* target.h (enum opt_levels, struct default_options): New.
[official-gcc.git] / gcc / config / mn10300 / mn10300.h
blob96a07e8fcdf1ef501f77752b9bb32aa163b8f967
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef ASM_SPEC
24 #undef LIB_SPEC
25 #undef ENDFILE_SPEC
26 #undef LINK_SPEC
27 #define LINK_SPEC "%{mrelax:--relax}"
28 #undef STARTFILE_SPEC
29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
31 /* Names to predefine in the preprocessor for this target machine. */
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define ("__mn10300__"); \
37 builtin_define ("__MN10300__"); \
38 builtin_assert ("cpu=mn10300"); \
39 builtin_assert ("machine=mn10300"); \
41 if (TARGET_AM33_2) \
42 { \
43 builtin_define ("__AM33__=2"); \
44 builtin_define ("__AM33_2__"); \
45 } \
46 else if (TARGET_AM33) \
47 builtin_define ("__AM33__=1"); \
48 } \
49 while (0)
51 extern GTY(()) int mn10300_unspec_int_label_counter;
53 enum processor_type
55 PROCESSOR_MN10300,
56 PROCESSOR_AM33,
57 PROCESSOR_AM33_2
60 extern enum processor_type mn10300_processor;
62 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
63 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
65 #ifndef PROCESSOR_DEFAULT
66 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
67 #endif
69 /* Print subsidiary information on the compiler version in use. */
71 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
74 /* Target machine storage layout */
76 /* Define this if most significant bit is lowest numbered
77 in instructions that operate on numbered bit-fields.
78 This is not true on the Matsushita MN1003. */
79 #define BITS_BIG_ENDIAN 0
81 /* Define this if most significant byte of a word is the lowest numbered. */
82 /* This is not true on the Matsushita MN10300. */
83 #define BYTES_BIG_ENDIAN 0
85 /* Define this if most significant word of a multiword number is lowest
86 numbered.
87 This is not true on the Matsushita MN10300. */
88 #define WORDS_BIG_ENDIAN 0
90 /* Width of a word, in units (bytes). */
91 #define UNITS_PER_WORD 4
93 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
94 #define PARM_BOUNDARY 32
96 /* The stack goes in 32-bit lumps. */
97 #define STACK_BOUNDARY 32
99 /* Allocation boundary (in *bits*) for the code of a function.
100 8 is the minimum boundary; it's unclear if bigger alignments
101 would improve performance. */
102 #define FUNCTION_BOUNDARY 8
104 /* No data type wants to be aligned rounder than this. */
105 #define BIGGEST_ALIGNMENT 32
107 /* Alignment of field after `int : 0' in a structure. */
108 #define EMPTY_FIELD_BOUNDARY 32
110 /* Define this if move instructions will actually fail to work
111 when given unaligned data. */
112 #define STRICT_ALIGNMENT 1
114 /* Define this as 1 if `char' should by default be signed; else as 0. */
115 #define DEFAULT_SIGNED_CHAR 0
117 /* Standard register usage. */
119 /* Number of actual hardware registers.
120 The hardware registers are assigned numbers for the compiler
121 from 0 to just below FIRST_PSEUDO_REGISTER.
123 All registers that the compiler knows about must be given numbers,
124 even those that are not normally considered general registers. */
126 #define FIRST_PSEUDO_REGISTER 52
128 /* Specify machine-specific register numbers. The commented out entries
129 are defined in mn10300.md. */
130 #define FIRST_DATA_REGNUM 0
131 #define LAST_DATA_REGNUM 3
132 #define FIRST_ADDRESS_REGNUM 4
133 /* #define PIC_REG 6 */
134 #define LAST_ADDRESS_REGNUM 8
135 /* #define SP_REG 9 */
136 #define FIRST_EXTENDED_REGNUM 10
137 #define LAST_EXTENDED_REGNUM 17
138 #define FIRST_FP_REGNUM 18
139 #define LAST_FP_REGNUM 49
140 #define MDR_REGNUM 50
141 /* #define CC_REG 51 */
142 #define FIRST_ARGUMENT_REGNUM 0
144 /* Specify the registers used for certain standard purposes.
145 The values of these macros are register numbers. */
147 /* Register to use for pushing function arguments. */
148 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
150 /* Base register for access to local variables of the function. */
151 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
153 /* Base register for access to arguments of the function. This
154 is a fake register and will be eliminated into either the frame
155 pointer or stack pointer. */
156 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
158 /* Register in which static-chain is passed to a function. */
159 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
161 /* 1 for registers that have pervasive standard uses
162 and are not available for the register allocator. */
164 #define FIXED_REGISTERS \
165 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
166 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
167 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 \
170 /* 1 for registers not available across function calls.
171 These must include the FIXED_REGISTERS and also any
172 registers that can be used without being saved.
173 The latter must include the registers where values are returned
174 and the register where structure-value addresses are passed.
175 Aside from that, you can include as many other registers as you
176 like. */
178 #define CALL_USED_REGISTERS \
179 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
180 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
181 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
184 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
185 redundant. It is needed when compiling in PIC mode because
186 the a2 register becomes fixed (and hence must be marked as
187 call_used) but in order to preserve the ABI it is not marked
188 as call_really_used. */
189 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
191 #define REG_ALLOC_ORDER \
192 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
193 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
194 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 51 \
197 #define CONDITIONAL_REGISTER_USAGE \
199 unsigned int i; \
201 if (!TARGET_AM33) \
203 for (i = FIRST_EXTENDED_REGNUM; \
204 i <= LAST_EXTENDED_REGNUM; i++) \
205 fixed_regs[i] = call_used_regs[i] = 1; \
207 if (!TARGET_AM33_2) \
209 for (i = FIRST_FP_REGNUM; \
210 i <= LAST_FP_REGNUM; i++) \
211 fixed_regs[i] = call_used_regs[i] = 1; \
213 if (flag_pic) \
214 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
215 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
218 /* Return number of consecutive hard regs needed starting at reg REGNO
219 to hold something of mode MODE.
221 This is ordinarily the length in words of a value of mode MODE
222 but can be less for certain modes in special long registers. */
224 #define HARD_REGNO_NREGS(REGNO, MODE) \
225 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
227 /* Value is 1 if hard register REGNO can hold a value of machine-mode
228 MODE. */
229 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
230 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
232 /* Value is 1 if it is a good idea to tie two pseudo registers
233 when one has mode MODE1 and one has mode MODE2.
234 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
235 for any hard reg, then this must be 0 for correct output. */
236 #define MODES_TIEABLE_P(MODE1, MODE2) \
237 mn10300_modes_tieable ((MODE1), (MODE2))
239 /* 4 data, and effectively 3 address registers is small as far as I'm
240 concerned. */
241 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
243 /* Define the classes of registers for register constraints in the
244 machine description. Also define ranges of constants.
246 One of the classes must always be named ALL_REGS and include all hard regs.
247 If there is more than one class, another class must be named NO_REGS
248 and contain no registers.
250 The name GENERAL_REGS must be the name of a class (or an alias for
251 another name such as ALL_REGS). This is the class of registers
252 that is allowed by "g" or "r" in a register constraint.
253 Also, registers outside this class are allocated only when
254 instructions express preferences for them.
256 The classes must be numbered in nondecreasing order; that is,
257 a larger-numbered class must never be contained completely
258 in a smaller-numbered class.
260 For any two classes, it is very desirable that there be another
261 class that represents their union. */
263 enum reg_class
265 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
266 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
267 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
268 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
269 FP_REGS, FP_ACC_REGS, CC_REGS,
270 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
273 #define N_REG_CLASSES (int) LIM_REG_CLASSES
275 /* Give names of register classes as strings for dump file. */
277 #define REG_CLASS_NAMES \
278 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
279 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
280 "EXTENDED_REGS", \
281 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
282 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
283 "FP_REGS", "FP_ACC_REGS", "CC_REGS", \
284 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
287 /* Define which registers fit in which classes.
288 This is an initializer for a vector of HARD_REG_SET
289 of length N_REG_CLASSES. */
291 #define REG_CLASS_CONTENTS \
292 { { 0, 0 }, /* No regs */ \
293 { 0x0000000f, 0 }, /* DATA_REGS */ \
294 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
295 { 0x00000200, 0 }, /* SP_REGS */ \
296 { 0x000001ff, 0 }, /* DATA_OR_ADDRESS_REGS */ \
297 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
298 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
299 { 0x0003fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
300 { 0x0003fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
301 { 0x0003fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
302 { 0x0003fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
303 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
304 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
305 { 0x00000000, 0x80000 },/* CC_REGS */ \
306 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
307 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
310 /* The following macro defines cover classes for Integrated Register
311 Allocator. Cover classes is a set of non-intersected register
312 classes covering all hard registers used for register allocation
313 purpose. Any move between two registers of a cover class should be
314 cheaper than load or store of the registers. The macro value is
315 array of register classes with LIM_REG_CLASSES used as the end
316 marker. */
318 #define IRA_COVER_CLASSES \
320 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
323 /* The same information, inverted:
324 Return the class number of the smallest class containing
325 reg number REGNO. This could be a conditional expression
326 or could index an array. */
328 #define REGNO_REG_CLASS(REGNO) \
329 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
330 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
331 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
332 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
333 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
334 (REGNO) == CC_REG ? CC_REGS : \
335 NO_REGS)
337 /* The class value for index registers, and the one for base regs. */
338 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
339 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
341 /* Macros to check register numbers against specific register classes. */
343 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
344 and check its validity for a certain class.
345 We have two alternate definitions for each of them.
346 The usual definition accepts all pseudo regs; the other rejects
347 them unless they have been allocated suitable hard regs.
348 The symbol REG_OK_STRICT causes the latter definition to be used.
350 Most source files want to accept pseudo regs in the hope that
351 they will get allocated to the class that the insn wants them to be in.
352 Source files for reload pass need to be strict.
353 After reload, it makes no difference, since pseudo regs have
354 been eliminated by then. */
356 /* These assume that REGNO is a hard or pseudo reg number.
357 They give nonzero only if REGNO is a hard reg of the suitable class
358 or a pseudo reg currently allocated to a suitable hard reg.
359 Since they use reg_renumber, they are safe only once reg_renumber
360 has been allocated, which happens in local-alloc.c. */
362 #ifndef REG_OK_STRICT
363 # define REG_STRICT 0
364 #else
365 # define REG_STRICT 1
366 #endif
368 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
369 (IN_RANGE ((regno), (min), (max)) \
370 || ((strict) \
371 ? (reg_renumber \
372 && reg_renumber[(regno)] >= (min) \
373 && reg_renumber[(regno)] <= (max)) \
374 : (regno) >= FIRST_PSEUDO_REGISTER))
376 #define REGNO_DATA_P(regno, strict) \
377 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
378 (strict)))
379 #define REGNO_ADDRESS_P(regno, strict) \
380 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
381 (strict)))
382 #define REGNO_SP_P(regno, strict) \
383 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
384 (strict)))
385 #define REGNO_EXTENDED_P(regno, strict) \
386 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
387 (strict)))
388 #define REGNO_AM33_P(regno, strict) \
389 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
390 || REGNO_EXTENDED_P ((regno), (strict)))
391 #define REGNO_FP_P(regno, strict) \
392 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
394 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
395 (REGNO_SP_P ((regno), (strict)) \
396 || REGNO_ADDRESS_P ((regno), (strict)) \
397 || REGNO_EXTENDED_P ((regno), (strict)))
398 #define REGNO_OK_FOR_BASE_P(regno) \
399 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
400 #define REG_OK_FOR_BASE_P(X) \
401 (REGNO_OK_FOR_BASE_P (REGNO (X)))
403 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
404 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
405 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
406 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
407 #define REG_OK_FOR_BIT_BASE_P(X) \
408 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
410 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
411 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
412 #define REGNO_OK_FOR_INDEX_P(regno) \
413 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
414 #define REG_OK_FOR_INDEX_P(X) \
415 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
417 /* Given an rtx X being reloaded into a reg required to be
418 in class CLASS, return the class of reg to actually use.
419 In general this is just CLASS; but on some machines
420 in some cases it is preferable to use a more restrictive class. */
422 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
423 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
424 ? ADDRESS_OR_EXTENDED_REGS \
425 : (MEM_P (X) \
426 || (REG_P (X) \
427 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
428 || (GET_CODE (X) == SUBREG \
429 && REG_P (SUBREG_REG (X)) \
430 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
431 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
432 : (CLASS)))
434 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
435 (X == stack_pointer_rtx && CLASS != SP_REGS \
436 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
438 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
439 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
441 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
442 mn10300_secondary_reload_class(CLASS,MODE,IN)
444 /* Return the maximum number of consecutive registers
445 needed to represent mode MODE in a register of class CLASS. */
447 #define CLASS_MAX_NREGS(CLASS, MODE) \
448 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
450 /* A class that contains registers which the compiler must always
451 access in a mode that is the same size as the mode in which it
452 loaded the register. */
453 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
455 /* Return 1 if VALUE is in the range specified. */
457 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
458 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
461 /* Stack layout; function entry, exit and calling. */
463 /* Define this if pushing a word on the stack
464 makes the stack pointer a smaller address. */
466 #define STACK_GROWS_DOWNWARD
468 /* Define this to nonzero if the nominal address of the stack frame
469 is at the high-address end of the local variables;
470 that is, each additional local variable allocated
471 goes at a more negative offset in the frame. */
473 #define FRAME_GROWS_DOWNWARD 1
475 /* Offset within stack frame to start allocating local variables at.
476 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
477 first local allocated. Otherwise, it is the offset to the BEGINNING
478 of the first local allocated. */
480 #define STARTING_FRAME_OFFSET 0
482 /* Offset of first parameter from the argument pointer register value. */
483 /* Is equal to the size of the saved fp + pc, even if an fp isn't
484 saved since the value is used before we know. */
486 #define FIRST_PARM_OFFSET(FNDECL) 4
488 #define ELIMINABLE_REGS \
489 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
490 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
491 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
493 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
494 OFFSET = mn10300_initial_offset (FROM, TO)
496 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
497 for a register flushback area. */
498 #define REG_PARM_STACK_SPACE(DECL) 8
499 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
500 #define ACCUMULATE_OUTGOING_ARGS 1
502 /* So we can allocate space for return pointers once for the function
503 instead of around every call. */
504 #define STACK_POINTER_OFFSET 4
506 /* 1 if N is a possible register number for function argument passing.
507 On the MN10300, d0 and d1 are used in this way. */
509 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
512 /* Define a data type for recording info about an argument list
513 during the scan of that argument list. This data type should
514 hold all necessary information about the function itself
515 and about the args processed so far, enough to enable macros
516 such as FUNCTION_ARG to determine where the next arg should go.
518 On the MN10300, this is a single integer, which is a number of bytes
519 of arguments scanned so far. */
521 #define CUMULATIVE_ARGS struct cum_arg
523 struct cum_arg
525 int nbytes;
528 /* Initialize a variable CUM of type CUMULATIVE_ARGS
529 for a call to a function whose data type is FNTYPE.
530 For a library call, FNTYPE is 0.
532 On the MN10300, the offset starts at 0. */
534 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
535 ((CUM).nbytes = 0)
537 /* Update the data in CUM to advance over an argument
538 of mode MODE and data type TYPE.
539 (TYPE is null for libcalls where that information may not be available.) */
541 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
542 ((CUM).nbytes += ((MODE) != BLKmode \
543 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
544 : (int_size_in_bytes (TYPE) + 3) & ~3))
546 /* Define where to put the arguments to a function.
547 Value is zero to push the argument on the stack,
548 or a hard register in which to store the argument.
550 MODE is the argument's machine mode.
551 TYPE is the data type of the argument (as a tree).
552 This is null for libcalls where that information may
553 not be available.
554 CUM is a variable of type CUMULATIVE_ARGS which gives info about
555 the preceding args and about the function being called.
556 NAMED is nonzero if this argument is a named parameter
557 (otherwise it is an extra parameter matching an ellipsis). */
559 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
560 mn10300_function_arg (&(CUM), MODE, TYPE, NAMED)
562 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
564 #define DEFAULT_PCC_STRUCT_RETURN 0
566 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
567 the stack pointer does not matter. The value is tested only in
568 functions that have frame pointers.
569 No definition is equivalent to always zero. */
571 #define EXIT_IGNORE_STACK 1
573 /* Output assembler code to FILE to increment profiler label # LABELNO
574 for profiling a function entry. */
576 #define FUNCTION_PROFILER(FILE, LABELNO) ;
578 /* Length in units of the trampoline for entering a nested function. */
580 #define TRAMPOLINE_SIZE 0x1b
582 #define TRAMPOLINE_ALIGNMENT 32
584 /* A C expression whose value is RTL representing the value of the return
585 address for the frame COUNT steps up from the current frame.
587 On the mn10300, the return address is not at a constant location
588 due to the frame layout. Luckily, it is at a constant offset from
589 the argument pointer, so we define RETURN_ADDR_RTX to return a
590 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
591 with a reference to the stack/frame pointer + an appropriate offset. */
593 #define RETURN_ADDR_RTX(COUNT, FRAME) \
594 ((COUNT == 0) \
595 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
596 : (rtx) 0)
598 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, MDR_REGNUM)
600 /* Maximum number of registers that can appear in a valid memory address. */
602 #define MAX_REGS_PER_ADDRESS 2
605 #define HAVE_POST_INCREMENT (TARGET_AM33)
607 /* Accept either REG or SUBREG where a register is valid. */
609 #define RTX_OK_FOR_BASE_P(X, strict) \
610 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
611 (strict))) \
612 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
613 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
614 (strict))))
618 /* Nonzero if the constant value X is a legitimate general operand.
619 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
620 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
622 /* Zero if this needs fixing up to become PIC. */
624 #define LEGITIMATE_PIC_OPERAND_P(X) \
625 mn10300_legitimate_pic_operand_p (X)
627 /* Register to hold the addressing base for
628 position independent code access to data items. */
629 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
631 /* The name of the pseudo-symbol representing the Global Offset Table. */
632 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
634 #define SYMBOLIC_CONST_P(X) \
635 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
636 && ! LEGITIMATE_PIC_OPERAND_P (X))
638 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
639 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
641 /* Recognize machine-specific patterns that may appear within
642 constants. Used for PIC-specific UNSPECs. */
643 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
644 do \
645 if (GET_CODE (X) == UNSPEC) \
647 switch (XINT ((X), 1)) \
649 case UNSPEC_INT_LABEL: \
650 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
651 INTVAL (XVECEXP ((X), 0, 0))); \
652 break; \
653 case UNSPEC_PIC: \
654 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
655 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
656 break; \
657 case UNSPEC_GOT: \
658 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
659 fputs ("@GOT", (STREAM)); \
660 break; \
661 case UNSPEC_GOTOFF: \
662 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
663 fputs ("@GOTOFF", (STREAM)); \
664 break; \
665 case UNSPEC_PLT: \
666 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
667 fputs ("@PLT", (STREAM)); \
668 break; \
669 case UNSPEC_GOTSYM_OFF: \
670 assemble_name (STREAM, GOT_SYMBOL_NAME); \
671 fputs ("-(", STREAM); \
672 output_addr_const (STREAM, XVECEXP (X, 0, 0)); \
673 fputs ("-.)", STREAM); \
674 break; \
675 default: \
676 goto FAIL; \
678 break; \
680 else \
681 goto FAIL; \
682 while (0)
684 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (X)
685 #define REVERSIBLE_CC_MODE(MODE) 0
687 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
688 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
689 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
690 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
691 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
692 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
693 ! TARGET_AM33 ? 6 : \
694 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
695 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
696 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
697 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
700 /* Nonzero if access to memory by bytes or half words is no faster
701 than accessing full words. */
702 #define SLOW_BYTE_ACCESS 1
704 #define NO_FUNCTION_CSE
706 /* According expr.c, a value of around 6 should minimize code size, and
707 for the MN10300 series, that's our primary concern. */
708 #define MOVE_RATIO(speed) 6
710 #define TEXT_SECTION_ASM_OP "\t.section .text"
711 #define DATA_SECTION_ASM_OP "\t.section .data"
712 #define BSS_SECTION_ASM_OP "\t.section .bss"
714 #define ASM_COMMENT_START "#"
716 /* Output to assembler file text saying following lines
717 may contain character constants, extra white space, comments, etc. */
719 #define ASM_APP_ON "#APP\n"
721 /* Output to assembler file text saying following lines
722 no longer contain unusual constructs. */
724 #define ASM_APP_OFF "#NO_APP\n"
726 #undef USER_LABEL_PREFIX
727 #define USER_LABEL_PREFIX "_"
729 /* This says how to output the assembler to define a global
730 uninitialized but not common symbol.
731 Try to use asm_output_bss to implement this macro. */
733 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
734 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
736 /* Globalizing directive for a label. */
737 #define GLOBAL_ASM_OP "\t.global "
739 /* This is how to output a reference to a user-level label named NAME.
740 `assemble_name' uses this. */
742 #undef ASM_OUTPUT_LABELREF
743 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
744 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
746 #define ASM_PN_FORMAT "%s___%lu"
748 /* This is how we tell the assembler that two symbols have the same value. */
750 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
751 do \
753 assemble_name (FILE, NAME1); \
754 fputs (" = ", FILE); \
755 assemble_name (FILE, NAME2); \
756 fputc ('\n', FILE); \
758 while (0)
760 /* How to refer to registers in assembler output.
761 This sequence is indexed by compiler's hard-register-number (see above). */
763 #define REGISTER_NAMES \
764 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
765 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
766 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
767 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
768 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
769 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
770 , "mdr", "EPSW" \
773 #define ADDITIONAL_REGISTER_NAMES \
774 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
775 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
776 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
777 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
778 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
779 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
780 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
781 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
782 , {"cc", CC_REG} \
785 /* Print an instruction operand X on file FILE.
786 look in mn10300.c for details */
788 #define PRINT_OPERAND(FILE, X, CODE) \
789 mn10300_print_operand (FILE, X, CODE)
791 /* Print a memory operand whose address is X, on file FILE.
792 This uses a function in output-vax.c. */
794 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
795 mn10300_print_operand_address (FILE, ADDR)
797 /* This is how to output an element of a case-vector that is absolute. */
799 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
800 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
802 /* This is how to output an element of a case-vector that is relative. */
804 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
805 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
807 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
808 if ((LOG) != 0) \
809 fprintf (FILE, "\t.align %d\n", (LOG))
811 /* We don't have to worry about dbx compatibility for the mn10300. */
812 #define DEFAULT_GDB_EXTENSIONS 1
814 /* Use dwarf2 debugging info by default. */
815 #undef PREFERRED_DEBUGGING_TYPE
816 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
817 #define DWARF2_DEBUGGING_INFO 1
819 #define DWARF2_ASM_LINE_DEBUG_INFO 1
821 /* GDB always assumes the current function's frame begins at the value
822 of the stack pointer upon entry to the current function. Accessing
823 local variables and parameters passed on the stack is done using the
824 base of the frame + an offset provided by GCC.
826 For functions which have frame pointers this method works fine;
827 the (frame pointer) == (stack pointer at function entry) and GCC provides
828 an offset relative to the frame pointer.
830 This loses for functions without a frame pointer; GCC provides an offset
831 which is relative to the stack pointer after adjusting for the function's
832 frame size. GDB would prefer the offset to be relative to the value of
833 the stack pointer at the function's entry. Yuk! */
834 #define DEBUGGER_AUTO_OFFSET(X) \
835 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
836 + (frame_pointer_needed \
837 ? 0 : - mn10300_initial_offset (FRAME_POINTER_REGNUM, \
838 STACK_POINTER_REGNUM)))
840 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
841 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
842 + (frame_pointer_needed \
843 ? 0 : - mn10300_initial_offset (ARG_POINTER_REGNUM, \
844 STACK_POINTER_REGNUM)))
846 /* Specify the machine mode that this machine uses
847 for the index in the tablejump instruction. */
848 #define CASE_VECTOR_MODE Pmode
850 /* Define if operations between registers always perform the operation
851 on the full register even if a narrower mode is specified. */
852 #define WORD_REGISTER_OPERATIONS
854 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
856 /* This flag, if defined, says the same insns that convert to a signed fixnum
857 also convert validly to an unsigned one. */
858 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
860 /* Max number of bytes we can move from memory to memory
861 in one reasonably fast instruction. */
862 #define MOVE_MAX 4
864 /* Define if shifts truncate the shift count
865 which implies one can omit a sign-extension or zero-extension
866 of a shift count. */
867 #define SHIFT_COUNT_TRUNCATED 1
869 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
870 is done just by pretending it is already truncated. */
871 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
873 /* Specify the machine mode that pointers have.
874 After generation of rtl, the compiler makes no further distinction
875 between pointers and any other objects of this machine mode. */
876 #define Pmode SImode
878 /* A function address in a call instruction
879 is a byte address (for indexing purposes)
880 so give the MEM rtx a byte's mode. */
881 #define FUNCTION_MODE QImode
883 /* The assembler op to get a word. */
885 #define FILE_ASM_OP "\t.file\n"