* system.h (malloc, realloc, calloc, strdup, bzero, bcmp, rindex):
[official-gcc.git] / gcc / reload.c
blob5f27744057d53a558ae65e092a92333b77b16ce3
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "function.h"
103 #include "expr.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
246 enum machine_mode, enum machine_mode,
247 int, int, int, enum reload_type));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void combine_reloads PARAMS ((void));
250 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
251 enum reload_type, int, int));
252 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
253 enum machine_mode, enum machine_mode,
254 enum reg_class, int, int));
255 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
256 static struct decomposition decompose PARAMS ((rtx));
257 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
258 static int alternative_allows_memconst PARAMS ((const char *, int));
259 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
260 int, rtx, int *));
261 static rtx make_memloc PARAMS ((rtx, int));
262 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
263 int, enum reload_type, int, rtx));
264 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
265 static rtx subst_indexed_address PARAMS ((rtx));
266 static void update_auto_inc_notes PARAMS ((rtx, int, int));
267 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
268 int, enum reload_type,int, rtx));
269 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
270 enum machine_mode, int,
271 enum reload_type, int));
272 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
273 int, rtx));
274 static int find_inc_amount PARAMS ((rtx, rtx));
276 #ifdef HAVE_SECONDARY_RELOADS
278 /* Determine if any secondary reloads are needed for loading (if IN_P is
279 non-zero) or storing (if IN_P is zero) X to or from a reload register of
280 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
281 are needed, push them.
283 Return the reload number of the secondary reload we made, or -1 if
284 we didn't need one. *PICODE is set to the insn_code to use if we do
285 need a secondary reload. */
287 static int
288 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
289 type, picode)
290 int in_p;
291 rtx x;
292 int opnum;
293 int optional;
294 enum reg_class reload_class;
295 enum machine_mode reload_mode;
296 enum reload_type type;
297 enum insn_code *picode;
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
316 *picode = CODE_FOR_nothing;
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
369 if (icode != CODE_FOR_nothing)
371 /* If IN_P is non-zero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
376 char insn_letter
377 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
378 enum reg_class insn_class
379 = (insn_letter == 'r' ? GENERAL_REGS
380 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
382 if (insn_class == NO_REGS
383 || (in_p
384 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
385 /* The scratch register's constraint must start with "=&". */
386 || insn_data[(int) icode].operand[2].constraint[0] != '='
387 || insn_data[(int) icode].operand[2].constraint[1] != '&')
388 abort ();
390 if (reg_class_subset_p (reload_class, insn_class))
391 mode = insn_data[(int) icode].operand[2].mode;
392 else
394 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
395 class = insn_class;
396 t_mode = insn_data[(int) icode].operand[2].mode;
397 t_class = (t_letter == 'r' ? GENERAL_REGS
398 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
399 t_icode = icode;
400 icode = CODE_FOR_nothing;
404 /* This case isn't valid, so fail. Reload is allowed to use the same
405 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
406 in the case of a secondary register, we actually need two different
407 registers for correct code. We fail here to prevent the possibility of
408 silently generating incorrect code later.
410 The convention is that secondary input reloads are valid only if the
411 secondary_class is different from class. If you have such a case, you
412 can not use secondary reloads, you must work around the problem some
413 other way.
415 Allow this when a reload_in/out pattern is being used. I.e. assume
416 that the generated code handles this case. */
418 if (in_p && class == reload_class && icode == CODE_FOR_nothing
419 && t_icode == CODE_FOR_nothing)
420 abort ();
422 /* If we need a tertiary reload, see if we have one we can reuse or else
423 make a new one. */
425 if (t_class != NO_REGS)
427 for (t_reload = 0; t_reload < n_reloads; t_reload++)
428 if (rld[t_reload].secondary_p
429 && (reg_class_subset_p (t_class, rld[t_reload].class)
430 || reg_class_subset_p (rld[t_reload].class, t_class))
431 && ((in_p && rld[t_reload].inmode == t_mode)
432 || (! in_p && rld[t_reload].outmode == t_mode))
433 && ((in_p && (rld[t_reload].secondary_in_icode
434 == CODE_FOR_nothing))
435 || (! in_p &&(rld[t_reload].secondary_out_icode
436 == CODE_FOR_nothing)))
437 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
438 && MERGABLE_RELOADS (secondary_type,
439 rld[t_reload].when_needed,
440 opnum, rld[t_reload].opnum))
442 if (in_p)
443 rld[t_reload].inmode = t_mode;
444 if (! in_p)
445 rld[t_reload].outmode = t_mode;
447 if (reg_class_subset_p (t_class, rld[t_reload].class))
448 rld[t_reload].class = t_class;
450 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
451 rld[t_reload].optional &= optional;
452 rld[t_reload].secondary_p = 1;
453 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
454 opnum, rld[t_reload].opnum))
455 rld[t_reload].when_needed = RELOAD_OTHER;
458 if (t_reload == n_reloads)
460 /* We need to make a new tertiary reload for this register class. */
461 rld[t_reload].in = rld[t_reload].out = 0;
462 rld[t_reload].class = t_class;
463 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
464 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
465 rld[t_reload].reg_rtx = 0;
466 rld[t_reload].optional = optional;
467 rld[t_reload].inc = 0;
468 /* Maybe we could combine these, but it seems too tricky. */
469 rld[t_reload].nocombine = 1;
470 rld[t_reload].in_reg = 0;
471 rld[t_reload].out_reg = 0;
472 rld[t_reload].opnum = opnum;
473 rld[t_reload].when_needed = secondary_type;
474 rld[t_reload].secondary_in_reload = -1;
475 rld[t_reload].secondary_out_reload = -1;
476 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
477 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
478 rld[t_reload].secondary_p = 1;
480 n_reloads++;
484 /* See if we can reuse an existing secondary reload. */
485 for (s_reload = 0; s_reload < n_reloads; s_reload++)
486 if (rld[s_reload].secondary_p
487 && (reg_class_subset_p (class, rld[s_reload].class)
488 || reg_class_subset_p (rld[s_reload].class, class))
489 && ((in_p && rld[s_reload].inmode == mode)
490 || (! in_p && rld[s_reload].outmode == mode))
491 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
492 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
493 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
494 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
495 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
496 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
497 opnum, rld[s_reload].opnum))
499 if (in_p)
500 rld[s_reload].inmode = mode;
501 if (! in_p)
502 rld[s_reload].outmode = mode;
504 if (reg_class_subset_p (class, rld[s_reload].class))
505 rld[s_reload].class = class;
507 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
508 rld[s_reload].optional &= optional;
509 rld[s_reload].secondary_p = 1;
510 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
511 opnum, rld[s_reload].opnum))
512 rld[s_reload].when_needed = RELOAD_OTHER;
515 if (s_reload == n_reloads)
517 #ifdef SECONDARY_MEMORY_NEEDED
518 /* If we need a memory location to copy between the two reload regs,
519 set it up now. Note that we do the input case before making
520 the reload and the output case after. This is due to the
521 way reloads are output. */
523 if (in_p && icode == CODE_FOR_nothing
524 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
526 get_secondary_mem (x, reload_mode, opnum, type);
528 /* We may have just added new reloads. Make sure we add
529 the new reload at the end. */
530 s_reload = n_reloads;
532 #endif
534 /* We need to make a new secondary reload for this register class. */
535 rld[s_reload].in = rld[s_reload].out = 0;
536 rld[s_reload].class = class;
538 rld[s_reload].inmode = in_p ? mode : VOIDmode;
539 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
540 rld[s_reload].reg_rtx = 0;
541 rld[s_reload].optional = optional;
542 rld[s_reload].inc = 0;
543 /* Maybe we could combine these, but it seems too tricky. */
544 rld[s_reload].nocombine = 1;
545 rld[s_reload].in_reg = 0;
546 rld[s_reload].out_reg = 0;
547 rld[s_reload].opnum = opnum;
548 rld[s_reload].when_needed = secondary_type;
549 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
550 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
551 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
552 rld[s_reload].secondary_out_icode
553 = ! in_p ? t_icode : CODE_FOR_nothing;
554 rld[s_reload].secondary_p = 1;
556 n_reloads++;
558 #ifdef SECONDARY_MEMORY_NEEDED
559 if (! in_p && icode == CODE_FOR_nothing
560 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
561 get_secondary_mem (x, mode, opnum, type);
562 #endif
565 *picode = icode;
566 return s_reload;
568 #endif /* HAVE_SECONDARY_RELOADS */
570 #ifdef SECONDARY_MEMORY_NEEDED
572 /* Return a memory location that will be used to copy X in mode MODE.
573 If we haven't already made a location for this mode in this insn,
574 call find_reloads_address on the location being returned. */
577 get_secondary_mem (x, mode, opnum, type)
578 rtx x ATTRIBUTE_UNUSED;
579 enum machine_mode mode;
580 int opnum;
581 enum reload_type type;
583 rtx loc;
584 int mem_valid;
586 /* By default, if MODE is narrower than a word, widen it to a word.
587 This is required because most machines that require these memory
588 locations do not support short load and stores from all registers
589 (e.g., FP registers). */
591 #ifdef SECONDARY_MEMORY_NEEDED_MODE
592 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
593 #else
594 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
595 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
596 #endif
598 /* If we already have made a MEM for this operand in MODE, return it. */
599 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
600 return secondary_memlocs_elim[(int) mode][opnum];
602 /* If this is the first time we've tried to get a MEM for this mode,
603 allocate a new one. `something_changed' in reload will get set
604 by noticing that the frame size has changed. */
606 if (secondary_memlocs[(int) mode] == 0)
608 #ifdef SECONDARY_MEMORY_NEEDED_RTX
609 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
610 #else
611 secondary_memlocs[(int) mode]
612 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
613 #endif
616 /* Get a version of the address doing any eliminations needed. If that
617 didn't give us a new MEM, make a new one if it isn't valid. */
619 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
620 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
622 if (! mem_valid && loc == secondary_memlocs[(int) mode])
623 loc = copy_rtx (loc);
625 /* The only time the call below will do anything is if the stack
626 offset is too large. In that case IND_LEVELS doesn't matter, so we
627 can just pass a zero. Adjust the type to be the address of the
628 corresponding object. If the address was valid, save the eliminated
629 address. If it wasn't valid, we need to make a reload each time, so
630 don't save it. */
632 if (! mem_valid)
634 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
635 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
636 : RELOAD_OTHER);
638 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
639 opnum, type, 0, 0);
642 secondary_memlocs_elim[(int) mode][opnum] = loc;
643 return loc;
646 /* Clear any secondary memory locations we've made. */
648 void
649 clear_secondary_mem ()
651 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
653 #endif /* SECONDARY_MEMORY_NEEDED */
655 /* Find the largest class for which every register number plus N is valid in
656 M1 (if in range). Abort if no such class exists. */
658 static enum reg_class
659 find_valid_class (m1, n)
660 enum machine_mode m1 ATTRIBUTE_UNUSED;
661 int n;
663 int class;
664 int regno;
665 enum reg_class best_class = NO_REGS;
666 unsigned int best_size = 0;
668 for (class = 1; class < N_REG_CLASSES; class++)
670 int bad = 0;
671 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
672 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
673 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
674 && ! HARD_REGNO_MODE_OK (regno + n, m1))
675 bad = 1;
677 if (! bad && reg_class_size[class] > best_size)
678 best_class = class, best_size = reg_class_size[class];
681 if (best_size == 0)
682 abort ();
684 return best_class;
687 /* Return the number of a previously made reload that can be combined with
688 a new one, or n_reloads if none of the existing reloads can be used.
689 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
690 push_reload, they determine the kind of the new reload that we try to
691 combine. P_IN points to the corresponding value of IN, which can be
692 modified by this function.
693 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
694 static int
695 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
696 rtx *p_in, out;
697 enum reg_class class;
698 enum reload_type type;
699 int opnum, dont_share;
701 rtx in = *p_in;
702 int i;
703 /* We can't merge two reloads if the output of either one is
704 earlyclobbered. */
706 if (earlyclobber_operand_p (out))
707 return n_reloads;
709 /* We can use an existing reload if the class is right
710 and at least one of IN and OUT is a match
711 and the other is at worst neutral.
712 (A zero compared against anything is neutral.)
714 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
715 for the same thing since that can cause us to need more reload registers
716 than we otherwise would. */
718 for (i = 0; i < n_reloads; i++)
719 if ((reg_class_subset_p (class, rld[i].class)
720 || reg_class_subset_p (rld[i].class, class))
721 /* If the existing reload has a register, it must fit our class. */
722 && (rld[i].reg_rtx == 0
723 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
724 true_regnum (rld[i].reg_rtx)))
725 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
726 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
727 || (out != 0 && MATCHES (rld[i].out, out)
728 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
729 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
730 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
731 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
732 return i;
734 /* Reloading a plain reg for input can match a reload to postincrement
735 that reg, since the postincrement's value is the right value.
736 Likewise, it can match a preincrement reload, since we regard
737 the preincrementation as happening before any ref in this insn
738 to that register. */
739 for (i = 0; i < n_reloads; i++)
740 if ((reg_class_subset_p (class, rld[i].class)
741 || reg_class_subset_p (rld[i].class, class))
742 /* If the existing reload has a register, it must fit our
743 class. */
744 && (rld[i].reg_rtx == 0
745 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
746 true_regnum (rld[i].reg_rtx)))
747 && out == 0 && rld[i].out == 0 && rld[i].in != 0
748 && ((GET_CODE (in) == REG
749 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
750 && MATCHES (XEXP (rld[i].in, 0), in))
751 || (GET_CODE (rld[i].in) == REG
752 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
753 && MATCHES (XEXP (in, 0), rld[i].in)))
754 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
755 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
756 && MERGABLE_RELOADS (type, rld[i].when_needed,
757 opnum, rld[i].opnum))
759 /* Make sure reload_in ultimately has the increment,
760 not the plain register. */
761 if (GET_CODE (in) == REG)
762 *p_in = rld[i].in;
763 return i;
765 return n_reloads;
768 /* Return nonzero if X is a SUBREG which will require reloading of its
769 SUBREG_REG expression. */
771 static int
772 reload_inner_reg_of_subreg (x, mode)
773 rtx x;
774 enum machine_mode mode;
776 rtx inner;
778 /* Only SUBREGs are problematical. */
779 if (GET_CODE (x) != SUBREG)
780 return 0;
782 inner = SUBREG_REG (x);
784 /* If INNER is a constant, then INNER must be reloaded. */
785 if (CONSTANT_P (inner))
786 return 1;
788 /* If INNER is not a hard register, then INNER will not need to
789 be reloaded. */
790 if (GET_CODE (inner) != REG
791 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
792 return 0;
794 /* If INNER is not ok for MODE, then INNER will need reloading. */
795 if (! HARD_REGNO_MODE_OK (REGNO (inner) + SUBREG_WORD (x), mode))
796 return 1;
798 /* If the outer part is a word or smaller, INNER larger than a
799 word and the number of regs for INNER is not the same as the
800 number of words in INNER, then INNER will need reloading. */
801 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
802 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
803 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
804 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
807 /* Record one reload that needs to be performed.
808 IN is an rtx saying where the data are to be found before this instruction.
809 OUT says where they must be stored after the instruction.
810 (IN is zero for data not read, and OUT is zero for data not written.)
811 INLOC and OUTLOC point to the places in the instructions where
812 IN and OUT were found.
813 If IN and OUT are both non-zero, it means the same register must be used
814 to reload both IN and OUT.
816 CLASS is a register class required for the reloaded data.
817 INMODE is the machine mode that the instruction requires
818 for the reg that replaces IN and OUTMODE is likewise for OUT.
820 If IN is zero, then OUT's location and mode should be passed as
821 INLOC and INMODE.
823 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
825 OPTIONAL nonzero means this reload does not need to be performed:
826 it can be discarded if that is more convenient.
828 OPNUM and TYPE say what the purpose of this reload is.
830 The return value is the reload-number for this reload.
832 If both IN and OUT are nonzero, in some rare cases we might
833 want to make two separate reloads. (Actually we never do this now.)
834 Therefore, the reload-number for OUT is stored in
835 output_reloadnum when we return; the return value applies to IN.
836 Usually (presently always), when IN and OUT are nonzero,
837 the two reload-numbers are equal, but the caller should be careful to
838 distinguish them. */
840 static int
841 push_reload (in, out, inloc, outloc, class,
842 inmode, outmode, strict_low, optional, opnum, type)
843 rtx in, out;
844 rtx *inloc, *outloc;
845 enum reg_class class;
846 enum machine_mode inmode, outmode;
847 int strict_low;
848 int optional;
849 int opnum;
850 enum reload_type type;
852 register int i;
853 int dont_share = 0;
854 int dont_remove_subreg = 0;
855 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
856 int secondary_in_reload = -1, secondary_out_reload = -1;
857 enum insn_code secondary_in_icode = CODE_FOR_nothing;
858 enum insn_code secondary_out_icode = CODE_FOR_nothing;
860 /* INMODE and/or OUTMODE could be VOIDmode if no mode
861 has been specified for the operand. In that case,
862 use the operand's mode as the mode to reload. */
863 if (inmode == VOIDmode && in != 0)
864 inmode = GET_MODE (in);
865 if (outmode == VOIDmode && out != 0)
866 outmode = GET_MODE (out);
868 /* If IN is a pseudo register everywhere-equivalent to a constant, and
869 it is not in a hard register, reload straight from the constant,
870 since we want to get rid of such pseudo registers.
871 Often this is done earlier, but not always in find_reloads_address. */
872 if (in != 0 && GET_CODE (in) == REG)
874 register int regno = REGNO (in);
876 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
877 && reg_equiv_constant[regno] != 0)
878 in = reg_equiv_constant[regno];
881 /* Likewise for OUT. Of course, OUT will never be equivalent to
882 an actual constant, but it might be equivalent to a memory location
883 (in the case of a parameter). */
884 if (out != 0 && GET_CODE (out) == REG)
886 register int regno = REGNO (out);
888 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
889 && reg_equiv_constant[regno] != 0)
890 out = reg_equiv_constant[regno];
893 /* If we have a read-write operand with an address side-effect,
894 change either IN or OUT so the side-effect happens only once. */
895 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
897 if (GET_CODE (XEXP (in, 0)) == POST_INC
898 || GET_CODE (XEXP (in, 0)) == POST_DEC
899 || GET_CODE (XEXP (in, 0)) == POST_MODIFY)
901 rtx new = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
903 MEM_COPY_ATTRIBUTES (new, in);
904 in = new;
906 if (GET_CODE (XEXP (in, 0)) == PRE_INC
907 || GET_CODE (XEXP (in, 0)) == PRE_DEC
908 || GET_CODE (XEXP (in, 0)) == PRE_MODIFY)
910 rtx new = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
912 MEM_COPY_ATTRIBUTES (new, out);
913 out = new;
917 /* If we are reloading a (SUBREG constant ...), really reload just the
918 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
919 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
920 a pseudo and hence will become a MEM) with M1 wider than M2 and the
921 register is a pseudo, also reload the inside expression.
922 For machines that extend byte loads, do this for any SUBREG of a pseudo
923 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
924 M2 is an integral mode that gets extended when loaded.
925 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
926 either M1 is not valid for R or M2 is wider than a word but we only
927 need one word to store an M2-sized quantity in R.
928 (However, if OUT is nonzero, we need to reload the reg *and*
929 the subreg, so do nothing here, and let following statement handle it.)
931 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
932 we can't handle it here because CONST_INT does not indicate a mode.
934 Similarly, we must reload the inside expression if we have a
935 STRICT_LOW_PART (presumably, in == out in the cas).
937 Also reload the inner expression if it does not require a secondary
938 reload but the SUBREG does.
940 Finally, reload the inner expression if it is a register that is in
941 the class whose registers cannot be referenced in a different size
942 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
943 cannot reload just the inside since we might end up with the wrong
944 register class. But if it is inside a STRICT_LOW_PART, we have
945 no choice, so we hope we do get the right register class there. */
947 if (in != 0 && GET_CODE (in) == SUBREG
948 && (SUBREG_WORD (in) == 0 || strict_low)
949 #ifdef CLASS_CANNOT_CHANGE_MODE
950 && (class != CLASS_CANNOT_CHANGE_MODE
951 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
952 #endif
953 && (CONSTANT_P (SUBREG_REG (in))
954 || GET_CODE (SUBREG_REG (in)) == PLUS
955 || strict_low
956 || (((GET_CODE (SUBREG_REG (in)) == REG
957 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
958 || GET_CODE (SUBREG_REG (in)) == MEM)
959 && ((GET_MODE_SIZE (inmode)
960 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
961 #ifdef LOAD_EXTEND_OP
962 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
963 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
964 <= UNITS_PER_WORD)
965 && (GET_MODE_SIZE (inmode)
966 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
967 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
968 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
969 #endif
970 #ifdef WORD_REGISTER_OPERATIONS
971 || ((GET_MODE_SIZE (inmode)
972 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
973 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
974 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
975 / UNITS_PER_WORD)))
976 #endif
978 || (GET_CODE (SUBREG_REG (in)) == REG
979 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
980 /* The case where out is nonzero
981 is handled differently in the following statement. */
982 && (out == 0 || SUBREG_WORD (in) == 0)
983 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
984 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
985 > UNITS_PER_WORD)
986 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
987 / UNITS_PER_WORD)
988 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
989 GET_MODE (SUBREG_REG (in)))))
990 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
991 + SUBREG_WORD (in)),
992 inmode)))
993 #ifdef SECONDARY_INPUT_RELOAD_CLASS
994 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
995 && (SECONDARY_INPUT_RELOAD_CLASS (class,
996 GET_MODE (SUBREG_REG (in)),
997 SUBREG_REG (in))
998 == NO_REGS))
999 #endif
1000 #ifdef CLASS_CANNOT_CHANGE_MODE
1001 || (GET_CODE (SUBREG_REG (in)) == REG
1002 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1003 && (TEST_HARD_REG_BIT
1004 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1005 REGNO (SUBREG_REG (in))))
1006 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1007 inmode))
1008 #endif
1011 in_subreg_loc = inloc;
1012 inloc = &SUBREG_REG (in);
1013 in = *inloc;
1014 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1015 if (GET_CODE (in) == MEM)
1016 /* This is supposed to happen only for paradoxical subregs made by
1017 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1018 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1019 abort ();
1020 #endif
1021 inmode = GET_MODE (in);
1024 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1025 either M1 is not valid for R or M2 is wider than a word but we only
1026 need one word to store an M2-sized quantity in R.
1028 However, we must reload the inner reg *as well as* the subreg in
1029 that case. */
1031 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1032 code above. This can happen if SUBREG_WORD != 0. */
1034 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1036 /* This relies on the fact that emit_reload_insns outputs the
1037 instructions for input reloads of type RELOAD_OTHER in the same
1038 order as the reloads. Thus if the outer reload is also of type
1039 RELOAD_OTHER, we are guaranteed that this inner reload will be
1040 output before the outer reload. */
1041 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1042 find_valid_class (inmode, SUBREG_WORD (in)),
1043 VOIDmode, VOIDmode, 0, 0, opnum, type);
1044 dont_remove_subreg = 1;
1047 /* Similarly for paradoxical and problematical SUBREGs on the output.
1048 Note that there is no reason we need worry about the previous value
1049 of SUBREG_REG (out); even if wider than out,
1050 storing in a subreg is entitled to clobber it all
1051 (except in the case of STRICT_LOW_PART,
1052 and in that case the constraint should label it input-output.) */
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && (SUBREG_WORD (out) == 0 || strict_low)
1055 #ifdef CLASS_CANNOT_CHANGE_MODE
1056 && (class != CLASS_CANNOT_CHANGE_MODE
1057 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1058 outmode))
1059 #endif
1060 && (CONSTANT_P (SUBREG_REG (out))
1061 || strict_low
1062 || (((GET_CODE (SUBREG_REG (out)) == REG
1063 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1064 || GET_CODE (SUBREG_REG (out)) == MEM)
1065 && ((GET_MODE_SIZE (outmode)
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1067 #ifdef WORD_REGISTER_OPERATIONS
1068 || ((GET_MODE_SIZE (outmode)
1069 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1070 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1071 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1072 / UNITS_PER_WORD)))
1073 #endif
1075 || (GET_CODE (SUBREG_REG (out)) == REG
1076 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1077 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1078 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1079 > UNITS_PER_WORD)
1080 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1081 / UNITS_PER_WORD)
1082 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1083 GET_MODE (SUBREG_REG (out)))))
1084 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1085 + SUBREG_WORD (out)),
1086 outmode)))
1087 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1088 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1089 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1090 GET_MODE (SUBREG_REG (out)),
1091 SUBREG_REG (out))
1092 == NO_REGS))
1093 #endif
1094 #ifdef CLASS_CANNOT_CHANGE_MODE
1095 || (GET_CODE (SUBREG_REG (out)) == REG
1096 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1097 && (TEST_HARD_REG_BIT
1098 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1099 REGNO (SUBREG_REG (out))))
1100 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1101 outmode))
1102 #endif
1105 out_subreg_loc = outloc;
1106 outloc = &SUBREG_REG (out);
1107 out = *outloc;
1108 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1109 if (GET_CODE (out) == MEM
1110 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1111 abort ();
1112 #endif
1113 outmode = GET_MODE (out);
1116 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1117 either M1 is not valid for R or M2 is wider than a word but we only
1118 need one word to store an M2-sized quantity in R.
1120 However, we must reload the inner reg *as well as* the subreg in
1121 that case. In this case, the inner reg is an in-out reload. */
1123 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1125 /* This relies on the fact that emit_reload_insns outputs the
1126 instructions for output reloads of type RELOAD_OTHER in reverse
1127 order of the reloads. Thus if the outer reload is also of type
1128 RELOAD_OTHER, we are guaranteed that this inner reload will be
1129 output after the outer reload. */
1130 dont_remove_subreg = 1;
1131 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1132 &SUBREG_REG (out),
1133 find_valid_class (outmode, SUBREG_WORD (out)),
1134 VOIDmode, VOIDmode, 0, 0,
1135 opnum, RELOAD_OTHER);
1138 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1139 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1140 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1141 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1142 dont_share = 1;
1144 /* If IN is a SUBREG of a hard register, make a new REG. This
1145 simplifies some of the cases below. */
1147 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1148 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1149 && ! dont_remove_subreg)
1150 in = gen_rtx_REG (GET_MODE (in),
1151 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1153 /* Similarly for OUT. */
1154 if (out != 0 && GET_CODE (out) == SUBREG
1155 && GET_CODE (SUBREG_REG (out)) == REG
1156 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1157 && ! dont_remove_subreg)
1158 out = gen_rtx_REG (GET_MODE (out),
1159 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1161 /* Narrow down the class of register wanted if that is
1162 desirable on this machine for efficiency. */
1163 if (in != 0)
1164 class = PREFERRED_RELOAD_CLASS (in, class);
1166 /* Output reloads may need analogous treatment, different in detail. */
1167 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1168 if (out != 0)
1169 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1170 #endif
1172 /* Make sure we use a class that can handle the actual pseudo
1173 inside any subreg. For example, on the 386, QImode regs
1174 can appear within SImode subregs. Although GENERAL_REGS
1175 can handle SImode, QImode needs a smaller class. */
1176 #ifdef LIMIT_RELOAD_CLASS
1177 if (in_subreg_loc)
1178 class = LIMIT_RELOAD_CLASS (inmode, class);
1179 else if (in != 0 && GET_CODE (in) == SUBREG)
1180 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1182 if (out_subreg_loc)
1183 class = LIMIT_RELOAD_CLASS (outmode, class);
1184 if (out != 0 && GET_CODE (out) == SUBREG)
1185 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1186 #endif
1188 /* Verify that this class is at least possible for the mode that
1189 is specified. */
1190 if (this_insn_is_asm)
1192 enum machine_mode mode;
1193 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1194 mode = inmode;
1195 else
1196 mode = outmode;
1197 if (mode == VOIDmode)
1199 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1200 mode = word_mode;
1201 if (in != 0)
1202 inmode = word_mode;
1203 if (out != 0)
1204 outmode = word_mode;
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (HARD_REGNO_MODE_OK (i, mode)
1208 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1210 int nregs = HARD_REGNO_NREGS (i, mode);
1212 int j;
1213 for (j = 1; j < nregs; j++)
1214 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1215 break;
1216 if (j == nregs)
1217 break;
1219 if (i == FIRST_PSEUDO_REGISTER)
1221 error_for_asm (this_insn, "impossible register constraint in `asm'");
1222 class = ALL_REGS;
1226 /* Optional output reloads are always OK even if we have no register class,
1227 since the function of these reloads is only to have spill_reg_store etc.
1228 set, so that the storing insn can be deleted later. */
1229 if (class == NO_REGS
1230 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1231 abort ();
1233 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1235 if (i == n_reloads)
1237 /* See if we need a secondary reload register to move between CLASS
1238 and IN or CLASS and OUT. Get the icode and push any required reloads
1239 needed for each of them if so. */
1241 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1242 if (in != 0)
1243 secondary_in_reload
1244 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1245 &secondary_in_icode);
1246 #endif
1248 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1249 if (out != 0 && GET_CODE (out) != SCRATCH)
1250 secondary_out_reload
1251 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1252 type, &secondary_out_icode);
1253 #endif
1255 /* We found no existing reload suitable for re-use.
1256 So add an additional reload. */
1258 #ifdef SECONDARY_MEMORY_NEEDED
1259 /* If a memory location is needed for the copy, make one. */
1260 if (in != 0 && GET_CODE (in) == REG
1261 && REGNO (in) < FIRST_PSEUDO_REGISTER
1262 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1263 class, inmode))
1264 get_secondary_mem (in, inmode, opnum, type);
1265 #endif
1267 i = n_reloads;
1268 rld[i].in = in;
1269 rld[i].out = out;
1270 rld[i].class = class;
1271 rld[i].inmode = inmode;
1272 rld[i].outmode = outmode;
1273 rld[i].reg_rtx = 0;
1274 rld[i].optional = optional;
1275 rld[i].inc = 0;
1276 rld[i].nocombine = 0;
1277 rld[i].in_reg = inloc ? *inloc : 0;
1278 rld[i].out_reg = outloc ? *outloc : 0;
1279 rld[i].opnum = opnum;
1280 rld[i].when_needed = type;
1281 rld[i].secondary_in_reload = secondary_in_reload;
1282 rld[i].secondary_out_reload = secondary_out_reload;
1283 rld[i].secondary_in_icode = secondary_in_icode;
1284 rld[i].secondary_out_icode = secondary_out_icode;
1285 rld[i].secondary_p = 0;
1287 n_reloads++;
1289 #ifdef SECONDARY_MEMORY_NEEDED
1290 if (out != 0 && GET_CODE (out) == REG
1291 && REGNO (out) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1293 outmode))
1294 get_secondary_mem (out, outmode, opnum, type);
1295 #endif
1297 else
1299 /* We are reusing an existing reload,
1300 but we may have additional information for it.
1301 For example, we may now have both IN and OUT
1302 while the old one may have just one of them. */
1304 /* The modes can be different. If they are, we want to reload in
1305 the larger mode, so that the value is valid for both modes. */
1306 if (inmode != VOIDmode
1307 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1308 rld[i].inmode = inmode;
1309 if (outmode != VOIDmode
1310 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1311 rld[i].outmode = outmode;
1312 if (in != 0)
1314 rtx in_reg = inloc ? *inloc : 0;
1315 /* If we merge reloads for two distinct rtl expressions that
1316 are identical in content, there might be duplicate address
1317 reloads. Remove the extra set now, so that if we later find
1318 that we can inherit this reload, we can get rid of the
1319 address reloads altogether.
1321 Do not do this if both reloads are optional since the result
1322 would be an optional reload which could potentially leave
1323 unresolved address replacements.
1325 It is not sufficient to call transfer_replacements since
1326 choose_reload_regs will remove the replacements for address
1327 reloads of inherited reloads which results in the same
1328 problem. */
1329 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1330 && ! (rld[i].optional && optional))
1332 /* We must keep the address reload with the lower operand
1333 number alive. */
1334 if (opnum > rld[i].opnum)
1336 remove_address_replacements (in);
1337 in = rld[i].in;
1338 in_reg = rld[i].in_reg;
1340 else
1341 remove_address_replacements (rld[i].in);
1343 rld[i].in = in;
1344 rld[i].in_reg = in_reg;
1346 if (out != 0)
1348 rld[i].out = out;
1349 rld[i].out_reg = outloc ? *outloc : 0;
1351 if (reg_class_subset_p (class, rld[i].class))
1352 rld[i].class = class;
1353 rld[i].optional &= optional;
1354 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1355 opnum, rld[i].opnum))
1356 rld[i].when_needed = RELOAD_OTHER;
1357 rld[i].opnum = MIN (rld[i].opnum, opnum);
1360 /* If the ostensible rtx being reload differs from the rtx found
1361 in the location to substitute, this reload is not safe to combine
1362 because we cannot reliably tell whether it appears in the insn. */
1364 if (in != 0 && in != *inloc)
1365 rld[i].nocombine = 1;
1367 #if 0
1368 /* This was replaced by changes in find_reloads_address_1 and the new
1369 function inc_for_reload, which go with a new meaning of reload_inc. */
1371 /* If this is an IN/OUT reload in an insn that sets the CC,
1372 it must be for an autoincrement. It doesn't work to store
1373 the incremented value after the insn because that would clobber the CC.
1374 So we must do the increment of the value reloaded from,
1375 increment it, store it back, then decrement again. */
1376 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1378 out = 0;
1379 rld[i].out = 0;
1380 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1381 /* If we did not find a nonzero amount-to-increment-by,
1382 that contradicts the belief that IN is being incremented
1383 in an address in this insn. */
1384 if (rld[i].inc == 0)
1385 abort ();
1387 #endif
1389 /* If we will replace IN and OUT with the reload-reg,
1390 record where they are located so that substitution need
1391 not do a tree walk. */
1393 if (replace_reloads)
1395 if (inloc != 0)
1397 register struct replacement *r = &replacements[n_replacements++];
1398 r->what = i;
1399 r->subreg_loc = in_subreg_loc;
1400 r->where = inloc;
1401 r->mode = inmode;
1403 if (outloc != 0 && outloc != inloc)
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->where = outloc;
1408 r->subreg_loc = out_subreg_loc;
1409 r->mode = outmode;
1413 /* If this reload is just being introduced and it has both
1414 an incoming quantity and an outgoing quantity that are
1415 supposed to be made to match, see if either one of the two
1416 can serve as the place to reload into.
1418 If one of them is acceptable, set rld[i].reg_rtx
1419 to that one. */
1421 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1423 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1424 inmode, outmode,
1425 rld[i].class, i,
1426 earlyclobber_operand_p (out));
1428 /* If the outgoing register already contains the same value
1429 as the incoming one, we can dispense with loading it.
1430 The easiest way to tell the caller that is to give a phony
1431 value for the incoming operand (same as outgoing one). */
1432 if (rld[i].reg_rtx == out
1433 && (GET_CODE (in) == REG || CONSTANT_P (in))
1434 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1435 static_reload_reg_p, i, inmode))
1436 rld[i].in = out;
1439 /* If this is an input reload and the operand contains a register that
1440 dies in this insn and is used nowhere else, see if it is the right class
1441 to be used for this reload. Use it if so. (This occurs most commonly
1442 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1443 this if it is also an output reload that mentions the register unless
1444 the output is a SUBREG that clobbers an entire register.
1446 Note that the operand might be one of the spill regs, if it is a
1447 pseudo reg and we are in a block where spilling has not taken place.
1448 But if there is no spilling in this block, that is OK.
1449 An explicitly used hard reg cannot be a spill reg. */
1451 if (rld[i].reg_rtx == 0 && in != 0)
1453 rtx note;
1454 int regno;
1455 enum machine_mode rel_mode = inmode;
1457 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1458 rel_mode = outmode;
1460 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1461 if (REG_NOTE_KIND (note) == REG_DEAD
1462 && GET_CODE (XEXP (note, 0)) == REG
1463 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1464 && reg_mentioned_p (XEXP (note, 0), in)
1465 && ! refers_to_regno_for_reload_p (regno,
1466 (regno
1467 + HARD_REGNO_NREGS (regno,
1468 rel_mode)),
1469 PATTERN (this_insn), inloc)
1470 /* If this is also an output reload, IN cannot be used as
1471 the reload register if it is set in this insn unless IN
1472 is also OUT. */
1473 && (out == 0 || in == out
1474 || ! hard_reg_set_here_p (regno,
1475 (regno
1476 + HARD_REGNO_NREGS (regno,
1477 rel_mode)),
1478 PATTERN (this_insn)))
1479 /* ??? Why is this code so different from the previous?
1480 Is there any simple coherent way to describe the two together?
1481 What's going on here. */
1482 && (in != out
1483 || (GET_CODE (in) == SUBREG
1484 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1485 / UNITS_PER_WORD)
1486 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1487 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1488 /* Make sure the operand fits in the reg that dies. */
1489 && (GET_MODE_SIZE (rel_mode)
1490 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1491 && HARD_REGNO_MODE_OK (regno, inmode)
1492 && HARD_REGNO_MODE_OK (regno, outmode))
1494 unsigned int offs;
1495 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1496 HARD_REGNO_NREGS (regno, outmode));
1498 for (offs = 0; offs < nregs; offs++)
1499 if (fixed_regs[regno + offs]
1500 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1501 regno + offs))
1502 break;
1504 if (offs == nregs)
1506 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1507 break;
1512 if (out)
1513 output_reloadnum = i;
1515 return i;
1518 /* Record an additional place we must replace a value
1519 for which we have already recorded a reload.
1520 RELOADNUM is the value returned by push_reload
1521 when the reload was recorded.
1522 This is used in insn patterns that use match_dup. */
1524 static void
1525 push_replacement (loc, reloadnum, mode)
1526 rtx *loc;
1527 int reloadnum;
1528 enum machine_mode mode;
1530 if (replace_reloads)
1532 register struct replacement *r = &replacements[n_replacements++];
1533 r->what = reloadnum;
1534 r->where = loc;
1535 r->subreg_loc = 0;
1536 r->mode = mode;
1540 /* Transfer all replacements that used to be in reload FROM to be in
1541 reload TO. */
1543 void
1544 transfer_replacements (to, from)
1545 int to, from;
1547 int i;
1549 for (i = 0; i < n_replacements; i++)
1550 if (replacements[i].what == from)
1551 replacements[i].what = to;
1554 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1555 or a subpart of it. If we have any replacements registered for IN_RTX,
1556 cancel the reloads that were supposed to load them.
1557 Return non-zero if we canceled any reloads. */
1559 remove_address_replacements (in_rtx)
1560 rtx in_rtx;
1562 int i, j;
1563 char reload_flags[MAX_RELOADS];
1564 int something_changed = 0;
1566 memset (reload_flags, 0, sizeof reload_flags);
1567 for (i = 0, j = 0; i < n_replacements; i++)
1569 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1570 reload_flags[replacements[i].what] |= 1;
1571 else
1573 replacements[j++] = replacements[i];
1574 reload_flags[replacements[i].what] |= 2;
1577 /* Note that the following store must be done before the recursive calls. */
1578 n_replacements = j;
1580 for (i = n_reloads - 1; i >= 0; i--)
1582 if (reload_flags[i] == 1)
1584 deallocate_reload_reg (i);
1585 remove_address_replacements (rld[i].in);
1586 rld[i].in = 0;
1587 something_changed = 1;
1590 return something_changed;
1593 /* If there is only one output reload, and it is not for an earlyclobber
1594 operand, try to combine it with a (logically unrelated) input reload
1595 to reduce the number of reload registers needed.
1597 This is safe if the input reload does not appear in
1598 the value being output-reloaded, because this implies
1599 it is not needed any more once the original insn completes.
1601 If that doesn't work, see we can use any of the registers that
1602 die in this insn as a reload register. We can if it is of the right
1603 class and does not appear in the value being output-reloaded. */
1605 static void
1606 combine_reloads ()
1608 int i;
1609 int output_reload = -1;
1610 int secondary_out = -1;
1611 rtx note;
1613 /* Find the output reload; return unless there is exactly one
1614 and that one is mandatory. */
1616 for (i = 0; i < n_reloads; i++)
1617 if (rld[i].out != 0)
1619 if (output_reload >= 0)
1620 return;
1621 output_reload = i;
1624 if (output_reload < 0 || rld[output_reload].optional)
1625 return;
1627 /* An input-output reload isn't combinable. */
1629 if (rld[output_reload].in != 0)
1630 return;
1632 /* If this reload is for an earlyclobber operand, we can't do anything. */
1633 if (earlyclobber_operand_p (rld[output_reload].out))
1634 return;
1636 /* Check each input reload; can we combine it? */
1638 for (i = 0; i < n_reloads; i++)
1639 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1640 /* Life span of this reload must not extend past main insn. */
1641 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1642 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1643 && rld[i].when_needed != RELOAD_OTHER
1644 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1645 == CLASS_MAX_NREGS (rld[output_reload].class,
1646 rld[output_reload].outmode))
1647 && rld[i].inc == 0
1648 && rld[i].reg_rtx == 0
1649 #ifdef SECONDARY_MEMORY_NEEDED
1650 /* Don't combine two reloads with different secondary
1651 memory locations. */
1652 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1653 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1654 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1655 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1656 #endif
1657 && (SMALL_REGISTER_CLASSES
1658 ? (rld[i].class == rld[output_reload].class)
1659 : (reg_class_subset_p (rld[i].class,
1660 rld[output_reload].class)
1661 || reg_class_subset_p (rld[output_reload].class,
1662 rld[i].class)))
1663 && (MATCHES (rld[i].in, rld[output_reload].out)
1664 /* Args reversed because the first arg seems to be
1665 the one that we imagine being modified
1666 while the second is the one that might be affected. */
1667 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1668 rld[i].in)
1669 /* However, if the input is a register that appears inside
1670 the output, then we also can't share.
1671 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1672 If the same reload reg is used for both reg 69 and the
1673 result to be stored in memory, then that result
1674 will clobber the address of the memory ref. */
1675 && ! (GET_CODE (rld[i].in) == REG
1676 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1677 rld[output_reload].out))))
1678 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1679 && (reg_class_size[(int) rld[i].class]
1680 || SMALL_REGISTER_CLASSES)
1681 /* We will allow making things slightly worse by combining an
1682 input and an output, but no worse than that. */
1683 && (rld[i].when_needed == RELOAD_FOR_INPUT
1684 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1686 int j;
1688 /* We have found a reload to combine with! */
1689 rld[i].out = rld[output_reload].out;
1690 rld[i].out_reg = rld[output_reload].out_reg;
1691 rld[i].outmode = rld[output_reload].outmode;
1692 /* Mark the old output reload as inoperative. */
1693 rld[output_reload].out = 0;
1694 /* The combined reload is needed for the entire insn. */
1695 rld[i].when_needed = RELOAD_OTHER;
1696 /* If the output reload had a secondary reload, copy it. */
1697 if (rld[output_reload].secondary_out_reload != -1)
1699 rld[i].secondary_out_reload
1700 = rld[output_reload].secondary_out_reload;
1701 rld[i].secondary_out_icode
1702 = rld[output_reload].secondary_out_icode;
1705 #ifdef SECONDARY_MEMORY_NEEDED
1706 /* Copy any secondary MEM. */
1707 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1708 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1709 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1710 #endif
1711 /* If required, minimize the register class. */
1712 if (reg_class_subset_p (rld[output_reload].class,
1713 rld[i].class))
1714 rld[i].class = rld[output_reload].class;
1716 /* Transfer all replacements from the old reload to the combined. */
1717 for (j = 0; j < n_replacements; j++)
1718 if (replacements[j].what == output_reload)
1719 replacements[j].what = i;
1721 return;
1724 /* If this insn has only one operand that is modified or written (assumed
1725 to be the first), it must be the one corresponding to this reload. It
1726 is safe to use anything that dies in this insn for that output provided
1727 that it does not occur in the output (we already know it isn't an
1728 earlyclobber. If this is an asm insn, give up. */
1730 if (INSN_CODE (this_insn) == -1)
1731 return;
1733 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1734 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1735 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1736 return;
1738 /* See if some hard register that dies in this insn and is not used in
1739 the output is the right class. Only works if the register we pick
1740 up can fully hold our output reload. */
1741 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1742 if (REG_NOTE_KIND (note) == REG_DEAD
1743 && GET_CODE (XEXP (note, 0)) == REG
1744 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1745 rld[output_reload].out)
1746 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1747 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1748 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1749 REGNO (XEXP (note, 0)))
1750 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1751 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1752 /* Ensure that a secondary or tertiary reload for this output
1753 won't want this register. */
1754 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1755 || (! (TEST_HARD_REG_BIT
1756 (reg_class_contents[(int) rld[secondary_out].class],
1757 REGNO (XEXP (note, 0))))
1758 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1759 || ! (TEST_HARD_REG_BIT
1760 (reg_class_contents[(int) rld[secondary_out].class],
1761 REGNO (XEXP (note, 0)))))))
1762 && ! fixed_regs[REGNO (XEXP (note, 0))])
1764 rld[output_reload].reg_rtx
1765 = gen_rtx_REG (rld[output_reload].outmode,
1766 REGNO (XEXP (note, 0)));
1767 return;
1771 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1772 See if one of IN and OUT is a register that may be used;
1773 this is desirable since a spill-register won't be needed.
1774 If so, return the register rtx that proves acceptable.
1776 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1777 CLASS is the register class required for the reload.
1779 If FOR_REAL is >= 0, it is the number of the reload,
1780 and in some cases when it can be discovered that OUT doesn't need
1781 to be computed, clear out rld[FOR_REAL].out.
1783 If FOR_REAL is -1, this should not be done, because this call
1784 is just to see if a register can be found, not to find and install it.
1786 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1787 puts an additional constraint on being able to use IN for OUT since
1788 IN must not appear elsewhere in the insn (it is assumed that IN itself
1789 is safe from the earlyclobber). */
1791 static rtx
1792 find_dummy_reload (real_in, real_out, inloc, outloc,
1793 inmode, outmode, class, for_real, earlyclobber)
1794 rtx real_in, real_out;
1795 rtx *inloc, *outloc;
1796 enum machine_mode inmode, outmode;
1797 enum reg_class class;
1798 int for_real;
1799 int earlyclobber;
1801 rtx in = real_in;
1802 rtx out = real_out;
1803 int in_offset = 0;
1804 int out_offset = 0;
1805 rtx value = 0;
1807 /* If operands exceed a word, we can't use either of them
1808 unless they have the same size. */
1809 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1810 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1811 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1812 return 0;
1814 /* Find the inside of any subregs. */
1815 while (GET_CODE (out) == SUBREG)
1817 out_offset = SUBREG_WORD (out);
1818 out = SUBREG_REG (out);
1820 while (GET_CODE (in) == SUBREG)
1822 in_offset = SUBREG_WORD (in);
1823 in = SUBREG_REG (in);
1826 /* Narrow down the reg class, the same way push_reload will;
1827 otherwise we might find a dummy now, but push_reload won't. */
1828 class = PREFERRED_RELOAD_CLASS (in, class);
1830 /* See if OUT will do. */
1831 if (GET_CODE (out) == REG
1832 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1834 unsigned int regno = REGNO (out) + out_offset;
1835 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1836 rtx saved_rtx;
1838 /* When we consider whether the insn uses OUT,
1839 ignore references within IN. They don't prevent us
1840 from copying IN into OUT, because those refs would
1841 move into the insn that reloads IN.
1843 However, we only ignore IN in its role as this reload.
1844 If the insn uses IN elsewhere and it contains OUT,
1845 that counts. We can't be sure it's the "same" operand
1846 so it might not go through this reload. */
1847 saved_rtx = *inloc;
1848 *inloc = const0_rtx;
1850 if (regno < FIRST_PSEUDO_REGISTER
1851 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1852 PATTERN (this_insn), outloc))
1854 unsigned int i;
1856 for (i = 0; i < nwords; i++)
1857 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1858 regno + i))
1859 break;
1861 if (i == nwords)
1863 if (GET_CODE (real_out) == REG)
1864 value = real_out;
1865 else
1866 value = gen_rtx_REG (outmode, regno);
1870 *inloc = saved_rtx;
1873 /* Consider using IN if OUT was not acceptable
1874 or if OUT dies in this insn (like the quotient in a divmod insn).
1875 We can't use IN unless it is dies in this insn,
1876 which means we must know accurately which hard regs are live.
1877 Also, the result can't go in IN if IN is used within OUT,
1878 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1879 if (hard_regs_live_known
1880 && GET_CODE (in) == REG
1881 && REGNO (in) < FIRST_PSEUDO_REGISTER
1882 && (value == 0
1883 || find_reg_note (this_insn, REG_UNUSED, real_out))
1884 && find_reg_note (this_insn, REG_DEAD, real_in)
1885 && !fixed_regs[REGNO (in)]
1886 && HARD_REGNO_MODE_OK (REGNO (in),
1887 /* The only case where out and real_out might
1888 have different modes is where real_out
1889 is a subreg, and in that case, out
1890 has a real mode. */
1891 (GET_MODE (out) != VOIDmode
1892 ? GET_MODE (out) : outmode)))
1894 unsigned int regno = REGNO (in) + in_offset;
1895 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1897 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1898 && ! hard_reg_set_here_p (regno, regno + nwords,
1899 PATTERN (this_insn))
1900 && (! earlyclobber
1901 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1902 PATTERN (this_insn), inloc)))
1904 unsigned int i;
1906 for (i = 0; i < nwords; i++)
1907 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1908 regno + i))
1909 break;
1911 if (i == nwords)
1913 /* If we were going to use OUT as the reload reg
1914 and changed our mind, it means OUT is a dummy that
1915 dies here. So don't bother copying value to it. */
1916 if (for_real >= 0 && value == real_out)
1917 rld[for_real].out = 0;
1918 if (GET_CODE (real_in) == REG)
1919 value = real_in;
1920 else
1921 value = gen_rtx_REG (inmode, regno);
1926 return value;
1929 /* This page contains subroutines used mainly for determining
1930 whether the IN or an OUT of a reload can serve as the
1931 reload register. */
1933 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1936 earlyclobber_operand_p (x)
1937 rtx x;
1939 int i;
1941 for (i = 0; i < n_earlyclobbers; i++)
1942 if (reload_earlyclobbers[i] == x)
1943 return 1;
1945 return 0;
1948 /* Return 1 if expression X alters a hard reg in the range
1949 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1950 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1951 X should be the body of an instruction. */
1953 static int
1954 hard_reg_set_here_p (beg_regno, end_regno, x)
1955 unsigned int beg_regno, end_regno;
1956 rtx x;
1958 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1960 register rtx op0 = SET_DEST (x);
1962 while (GET_CODE (op0) == SUBREG)
1963 op0 = SUBREG_REG (op0);
1964 if (GET_CODE (op0) == REG)
1966 unsigned int r = REGNO (op0);
1968 /* See if this reg overlaps range under consideration. */
1969 if (r < end_regno
1970 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1971 return 1;
1974 else if (GET_CODE (x) == PARALLEL)
1976 register int i = XVECLEN (x, 0) - 1;
1978 for (; i >= 0; i--)
1979 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1980 return 1;
1983 return 0;
1986 /* Return 1 if ADDR is a valid memory address for mode MODE,
1987 and check that each pseudo reg has the proper kind of
1988 hard reg. */
1991 strict_memory_address_p (mode, addr)
1992 enum machine_mode mode ATTRIBUTE_UNUSED;
1993 register rtx addr;
1995 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1996 return 0;
1998 win:
1999 return 1;
2002 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2003 if they are the same hard reg, and has special hacks for
2004 autoincrement and autodecrement.
2005 This is specifically intended for find_reloads to use
2006 in determining whether two operands match.
2007 X is the operand whose number is the lower of the two.
2009 The value is 2 if Y contains a pre-increment that matches
2010 a non-incrementing address in X. */
2012 /* ??? To be completely correct, we should arrange to pass
2013 for X the output operand and for Y the input operand.
2014 For now, we assume that the output operand has the lower number
2015 because that is natural in (SET output (... input ...)). */
2018 operands_match_p (x, y)
2019 register rtx x, y;
2021 register int i;
2022 register RTX_CODE code = GET_CODE (x);
2023 register const char *fmt;
2024 int success_2;
2026 if (x == y)
2027 return 1;
2028 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2029 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2030 && GET_CODE (SUBREG_REG (y)) == REG)))
2032 register int j;
2034 if (code == SUBREG)
2036 i = REGNO (SUBREG_REG (x));
2037 if (i >= FIRST_PSEUDO_REGISTER)
2038 goto slow;
2039 i += SUBREG_WORD (x);
2041 else
2042 i = REGNO (x);
2044 if (GET_CODE (y) == SUBREG)
2046 j = REGNO (SUBREG_REG (y));
2047 if (j >= FIRST_PSEUDO_REGISTER)
2048 goto slow;
2049 j += SUBREG_WORD (y);
2051 else
2052 j = REGNO (y);
2054 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2055 multiple hard register group, so that for example (reg:DI 0) and
2056 (reg:SI 1) will be considered the same register. */
2057 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2058 && i < FIRST_PSEUDO_REGISTER)
2059 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2060 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2061 && j < FIRST_PSEUDO_REGISTER)
2062 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2064 return i == j;
2066 /* If two operands must match, because they are really a single
2067 operand of an assembler insn, then two postincrements are invalid
2068 because the assembler insn would increment only once.
2069 On the other hand, an postincrement matches ordinary indexing
2070 if the postincrement is the output operand. */
2071 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2072 return operands_match_p (XEXP (x, 0), y);
2073 /* Two preincrements are invalid
2074 because the assembler insn would increment only once.
2075 On the other hand, an preincrement matches ordinary indexing
2076 if the preincrement is the input operand.
2077 In this case, return 2, since some callers need to do special
2078 things when this happens. */
2079 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2080 || GET_CODE (y) == PRE_MODIFY)
2081 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2083 slow:
2085 /* Now we have disposed of all the cases
2086 in which different rtx codes can match. */
2087 if (code != GET_CODE (y))
2088 return 0;
2089 if (code == LABEL_REF)
2090 return XEXP (x, 0) == XEXP (y, 0);
2091 if (code == SYMBOL_REF)
2092 return XSTR (x, 0) == XSTR (y, 0);
2094 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2096 if (GET_MODE (x) != GET_MODE (y))
2097 return 0;
2099 /* Compare the elements. If any pair of corresponding elements
2100 fail to match, return 0 for the whole things. */
2102 success_2 = 0;
2103 fmt = GET_RTX_FORMAT (code);
2104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2106 int val, j;
2107 switch (fmt[i])
2109 case 'w':
2110 if (XWINT (x, i) != XWINT (y, i))
2111 return 0;
2112 break;
2114 case 'i':
2115 if (XINT (x, i) != XINT (y, i))
2116 return 0;
2117 break;
2119 case 'e':
2120 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2121 if (val == 0)
2122 return 0;
2123 /* If any subexpression returns 2,
2124 we should return 2 if we are successful. */
2125 if (val == 2)
2126 success_2 = 1;
2127 break;
2129 case '0':
2130 break;
2132 case 'E':
2133 if (XVECLEN (x, i) != XVECLEN (y, i))
2134 return 0;
2135 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2137 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2138 if (val == 0)
2139 return 0;
2140 if (val == 2)
2141 success_2 = 1;
2143 break;
2145 /* It is believed that rtx's at this level will never
2146 contain anything but integers and other rtx's,
2147 except for within LABEL_REFs and SYMBOL_REFs. */
2148 default:
2149 abort ();
2152 return 1 + success_2;
2155 /* Describe the range of registers or memory referenced by X.
2156 If X is a register, set REG_FLAG and put the first register
2157 number into START and the last plus one into END.
2158 If X is a memory reference, put a base address into BASE
2159 and a range of integer offsets into START and END.
2160 If X is pushing on the stack, we can assume it causes no trouble,
2161 so we set the SAFE field. */
2163 static struct decomposition
2164 decompose (x)
2165 rtx x;
2167 struct decomposition val;
2168 int all_const = 0;
2170 val.reg_flag = 0;
2171 val.safe = 0;
2172 val.base = 0;
2173 if (GET_CODE (x) == MEM)
2175 rtx base = NULL_RTX, offset = 0;
2176 rtx addr = XEXP (x, 0);
2178 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2179 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2181 val.base = XEXP (addr, 0);
2182 val.start = -GET_MODE_SIZE (GET_MODE (x));
2183 val.end = GET_MODE_SIZE (GET_MODE (x));
2184 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2185 return val;
2188 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2190 if (GET_CODE (XEXP (addr, 1)) == PLUS
2191 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2192 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2194 val.base = XEXP (addr, 0);
2195 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2196 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2197 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2198 return val;
2202 if (GET_CODE (addr) == CONST)
2204 addr = XEXP (addr, 0);
2205 all_const = 1;
2207 if (GET_CODE (addr) == PLUS)
2209 if (CONSTANT_P (XEXP (addr, 0)))
2211 base = XEXP (addr, 1);
2212 offset = XEXP (addr, 0);
2214 else if (CONSTANT_P (XEXP (addr, 1)))
2216 base = XEXP (addr, 0);
2217 offset = XEXP (addr, 1);
2221 if (offset == 0)
2223 base = addr;
2224 offset = const0_rtx;
2226 if (GET_CODE (offset) == CONST)
2227 offset = XEXP (offset, 0);
2228 if (GET_CODE (offset) == PLUS)
2230 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2232 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2233 offset = XEXP (offset, 0);
2235 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2237 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2238 offset = XEXP (offset, 1);
2240 else
2242 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2243 offset = const0_rtx;
2246 else if (GET_CODE (offset) != CONST_INT)
2248 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2249 offset = const0_rtx;
2252 if (all_const && GET_CODE (base) == PLUS)
2253 base = gen_rtx_CONST (GET_MODE (base), base);
2255 if (GET_CODE (offset) != CONST_INT)
2256 abort ();
2258 val.start = INTVAL (offset);
2259 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2260 val.base = base;
2261 return val;
2263 else if (GET_CODE (x) == REG)
2265 val.reg_flag = 1;
2266 val.start = true_regnum (x);
2267 if (val.start < 0)
2269 /* A pseudo with no hard reg. */
2270 val.start = REGNO (x);
2271 val.end = val.start + 1;
2273 else
2274 /* A hard reg. */
2275 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2277 else if (GET_CODE (x) == SUBREG)
2279 if (GET_CODE (SUBREG_REG (x)) != REG)
2280 /* This could be more precise, but it's good enough. */
2281 return decompose (SUBREG_REG (x));
2282 val.reg_flag = 1;
2283 val.start = true_regnum (x);
2284 if (val.start < 0)
2285 return decompose (SUBREG_REG (x));
2286 else
2287 /* A hard reg. */
2288 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2290 else if (CONSTANT_P (x)
2291 /* This hasn't been assigned yet, so it can't conflict yet. */
2292 || GET_CODE (x) == SCRATCH)
2293 val.safe = 1;
2294 else
2295 abort ();
2296 return val;
2299 /* Return 1 if altering Y will not modify the value of X.
2300 Y is also described by YDATA, which should be decompose (Y). */
2302 static int
2303 immune_p (x, y, ydata)
2304 rtx x, y;
2305 struct decomposition ydata;
2307 struct decomposition xdata;
2309 if (ydata.reg_flag)
2310 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2311 if (ydata.safe)
2312 return 1;
2314 if (GET_CODE (y) != MEM)
2315 abort ();
2316 /* If Y is memory and X is not, Y can't affect X. */
2317 if (GET_CODE (x) != MEM)
2318 return 1;
2320 xdata = decompose (x);
2322 if (! rtx_equal_p (xdata.base, ydata.base))
2324 /* If bases are distinct symbolic constants, there is no overlap. */
2325 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2326 return 1;
2327 /* Constants and stack slots never overlap. */
2328 if (CONSTANT_P (xdata.base)
2329 && (ydata.base == frame_pointer_rtx
2330 || ydata.base == hard_frame_pointer_rtx
2331 || ydata.base == stack_pointer_rtx))
2332 return 1;
2333 if (CONSTANT_P (ydata.base)
2334 && (xdata.base == frame_pointer_rtx
2335 || xdata.base == hard_frame_pointer_rtx
2336 || xdata.base == stack_pointer_rtx))
2337 return 1;
2338 /* If either base is variable, we don't know anything. */
2339 return 0;
2342 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2345 /* Similar, but calls decompose. */
2348 safe_from_earlyclobber (op, clobber)
2349 rtx op, clobber;
2351 struct decomposition early_data;
2353 early_data = decompose (clobber);
2354 return immune_p (op, clobber, early_data);
2357 /* Main entry point of this file: search the body of INSN
2358 for values that need reloading and record them with push_reload.
2359 REPLACE nonzero means record also where the values occur
2360 so that subst_reloads can be used.
2362 IND_LEVELS says how many levels of indirection are supported by this
2363 machine; a value of zero means that a memory reference is not a valid
2364 memory address.
2366 LIVE_KNOWN says we have valid information about which hard
2367 regs are live at each point in the program; this is true when
2368 we are called from global_alloc but false when stupid register
2369 allocation has been done.
2371 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2372 which is nonnegative if the reg has been commandeered for reloading into.
2373 It is copied into STATIC_RELOAD_REG_P and referenced from there
2374 by various subroutines.
2376 Return TRUE if some operands need to be changed, because of swapping
2377 commutative operands, reg_equiv_address substitution, or whatever. */
2380 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2381 rtx insn;
2382 int replace, ind_levels;
2383 int live_known;
2384 short *reload_reg_p;
2386 register int insn_code_number;
2387 register int i, j;
2388 int noperands;
2389 /* These start out as the constraints for the insn
2390 and they are chewed up as we consider alternatives. */
2391 char *constraints[MAX_RECOG_OPERANDS];
2392 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2393 a register. */
2394 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2395 char pref_or_nothing[MAX_RECOG_OPERANDS];
2396 /* Nonzero for a MEM operand whose entire address needs a reload. */
2397 int address_reloaded[MAX_RECOG_OPERANDS];
2398 /* Value of enum reload_type to use for operand. */
2399 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2400 /* Value of enum reload_type to use within address of operand. */
2401 enum reload_type address_type[MAX_RECOG_OPERANDS];
2402 /* Save the usage of each operand. */
2403 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2404 int no_input_reloads = 0, no_output_reloads = 0;
2405 int n_alternatives;
2406 int this_alternative[MAX_RECOG_OPERANDS];
2407 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2408 char this_alternative_win[MAX_RECOG_OPERANDS];
2409 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2410 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2411 int this_alternative_matches[MAX_RECOG_OPERANDS];
2412 int swapped;
2413 int goal_alternative[MAX_RECOG_OPERANDS];
2414 int this_alternative_number;
2415 int goal_alternative_number = 0;
2416 int operand_reloadnum[MAX_RECOG_OPERANDS];
2417 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2418 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2419 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2420 char goal_alternative_win[MAX_RECOG_OPERANDS];
2421 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2422 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2423 int goal_alternative_swapped;
2424 int best;
2425 int commutative;
2426 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2427 rtx substed_operand[MAX_RECOG_OPERANDS];
2428 rtx body = PATTERN (insn);
2429 rtx set = single_set (insn);
2430 int goal_earlyclobber = 0, this_earlyclobber;
2431 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2432 int retval = 0;
2434 this_insn = insn;
2435 n_reloads = 0;
2436 n_replacements = 0;
2437 n_earlyclobbers = 0;
2438 replace_reloads = replace;
2439 hard_regs_live_known = live_known;
2440 static_reload_reg_p = reload_reg_p;
2442 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2443 neither are insns that SET cc0. Insns that use CC0 are not allowed
2444 to have any input reloads. */
2445 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2446 no_output_reloads = 1;
2448 #ifdef HAVE_cc0
2449 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2450 no_input_reloads = 1;
2451 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2452 no_output_reloads = 1;
2453 #endif
2455 #ifdef SECONDARY_MEMORY_NEEDED
2456 /* The eliminated forms of any secondary memory locations are per-insn, so
2457 clear them out here. */
2459 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2460 #endif
2462 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2463 is cheap to move between them. If it is not, there may not be an insn
2464 to do the copy, so we may need a reload. */
2465 if (GET_CODE (body) == SET
2466 && GET_CODE (SET_DEST (body)) == REG
2467 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2468 && GET_CODE (SET_SRC (body)) == REG
2469 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2470 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2471 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2472 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2473 return 0;
2475 extract_insn (insn);
2477 noperands = reload_n_operands = recog_data.n_operands;
2478 n_alternatives = recog_data.n_alternatives;
2480 /* Just return "no reloads" if insn has no operands with constraints. */
2481 if (noperands == 0 || n_alternatives == 0)
2482 return 0;
2484 insn_code_number = INSN_CODE (insn);
2485 this_insn_is_asm = insn_code_number < 0;
2487 memcpy (operand_mode, recog_data.operand_mode,
2488 noperands * sizeof (enum machine_mode));
2489 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2491 commutative = -1;
2493 /* If we will need to know, later, whether some pair of operands
2494 are the same, we must compare them now and save the result.
2495 Reloading the base and index registers will clobber them
2496 and afterward they will fail to match. */
2498 for (i = 0; i < noperands; i++)
2500 register char *p;
2501 register int c;
2503 substed_operand[i] = recog_data.operand[i];
2504 p = constraints[i];
2506 modified[i] = RELOAD_READ;
2508 /* Scan this operand's constraint to see if it is an output operand,
2509 an in-out operand, is commutative, or should match another. */
2511 while ((c = *p++))
2513 if (c == '=')
2514 modified[i] = RELOAD_WRITE;
2515 else if (c == '+')
2516 modified[i] = RELOAD_READ_WRITE;
2517 else if (c == '%')
2519 /* The last operand should not be marked commutative. */
2520 if (i == noperands - 1)
2521 abort ();
2523 commutative = i;
2525 else if (c >= '0' && c <= '9')
2527 c -= '0';
2528 operands_match[c][i]
2529 = operands_match_p (recog_data.operand[c],
2530 recog_data.operand[i]);
2532 /* An operand may not match itself. */
2533 if (c == i)
2534 abort ();
2536 /* If C can be commuted with C+1, and C might need to match I,
2537 then C+1 might also need to match I. */
2538 if (commutative >= 0)
2540 if (c == commutative || c == commutative + 1)
2542 int other = c + (c == commutative ? 1 : -1);
2543 operands_match[other][i]
2544 = operands_match_p (recog_data.operand[other],
2545 recog_data.operand[i]);
2547 if (i == commutative || i == commutative + 1)
2549 int other = i + (i == commutative ? 1 : -1);
2550 operands_match[c][other]
2551 = operands_match_p (recog_data.operand[c],
2552 recog_data.operand[other]);
2554 /* Note that C is supposed to be less than I.
2555 No need to consider altering both C and I because in
2556 that case we would alter one into the other. */
2562 /* Examine each operand that is a memory reference or memory address
2563 and reload parts of the addresses into index registers.
2564 Also here any references to pseudo regs that didn't get hard regs
2565 but are equivalent to constants get replaced in the insn itself
2566 with those constants. Nobody will ever see them again.
2568 Finally, set up the preferred classes of each operand. */
2570 for (i = 0; i < noperands; i++)
2572 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2574 address_reloaded[i] = 0;
2575 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2576 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2577 : RELOAD_OTHER);
2578 address_type[i]
2579 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2580 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2581 : RELOAD_OTHER);
2583 if (*constraints[i] == 0)
2584 /* Ignore things like match_operator operands. */
2586 else if (constraints[i][0] == 'p')
2588 find_reloads_address (VOIDmode, NULL_PTR,
2589 recog_data.operand[i],
2590 recog_data.operand_loc[i],
2591 i, operand_type[i], ind_levels, insn);
2593 /* If we now have a simple operand where we used to have a
2594 PLUS or MULT, re-recognize and try again. */
2595 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2596 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2597 && (GET_CODE (recog_data.operand[i]) == MULT
2598 || GET_CODE (recog_data.operand[i]) == PLUS))
2600 INSN_CODE (insn) = -1;
2601 retval = find_reloads (insn, replace, ind_levels, live_known,
2602 reload_reg_p);
2603 return retval;
2606 recog_data.operand[i] = *recog_data.operand_loc[i];
2607 substed_operand[i] = recog_data.operand[i];
2609 else if (code == MEM)
2611 address_reloaded[i]
2612 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2613 recog_data.operand_loc[i],
2614 XEXP (recog_data.operand[i], 0),
2615 &XEXP (recog_data.operand[i], 0),
2616 i, address_type[i], ind_levels, insn);
2617 recog_data.operand[i] = *recog_data.operand_loc[i];
2618 substed_operand[i] = recog_data.operand[i];
2620 else if (code == SUBREG)
2622 rtx reg = SUBREG_REG (recog_data.operand[i]);
2623 rtx op
2624 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2625 ind_levels,
2626 set != 0
2627 && &SET_DEST (set) == recog_data.operand_loc[i],
2628 insn,
2629 &address_reloaded[i]);
2631 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2632 that didn't get a hard register, emit a USE with a REG_EQUAL
2633 note in front so that we might inherit a previous, possibly
2634 wider reload. */
2636 if (replace
2637 && GET_CODE (op) == MEM
2638 && GET_CODE (reg) == REG
2639 && (GET_MODE_SIZE (GET_MODE (reg))
2640 >= GET_MODE_SIZE (GET_MODE (op))))
2641 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2642 = gen_rtx_EXPR_LIST (REG_EQUAL,
2643 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2645 substed_operand[i] = recog_data.operand[i] = op;
2647 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2648 /* We can get a PLUS as an "operand" as a result of register
2649 elimination. See eliminate_regs and gen_reload. We handle
2650 a unary operator by reloading the operand. */
2651 substed_operand[i] = recog_data.operand[i]
2652 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2653 ind_levels, 0, insn,
2654 &address_reloaded[i]);
2655 else if (code == REG)
2657 /* This is equivalent to calling find_reloads_toplev.
2658 The code is duplicated for speed.
2659 When we find a pseudo always equivalent to a constant,
2660 we replace it by the constant. We must be sure, however,
2661 that we don't try to replace it in the insn in which it
2662 is being set. */
2663 register int regno = REGNO (recog_data.operand[i]);
2664 if (reg_equiv_constant[regno] != 0
2665 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2667 /* Record the existing mode so that the check if constants are
2668 allowed will work when operand_mode isn't specified. */
2670 if (operand_mode[i] == VOIDmode)
2671 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2673 substed_operand[i] = recog_data.operand[i]
2674 = reg_equiv_constant[regno];
2676 if (reg_equiv_memory_loc[regno] != 0
2677 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2678 /* We need not give a valid is_set_dest argument since the case
2679 of a constant equivalence was checked above. */
2680 substed_operand[i] = recog_data.operand[i]
2681 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2682 ind_levels, 0, insn,
2683 &address_reloaded[i]);
2685 /* If the operand is still a register (we didn't replace it with an
2686 equivalent), get the preferred class to reload it into. */
2687 code = GET_CODE (recog_data.operand[i]);
2688 preferred_class[i]
2689 = ((code == REG && REGNO (recog_data.operand[i])
2690 >= FIRST_PSEUDO_REGISTER)
2691 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2692 : NO_REGS);
2693 pref_or_nothing[i]
2694 = (code == REG
2695 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2696 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2699 /* If this is simply a copy from operand 1 to operand 0, merge the
2700 preferred classes for the operands. */
2701 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2702 && recog_data.operand[1] == SET_SRC (set))
2704 preferred_class[0] = preferred_class[1]
2705 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2706 pref_or_nothing[0] |= pref_or_nothing[1];
2707 pref_or_nothing[1] |= pref_or_nothing[0];
2710 /* Now see what we need for pseudo-regs that didn't get hard regs
2711 or got the wrong kind of hard reg. For this, we must consider
2712 all the operands together against the register constraints. */
2714 best = MAX_RECOG_OPERANDS * 2 + 600;
2716 swapped = 0;
2717 goal_alternative_swapped = 0;
2718 try_swapped:
2720 /* The constraints are made of several alternatives.
2721 Each operand's constraint looks like foo,bar,... with commas
2722 separating the alternatives. The first alternatives for all
2723 operands go together, the second alternatives go together, etc.
2725 First loop over alternatives. */
2727 for (this_alternative_number = 0;
2728 this_alternative_number < n_alternatives;
2729 this_alternative_number++)
2731 /* Loop over operands for one constraint alternative. */
2732 /* LOSERS counts those that don't fit this alternative
2733 and would require loading. */
2734 int losers = 0;
2735 /* BAD is set to 1 if it some operand can't fit this alternative
2736 even after reloading. */
2737 int bad = 0;
2738 /* REJECT is a count of how undesirable this alternative says it is
2739 if any reloading is required. If the alternative matches exactly
2740 then REJECT is ignored, but otherwise it gets this much
2741 counted against it in addition to the reloading needed. Each
2742 ? counts three times here since we want the disparaging caused by
2743 a bad register class to only count 1/3 as much. */
2744 int reject = 0;
2746 this_earlyclobber = 0;
2748 for (i = 0; i < noperands; i++)
2750 register char *p = constraints[i];
2751 register int win = 0;
2752 int did_match = 0;
2753 /* 0 => this operand can be reloaded somehow for this alternative */
2754 int badop = 1;
2755 /* 0 => this operand can be reloaded if the alternative allows regs. */
2756 int winreg = 0;
2757 int c;
2758 register rtx operand = recog_data.operand[i];
2759 int offset = 0;
2760 /* Nonzero means this is a MEM that must be reloaded into a reg
2761 regardless of what the constraint says. */
2762 int force_reload = 0;
2763 int offmemok = 0;
2764 /* Nonzero if a constant forced into memory would be OK for this
2765 operand. */
2766 int constmemok = 0;
2767 int earlyclobber = 0;
2769 /* If the predicate accepts a unary operator, it means that
2770 we need to reload the operand, but do not do this for
2771 match_operator and friends. */
2772 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2773 operand = XEXP (operand, 0);
2775 /* If the operand is a SUBREG, extract
2776 the REG or MEM (or maybe even a constant) within.
2777 (Constants can occur as a result of reg_equiv_constant.) */
2779 while (GET_CODE (operand) == SUBREG)
2781 offset += SUBREG_WORD (operand);
2782 operand = SUBREG_REG (operand);
2783 /* Force reload if this is a constant or PLUS or if there may
2784 be a problem accessing OPERAND in the outer mode. */
2785 if (CONSTANT_P (operand)
2786 || GET_CODE (operand) == PLUS
2787 /* We must force a reload of paradoxical SUBREGs
2788 of a MEM because the alignment of the inner value
2789 may not be enough to do the outer reference. On
2790 big-endian machines, it may also reference outside
2791 the object.
2793 On machines that extend byte operations and we have a
2794 SUBREG where both the inner and outer modes are no wider
2795 than a word and the inner mode is narrower, is integral,
2796 and gets extended when loaded from memory, combine.c has
2797 made assumptions about the behavior of the machine in such
2798 register access. If the data is, in fact, in memory we
2799 must always load using the size assumed to be in the
2800 register and let the insn do the different-sized
2801 accesses.
2803 This is doubly true if WORD_REGISTER_OPERATIONS. In
2804 this case eliminate_regs has left non-paradoxical
2805 subregs for push_reloads to see. Make sure it does
2806 by forcing the reload.
2808 ??? When is it right at this stage to have a subreg
2809 of a mem that is _not_ to be handled specialy? IMO
2810 those should have been reduced to just a mem. */
2811 || ((GET_CODE (operand) == MEM
2812 || (GET_CODE (operand)== REG
2813 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2814 #ifndef WORD_REGISTER_OPERATIONS
2815 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2816 < BIGGEST_ALIGNMENT)
2817 && (GET_MODE_SIZE (operand_mode[i])
2818 > GET_MODE_SIZE (GET_MODE (operand))))
2819 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2820 #ifdef LOAD_EXTEND_OP
2821 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2822 && (GET_MODE_SIZE (GET_MODE (operand))
2823 <= UNITS_PER_WORD)
2824 && (GET_MODE_SIZE (operand_mode[i])
2825 > GET_MODE_SIZE (GET_MODE (operand)))
2826 && INTEGRAL_MODE_P (GET_MODE (operand))
2827 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2828 #endif
2830 #endif
2832 /* Subreg of a hard reg which can't handle the subreg's mode
2833 or which would handle that mode in the wrong number of
2834 registers for subregging to work. */
2835 || (GET_CODE (operand) == REG
2836 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2837 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2838 && (GET_MODE_SIZE (GET_MODE (operand))
2839 > UNITS_PER_WORD)
2840 && ((GET_MODE_SIZE (GET_MODE (operand))
2841 / UNITS_PER_WORD)
2842 != HARD_REGNO_NREGS (REGNO (operand),
2843 GET_MODE (operand))))
2844 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2845 operand_mode[i]))))
2846 force_reload = 1;
2849 this_alternative[i] = (int) NO_REGS;
2850 this_alternative_win[i] = 0;
2851 this_alternative_match_win[i] = 0;
2852 this_alternative_offmemok[i] = 0;
2853 this_alternative_earlyclobber[i] = 0;
2854 this_alternative_matches[i] = -1;
2856 /* An empty constraint or empty alternative
2857 allows anything which matched the pattern. */
2858 if (*p == 0 || *p == ',')
2859 win = 1, badop = 0;
2861 /* Scan this alternative's specs for this operand;
2862 set WIN if the operand fits any letter in this alternative.
2863 Otherwise, clear BADOP if this operand could
2864 fit some letter after reloads,
2865 or set WINREG if this operand could fit after reloads
2866 provided the constraint allows some registers. */
2868 while (*p && (c = *p++) != ',')
2869 switch (c)
2871 case '=': case '+': case '*':
2872 break;
2874 case '%':
2875 /* The last operand should not be marked commutative. */
2876 if (i != noperands - 1)
2877 commutative = i;
2878 break;
2880 case '?':
2881 reject += 6;
2882 break;
2884 case '!':
2885 reject = 600;
2886 break;
2888 case '#':
2889 /* Ignore rest of this alternative as far as
2890 reloading is concerned. */
2891 while (*p && *p != ',')
2892 p++;
2893 break;
2895 case '0': case '1': case '2': case '3': case '4':
2896 case '5': case '6': case '7': case '8': case '9':
2898 c -= '0';
2899 this_alternative_matches[i] = c;
2900 /* We are supposed to match a previous operand.
2901 If we do, we win if that one did.
2902 If we do not, count both of the operands as losers.
2903 (This is too conservative, since most of the time
2904 only a single reload insn will be needed to make
2905 the two operands win. As a result, this alternative
2906 may be rejected when it is actually desirable.) */
2907 if ((swapped && (c != commutative || i != commutative + 1))
2908 /* If we are matching as if two operands were swapped,
2909 also pretend that operands_match had been computed
2910 with swapped.
2911 But if I is the second of those and C is the first,
2912 don't exchange them, because operands_match is valid
2913 only on one side of its diagonal. */
2914 ? (operands_match
2915 [(c == commutative || c == commutative + 1)
2916 ? 2 * commutative + 1 - c : c]
2917 [(i == commutative || i == commutative + 1)
2918 ? 2 * commutative + 1 - i : i])
2919 : operands_match[c][i])
2921 /* If we are matching a non-offsettable address where an
2922 offsettable address was expected, then we must reject
2923 this combination, because we can't reload it. */
2924 if (this_alternative_offmemok[c]
2925 && GET_CODE (recog_data.operand[c]) == MEM
2926 && this_alternative[c] == (int) NO_REGS
2927 && ! this_alternative_win[c])
2928 bad = 1;
2930 did_match = this_alternative_win[c];
2932 else
2934 /* Operands don't match. */
2935 rtx value;
2936 /* Retroactively mark the operand we had to match
2937 as a loser, if it wasn't already. */
2938 if (this_alternative_win[c])
2939 losers++;
2940 this_alternative_win[c] = 0;
2941 if (this_alternative[c] == (int) NO_REGS)
2942 bad = 1;
2943 /* But count the pair only once in the total badness of
2944 this alternative, if the pair can be a dummy reload. */
2945 value
2946 = find_dummy_reload (recog_data.operand[i],
2947 recog_data.operand[c],
2948 recog_data.operand_loc[i],
2949 recog_data.operand_loc[c],
2950 operand_mode[i], operand_mode[c],
2951 this_alternative[c], -1,
2952 this_alternative_earlyclobber[c]);
2954 if (value != 0)
2955 losers--;
2957 /* This can be fixed with reloads if the operand
2958 we are supposed to match can be fixed with reloads. */
2959 badop = 0;
2960 this_alternative[i] = this_alternative[c];
2962 /* If we have to reload this operand and some previous
2963 operand also had to match the same thing as this
2964 operand, we don't know how to do that. So reject this
2965 alternative. */
2966 if (! did_match || force_reload)
2967 for (j = 0; j < i; j++)
2968 if (this_alternative_matches[j]
2969 == this_alternative_matches[i])
2970 badop = 1;
2971 break;
2973 case 'p':
2974 /* All necessary reloads for an address_operand
2975 were handled in find_reloads_address. */
2976 this_alternative[i] = (int) BASE_REG_CLASS;
2977 win = 1;
2978 break;
2980 case 'm':
2981 if (force_reload)
2982 break;
2983 if (GET_CODE (operand) == MEM
2984 || (GET_CODE (operand) == REG
2985 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2986 && reg_renumber[REGNO (operand)] < 0))
2987 win = 1;
2988 if (CONSTANT_P (operand)
2989 /* force_const_mem does not accept HIGH. */
2990 && GET_CODE (operand) != HIGH)
2991 badop = 0;
2992 constmemok = 1;
2993 break;
2995 case '<':
2996 if (GET_CODE (operand) == MEM
2997 && ! address_reloaded[i]
2998 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2999 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3000 win = 1;
3001 break;
3003 case '>':
3004 if (GET_CODE (operand) == MEM
3005 && ! address_reloaded[i]
3006 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3007 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3008 win = 1;
3009 break;
3011 /* Memory operand whose address is not offsettable. */
3012 case 'V':
3013 if (force_reload)
3014 break;
3015 if (GET_CODE (operand) == MEM
3016 && ! (ind_levels ? offsettable_memref_p (operand)
3017 : offsettable_nonstrict_memref_p (operand))
3018 /* Certain mem addresses will become offsettable
3019 after they themselves are reloaded. This is important;
3020 we don't want our own handling of unoffsettables
3021 to override the handling of reg_equiv_address. */
3022 && !(GET_CODE (XEXP (operand, 0)) == REG
3023 && (ind_levels == 0
3024 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3025 win = 1;
3026 break;
3028 /* Memory operand whose address is offsettable. */
3029 case 'o':
3030 if (force_reload)
3031 break;
3032 if ((GET_CODE (operand) == MEM
3033 /* If IND_LEVELS, find_reloads_address won't reload a
3034 pseudo that didn't get a hard reg, so we have to
3035 reject that case. */
3036 && ((ind_levels ? offsettable_memref_p (operand)
3037 : offsettable_nonstrict_memref_p (operand))
3038 /* A reloaded address is offsettable because it is now
3039 just a simple register indirect. */
3040 || address_reloaded[i]))
3041 || (GET_CODE (operand) == REG
3042 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3043 && reg_renumber[REGNO (operand)] < 0
3044 /* If reg_equiv_address is nonzero, we will be
3045 loading it into a register; hence it will be
3046 offsettable, but we cannot say that reg_equiv_mem
3047 is offsettable without checking. */
3048 && ((reg_equiv_mem[REGNO (operand)] != 0
3049 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3050 || (reg_equiv_address[REGNO (operand)] != 0))))
3051 win = 1;
3052 /* force_const_mem does not accept HIGH. */
3053 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3054 || GET_CODE (operand) == MEM)
3055 badop = 0;
3056 constmemok = 1;
3057 offmemok = 1;
3058 break;
3060 case '&':
3061 /* Output operand that is stored before the need for the
3062 input operands (and their index registers) is over. */
3063 earlyclobber = 1, this_earlyclobber = 1;
3064 break;
3066 case 'E':
3067 #ifndef REAL_ARITHMETIC
3068 /* Match any floating double constant, but only if
3069 we can examine the bits of it reliably. */
3070 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3071 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3072 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3073 break;
3074 #endif
3075 if (GET_CODE (operand) == CONST_DOUBLE)
3076 win = 1;
3077 break;
3079 case 'F':
3080 if (GET_CODE (operand) == CONST_DOUBLE)
3081 win = 1;
3082 break;
3084 case 'G':
3085 case 'H':
3086 if (GET_CODE (operand) == CONST_DOUBLE
3087 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3088 win = 1;
3089 break;
3091 case 's':
3092 if (GET_CODE (operand) == CONST_INT
3093 || (GET_CODE (operand) == CONST_DOUBLE
3094 && GET_MODE (operand) == VOIDmode))
3095 break;
3096 case 'i':
3097 if (CONSTANT_P (operand)
3098 #ifdef LEGITIMATE_PIC_OPERAND_P
3099 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3100 #endif
3102 win = 1;
3103 break;
3105 case 'n':
3106 if (GET_CODE (operand) == CONST_INT
3107 || (GET_CODE (operand) == CONST_DOUBLE
3108 && GET_MODE (operand) == VOIDmode))
3109 win = 1;
3110 break;
3112 case 'I':
3113 case 'J':
3114 case 'K':
3115 case 'L':
3116 case 'M':
3117 case 'N':
3118 case 'O':
3119 case 'P':
3120 if (GET_CODE (operand) == CONST_INT
3121 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3122 win = 1;
3123 break;
3125 case 'X':
3126 win = 1;
3127 break;
3129 case 'g':
3130 if (! force_reload
3131 /* A PLUS is never a valid operand, but reload can make
3132 it from a register when eliminating registers. */
3133 && GET_CODE (operand) != PLUS
3134 /* A SCRATCH is not a valid operand. */
3135 && GET_CODE (operand) != SCRATCH
3136 #ifdef LEGITIMATE_PIC_OPERAND_P
3137 && (! CONSTANT_P (operand)
3138 || ! flag_pic
3139 || LEGITIMATE_PIC_OPERAND_P (operand))
3140 #endif
3141 && (GENERAL_REGS == ALL_REGS
3142 || GET_CODE (operand) != REG
3143 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3144 && reg_renumber[REGNO (operand)] < 0)))
3145 win = 1;
3146 /* Drop through into 'r' case */
3148 case 'r':
3149 this_alternative[i]
3150 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3151 goto reg;
3153 default:
3154 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3156 #ifdef EXTRA_CONSTRAINT
3157 if (EXTRA_CONSTRAINT (operand, c))
3158 win = 1;
3159 #endif
3160 break;
3163 this_alternative[i]
3164 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3165 reg:
3166 if (GET_MODE (operand) == BLKmode)
3167 break;
3168 winreg = 1;
3169 if (GET_CODE (operand) == REG
3170 && reg_fits_class_p (operand, this_alternative[i],
3171 offset, GET_MODE (recog_data.operand[i])))
3172 win = 1;
3173 break;
3176 constraints[i] = p;
3178 /* If this operand could be handled with a reg,
3179 and some reg is allowed, then this operand can be handled. */
3180 if (winreg && this_alternative[i] != (int) NO_REGS)
3181 badop = 0;
3183 /* Record which operands fit this alternative. */
3184 this_alternative_earlyclobber[i] = earlyclobber;
3185 if (win && ! force_reload)
3186 this_alternative_win[i] = 1;
3187 else if (did_match && ! force_reload)
3188 this_alternative_match_win[i] = 1;
3189 else
3191 int const_to_mem = 0;
3193 this_alternative_offmemok[i] = offmemok;
3194 losers++;
3195 if (badop)
3196 bad = 1;
3197 /* Alternative loses if it has no regs for a reg operand. */
3198 if (GET_CODE (operand) == REG
3199 && this_alternative[i] == (int) NO_REGS
3200 && this_alternative_matches[i] < 0)
3201 bad = 1;
3203 /* If this is a constant that is reloaded into the desired
3204 class by copying it to memory first, count that as another
3205 reload. This is consistent with other code and is
3206 required to avoid choosing another alternative when
3207 the constant is moved into memory by this function on
3208 an early reload pass. Note that the test here is
3209 precisely the same as in the code below that calls
3210 force_const_mem. */
3211 if (CONSTANT_P (operand)
3212 /* force_const_mem does not accept HIGH. */
3213 && GET_CODE (operand) != HIGH
3214 && ((PREFERRED_RELOAD_CLASS (operand,
3215 (enum reg_class) this_alternative[i])
3216 == NO_REGS)
3217 || no_input_reloads)
3218 && operand_mode[i] != VOIDmode)
3220 const_to_mem = 1;
3221 if (this_alternative[i] != (int) NO_REGS)
3222 losers++;
3225 /* If we can't reload this value at all, reject this
3226 alternative. Note that we could also lose due to
3227 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3228 here. */
3230 if (! CONSTANT_P (operand)
3231 && (enum reg_class) this_alternative[i] != NO_REGS
3232 && (PREFERRED_RELOAD_CLASS (operand,
3233 (enum reg_class) this_alternative[i])
3234 == NO_REGS))
3235 bad = 1;
3237 /* Alternative loses if it requires a type of reload not
3238 permitted for this insn. We can always reload SCRATCH
3239 and objects with a REG_UNUSED note. */
3240 else if (GET_CODE (operand) != SCRATCH
3241 && modified[i] != RELOAD_READ && no_output_reloads
3242 && ! find_reg_note (insn, REG_UNUSED, operand))
3243 bad = 1;
3244 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3245 && ! const_to_mem)
3246 bad = 1;
3248 /* We prefer to reload pseudos over reloading other things,
3249 since such reloads may be able to be eliminated later.
3250 If we are reloading a SCRATCH, we won't be generating any
3251 insns, just using a register, so it is also preferred.
3252 So bump REJECT in other cases. Don't do this in the
3253 case where we are forcing a constant into memory and
3254 it will then win since we don't want to have a different
3255 alternative match then. */
3256 if (! (GET_CODE (operand) == REG
3257 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3258 && GET_CODE (operand) != SCRATCH
3259 && ! (const_to_mem && constmemok))
3260 reject += 2;
3262 /* Input reloads can be inherited more often than output
3263 reloads can be removed, so penalize output reloads. */
3264 if (operand_type[i] != RELOAD_FOR_INPUT
3265 && GET_CODE (operand) != SCRATCH)
3266 reject++;
3269 /* If this operand is a pseudo register that didn't get a hard
3270 reg and this alternative accepts some register, see if the
3271 class that we want is a subset of the preferred class for this
3272 register. If not, but it intersects that class, use the
3273 preferred class instead. If it does not intersect the preferred
3274 class, show that usage of this alternative should be discouraged;
3275 it will be discouraged more still if the register is `preferred
3276 or nothing'. We do this because it increases the chance of
3277 reusing our spill register in a later insn and avoiding a pair
3278 of memory stores and loads.
3280 Don't bother with this if this alternative will accept this
3281 operand.
3283 Don't do this for a multiword operand, since it is only a
3284 small win and has the risk of requiring more spill registers,
3285 which could cause a large loss.
3287 Don't do this if the preferred class has only one register
3288 because we might otherwise exhaust the class. */
3290 if (! win && ! did_match
3291 && this_alternative[i] != (int) NO_REGS
3292 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3293 && reg_class_size[(int) preferred_class[i]] > 1)
3295 if (! reg_class_subset_p (this_alternative[i],
3296 preferred_class[i]))
3298 /* Since we don't have a way of forming the intersection,
3299 we just do something special if the preferred class
3300 is a subset of the class we have; that's the most
3301 common case anyway. */
3302 if (reg_class_subset_p (preferred_class[i],
3303 this_alternative[i]))
3304 this_alternative[i] = (int) preferred_class[i];
3305 else
3306 reject += (2 + 2 * pref_or_nothing[i]);
3311 /* Now see if any output operands that are marked "earlyclobber"
3312 in this alternative conflict with any input operands
3313 or any memory addresses. */
3315 for (i = 0; i < noperands; i++)
3316 if (this_alternative_earlyclobber[i]
3317 && (this_alternative_win[i] || this_alternative_match_win[i]))
3319 struct decomposition early_data;
3321 early_data = decompose (recog_data.operand[i]);
3323 if (modified[i] == RELOAD_READ)
3324 abort ();
3326 if (this_alternative[i] == NO_REGS)
3328 this_alternative_earlyclobber[i] = 0;
3329 if (this_insn_is_asm)
3330 error_for_asm (this_insn,
3331 "`&' constraint used with no register class");
3332 else
3333 abort ();
3336 for (j = 0; j < noperands; j++)
3337 /* Is this an input operand or a memory ref? */
3338 if ((GET_CODE (recog_data.operand[j]) == MEM
3339 || modified[j] != RELOAD_WRITE)
3340 && j != i
3341 /* Ignore things like match_operator operands. */
3342 && *recog_data.constraints[j] != 0
3343 /* Don't count an input operand that is constrained to match
3344 the early clobber operand. */
3345 && ! (this_alternative_matches[j] == i
3346 && rtx_equal_p (recog_data.operand[i],
3347 recog_data.operand[j]))
3348 /* Is it altered by storing the earlyclobber operand? */
3349 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3350 early_data))
3352 /* If the output is in a single-reg class,
3353 it's costly to reload it, so reload the input instead. */
3354 if (reg_class_size[this_alternative[i]] == 1
3355 && (GET_CODE (recog_data.operand[j]) == REG
3356 || GET_CODE (recog_data.operand[j]) == SUBREG))
3358 losers++;
3359 this_alternative_win[j] = 0;
3360 this_alternative_match_win[j] = 0;
3362 else
3363 break;
3365 /* If an earlyclobber operand conflicts with something,
3366 it must be reloaded, so request this and count the cost. */
3367 if (j != noperands)
3369 losers++;
3370 this_alternative_win[i] = 0;
3371 this_alternative_match_win[j] = 0;
3372 for (j = 0; j < noperands; j++)
3373 if (this_alternative_matches[j] == i
3374 && this_alternative_match_win[j])
3376 this_alternative_win[j] = 0;
3377 this_alternative_match_win[j] = 0;
3378 losers++;
3383 /* If one alternative accepts all the operands, no reload required,
3384 choose that alternative; don't consider the remaining ones. */
3385 if (losers == 0)
3387 /* Unswap these so that they are never swapped at `finish'. */
3388 if (commutative >= 0)
3390 recog_data.operand[commutative] = substed_operand[commutative];
3391 recog_data.operand[commutative + 1]
3392 = substed_operand[commutative + 1];
3394 for (i = 0; i < noperands; i++)
3396 goal_alternative_win[i] = this_alternative_win[i];
3397 goal_alternative_match_win[i] = this_alternative_match_win[i];
3398 goal_alternative[i] = this_alternative[i];
3399 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3400 goal_alternative_matches[i] = this_alternative_matches[i];
3401 goal_alternative_earlyclobber[i]
3402 = this_alternative_earlyclobber[i];
3404 goal_alternative_number = this_alternative_number;
3405 goal_alternative_swapped = swapped;
3406 goal_earlyclobber = this_earlyclobber;
3407 goto finish;
3410 /* REJECT, set by the ! and ? constraint characters and when a register
3411 would be reloaded into a non-preferred class, discourages the use of
3412 this alternative for a reload goal. REJECT is incremented by six
3413 for each ? and two for each non-preferred class. */
3414 losers = losers * 6 + reject;
3416 /* If this alternative can be made to work by reloading,
3417 and it needs less reloading than the others checked so far,
3418 record it as the chosen goal for reloading. */
3419 if (! bad && best > losers)
3421 for (i = 0; i < noperands; i++)
3423 goal_alternative[i] = this_alternative[i];
3424 goal_alternative_win[i] = this_alternative_win[i];
3425 goal_alternative_match_win[i] = this_alternative_match_win[i];
3426 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3427 goal_alternative_matches[i] = this_alternative_matches[i];
3428 goal_alternative_earlyclobber[i]
3429 = this_alternative_earlyclobber[i];
3431 goal_alternative_swapped = swapped;
3432 best = losers;
3433 goal_alternative_number = this_alternative_number;
3434 goal_earlyclobber = this_earlyclobber;
3438 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3439 then we need to try each alternative twice,
3440 the second time matching those two operands
3441 as if we had exchanged them.
3442 To do this, really exchange them in operands.
3444 If we have just tried the alternatives the second time,
3445 return operands to normal and drop through. */
3447 if (commutative >= 0)
3449 swapped = !swapped;
3450 if (swapped)
3452 register enum reg_class tclass;
3453 register int t;
3455 recog_data.operand[commutative] = substed_operand[commutative + 1];
3456 recog_data.operand[commutative + 1] = substed_operand[commutative];
3458 tclass = preferred_class[commutative];
3459 preferred_class[commutative] = preferred_class[commutative + 1];
3460 preferred_class[commutative + 1] = tclass;
3462 t = pref_or_nothing[commutative];
3463 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3464 pref_or_nothing[commutative + 1] = t;
3466 memcpy (constraints, recog_data.constraints,
3467 noperands * sizeof (char *));
3468 goto try_swapped;
3470 else
3472 recog_data.operand[commutative] = substed_operand[commutative];
3473 recog_data.operand[commutative + 1]
3474 = substed_operand[commutative + 1];
3478 /* The operands don't meet the constraints.
3479 goal_alternative describes the alternative
3480 that we could reach by reloading the fewest operands.
3481 Reload so as to fit it. */
3483 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3485 /* No alternative works with reloads?? */
3486 if (insn_code_number >= 0)
3487 fatal_insn ("Unable to generate reloads for:", insn);
3488 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3489 /* Avoid further trouble with this insn. */
3490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3491 n_reloads = 0;
3492 return 0;
3495 /* Jump to `finish' from above if all operands are valid already.
3496 In that case, goal_alternative_win is all 1. */
3497 finish:
3499 /* Right now, for any pair of operands I and J that are required to match,
3500 with I < J,
3501 goal_alternative_matches[J] is I.
3502 Set up goal_alternative_matched as the inverse function:
3503 goal_alternative_matched[I] = J. */
3505 for (i = 0; i < noperands; i++)
3506 goal_alternative_matched[i] = -1;
3508 for (i = 0; i < noperands; i++)
3509 if (! goal_alternative_win[i]
3510 && goal_alternative_matches[i] >= 0)
3511 goal_alternative_matched[goal_alternative_matches[i]] = i;
3513 for (i = 0; i < noperands; i++)
3514 goal_alternative_win[i] |= goal_alternative_match_win[i];
3516 /* If the best alternative is with operands 1 and 2 swapped,
3517 consider them swapped before reporting the reloads. Update the
3518 operand numbers of any reloads already pushed. */
3520 if (goal_alternative_swapped)
3522 register rtx tem;
3524 tem = substed_operand[commutative];
3525 substed_operand[commutative] = substed_operand[commutative + 1];
3526 substed_operand[commutative + 1] = tem;
3527 tem = recog_data.operand[commutative];
3528 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3529 recog_data.operand[commutative + 1] = tem;
3530 tem = *recog_data.operand_loc[commutative];
3531 *recog_data.operand_loc[commutative]
3532 = *recog_data.operand_loc[commutative + 1];
3533 *recog_data.operand_loc[commutative + 1] = tem;
3535 for (i = 0; i < n_reloads; i++)
3537 if (rld[i].opnum == commutative)
3538 rld[i].opnum = commutative + 1;
3539 else if (rld[i].opnum == commutative + 1)
3540 rld[i].opnum = commutative;
3544 for (i = 0; i < noperands; i++)
3546 operand_reloadnum[i] = -1;
3548 /* If this is an earlyclobber operand, we need to widen the scope.
3549 The reload must remain valid from the start of the insn being
3550 reloaded until after the operand is stored into its destination.
3551 We approximate this with RELOAD_OTHER even though we know that we
3552 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3554 One special case that is worth checking is when we have an
3555 output that is earlyclobber but isn't used past the insn (typically
3556 a SCRATCH). In this case, we only need have the reload live
3557 through the insn itself, but not for any of our input or output
3558 reloads.
3559 But we must not accidentally narrow the scope of an existing
3560 RELOAD_OTHER reload - leave these alone.
3562 In any case, anything needed to address this operand can remain
3563 however they were previously categorized. */
3565 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3566 operand_type[i]
3567 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3568 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3571 /* Any constants that aren't allowed and can't be reloaded
3572 into registers are here changed into memory references. */
3573 for (i = 0; i < noperands; i++)
3574 if (! goal_alternative_win[i]
3575 && CONSTANT_P (recog_data.operand[i])
3576 /* force_const_mem does not accept HIGH. */
3577 && GET_CODE (recog_data.operand[i]) != HIGH
3578 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3579 (enum reg_class) goal_alternative[i])
3580 == NO_REGS)
3581 || no_input_reloads)
3582 && operand_mode[i] != VOIDmode)
3584 substed_operand[i] = recog_data.operand[i]
3585 = find_reloads_toplev (force_const_mem (operand_mode[i],
3586 recog_data.operand[i]),
3587 i, address_type[i], ind_levels, 0, insn,
3588 NULL);
3589 if (alternative_allows_memconst (recog_data.constraints[i],
3590 goal_alternative_number))
3591 goal_alternative_win[i] = 1;
3594 /* Record the values of the earlyclobber operands for the caller. */
3595 if (goal_earlyclobber)
3596 for (i = 0; i < noperands; i++)
3597 if (goal_alternative_earlyclobber[i])
3598 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3600 /* Now record reloads for all the operands that need them. */
3601 for (i = 0; i < noperands; i++)
3602 if (! goal_alternative_win[i])
3604 /* Operands that match previous ones have already been handled. */
3605 if (goal_alternative_matches[i] >= 0)
3607 /* Handle an operand with a nonoffsettable address
3608 appearing where an offsettable address will do
3609 by reloading the address into a base register.
3611 ??? We can also do this when the operand is a register and
3612 reg_equiv_mem is not offsettable, but this is a bit tricky,
3613 so we don't bother with it. It may not be worth doing. */
3614 else if (goal_alternative_matched[i] == -1
3615 && goal_alternative_offmemok[i]
3616 && GET_CODE (recog_data.operand[i]) == MEM)
3618 operand_reloadnum[i]
3619 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3620 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3621 BASE_REG_CLASS,
3622 GET_MODE (XEXP (recog_data.operand[i], 0)),
3623 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3624 rld[operand_reloadnum[i]].inc
3625 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3627 /* If this operand is an output, we will have made any
3628 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3629 now we are treating part of the operand as an input, so
3630 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3632 if (modified[i] == RELOAD_WRITE)
3634 for (j = 0; j < n_reloads; j++)
3636 if (rld[j].opnum == i)
3638 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3639 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3640 else if (rld[j].when_needed
3641 == RELOAD_FOR_OUTADDR_ADDRESS)
3642 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3647 else if (goal_alternative_matched[i] == -1)
3649 operand_reloadnum[i]
3650 = push_reload ((modified[i] != RELOAD_WRITE
3651 ? recog_data.operand[i] : 0),
3652 (modified[i] != RELOAD_READ
3653 ? recog_data.operand[i] : 0),
3654 (modified[i] != RELOAD_WRITE
3655 ? recog_data.operand_loc[i] : 0),
3656 (modified[i] != RELOAD_READ
3657 ? recog_data.operand_loc[i] : 0),
3658 (enum reg_class) goal_alternative[i],
3659 (modified[i] == RELOAD_WRITE
3660 ? VOIDmode : operand_mode[i]),
3661 (modified[i] == RELOAD_READ
3662 ? VOIDmode : operand_mode[i]),
3663 (insn_code_number < 0 ? 0
3664 : insn_data[insn_code_number].operand[i].strict_low),
3665 0, i, operand_type[i]);
3667 /* In a matching pair of operands, one must be input only
3668 and the other must be output only.
3669 Pass the input operand as IN and the other as OUT. */
3670 else if (modified[i] == RELOAD_READ
3671 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3673 operand_reloadnum[i]
3674 = push_reload (recog_data.operand[i],
3675 recog_data.operand[goal_alternative_matched[i]],
3676 recog_data.operand_loc[i],
3677 recog_data.operand_loc[goal_alternative_matched[i]],
3678 (enum reg_class) goal_alternative[i],
3679 operand_mode[i],
3680 operand_mode[goal_alternative_matched[i]],
3681 0, 0, i, RELOAD_OTHER);
3682 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3684 else if (modified[i] == RELOAD_WRITE
3685 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3687 operand_reloadnum[goal_alternative_matched[i]]
3688 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3689 recog_data.operand[i],
3690 recog_data.operand_loc[goal_alternative_matched[i]],
3691 recog_data.operand_loc[i],
3692 (enum reg_class) goal_alternative[i],
3693 operand_mode[goal_alternative_matched[i]],
3694 operand_mode[i],
3695 0, 0, i, RELOAD_OTHER);
3696 operand_reloadnum[i] = output_reloadnum;
3698 else if (insn_code_number >= 0)
3699 abort ();
3700 else
3702 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3703 /* Avoid further trouble with this insn. */
3704 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3705 n_reloads = 0;
3706 return 0;
3709 else if (goal_alternative_matched[i] < 0
3710 && goal_alternative_matches[i] < 0
3711 && optimize)
3713 /* For each non-matching operand that's a MEM or a pseudo-register
3714 that didn't get a hard register, make an optional reload.
3715 This may get done even if the insn needs no reloads otherwise. */
3717 rtx operand = recog_data.operand[i];
3719 while (GET_CODE (operand) == SUBREG)
3720 operand = XEXP (operand, 0);
3721 if ((GET_CODE (operand) == MEM
3722 || (GET_CODE (operand) == REG
3723 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3724 /* If this is only for an output, the optional reload would not
3725 actually cause us to use a register now, just note that
3726 something is stored here. */
3727 && ((enum reg_class) goal_alternative[i] != NO_REGS
3728 || modified[i] == RELOAD_WRITE)
3729 && ! no_input_reloads
3730 /* An optional output reload might allow to delete INSN later.
3731 We mustn't make in-out reloads on insns that are not permitted
3732 output reloads.
3733 If this is an asm, we can't delete it; we must not even call
3734 push_reload for an optional output reload in this case,
3735 because we can't be sure that the constraint allows a register,
3736 and push_reload verifies the constraints for asms. */
3737 && (modified[i] == RELOAD_READ
3738 || (! no_output_reloads && ! this_insn_is_asm)))
3739 operand_reloadnum[i]
3740 = push_reload ((modified[i] != RELOAD_WRITE
3741 ? recog_data.operand[i] : 0),
3742 (modified[i] != RELOAD_READ
3743 ? recog_data.operand[i] : 0),
3744 (modified[i] != RELOAD_WRITE
3745 ? recog_data.operand_loc[i] : 0),
3746 (modified[i] != RELOAD_READ
3747 ? recog_data.operand_loc[i] : 0),
3748 (enum reg_class) goal_alternative[i],
3749 (modified[i] == RELOAD_WRITE
3750 ? VOIDmode : operand_mode[i]),
3751 (modified[i] == RELOAD_READ
3752 ? VOIDmode : operand_mode[i]),
3753 (insn_code_number < 0 ? 0
3754 : insn_data[insn_code_number].operand[i].strict_low),
3755 1, i, operand_type[i]);
3756 /* If a memory reference remains (either as a MEM or a pseudo that
3757 did not get a hard register), yet we can't make an optional
3758 reload, check if this is actually a pseudo register reference;
3759 we then need to emit a USE and/or a CLOBBER so that reload
3760 inheritance will do the right thing. */
3761 else if (replace
3762 && (GET_CODE (operand) == MEM
3763 || (GET_CODE (operand) == REG
3764 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3765 && reg_renumber [REGNO (operand)] < 0)))
3767 operand = *recog_data.operand_loc[i];
3769 while (GET_CODE (operand) == SUBREG)
3770 operand = XEXP (operand, 0);
3771 if (GET_CODE (operand) == REG)
3773 if (modified[i] != RELOAD_WRITE)
3774 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3775 if (modified[i] != RELOAD_READ)
3776 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3780 else if (goal_alternative_matches[i] >= 0
3781 && goal_alternative_win[goal_alternative_matches[i]]
3782 && modified[i] == RELOAD_READ
3783 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3784 && ! no_input_reloads && ! no_output_reloads
3785 && optimize)
3787 /* Similarly, make an optional reload for a pair of matching
3788 objects that are in MEM or a pseudo that didn't get a hard reg. */
3790 rtx operand = recog_data.operand[i];
3792 while (GET_CODE (operand) == SUBREG)
3793 operand = XEXP (operand, 0);
3794 if ((GET_CODE (operand) == MEM
3795 || (GET_CODE (operand) == REG
3796 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3797 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3798 != NO_REGS))
3799 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3800 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3801 recog_data.operand[i],
3802 recog_data.operand_loc[goal_alternative_matches[i]],
3803 recog_data.operand_loc[i],
3804 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3805 operand_mode[goal_alternative_matches[i]],
3806 operand_mode[i],
3807 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3810 /* Perform whatever substitutions on the operands we are supposed
3811 to make due to commutativity or replacement of registers
3812 with equivalent constants or memory slots. */
3814 for (i = 0; i < noperands; i++)
3816 /* We only do this on the last pass through reload, because it is
3817 possible for some data (like reg_equiv_address) to be changed during
3818 later passes. Moreover, we loose the opportunity to get a useful
3819 reload_{in,out}_reg when we do these replacements. */
3821 if (replace)
3823 rtx substitution = substed_operand[i];
3825 *recog_data.operand_loc[i] = substitution;
3827 /* If we're replacing an operand with a LABEL_REF, we need
3828 to make sure that there's a REG_LABEL note attached to
3829 this instruction. */
3830 if (GET_CODE (insn) != JUMP_INSN
3831 && GET_CODE (substitution) == LABEL_REF
3832 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3833 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3834 XEXP (substitution, 0),
3835 REG_NOTES (insn));
3837 else
3838 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3841 /* If this insn pattern contains any MATCH_DUP's, make sure that
3842 they will be substituted if the operands they match are substituted.
3843 Also do now any substitutions we already did on the operands.
3845 Don't do this if we aren't making replacements because we might be
3846 propagating things allocated by frame pointer elimination into places
3847 it doesn't expect. */
3849 if (insn_code_number >= 0 && replace)
3850 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3852 int opno = recog_data.dup_num[i];
3853 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3854 if (operand_reloadnum[opno] >= 0)
3855 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3856 insn_data[insn_code_number].operand[opno].mode);
3859 #if 0
3860 /* This loses because reloading of prior insns can invalidate the equivalence
3861 (or at least find_equiv_reg isn't smart enough to find it any more),
3862 causing this insn to need more reload regs than it needed before.
3863 It may be too late to make the reload regs available.
3864 Now this optimization is done safely in choose_reload_regs. */
3866 /* For each reload of a reg into some other class of reg,
3867 search for an existing equivalent reg (same value now) in the right class.
3868 We can use it as long as we don't need to change its contents. */
3869 for (i = 0; i < n_reloads; i++)
3870 if (rld[i].reg_rtx == 0
3871 && rld[i].in != 0
3872 && GET_CODE (rld[i].in) == REG
3873 && rld[i].out == 0)
3875 rld[i].reg_rtx
3876 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3877 static_reload_reg_p, 0, rld[i].inmode);
3878 /* Prevent generation of insn to load the value
3879 because the one we found already has the value. */
3880 if (rld[i].reg_rtx)
3881 rld[i].in = rld[i].reg_rtx;
3883 #endif
3885 /* Perhaps an output reload can be combined with another
3886 to reduce needs by one. */
3887 if (!goal_earlyclobber)
3888 combine_reloads ();
3890 /* If we have a pair of reloads for parts of an address, they are reloading
3891 the same object, the operands themselves were not reloaded, and they
3892 are for two operands that are supposed to match, merge the reloads and
3893 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3895 for (i = 0; i < n_reloads; i++)
3897 int k;
3899 for (j = i + 1; j < n_reloads; j++)
3900 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3901 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3902 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3903 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3904 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3905 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3906 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3907 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3908 && rtx_equal_p (rld[i].in, rld[j].in)
3909 && (operand_reloadnum[rld[i].opnum] < 0
3910 || rld[operand_reloadnum[rld[i].opnum]].optional)
3911 && (operand_reloadnum[rld[j].opnum] < 0
3912 || rld[operand_reloadnum[rld[j].opnum]].optional)
3913 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3914 || (goal_alternative_matches[rld[j].opnum]
3915 == rld[i].opnum)))
3917 for (k = 0; k < n_replacements; k++)
3918 if (replacements[k].what == j)
3919 replacements[k].what = i;
3921 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3922 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3923 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3924 else
3925 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3926 rld[j].in = 0;
3930 /* Scan all the reloads and update their type.
3931 If a reload is for the address of an operand and we didn't reload
3932 that operand, change the type. Similarly, change the operand number
3933 of a reload when two operands match. If a reload is optional, treat it
3934 as though the operand isn't reloaded.
3936 ??? This latter case is somewhat odd because if we do the optional
3937 reload, it means the object is hanging around. Thus we need only
3938 do the address reload if the optional reload was NOT done.
3940 Change secondary reloads to be the address type of their operand, not
3941 the normal type.
3943 If an operand's reload is now RELOAD_OTHER, change any
3944 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3945 RELOAD_FOR_OTHER_ADDRESS. */
3947 for (i = 0; i < n_reloads; i++)
3949 if (rld[i].secondary_p
3950 && rld[i].when_needed == operand_type[rld[i].opnum])
3951 rld[i].when_needed = address_type[rld[i].opnum];
3953 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3954 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3955 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3956 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3957 && (operand_reloadnum[rld[i].opnum] < 0
3958 || rld[operand_reloadnum[rld[i].opnum]].optional))
3960 /* If we have a secondary reload to go along with this reload,
3961 change its type to RELOAD_FOR_OPADDR_ADDR. */
3963 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3964 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3965 && rld[i].secondary_in_reload != -1)
3967 int secondary_in_reload = rld[i].secondary_in_reload;
3969 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
3971 /* If there's a tertiary reload we have to change it also. */
3972 if (secondary_in_reload > 0
3973 && rld[secondary_in_reload].secondary_in_reload != -1)
3974 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
3975 = RELOAD_FOR_OPADDR_ADDR;
3978 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3979 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3980 && rld[i].secondary_out_reload != -1)
3982 int secondary_out_reload = rld[i].secondary_out_reload;
3984 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
3986 /* If there's a tertiary reload we have to change it also. */
3987 if (secondary_out_reload
3988 && rld[secondary_out_reload].secondary_out_reload != -1)
3989 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
3990 = RELOAD_FOR_OPADDR_ADDR;
3993 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3994 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3995 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3996 else
3997 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4000 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4001 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4002 && operand_reloadnum[rld[i].opnum] >= 0
4003 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4004 == RELOAD_OTHER))
4005 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4007 if (goal_alternative_matches[rld[i].opnum] >= 0)
4008 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4011 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4012 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4013 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4015 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4016 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4017 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4018 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4019 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4020 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4021 This is complicated by the fact that a single operand can have more
4022 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4023 choose_reload_regs without affecting code quality, and cases that
4024 actually fail are extremely rare, so it turns out to be better to fix
4025 the problem here by not generating cases that choose_reload_regs will
4026 fail for. */
4027 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4028 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4029 a single operand.
4030 We can reduce the register pressure by exploiting that a
4031 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4032 does not conflict with any of them, if it is only used for the first of
4033 the RELOAD_FOR_X_ADDRESS reloads. */
4035 int first_op_addr_num = -2;
4036 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4037 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4038 int need_change = 0;
4039 /* We use last_op_addr_reload and the contents of the above arrays
4040 first as flags - -2 means no instance encountered, -1 means exactly
4041 one instance encountered.
4042 If more than one instance has been encountered, we store the reload
4043 number of the first reload of the kind in question; reload numbers
4044 are known to be non-negative. */
4045 for (i = 0; i < noperands; i++)
4046 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4047 for (i = n_reloads - 1; i >= 0; i--)
4049 switch (rld[i].when_needed)
4051 case RELOAD_FOR_OPERAND_ADDRESS:
4052 if (++first_op_addr_num >= 0)
4054 first_op_addr_num = i;
4055 need_change = 1;
4057 break;
4058 case RELOAD_FOR_INPUT_ADDRESS:
4059 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4061 first_inpaddr_num[rld[i].opnum] = i;
4062 need_change = 1;
4064 break;
4065 case RELOAD_FOR_OUTPUT_ADDRESS:
4066 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4068 first_outpaddr_num[rld[i].opnum] = i;
4069 need_change = 1;
4071 break;
4072 default:
4073 break;
4077 if (need_change)
4079 for (i = 0; i < n_reloads; i++)
4081 int first_num;
4082 enum reload_type type;
4084 switch (rld[i].when_needed)
4086 case RELOAD_FOR_OPADDR_ADDR:
4087 first_num = first_op_addr_num;
4088 type = RELOAD_FOR_OPERAND_ADDRESS;
4089 break;
4090 case RELOAD_FOR_INPADDR_ADDRESS:
4091 first_num = first_inpaddr_num[rld[i].opnum];
4092 type = RELOAD_FOR_INPUT_ADDRESS;
4093 break;
4094 case RELOAD_FOR_OUTADDR_ADDRESS:
4095 first_num = first_outpaddr_num[rld[i].opnum];
4096 type = RELOAD_FOR_OUTPUT_ADDRESS;
4097 break;
4098 default:
4099 continue;
4101 if (first_num < 0)
4102 continue;
4103 else if (i > first_num)
4104 rld[i].when_needed = type;
4105 else
4107 /* Check if the only TYPE reload that uses reload I is
4108 reload FIRST_NUM. */
4109 for (j = n_reloads - 1; j > first_num; j--)
4111 if (rld[j].when_needed == type
4112 && (rld[i].secondary_p
4113 ? rld[j].secondary_in_reload == i
4114 : reg_mentioned_p (rld[i].in, rld[j].in)))
4116 rld[i].when_needed = type;
4117 break;
4125 /* See if we have any reloads that are now allowed to be merged
4126 because we've changed when the reload is needed to
4127 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4128 check for the most common cases. */
4130 for (i = 0; i < n_reloads; i++)
4131 if (rld[i].in != 0 && rld[i].out == 0
4132 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4133 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4134 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4135 for (j = 0; j < n_reloads; j++)
4136 if (i != j && rld[j].in != 0 && rld[j].out == 0
4137 && rld[j].when_needed == rld[i].when_needed
4138 && MATCHES (rld[i].in, rld[j].in)
4139 && rld[i].class == rld[j].class
4140 && !rld[i].nocombine && !rld[j].nocombine
4141 && rld[i].reg_rtx == rld[j].reg_rtx)
4143 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4144 transfer_replacements (i, j);
4145 rld[j].in = 0;
4148 #ifdef HAVE_cc0
4149 /* If we made any reloads for addresses, see if they violate a
4150 "no input reloads" requirement for this insn. But loads that we
4151 do after the insn (such as for output addresses) are fine. */
4152 if (no_input_reloads)
4153 for (i = 0; i < n_reloads; i++)
4154 if (rld[i].in != 0
4155 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4156 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4157 abort ();
4158 #endif
4160 /* Compute reload_mode and reload_nregs. */
4161 for (i = 0; i < n_reloads; i++)
4163 rld[i].mode
4164 = (rld[i].inmode == VOIDmode
4165 || (GET_MODE_SIZE (rld[i].outmode)
4166 > GET_MODE_SIZE (rld[i].inmode)))
4167 ? rld[i].outmode : rld[i].inmode;
4169 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4172 return retval;
4175 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4176 accepts a memory operand with constant address. */
4178 static int
4179 alternative_allows_memconst (constraint, altnum)
4180 const char *constraint;
4181 int altnum;
4183 register int c;
4184 /* Skip alternatives before the one requested. */
4185 while (altnum > 0)
4187 while (*constraint++ != ',');
4188 altnum--;
4190 /* Scan the requested alternative for 'm' or 'o'.
4191 If one of them is present, this alternative accepts memory constants. */
4192 while ((c = *constraint++) && c != ',' && c != '#')
4193 if (c == 'm' || c == 'o')
4194 return 1;
4195 return 0;
4198 /* Scan X for memory references and scan the addresses for reloading.
4199 Also checks for references to "constant" regs that we want to eliminate
4200 and replaces them with the values they stand for.
4201 We may alter X destructively if it contains a reference to such.
4202 If X is just a constant reg, we return the equivalent value
4203 instead of X.
4205 IND_LEVELS says how many levels of indirect addressing this machine
4206 supports.
4208 OPNUM and TYPE identify the purpose of the reload.
4210 IS_SET_DEST is true if X is the destination of a SET, which is not
4211 appropriate to be replaced by a constant.
4213 INSN, if nonzero, is the insn in which we do the reload. It is used
4214 to determine if we may generate output reloads, and where to put USEs
4215 for pseudos that we have to replace with stack slots.
4217 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4218 result of find_reloads_address. */
4220 static rtx
4221 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4222 address_reloaded)
4223 rtx x;
4224 int opnum;
4225 enum reload_type type;
4226 int ind_levels;
4227 int is_set_dest;
4228 rtx insn;
4229 int *address_reloaded;
4231 register RTX_CODE code = GET_CODE (x);
4233 register const char *fmt = GET_RTX_FORMAT (code);
4234 register int i;
4235 int copied;
4237 if (code == REG)
4239 /* This code is duplicated for speed in find_reloads. */
4240 register int regno = REGNO (x);
4241 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4242 x = reg_equiv_constant[regno];
4243 #if 0
4244 /* This creates (subreg (mem...)) which would cause an unnecessary
4245 reload of the mem. */
4246 else if (reg_equiv_mem[regno] != 0)
4247 x = reg_equiv_mem[regno];
4248 #endif
4249 else if (reg_equiv_memory_loc[regno]
4250 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4252 rtx mem = make_memloc (x, regno);
4253 if (reg_equiv_address[regno]
4254 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4256 /* If this is not a toplevel operand, find_reloads doesn't see
4257 this substitution. We have to emit a USE of the pseudo so
4258 that delete_output_reload can see it. */
4259 if (replace_reloads && recog_data.operand[opnum] != x)
4260 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4261 x = mem;
4262 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4263 opnum, type, ind_levels, insn);
4264 if (address_reloaded)
4265 *address_reloaded = i;
4268 return x;
4270 if (code == MEM)
4272 rtx tem = x;
4274 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4275 opnum, type, ind_levels, insn);
4276 if (address_reloaded)
4277 *address_reloaded = i;
4279 return tem;
4282 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4284 /* Check for SUBREG containing a REG that's equivalent to a constant.
4285 If the constant has a known value, truncate it right now.
4286 Similarly if we are extracting a single-word of a multi-word
4287 constant. If the constant is symbolic, allow it to be substituted
4288 normally. push_reload will strip the subreg later. If the
4289 constant is VOIDmode, abort because we will lose the mode of
4290 the register (this should never happen because one of the cases
4291 above should handle it). */
4293 register int regno = REGNO (SUBREG_REG (x));
4294 rtx tem;
4296 if (subreg_lowpart_p (x)
4297 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4298 && reg_equiv_constant[regno] != 0
4299 && (tem = gen_lowpart_common (GET_MODE (x),
4300 reg_equiv_constant[regno])) != 0)
4301 return tem;
4303 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4304 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4305 && reg_equiv_constant[regno] != 0
4306 && (tem = operand_subword (reg_equiv_constant[regno],
4307 SUBREG_WORD (x), 0,
4308 GET_MODE (SUBREG_REG (x)))) != 0)
4310 /* TEM is now a word sized constant for the bits from X that
4311 we wanted. However, TEM may be the wrong representation.
4313 Use gen_lowpart_common to convert a CONST_INT into a
4314 CONST_DOUBLE and vice versa as needed according to by the mode
4315 of the SUBREG. */
4316 tem = gen_lowpart_common (GET_MODE (x), tem);
4317 if (!tem)
4318 abort ();
4319 return tem;
4322 /* If the SUBREG is wider than a word, the above test will fail.
4323 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4324 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4325 a 32 bit target. We still can - and have to - handle this
4326 for non-paradoxical subregs of CONST_INTs. */
4327 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4328 && reg_equiv_constant[regno] != 0
4329 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4330 && (GET_MODE_SIZE (GET_MODE (x))
4331 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4333 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4334 if (WORDS_BIG_ENDIAN)
4335 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4336 - GET_MODE_BITSIZE (GET_MODE (x))
4337 - shift);
4338 /* Here we use the knowledge that CONST_INTs have a
4339 HOST_WIDE_INT field. */
4340 if (shift >= HOST_BITS_PER_WIDE_INT)
4341 shift = HOST_BITS_PER_WIDE_INT - 1;
4342 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4345 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4346 && reg_equiv_constant[regno] != 0
4347 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4348 abort ();
4350 /* If the subreg contains a reg that will be converted to a mem,
4351 convert the subreg to a narrower memref now.
4352 Otherwise, we would get (subreg (mem ...) ...),
4353 which would force reload of the mem.
4355 We also need to do this if there is an equivalent MEM that is
4356 not offsettable. In that case, alter_subreg would produce an
4357 invalid address on big-endian machines.
4359 For machines that extend byte loads, we must not reload using
4360 a wider mode if we have a paradoxical SUBREG. find_reloads will
4361 force a reload in that case. So we should not do anything here. */
4363 else if (regno >= FIRST_PSEUDO_REGISTER
4364 #ifdef LOAD_EXTEND_OP
4365 && (GET_MODE_SIZE (GET_MODE (x))
4366 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4367 #endif
4368 && (reg_equiv_address[regno] != 0
4369 || (reg_equiv_mem[regno] != 0
4370 && (! strict_memory_address_p (GET_MODE (x),
4371 XEXP (reg_equiv_mem[regno], 0))
4372 || ! offsettable_memref_p (reg_equiv_mem[regno])
4373 || num_not_at_initial_offset))))
4374 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4375 insn);
4377 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4378 && (GET_MODE_SIZE (GET_MODE (x))
4379 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4380 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4382 /* A paradoxical subreg will simply have the mode of the access
4383 changed, so we need to reload such a memory operand to stabilize
4384 the meaning of the memory access. */
4385 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4387 if (is_set_dest)
4388 push_reload (NULL_RTX, SUBREG_REG (x), NULL_PTR, &SUBREG_REG (x),
4389 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4390 VOIDmode, subreg_mode, 0, 0, opnum, type);
4391 else
4392 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), NULL_PTR,
4393 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4394 subreg_mode, VOIDmode, 0, 0, opnum, type);
4397 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4399 if (fmt[i] == 'e')
4401 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4402 ind_levels, is_set_dest, insn,
4403 address_reloaded);
4404 /* If we have replaced a reg with it's equivalent memory loc -
4405 that can still be handled here e.g. if it's in a paradoxical
4406 subreg - we must make the change in a copy, rather than using
4407 a destructive change. This way, find_reloads can still elect
4408 not to do the change. */
4409 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4411 x = shallow_copy_rtx (x);
4412 copied = 1;
4414 XEXP (x, i) = new_part;
4417 return x;
4420 /* Return a mem ref for the memory equivalent of reg REGNO.
4421 This mem ref is not shared with anything. */
4423 static rtx
4424 make_memloc (ad, regno)
4425 rtx ad;
4426 int regno;
4428 /* We must rerun eliminate_regs, in case the elimination
4429 offsets have changed. */
4430 rtx tem
4431 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4433 /* If TEM might contain a pseudo, we must copy it to avoid
4434 modifying it when we do the substitution for the reload. */
4435 if (rtx_varies_p (tem, 0))
4436 tem = copy_rtx (tem);
4438 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4439 MEM_COPY_ATTRIBUTES (tem, reg_equiv_memory_loc[regno]);
4440 return tem;
4443 /* Record all reloads needed for handling memory address AD
4444 which appears in *LOC in a memory reference to mode MODE
4445 which itself is found in location *MEMREFLOC.
4446 Note that we take shortcuts assuming that no multi-reg machine mode
4447 occurs as part of an address.
4449 OPNUM and TYPE specify the purpose of this reload.
4451 IND_LEVELS says how many levels of indirect addressing this machine
4452 supports.
4454 INSN, if nonzero, is the insn in which we do the reload. It is used
4455 to determine if we may generate output reloads, and where to put USEs
4456 for pseudos that we have to replace with stack slots.
4458 Value is nonzero if this address is reloaded or replaced as a whole.
4459 This is interesting to the caller if the address is an autoincrement.
4461 Note that there is no verification that the address will be valid after
4462 this routine does its work. Instead, we rely on the fact that the address
4463 was valid when reload started. So we need only undo things that reload
4464 could have broken. These are wrong register types, pseudos not allocated
4465 to a hard register, and frame pointer elimination. */
4467 static int
4468 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4469 enum machine_mode mode;
4470 rtx *memrefloc;
4471 rtx ad;
4472 rtx *loc;
4473 int opnum;
4474 enum reload_type type;
4475 int ind_levels;
4476 rtx insn;
4478 register int regno;
4479 int removed_and = 0;
4480 rtx tem;
4482 /* If the address is a register, see if it is a legitimate address and
4483 reload if not. We first handle the cases where we need not reload
4484 or where we must reload in a non-standard way. */
4486 if (GET_CODE (ad) == REG)
4488 regno = REGNO (ad);
4490 /* If the register is equivalent to an invariant expression, substitute
4491 the invariant, and eliminate any eliminable register references. */
4492 tem = reg_equiv_constant[regno];
4493 if (tem != 0
4494 && (tem = eliminate_regs (tem, mode, insn))
4495 && strict_memory_address_p (mode, tem))
4497 *loc = ad = tem;
4498 return 0;
4501 tem = reg_equiv_memory_loc[regno];
4502 if (tem != 0)
4504 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4506 tem = make_memloc (ad, regno);
4507 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4509 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4510 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4511 ind_levels, insn);
4513 /* We can avoid a reload if the register's equivalent memory
4514 expression is valid as an indirect memory address.
4515 But not all addresses are valid in a mem used as an indirect
4516 address: only reg or reg+constant. */
4518 if (ind_levels > 0
4519 && strict_memory_address_p (mode, tem)
4520 && (GET_CODE (XEXP (tem, 0)) == REG
4521 || (GET_CODE (XEXP (tem, 0)) == PLUS
4522 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4523 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4525 /* TEM is not the same as what we'll be replacing the
4526 pseudo with after reload, put a USE in front of INSN
4527 in the final reload pass. */
4528 if (replace_reloads
4529 && num_not_at_initial_offset
4530 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4532 *loc = tem;
4533 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4534 /* This doesn't really count as replacing the address
4535 as a whole, since it is still a memory access. */
4537 return 0;
4539 ad = tem;
4543 /* The only remaining case where we can avoid a reload is if this is a
4544 hard register that is valid as a base register and which is not the
4545 subject of a CLOBBER in this insn. */
4547 else if (regno < FIRST_PSEUDO_REGISTER
4548 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4549 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4550 return 0;
4552 /* If we do not have one of the cases above, we must do the reload. */
4553 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4554 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4555 return 1;
4558 if (strict_memory_address_p (mode, ad))
4560 /* The address appears valid, so reloads are not needed.
4561 But the address may contain an eliminable register.
4562 This can happen because a machine with indirect addressing
4563 may consider a pseudo register by itself a valid address even when
4564 it has failed to get a hard reg.
4565 So do a tree-walk to find and eliminate all such regs. */
4567 /* But first quickly dispose of a common case. */
4568 if (GET_CODE (ad) == PLUS
4569 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4570 && GET_CODE (XEXP (ad, 0)) == REG
4571 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4572 return 0;
4574 subst_reg_equivs_changed = 0;
4575 *loc = subst_reg_equivs (ad, insn);
4577 if (! subst_reg_equivs_changed)
4578 return 0;
4580 /* Check result for validity after substitution. */
4581 if (strict_memory_address_p (mode, ad))
4582 return 0;
4585 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4588 if (memrefloc)
4590 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4591 ind_levels, win);
4593 break;
4594 win:
4595 *memrefloc = copy_rtx (*memrefloc);
4596 XEXP (*memrefloc, 0) = ad;
4597 move_replacements (&ad, &XEXP (*memrefloc, 0));
4598 return 1;
4600 while (0);
4601 #endif
4603 /* The address is not valid. We have to figure out why. First see if
4604 we have an outer AND and remove it if so. Then analyze what's inside. */
4606 if (GET_CODE (ad) == AND)
4608 removed_and = 1;
4609 loc = &XEXP (ad, 0);
4610 ad = *loc;
4613 /* One possibility for why the address is invalid is that it is itself
4614 a MEM. This can happen when the frame pointer is being eliminated, a
4615 pseudo is not allocated to a hard register, and the offset between the
4616 frame and stack pointers is not its initial value. In that case the
4617 pseudo will have been replaced by a MEM referring to the
4618 stack pointer. */
4619 if (GET_CODE (ad) == MEM)
4621 /* First ensure that the address in this MEM is valid. Then, unless
4622 indirect addresses are valid, reload the MEM into a register. */
4623 tem = ad;
4624 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4625 opnum, ADDR_TYPE (type),
4626 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4628 /* If tem was changed, then we must create a new memory reference to
4629 hold it and store it back into memrefloc. */
4630 if (tem != ad && memrefloc)
4632 *memrefloc = copy_rtx (*memrefloc);
4633 copy_replacements (tem, XEXP (*memrefloc, 0));
4634 loc = &XEXP (*memrefloc, 0);
4635 if (removed_and)
4636 loc = &XEXP (*loc, 0);
4639 /* Check similar cases as for indirect addresses as above except
4640 that we can allow pseudos and a MEM since they should have been
4641 taken care of above. */
4643 if (ind_levels == 0
4644 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4645 || GET_CODE (XEXP (tem, 0)) == MEM
4646 || ! (GET_CODE (XEXP (tem, 0)) == REG
4647 || (GET_CODE (XEXP (tem, 0)) == PLUS
4648 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4649 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4651 /* Must use TEM here, not AD, since it is the one that will
4652 have any subexpressions reloaded, if needed. */
4653 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4654 BASE_REG_CLASS, GET_MODE (tem),
4655 VOIDmode, 0,
4656 0, opnum, type);
4657 return ! removed_and;
4659 else
4660 return 0;
4663 /* If we have address of a stack slot but it's not valid because the
4664 displacement is too large, compute the sum in a register.
4665 Handle all base registers here, not just fp/ap/sp, because on some
4666 targets (namely SH) we can also get too large displacements from
4667 big-endian corrections. */
4668 else if (GET_CODE (ad) == PLUS
4669 && GET_CODE (XEXP (ad, 0)) == REG
4670 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4671 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4672 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4674 /* Unshare the MEM rtx so we can safely alter it. */
4675 if (memrefloc)
4677 *memrefloc = copy_rtx (*memrefloc);
4678 loc = &XEXP (*memrefloc, 0);
4679 if (removed_and)
4680 loc = &XEXP (*loc, 0);
4683 if (double_reg_address_ok)
4685 /* Unshare the sum as well. */
4686 *loc = ad = copy_rtx (ad);
4688 /* Reload the displacement into an index reg.
4689 We assume the frame pointer or arg pointer is a base reg. */
4690 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4691 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4692 type, ind_levels);
4693 return 0;
4695 else
4697 /* If the sum of two regs is not necessarily valid,
4698 reload the sum into a base reg.
4699 That will at least work. */
4700 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4701 Pmode, opnum, type, ind_levels);
4703 return ! removed_and;
4706 /* If we have an indexed stack slot, there are three possible reasons why
4707 it might be invalid: The index might need to be reloaded, the address
4708 might have been made by frame pointer elimination and hence have a
4709 constant out of range, or both reasons might apply.
4711 We can easily check for an index needing reload, but even if that is the
4712 case, we might also have an invalid constant. To avoid making the
4713 conservative assumption and requiring two reloads, we see if this address
4714 is valid when not interpreted strictly. If it is, the only problem is
4715 that the index needs a reload and find_reloads_address_1 will take care
4716 of it.
4718 If we decide to do something here, it must be that
4719 `double_reg_address_ok' is true and that this address rtl was made by
4720 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4721 rework the sum so that the reload register will be added to the index.
4722 This is safe because we know the address isn't shared.
4724 We check for fp/ap/sp as both the first and second operand of the
4725 innermost PLUS. */
4727 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4728 && GET_CODE (XEXP (ad, 0)) == PLUS
4729 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4730 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4731 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4732 #endif
4733 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4734 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4735 #endif
4736 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4737 && ! memory_address_p (mode, ad))
4739 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4740 plus_constant (XEXP (XEXP (ad, 0), 0),
4741 INTVAL (XEXP (ad, 1))),
4742 XEXP (XEXP (ad, 0), 1));
4743 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4744 GET_MODE (ad), opnum, type, ind_levels);
4745 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4746 type, 0, insn);
4748 return 0;
4751 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4752 && GET_CODE (XEXP (ad, 0)) == PLUS
4753 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4754 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4755 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4756 #endif
4757 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4758 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4759 #endif
4760 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4761 && ! memory_address_p (mode, ad))
4763 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4764 XEXP (XEXP (ad, 0), 0),
4765 plus_constant (XEXP (XEXP (ad, 0), 1),
4766 INTVAL (XEXP (ad, 1))));
4767 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4768 GET_MODE (ad), opnum, type, ind_levels);
4769 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4770 type, 0, insn);
4772 return 0;
4775 /* See if address becomes valid when an eliminable register
4776 in a sum is replaced. */
4778 tem = ad;
4779 if (GET_CODE (ad) == PLUS)
4780 tem = subst_indexed_address (ad);
4781 if (tem != ad && strict_memory_address_p (mode, tem))
4783 /* Ok, we win that way. Replace any additional eliminable
4784 registers. */
4786 subst_reg_equivs_changed = 0;
4787 tem = subst_reg_equivs (tem, insn);
4789 /* Make sure that didn't make the address invalid again. */
4791 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4793 *loc = tem;
4794 return 0;
4798 /* If constants aren't valid addresses, reload the constant address
4799 into a register. */
4800 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4802 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4803 Unshare it so we can safely alter it. */
4804 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4805 && CONSTANT_POOL_ADDRESS_P (ad))
4807 *memrefloc = copy_rtx (*memrefloc);
4808 loc = &XEXP (*memrefloc, 0);
4809 if (removed_and)
4810 loc = &XEXP (*loc, 0);
4813 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4814 ind_levels);
4815 return ! removed_and;
4818 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4819 insn);
4822 /* Find all pseudo regs appearing in AD
4823 that are eliminable in favor of equivalent values
4824 and do not have hard regs; replace them by their equivalents.
4825 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4826 front of it for pseudos that we have to replace with stack slots. */
4828 static rtx
4829 subst_reg_equivs (ad, insn)
4830 rtx ad;
4831 rtx insn;
4833 register RTX_CODE code = GET_CODE (ad);
4834 register int i;
4835 register const char *fmt;
4837 switch (code)
4839 case HIGH:
4840 case CONST_INT:
4841 case CONST:
4842 case CONST_DOUBLE:
4843 case SYMBOL_REF:
4844 case LABEL_REF:
4845 case PC:
4846 case CC0:
4847 return ad;
4849 case REG:
4851 register int regno = REGNO (ad);
4853 if (reg_equiv_constant[regno] != 0)
4855 subst_reg_equivs_changed = 1;
4856 return reg_equiv_constant[regno];
4858 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4860 rtx mem = make_memloc (ad, regno);
4861 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4863 subst_reg_equivs_changed = 1;
4864 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4865 return mem;
4869 return ad;
4871 case PLUS:
4872 /* Quickly dispose of a common case. */
4873 if (XEXP (ad, 0) == frame_pointer_rtx
4874 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4875 return ad;
4876 break;
4878 default:
4879 break;
4882 fmt = GET_RTX_FORMAT (code);
4883 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4884 if (fmt[i] == 'e')
4885 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4886 return ad;
4889 /* Compute the sum of X and Y, making canonicalizations assumed in an
4890 address, namely: sum constant integers, surround the sum of two
4891 constants with a CONST, put the constant as the second operand, and
4892 group the constant on the outermost sum.
4894 This routine assumes both inputs are already in canonical form. */
4897 form_sum (x, y)
4898 rtx x, y;
4900 rtx tem;
4901 enum machine_mode mode = GET_MODE (x);
4903 if (mode == VOIDmode)
4904 mode = GET_MODE (y);
4906 if (mode == VOIDmode)
4907 mode = Pmode;
4909 if (GET_CODE (x) == CONST_INT)
4910 return plus_constant (y, INTVAL (x));
4911 else if (GET_CODE (y) == CONST_INT)
4912 return plus_constant (x, INTVAL (y));
4913 else if (CONSTANT_P (x))
4914 tem = x, x = y, y = tem;
4916 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4917 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4919 /* Note that if the operands of Y are specified in the opposite
4920 order in the recursive calls below, infinite recursion will occur. */
4921 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4922 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4924 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4925 constant will have been placed second. */
4926 if (CONSTANT_P (x) && CONSTANT_P (y))
4928 if (GET_CODE (x) == CONST)
4929 x = XEXP (x, 0);
4930 if (GET_CODE (y) == CONST)
4931 y = XEXP (y, 0);
4933 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4936 return gen_rtx_PLUS (mode, x, y);
4939 /* If ADDR is a sum containing a pseudo register that should be
4940 replaced with a constant (from reg_equiv_constant),
4941 return the result of doing so, and also apply the associative
4942 law so that the result is more likely to be a valid address.
4943 (But it is not guaranteed to be one.)
4945 Note that at most one register is replaced, even if more are
4946 replaceable. Also, we try to put the result into a canonical form
4947 so it is more likely to be a valid address.
4949 In all other cases, return ADDR. */
4951 static rtx
4952 subst_indexed_address (addr)
4953 rtx addr;
4955 rtx op0 = 0, op1 = 0, op2 = 0;
4956 rtx tem;
4957 int regno;
4959 if (GET_CODE (addr) == PLUS)
4961 /* Try to find a register to replace. */
4962 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4963 if (GET_CODE (op0) == REG
4964 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4965 && reg_renumber[regno] < 0
4966 && reg_equiv_constant[regno] != 0)
4967 op0 = reg_equiv_constant[regno];
4968 else if (GET_CODE (op1) == REG
4969 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4970 && reg_renumber[regno] < 0
4971 && reg_equiv_constant[regno] != 0)
4972 op1 = reg_equiv_constant[regno];
4973 else if (GET_CODE (op0) == PLUS
4974 && (tem = subst_indexed_address (op0)) != op0)
4975 op0 = tem;
4976 else if (GET_CODE (op1) == PLUS
4977 && (tem = subst_indexed_address (op1)) != op1)
4978 op1 = tem;
4979 else
4980 return addr;
4982 /* Pick out up to three things to add. */
4983 if (GET_CODE (op1) == PLUS)
4984 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4985 else if (GET_CODE (op0) == PLUS)
4986 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4988 /* Compute the sum. */
4989 if (op2 != 0)
4990 op1 = form_sum (op1, op2);
4991 if (op1 != 0)
4992 op0 = form_sum (op0, op1);
4994 return op0;
4996 return addr;
4999 /* Update the REG_INC notes for an insn. It updates all REG_INC
5000 notes for the instruction which refer to REGNO the to refer
5001 to the reload number.
5003 INSN is the insn for which any REG_INC notes need updating.
5005 REGNO is the register number which has been reloaded.
5007 RELOADNUM is the reload number. */
5009 static void
5010 update_auto_inc_notes (insn, regno, reloadnum)
5011 rtx insn ATTRIBUTE_UNUSED;
5012 int regno ATTRIBUTE_UNUSED;
5013 int reloadnum ATTRIBUTE_UNUSED;
5015 #ifdef AUTO_INC_DEC
5016 rtx link;
5018 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5019 if (REG_NOTE_KIND (link) == REG_INC
5020 && REGNO (XEXP (link, 0)) == regno)
5021 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5022 #endif
5025 /* Record the pseudo registers we must reload into hard registers in a
5026 subexpression of a would-be memory address, X referring to a value
5027 in mode MODE. (This function is not called if the address we find
5028 is strictly valid.)
5030 CONTEXT = 1 means we are considering regs as index regs,
5031 = 0 means we are considering them as base regs.
5033 OPNUM and TYPE specify the purpose of any reloads made.
5035 IND_LEVELS says how many levels of indirect addressing are
5036 supported at this point in the address.
5038 INSN, if nonzero, is the insn in which we do the reload. It is used
5039 to determine if we may generate output reloads.
5041 We return nonzero if X, as a whole, is reloaded or replaced. */
5043 /* Note that we take shortcuts assuming that no multi-reg machine mode
5044 occurs as part of an address.
5045 Also, this is not fully machine-customizable; it works for machines
5046 such as vaxes and 68000's and 32000's, but other possible machines
5047 could have addressing modes that this does not handle right. */
5049 static int
5050 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5051 enum machine_mode mode;
5052 rtx x;
5053 int context;
5054 rtx *loc;
5055 int opnum;
5056 enum reload_type type;
5057 int ind_levels;
5058 rtx insn;
5060 register RTX_CODE code = GET_CODE (x);
5062 switch (code)
5064 case PLUS:
5066 register rtx orig_op0 = XEXP (x, 0);
5067 register rtx orig_op1 = XEXP (x, 1);
5068 register RTX_CODE code0 = GET_CODE (orig_op0);
5069 register RTX_CODE code1 = GET_CODE (orig_op1);
5070 register rtx op0 = orig_op0;
5071 register rtx op1 = orig_op1;
5073 if (GET_CODE (op0) == SUBREG)
5075 op0 = SUBREG_REG (op0);
5076 code0 = GET_CODE (op0);
5077 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5078 op0 = gen_rtx_REG (word_mode,
5079 REGNO (op0) + SUBREG_WORD (orig_op0));
5082 if (GET_CODE (op1) == SUBREG)
5084 op1 = SUBREG_REG (op1);
5085 code1 = GET_CODE (op1);
5086 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5087 op1 = gen_rtx_REG (GET_MODE (op1),
5088 REGNO (op1) + SUBREG_WORD (orig_op1));
5091 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5092 || code0 == ZERO_EXTEND || code1 == MEM)
5094 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5095 type, ind_levels, insn);
5096 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5097 type, ind_levels, insn);
5100 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5101 || code1 == ZERO_EXTEND || code0 == MEM)
5103 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5104 type, ind_levels, insn);
5105 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5106 type, ind_levels, insn);
5109 else if (code0 == CONST_INT || code0 == CONST
5110 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5111 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5112 type, ind_levels, insn);
5114 else if (code1 == CONST_INT || code1 == CONST
5115 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5116 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5117 type, ind_levels, insn);
5119 else if (code0 == REG && code1 == REG)
5121 if (REG_OK_FOR_INDEX_P (op0)
5122 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5123 return 0;
5124 else if (REG_OK_FOR_INDEX_P (op1)
5125 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5126 return 0;
5127 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5128 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5129 type, ind_levels, insn);
5130 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5131 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5132 type, ind_levels, insn);
5133 else if (REG_OK_FOR_INDEX_P (op1))
5134 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5135 type, ind_levels, insn);
5136 else if (REG_OK_FOR_INDEX_P (op0))
5137 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5138 type, ind_levels, insn);
5139 else
5141 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5142 type, ind_levels, insn);
5143 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5144 type, ind_levels, insn);
5148 else if (code0 == REG)
5150 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5151 type, ind_levels, insn);
5152 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5153 type, ind_levels, insn);
5156 else if (code1 == REG)
5158 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5159 type, ind_levels, insn);
5160 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5161 type, ind_levels, insn);
5165 return 0;
5167 case POST_MODIFY:
5168 case PRE_MODIFY:
5170 rtx op0 = XEXP (x, 0);
5171 rtx op1 = XEXP (x, 1);
5173 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5174 return 0;
5176 /* Currently, we only support {PRE,POST}_MODIFY constructs
5177 where a base register is {inc,dec}remented by the contents
5178 of another register or by a constant value. Thus, these
5179 operands must match. */
5180 if (op0 != XEXP (op1, 0))
5181 abort ();
5183 /* Require index register (or constant). Let's just handle the
5184 register case in the meantime... If the target allows
5185 auto-modify by a constant then we could try replacing a pseudo
5186 register with its equivalent constant where applicable. */
5187 if (REG_P (XEXP (op1, 1)))
5188 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5189 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5190 opnum, type, ind_levels, insn);
5192 if (REG_P (XEXP (op1, 0)))
5194 int regno = REGNO (XEXP (op1, 0));
5195 int reloadnum;
5197 /* A register that is incremented cannot be constant! */
5198 if (regno >= FIRST_PSEUDO_REGISTER
5199 && reg_equiv_constant[regno] != 0)
5200 abort ();
5202 /* Handle a register that is equivalent to a memory location
5203 which cannot be addressed directly. */
5204 if (reg_equiv_memory_loc[regno] != 0
5205 && (reg_equiv_address[regno] != 0
5206 || num_not_at_initial_offset))
5208 rtx tem = make_memloc (XEXP (x, 0), regno);
5210 if (reg_equiv_address[regno]
5211 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5213 /* First reload the memory location's address.
5214 We can't use ADDR_TYPE (type) here, because we need to
5215 write back the value after reading it, hence we actually
5216 need two registers. */
5217 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5218 &XEXP (tem, 0), opnum,
5219 RELOAD_OTHER,
5220 ind_levels, insn);
5222 /* Then reload the memory location into a base
5223 register. */
5224 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5225 &XEXP (op1, 0), BASE_REG_CLASS,
5226 GET_MODE (x), GET_MODE (x), 0,
5227 0, opnum, RELOAD_OTHER);
5229 update_auto_inc_notes (this_insn, regno, reloadnum);
5230 return 0;
5234 if (reg_renumber[regno] >= 0)
5235 regno = reg_renumber[regno];
5237 /* We require a base register here... */
5238 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5240 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5241 &XEXP (op1, 0), &XEXP (x, 0),
5242 BASE_REG_CLASS,
5243 GET_MODE (x), GET_MODE (x), 0, 0,
5244 opnum, RELOAD_OTHER);
5246 update_auto_inc_notes (this_insn, regno, reloadnum);
5247 return 0;
5250 else
5251 abort ();
5253 return 0;
5255 case POST_INC:
5256 case POST_DEC:
5257 case PRE_INC:
5258 case PRE_DEC:
5259 if (GET_CODE (XEXP (x, 0)) == REG)
5261 register int regno = REGNO (XEXP (x, 0));
5262 int value = 0;
5263 rtx x_orig = x;
5265 /* A register that is incremented cannot be constant! */
5266 if (regno >= FIRST_PSEUDO_REGISTER
5267 && reg_equiv_constant[regno] != 0)
5268 abort ();
5270 /* Handle a register that is equivalent to a memory location
5271 which cannot be addressed directly. */
5272 if (reg_equiv_memory_loc[regno] != 0
5273 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5275 rtx tem = make_memloc (XEXP (x, 0), regno);
5276 if (reg_equiv_address[regno]
5277 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5279 /* First reload the memory location's address.
5280 We can't use ADDR_TYPE (type) here, because we need to
5281 write back the value after reading it, hence we actually
5282 need two registers. */
5283 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5284 &XEXP (tem, 0), opnum, type,
5285 ind_levels, insn);
5286 /* Put this inside a new increment-expression. */
5287 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5288 /* Proceed to reload that, as if it contained a register. */
5292 /* If we have a hard register that is ok as an index,
5293 don't make a reload. If an autoincrement of a nice register
5294 isn't "valid", it must be that no autoincrement is "valid".
5295 If that is true and something made an autoincrement anyway,
5296 this must be a special context where one is allowed.
5297 (For example, a "push" instruction.)
5298 We can't improve this address, so leave it alone. */
5300 /* Otherwise, reload the autoincrement into a suitable hard reg
5301 and record how much to increment by. */
5303 if (reg_renumber[regno] >= 0)
5304 regno = reg_renumber[regno];
5305 if ((regno >= FIRST_PSEUDO_REGISTER
5306 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5307 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5309 int reloadnum;
5311 /* If we can output the register afterwards, do so, this
5312 saves the extra update.
5313 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5314 CALL_INSN - and it does not set CC0.
5315 But don't do this if we cannot directly address the
5316 memory location, since this will make it harder to
5317 reuse address reloads, and increases register pressure.
5318 Also don't do this if we can probably update x directly. */
5319 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5320 ? XEXP (x, 0)
5321 : reg_equiv_mem[regno]);
5322 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5323 if (insn && GET_CODE (insn) == INSN && equiv
5324 && memory_operand (equiv, GET_MODE (equiv))
5325 #ifdef HAVE_cc0
5326 && ! sets_cc0_p (PATTERN (insn))
5327 #endif
5328 && ! (icode != CODE_FOR_nothing
5329 && ((*insn_data[icode].operand[0].predicate)
5330 (equiv, Pmode))
5331 && ((*insn_data[icode].operand[1].predicate)
5332 (equiv, Pmode))))
5334 /* We use the original pseudo for loc, so that
5335 emit_reload_insns() knows which pseudo this
5336 reload refers to and updates the pseudo rtx, not
5337 its equivalent memory location, as well as the
5338 corresponding entry in reg_last_reload_reg. */
5339 loc = &XEXP (x_orig, 0);
5340 x = XEXP (x, 0);
5341 reloadnum
5342 = push_reload (x, x, loc, loc,
5343 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5344 GET_MODE (x), GET_MODE (x), 0, 0,
5345 opnum, RELOAD_OTHER);
5347 else
5349 reloadnum
5350 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5351 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5352 GET_MODE (x), GET_MODE (x), 0, 0,
5353 opnum, type);
5354 rld[reloadnum].inc
5355 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5357 value = 1;
5360 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5361 reloadnum);
5363 return value;
5366 else if (GET_CODE (XEXP (x, 0)) == MEM)
5368 /* This is probably the result of a substitution, by eliminate_regs,
5369 of an equivalent address for a pseudo that was not allocated to a
5370 hard register. Verify that the specified address is valid and
5371 reload it into a register. */
5372 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5373 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5374 register rtx link;
5375 int reloadnum;
5377 /* Since we know we are going to reload this item, don't decrement
5378 for the indirection level.
5380 Note that this is actually conservative: it would be slightly
5381 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5382 reload1.c here. */
5383 /* We can't use ADDR_TYPE (type) here, because we need to
5384 write back the value after reading it, hence we actually
5385 need two registers. */
5386 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5387 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5388 opnum, type, ind_levels, insn);
5390 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5391 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5392 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5393 rld[reloadnum].inc
5394 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5396 link = FIND_REG_INC_NOTE (this_insn, tem);
5397 if (link != 0)
5398 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5400 return 1;
5402 return 0;
5404 case MEM:
5405 /* This is probably the result of a substitution, by eliminate_regs, of
5406 an equivalent address for a pseudo that was not allocated to a hard
5407 register. Verify that the specified address is valid and reload it
5408 into a register.
5410 Since we know we are going to reload this item, don't decrement for
5411 the indirection level.
5413 Note that this is actually conservative: it would be slightly more
5414 efficient to use the value of SPILL_INDIRECT_LEVELS from
5415 reload1.c here. */
5417 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5418 opnum, ADDR_TYPE (type), ind_levels, insn);
5419 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5420 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5421 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5422 return 1;
5424 case REG:
5426 register int regno = REGNO (x);
5428 if (reg_equiv_constant[regno] != 0)
5430 find_reloads_address_part (reg_equiv_constant[regno], loc,
5431 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5432 GET_MODE (x), opnum, type, ind_levels);
5433 return 1;
5436 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5437 that feeds this insn. */
5438 if (reg_equiv_mem[regno] != 0)
5440 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5441 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5442 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5443 return 1;
5445 #endif
5447 if (reg_equiv_memory_loc[regno]
5448 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5450 rtx tem = make_memloc (x, regno);
5451 if (reg_equiv_address[regno] != 0
5452 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5454 x = tem;
5455 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5456 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5457 ind_levels, insn);
5461 if (reg_renumber[regno] >= 0)
5462 regno = reg_renumber[regno];
5464 if ((regno >= FIRST_PSEUDO_REGISTER
5465 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5466 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5468 push_reload (x, NULL_RTX, loc, NULL_PTR,
5469 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5470 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5471 return 1;
5474 /* If a register appearing in an address is the subject of a CLOBBER
5475 in this insn, reload it into some other register to be safe.
5476 The CLOBBER is supposed to make the register unavailable
5477 from before this insn to after it. */
5478 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5480 push_reload (x, NULL_RTX, loc, NULL_PTR,
5481 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5482 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5483 return 1;
5486 return 0;
5488 case SUBREG:
5489 if (GET_CODE (SUBREG_REG (x)) == REG)
5491 /* If this is a SUBREG of a hard register and the resulting register
5492 is of the wrong class, reload the whole SUBREG. This avoids
5493 needless copies if SUBREG_REG is multi-word. */
5494 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5496 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5498 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5499 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5501 push_reload (x, NULL_RTX, loc, NULL_PTR,
5502 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5503 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5504 return 1;
5507 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5508 is larger than the class size, then reload the whole SUBREG. */
5509 else
5511 enum reg_class class = (context ? INDEX_REG_CLASS
5512 : BASE_REG_CLASS);
5513 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5514 > reg_class_size[class])
5516 x = find_reloads_subreg_address (x, 0, opnum, type,
5517 ind_levels, insn);
5518 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5519 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5520 return 1;
5524 break;
5526 default:
5527 break;
5531 register const char *fmt = GET_RTX_FORMAT (code);
5532 register int i;
5534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5536 if (fmt[i] == 'e')
5537 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5538 opnum, type, ind_levels, insn);
5542 return 0;
5545 /* X, which is found at *LOC, is a part of an address that needs to be
5546 reloaded into a register of class CLASS. If X is a constant, or if
5547 X is a PLUS that contains a constant, check that the constant is a
5548 legitimate operand and that we are supposed to be able to load
5549 it into the register.
5551 If not, force the constant into memory and reload the MEM instead.
5553 MODE is the mode to use, in case X is an integer constant.
5555 OPNUM and TYPE describe the purpose of any reloads made.
5557 IND_LEVELS says how many levels of indirect addressing this machine
5558 supports. */
5560 static void
5561 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5562 rtx x;
5563 rtx *loc;
5564 enum reg_class class;
5565 enum machine_mode mode;
5566 int opnum;
5567 enum reload_type type;
5568 int ind_levels;
5570 if (CONSTANT_P (x)
5571 && (! LEGITIMATE_CONSTANT_P (x)
5572 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5574 rtx tem;
5576 tem = x = force_const_mem (mode, x);
5577 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5578 opnum, type, ind_levels, 0);
5581 else if (GET_CODE (x) == PLUS
5582 && CONSTANT_P (XEXP (x, 1))
5583 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5584 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5586 rtx tem;
5588 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5589 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5590 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5591 opnum, type, ind_levels, 0);
5594 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5595 mode, VOIDmode, 0, 0, opnum, type);
5598 /* X, a subreg of a pseudo, is a part of an address that needs to be
5599 reloaded.
5601 If the pseudo is equivalent to a memory location that cannot be directly
5602 addressed, make the necessary address reloads.
5604 If address reloads have been necessary, or if the address is changed
5605 by register elimination, return the rtx of the memory location;
5606 otherwise, return X.
5608 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5609 memory location.
5611 OPNUM and TYPE identify the purpose of the reload.
5613 IND_LEVELS says how many levels of indirect addressing are
5614 supported at this point in the address.
5616 INSN, if nonzero, is the insn in which we do the reload. It is used
5617 to determine where to put USEs for pseudos that we have to replace with
5618 stack slots. */
5620 static rtx
5621 find_reloads_subreg_address (x, force_replace, opnum, type,
5622 ind_levels, insn)
5623 rtx x;
5624 int force_replace;
5625 int opnum;
5626 enum reload_type type;
5627 int ind_levels;
5628 rtx insn;
5630 int regno = REGNO (SUBREG_REG (x));
5632 if (reg_equiv_memory_loc[regno])
5634 /* If the address is not directly addressable, or if the address is not
5635 offsettable, then it must be replaced. */
5636 if (! force_replace
5637 && (reg_equiv_address[regno]
5638 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5639 force_replace = 1;
5641 if (force_replace || num_not_at_initial_offset)
5643 rtx tem = make_memloc (SUBREG_REG (x), regno);
5645 /* If the address changes because of register elimination, then
5646 it must be replaced. */
5647 if (force_replace
5648 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5650 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
5651 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5652 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5654 if (BYTES_BIG_ENDIAN)
5656 offset += MIN (inner_size, UNITS_PER_WORD);
5657 offset -= MIN (outer_size, UNITS_PER_WORD);
5659 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5660 PUT_MODE (tem, GET_MODE (x));
5662 /* If this was a paradoxical subreg that we replaced, the
5663 resulting memory must be sufficiently aligned to allow
5664 us to widen the mode of the memory. */
5665 if (outer_size > inner_size && STRICT_ALIGNMENT)
5667 rtx base;
5669 base = XEXP (tem, 0);
5670 if (GET_CODE (base) == PLUS)
5672 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5673 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5674 return x;
5675 base = XEXP (base, 0);
5677 if (GET_CODE (base) != REG
5678 || (REGNO_POINTER_ALIGN (REGNO (base))
5679 < outer_size * BITS_PER_UNIT))
5680 return x;
5683 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5684 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5685 ind_levels, insn);
5687 /* If this is not a toplevel operand, find_reloads doesn't see
5688 this substitution. We have to emit a USE of the pseudo so
5689 that delete_output_reload can see it. */
5690 if (replace_reloads && recog_data.operand[opnum] != x)
5691 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5692 x = tem;
5696 return x;
5699 /* Substitute into the current INSN the registers into which we have reloaded
5700 the things that need reloading. The array `replacements'
5701 contains the locations of all pointers that must be changed
5702 and says what to replace them with.
5704 Return the rtx that X translates into; usually X, but modified. */
5706 void
5707 subst_reloads (insn)
5708 rtx insn;
5710 register int i;
5712 for (i = 0; i < n_replacements; i++)
5714 register struct replacement *r = &replacements[i];
5715 register rtx reloadreg = rld[r->what].reg_rtx;
5716 if (reloadreg)
5718 /* If we're replacing a LABEL_REF with a register, add a
5719 REG_LABEL note to indicate to flow which label this
5720 register refers to. */
5721 if (GET_CODE (*r->where) == LABEL_REF
5722 && GET_CODE (insn) == JUMP_INSN)
5723 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
5724 XEXP (*r->where, 0),
5725 REG_NOTES (insn));
5727 /* Encapsulate RELOADREG so its machine mode matches what
5728 used to be there. Note that gen_lowpart_common will
5729 do the wrong thing if RELOADREG is multi-word. RELOADREG
5730 will always be a REG here. */
5731 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5732 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5734 /* If we are putting this into a SUBREG and RELOADREG is a
5735 SUBREG, we would be making nested SUBREGs, so we have to fix
5736 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5738 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5740 if (GET_MODE (*r->subreg_loc)
5741 == GET_MODE (SUBREG_REG (reloadreg)))
5742 *r->subreg_loc = SUBREG_REG (reloadreg);
5743 else
5745 *r->where = SUBREG_REG (reloadreg);
5746 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5749 else
5750 *r->where = reloadreg;
5752 /* If reload got no reg and isn't optional, something's wrong. */
5753 else if (! rld[r->what].optional)
5754 abort ();
5758 /* Make a copy of any replacements being done into X and move those copies
5759 to locations in Y, a copy of X. We only look at the highest level of
5760 the RTL. */
5762 void
5763 copy_replacements (x, y)
5764 rtx x;
5765 rtx y;
5767 int i, j;
5768 enum rtx_code code = GET_CODE (x);
5769 const char *fmt = GET_RTX_FORMAT (code);
5770 struct replacement *r;
5772 /* We can't support X being a SUBREG because we might then need to know its
5773 location if something inside it was replaced. */
5774 if (code == SUBREG)
5775 abort ();
5777 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5778 if (fmt[i] == 'e')
5779 for (j = 0; j < n_replacements; j++)
5781 if (replacements[j].subreg_loc == &XEXP (x, i))
5783 r = &replacements[n_replacements++];
5784 r->where = replacements[j].where;
5785 r->subreg_loc = &XEXP (y, i);
5786 r->what = replacements[j].what;
5787 r->mode = replacements[j].mode;
5789 else if (replacements[j].where == &XEXP (x, i))
5791 r = &replacements[n_replacements++];
5792 r->where = &XEXP (y, i);
5793 r->subreg_loc = 0;
5794 r->what = replacements[j].what;
5795 r->mode = replacements[j].mode;
5800 /* Change any replacements being done to *X to be done to *Y */
5802 void
5803 move_replacements (x, y)
5804 rtx *x;
5805 rtx *y;
5807 int i;
5809 for (i = 0; i < n_replacements; i++)
5810 if (replacements[i].subreg_loc == x)
5811 replacements[i].subreg_loc = y;
5812 else if (replacements[i].where == x)
5814 replacements[i].where = y;
5815 replacements[i].subreg_loc = 0;
5819 /* If LOC was scheduled to be replaced by something, return the replacement.
5820 Otherwise, return *LOC. */
5823 find_replacement (loc)
5824 rtx *loc;
5826 struct replacement *r;
5828 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5830 rtx reloadreg = rld[r->what].reg_rtx;
5832 if (reloadreg && r->where == loc)
5834 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5835 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5837 return reloadreg;
5839 else if (reloadreg && r->subreg_loc == loc)
5841 /* RELOADREG must be either a REG or a SUBREG.
5843 ??? Is it actually still ever a SUBREG? If so, why? */
5845 if (GET_CODE (reloadreg) == REG)
5846 return gen_rtx_REG (GET_MODE (*loc),
5847 REGNO (reloadreg) + SUBREG_WORD (*loc));
5848 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5849 return reloadreg;
5850 else
5851 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5852 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5856 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5857 what's inside and make a new rtl if so. */
5858 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5859 || GET_CODE (*loc) == MULT)
5861 rtx x = find_replacement (&XEXP (*loc, 0));
5862 rtx y = find_replacement (&XEXP (*loc, 1));
5864 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5865 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5868 return *loc;
5871 /* Return nonzero if register in range [REGNO, ENDREGNO)
5872 appears either explicitly or implicitly in X
5873 other than being stored into (except for earlyclobber operands).
5875 References contained within the substructure at LOC do not count.
5876 LOC may be zero, meaning don't ignore anything.
5878 This is similar to refers_to_regno_p in rtlanal.c except that we
5879 look at equivalences for pseudos that didn't get hard registers. */
5882 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5883 unsigned int regno, endregno;
5884 rtx x;
5885 rtx *loc;
5887 int i;
5888 unsigned int r;
5889 RTX_CODE code;
5890 const char *fmt;
5892 if (x == 0)
5893 return 0;
5895 repeat:
5896 code = GET_CODE (x);
5898 switch (code)
5900 case REG:
5901 r = REGNO (x);
5903 /* If this is a pseudo, a hard register must not have been allocated.
5904 X must therefore either be a constant or be in memory. */
5905 if (r >= FIRST_PSEUDO_REGISTER)
5907 if (reg_equiv_memory_loc[r])
5908 return refers_to_regno_for_reload_p (regno, endregno,
5909 reg_equiv_memory_loc[r],
5910 NULL_PTR);
5912 if (reg_equiv_constant[r])
5913 return 0;
5915 abort ();
5918 return (endregno > r
5919 && regno < r + (r < FIRST_PSEUDO_REGISTER
5920 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5921 : 1));
5923 case SUBREG:
5924 /* If this is a SUBREG of a hard reg, we can see exactly which
5925 registers are being modified. Otherwise, handle normally. */
5926 if (GET_CODE (SUBREG_REG (x)) == REG
5927 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5929 unsigned int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5930 unsigned int inner_endregno
5931 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5932 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5934 return endregno > inner_regno && regno < inner_endregno;
5936 break;
5938 case CLOBBER:
5939 case SET:
5940 if (&SET_DEST (x) != loc
5941 /* Note setting a SUBREG counts as referring to the REG it is in for
5942 a pseudo but not for hard registers since we can
5943 treat each word individually. */
5944 && ((GET_CODE (SET_DEST (x)) == SUBREG
5945 && loc != &SUBREG_REG (SET_DEST (x))
5946 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5947 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5948 && refers_to_regno_for_reload_p (regno, endregno,
5949 SUBREG_REG (SET_DEST (x)),
5950 loc))
5951 /* If the output is an earlyclobber operand, this is
5952 a conflict. */
5953 || ((GET_CODE (SET_DEST (x)) != REG
5954 || earlyclobber_operand_p (SET_DEST (x)))
5955 && refers_to_regno_for_reload_p (regno, endregno,
5956 SET_DEST (x), loc))))
5957 return 1;
5959 if (code == CLOBBER || loc == &SET_SRC (x))
5960 return 0;
5961 x = SET_SRC (x);
5962 goto repeat;
5964 default:
5965 break;
5968 /* X does not match, so try its subexpressions. */
5970 fmt = GET_RTX_FORMAT (code);
5971 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5973 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5975 if (i == 0)
5977 x = XEXP (x, 0);
5978 goto repeat;
5980 else
5981 if (refers_to_regno_for_reload_p (regno, endregno,
5982 XEXP (x, i), loc))
5983 return 1;
5985 else if (fmt[i] == 'E')
5987 register int j;
5988 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5989 if (loc != &XVECEXP (x, i, j)
5990 && refers_to_regno_for_reload_p (regno, endregno,
5991 XVECEXP (x, i, j), loc))
5992 return 1;
5995 return 0;
5998 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5999 we check if any register number in X conflicts with the relevant register
6000 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6001 contains a MEM (we don't bother checking for memory addresses that can't
6002 conflict because we expect this to be a rare case.
6004 This function is similar to reg_overlap_mention_p in rtlanal.c except
6005 that we look at equivalences for pseudos that didn't get hard registers. */
6008 reg_overlap_mentioned_for_reload_p (x, in)
6009 rtx x, in;
6011 int regno, endregno;
6013 /* Overly conservative. */
6014 if (GET_CODE (x) == STRICT_LOW_PART)
6015 x = XEXP (x, 0);
6017 /* If either argument is a constant, then modifying X can not affect IN. */
6018 if (CONSTANT_P (x) || CONSTANT_P (in))
6019 return 0;
6020 else if (GET_CODE (x) == SUBREG)
6022 regno = REGNO (SUBREG_REG (x));
6023 if (regno < FIRST_PSEUDO_REGISTER)
6024 regno += SUBREG_WORD (x);
6026 else if (GET_CODE (x) == REG)
6028 regno = REGNO (x);
6030 /* If this is a pseudo, it must not have been assigned a hard register.
6031 Therefore, it must either be in memory or be a constant. */
6033 if (regno >= FIRST_PSEUDO_REGISTER)
6035 if (reg_equiv_memory_loc[regno])
6036 return refers_to_mem_for_reload_p (in);
6037 else if (reg_equiv_constant[regno])
6038 return 0;
6039 abort ();
6042 else if (GET_CODE (x) == MEM)
6043 return refers_to_mem_for_reload_p (in);
6044 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6045 || GET_CODE (x) == CC0)
6046 return reg_mentioned_p (x, in);
6047 else
6048 abort ();
6050 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6051 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6053 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
6056 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6057 registers. */
6060 refers_to_mem_for_reload_p (x)
6061 rtx x;
6063 const char *fmt;
6064 int i;
6066 if (GET_CODE (x) == MEM)
6067 return 1;
6069 if (GET_CODE (x) == REG)
6070 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6071 && reg_equiv_memory_loc[REGNO (x)]);
6073 fmt = GET_RTX_FORMAT (GET_CODE (x));
6074 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6075 if (fmt[i] == 'e'
6076 && (GET_CODE (XEXP (x, i)) == MEM
6077 || refers_to_mem_for_reload_p (XEXP (x, i))))
6078 return 1;
6080 return 0;
6083 /* Check the insns before INSN to see if there is a suitable register
6084 containing the same value as GOAL.
6085 If OTHER is -1, look for a register in class CLASS.
6086 Otherwise, just see if register number OTHER shares GOAL's value.
6088 Return an rtx for the register found, or zero if none is found.
6090 If RELOAD_REG_P is (short *)1,
6091 we reject any hard reg that appears in reload_reg_rtx
6092 because such a hard reg is also needed coming into this insn.
6094 If RELOAD_REG_P is any other nonzero value,
6095 it is a vector indexed by hard reg number
6096 and we reject any hard reg whose element in the vector is nonnegative
6097 as well as any that appears in reload_reg_rtx.
6099 If GOAL is zero, then GOALREG is a register number; we look
6100 for an equivalent for that register.
6102 MODE is the machine mode of the value we want an equivalence for.
6103 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6105 This function is used by jump.c as well as in the reload pass.
6107 If GOAL is the sum of the stack pointer and a constant, we treat it
6108 as if it were a constant except that sp is required to be unchanging. */
6111 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6112 register rtx goal;
6113 rtx insn;
6114 enum reg_class class;
6115 register int other;
6116 short *reload_reg_p;
6117 int goalreg;
6118 enum machine_mode mode;
6120 register rtx p = insn;
6121 rtx goaltry, valtry, value, where;
6122 register rtx pat;
6123 register int regno = -1;
6124 int valueno;
6125 int goal_mem = 0;
6126 int goal_const = 0;
6127 int goal_mem_addr_varies = 0;
6128 int need_stable_sp = 0;
6129 int nregs;
6130 int valuenregs;
6132 if (goal == 0)
6133 regno = goalreg;
6134 else if (GET_CODE (goal) == REG)
6135 regno = REGNO (goal);
6136 else if (GET_CODE (goal) == MEM)
6138 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6139 if (MEM_VOLATILE_P (goal))
6140 return 0;
6141 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6142 return 0;
6143 /* An address with side effects must be reexecuted. */
6144 switch (code)
6146 case POST_INC:
6147 case PRE_INC:
6148 case POST_DEC:
6149 case PRE_DEC:
6150 case POST_MODIFY:
6151 case PRE_MODIFY:
6152 return 0;
6153 default:
6154 break;
6156 goal_mem = 1;
6158 else if (CONSTANT_P (goal))
6159 goal_const = 1;
6160 else if (GET_CODE (goal) == PLUS
6161 && XEXP (goal, 0) == stack_pointer_rtx
6162 && CONSTANT_P (XEXP (goal, 1)))
6163 goal_const = need_stable_sp = 1;
6164 else if (GET_CODE (goal) == PLUS
6165 && XEXP (goal, 0) == frame_pointer_rtx
6166 && CONSTANT_P (XEXP (goal, 1)))
6167 goal_const = 1;
6168 else
6169 return 0;
6171 /* Scan insns back from INSN, looking for one that copies
6172 a value into or out of GOAL.
6173 Stop and give up if we reach a label. */
6175 while (1)
6177 p = PREV_INSN (p);
6178 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6179 return 0;
6181 if (GET_CODE (p) == INSN
6182 /* If we don't want spill regs ... */
6183 && (! (reload_reg_p != 0
6184 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6185 /* ... then ignore insns introduced by reload; they aren't
6186 useful and can cause results in reload_as_needed to be
6187 different from what they were when calculating the need for
6188 spills. If we notice an input-reload insn here, we will
6189 reject it below, but it might hide a usable equivalent.
6190 That makes bad code. It may even abort: perhaps no reg was
6191 spilled for this insn because it was assumed we would find
6192 that equivalent. */
6193 || INSN_UID (p) < reload_first_uid))
6195 rtx tem;
6196 pat = single_set (p);
6198 /* First check for something that sets some reg equal to GOAL. */
6199 if (pat != 0
6200 && ((regno >= 0
6201 && true_regnum (SET_SRC (pat)) == regno
6202 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6204 (regno >= 0
6205 && true_regnum (SET_DEST (pat)) == regno
6206 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6208 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6209 /* When looking for stack pointer + const,
6210 make sure we don't use a stack adjust. */
6211 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6212 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6213 || (goal_mem
6214 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6215 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6216 || (goal_mem
6217 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6218 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6219 /* If we are looking for a constant,
6220 and something equivalent to that constant was copied
6221 into a reg, we can use that reg. */
6222 || (goal_const && REG_NOTES (p) != 0
6223 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6224 && ((rtx_equal_p (XEXP (tem, 0), goal)
6225 && (valueno
6226 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6227 || (GET_CODE (SET_DEST (pat)) == REG
6228 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6229 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6230 == MODE_FLOAT)
6231 && GET_CODE (goal) == CONST_INT
6232 && 0 != (goaltry
6233 = operand_subword (XEXP (tem, 0), 0, 0,
6234 VOIDmode))
6235 && rtx_equal_p (goal, goaltry)
6236 && (valtry
6237 = operand_subword (SET_DEST (pat), 0, 0,
6238 VOIDmode))
6239 && (valueno = true_regnum (valtry)) >= 0)))
6240 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6241 NULL_RTX))
6242 && GET_CODE (SET_DEST (pat)) == REG
6243 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6244 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6245 == MODE_FLOAT)
6246 && GET_CODE (goal) == CONST_INT
6247 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6248 VOIDmode))
6249 && rtx_equal_p (goal, goaltry)
6250 && (valtry
6251 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6252 && (valueno = true_regnum (valtry)) >= 0)))
6254 if (other >= 0)
6256 if (valueno != other)
6257 continue;
6259 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6260 continue;
6261 else
6263 int i;
6265 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6266 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6267 valueno + i))
6268 break;
6269 if (i >= 0)
6270 continue;
6272 value = valtry;
6273 where = p;
6274 break;
6279 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6280 (or copying VALUE into GOAL, if GOAL is also a register).
6281 Now verify that VALUE is really valid. */
6283 /* VALUENO is the register number of VALUE; a hard register. */
6285 /* Don't try to re-use something that is killed in this insn. We want
6286 to be able to trust REG_UNUSED notes. */
6287 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6288 return 0;
6290 /* If we propose to get the value from the stack pointer or if GOAL is
6291 a MEM based on the stack pointer, we need a stable SP. */
6292 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6293 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6294 goal)))
6295 need_stable_sp = 1;
6297 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6298 if (GET_MODE (value) != mode)
6299 return 0;
6301 /* Reject VALUE if it was loaded from GOAL
6302 and is also a register that appears in the address of GOAL. */
6304 if (goal_mem && value == SET_DEST (single_set (where))
6305 && refers_to_regno_for_reload_p (valueno,
6306 (valueno
6307 + HARD_REGNO_NREGS (valueno, mode)),
6308 goal, NULL_PTR))
6309 return 0;
6311 /* Reject registers that overlap GOAL. */
6313 if (!goal_mem && !goal_const
6314 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6315 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6316 return 0;
6318 nregs = HARD_REGNO_NREGS (regno, mode);
6319 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6321 /* Reject VALUE if it is one of the regs reserved for reloads.
6322 Reload1 knows how to reuse them anyway, and it would get
6323 confused if we allocated one without its knowledge.
6324 (Now that insns introduced by reload are ignored above,
6325 this case shouldn't happen, but I'm not positive.) */
6327 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6329 int i;
6330 for (i = 0; i < valuenregs; ++i)
6331 if (reload_reg_p[valueno + i] >= 0)
6332 return 0;
6335 /* Reject VALUE if it is a register being used for an input reload
6336 even if it is not one of those reserved. */
6338 if (reload_reg_p != 0)
6340 int i;
6341 for (i = 0; i < n_reloads; i++)
6342 if (rld[i].reg_rtx != 0 && rld[i].in)
6344 int regno1 = REGNO (rld[i].reg_rtx);
6345 int nregs1 = HARD_REGNO_NREGS (regno1,
6346 GET_MODE (rld[i].reg_rtx));
6347 if (regno1 < valueno + valuenregs
6348 && regno1 + nregs1 > valueno)
6349 return 0;
6353 if (goal_mem)
6354 /* We must treat frame pointer as varying here,
6355 since it can vary--in a nonlocal goto as generated by expand_goto. */
6356 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6358 /* Now verify that the values of GOAL and VALUE remain unaltered
6359 until INSN is reached. */
6361 p = insn;
6362 while (1)
6364 p = PREV_INSN (p);
6365 if (p == where)
6366 return value;
6368 /* Don't trust the conversion past a function call
6369 if either of the two is in a call-clobbered register, or memory. */
6370 if (GET_CODE (p) == CALL_INSN)
6372 int i;
6374 if (goal_mem || need_stable_sp)
6375 return 0;
6377 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6378 for (i = 0; i < nregs; ++i)
6379 if (call_used_regs[regno + i])
6380 return 0;
6382 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6383 for (i = 0; i < valuenregs; ++i)
6384 if (call_used_regs[valueno + i])
6385 return 0;
6388 #ifdef NON_SAVING_SETJMP
6389 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6390 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6391 return 0;
6392 #endif
6394 if (INSN_P (p))
6396 pat = PATTERN (p);
6398 /* Watch out for unspec_volatile, and volatile asms. */
6399 if (volatile_insn_p (pat))
6400 return 0;
6402 /* If this insn P stores in either GOAL or VALUE, return 0.
6403 If GOAL is a memory ref and this insn writes memory, return 0.
6404 If GOAL is a memory ref and its address is not constant,
6405 and this insn P changes a register used in GOAL, return 0. */
6407 if (GET_CODE (pat) == COND_EXEC)
6408 pat = COND_EXEC_CODE (pat);
6409 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6411 register rtx dest = SET_DEST (pat);
6412 while (GET_CODE (dest) == SUBREG
6413 || GET_CODE (dest) == ZERO_EXTRACT
6414 || GET_CODE (dest) == SIGN_EXTRACT
6415 || GET_CODE (dest) == STRICT_LOW_PART)
6416 dest = XEXP (dest, 0);
6417 if (GET_CODE (dest) == REG)
6419 register int xregno = REGNO (dest);
6420 int xnregs;
6421 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6422 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6423 else
6424 xnregs = 1;
6425 if (xregno < regno + nregs && xregno + xnregs > regno)
6426 return 0;
6427 if (xregno < valueno + valuenregs
6428 && xregno + xnregs > valueno)
6429 return 0;
6430 if (goal_mem_addr_varies
6431 && reg_overlap_mentioned_for_reload_p (dest, goal))
6432 return 0;
6433 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6434 return 0;
6436 else if (goal_mem && GET_CODE (dest) == MEM
6437 && ! push_operand (dest, GET_MODE (dest)))
6438 return 0;
6439 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6440 && reg_equiv_memory_loc[regno] != 0)
6441 return 0;
6442 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6443 return 0;
6445 else if (GET_CODE (pat) == PARALLEL)
6447 register int i;
6448 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6450 register rtx v1 = XVECEXP (pat, 0, i);
6451 if (GET_CODE (v1) == COND_EXEC)
6452 v1 = COND_EXEC_CODE (v1);
6453 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6455 register rtx dest = SET_DEST (v1);
6456 while (GET_CODE (dest) == SUBREG
6457 || GET_CODE (dest) == ZERO_EXTRACT
6458 || GET_CODE (dest) == SIGN_EXTRACT
6459 || GET_CODE (dest) == STRICT_LOW_PART)
6460 dest = XEXP (dest, 0);
6461 if (GET_CODE (dest) == REG)
6463 register int xregno = REGNO (dest);
6464 int xnregs;
6465 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6466 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6467 else
6468 xnregs = 1;
6469 if (xregno < regno + nregs
6470 && xregno + xnregs > regno)
6471 return 0;
6472 if (xregno < valueno + valuenregs
6473 && xregno + xnregs > valueno)
6474 return 0;
6475 if (goal_mem_addr_varies
6476 && reg_overlap_mentioned_for_reload_p (dest,
6477 goal))
6478 return 0;
6479 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6480 return 0;
6482 else if (goal_mem && GET_CODE (dest) == MEM
6483 && ! push_operand (dest, GET_MODE (dest)))
6484 return 0;
6485 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6486 && reg_equiv_memory_loc[regno] != 0)
6487 return 0;
6488 else if (need_stable_sp
6489 && push_operand (dest, GET_MODE (dest)))
6490 return 0;
6495 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6497 rtx link;
6499 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6500 link = XEXP (link, 1))
6502 pat = XEXP (link, 0);
6503 if (GET_CODE (pat) == CLOBBER)
6505 register rtx dest = SET_DEST (pat);
6507 if (GET_CODE (dest) == REG)
6509 register int xregno = REGNO (dest);
6510 int xnregs
6511 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6513 if (xregno < regno + nregs
6514 && xregno + xnregs > regno)
6515 return 0;
6516 else if (xregno < valueno + valuenregs
6517 && xregno + xnregs > valueno)
6518 return 0;
6519 else if (goal_mem_addr_varies
6520 && reg_overlap_mentioned_for_reload_p (dest,
6521 goal))
6522 return 0;
6525 else if (goal_mem && GET_CODE (dest) == MEM
6526 && ! push_operand (dest, GET_MODE (dest)))
6527 return 0;
6528 else if (need_stable_sp
6529 && push_operand (dest, GET_MODE (dest)))
6530 return 0;
6535 #ifdef AUTO_INC_DEC
6536 /* If this insn auto-increments or auto-decrements
6537 either regno or valueno, return 0 now.
6538 If GOAL is a memory ref and its address is not constant,
6539 and this insn P increments a register used in GOAL, return 0. */
6541 register rtx link;
6543 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6544 if (REG_NOTE_KIND (link) == REG_INC
6545 && GET_CODE (XEXP (link, 0)) == REG)
6547 register int incno = REGNO (XEXP (link, 0));
6548 if (incno < regno + nregs && incno >= regno)
6549 return 0;
6550 if (incno < valueno + valuenregs && incno >= valueno)
6551 return 0;
6552 if (goal_mem_addr_varies
6553 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6554 goal))
6555 return 0;
6558 #endif
6563 /* Find a place where INCED appears in an increment or decrement operator
6564 within X, and return the amount INCED is incremented or decremented by.
6565 The value is always positive. */
6567 static int
6568 find_inc_amount (x, inced)
6569 rtx x, inced;
6571 register enum rtx_code code = GET_CODE (x);
6572 register const char *fmt;
6573 register int i;
6575 if (code == MEM)
6577 register rtx addr = XEXP (x, 0);
6578 if ((GET_CODE (addr) == PRE_DEC
6579 || GET_CODE (addr) == POST_DEC
6580 || GET_CODE (addr) == PRE_INC
6581 || GET_CODE (addr) == POST_INC)
6582 && XEXP (addr, 0) == inced)
6583 return GET_MODE_SIZE (GET_MODE (x));
6584 else if ((GET_CODE (addr) == PRE_MODIFY
6585 || GET_CODE (addr) == POST_MODIFY)
6586 && GET_CODE (XEXP (addr, 1)) == PLUS
6587 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6588 && XEXP (addr, 0) == inced
6589 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6591 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6592 return i < 0 ? -i : i;
6596 fmt = GET_RTX_FORMAT (code);
6597 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6599 if (fmt[i] == 'e')
6601 register int tem = find_inc_amount (XEXP (x, i), inced);
6602 if (tem != 0)
6603 return tem;
6605 if (fmt[i] == 'E')
6607 register int j;
6608 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6610 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6611 if (tem != 0)
6612 return tem;
6617 return 0;
6620 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6621 If SETS is nonzero, also consider SETs. */
6624 regno_clobbered_p (regno, insn, mode, sets)
6625 unsigned int regno;
6626 rtx insn;
6627 enum machine_mode mode;
6628 int sets;
6630 int nregs = HARD_REGNO_NREGS (regno, mode);
6631 int endregno = regno + nregs;
6633 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6634 || (sets && GET_CODE (PATTERN (insn)) == SET))
6635 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6637 int test = REGNO (XEXP (PATTERN (insn), 0));
6639 return test >= regno && test < endregno;
6642 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6644 int i = XVECLEN (PATTERN (insn), 0) - 1;
6646 for (; i >= 0; i--)
6648 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6649 if ((GET_CODE (elt) == CLOBBER
6650 || (sets && GET_CODE (PATTERN (insn)) == SET))
6651 && GET_CODE (XEXP (elt, 0)) == REG)
6653 int test = REGNO (XEXP (elt, 0));
6655 if (test >= regno && test < endregno)
6656 return 1;
6661 return 0;
6664 static const char *reload_when_needed_name[] =
6666 "RELOAD_FOR_INPUT",
6667 "RELOAD_FOR_OUTPUT",
6668 "RELOAD_FOR_INSN",
6669 "RELOAD_FOR_INPUT_ADDRESS",
6670 "RELOAD_FOR_INPADDR_ADDRESS",
6671 "RELOAD_FOR_OUTPUT_ADDRESS",
6672 "RELOAD_FOR_OUTADDR_ADDRESS",
6673 "RELOAD_FOR_OPERAND_ADDRESS",
6674 "RELOAD_FOR_OPADDR_ADDR",
6675 "RELOAD_OTHER",
6676 "RELOAD_FOR_OTHER_ADDRESS"
6679 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6681 /* These functions are used to print the variables set by 'find_reloads' */
6683 void
6684 debug_reload_to_stream (f)
6685 FILE *f;
6687 int r;
6688 const char *prefix;
6690 if (! f)
6691 f = stderr;
6692 for (r = 0; r < n_reloads; r++)
6694 fprintf (f, "Reload %d: ", r);
6696 if (rld[r].in != 0)
6698 fprintf (f, "reload_in (%s) = ",
6699 GET_MODE_NAME (rld[r].inmode));
6700 print_inline_rtx (f, rld[r].in, 24);
6701 fprintf (f, "\n\t");
6704 if (rld[r].out != 0)
6706 fprintf (f, "reload_out (%s) = ",
6707 GET_MODE_NAME (rld[r].outmode));
6708 print_inline_rtx (f, rld[r].out, 24);
6709 fprintf (f, "\n\t");
6712 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6714 fprintf (f, "%s (opnum = %d)",
6715 reload_when_needed_name[(int) rld[r].when_needed],
6716 rld[r].opnum);
6718 if (rld[r].optional)
6719 fprintf (f, ", optional");
6721 if (rld[r].nongroup)
6722 fprintf (f, ", nongroup");
6724 if (rld[r].inc != 0)
6725 fprintf (f, ", inc by %d", rld[r].inc);
6727 if (rld[r].nocombine)
6728 fprintf (f, ", can't combine");
6730 if (rld[r].secondary_p)
6731 fprintf (f, ", secondary_reload_p");
6733 if (rld[r].in_reg != 0)
6735 fprintf (f, "\n\treload_in_reg: ");
6736 print_inline_rtx (f, rld[r].in_reg, 24);
6739 if (rld[r].out_reg != 0)
6741 fprintf (f, "\n\treload_out_reg: ");
6742 print_inline_rtx (f, rld[r].out_reg, 24);
6745 if (rld[r].reg_rtx != 0)
6747 fprintf (f, "\n\treload_reg_rtx: ");
6748 print_inline_rtx (f, rld[r].reg_rtx, 24);
6751 prefix = "\n\t";
6752 if (rld[r].secondary_in_reload != -1)
6754 fprintf (f, "%ssecondary_in_reload = %d",
6755 prefix, rld[r].secondary_in_reload);
6756 prefix = ", ";
6759 if (rld[r].secondary_out_reload != -1)
6760 fprintf (f, "%ssecondary_out_reload = %d\n",
6761 prefix, rld[r].secondary_out_reload);
6763 prefix = "\n\t";
6764 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6766 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6767 insn_data[rld[r].secondary_in_icode].name);
6768 prefix = ", ";
6771 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6772 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6773 insn_data[rld[r].secondary_out_icode].name);
6775 fprintf (f, "\n");
6779 void
6780 debug_reload ()
6782 debug_reload_to_stream (stderr);