* target.h (enum opt_levels, struct default_options): New.
[official-gcc.git] / gcc / config / s390 / s390.h
blob3e9861458edd8bccadb253a5403ce23efb5dfae4
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5 Ulrich Weigand (uweigand@de.ibm.com).
6 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #ifndef _S390_H
25 #define _S390_H
27 /* Which processor to generate code or schedule for. The cpu attribute
28 defines a list that mirrors this list, so changes to s390.md must be
29 made at the same time. */
31 enum processor_type
33 PROCESSOR_9672_G5,
34 PROCESSOR_9672_G6,
35 PROCESSOR_2064_Z900,
36 PROCESSOR_2084_Z990,
37 PROCESSOR_2094_Z9_109,
38 PROCESSOR_2097_Z10,
39 PROCESSOR_2817_Z196,
40 PROCESSOR_max
43 /* Optional architectural facilities supported by the processor. */
45 enum processor_flags
47 PF_IEEE_FLOAT = 1,
48 PF_ZARCH = 2,
49 PF_LONG_DISPLACEMENT = 4,
50 PF_EXTIMM = 8,
51 PF_DFP = 16,
52 PF_Z10 = 32,
53 PF_Z196 = 64
56 extern enum processor_type s390_tune;
57 extern int s390_tune_flags;
59 /* This is necessary to avoid a warning about comparing different enum
60 types. */
61 #define s390_tune_attr ((enum attr_cpu)s390_tune)
63 extern enum processor_type s390_arch;
64 extern int s390_arch_flags;
66 /* These flags indicate that the generated code should run on a cpu
67 providing the respective hardware facility regardless of the
68 current cpu mode (ESA or z/Architecture). */
70 #define TARGET_CPU_IEEE_FLOAT \
71 (s390_arch_flags & PF_IEEE_FLOAT)
72 #define TARGET_CPU_ZARCH \
73 (s390_arch_flags & PF_ZARCH)
74 #define TARGET_CPU_LONG_DISPLACEMENT \
75 (s390_arch_flags & PF_LONG_DISPLACEMENT)
76 #define TARGET_CPU_EXTIMM \
77 (s390_arch_flags & PF_EXTIMM)
78 #define TARGET_CPU_DFP \
79 (s390_arch_flags & PF_DFP)
80 #define TARGET_CPU_Z10 \
81 (s390_arch_flags & PF_Z10)
82 #define TARGET_CPU_Z196 \
83 (s390_arch_flags & PF_Z196)
85 /* These flags indicate that the generated code should run on a cpu
86 providing the respective hardware facility when run in
87 z/Architecture mode. */
89 #define TARGET_LONG_DISPLACEMENT \
90 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
91 #define TARGET_EXTIMM \
92 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
93 #define TARGET_DFP \
94 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
95 #define TARGET_Z10 \
96 (TARGET_ZARCH && TARGET_CPU_Z10)
97 #define TARGET_Z196 \
98 (TARGET_ZARCH && TARGET_CPU_Z196)
101 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
103 /* Run-time target specification. */
105 /* Defaults for option flags defined only on some subtargets. */
106 #ifndef TARGET_TPF_PROFILING
107 #define TARGET_TPF_PROFILING 0
108 #endif
110 /* This will be overridden by OS headers. */
111 #define TARGET_TPF 0
113 /* Target CPU builtins. */
114 #define TARGET_CPU_CPP_BUILTINS() \
115 do \
117 builtin_assert ("cpu=s390"); \
118 builtin_assert ("machine=s390"); \
119 builtin_define ("__s390__"); \
120 if (TARGET_ZARCH) \
121 builtin_define ("__zarch__"); \
122 if (TARGET_64BIT) \
123 builtin_define ("__s390x__"); \
124 if (TARGET_LONG_DOUBLE_128) \
125 builtin_define ("__LONG_DOUBLE_128__"); \
127 while (0)
129 #ifdef DEFAULT_TARGET_64BIT
130 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
131 #else
132 #define TARGET_DEFAULT 0
133 #endif
135 /* Support for configure-time defaults. */
136 #define OPTION_DEFAULT_SPECS \
137 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
138 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
139 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
141 /* Defaulting rules. */
142 #ifdef DEFAULT_TARGET_64BIT
143 #define DRIVER_SELF_SPECS \
144 "%{!m31:%{!m64:-m64}}", \
145 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
146 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
147 #else
148 #define DRIVER_SELF_SPECS \
149 "%{!m31:%{!m64:-m31}}", \
150 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
151 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
152 #endif
154 /* Target version string. Overridden by the OS header. */
155 #ifdef DEFAULT_TARGET_64BIT
156 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
157 #else
158 #define TARGET_VERSION fprintf (stderr, " (S/390)");
159 #endif
161 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
162 #define S390_TDC_POSITIVE_ZERO (1 << 11)
163 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
164 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
165 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
166 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
167 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
168 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
169 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
170 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
171 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
172 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
173 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
175 /* The following values are different for DFP. */
176 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
177 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
178 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
179 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
181 /* For signbit, the BFP-DFP-difference makes no difference. */
182 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
183 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
184 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
185 | S390_TDC_NEGATIVE_INFINITY \
186 | S390_TDC_NEGATIVE_QUIET_NAN \
187 | S390_TDC_NEGATIVE_SIGNALING_NAN )
189 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
190 | S390_TDC_NEGATIVE_INFINITY )
192 /* Target machine storage layout. */
194 /* Everything is big-endian. */
195 #define BITS_BIG_ENDIAN 1
196 #define BYTES_BIG_ENDIAN 1
197 #define WORDS_BIG_ENDIAN 1
199 #define STACK_SIZE_MODE (Pmode)
201 #ifndef IN_LIBGCC2
203 /* Width of a word, in units (bytes). */
204 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
206 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
207 ABI-relevant contexts. This always matches
208 GET_MODE_SIZE (Pmode). */
209 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
210 #define MIN_UNITS_PER_WORD 4
211 #define MAX_BITS_PER_WORD 64
212 #else
214 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
215 the library should export TImode functions or not. Thus, we have
216 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
217 #ifdef __s390x__
218 #define UNITS_PER_WORD 8
219 #else
220 #define UNITS_PER_WORD 4
221 #endif
222 #endif
224 /* Width of a pointer, in bits. */
225 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
227 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
228 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
230 /* Boundary (in *bits*) on which stack pointer should be aligned. */
231 #define STACK_BOUNDARY 64
233 /* Allocation boundary (in *bits*) for the code of a function. */
234 #define FUNCTION_BOUNDARY 32
236 /* There is no point aligning anything to a rounder boundary than this. */
237 #define BIGGEST_ALIGNMENT 64
239 /* Alignment of field after `int : 0' in a structure. */
240 #define EMPTY_FIELD_BOUNDARY 32
242 /* Alignment on even addresses for LARL instruction. */
243 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
244 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
246 /* Alignment is not required by the hardware. */
247 #define STRICT_ALIGNMENT 0
249 /* Mode of stack savearea.
250 FUNCTION is VOIDmode because calling convention maintains SP.
251 BLOCK needs Pmode for SP.
252 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
253 #define STACK_SAVEAREA_MODE(LEVEL) \
254 (LEVEL == SAVE_FUNCTION ? VOIDmode \
255 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
258 /* Type layout. */
260 /* Sizes in bits of the source language data types. */
261 #define SHORT_TYPE_SIZE 16
262 #define INT_TYPE_SIZE 32
263 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
264 #define LONG_LONG_TYPE_SIZE 64
265 #define FLOAT_TYPE_SIZE 32
266 #define DOUBLE_TYPE_SIZE 64
267 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
269 /* Define this to set long double type size to use in libgcc2.c, which can
270 not depend on target_flags. */
271 #ifdef __LONG_DOUBLE_128__
272 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
273 #else
274 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
275 #endif
277 /* Work around target_flags dependency in ada/targtyps.c. */
278 #define WIDEST_HARDWARE_FP_SIZE 64
280 /* We use "unsigned char" as default. */
281 #define DEFAULT_SIGNED_CHAR 0
284 /* Register usage. */
286 /* We have 16 general purpose registers (registers 0-15),
287 and 16 floating point registers (registers 16-31).
288 (On non-IEEE machines, we have only 4 fp registers.)
290 Amongst the general purpose registers, some are used
291 for specific purposes:
292 GPR 11: Hard frame pointer (if needed)
293 GPR 12: Global offset table pointer (if needed)
294 GPR 13: Literal pool base register
295 GPR 14: Return address register
296 GPR 15: Stack pointer
298 Registers 32-35 are 'fake' hard registers that do not
299 correspond to actual hardware:
300 Reg 32: Argument pointer
301 Reg 33: Condition code
302 Reg 34: Frame pointer
303 Reg 35: Return address pointer
305 Registers 36 and 37 are mapped to access registers
306 0 and 1, used to implement thread-local storage. */
308 #define FIRST_PSEUDO_REGISTER 38
310 /* Standard register usage. */
311 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
312 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
313 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
314 #define CC_REGNO_P(N) ((N) == 33)
315 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
316 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
318 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
319 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
320 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
321 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
322 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
323 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
325 /* Set up fixed registers and calling convention:
327 GPRs 0-5 are always call-clobbered,
328 GPRs 6-15 are always call-saved.
329 GPR 12 is fixed if used as GOT pointer.
330 GPR 13 is always fixed (as literal pool pointer).
331 GPR 14 is always fixed on S/390 machines (as return address).
332 GPR 15 is always fixed (as stack pointer).
333 The 'fake' hard registers are call-clobbered and fixed.
334 The access registers are call-saved and fixed.
336 On 31-bit, FPRs 18-19 are call-clobbered;
337 on 64-bit, FPRs 24-31 are call-clobbered.
338 The remaining FPRs are call-saved. */
340 #define FIXED_REGISTERS \
341 { 0, 0, 0, 0, \
342 0, 0, 0, 0, \
343 0, 0, 0, 0, \
344 0, 1, 1, 1, \
345 0, 0, 0, 0, \
346 0, 0, 0, 0, \
347 0, 0, 0, 0, \
348 0, 0, 0, 0, \
349 1, 1, 1, 1, \
350 1, 1 }
352 #define CALL_USED_REGISTERS \
353 { 1, 1, 1, 1, \
354 1, 1, 0, 0, \
355 0, 0, 0, 0, \
356 0, 1, 1, 1, \
357 1, 1, 1, 1, \
358 1, 1, 1, 1, \
359 1, 1, 1, 1, \
360 1, 1, 1, 1, \
361 1, 1, 1, 1, \
362 1, 1 }
364 #define CALL_REALLY_USED_REGISTERS \
365 { 1, 1, 1, 1, \
366 1, 1, 0, 0, \
367 0, 0, 0, 0, \
368 0, 0, 0, 0, \
369 1, 1, 1, 1, \
370 1, 1, 1, 1, \
371 1, 1, 1, 1, \
372 1, 1, 1, 1, \
373 1, 1, 1, 1, \
374 0, 0 }
376 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
378 /* Preferred register allocation order. */
379 #define REG_ALLOC_ORDER \
380 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
381 16, 17, 18, 19, 20, 21, 22, 23, \
382 24, 25, 26, 27, 28, 29, 30, 31, \
383 15, 32, 33, 34, 35, 36, 37 }
386 /* Fitting values into registers. */
388 /* Integer modes <= word size fit into any GPR.
389 Integer modes > word size fit into successive GPRs, starting with
390 an even-numbered register.
391 SImode and DImode fit into FPRs as well.
393 Floating point modes <= word size fit into any FPR or GPR.
394 Floating point modes > word size (i.e. DFmode on 32-bit) fit
395 into any FPR, or an even-odd GPR pair.
396 TFmode fits only into an even-odd FPR pair.
398 Complex floating point modes fit either into two FPRs, or into
399 successive GPRs (again starting with an even number).
400 TCmode fits only into two successive even-odd FPR pairs.
402 Condition code modes fit only into the CC register. */
404 /* Because all registers in a class have the same size HARD_REGNO_NREGS
405 is equivalent to CLASS_MAX_NREGS. */
406 #define HARD_REGNO_NREGS(REGNO, MODE) \
407 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
409 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
410 s390_hard_regno_mode_ok ((REGNO), (MODE))
412 #define HARD_REGNO_RENAME_OK(FROM, TO) \
413 s390_hard_regno_rename_ok (FROM, TO)
415 #define MODES_TIEABLE_P(MODE1, MODE2) \
416 (((MODE1) == SFmode || (MODE1) == DFmode) \
417 == ((MODE2) == SFmode || (MODE2) == DFmode))
419 /* When generating code that runs in z/Architecture mode,
420 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
421 the ABI guarantees only that the lower 4 bytes are
422 saved across calls, however. */
423 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
424 (!TARGET_64BIT && TARGET_ZARCH \
425 && GET_MODE_SIZE (MODE) > 4 \
426 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
428 /* Maximum number of registers to represent a value of mode MODE
429 in a register of class CLASS. */
430 #define CLASS_MAX_NREGS(CLASS, MODE) \
431 s390_class_max_nregs ((CLASS), (MODE))
433 /* If a 4-byte value is loaded into a FPR, it is placed into the
434 *upper* half of the register, not the lower. Therefore, we
435 cannot use SUBREGs to switch between modes in FP registers.
436 Likewise for access registers, since they have only half the
437 word size on 64-bit. */
438 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
439 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
440 ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
441 && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
442 || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
444 /* Register classes. */
446 /* We use the following register classes:
447 GENERAL_REGS All general purpose registers
448 ADDR_REGS All general purpose registers except %r0
449 (These registers can be used in address generation)
450 FP_REGS All floating point registers
451 CC_REGS The condition code register
452 ACCESS_REGS The access registers
454 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
455 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
456 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
457 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
459 NO_REGS No registers
460 ALL_REGS All registers
462 Note that the 'fake' frame pointer and argument pointer registers
463 are included amongst the address registers here. */
465 enum reg_class
467 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
468 ADDR_CC_REGS, GENERAL_CC_REGS,
469 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
470 ALL_REGS, LIM_REG_CLASSES
472 #define N_REG_CLASSES (int) LIM_REG_CLASSES
474 #define REG_CLASS_NAMES \
475 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
476 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
477 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
479 /* Class -> register mapping. */
480 #define REG_CLASS_CONTENTS \
482 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
483 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
484 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
485 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
486 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
487 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
488 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
489 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
490 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
491 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
492 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
495 /* The following macro defines cover classes for Integrated Register
496 Allocator. Cover classes is a set of non-intersected register
497 classes covering all hard registers used for register allocation
498 purpose. Any move between two registers of a cover class should be
499 cheaper than load or store of the registers. The macro value is
500 array of register classes with LIM_REG_CLASSES used as the end
501 marker. */
503 #define IRA_COVER_CLASSES \
505 GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES \
508 /* In some case register allocation order is not enough for IRA to
509 generate a good code. The following macro (if defined) increases
510 cost of REGNO for a pseudo approximately by pseudo usage frequency
511 multiplied by the macro value.
513 We avoid usage of BASE_REGNUM by nonzero macro value because the
514 reload can decide not to use the hard register because some
515 constant was forced to be in memory. */
516 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
517 (regno == BASE_REGNUM ? 0.0 : 0.5)
519 /* Register -> class mapping. */
520 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
521 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
523 /* ADDR_REGS can be used as base or index register. */
524 #define INDEX_REG_CLASS ADDR_REGS
525 #define BASE_REG_CLASS ADDR_REGS
527 /* Check whether REGNO is a hard register of the suitable class
528 or a pseudo register currently allocated to one such. */
529 #define REGNO_OK_FOR_INDEX_P(REGNO) \
530 (((REGNO) < FIRST_PSEUDO_REGISTER \
531 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
532 || ADDR_REGNO_P (reg_renumber[REGNO]))
533 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
536 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
537 return the class of reg to actually use. */
538 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
539 s390_preferred_reload_class ((X), (CLASS))
541 /* We need secondary memory to move data between GPRs and FPRs. With
542 DFP the ldgr lgdr instructions are available. But these
543 instructions do not handle GPR pairs so it is not possible for 31
544 bit. */
545 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
546 ((CLASS1) != (CLASS2) \
547 && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
548 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
550 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
551 because the movsi and movsf patterns don't handle r/f moves. */
552 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
553 (GET_MODE_BITSIZE (MODE) < 32 \
554 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
555 : MODE)
558 /* Stack layout and calling conventions. */
560 /* Our stack grows from higher to lower addresses. However, local variables
561 are accessed by positive offsets, and function arguments are stored at
562 increasing addresses. */
563 #define STACK_GROWS_DOWNWARD
564 #define FRAME_GROWS_DOWNWARD 1
565 /* #undef ARGS_GROW_DOWNWARD */
567 /* The basic stack layout looks like this: the stack pointer points
568 to the register save area for called functions. Above that area
569 is the location to place outgoing arguments. Above those follow
570 dynamic allocations (alloca), and finally the local variables. */
572 /* Offset from stack-pointer to first location of outgoing args. */
573 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
575 /* Offset within stack frame to start allocating local variables at. */
576 #define STARTING_FRAME_OFFSET 0
578 /* Offset from the stack pointer register to an item dynamically
579 allocated on the stack, e.g., by `alloca'. */
580 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
581 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
583 /* Offset of first parameter from the argument pointer register value.
584 We have a fake argument pointer register that points directly to
585 the argument area. */
586 #define FIRST_PARM_OFFSET(FNDECL) 0
588 /* Defining this macro makes __builtin_frame_address(0) and
589 __builtin_return_address(0) work with -fomit-frame-pointer. */
590 #define INITIAL_FRAME_ADDRESS_RTX \
591 (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
593 /* The return address of the current frame is retrieved
594 from the initial value of register RETURN_REGNUM.
595 For frames farther back, we use the stack slot where
596 the corresponding RETURN_REGNUM register was saved. */
597 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
598 (TARGET_PACKED_STACK ? \
599 plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
601 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
602 builtin_frame_address. Otherwise arg pointer -
603 STACK_POINTER_OFFSET would be returned for
604 __builtin_frame_address(0) what might result in an address pointing
605 somewhere into the middle of the local variables since the packed
606 stack layout generally does not need all the bytes in the register
607 save area. */
608 #define FRAME_ADDR_RTX(FRAME) \
609 DYNAMIC_CHAIN_ADDRESS ((FRAME))
611 #define RETURN_ADDR_RTX(COUNT, FRAME) \
612 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
614 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
615 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
618 /* Exception handling. */
620 /* Describe calling conventions for DWARF-2 exception handling. */
621 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
622 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
623 #define DWARF_FRAME_RETURN_COLUMN 14
625 /* Describe how we implement __builtin_eh_return. */
626 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
627 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
629 /* Select a format to encode pointers in exception handling data. */
630 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
631 (flag_pic \
632 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
633 : DW_EH_PE_absptr)
635 /* Register save slot alignment. */
636 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
639 /* Frame registers. */
641 #define STACK_POINTER_REGNUM 15
642 #define FRAME_POINTER_REGNUM 34
643 #define HARD_FRAME_POINTER_REGNUM 11
644 #define ARG_POINTER_REGNUM 32
645 #define RETURN_ADDRESS_POINTER_REGNUM 35
647 /* The static chain must be call-clobbered, but not used for
648 function argument passing. As register 1 is clobbered by
649 the trampoline code, we only have one option. */
650 #define STATIC_CHAIN_REGNUM 0
652 /* Number of hardware registers that go into the DWARF-2 unwind info.
653 To avoid ABI incompatibility, this number must not change even as
654 'fake' hard registers are added or removed. */
655 #define DWARF_FRAME_REGISTERS 34
658 /* Frame pointer and argument pointer elimination. */
660 #define ELIMINABLE_REGS \
661 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
662 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
663 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
664 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
665 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
666 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
667 { BASE_REGNUM, BASE_REGNUM }}
669 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
670 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
673 /* Stack arguments. */
675 /* We need current_function_outgoing_args to be valid. */
676 #define ACCUMULATE_OUTGOING_ARGS 1
679 /* Register arguments. */
681 typedef struct s390_arg_structure
683 int gprs; /* gpr so far */
684 int fprs; /* fpr so far */
686 CUMULATIVE_ARGS;
688 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
689 ((CUM).gprs=0, (CUM).fprs=0)
691 /* Arguments can be placed in general registers 2 to 6, or in floating
692 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
693 bit. */
694 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
695 (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
698 /* Scalar return values. */
700 #define FUNCTION_VALUE(VALTYPE, FUNC) \
701 s390_function_value ((VALTYPE), (FUNC), VOIDmode)
703 #define LIBCALL_VALUE(MODE) \
704 s390_function_value (NULL, NULL, (MODE))
706 /* Only gpr 2 and fpr 0 are ever used as return registers. */
707 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
710 /* Function entry and exit. */
712 /* When returning from a function, the stack pointer does not matter. */
713 #define EXIT_IGNORE_STACK 1
716 /* Profiling. */
718 #define FUNCTION_PROFILER(FILE, LABELNO) \
719 s390_function_profiler ((FILE), ((LABELNO)))
721 #define PROFILE_BEFORE_PROLOGUE 1
724 /* Trampolines for nested functions. */
726 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
727 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
729 /* Addressing modes, and classification of registers for them. */
731 /* Recognize any constant value that is a valid address. */
732 #define CONSTANT_ADDRESS_P(X) 0
734 /* Maximum number of registers that can appear in a valid memory address. */
735 #define MAX_REGS_PER_ADDRESS 2
737 /* This definition replaces the formerly used 'm' constraint with a
738 different constraint letter in order to avoid changing semantics of
739 the 'm' constraint when accepting new address formats in
740 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
741 must not be used in insn definitions or inline assemblies. */
742 #define TARGET_MEM_CONSTRAINT 'e'
744 /* Try a machine-dependent way of reloading an illegitimate address
745 operand. If we find one, push the reload and jump to WIN. This
746 macro is used in only one place: `find_reloads_address' in reload.c. */
747 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
748 do { \
749 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
750 if (new_rtx) \
752 (AD) = new_rtx; \
753 goto WIN; \
755 } while (0)
757 /* Nonzero if the constant value X is a legitimate general operand.
758 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
759 #define LEGITIMATE_CONSTANT_P(X) \
760 legitimate_constant_p (X)
762 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
763 #define SYMBOLIC_CONST(X) \
764 (GET_CODE (X) == SYMBOL_REF \
765 || GET_CODE (X) == LABEL_REF \
766 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
768 #define TLS_SYMBOLIC_CONST(X) \
769 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
770 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
773 /* Condition codes. */
775 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
776 return the mode to be used for the comparison. */
777 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
779 /* Canonicalize a comparison from one we don't have to one we do have. */
780 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
781 s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
783 /* Relative costs of operations. */
785 /* On s390, copy between fprs and gprs is expensive. */
786 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
787 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
788 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
789 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
790 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
792 /* A C expression for the cost of moving data of mode M between a
793 register and memory. A value of 2 is the default; this cost is
794 relative to those in `REGISTER_MOVE_COST'. */
795 #define MEMORY_MOVE_COST(M, C, I) 1
797 /* A C expression for the cost of a branch instruction. A value of 1
798 is the default; other values are interpreted relative to that. */
799 #define BRANCH_COST(speed_p, predictable_p) 1
801 /* Nonzero if access to memory by bytes is slow and undesirable. */
802 #define SLOW_BYTE_ACCESS 1
804 /* An integer expression for the size in bits of the largest integer machine
805 mode that should actually be used. We allow pairs of registers. */
806 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
808 /* The maximum number of bytes that a single instruction can move quickly
809 between memory and registers or between two memory locations. */
810 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
811 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
812 #define MAX_MOVE_MAX 16
814 /* Determine whether to use move_by_pieces or block move insn. */
815 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
816 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
817 || (TARGET_ZARCH && (SIZE) == 8) )
819 /* Determine whether to use clear_by_pieces or block clear insn. */
820 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
821 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
822 || (TARGET_ZARCH && (SIZE) == 8) )
824 /* This macro is used to determine whether store_by_pieces should be
825 called to "memcpy" storage when the source is a constant string. */
826 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
828 /* Likewise to decide whether to "memset" storage with byte values
829 other than zero. */
830 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
832 /* Don't perform CSE on function addresses. */
833 #define NO_FUNCTION_CSE
835 /* This value is used in tree-sra to decide whether it might benefical
836 to split a struct move into several word-size moves. For S/390
837 only small values make sense here since struct moves are relatively
838 cheap thanks to mvc so the small default value choosen for archs
839 with memmove patterns should be ok. But this value is multiplied
840 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
841 here to compensate for that factor since mvc costs exactly the same
842 on 31 and 64 bit. */
843 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
846 /* Sections. */
848 /* Output before read-only data. */
849 #define TEXT_SECTION_ASM_OP ".text"
851 /* Output before writable (initialized) data. */
852 #define DATA_SECTION_ASM_OP ".data"
854 /* Output before writable (uninitialized) data. */
855 #define BSS_SECTION_ASM_OP ".bss"
857 /* S/390 constant pool breaks the devices in crtstuff.c to control section
858 in where code resides. We have to write it as asm code. */
859 #ifndef __s390x__
860 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
861 asm (SECTION_OP "\n\
862 bras\t%r2,1f\n\
863 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
864 1: l\t%r3,0(%r2)\n\
865 bas\t%r14,0(%r3,%r2)\n\
866 .previous");
867 #endif
870 /* Position independent code. */
872 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
874 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
877 /* Assembler file format. */
879 /* Character to start a comment. */
880 #define ASM_COMMENT_START "#"
882 /* Declare an uninitialized external linkage data object. */
883 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
884 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
886 /* Globalizing directive for a label. */
887 #define GLOBAL_ASM_OP ".globl "
889 /* Advance the location counter to a multiple of 2**LOG bytes. */
890 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
891 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
893 /* Advance the location counter by SIZE bytes. */
894 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
895 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
897 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
898 #define LOCAL_LABEL_PREFIX "."
900 /* How to refer to registers in assembler output. This sequence is
901 indexed by compiler's hard-register-number (see above). */
902 #define REGISTER_NAMES \
903 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
904 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
905 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
906 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
907 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
910 /* Print operand X (an rtx) in assembler syntax to file FILE. */
911 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
912 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
914 /* Output machine-dependent UNSPECs in address constants. */
915 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
916 do { \
917 if (!s390_output_addr_const_extra (FILE, (X))) \
918 goto FAIL; \
919 } while (0);
921 /* Output an element of a case-vector that is absolute. */
922 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
923 do { \
924 char buf[32]; \
925 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
926 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
927 assemble_name ((FILE), buf); \
928 fputc ('\n', (FILE)); \
929 } while (0)
931 /* Output an element of a case-vector that is relative. */
932 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
933 do { \
934 char buf[32]; \
935 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
936 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
937 assemble_name ((FILE), buf); \
938 fputc ('-', (FILE)); \
939 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
940 assemble_name ((FILE), buf); \
941 fputc ('\n', (FILE)); \
942 } while (0)
945 /* Miscellaneous parameters. */
947 /* Specify the machine mode that this machine uses for the index in the
948 tablejump instruction. */
949 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
951 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
952 is done just by pretending it is already truncated. */
953 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
955 /* Specify the machine mode that pointers have.
956 After generation of rtl, the compiler makes no further distinction
957 between pointers and any other objects of this machine mode. */
958 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
960 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
961 #define POINTERS_EXTEND_UNSIGNED -1
963 /* A function address in a call instruction is a byte address (for
964 indexing purposes) so give the MEM rtx a byte's mode. */
965 #define FUNCTION_MODE QImode
967 /* Specify the value which is used when clz operand is zero. */
968 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
970 /* Machine-specific symbol_ref flags. */
971 #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
972 #define SYMBOL_REF_ALIGN1_P(X) \
973 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
974 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
975 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
976 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
978 /* Check whether integer displacement is in range. */
979 #define DISP_IN_RANGE(d) \
980 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
981 : ((d) >= 0 && (d) <= 4095))
983 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
984 #define READ_CAN_USE_WRITE_PREFETCH 1
985 #endif