 0
8420 /* Number of bits left after the shift must be more than the mask
8422 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8423 <= GET_MODE_PRECISION (GET_MODE (x
)))
8424 /* Must be more sign bit copies than the mask needs. */
8425 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8426 >= exact_log2 (mask
+ 1)))
8427 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8428 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8429 - exact_log2 (mask
+ 1)));
8434 /* If we are just looking for the sign bit, we don't need this shift at
8435 all, even if it has a variable count. */
8436 if (val_signbit_p (GET_MODE (x
), mask
))
8437 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8439 /* If this is a shift by a constant, get a mask that contains those bits
8440 that are not copies of the sign bit. We then have two cases: If
8441 MASK only includes those bits, this can be a logical shift, which may
8442 allow simplifications. If MASK is a single-bit field not within
8443 those bits, we are requesting a copy of the sign bit and hence can
8444 shift the sign bit to the appropriate location. */
8446 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8447 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8451 /* If the considered data is wider than HOST_WIDE_INT, we can't
8452 represent a mask for all its bits in a single scalar.
8453 But we only care about the lower bits, so calculate these. */
8455 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8457 nonzero
= ~(unsigned HOST_WIDE_INT
) 0;
8459 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8460 is the number of bits a full-width mask would have set.
8461 We need only shift if these are fewer than nonzero can
8462 hold. If not, we must keep all bits set in nonzero. */
8464 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8465 < HOST_BITS_PER_WIDE_INT
)
8466 nonzero
>>= INTVAL (XEXP (x
, 1))
8467 + HOST_BITS_PER_WIDE_INT
8468 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8472 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8473 nonzero
>>= INTVAL (XEXP (x
, 1));
8476 if ((mask
& ~nonzero
) == 0)
8478 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8479 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8480 if (GET_CODE (x
) != ASHIFTRT
)
8481 return force_to_mode (x
, mode
, mask
, next_select
);
8484 else if ((i
= exact_log2 (mask
)) >= 0)
8486 x
= simplify_shift_const
8487 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8488 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8490 if (GET_CODE (x
) != ASHIFTRT
)
8491 return force_to_mode (x
, mode
, mask
, next_select
);
8495 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8496 even if the shift count isn't a constant. */
8498 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8499 XEXP (x
, 0), XEXP (x
, 1));
8503 /* If this is a zero- or sign-extension operation that just affects bits
8504 we don't care about, remove it. Be sure the call above returned
8505 something that is still a shift. */
8507 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8508 && CONST_INT_P (XEXP (x
, 1))
8509 && INTVAL (XEXP (x
, 1)) >= 0
8510 && (INTVAL (XEXP (x
, 1))
8511 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8512 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8513 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8514 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8521 /* If the shift count is constant and we can do computations
8522 in the mode of X, compute where the bits we care about are.
8523 Otherwise, we can't do anything. Don't change the mode of
8524 the shift or propagate MODE into the shift, though. */
8525 if (CONST_INT_P (XEXP (x
, 1))
8526 && INTVAL (XEXP (x
, 1)) >= 0)
8528 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8529 GET_MODE (x
), GEN_INT (mask
),
8531 if (temp
&& CONST_INT_P (temp
))
8533 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8534 INTVAL (temp
), next_select
));
8539 /* If we just want the low-order bit, the NEG isn't needed since it
8540 won't change the low-order bit. */
8542 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8544 /* We need any bits less significant than the most significant bit in
8545 MASK since carries from those bits will affect the bits we are
8551 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8552 same as the XOR case above. Ensure that the constant we form is not
8553 wider than the mode of X. */
8555 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8556 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8557 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8558 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8559 < GET_MODE_PRECISION (GET_MODE (x
)))
8560 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8562 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8564 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8565 XEXP (XEXP (x
, 0), 0), temp
);
8566 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8567 temp
, XEXP (XEXP (x
, 0), 1));
8569 return force_to_mode (x
, mode
, mask
, next_select
);
8572 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8573 use the full mask inside the NOT. */
8577 op0
= gen_lowpart_or_truncate (op_mode
,
8578 force_to_mode (XEXP (x
, 0), mode
, mask
,
8580 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8581 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8585 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8586 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8587 which is equal to STORE_FLAG_VALUE. */
8588 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8589 && XEXP (x
, 1) == const0_rtx
8590 && GET_MODE (XEXP (x
, 0)) == mode
8591 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
8592 && (nonzero_bits (XEXP (x
, 0), mode
)
8593 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8594 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8599 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8600 written in a narrower mode. We play it safe and do not do so. */
8603 gen_lowpart_or_truncate (GET_MODE (x
),
8604 force_to_mode (XEXP (x
, 1), mode
,
8605 mask
, next_select
)));
8607 gen_lowpart_or_truncate (GET_MODE (x
),
8608 force_to_mode (XEXP (x
, 2), mode
,
8609 mask
, next_select
)));
8616 /* Ensure we return a value of the proper mode. */
8617 return gen_lowpart_or_truncate (mode
, x
);
8620 /* Return nonzero if X is an expression that has one of two values depending on
8621 whether some other value is zero or nonzero. In that case, we return the
8622 value that is being tested, *PTRUE is set to the value if the rtx being
8623 returned has a nonzero value, and *PFALSE is set to the other alternative.
8625 If we return zero, we set *PTRUE and *PFALSE to X. */
8628 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
8630 enum machine_mode mode
= GET_MODE (x
);
8631 enum rtx_code code
= GET_CODE (x
);
8632 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
8633 unsigned HOST_WIDE_INT nz
;
8635 /* If we are comparing a value against zero, we are done. */
8636 if ((code
== NE
|| code
== EQ
)
8637 && XEXP (x
, 1) == const0_rtx
)
8639 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
8640 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
8644 /* If this is a unary operation whose operand has one of two values, apply
8645 our opcode to compute those values. */
8646 else if (UNARY_P (x
)
8647 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
8649 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
8650 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
8651 GET_MODE (XEXP (x
, 0)));
8655 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8656 make can't possibly match and would suppress other optimizations. */
8657 else if (code
== COMPARE
)
8660 /* If this is a binary operation, see if either side has only one of two
8661 values. If either one does or if both do and they are conditional on
8662 the same value, compute the new true and false values. */
8663 else if (BINARY_P (x
))
8665 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
8666 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
8668 if ((cond0
!= 0 || cond1
!= 0)
8669 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
8671 /* If if_then_else_cond returned zero, then true/false are the
8672 same rtl. We must copy one of them to prevent invalid rtl
8675 true0
= copy_rtx (true0
);
8676 else if (cond1
== 0)
8677 true1
= copy_rtx (true1
);
8679 if (COMPARISON_P (x
))
8681 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
8683 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
8688 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
8689 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
8692 return cond0
? cond0
: cond1
;
8695 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8696 operands is zero when the other is nonzero, and vice-versa,
8697 and STORE_FLAG_VALUE is 1 or -1. */
8699 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8700 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
8702 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8704 rtx op0
= XEXP (XEXP (x
, 0), 1);
8705 rtx op1
= XEXP (XEXP (x
, 1), 1);
8707 cond0
= XEXP (XEXP (x
, 0), 0);
8708 cond1
= XEXP (XEXP (x
, 1), 0);
8710 if (COMPARISON_P (cond0
)
8711 && COMPARISON_P (cond1
)
8712 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8713 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8714 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8715 || ((swap_condition (GET_CODE (cond0
))
8716 == reversed_comparison_code (cond1
, NULL
))
8717 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8718 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8719 && ! side_effects_p (x
))
8721 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
8722 *pfalse
= simplify_gen_binary (MULT
, mode
,
8724 ? simplify_gen_unary (NEG
, mode
,
8732 /* Similarly for MULT, AND and UMIN, except that for these the result
8734 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8735 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
8736 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8738 cond0
= XEXP (XEXP (x
, 0), 0);
8739 cond1
= XEXP (XEXP (x
, 1), 0);
8741 if (COMPARISON_P (cond0
)
8742 && COMPARISON_P (cond1
)
8743 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8744 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8745 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8746 || ((swap_condition (GET_CODE (cond0
))
8747 == reversed_comparison_code (cond1
, NULL
))
8748 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8749 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8750 && ! side_effects_p (x
))
8752 *ptrue
= *pfalse
= const0_rtx
;
8758 else if (code
== IF_THEN_ELSE
)
8760 /* If we have IF_THEN_ELSE already, extract the condition and
8761 canonicalize it if it is NE or EQ. */
8762 cond0
= XEXP (x
, 0);
8763 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
8764 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
8765 return XEXP (cond0
, 0);
8766 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
8768 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
8769 return XEXP (cond0
, 0);
8775 /* If X is a SUBREG, we can narrow both the true and false values
8776 if the inner expression, if there is a condition. */
8777 else if (code
== SUBREG
8778 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
8781 true0
= simplify_gen_subreg (mode
, true0
,
8782 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8783 false0
= simplify_gen_subreg (mode
, false0
,
8784 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8785 if (true0
&& false0
)
8793 /* If X is a constant, this isn't special and will cause confusions
8794 if we treat it as such. Likewise if it is equivalent to a constant. */
8795 else if (CONSTANT_P (x
)
8796 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
8799 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8800 will be least confusing to the rest of the compiler. */
8801 else if (mode
== BImode
)
8803 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
8807 /* If X is known to be either 0 or -1, those are the true and
8808 false values when testing X. */
8809 else if (x
== constm1_rtx
|| x
== const0_rtx
8810 || (mode
!= VOIDmode
8811 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
8813 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
8817 /* Likewise for 0 or a single bit. */
8818 else if (HWI_COMPUTABLE_MODE_P (mode
)
8819 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
8821 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
8825 /* Otherwise fail; show no condition with true and false values the same. */
8826 *ptrue
= *pfalse
= x
;
8830 /* Return the value of expression X given the fact that condition COND
8831 is known to be true when applied to REG as its first operand and VAL
8832 as its second. X is known to not be shared and so can be modified in
8835 We only handle the simplest cases, and specifically those cases that
8836 arise with IF_THEN_ELSE expressions. */
8839 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
8841 enum rtx_code code
= GET_CODE (x
);
8846 if (side_effects_p (x
))
8849 /* If either operand of the condition is a floating point value,
8850 then we have to avoid collapsing an EQ comparison. */
8852 && rtx_equal_p (x
, reg
)
8853 && ! FLOAT_MODE_P (GET_MODE (x
))
8854 && ! FLOAT_MODE_P (GET_MODE (val
)))
8857 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
8860 /* If X is (abs REG) and we know something about REG's relationship
8861 with zero, we may be able to simplify this. */
8863 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
8866 case GE
: case GT
: case EQ
:
8869 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
8871 GET_MODE (XEXP (x
, 0)));
8876 /* The only other cases we handle are MIN, MAX, and comparisons if the
8877 operands are the same as REG and VAL. */
8879 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
8881 if (rtx_equal_p (XEXP (x
, 0), val
))
8882 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
8884 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
8886 if (COMPARISON_P (x
))
8888 if (comparison_dominates_p (cond
, code
))
8889 return const_true_rtx
;
8891 code
= reversed_comparison_code (x
, NULL
);
8893 && comparison_dominates_p (cond
, code
))
8898 else if (code
== SMAX
|| code
== SMIN
8899 || code
== UMIN
|| code
== UMAX
)
8901 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
8903 /* Do not reverse the condition when it is NE or EQ.
8904 This is because we cannot conclude anything about
8905 the value of 'SMAX (x, y)' when x is not equal to y,
8906 but we can when x equals y. */
8907 if ((code
== SMAX
|| code
== UMAX
)
8908 && ! (cond
== EQ
|| cond
== NE
))
8909 cond
= reverse_condition (cond
);
8914 return unsignedp
? x
: XEXP (x
, 1);
8916 return unsignedp
? x
: XEXP (x
, 0);
8918 return unsignedp
? XEXP (x
, 1) : x
;
8920 return unsignedp
? XEXP (x
, 0) : x
;
8927 else if (code
== SUBREG
)
8929 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
8930 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
8932 if (SUBREG_REG (x
) != r
)
8934 /* We must simplify subreg here, before we lose track of the
8935 original inner_mode. */
8936 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
8937 inner_mode
, SUBREG_BYTE (x
));
8941 SUBST (SUBREG_REG (x
), r
);
8946 /* We don't have to handle SIGN_EXTEND here, because even in the
8947 case of replacing something with a modeless CONST_INT, a
8948 CONST_INT is already (supposed to be) a valid sign extension for
8949 its narrower mode, which implies it's already properly
8950 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8951 story is different. */
8952 else if (code
== ZERO_EXTEND
)
8954 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
8955 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
8957 if (XEXP (x
, 0) != r
)
8959 /* We must simplify the zero_extend here, before we lose
8960 track of the original inner_mode. */
8961 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8966 SUBST (XEXP (x
, 0), r
);
8972 fmt
= GET_RTX_FORMAT (code
);
8973 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8976 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
8977 else if (fmt
[i
] == 'E')
8978 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8979 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
8986 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8987 assignment as a field assignment. */
8990 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
8992 if (x
== y
|| rtx_equal_p (x
, y
))
8995 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
8998 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8999 Note that all SUBREGs of MEM are paradoxical; otherwise they
9000 would have been rewritten. */
9001 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9002 && MEM_P (SUBREG_REG (y
))
9003 && rtx_equal_p (SUBREG_REG (y
),
9004 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9007 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9008 && MEM_P (SUBREG_REG (x
))
9009 && rtx_equal_p (SUBREG_REG (x
),
9010 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9013 /* We used to see if get_last_value of X and Y were the same but that's
9014 not correct. In one direction, we'll cause the assignment to have
9015 the wrong destination and in the case, we'll import a register into this
9016 insn that might have already have been dead. So fail if none of the
9017 above cases are true. */
9021 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9022 Return that assignment if so.
9024 We only handle the most common cases. */
9027 make_field_assignment (rtx x
)
9029 rtx dest
= SET_DEST (x
);
9030 rtx src
= SET_SRC (x
);
9035 unsigned HOST_WIDE_INT len
;
9037 enum machine_mode mode
;
9039 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9040 a clear of a one-bit field. We will have changed it to
9041 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9044 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9045 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9046 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9047 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9049 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9052 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9056 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9057 && subreg_lowpart_p (XEXP (src
, 0))
9058 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
9059 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
9060 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9061 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9062 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9063 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9065 assign
= make_extraction (VOIDmode
, dest
, 0,
9066 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9069 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9073 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9075 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9076 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9077 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9079 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9082 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
9086 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9087 SRC is an AND with all bits of that field set, then we can discard
9089 if (GET_CODE (dest
) == ZERO_EXTRACT
9090 && CONST_INT_P (XEXP (dest
, 1))
9091 && GET_CODE (src
) == AND
9092 && CONST_INT_P (XEXP (src
, 1)))
9094 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9095 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9096 unsigned HOST_WIDE_INT ze_mask
;
9098 if (width
>= HOST_BITS_PER_WIDE_INT
)
9101 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9103 /* Complete overlap. We can remove the source AND. */
9104 if ((and_mask
& ze_mask
) == ze_mask
)
9105 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
9107 /* Partial overlap. We can reduce the source AND. */
9108 if ((and_mask
& ze_mask
) != and_mask
)
9110 mode
= GET_MODE (src
);
9111 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9112 gen_int_mode (and_mask
& ze_mask
, mode
));
9113 return gen_rtx_SET (VOIDmode
, dest
, src
);
9117 /* The other case we handle is assignments into a constant-position
9118 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9119 a mask that has all one bits except for a group of zero bits and
9120 OTHER is known to have zeros where C1 has ones, this is such an
9121 assignment. Compute the position and length from C1. Shift OTHER
9122 to the appropriate position, force it to the required mode, and
9123 make the extraction. Check for the AND in both operands. */
9125 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9128 rhs
= expand_compound_operation (XEXP (src
, 0));
9129 lhs
= expand_compound_operation (XEXP (src
, 1));
9131 if (GET_CODE (rhs
) == AND
9132 && CONST_INT_P (XEXP (rhs
, 1))
9133 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9134 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9135 else if (GET_CODE (lhs
) == AND
9136 && CONST_INT_P (XEXP (lhs
, 1))
9137 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9138 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9142 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9143 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9144 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9145 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9148 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9152 /* The mode to use for the source is the mode of the assignment, or of
9153 what is inside a possible STRICT_LOW_PART. */
9154 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9155 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9157 /* Shift OTHER right POS places and make it the source, restricting it
9158 to the proper length and mode. */
9160 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9164 src
= force_to_mode (src
, mode
,
9165 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9166 ? ~(unsigned HOST_WIDE_INT
) 0
9167 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
9170 /* If SRC is masked by an AND that does not make a difference in
9171 the value being stored, strip it. */
9172 if (GET_CODE (assign
) == ZERO_EXTRACT
9173 && CONST_INT_P (XEXP (assign
, 1))
9174 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9175 && GET_CODE (src
) == AND
9176 && CONST_INT_P (XEXP (src
, 1))
9177 && UINTVAL (XEXP (src
, 1))
9178 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1)
9179 src
= XEXP (src
, 0);
9181 return gen_rtx_SET (VOIDmode
, assign
, src
);
9184 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9188 apply_distributive_law (rtx x
)
9190 enum rtx_code code
= GET_CODE (x
);
9191 enum rtx_code inner_code
;
9192 rtx lhs
, rhs
, other
;
9195 /* Distributivity is not true for floating point as it can change the
9196 value. So we don't do it unless -funsafe-math-optimizations. */
9197 if (FLOAT_MODE_P (GET_MODE (x
))
9198 && ! flag_unsafe_math_optimizations
)
9201 /* The outer operation can only be one of the following: */
9202 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9203 && code
!= PLUS
&& code
!= MINUS
)
9209 /* If either operand is a primitive we can't do anything, so get out
9211 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9214 lhs
= expand_compound_operation (lhs
);
9215 rhs
= expand_compound_operation (rhs
);
9216 inner_code
= GET_CODE (lhs
);
9217 if (inner_code
!= GET_CODE (rhs
))
9220 /* See if the inner and outer operations distribute. */
9227 /* These all distribute except over PLUS. */
9228 if (code
== PLUS
|| code
== MINUS
)
9233 if (code
!= PLUS
&& code
!= MINUS
)
9238 /* This is also a multiply, so it distributes over everything. */
9242 /* Non-paradoxical SUBREGs distributes over all operations,
9243 provided the inner modes and byte offsets are the same, this
9244 is an extraction of a low-order part, we don't convert an fp
9245 operation to int or vice versa, this is not a vector mode,
9246 and we would not be converting a single-word operation into a
9247 multi-word operation. The latter test is not required, but
9248 it prevents generating unneeded multi-word operations. Some
9249 of the previous tests are redundant given the latter test,
9250 but are retained because they are required for correctness.
9252 We produce the result slightly differently in this case. */
9254 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
9255 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
9256 || ! subreg_lowpart_p (lhs
)
9257 || (GET_MODE_CLASS (GET_MODE (lhs
))
9258 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
9259 || paradoxical_subreg_p (lhs
)
9260 || VECTOR_MODE_P (GET_MODE (lhs
))
9261 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
9262 /* Result might need to be truncated. Don't change mode if
9263 explicit truncation is needed. */
9264 || !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x
),
9265 GET_MODE (SUBREG_REG (lhs
))))
9268 tem
= simplify_gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
9269 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
9270 return gen_lowpart (GET_MODE (x
), tem
);
9276 /* Set LHS and RHS to the inner operands (A and B in the example
9277 above) and set OTHER to the common operand (C in the example).
9278 There is only one way to do this unless the inner operation is
9280 if (COMMUTATIVE_ARITH_P (lhs
)
9281 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9282 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9283 else if (COMMUTATIVE_ARITH_P (lhs
)
9284 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9285 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9286 else if (COMMUTATIVE_ARITH_P (lhs
)
9287 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9288 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9289 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9290 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9294 /* Form the new inner operation, seeing if it simplifies first. */
9295 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9297 /* There is one exception to the general way of distributing:
9298 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9299 if (code
== XOR
&& inner_code
== IOR
)
9302 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9305 /* We may be able to continuing distributing the result, so call
9306 ourselves recursively on the inner operation before forming the
9307 outer operation, which we return. */
9308 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9309 apply_distributive_law (tem
), other
);
9312 /* See if X is of the form (* (+ A B) C), and if so convert to
9313 (+ (* A C) (* B C)) and try to simplify.
9315 Most of the time, this results in no change. However, if some of
9316 the operands are the same or inverses of each other, simplifications
9319 For example, (and (ior A B) (not B)) can occur as the result of
9320 expanding a bit field assignment. When we apply the distributive
9321 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9322 which then simplifies to (and (A (not B))).
9324 Note that no checks happen on the validity of applying the inverse
9325 distributive law. This is pointless since we can do it in the
9326 few places where this routine is called.
9328 N is the index of the term that is decomposed (the arithmetic operation,
9329 i.e. (+ A B) in the first example above). !N is the index of the term that
9330 is distributed, i.e. of C in the first example above. */
9332 distribute_and_simplify_rtx (rtx x
, int n
)
9334 enum machine_mode mode
;
9335 enum rtx_code outer_code
, inner_code
;
9336 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9338 /* Distributivity is not true for floating point as it can change the
9339 value. So we don't do it unless -funsafe-math-optimizations. */
9340 if (FLOAT_MODE_P (GET_MODE (x
))
9341 && ! flag_unsafe_math_optimizations
)
9344 decomposed
= XEXP (x
, n
);
9345 if (!ARITHMETIC_P (decomposed
))
9348 mode
= GET_MODE (x
);
9349 outer_code
= GET_CODE (x
);
9350 distributed
= XEXP (x
, !n
);
9352 inner_code
= GET_CODE (decomposed
);
9353 inner_op0
= XEXP (decomposed
, 0);
9354 inner_op1
= XEXP (decomposed
, 1);
9356 /* Special case (and (xor B C) (not A)), which is equivalent to
9357 (xor (ior A B) (ior A C)) */
9358 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9360 distributed
= XEXP (distributed
, 0);
9366 /* Distribute the second term. */
9367 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9368 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9372 /* Distribute the first term. */
9373 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9374 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9377 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9379 if (GET_CODE (tmp
) != outer_code
9380 && (set_src_cost (tmp
, optimize_this_for_speed_p
)
9381 < set_src_cost (x
, optimize_this_for_speed_p
)))
9387 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9388 in MODE. Return an equivalent form, if different from (and VAROP
9389 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9392 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
9393 unsigned HOST_WIDE_INT constop
)
9395 unsigned HOST_WIDE_INT nonzero
;
9396 unsigned HOST_WIDE_INT orig_constop
;
9401 orig_constop
= constop
;
9402 if (GET_CODE (varop
) == CLOBBER
)
9405 /* Simplify VAROP knowing that we will be only looking at some of the
9408 Note by passing in CONSTOP, we guarantee that the bits not set in
9409 CONSTOP are not significant and will never be examined. We must
9410 ensure that is the case by explicitly masking out those bits
9411 before returning. */
9412 varop
= force_to_mode (varop
, mode
, constop
, 0);
9414 /* If VAROP is a CLOBBER, we will fail so return it. */
9415 if (GET_CODE (varop
) == CLOBBER
)
9418 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9419 to VAROP and return the new constant. */
9420 if (CONST_INT_P (varop
))
9421 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9423 /* See what bits may be nonzero in VAROP. Unlike the general case of
9424 a call to nonzero_bits, here we don't care about bits outside
9427 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9429 /* Turn off all bits in the constant that are known to already be zero.
9430 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9431 which is tested below. */
9435 /* If we don't have any bits left, return zero. */
9439 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9440 a power of two, we can replace this with an ASHIFT. */
9441 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9442 && (i
= exact_log2 (constop
)) >= 0)
9443 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9445 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9446 or XOR, then try to apply the distributive law. This may eliminate
9447 operations if either branch can be simplified because of the AND.
9448 It may also make some cases more complex, but those cases probably
9449 won't match a pattern either with or without this. */
9451 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9455 apply_distributive_law
9456 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9457 simplify_and_const_int (NULL_RTX
,
9461 simplify_and_const_int (NULL_RTX
,
9466 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9467 the AND and see if one of the operands simplifies to zero. If so, we
9468 may eliminate it. */
9470 if (GET_CODE (varop
) == PLUS
9471 && exact_log2 (constop
+ 1) >= 0)
9475 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9476 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9477 if (o0
== const0_rtx
)
9479 if (o1
== const0_rtx
)
9483 /* Make a SUBREG if necessary. If we can't make it, fail. */
9484 varop
= gen_lowpart (mode
, varop
);
9485 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9488 /* If we are only masking insignificant bits, return VAROP. */
9489 if (constop
== nonzero
)
9492 if (varop
== orig_varop
&& constop
== orig_constop
)
9495 /* Otherwise, return an AND. */
9496 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9500 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9503 Return an equivalent form, if different from X. Otherwise, return X. If
9504 X is zero, we are to always construct the equivalent form. */
9507 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
9508 unsigned HOST_WIDE_INT constop
)
9510 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9515 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9516 gen_int_mode (constop
, mode
));
9517 if (GET_MODE (x
) != mode
)
9518 x
= gen_lowpart (mode
, x
);
9522 /* Given a REG, X, compute which bits in X can be nonzero.
9523 We don't care about bits outside of those defined in MODE.
9525 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9526 a shift, AND, or zero_extract, we can do better. */
9529 reg_nonzero_bits_for_combine (const_rtx x
, enum machine_mode mode
,
9530 const_rtx known_x ATTRIBUTE_UNUSED
,
9531 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
9532 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9533 unsigned HOST_WIDE_INT
*nonzero
)
9538 /* If X is a register whose nonzero bits value is current, use it.
9539 Otherwise, if X is a register whose value we can find, use that
9540 value. Otherwise, use the previously-computed global nonzero bits
9541 for this register. */
9543 rsp
= VEC_index (reg_stat_type
, reg_stat
, REGNO (x
));
9544 if (rsp
->last_set_value
!= 0
9545 && (rsp
->last_set_mode
== mode
9546 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9547 && GET_MODE_CLASS (mode
) == MODE_INT
))
9548 && ((rsp
->last_set_label
>= label_tick_ebb_start
9549 && rsp
->last_set_label
< label_tick
)
9550 || (rsp
->last_set_label
== label_tick
9551 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9552 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9553 && REG_N_SETS (REGNO (x
)) == 1
9555 (DF_LR_IN (ENTRY_BLOCK_PTR
->next_bb
), REGNO (x
)))))
9557 *nonzero
&= rsp
->last_set_nonzero_bits
;
9561 tem
= get_last_value (x
);
9565 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9566 /* If X is narrower than MODE and TEM is a non-negative
9567 constant that would appear negative in the mode of X,
9568 sign-extend it for use in reg_nonzero_bits because some
9569 machines (maybe most) will actually do the sign-extension
9570 and this is the conservative approach.
9572 ??? For 2.5, try to tighten up the MD files in this regard
9573 instead of this kludge. */
9575 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
)
9576 && CONST_INT_P (tem
)
9578 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (tem
)))
9579 tem
= GEN_INT (INTVAL (tem
) | ~GET_MODE_MASK (GET_MODE (x
)));
9583 else if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
9585 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
9587 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
9588 /* We don't know anything about the upper bits. */
9589 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
9596 /* Return the number of bits at the high-order end of X that are known to
9597 be equal to the sign bit. X will be used in mode MODE; if MODE is
9598 VOIDmode, X will be used in its own mode. The returned value will always
9599 be between 1 and the number of bits in MODE. */
9602 reg_num_sign_bit_copies_for_combine (const_rtx x
, enum machine_mode mode
,
9603 const_rtx known_x ATTRIBUTE_UNUSED
,
9604 enum machine_mode known_mode
9606 unsigned int known_ret ATTRIBUTE_UNUSED
,
9607 unsigned int *result
)
9612 rsp
= VEC_index (reg_stat_type
, reg_stat
, REGNO (x
));
9613 if (rsp
->last_set_value
!= 0
9614 && rsp
->last_set_mode
== mode
9615 && ((rsp
->last_set_label
>= label_tick_ebb_start
9616 && rsp
->last_set_label
< label_tick
)
9617 || (rsp
->last_set_label
== label_tick
9618 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9619 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9620 && REG_N_SETS (REGNO (x
)) == 1
9622 (DF_LR_IN (ENTRY_BLOCK_PTR
->next_bb
), REGNO (x
)))))
9624 *result
= rsp
->last_set_sign_bit_copies
;
9628 tem
= get_last_value (x
);
9632 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
9633 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
9634 *result
= rsp
->sign_bit_copies
;
9639 /* Return the number of "extended" bits there are in X, when interpreted
9640 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9641 unsigned quantities, this is the number of high-order zero bits.
9642 For signed quantities, this is the number of copies of the sign bit
9643 minus 1. In both case, this function returns the number of "spare"
9644 bits. For example, if two quantities for which this function returns
9645 at least 1 are added, the addition is known not to overflow.
9647 This function will always return 0 unless called during combine, which
9648 implies that it must be called from a define_split. */
9651 extended_count (const_rtx x
, enum machine_mode mode
, int unsignedp
)
9653 if (nonzero_sign_valid
== 0)
9657 ? (HWI_COMPUTABLE_MODE_P (mode
)
9658 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
9659 - floor_log2 (nonzero_bits (x
, mode
)))
9661 : num_sign_bit_copies (x
, mode
) - 1);
9664 /* This function is called from `simplify_shift_const' to merge two
9665 outer operations. Specifically, we have already found that we need
9666 to perform operation *POP0 with constant *PCONST0 at the outermost
9667 position. We would now like to also perform OP1 with constant CONST1
9668 (with *POP0 being done last).
9670 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9671 the resulting operation. *PCOMP_P is set to 1 if we would need to
9672 complement the innermost operand, otherwise it is unchanged.
9674 MODE is the mode in which the operation will be done. No bits outside
9675 the width of this mode matter. It is assumed that the width of this mode
9676 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9678 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9679 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9680 result is simply *PCONST0.
9682 If the resulting operation cannot be expressed as one operation, we
9683 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9686 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
9688 enum rtx_code op0
= *pop0
;
9689 HOST_WIDE_INT const0
= *pconst0
;
9691 const0
&= GET_MODE_MASK (mode
);
9692 const1
&= GET_MODE_MASK (mode
);
9694 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9698 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9701 if (op1
== UNKNOWN
|| op0
== SET
)
9704 else if (op0
== UNKNOWN
)
9705 op0
= op1
, const0
= const1
;
9707 else if (op0
== op1
)
9731 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9732 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9735 /* If the two constants aren't the same, we can't do anything. The
9736 remaining six cases can all be done. */
9737 else if (const0
!= const1
)
9745 /* (a & b) | b == b */
9747 else /* op1 == XOR */
9748 /* (a ^ b) | b == a | b */
9754 /* (a & b) ^ b == (~a) & b */
9755 op0
= AND
, *pcomp_p
= 1;
9756 else /* op1 == IOR */
9757 /* (a | b) ^ b == a & ~b */
9758 op0
= AND
, const0
= ~const0
;
9763 /* (a | b) & b == b */
9765 else /* op1 == XOR */
9766 /* (a ^ b) & b) == (~a) & b */
9773 /* Check for NO-OP cases. */
9774 const0
&= GET_MODE_MASK (mode
);
9776 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9778 else if (const0
== 0 && op0
== AND
)
9780 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9786 /* ??? Slightly redundant with the above mask, but not entirely.
9787 Moving this above means we'd have to sign-extend the mode mask
9788 for the final test. */
9789 if (op0
!= UNKNOWN
&& op0
!= NEG
)
9790 *pconst0
= trunc_int_for_mode (const0
, mode
);
9795 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9796 the shift in. The original shift operation CODE is performed on OP in
9797 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9798 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9799 result of the shift is subject to operation OUTER_CODE with operand
9802 static enum machine_mode
9803 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
9804 enum machine_mode orig_mode
, enum machine_mode mode
,
9805 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
9807 if (orig_mode
== mode
)
9809 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
9811 /* In general we can't perform in wider mode for right shift and rotate. */
9815 /* We can still widen if the bits brought in from the left are identical
9816 to the sign bit of ORIG_MODE. */
9817 if (num_sign_bit_copies (op
, mode
)
9818 > (unsigned) (GET_MODE_PRECISION (mode
)
9819 - GET_MODE_PRECISION (orig_mode
)))
9824 /* Similarly here but with zero bits. */
9825 if (HWI_COMPUTABLE_MODE_P (mode
)
9826 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
9829 /* We can also widen if the bits brought in will be masked off. This
9830 operation is performed in ORIG_MODE. */
9831 if (outer_code
== AND
)
9833 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
9836 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
9852 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9853 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9854 if we cannot simplify it. Otherwise, return a simplified value.
9856 The shift is normally computed in the widest mode we find in VAROP, as
9857 long as it isn't a different number of words than RESULT_MODE. Exceptions
9858 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9861 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
9862 rtx varop
, int orig_count
)
9864 enum rtx_code orig_code
= code
;
9865 rtx orig_varop
= varop
;
9867 enum machine_mode mode
= result_mode
;
9868 enum machine_mode shift_mode
, tmode
;
9869 unsigned int mode_words
9870 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9871 /* We form (outer_op (code varop count) (outer_const)). */
9872 enum rtx_code outer_op
= UNKNOWN
;
9873 HOST_WIDE_INT outer_const
= 0;
9874 int complement_p
= 0;
9877 /* Make sure and truncate the "natural" shift on the way in. We don't
9878 want to do this inside the loop as it makes it more difficult to
9880 if (SHIFT_COUNT_TRUNCATED
)
9881 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9883 /* If we were given an invalid count, don't do anything except exactly
9884 what was requested. */
9886 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_PRECISION (mode
))
9891 /* Unless one of the branches of the `if' in this loop does a `continue',
9892 we will `break' the loop after the `if'. */
9896 /* If we have an operand of (clobber (const_int 0)), fail. */
9897 if (GET_CODE (varop
) == CLOBBER
)
9900 /* Convert ROTATERT to ROTATE. */
9901 if (code
== ROTATERT
)
9903 unsigned int bitsize
= GET_MODE_PRECISION (result_mode
);
9905 if (VECTOR_MODE_P (result_mode
))
9906 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9908 count
= bitsize
- count
;
9911 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
9912 mode
, outer_op
, outer_const
);
9914 /* Handle cases where the count is greater than the size of the mode
9915 minus 1. For ASHIFT, use the size minus one as the count (this can
9916 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9917 take the count modulo the size. For other shifts, the result is
9920 Since these shifts are being produced by the compiler by combining
9921 multiple operations, each of which are defined, we know what the
9922 result is supposed to be. */
9924 if (count
> (GET_MODE_PRECISION (shift_mode
) - 1))
9926 if (code
== ASHIFTRT
)
9927 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9928 else if (code
== ROTATE
|| code
== ROTATERT
)
9929 count
%= GET_MODE_PRECISION (shift_mode
);
9932 /* We can't simply return zero because there may be an
9940 /* If we discovered we had to complement VAROP, leave. Making a NOT
9941 here would cause an infinite loop. */
9945 /* An arithmetic right shift of a quantity known to be -1 or 0
9947 if (code
== ASHIFTRT
9948 && (num_sign_bit_copies (varop
, shift_mode
)
9949 == GET_MODE_PRECISION (shift_mode
)))
9955 /* If we are doing an arithmetic right shift and discarding all but
9956 the sign bit copies, this is equivalent to doing a shift by the
9957 bitsize minus one. Convert it into that shift because it will often
9958 allow other simplifications. */
9960 if (code
== ASHIFTRT
9961 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9962 >= GET_MODE_PRECISION (shift_mode
)))
9963 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9965 /* We simplify the tests below and elsewhere by converting
9966 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9967 `make_compound_operation' will convert it to an ASHIFTRT for
9968 those machines (such as VAX) that don't have an LSHIFTRT. */
9969 if (code
== ASHIFTRT
9970 && val_signbit_known_clear_p (shift_mode
,
9971 nonzero_bits (varop
, shift_mode
)))
9974 if (((code
== LSHIFTRT
9975 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9976 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9978 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9979 && !((nonzero_bits (varop
, shift_mode
) << count
)
9980 & GET_MODE_MASK (shift_mode
))))
9981 && !side_effects_p (varop
))
9984 switch (GET_CODE (varop
))
9990 new_rtx
= expand_compound_operation (varop
);
9991 if (new_rtx
!= varop
)
9999 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10000 minus the width of a smaller mode, we can do this with a
10001 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10002 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10003 && ! mode_dependent_address_p (XEXP (varop
, 0))
10004 && ! MEM_VOLATILE_P (varop
)
10005 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
10006 MODE_INT
, 1)) != BLKmode
)
10008 new_rtx
= adjust_address_nv (varop
, tmode
,
10009 BYTES_BIG_ENDIAN
? 0
10010 : count
/ BITS_PER_UNIT
);
10012 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10013 : ZERO_EXTEND
, mode
, new_rtx
);
10020 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10021 the same number of words as what we've seen so far. Then store
10022 the widest mode in MODE. */
10023 if (subreg_lowpart_p (varop
)
10024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10025 > GET_MODE_SIZE (GET_MODE (varop
)))
10026 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10027 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
10029 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
10030 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
10032 varop
= SUBREG_REG (varop
);
10033 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
10034 mode
= GET_MODE (varop
);
10040 /* Some machines use MULT instead of ASHIFT because MULT
10041 is cheaper. But it is still better on those machines to
10042 merge two shifts into one. */
10043 if (CONST_INT_P (XEXP (varop
, 1))
10044 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10047 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10049 GEN_INT (exact_log2 (
10050 UINTVAL (XEXP (varop
, 1)))));
10056 /* Similar, for when divides are cheaper. */
10057 if (CONST_INT_P (XEXP (varop
, 1))
10058 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10061 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10063 GEN_INT (exact_log2 (
10064 UINTVAL (XEXP (varop
, 1)))));
10070 /* If we are extracting just the sign bit of an arithmetic
10071 right shift, that shift is not needed. However, the sign
10072 bit of a wider mode may be different from what would be
10073 interpreted as the sign bit in a narrower mode, so, if
10074 the result is narrower, don't discard the shift. */
10075 if (code
== LSHIFTRT
10076 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
10077 && (GET_MODE_BITSIZE (result_mode
)
10078 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
10080 varop
= XEXP (varop
, 0);
10084 /* ... fall through ... */
10089 /* Here we have two nested shifts. The result is usually the
10090 AND of a new shift with a mask. We compute the result below. */
10091 if (CONST_INT_P (XEXP (varop
, 1))
10092 && INTVAL (XEXP (varop
, 1)) >= 0
10093 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10094 && HWI_COMPUTABLE_MODE_P (result_mode
)
10095 && HWI_COMPUTABLE_MODE_P (mode
)
10096 && !VECTOR_MODE_P (result_mode
))
10098 enum rtx_code first_code
= GET_CODE (varop
);
10099 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10100 unsigned HOST_WIDE_INT mask
;
10103 /* We have one common special case. We can't do any merging if
10104 the inner code is an ASHIFTRT of a smaller mode. However, if
10105 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10106 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10107 we can convert it to
10108 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10109 This simplifies certain SIGN_EXTEND operations. */
10110 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10111 && count
== (GET_MODE_PRECISION (result_mode
)
10112 - GET_MODE_PRECISION (GET_MODE (varop
))))
10114 /* C3 has the low-order C1 bits zero. */
10116 mask
= GET_MODE_MASK (mode
)
10117 & ~(((unsigned HOST_WIDE_INT
) 1 << first_count
) - 1);
10119 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10120 XEXP (varop
, 0), mask
);
10121 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10123 count
= first_count
;
10128 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10129 than C1 high-order bits equal to the sign bit, we can convert
10130 this to either an ASHIFT or an ASHIFTRT depending on the
10133 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10135 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10136 && GET_MODE (varop
) == shift_mode
10137 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10140 varop
= XEXP (varop
, 0);
10141 count
-= first_count
;
10151 /* There are some cases we can't do. If CODE is ASHIFTRT,
10152 we can only do this if FIRST_CODE is also ASHIFTRT.
10154 We can't do the case when CODE is ROTATE and FIRST_CODE is
10157 If the mode of this shift is not the mode of the outer shift,
10158 we can't do this if either shift is a right shift or ROTATE.
10160 Finally, we can't do any of these if the mode is too wide
10161 unless the codes are the same.
10163 Handle the case where the shift codes are the same
10166 if (code
== first_code
)
10168 if (GET_MODE (varop
) != result_mode
10169 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10170 || code
== ROTATE
))
10173 count
+= first_count
;
10174 varop
= XEXP (varop
, 0);
10178 if (code
== ASHIFTRT
10179 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10180 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10181 || (GET_MODE (varop
) != result_mode
10182 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10183 || first_code
== ROTATE
10184 || code
== ROTATE
)))
10187 /* To compute the mask to apply after the shift, shift the
10188 nonzero bits of the inner shift the same way the
10189 outer shift will. */
10191 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
10194 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10197 /* Give up if we can't compute an outer operation to use. */
10199 || !CONST_INT_P (mask_rtx
)
10200 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10202 result_mode
, &complement_p
))
10205 /* If the shifts are in the same direction, we add the
10206 counts. Otherwise, we subtract them. */
10207 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10208 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10209 count
+= first_count
;
10211 count
-= first_count
;
10213 /* If COUNT is positive, the new shift is usually CODE,
10214 except for the two exceptions below, in which case it is
10215 FIRST_CODE. If the count is negative, FIRST_CODE should
10218 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10219 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10221 else if (count
< 0)
10222 code
= first_code
, count
= -count
;
10224 varop
= XEXP (varop
, 0);
10228 /* If we have (A << B << C) for any shift, we can convert this to
10229 (A << C << B). This wins if A is a constant. Only try this if
10230 B is not a constant. */
10232 else if (GET_CODE (varop
) == code
10233 && CONST_INT_P (XEXP (varop
, 0))
10234 && !CONST_INT_P (XEXP (varop
, 1)))
10236 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10239 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10246 if (VECTOR_MODE_P (mode
))
10249 /* Make this fit the case below. */
10250 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
10251 GEN_INT (GET_MODE_MASK (mode
)));
10257 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10258 with C the size of VAROP - 1 and the shift is logical if
10259 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10260 we have an (le X 0) operation. If we have an arithmetic shift
10261 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10262 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10264 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10265 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10266 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10267 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10268 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10269 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10272 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10275 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10276 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10281 /* If we have (shift (logical)), move the logical to the outside
10282 to allow it to possibly combine with another logical and the
10283 shift to combine with another shift. This also canonicalizes to
10284 what a ZERO_EXTRACT looks like. Also, some machines have
10285 (and (shift)) insns. */
10287 if (CONST_INT_P (XEXP (varop
, 1))
10288 /* We can't do this if we have (ashiftrt (xor)) and the
10289 constant has its sign bit set in shift_mode. */
10290 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10291 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10293 && (new_rtx
= simplify_const_binary_operation (code
, result_mode
,
10295 GEN_INT (count
))) != 0
10296 && CONST_INT_P (new_rtx
)
10297 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10298 INTVAL (new_rtx
), result_mode
, &complement_p
))
10300 varop
= XEXP (varop
, 0);
10304 /* If we can't do that, try to simplify the shift in each arm of the
10305 logical expression, make a new logical expression, and apply
10306 the inverse distributive law. This also can't be done
10307 for some (ashiftrt (xor)). */
10308 if (CONST_INT_P (XEXP (varop
, 1))
10309 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10310 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10313 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10314 XEXP (varop
, 0), count
);
10315 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10316 XEXP (varop
, 1), count
);
10318 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10320 varop
= apply_distributive_law (varop
);
10328 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10329 says that the sign bit can be tested, FOO has mode MODE, C is
10330 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10331 that may be nonzero. */
10332 if (code
== LSHIFTRT
10333 && XEXP (varop
, 1) == const0_rtx
10334 && GET_MODE (XEXP (varop
, 0)) == result_mode
10335 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10336 && HWI_COMPUTABLE_MODE_P (result_mode
)
10337 && STORE_FLAG_VALUE
== -1
10338 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10339 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10342 varop
= XEXP (varop
, 0);
10349 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10350 than the number of bits in the mode is equivalent to A. */
10351 if (code
== LSHIFTRT
10352 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10353 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10355 varop
= XEXP (varop
, 0);
10360 /* NEG commutes with ASHIFT since it is multiplication. Move the
10361 NEG outside to allow shifts to combine. */
10363 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10366 varop
= XEXP (varop
, 0);
10372 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10373 is one less than the number of bits in the mode is
10374 equivalent to (xor A 1). */
10375 if (code
== LSHIFTRT
10376 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10377 && XEXP (varop
, 1) == constm1_rtx
10378 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10379 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10383 varop
= XEXP (varop
, 0);
10387 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10388 that might be nonzero in BAR are those being shifted out and those
10389 bits are known zero in FOO, we can replace the PLUS with FOO.
10390 Similarly in the other operand order. This code occurs when
10391 we are computing the size of a variable-size array. */
10393 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10394 && count
< HOST_BITS_PER_WIDE_INT
10395 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10396 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10397 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10399 varop
= XEXP (varop
, 0);
10402 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10403 && count
< HOST_BITS_PER_WIDE_INT
10404 && HWI_COMPUTABLE_MODE_P (result_mode
)
10405 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10407 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10408 & nonzero_bits (XEXP (varop
, 1),
10411 varop
= XEXP (varop
, 1);
10415 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10417 && CONST_INT_P (XEXP (varop
, 1))
10418 && (new_rtx
= simplify_const_binary_operation (ASHIFT
, result_mode
,
10420 GEN_INT (count
))) != 0
10421 && CONST_INT_P (new_rtx
)
10422 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10423 INTVAL (new_rtx
), result_mode
, &complement_p
))
10425 varop
= XEXP (varop
, 0);
10429 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10430 signbit', and attempt to change the PLUS to an XOR and move it to
10431 the outer operation as is done above in the AND/IOR/XOR case
10432 leg for shift(logical). See details in logical handling above
10433 for reasoning in doing so. */
10434 if (code
== LSHIFTRT
10435 && CONST_INT_P (XEXP (varop
, 1))
10436 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10437 && (new_rtx
= simplify_const_binary_operation (code
, result_mode
,
10439 GEN_INT (count
))) != 0
10440 && CONST_INT_P (new_rtx
)
10441 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10442 INTVAL (new_rtx
), result_mode
, &complement_p
))
10444 varop
= XEXP (varop
, 0);
10451 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10452 with C the size of VAROP - 1 and the shift is logical if
10453 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10454 we have a (gt X 0) operation. If the shift is arithmetic with
10455 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10456 we have a (neg (gt X 0)) operation. */
10458 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10459 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10460 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10461 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10462 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10463 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10464 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10467 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10470 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10471 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10478 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10479 if the truncate does not affect the value. */
10480 if (code
== LSHIFTRT
10481 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10482 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10483 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10484 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop
, 0)))
10485 - GET_MODE_PRECISION (GET_MODE (varop
)))))
10487 rtx varop_inner
= XEXP (varop
, 0);
10490 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10491 XEXP (varop_inner
, 0),
10493 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10494 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
10507 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
10508 outer_op
, outer_const
);
10510 /* We have now finished analyzing the shift. The result should be
10511 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10512 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10513 to the result of the shift. OUTER_CONST is the relevant constant,
10514 but we must turn off all bits turned off in the shift. */
10516 if (outer_op
== UNKNOWN
10517 && orig_code
== code
&& orig_count
== count
10518 && varop
== orig_varop
10519 && shift_mode
== GET_MODE (varop
))
10522 /* Make a SUBREG if necessary. If we can't make it, fail. */
10523 varop
= gen_lowpart (shift_mode
, varop
);
10524 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10527 /* If we have an outer operation and we just made a shift, it is
10528 possible that we could have simplified the shift were it not
10529 for the outer operation. So try to do the simplification
10532 if (outer_op
!= UNKNOWN
)
10533 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
10538 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
10540 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10541 turn off all the bits that the shift would have turned off. */
10542 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
10543 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
10544 GET_MODE_MASK (result_mode
) >> orig_count
);
10546 /* Do the remainder of the processing in RESULT_MODE. */
10547 x
= gen_lowpart_or_truncate (result_mode
, x
);
10549 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10552 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
10554 if (outer_op
!= UNKNOWN
)
10556 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
10557 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
10558 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
10560 if (outer_op
== AND
)
10561 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
10562 else if (outer_op
== SET
)
10564 /* This means that we have determined that the result is
10565 equivalent to a constant. This should be rare. */
10566 if (!side_effects_p (x
))
10567 x
= GEN_INT (outer_const
);
10569 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
10570 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
10572 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
10573 GEN_INT (outer_const
));
10579 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10580 The result of the shift is RESULT_MODE. If we cannot simplify it,
10581 return X or, if it is NULL, synthesize the expression with
10582 simplify_gen_binary. Otherwise, return a simplified value.
10584 The shift is normally computed in the widest mode we find in VAROP, as
10585 long as it isn't a different number of words than RESULT_MODE. Exceptions
10586 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10589 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
10590 rtx varop
, int count
)
10592 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
10597 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
10598 if (GET_MODE (x
) != result_mode
)
10599 x
= gen_lowpart (result_mode
, x
);
10604 /* Like recog, but we receive the address of a pointer to a new pattern.
10605 We try to match the rtx that the pointer points to.
10606 If that fails, we may try to modify or replace the pattern,
10607 storing the replacement into the same pointer object.
10609 Modifications include deletion or addition of CLOBBERs.
10611 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10612 the CLOBBERs are placed.
10614 The value is the final insn code from the pattern ultimately matched,
10618 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
10620 rtx pat
= *pnewpat
;
10621 int insn_code_number
;
10622 int num_clobbers_to_add
= 0;
10625 rtx old_notes
, old_pat
;
10627 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10628 we use to indicate that something didn't match. If we find such a
10629 thing, force rejection. */
10630 if (GET_CODE (pat
) == PARALLEL
)
10631 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
10632 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
10633 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
10636 old_pat
= PATTERN (insn
);
10637 old_notes
= REG_NOTES (insn
);
10638 PATTERN (insn
) = pat
;
10639 REG_NOTES (insn
) = 0;
10641 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10642 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10644 if (insn_code_number
< 0)
10645 fputs ("Failed to match this instruction:\n", dump_file
);
10647 fputs ("Successfully matched this instruction:\n", dump_file
);
10648 print_rtl_single (dump_file
, pat
);
10651 /* If it isn't, there is the possibility that we previously had an insn
10652 that clobbered some register as a side effect, but the combined
10653 insn doesn't need to do that. So try once more without the clobbers
10654 unless this represents an ASM insn. */
10656 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
10657 && GET_CODE (pat
) == PARALLEL
)
10661 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
10662 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
10665 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
10669 SUBST_INT (XVECLEN (pat
, 0), pos
);
10672 pat
= XVECEXP (pat
, 0, 0);
10674 PATTERN (insn
) = pat
;
10675 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10676 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10678 if (insn_code_number
< 0)
10679 fputs ("Failed to match this instruction:\n", dump_file
);
10681 fputs ("Successfully matched this instruction:\n", dump_file
);
10682 print_rtl_single (dump_file
, pat
);
10685 PATTERN (insn
) = old_pat
;
10686 REG_NOTES (insn
) = old_notes
;
10688 /* Recognize all noop sets, these will be killed by followup pass. */
10689 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10690 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10692 /* If we had any clobbers to add, make a new pattern than contains
10693 them. Then check to make sure that all of them are dead. */
10694 if (num_clobbers_to_add
)
10696 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10697 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10698 ? (XVECLEN (pat
, 0)
10699 + num_clobbers_to_add
)
10700 : num_clobbers_to_add
+ 1));
10702 if (GET_CODE (pat
) == PARALLEL
)
10703 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10704 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10706 XVECEXP (newpat
, 0, 0) = pat
;
10708 add_clobbers (newpat
, insn_code_number
);
10710 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10711 i
< XVECLEN (newpat
, 0); i
++)
10713 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
10714 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10716 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
10718 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
10719 notes
= alloc_reg_note (REG_UNUSED
,
10720 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10729 return insn_code_number
;
10732 /* Like gen_lowpart_general but for use by combine. In combine it
10733 is not possible to create any new pseudoregs. However, it is
10734 safe to create invalid memory addresses, because combine will
10735 try to recognize them and all they will do is make the combine
10738 If for some reason this cannot do its job, an rtx
10739 (clobber (const_int 0)) is returned.
10740 An insn containing that will not be recognized. */
10743 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
10745 enum machine_mode imode
= GET_MODE (x
);
10746 unsigned int osize
= GET_MODE_SIZE (omode
);
10747 unsigned int isize
= GET_MODE_SIZE (imode
);
10750 if (omode
== imode
)
10753 /* Return identity if this is a CONST or symbolic reference. */
10755 && (GET_CODE (x
) == CONST
10756 || GET_CODE (x
) == SYMBOL_REF
10757 || GET_CODE (x
) == LABEL_REF
))
10760 /* We can only support MODE being wider than a word if X is a
10761 constant integer or has a mode the same size. */
10762 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
10763 && ! ((imode
== VOIDmode
10764 && (CONST_INT_P (x
)
10765 || GET_CODE (x
) == CONST_DOUBLE
))
10766 || isize
== osize
))
10769 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10770 won't know what to do. So we will strip off the SUBREG here and
10771 process normally. */
10772 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
10774 x
= SUBREG_REG (x
);
10776 /* For use in case we fall down into the address adjustments
10777 further below, we need to adjust the known mode and size of
10778 x; imode and isize, since we just adjusted x. */
10779 imode
= GET_MODE (x
);
10781 if (imode
== omode
)
10784 isize
= GET_MODE_SIZE (imode
);
10787 result
= gen_lowpart_common (omode
, x
);
10796 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10798 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
10801 /* If we want to refer to something bigger than the original memref,
10802 generate a paradoxical subreg instead. That will force a reload
10803 of the original memref X. */
10805 return gen_rtx_SUBREG (omode
, x
, 0);
10807 if (WORDS_BIG_ENDIAN
)
10808 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
10810 /* Adjust the address so that the address-after-the-data is
10812 if (BYTES_BIG_ENDIAN
)
10813 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
10815 return adjust_address_nv (x
, omode
, offset
);
10818 /* If X is a comparison operator, rewrite it in a new mode. This
10819 probably won't match, but may allow further simplifications. */
10820 else if (COMPARISON_P (x
))
10821 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
10823 /* If we couldn't simplify X any other way, just enclose it in a
10824 SUBREG. Normally, this SUBREG won't match, but some patterns may
10825 include an explicit SUBREG or we may simplify it further in combine. */
10831 offset
= subreg_lowpart_offset (omode
, imode
);
10832 if (imode
== VOIDmode
)
10834 imode
= int_mode_for_mode (omode
);
10835 x
= gen_lowpart_common (imode
, x
);
10839 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
10845 return gen_rtx_CLOBBER (omode
, const0_rtx
);
10848 /* Try to simplify a comparison between OP0 and a constant OP1,
10849 where CODE is the comparison code that will be tested, into a
10850 (CODE OP0 const0_rtx) form.
10852 The result is a possibly different comparison code to use.
10853 *POP1 may be updated. */
10855 static enum rtx_code
10856 simplify_compare_const (enum rtx_code code
, rtx op0
, rtx
*pop1
)
10858 enum machine_mode mode
= GET_MODE (op0
);
10859 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
10860 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
10862 /* Get the constant we are comparing against and turn off all bits
10863 not on in our mode. */
10864 if (mode
!= VOIDmode
)
10865 const_op
= trunc_int_for_mode (const_op
, mode
);
10867 /* If we are comparing against a constant power of two and the value
10868 being compared can only have that single bit nonzero (e.g., it was
10869 `and'ed with that bit), we can replace this with a comparison
10872 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10873 || code
== LT
|| code
== LTU
)
10874 && mode_width
<= HOST_BITS_PER_WIDE_INT
10875 && exact_log2 (const_op
) >= 0
10876 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
10878 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10882 /* Similarly, if we are comparing a value known to be either -1 or
10883 0 with -1, change it to the opposite comparison against zero. */
10885 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10886 || code
== GEU
|| code
== LTU
)
10887 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10889 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10893 /* Do some canonicalizations based on the comparison code. We prefer
10894 comparisons against zero and then prefer equality comparisons.
10895 If we can reduce the size of a constant, we will do that too. */
10899 /* < C is equivalent to <= (C - 1) */
10904 /* ... fall through to LE case below. */
10910 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10917 /* If we are doing a <= 0 comparison on a value known to have
10918 a zero sign bit, we can replace this with == 0. */
10919 else if (const_op
== 0
10920 && mode_width
<= HOST_BITS_PER_WIDE_INT
10921 && (nonzero_bits (op0
, mode
)
10922 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10928 /* >= C is equivalent to > (C - 1). */
10933 /* ... fall through to GT below. */
10939 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10946 /* If we are doing a > 0 comparison on a value known to have
10947 a zero sign bit, we can replace this with != 0. */
10948 else if (const_op
== 0
10949 && mode_width
<= HOST_BITS_PER_WIDE_INT
10950 && (nonzero_bits (op0
, mode
)
10951 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10957 /* < C is equivalent to <= (C - 1). */
10962 /* ... fall through ... */
10964 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10965 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10966 && (unsigned HOST_WIDE_INT
) const_op
10967 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10977 /* unsigned <= 0 is equivalent to == 0 */
10980 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10981 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10982 && (unsigned HOST_WIDE_INT
) const_op
10983 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10991 /* >= C is equivalent to > (C - 1). */
10996 /* ... fall through ... */
10999 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11000 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
11001 && (unsigned HOST_WIDE_INT
) const_op
11002 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
11012 /* unsigned > 0 is equivalent to != 0 */
11015 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11016 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
11017 && (unsigned HOST_WIDE_INT
) const_op
11018 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
11029 *pop1
= GEN_INT (const_op
);
11033 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11034 comparison code that will be tested.
11036 The result is a possibly different comparison code to use. *POP0 and
11037 *POP1 may be updated.
11039 It is possible that we might detect that a comparison is either always
11040 true or always false. However, we do not perform general constant
11041 folding in combine, so this knowledge isn't useful. Such tautologies
11042 should have been detected earlier. Hence we ignore all such cases. */
11044 static enum rtx_code
11045 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11051 enum machine_mode mode
, tmode
;
11053 /* Try a few ways of applying the same transformation to both operands. */
11056 #ifndef WORD_REGISTER_OPERATIONS
11057 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11058 so check specially. */
11059 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11060 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11061 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11062 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11063 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11064 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11065 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11066 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11067 && CONST_INT_P (XEXP (op0
, 1))
11068 && XEXP (op0
, 1) == XEXP (op1
, 1)
11069 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11070 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11071 && (INTVAL (XEXP (op0
, 1))
11072 == (GET_MODE_PRECISION (GET_MODE (op0
))
11073 - (GET_MODE_PRECISION
11074 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11076 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11077 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11081 /* If both operands are the same constant shift, see if we can ignore the
11082 shift. We can if the shift is a rotate or if the bits shifted out of
11083 this shift are known to be zero for both inputs and if the type of
11084 comparison is compatible with the shift. */
11085 if (GET_CODE (op0
) == GET_CODE (op1
)
11086 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0
))
11087 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11088 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11089 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11090 || (GET_CODE (op0
) == ASHIFTRT
11091 && (code
!= GTU
&& code
!= LTU
11092 && code
!= GEU
&& code
!= LEU
)))
11093 && CONST_INT_P (XEXP (op0
, 1))
11094 && INTVAL (XEXP (op0
, 1)) >= 0
11095 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11096 && XEXP (op0
, 1) == XEXP (op1
, 1))
11098 enum machine_mode mode
= GET_MODE (op0
);
11099 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11100 int shift_count
= INTVAL (XEXP (op0
, 1));
11102 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11103 mask
&= (mask
>> shift_count
) << shift_count
;
11104 else if (GET_CODE (op0
) == ASHIFT
)
11105 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11107 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11108 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11109 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11114 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11115 SUBREGs are of the same mode, and, in both cases, the AND would
11116 be redundant if the comparison was done in the narrower mode,
11117 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11118 and the operand's possibly nonzero bits are 0xffffff01; in that case
11119 if we only care about QImode, we don't need the AND). This case
11120 occurs if the output mode of an scc insn is not SImode and
11121 STORE_FLAG_VALUE == 1 (e.g., the 386).
11123 Similarly, check for a case where the AND's are ZERO_EXTEND
11124 operations from some narrower mode even though a SUBREG is not
11127 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11128 && CONST_INT_P (XEXP (op0
, 1))
11129 && CONST_INT_P (XEXP (op1
, 1)))
11131 rtx inner_op0
= XEXP (op0
, 0);
11132 rtx inner_op1
= XEXP (op1
, 0);
11133 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11134 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11137 if (paradoxical_subreg_p (inner_op0
)
11138 && GET_CODE (inner_op1
) == SUBREG
11139 && (GET_MODE (SUBREG_REG (inner_op0
))
11140 == GET_MODE (SUBREG_REG (inner_op1
)))
11141 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11142 <= HOST_BITS_PER_WIDE_INT
)
11143 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11144 GET_MODE (SUBREG_REG (inner_op0
)))))
11145 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11146 GET_MODE (SUBREG_REG (inner_op1
))))))
11148 op0
= SUBREG_REG (inner_op0
);
11149 op1
= SUBREG_REG (inner_op1
);
11151 /* The resulting comparison is always unsigned since we masked
11152 off the original sign bit. */
11153 code
= unsigned_condition (code
);
11159 for (tmode
= GET_CLASS_NARROWEST_MODE
11160 (GET_MODE_CLASS (GET_MODE (op0
)));
11161 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11162 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11164 op0
= gen_lowpart (tmode
, inner_op0
);
11165 op1
= gen_lowpart (tmode
, inner_op1
);
11166 code
= unsigned_condition (code
);
11175 /* If both operands are NOT, we can strip off the outer operation
11176 and adjust the comparison code for swapped operands; similarly for
11177 NEG, except that this must be an equality comparison. */
11178 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11179 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11180 && (code
== EQ
|| code
== NE
)))
11181 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11187 /* If the first operand is a constant, swap the operands and adjust the
11188 comparison code appropriately, but don't do this if the second operand
11189 is already a constant integer. */
11190 if (swap_commutative_operands_p (op0
, op1
))
11192 tem
= op0
, op0
= op1
, op1
= tem
;
11193 code
= swap_condition (code
);
11196 /* We now enter a loop during which we will try to simplify the comparison.
11197 For the most part, we only are concerned with comparisons with zero,
11198 but some things may really be comparisons with zero but not start
11199 out looking that way. */
11201 while (CONST_INT_P (op1
))
11203 enum machine_mode mode
= GET_MODE (op0
);
11204 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11205 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11206 int equality_comparison_p
;
11207 int sign_bit_comparison_p
;
11208 int unsigned_comparison_p
;
11209 HOST_WIDE_INT const_op
;
11211 /* We only want to handle integral modes. This catches VOIDmode,
11212 CCmode, and the floating-point modes. An exception is that we
11213 can handle VOIDmode if OP0 is a COMPARE or a comparison
11216 if (GET_MODE_CLASS (mode
) != MODE_INT
11217 && ! (mode
== VOIDmode
11218 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11221 /* Try to simplify the compare to constant, possibly changing the
11222 comparison op, and/or changing op1 to zero. */
11223 code
= simplify_compare_const (code
, op0
, &op1
);
11224 const_op
= INTVAL (op1
);
11226 /* Compute some predicates to simplify code below. */
11228 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11229 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11230 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11233 /* If this is a sign bit comparison and we can do arithmetic in
11234 MODE, say that we will only be needing the sign bit of OP0. */
11235 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11236 op0
= force_to_mode (op0
, mode
,
11237 (unsigned HOST_WIDE_INT
) 1
11238 << (GET_MODE_PRECISION (mode
) - 1),
11241 /* Now try cases based on the opcode of OP0. If none of the cases
11242 does a "continue", we exit this loop immediately after the
11245 switch (GET_CODE (op0
))
11248 /* If we are extracting a single bit from a variable position in
11249 a constant that has only a single bit set and are comparing it
11250 with zero, we can convert this into an equality comparison
11251 between the position and the location of the single bit. */
11252 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11253 have already reduced the shift count modulo the word size. */
11254 if (!SHIFT_COUNT_TRUNCATED
11255 && CONST_INT_P (XEXP (op0
, 0))
11256 && XEXP (op0
, 1) == const1_rtx
11257 && equality_comparison_p
&& const_op
== 0
11258 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11260 if (BITS_BIG_ENDIAN
)
11262 enum machine_mode new_mode
11263 = mode_for_extraction (EP_extzv
, 1);
11264 if (new_mode
== MAX_MACHINE_MODE
)
11265 i
= BITS_PER_WORD
- 1 - i
;
11269 i
= (GET_MODE_PRECISION (mode
) - 1 - i
);
11273 op0
= XEXP (op0
, 2);
11277 /* Result is nonzero iff shift count is equal to I. */
11278 code
= reverse_condition (code
);
11282 /* ... fall through ... */
11285 tem
= expand_compound_operation (op0
);
11294 /* If testing for equality, we can take the NOT of the constant. */
11295 if (equality_comparison_p
11296 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11298 op0
= XEXP (op0
, 0);
11303 /* If just looking at the sign bit, reverse the sense of the
11305 if (sign_bit_comparison_p
)
11307 op0
= XEXP (op0
, 0);
11308 code
= (code
== GE
? LT
: GE
);
11314 /* If testing for equality, we can take the NEG of the constant. */
11315 if (equality_comparison_p
11316 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11318 op0
= XEXP (op0
, 0);
11323 /* The remaining cases only apply to comparisons with zero. */
11327 /* When X is ABS or is known positive,
11328 (neg X) is < 0 if and only if X != 0. */
11330 if (sign_bit_comparison_p
11331 && (GET_CODE (XEXP (op0
, 0)) == ABS
11332 || (mode_width
<= HOST_BITS_PER_WIDE_INT
11333 && (nonzero_bits (XEXP (op0
, 0), mode
)
11334 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11337 op0
= XEXP (op0
, 0);
11338 code
= (code
== LT
? NE
: EQ
);
11342 /* If we have NEG of something whose two high-order bits are the
11343 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11344 if (num_sign_bit_copies (op0
, mode
) >= 2)
11346 op0
= XEXP (op0
, 0);
11347 code
= swap_condition (code
);
11353 /* If we are testing equality and our count is a constant, we
11354 can perform the inverse operation on our RHS. */
11355 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11356 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
11357 op1
, XEXP (op0
, 1))) != 0)
11359 op0
= XEXP (op0
, 0);
11364 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11365 a particular bit. Convert it to an AND of a constant of that
11366 bit. This will be converted into a ZERO_EXTRACT. */
11367 if (const_op
== 0 && sign_bit_comparison_p
11368 && CONST_INT_P (XEXP (op0
, 1))
11369 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11371 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11372 ((unsigned HOST_WIDE_INT
) 1
11374 - INTVAL (XEXP (op0
, 1)))));
11375 code
= (code
== LT
? NE
: EQ
);
11379 /* Fall through. */
11382 /* ABS is ignorable inside an equality comparison with zero. */
11383 if (const_op
== 0 && equality_comparison_p
)
11385 op0
= XEXP (op0
, 0);
11391 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11392 (compare FOO CONST) if CONST fits in FOO's mode and we
11393 are either testing inequality or have an unsigned
11394 comparison with ZERO_EXTEND or a signed comparison with
11395 SIGN_EXTEND. But don't do it if we don't have a compare
11396 insn of the given mode, since we'd have to revert it
11397 later on, and then we wouldn't know whether to sign- or
11399 mode
= GET_MODE (XEXP (op0
, 0));
11400 if (GET_MODE_CLASS (mode
) == MODE_INT
11401 && ! unsigned_comparison_p
11402 && HWI_COMPUTABLE_MODE_P (mode
)
11403 && trunc_int_for_mode (const_op
, mode
) == const_op
11404 && have_insn_for (COMPARE
, mode
))
11406 op0
= XEXP (op0
, 0);
11412 /* Check for the case where we are comparing A - C1 with C2, that is
11414 (subreg:MODE (plus (A) (-C1))) op (C2)
11416 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11417 comparison in the wider mode. One of the following two conditions
11418 must be true in order for this to be valid:
11420 1. The mode extension results in the same bit pattern being added
11421 on both sides and the comparison is equality or unsigned. As
11422 C2 has been truncated to fit in MODE, the pattern can only be
11425 2. The mode extension results in the sign bit being copied on
11428 The difficulty here is that we have predicates for A but not for
11429 (A - C1) so we need to check that C1 is within proper bounds so
11430 as to perturbate A as little as possible. */
11432 if (mode_width
<= HOST_BITS_PER_WIDE_INT
11433 && subreg_lowpart_p (op0
)
11434 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
11435 && GET_CODE (SUBREG_REG (op0
)) == PLUS
11436 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
11438 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
11439 rtx a
= XEXP (SUBREG_REG (op0
), 0);
11440 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
11443 && (unsigned HOST_WIDE_INT
) c1
11444 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
11445 && (equality_comparison_p
|| unsigned_comparison_p
)
11446 /* (A - C1) zero-extends if it is positive and sign-extends
11447 if it is negative, C2 both zero- and sign-extends. */
11448 && ((0 == (nonzero_bits (a
, inner_mode
)
11449 & ~GET_MODE_MASK (mode
))
11451 /* (A - C1) sign-extends if it is positive and 1-extends
11452 if it is negative, C2 both sign- and 1-extends. */
11453 || (num_sign_bit_copies (a
, inner_mode
)
11454 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11457 || ((unsigned HOST_WIDE_INT
) c1
11458 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
11459 /* (A - C1) always sign-extends, like C2. */
11460 && num_sign_bit_copies (a
, inner_mode
)
11461 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11462 - (mode_width
- 1))))
11464 op0
= SUBREG_REG (op0
);
11469 /* If the inner mode is narrower and we are extracting the low part,
11470 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11471 if (subreg_lowpart_p (op0
)
11472 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
11473 /* Fall through */ ;
11477 /* ... fall through ... */
11480 mode
= GET_MODE (XEXP (op0
, 0));
11481 if (GET_MODE_CLASS (mode
) == MODE_INT
11482 && (unsigned_comparison_p
|| equality_comparison_p
)
11483 && HWI_COMPUTABLE_MODE_P (mode
)
11484 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
11486 && have_insn_for (COMPARE
, mode
))
11488 op0
= XEXP (op0
, 0);
11494 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11495 this for equality comparisons due to pathological cases involving
11497 if (equality_comparison_p
11498 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11499 op1
, XEXP (op0
, 1))))
11501 op0
= XEXP (op0
, 0);
11506 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11507 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
11508 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
11510 op0
= XEXP (XEXP (op0
, 0), 0);
11511 code
= (code
== LT
? EQ
: NE
);
11517 /* We used to optimize signed comparisons against zero, but that
11518 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11519 arrive here as equality comparisons, or (GEU, LTU) are
11520 optimized away. No need to special-case them. */
11522 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11523 (eq B (minus A C)), whichever simplifies. We can only do
11524 this for equality comparisons due to pathological cases involving
11526 if (equality_comparison_p
11527 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
11528 XEXP (op0
, 1), op1
)))
11530 op0
= XEXP (op0
, 0);
11535 if (equality_comparison_p
11536 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11537 XEXP (op0
, 0), op1
)))
11539 op0
= XEXP (op0
, 1);
11544 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11545 of bits in X minus 1, is one iff X > 0. */
11546 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
11547 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11548 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
11549 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11551 op0
= XEXP (op0
, 1);
11552 code
= (code
== GE
? LE
: GT
);
11558 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11559 if C is zero or B is a constant. */
11560 if (equality_comparison_p
11561 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
11562 XEXP (op0
, 1), op1
)))
11564 op0
= XEXP (op0
, 0);
11571 case UNEQ
: case LTGT
:
11572 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
11573 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
11574 case UNORDERED
: case ORDERED
:
11575 /* We can't do anything if OP0 is a condition code value, rather
11576 than an actual data value. */
11578 || CC0_P (XEXP (op0
, 0))
11579 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
11582 /* Get the two operands being compared. */
11583 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
11584 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
11586 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
11588 /* Check for the cases where we simply want the result of the
11589 earlier test or the opposite of that result. */
11590 if (code
== NE
|| code
== EQ
11591 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
11592 && (code
== LT
|| code
== GE
)))
11594 enum rtx_code new_code
;
11595 if (code
== LT
|| code
== NE
)
11596 new_code
= GET_CODE (op0
);
11598 new_code
= reversed_comparison_code (op0
, NULL
);
11600 if (new_code
!= UNKNOWN
)
11611 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11613 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
11614 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
11615 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11617 op0
= XEXP (op0
, 1);
11618 code
= (code
== GE
? GT
: LE
);
11624 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11625 will be converted to a ZERO_EXTRACT later. */
11626 if (const_op
== 0 && equality_comparison_p
11627 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11628 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
11630 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
11631 XEXP (XEXP (op0
, 0), 1));
11632 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11636 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11637 zero and X is a comparison and C1 and C2 describe only bits set
11638 in STORE_FLAG_VALUE, we can compare with X. */
11639 if (const_op
== 0 && equality_comparison_p
11640 && mode_width
<= HOST_BITS_PER_WIDE_INT
11641 && CONST_INT_P (XEXP (op0
, 1))
11642 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11643 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11644 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
11645 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
11647 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11648 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
11649 if ((~STORE_FLAG_VALUE
& mask
) == 0
11650 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
11651 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
11652 && COMPARISON_P (tem
))))
11654 op0
= XEXP (XEXP (op0
, 0), 0);
11659 /* If we are doing an equality comparison of an AND of a bit equal
11660 to the sign bit, replace this with a LT or GE comparison of
11661 the underlying value. */
11662 if (equality_comparison_p
11664 && CONST_INT_P (XEXP (op0
, 1))
11665 && mode_width
<= HOST_BITS_PER_WIDE_INT
11666 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11667 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11669 op0
= XEXP (op0
, 0);
11670 code
= (code
== EQ
? GE
: LT
);
11674 /* If this AND operation is really a ZERO_EXTEND from a narrower
11675 mode, the constant fits within that mode, and this is either an
11676 equality or unsigned comparison, try to do this comparison in
11681 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11682 -> (ne:DI (reg:SI 4) (const_int 0))
11684 unless TRULY_NOOP_TRUNCATION allows it or the register is
11685 known to hold a value of the required mode the
11686 transformation is invalid. */
11687 if ((equality_comparison_p
|| unsigned_comparison_p
)
11688 && CONST_INT_P (XEXP (op0
, 1))
11689 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
11690 & GET_MODE_MASK (mode
))
11692 && const_op
>> i
== 0
11693 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
11694 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode
, GET_MODE (op0
))
11695 || (REG_P (XEXP (op0
, 0))
11696 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
11698 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
11702 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11703 fits in both M1 and M2 and the SUBREG is either paradoxical
11704 or represents the low part, permute the SUBREG and the AND
11706 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11708 unsigned HOST_WIDE_INT c1
;
11709 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11710 /* Require an integral mode, to avoid creating something like
11712 if (SCALAR_INT_MODE_P (tmode
)
11713 /* It is unsafe to commute the AND into the SUBREG if the
11714 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11715 not defined. As originally written the upper bits
11716 have a defined value due to the AND operation.
11717 However, if we commute the AND inside the SUBREG then
11718 they no longer have defined values and the meaning of
11719 the code has been changed. */
11721 #ifdef WORD_REGISTER_OPERATIONS
11722 || (mode_width
> GET_MODE_PRECISION (tmode
)
11723 && mode_width
<= BITS_PER_WORD
)
11725 || (mode_width
<= GET_MODE_PRECISION (tmode
)
11726 && subreg_lowpart_p (XEXP (op0
, 0))))
11727 && CONST_INT_P (XEXP (op0
, 1))
11728 && mode_width
<= HOST_BITS_PER_WIDE_INT
11729 && HWI_COMPUTABLE_MODE_P (tmode
)
11730 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11731 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11733 && c1
!= GET_MODE_MASK (tmode
))
11735 op0
= simplify_gen_binary (AND
, tmode
,
11736 SUBREG_REG (XEXP (op0
, 0)),
11737 gen_int_mode (c1
, tmode
));
11738 op0
= gen_lowpart (mode
, op0
);
11743 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11744 if (const_op
== 0 && equality_comparison_p
11745 && XEXP (op0
, 1) == const1_rtx
11746 && GET_CODE (XEXP (op0
, 0)) == NOT
)
11748 op0
= simplify_and_const_int (NULL_RTX
, mode
,
11749 XEXP (XEXP (op0
, 0), 0), 1);
11750 code
= (code
== NE
? EQ
: NE
);
11754 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11755 (eq (and (lshiftrt X) 1) 0).
11756 Also handle the case where (not X) is expressed using xor. */
11757 if (const_op
== 0 && equality_comparison_p
11758 && XEXP (op0
, 1) == const1_rtx
11759 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
11761 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
11762 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
11764 if (GET_CODE (shift_op
) == NOT
11765 || (GET_CODE (shift_op
) == XOR
11766 && CONST_INT_P (XEXP (shift_op
, 1))
11767 && CONST_INT_P (shift_count
)
11768 && HWI_COMPUTABLE_MODE_P (mode
)
11769 && (UINTVAL (XEXP (shift_op
, 1))
11770 == (unsigned HOST_WIDE_INT
) 1
11771 << INTVAL (shift_count
))))
11774 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
11775 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11776 code
= (code
== NE
? EQ
: NE
);
11783 /* If we have (compare (ashift FOO N) (const_int C)) and
11784 the high order N bits of FOO (N+1 if an inequality comparison)
11785 are known to be zero, we can do this by comparing FOO with C
11786 shifted right N bits so long as the low-order N bits of C are
11788 if (CONST_INT_P (XEXP (op0
, 1))
11789 && INTVAL (XEXP (op0
, 1)) >= 0
11790 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11791 < HOST_BITS_PER_WIDE_INT
)
11792 && (((unsigned HOST_WIDE_INT
) const_op
11793 & (((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1)))
11795 && mode_width
<= HOST_BITS_PER_WIDE_INT
11796 && (nonzero_bits (XEXP (op0
, 0), mode
)
11797 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11798 + ! equality_comparison_p
))) == 0)
11800 /* We must perform a logical shift, not an arithmetic one,
11801 as we want the top N bits of C to be zero. */
11802 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11804 temp
>>= INTVAL (XEXP (op0
, 1));
11805 op1
= gen_int_mode (temp
, mode
);
11806 op0
= XEXP (op0
, 0);
11810 /* If we are doing a sign bit comparison, it means we are testing
11811 a particular bit. Convert it to the appropriate AND. */
11812 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11813 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11815 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11816 ((unsigned HOST_WIDE_INT
) 1
11818 - INTVAL (XEXP (op0
, 1)))));
11819 code
= (code
== LT
? NE
: EQ
);
11823 /* If this an equality comparison with zero and we are shifting
11824 the low bit to the sign bit, we can convert this to an AND of the
11826 if (const_op
== 0 && equality_comparison_p
11827 && CONST_INT_P (XEXP (op0
, 1))
11828 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11830 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
11836 /* If this is an equality comparison with zero, we can do this
11837 as a logical shift, which might be much simpler. */
11838 if (equality_comparison_p
&& const_op
== 0
11839 && CONST_INT_P (XEXP (op0
, 1)))
11841 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11843 INTVAL (XEXP (op0
, 1)));
11847 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11848 do the comparison in a narrower mode. */
11849 if (! unsigned_comparison_p
11850 && CONST_INT_P (XEXP (op0
, 1))
11851 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11852 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11853 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11854 MODE_INT
, 1)) != BLKmode
11855 && (((unsigned HOST_WIDE_INT
) const_op
11856 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11857 <= GET_MODE_MASK (tmode
)))
11859 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
11863 /* Likewise if OP0 is a PLUS of a sign extension with a
11864 constant, which is usually represented with the PLUS
11865 between the shifts. */
11866 if (! unsigned_comparison_p
11867 && CONST_INT_P (XEXP (op0
, 1))
11868 && GET_CODE (XEXP (op0
, 0)) == PLUS
11869 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11870 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11871 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11872 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11873 MODE_INT
, 1)) != BLKmode
11874 && (((unsigned HOST_WIDE_INT
) const_op
11875 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11876 <= GET_MODE_MASK (tmode
)))
11878 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11879 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11880 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
11881 add_const
, XEXP (op0
, 1));
11883 op0
= simplify_gen_binary (PLUS
, tmode
,
11884 gen_lowpart (tmode
, inner
),
11889 /* ... fall through ... */
11891 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11892 the low order N bits of FOO are known to be zero, we can do this
11893 by comparing FOO with C shifted left N bits so long as no
11894 overflow occurs. Even if the low order N bits of FOO aren't known
11895 to be zero, if the comparison is >= or < we can use the same
11896 optimization and for > or <= by setting all the low
11897 order N bits in the comparison constant. */
11898 if (CONST_INT_P (XEXP (op0
, 1))
11899 && INTVAL (XEXP (op0
, 1)) > 0
11900 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11901 && mode_width
<= HOST_BITS_PER_WIDE_INT
11902 && (((unsigned HOST_WIDE_INT
) const_op
11903 + (GET_CODE (op0
) != LSHIFTRT
11904 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11907 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11909 unsigned HOST_WIDE_INT low_bits
11910 = (nonzero_bits (XEXP (op0
, 0), mode
)
11911 & (((unsigned HOST_WIDE_INT
) 1
11912 << INTVAL (XEXP (op0
, 1))) - 1));
11913 if (low_bits
== 0 || !equality_comparison_p
)
11915 /* If the shift was logical, then we must make the condition
11917 if (GET_CODE (op0
) == LSHIFTRT
)
11918 code
= unsigned_condition (code
);
11920 const_op
<<= INTVAL (XEXP (op0
, 1));
11922 && (code
== GT
|| code
== GTU
11923 || code
== LE
|| code
== LEU
))
11925 |= (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1);
11926 op1
= GEN_INT (const_op
);
11927 op0
= XEXP (op0
, 0);
11932 /* If we are using this shift to extract just the sign bit, we
11933 can replace this with an LT or GE comparison. */
11935 && (equality_comparison_p
|| sign_bit_comparison_p
)
11936 && CONST_INT_P (XEXP (op0
, 1))
11937 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11939 op0
= XEXP (op0
, 0);
11940 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11952 /* Now make any compound operations involved in this comparison. Then,
11953 check for an outmost SUBREG on OP0 that is not doing anything or is
11954 paradoxical. The latter transformation must only be performed when
11955 it is known that the "extra" bits will be the same in op0 and op1 or
11956 that they don't matter. There are three cases to consider:
11958 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11959 care bits and we can assume they have any convenient value. So
11960 making the transformation is safe.
11962 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11963 In this case the upper bits of op0 are undefined. We should not make
11964 the simplification in that case as we do not know the contents of
11967 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11968 UNKNOWN. In that case we know those bits are zeros or ones. We must
11969 also be sure that they are the same as the upper bits of op1.
11971 We can never remove a SUBREG for a non-equality comparison because
11972 the sign bit is in a different place in the underlying object. */
11974 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11975 op1
= make_compound_operation (op1
, SET
);
11977 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11978 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11979 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11980 && (code
== NE
|| code
== EQ
))
11982 if (paradoxical_subreg_p (op0
))
11984 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11986 if (REG_P (SUBREG_REG (op0
)))
11988 op0
= SUBREG_REG (op0
);
11989 op1
= gen_lowpart (GET_MODE (op0
), op1
);
11992 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
11993 <= HOST_BITS_PER_WIDE_INT
)
11994 && (nonzero_bits (SUBREG_REG (op0
),
11995 GET_MODE (SUBREG_REG (op0
)))
11996 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11998 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
12000 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
12001 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12002 op0
= SUBREG_REG (op0
), op1
= tem
;
12006 /* We now do the opposite procedure: Some machines don't have compare
12007 insns in all modes. If OP0's mode is an integer mode smaller than a
12008 word and we can't do a compare in that mode, see if there is a larger
12009 mode for which we can do the compare. There are a number of cases in
12010 which we can use the wider mode. */
12012 mode
= GET_MODE (op0
);
12013 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
12014 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12015 && ! have_insn_for (COMPARE
, mode
))
12016 for (tmode
= GET_MODE_WIDER_MODE (mode
);
12017 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
12018 tmode
= GET_MODE_WIDER_MODE (tmode
))
12019 if (have_insn_for (COMPARE
, tmode
))
12023 /* If this is a test for negative, we can make an explicit
12024 test of the sign bit. Test this first so we can use
12025 a paradoxical subreg to extend OP0. */
12027 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12028 && HWI_COMPUTABLE_MODE_P (mode
))
12030 op0
= simplify_gen_binary (AND
, tmode
,
12031 gen_lowpart (tmode
, op0
),
12032 GEN_INT ((unsigned HOST_WIDE_INT
) 1
12033 << (GET_MODE_BITSIZE (mode
)
12035 code
= (code
== LT
) ? NE
: EQ
;
12039 /* If the only nonzero bits in OP0 and OP1 are those in the
12040 narrower mode and this is an equality or unsigned comparison,
12041 we can use the wider mode. Similarly for sign-extended
12042 values, in which case it is true for all comparisons. */
12043 zero_extended
= ((code
== EQ
|| code
== NE
12044 || code
== GEU
|| code
== GTU
12045 || code
== LEU
|| code
== LTU
)
12046 && (nonzero_bits (op0
, tmode
)
12047 & ~GET_MODE_MASK (mode
)) == 0
12048 && ((CONST_INT_P (op1
)
12049 || (nonzero_bits (op1
, tmode
)
12050 & ~GET_MODE_MASK (mode
)) == 0)));
12053 || ((num_sign_bit_copies (op0
, tmode
)
12054 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12055 - GET_MODE_PRECISION (mode
)))
12056 && (num_sign_bit_copies (op1
, tmode
)
12057 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12058 - GET_MODE_PRECISION (mode
)))))
12060 /* If OP0 is an AND and we don't have an AND in MODE either,
12061 make a new AND in the proper mode. */
12062 if (GET_CODE (op0
) == AND
12063 && !have_insn_for (AND
, mode
))
12064 op0
= simplify_gen_binary (AND
, tmode
,
12065 gen_lowpart (tmode
,
12067 gen_lowpart (tmode
,
12073 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12074 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12078 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12079 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12086 #ifdef CANONICALIZE_COMPARISON
12087 /* If this machine only supports a subset of valid comparisons, see if we
12088 can convert an unsupported one into a supported one. */
12089 CANONICALIZE_COMPARISON (code
, op0
, op1
);
12098 /* Utility function for record_value_for_reg. Count number of
12103 enum rtx_code code
= GET_CODE (x
);
12107 if (GET_RTX_CLASS (code
) == '2'
12108 || GET_RTX_CLASS (code
) == 'c')
12110 rtx x0
= XEXP (x
, 0);
12111 rtx x1
= XEXP (x
, 1);
12114 return 1 + 2 * count_rtxs (x0
);
12116 if ((GET_RTX_CLASS (GET_CODE (x1
)) == '2'
12117 || GET_RTX_CLASS (GET_CODE (x1
)) == 'c')
12118 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12119 return 2 + 2 * count_rtxs (x0
)
12120 + count_rtxs (x
== XEXP (x1
, 0)
12121 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12123 if ((GET_RTX_CLASS (GET_CODE (x0
)) == '2'
12124 || GET_RTX_CLASS (GET_CODE (x0
)) == 'c')
12125 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12126 return 2 + 2 * count_rtxs (x1
)
12127 + count_rtxs (x
== XEXP (x0
, 0)
12128 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12131 fmt
= GET_RTX_FORMAT (code
);
12132 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12134 ret
+= count_rtxs (XEXP (x
, i
));
12135 else if (fmt
[i
] == 'E')
12136 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12137 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12142 /* Utility function for following routine. Called when X is part of a value
12143 being stored into last_set_value. Sets last_set_table_tick
12144 for each register mentioned. Similar to mention_regs in cse.c */
12147 update_table_tick (rtx x
)
12149 enum rtx_code code
= GET_CODE (x
);
12150 const char *fmt
= GET_RTX_FORMAT (code
);
12155 unsigned int regno
= REGNO (x
);
12156 unsigned int endregno
= END_REGNO (x
);
12159 for (r
= regno
; r
< endregno
; r
++)
12161 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, r
);
12162 rsp
->last_set_table_tick
= label_tick
;
12168 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12171 /* Check for identical subexpressions. If x contains
12172 identical subexpression we only have to traverse one of
12174 if (i
== 0 && ARITHMETIC_P (x
))
12176 /* Note that at this point x1 has already been
12178 rtx x0
= XEXP (x
, 0);
12179 rtx x1
= XEXP (x
, 1);
12181 /* If x0 and x1 are identical then there is no need to
12186 /* If x0 is identical to a subexpression of x1 then while
12187 processing x1, x0 has already been processed. Thus we
12188 are done with x. */
12189 if (ARITHMETIC_P (x1
)
12190 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12193 /* If x1 is identical to a subexpression of x0 then we
12194 still have to process the rest of x0. */
12195 if (ARITHMETIC_P (x0
)
12196 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12198 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12203 update_table_tick (XEXP (x
, i
));
12205 else if (fmt
[i
] == 'E')
12206 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12207 update_table_tick (XVECEXP (x
, i
, j
));
12210 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12211 are saying that the register is clobbered and we no longer know its
12212 value. If INSN is zero, don't update reg_stat[].last_set; this is
12213 only permitted with VALUE also zero and is used to invalidate the
12217 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
12219 unsigned int regno
= REGNO (reg
);
12220 unsigned int endregno
= END_REGNO (reg
);
12222 reg_stat_type
*rsp
;
12224 /* If VALUE contains REG and we have a previous value for REG, substitute
12225 the previous value. */
12226 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12230 /* Set things up so get_last_value is allowed to see anything set up to
12232 subst_low_luid
= DF_INSN_LUID (insn
);
12233 tem
= get_last_value (reg
);
12235 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12236 it isn't going to be useful and will take a lot of time to process,
12237 so just use the CLOBBER. */
12241 if (ARITHMETIC_P (tem
)
12242 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12243 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12244 tem
= XEXP (tem
, 0);
12245 else if (count_occurrences (value
, reg
, 1) >= 2)
12247 /* If there are two or more occurrences of REG in VALUE,
12248 prevent the value from growing too much. */
12249 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12250 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12253 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12257 /* For each register modified, show we don't know its value, that
12258 we don't know about its bitwise content, that its value has been
12259 updated, and that we don't know the location of the death of the
12261 for (i
= regno
; i
< endregno
; i
++)
12263 rsp
= VEC_index (reg_stat_type
, reg_stat
, i
);
12266 rsp
->last_set
= insn
;
12268 rsp
->last_set_value
= 0;
12269 rsp
->last_set_mode
= VOIDmode
;
12270 rsp
->last_set_nonzero_bits
= 0;
12271 rsp
->last_set_sign_bit_copies
= 0;
12272 rsp
->last_death
= 0;
12273 rsp
->truncated_to_mode
= VOIDmode
;
12276 /* Mark registers that are being referenced in this value. */
12278 update_table_tick (value
);
12280 /* Now update the status of each register being set.
12281 If someone is using this register in this block, set this register
12282 to invalid since we will get confused between the two lives in this
12283 basic block. This makes using this register always invalid. In cse, we
12284 scan the table to invalidate all entries using this register, but this
12285 is too much work for us. */
12287 for (i
= regno
; i
< endregno
; i
++)
12289 rsp
= VEC_index (reg_stat_type
, reg_stat
, i
);
12290 rsp
->last_set_label
= label_tick
;
12292 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12293 rsp
->last_set_invalid
= 1;
12295 rsp
->last_set_invalid
= 0;
12298 /* The value being assigned might refer to X (like in "x++;"). In that
12299 case, we must replace it with (clobber (const_int 0)) to prevent
12301 rsp
= VEC_index (reg_stat_type
, reg_stat
, regno
);
12302 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
12304 value
= copy_rtx (value
);
12305 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
12309 /* For the main register being modified, update the value, the mode, the
12310 nonzero bits, and the number of sign bit copies. */
12312 rsp
->last_set_value
= value
;
12316 enum machine_mode mode
= GET_MODE (reg
);
12317 subst_low_luid
= DF_INSN_LUID (insn
);
12318 rsp
->last_set_mode
= mode
;
12319 if (GET_MODE_CLASS (mode
) == MODE_INT
12320 && HWI_COMPUTABLE_MODE_P (mode
))
12321 mode
= nonzero_bits_mode
;
12322 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
12323 rsp
->last_set_sign_bit_copies
12324 = num_sign_bit_copies (value
, GET_MODE (reg
));
12328 /* Called via note_stores from record_dead_and_set_regs to handle one
12329 SET or CLOBBER in an insn. DATA is the instruction in which the
12330 set is occurring. */
12333 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
12335 rtx record_dead_insn
= (rtx
) data
;
12337 if (GET_CODE (dest
) == SUBREG
)
12338 dest
= SUBREG_REG (dest
);
12340 if (!record_dead_insn
)
12343 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
12349 /* If we are setting the whole register, we know its value. Otherwise
12350 show that we don't know the value. We can handle SUBREG in
12352 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
12353 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
12354 else if (GET_CODE (setter
) == SET
12355 && GET_CODE (SET_DEST (setter
)) == SUBREG
12356 && SUBREG_REG (SET_DEST (setter
)) == dest
12357 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
12358 && subreg_lowpart_p (SET_DEST (setter
)))
12359 record_value_for_reg (dest
, record_dead_insn
,
12360 gen_lowpart (GET_MODE (dest
),
12361 SET_SRC (setter
)));
12363 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
12365 else if (MEM_P (dest
)
12366 /* Ignore pushes, they clobber nothing. */
12367 && ! push_operand (dest
, GET_MODE (dest
)))
12368 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
12371 /* Update the records of when each REG was most recently set or killed
12372 for the things done by INSN. This is the last thing done in processing
12373 INSN in the combiner loop.
12375 We update reg_stat[], in particular fields last_set, last_set_value,
12376 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12377 last_death, and also the similar information mem_last_set (which insn
12378 most recently modified memory) and last_call_luid (which insn was the
12379 most recent subroutine call). */
12382 record_dead_and_set_regs (rtx insn
)
12387 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
12389 if (REG_NOTE_KIND (link
) == REG_DEAD
12390 && REG_P (XEXP (link
, 0)))
12392 unsigned int regno
= REGNO (XEXP (link
, 0));
12393 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
12395 for (i
= regno
; i
< endregno
; i
++)
12397 reg_stat_type
*rsp
;
12399 rsp
= VEC_index (reg_stat_type
, reg_stat
, i
);
12400 rsp
->last_death
= insn
;
12403 else if (REG_NOTE_KIND (link
) == REG_INC
)
12404 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
12409 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
12410 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
12412 reg_stat_type
*rsp
;
12414 rsp
= VEC_index (reg_stat_type
, reg_stat
, i
);
12415 rsp
->last_set_invalid
= 1;
12416 rsp
->last_set
= insn
;
12417 rsp
->last_set_value
= 0;
12418 rsp
->last_set_mode
= VOIDmode
;
12419 rsp
->last_set_nonzero_bits
= 0;
12420 rsp
->last_set_sign_bit_copies
= 0;
12421 rsp
->last_death
= 0;
12422 rsp
->truncated_to_mode
= VOIDmode
;
12425 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
12427 /* We can't combine into a call pattern. Remember, though, that
12428 the return value register is set at this LUID. We could
12429 still replace a register with the return value from the
12430 wrong subroutine call! */
12431 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
12434 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
12437 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12438 register present in the SUBREG, so for each such SUBREG go back and
12439 adjust nonzero and sign bit information of the registers that are
12440 known to have some zero/sign bits set.
12442 This is needed because when combine blows the SUBREGs away, the
12443 information on zero/sign bits is lost and further combines can be
12444 missed because of that. */
12447 record_promoted_value (rtx insn
, rtx subreg
)
12449 struct insn_link
*links
;
12451 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
12452 enum machine_mode mode
= GET_MODE (subreg
);
12454 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
12457 for (links
= LOG_LINKS (insn
); links
;)
12459 reg_stat_type
*rsp
;
12461 insn
= links
->insn
;
12462 set
= single_set (insn
);
12464 if (! set
|| !REG_P (SET_DEST (set
))
12465 || REGNO (SET_DEST (set
)) != regno
12466 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
12468 links
= links
->next
;
12472 rsp
= VEC_index (reg_stat_type
, reg_stat
, regno
);
12473 if (rsp
->last_set
== insn
)
12475 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
12476 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
12479 if (REG_P (SET_SRC (set
)))
12481 regno
= REGNO (SET_SRC (set
));
12482 links
= LOG_LINKS (insn
);
12489 /* Check if X, a register, is known to contain a value already
12490 truncated to MODE. In this case we can use a subreg to refer to
12491 the truncated value even though in the generic case we would need
12492 an explicit truncation. */
12495 reg_truncated_to_mode (enum machine_mode mode
, const_rtx x
)
12497 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, REGNO (x
));
12498 enum machine_mode truncated
= rsp
->truncated_to_mode
;
12501 || rsp
->truncation_label
< label_tick_ebb_start
)
12503 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
12505 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
12510 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12511 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12512 might be able to turn a truncate into a subreg using this information.
12513 Return -1 if traversing *P is complete or 0 otherwise. */
12516 record_truncated_value (rtx
*p
, void *data ATTRIBUTE_UNUSED
)
12519 enum machine_mode truncated_mode
;
12520 reg_stat_type
*rsp
;
12522 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
12524 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
12525 truncated_mode
= GET_MODE (x
);
12527 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
12530 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
12533 x
= SUBREG_REG (x
);
12535 /* ??? For hard-regs we now record everything. We might be able to
12536 optimize this using last_set_mode. */
12537 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
12538 truncated_mode
= GET_MODE (x
);
12542 rsp
= VEC_index (reg_stat_type
, reg_stat
, REGNO (x
));
12543 if (rsp
->truncated_to_mode
== 0
12544 || rsp
->truncation_label
< label_tick_ebb_start
12545 || (GET_MODE_SIZE (truncated_mode
)
12546 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
12548 rsp
->truncated_to_mode
= truncated_mode
;
12549 rsp
->truncation_label
= label_tick
;
12555 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12556 the modes they are used in. This can help truning TRUNCATEs into
12560 record_truncated_values (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
12562 for_each_rtx (x
, record_truncated_value
, NULL
);
12565 /* Scan X for promoted SUBREGs. For each one found,
12566 note what it implies to the registers used in it. */
12569 check_promoted_subreg (rtx insn
, rtx x
)
12571 if (GET_CODE (x
) == SUBREG
12572 && SUBREG_PROMOTED_VAR_P (x
)
12573 && REG_P (SUBREG_REG (x
)))
12574 record_promoted_value (insn
, x
);
12577 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
12580 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
12584 check_promoted_subreg (insn
, XEXP (x
, i
));
12588 if (XVEC (x
, i
) != 0)
12589 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12590 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
12596 /* Verify that all the registers and memory references mentioned in *LOC are
12597 still valid. *LOC was part of a value set in INSN when label_tick was
12598 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12599 the invalid references with (clobber (const_int 0)) and return 1. This
12600 replacement is useful because we often can get useful information about
12601 the form of a value (e.g., if it was produced by a shift that always
12602 produces -1 or 0) even though we don't know exactly what registers it
12603 was produced from. */
12606 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
12609 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
12610 int len
= GET_RTX_LENGTH (GET_CODE (x
));
12615 unsigned int regno
= REGNO (x
);
12616 unsigned int endregno
= END_REGNO (x
);
12619 for (j
= regno
; j
< endregno
; j
++)
12621 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, j
);
12622 if (rsp
->last_set_invalid
12623 /* If this is a pseudo-register that was only set once and not
12624 live at the beginning of the function, it is always valid. */
12625 || (! (regno
>= FIRST_PSEUDO_REGISTER
12626 && REG_N_SETS (regno
) == 1
12627 && (!REGNO_REG_SET_P
12628 (DF_LR_IN (ENTRY_BLOCK_PTR
->next_bb
), regno
)))
12629 && rsp
->last_set_label
> tick
))
12632 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12639 /* If this is a memory reference, make sure that there were no stores after
12640 it that might have clobbered the value. We don't have alias info, so we
12641 assume any store invalidates it. Moreover, we only have local UIDs, so
12642 we also assume that there were stores in the intervening basic blocks. */
12643 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
12644 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
12647 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12651 for (i
= 0; i
< len
; i
++)
12655 /* Check for identical subexpressions. If x contains
12656 identical subexpression we only have to traverse one of
12658 if (i
== 1 && ARITHMETIC_P (x
))
12660 /* Note that at this point x0 has already been checked
12661 and found valid. */
12662 rtx x0
= XEXP (x
, 0);
12663 rtx x1
= XEXP (x
, 1);
12665 /* If x0 and x1 are identical then x is also valid. */
12669 /* If x1 is identical to a subexpression of x0 then
12670 while checking x0, x1 has already been checked. Thus
12671 it is valid and so as x. */
12672 if (ARITHMETIC_P (x0
)
12673 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12676 /* If x0 is identical to a subexpression of x1 then x is
12677 valid iff the rest of x1 is valid. */
12678 if (ARITHMETIC_P (x1
)
12679 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12681 get_last_value_validate (&XEXP (x1
,
12682 x0
== XEXP (x1
, 0) ? 1 : 0),
12683 insn
, tick
, replace
);
12686 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
12690 else if (fmt
[i
] == 'E')
12691 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12692 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
12693 insn
, tick
, replace
) == 0)
12697 /* If we haven't found a reason for it to be invalid, it is valid. */
12701 /* Get the last value assigned to X, if known. Some registers
12702 in the value may be replaced with (clobber (const_int 0)) if their value
12703 is known longer known reliably. */
12706 get_last_value (const_rtx x
)
12708 unsigned int regno
;
12710 reg_stat_type
*rsp
;
12712 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12713 then convert it to the desired mode. If this is a paradoxical SUBREG,
12714 we cannot predict what values the "extra" bits might have. */
12715 if (GET_CODE (x
) == SUBREG
12716 && subreg_lowpart_p (x
)
12717 && !paradoxical_subreg_p (x
)
12718 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
12719 return gen_lowpart (GET_MODE (x
), value
);
12725 rsp
= VEC_index (reg_stat_type
, reg_stat
, regno
);
12726 value
= rsp
->last_set_value
;
12728 /* If we don't have a value, or if it isn't for this basic block and
12729 it's either a hard register, set more than once, or it's a live
12730 at the beginning of the function, return 0.
12732 Because if it's not live at the beginning of the function then the reg
12733 is always set before being used (is never used without being set).
12734 And, if it's set only once, and it's always set before use, then all
12735 uses must have the same last value, even if it's not from this basic
12739 || (rsp
->last_set_label
< label_tick_ebb_start
12740 && (regno
< FIRST_PSEUDO_REGISTER
12741 || REG_N_SETS (regno
) != 1
12743 (DF_LR_IN (ENTRY_BLOCK_PTR
->next_bb
), regno
))))
12746 /* If the value was set in a later insn than the ones we are processing,
12747 we can't use it even if the register was only set once. */
12748 if (rsp
->last_set_label
== label_tick
12749 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
12752 /* If the value has all its registers valid, return it. */
12753 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
12756 /* Otherwise, make a copy and replace any invalid register with
12757 (clobber (const_int 0)). If that fails for some reason, return 0. */
12759 value
= copy_rtx (value
);
12760 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
12766 /* Return nonzero if expression X refers to a REG or to memory
12767 that is set in an instruction more recent than FROM_LUID. */
12770 use_crosses_set_p (const_rtx x
, int from_luid
)
12774 enum rtx_code code
= GET_CODE (x
);
12778 unsigned int regno
= REGNO (x
);
12779 unsigned endreg
= END_REGNO (x
);
12781 #ifdef PUSH_ROUNDING
12782 /* Don't allow uses of the stack pointer to be moved,
12783 because we don't know whether the move crosses a push insn. */
12784 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
12787 for (; regno
< endreg
; regno
++)
12789 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, regno
);
12791 && rsp
->last_set_label
== label_tick
12792 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
12798 if (code
== MEM
&& mem_last_set
> from_luid
)
12801 fmt
= GET_RTX_FORMAT (code
);
12803 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12808 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12809 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
12812 else if (fmt
[i
] == 'e'
12813 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
12819 /* Define three variables used for communication between the following
12822 static unsigned int reg_dead_regno
, reg_dead_endregno
;
12823 static int reg_dead_flag
;
12825 /* Function called via note_stores from reg_dead_at_p.
12827 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12828 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12831 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
12833 unsigned int regno
, endregno
;
12838 regno
= REGNO (dest
);
12839 endregno
= END_REGNO (dest
);
12840 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
12841 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
12844 /* Return nonzero if REG is known to be dead at INSN.
12846 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12847 referencing REG, it is dead. If we hit a SET referencing REG, it is
12848 live. Otherwise, see if it is live or dead at the start of the basic
12849 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12850 must be assumed to be always live. */
12853 reg_dead_at_p (rtx reg
, rtx insn
)
12858 /* Set variables for reg_dead_at_p_1. */
12859 reg_dead_regno
= REGNO (reg
);
12860 reg_dead_endregno
= END_REGNO (reg
);
12864 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12865 we allow the machine description to decide whether use-and-clobber
12866 patterns are OK. */
12867 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12869 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12870 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12874 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12875 beginning of basic block. */
12876 block
= BLOCK_FOR_INSN (insn
);
12881 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12883 return reg_dead_flag
== 1 ? 1 : 0;
12885 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12889 if (insn
== BB_HEAD (block
))
12892 insn
= PREV_INSN (insn
);
12895 /* Look at live-in sets for the basic block that we were in. */
12896 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12897 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
12903 /* Note hard registers in X that are used. */
12906 mark_used_regs_combine (rtx x
)
12908 RTX_CODE code
= GET_CODE (x
);
12909 unsigned int regno
;
12922 case ADDR_DIFF_VEC
:
12925 /* CC0 must die in the insn after it is set, so we don't need to take
12926 special note of it here. */
12932 /* If we are clobbering a MEM, mark any hard registers inside the
12933 address as used. */
12934 if (MEM_P (XEXP (x
, 0)))
12935 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12940 /* A hard reg in a wide mode may really be multiple registers.
12941 If so, mark all of them just like the first. */
12942 if (regno
< FIRST_PSEUDO_REGISTER
)
12944 /* None of this applies to the stack, frame or arg pointers. */
12945 if (regno
== STACK_POINTER_REGNUM
12946 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12947 || regno
== HARD_FRAME_POINTER_REGNUM
12949 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12950 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12952 || regno
== FRAME_POINTER_REGNUM
)
12955 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
12961 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12963 rtx testreg
= SET_DEST (x
);
12965 while (GET_CODE (testreg
) == SUBREG
12966 || GET_CODE (testreg
) == ZERO_EXTRACT
12967 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12968 testreg
= XEXP (testreg
, 0);
12970 if (MEM_P (testreg
))
12971 mark_used_regs_combine (XEXP (testreg
, 0));
12973 mark_used_regs_combine (SET_SRC (x
));
12981 /* Recursively scan the operands of this expression. */
12984 const char *fmt
= GET_RTX_FORMAT (code
);
12986 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12989 mark_used_regs_combine (XEXP (x
, i
));
12990 else if (fmt
[i
] == 'E')
12994 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12995 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13001 /* Remove register number REGNO from the dead registers list of INSN.
13003 Return the note used to record the death, if there was one. */
13006 remove_death (unsigned int regno
, rtx insn
)
13008 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13011 remove_note (insn
, note
);
13016 /* For each register (hardware or pseudo) used within expression X, if its
13017 death is in an instruction with luid between FROM_LUID (inclusive) and
13018 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13019 list headed by PNOTES.
13021 That said, don't move registers killed by maybe_kill_insn.
13023 This is done when X is being merged by combination into TO_INSN. These
13024 notes will then be distributed as needed. */
13027 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx to_insn
,
13032 enum rtx_code code
= GET_CODE (x
);
13036 unsigned int regno
= REGNO (x
);
13037 rtx where_dead
= VEC_index (reg_stat_type
, reg_stat
, regno
)->last_death
;
13039 /* Don't move the register if it gets killed in between from and to. */
13040 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13041 && ! reg_referenced_p (x
, maybe_kill_insn
))
13045 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13046 && DF_INSN_LUID (where_dead
) >= from_luid
13047 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13049 rtx note
= remove_death (regno
, where_dead
);
13051 /* It is possible for the call above to return 0. This can occur
13052 when last_death points to I2 or I1 that we combined with.
13053 In that case make a new note.
13055 We must also check for the case where X is a hard register
13056 and NOTE is a death note for a range of hard registers
13057 including X. In that case, we must put REG_DEAD notes for
13058 the remaining registers in place of NOTE. */
13060 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13061 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13062 > GET_MODE_SIZE (GET_MODE (x
))))
13064 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13065 unsigned int deadend
= END_HARD_REGNO (XEXP (note
, 0));
13066 unsigned int ourend
= END_HARD_REGNO (x
);
13069 for (i
= deadregno
; i
< deadend
; i
++)
13070 if (i
< regno
|| i
>= ourend
)
13071 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13074 /* If we didn't find any note, or if we found a REG_DEAD note that
13075 covers only part of the given reg, and we have a multi-reg hard
13076 register, then to be safe we must check for REG_DEAD notes
13077 for each register other than the first. They could have
13078 their own REG_DEAD notes lying around. */
13079 else if ((note
== 0
13081 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13082 < GET_MODE_SIZE (GET_MODE (x
)))))
13083 && regno
< FIRST_PSEUDO_REGISTER
13084 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
13086 unsigned int ourend
= END_HARD_REGNO (x
);
13087 unsigned int i
, offset
;
13091 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13095 for (i
= regno
+ offset
; i
< ourend
; i
++)
13096 move_deaths (regno_reg_rtx
[i
],
13097 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13100 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13102 XEXP (note
, 1) = *pnotes
;
13106 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13112 else if (GET_CODE (x
) == SET
)
13114 rtx dest
= SET_DEST (x
);
13116 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13118 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13119 that accesses one word of a multi-word item, some
13120 piece of everything register in the expression is used by
13121 this insn, so remove any old death. */
13122 /* ??? So why do we test for equality of the sizes? */
13124 if (GET_CODE (dest
) == ZERO_EXTRACT
13125 || GET_CODE (dest
) == STRICT_LOW_PART
13126 || (GET_CODE (dest
) == SUBREG
13127 && (((GET_MODE_SIZE (GET_MODE (dest
))
13128 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13129 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13130 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13132 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13136 /* If this is some other SUBREG, we know it replaces the entire
13137 value, so use that as the destination. */
13138 if (GET_CODE (dest
) == SUBREG
)
13139 dest
= SUBREG_REG (dest
);
13141 /* If this is a MEM, adjust deaths of anything used in the address.
13142 For a REG (the only other possibility), the entire value is
13143 being replaced so the old value is not used in this insn. */
13146 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13151 else if (GET_CODE (x
) == CLOBBER
)
13154 len
= GET_RTX_LENGTH (code
);
13155 fmt
= GET_RTX_FORMAT (code
);
13157 for (i
= 0; i
< len
; i
++)
13162 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13163 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13166 else if (fmt
[i
] == 'e')
13167 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13171 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13172 pattern of an insn. X must be a REG. */
13175 reg_bitfield_target_p (rtx x
, rtx body
)
13179 if (GET_CODE (body
) == SET
)
13181 rtx dest
= SET_DEST (body
);
13183 unsigned int regno
, tregno
, endregno
, endtregno
;
13185 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13186 target
= XEXP (dest
, 0);
13187 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13188 target
= SUBREG_REG (XEXP (dest
, 0));
13192 if (GET_CODE (target
) == SUBREG
)
13193 target
= SUBREG_REG (target
);
13195 if (!REG_P (target
))
13198 tregno
= REGNO (target
), regno
= REGNO (x
);
13199 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13200 return target
== x
;
13202 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13203 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13205 return endregno
> tregno
&& regno
< endtregno
;
13208 else if (GET_CODE (body
) == PARALLEL
)
13209 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13210 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13216 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13217 as appropriate. I3 and I2 are the insns resulting from the combination
13218 insns including FROM (I2 may be zero).
13220 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13221 not need REG_DEAD notes because they are being substituted for. This
13222 saves searching in the most common cases.
13224 Each note in the list is either ignored or placed on some insns, depending
13225 on the type of note. */
13228 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
13229 rtx elim_i1
, rtx elim_i0
)
13231 rtx note
, next_note
;
13234 for (note
= notes
; note
; note
= next_note
)
13236 rtx place
= 0, place2
= 0;
13238 next_note
= XEXP (note
, 1);
13239 switch (REG_NOTE_KIND (note
))
13243 /* Doesn't matter much where we put this, as long as it's somewhere.
13244 It is preferable to keep these notes on branches, which is most
13245 likely to be i3. */
13249 case REG_NON_LOCAL_GOTO
:
13254 gcc_assert (i2
&& JUMP_P (i2
));
13259 case REG_EH_REGION
:
13260 /* These notes must remain with the call or trapping instruction. */
13263 else if (i2
&& CALL_P (i2
))
13267 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13268 if (may_trap_p (i3
))
13270 else if (i2
&& may_trap_p (i2
))
13272 /* ??? Otherwise assume we've combined things such that we
13273 can now prove that the instructions can't trap. Drop the
13274 note in this case. */
13278 case REG_ARGS_SIZE
:
13279 /* ??? How to distribute between i3-i1. Assume i3 contains the
13280 entire adjustment. Assert i3 contains at least some adjust. */
13281 if (!noop_move_p (i3
))
13283 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13284 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
13285 gcc_assert (old_size
!= args_size
);
13292 /* These notes must remain with the call. It should not be
13293 possible for both I2 and I3 to be a call. */
13298 gcc_assert (i2
&& CALL_P (i2
));
13304 /* Any clobbers for i3 may still exist, and so we must process
13305 REG_UNUSED notes from that insn.
13307 Any clobbers from i2 or i1 can only exist if they were added by
13308 recog_for_combine. In that case, recog_for_combine created the
13309 necessary REG_UNUSED notes. Trying to keep any original
13310 REG_UNUSED notes from these insns can cause incorrect output
13311 if it is for the same register as the original i3 dest.
13312 In that case, we will notice that the register is set in i3,
13313 and then add a REG_UNUSED note for the destination of i3, which
13314 is wrong. However, it is possible to have REG_UNUSED notes from
13315 i2 or i1 for register which were both used and clobbered, so
13316 we keep notes from i2 or i1 if they will turn into REG_DEAD
13319 /* If this register is set or clobbered in I3, put the note there
13320 unless there is one already. */
13321 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
13323 if (from_insn
!= i3
)
13326 if (! (REG_P (XEXP (note
, 0))
13327 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
13328 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
13331 /* Otherwise, if this register is used by I3, then this register
13332 now dies here, so we must put a REG_DEAD note here unless there
13334 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
13335 && ! (REG_P (XEXP (note
, 0))
13336 ? find_regno_note (i3
, REG_DEAD
,
13337 REGNO (XEXP (note
, 0)))
13338 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
13340 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
13348 /* These notes say something about results of an insn. We can
13349 only support them if they used to be on I3 in which case they
13350 remain on I3. Otherwise they are ignored.
13352 If the note refers to an expression that is not a constant, we
13353 must also ignore the note since we cannot tell whether the
13354 equivalence is still true. It might be possible to do
13355 slightly better than this (we only have a problem if I2DEST
13356 or I1DEST is present in the expression), but it doesn't
13357 seem worth the trouble. */
13359 if (from_insn
== i3
13360 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
13365 /* These notes say something about how a register is used. They must
13366 be present on any use of the register in I2 or I3. */
13367 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
13370 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
13379 case REG_LABEL_TARGET
:
13380 case REG_LABEL_OPERAND
:
13381 /* This can show up in several ways -- either directly in the
13382 pattern, or hidden off in the constant pool with (or without?)
13383 a REG_EQUAL note. */
13384 /* ??? Ignore the without-reg_equal-note problem for now. */
13385 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
13386 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
13387 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13388 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
13392 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
13393 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
13394 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13395 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
13403 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13404 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13406 if (place
&& JUMP_P (place
)
13407 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13408 && (JUMP_LABEL (place
) == NULL
13409 || JUMP_LABEL (place
) == XEXP (note
, 0)))
13411 rtx label
= JUMP_LABEL (place
);
13414 JUMP_LABEL (place
) = XEXP (note
, 0);
13415 else if (LABEL_P (label
))
13416 LABEL_NUSES (label
)--;
13419 if (place2
&& JUMP_P (place2
)
13420 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13421 && (JUMP_LABEL (place2
) == NULL
13422 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
13424 rtx label
= JUMP_LABEL (place2
);
13427 JUMP_LABEL (place2
) = XEXP (note
, 0);
13428 else if (LABEL_P (label
))
13429 LABEL_NUSES (label
)--;
13435 /* This note says something about the value of a register prior
13436 to the execution of an insn. It is too much trouble to see
13437 if the note is still correct in all situations. It is better
13438 to simply delete it. */
13442 /* If we replaced the right hand side of FROM_INSN with a
13443 REG_EQUAL note, the original use of the dying register
13444 will not have been combined into I3 and I2. In such cases,
13445 FROM_INSN is guaranteed to be the first of the combined
13446 instructions, so we simply need to search back before
13447 FROM_INSN for the previous use or set of this register,
13448 then alter the notes there appropriately.
13450 If the register is used as an input in I3, it dies there.
13451 Similarly for I2, if it is nonzero and adjacent to I3.
13453 If the register is not used as an input in either I3 or I2
13454 and it is not one of the registers we were supposed to eliminate,
13455 there are two possibilities. We might have a non-adjacent I2
13456 or we might have somehow eliminated an additional register
13457 from a computation. For example, we might have had A & B where
13458 we discover that B will always be zero. In this case we will
13459 eliminate the reference to A.
13461 In both cases, we must search to see if we can find a previous
13462 use of A and put the death note there. */
13465 && from_insn
== i2mod
13466 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
13471 && CALL_P (from_insn
)
13472 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
13474 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
13476 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
13477 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13479 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
13481 && reg_overlap_mentioned_p (XEXP (note
, 0),
13483 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
13484 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
13491 basic_block bb
= this_basic_block
;
13493 for (tem
= PREV_INSN (tem
); place
== 0; tem
= PREV_INSN (tem
))
13495 if (!NONDEBUG_INSN_P (tem
))
13497 if (tem
== BB_HEAD (bb
))
13502 /* If the register is being set at TEM, see if that is all
13503 TEM is doing. If so, delete TEM. Otherwise, make this
13504 into a REG_UNUSED note instead. Don't delete sets to
13505 global register vars. */
13506 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
13507 || !global_regs
[REGNO (XEXP (note
, 0))])
13508 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
13510 rtx set
= single_set (tem
);
13511 rtx inner_dest
= 0;
13513 rtx cc0_setter
= NULL_RTX
;
13517 for (inner_dest
= SET_DEST (set
);
13518 (GET_CODE (inner_dest
) == STRICT_LOW_PART
13519 || GET_CODE (inner_dest
) == SUBREG
13520 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
13521 inner_dest
= XEXP (inner_dest
, 0))
13524 /* Verify that it was the set, and not a clobber that
13525 modified the register.
13527 CC0 targets must be careful to maintain setter/user
13528 pairs. If we cannot delete the setter due to side
13529 effects, mark the user with an UNUSED note instead
13532 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
13533 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
13535 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
13536 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
13537 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
13541 /* Move the notes and links of TEM elsewhere.
13542 This might delete other dead insns recursively.
13543 First set the pattern to something that won't use
13545 rtx old_notes
= REG_NOTES (tem
);
13547 PATTERN (tem
) = pc_rtx
;
13548 REG_NOTES (tem
) = NULL
;
13550 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
13551 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13552 distribute_links (LOG_LINKS (tem
));
13554 SET_INSN_DELETED (tem
);
13559 /* Delete the setter too. */
13562 PATTERN (cc0_setter
) = pc_rtx
;
13563 old_notes
= REG_NOTES (cc0_setter
);
13564 REG_NOTES (cc0_setter
) = NULL
;
13566 distribute_notes (old_notes
, cc0_setter
,
13567 cc0_setter
, NULL_RTX
,
13568 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13569 distribute_links (LOG_LINKS (cc0_setter
));
13571 SET_INSN_DELETED (cc0_setter
);
13572 if (cc0_setter
== i2
)
13579 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
13581 /* If there isn't already a REG_UNUSED note, put one
13582 here. Do not place a REG_DEAD note, even if
13583 the register is also used here; that would not
13584 match the algorithm used in lifetime analysis
13585 and can cause the consistency check in the
13586 scheduler to fail. */
13587 if (! find_regno_note (tem
, REG_UNUSED
,
13588 REGNO (XEXP (note
, 0))))
13593 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
13595 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
13599 /* If we are doing a 3->2 combination, and we have a
13600 register which formerly died in i3 and was not used
13601 by i2, which now no longer dies in i3 and is used in
13602 i2 but does not die in i2, and place is between i2
13603 and i3, then we may need to move a link from place to
13605 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
13607 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
13608 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13610 struct insn_link
*links
= LOG_LINKS (place
);
13611 LOG_LINKS (place
) = NULL
;
13612 distribute_links (links
);
13617 if (tem
== BB_HEAD (bb
))
13623 /* If the register is set or already dead at PLACE, we needn't do
13624 anything with this note if it is still a REG_DEAD note.
13625 We check here if it is set at all, not if is it totally replaced,
13626 which is what `dead_or_set_p' checks, so also check for it being
13629 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
13631 unsigned int regno
= REGNO (XEXP (note
, 0));
13632 reg_stat_type
*rsp
= VEC_index (reg_stat_type
, reg_stat
, regno
);
13634 if (dead_or_set_p (place
, XEXP (note
, 0))
13635 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
13637 /* Unless the register previously died in PLACE, clear
13638 last_death. [I no longer understand why this is
13640 if (rsp
->last_death
!= place
)
13641 rsp
->last_death
= 0;
13645 rsp
->last_death
= place
;
13647 /* If this is a death note for a hard reg that is occupying
13648 multiple registers, ensure that we are still using all
13649 parts of the object. If we find a piece of the object
13650 that is unused, we must arrange for an appropriate REG_DEAD
13651 note to be added for it. However, we can't just emit a USE
13652 and tag the note to it, since the register might actually
13653 be dead; so we recourse, and the recursive call then finds
13654 the previous insn that used this register. */
13656 if (place
&& regno
< FIRST_PSEUDO_REGISTER
13657 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
13659 unsigned int endregno
= END_HARD_REGNO (XEXP (note
, 0));
13663 for (i
= regno
; i
< endregno
; i
++)
13664 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
13665 && ! find_regno_fusage (place
, USE
, i
))
13666 || dead_or_set_regno_p (place
, i
))
13671 /* Put only REG_DEAD notes for pieces that are
13672 not already dead or set. */
13674 for (i
= regno
; i
< endregno
;
13675 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
13677 rtx piece
= regno_reg_rtx
[i
];
13678 basic_block bb
= this_basic_block
;
13680 if (! dead_or_set_p (place
, piece
)
13681 && ! reg_bitfield_target_p (piece
,
13684 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
13687 distribute_notes (new_note
, place
, place
,
13688 NULL_RTX
, NULL_RTX
, NULL_RTX
,
13691 else if (! refers_to_regno_p (i
, i
+ 1,
13692 PATTERN (place
), 0)
13693 && ! find_regno_fusage (place
, USE
, i
))
13694 for (tem
= PREV_INSN (place
); ;
13695 tem
= PREV_INSN (tem
))
13697 if (!NONDEBUG_INSN_P (tem
))
13699 if (tem
== BB_HEAD (bb
))
13703 if (dead_or_set_p (tem
, piece
)
13704 || reg_bitfield_target_p (piece
,
13707 add_reg_note (tem
, REG_UNUSED
, piece
);
13721 /* Any other notes should not be present at this point in the
13723 gcc_unreachable ();
13728 XEXP (note
, 1) = REG_NOTES (place
);
13729 REG_NOTES (place
) = note
;
13733 add_reg_note (place2
, REG_NOTE_KIND (note
), XEXP (note
, 0));
13737 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13738 I3, I2, and I1 to new locations. This is also called to add a link
13739 pointing at I3 when I3's destination is changed. */
13742 distribute_links (struct insn_link
*links
)
13744 struct insn_link
*link
, *next_link
;
13746 for (link
= links
; link
; link
= next_link
)
13752 next_link
= link
->next
;
13754 /* If the insn that this link points to is a NOTE or isn't a single
13755 set, ignore it. In the latter case, it isn't clear what we
13756 can do other than ignore the link, since we can't tell which
13757 register it was for. Such links wouldn't be used by combine
13760 It is not possible for the destination of the target of the link to
13761 have been changed by combine. The only potential of this is if we
13762 replace I3, I2, and I1 by I3 and I2. But in that case the
13763 destination of I2 also remains unchanged. */
13765 if (NOTE_P (link
->insn
)
13766 || (set
= single_set (link
->insn
)) == 0)
13769 reg
= SET_DEST (set
);
13770 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
13771 || GET_CODE (reg
) == STRICT_LOW_PART
)
13772 reg
= XEXP (reg
, 0);
13774 /* A LOG_LINK is defined as being placed on the first insn that uses
13775 a register and points to the insn that sets the register. Start
13776 searching at the next insn after the target of the link and stop
13777 when we reach a set of the register or the end of the basic block.
13779 Note that this correctly handles the link that used to point from
13780 I3 to I2. Also note that not much searching is typically done here
13781 since most links don't point very far away. */
13783 for (insn
= NEXT_INSN (link
->insn
);
13784 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
13785 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
13786 insn
= NEXT_INSN (insn
))
13787 if (DEBUG_INSN_P (insn
))
13789 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13791 if (reg_referenced_p (reg
, PATTERN (insn
)))
13795 else if (CALL_P (insn
)
13796 && find_reg_fusage (insn
, USE
, reg
))
13801 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
13804 /* If we found a place to put the link, place it there unless there
13805 is already a link to the same insn as LINK at that point. */
13809 struct insn_link
*link2
;
13811 FOR_EACH_LOG_LINK (link2
, place
)
13812 if (link2
->insn
== link
->insn
)
13817 link
->next
= LOG_LINKS (place
);
13818 LOG_LINKS (place
) = link
;
13820 /* Set added_links_insn to the earliest insn we added a
13822 if (added_links_insn
== 0
13823 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
13824 added_links_insn
= place
;
13830 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13831 Check whether the expression pointer to by LOC is a register or
13832 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13833 Otherwise return zero. */
13836 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
13841 && (REG_P (x
) || MEM_P (x
))
13842 && ! reg_mentioned_p (x
, (rtx
) expr
))
13847 /* Check for any register or memory mentioned in EQUIV that is not
13848 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13849 of EXPR where some registers may have been replaced by constants. */
13852 unmentioned_reg_p (rtx equiv
, rtx expr
)
13854 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
13858 dump_combine_stats (FILE *file
)
13862 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13863 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13867 dump_combine_total_stats (FILE *file
)
13871 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13872 total_attempts
, total_merges
, total_extras
, total_successes
);
13876 gate_handle_combine (void)
13878 return (optimize
> 0);
13881 /* Try combining insns through substitution. */
13882 static unsigned int
13883 rest_of_handle_combine (void)
13885 int rebuild_jump_labels_after_combine
;
13887 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
13888 df_note_add_problem ();
13891 regstat_init_n_sets_and_refs ();
13893 rebuild_jump_labels_after_combine
13894 = combine_instructions (get_insns (), max_reg_num ());
13896 /* Combining insns may have turned an indirect jump into a
13897 direct jump. Rebuild the JUMP_LABEL fields of jumping
13899 if (rebuild_jump_labels_after_combine
)
13901 timevar_push (TV_JUMP
);
13902 rebuild_jump_labels (get_insns ());
13904 timevar_pop (TV_JUMP
);
13907 regstat_free_n_sets_and_refs ();
13911 struct rtl_opt_pass pass_combine
=
13915 "combine", /* name */
13916 gate_handle_combine
, /* gate */
13917 rest_of_handle_combine
, /* execute */
13920 0, /* static_pass_number */
13921 TV_COMBINE
, /* tv_id */
13922 PROP_cfglayout
, /* properties_required */
13923 0, /* properties_provided */
13924 0, /* properties_destroyed */
13925 0, /* todo_flags_start */
13926 TODO_df_finish
| TODO_verify_rtl_sharing
|
13927 TODO_ggc_collect
, /* todo_flags_finish */