* system.h (malloc, realloc, calloc, strdup, bzero, bcmp, rindex):
[official-gcc.git] / gcc / caller-save.c
blob787d45c818ef5ebf20ccf6b9884d7cf0d5386034
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "insn-config.h"
26 #include "flags.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "recog.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "toplev.h"
35 #include "tm_p.h"
37 #ifndef MAX_MOVE_MAX
38 #define MAX_MOVE_MAX MOVE_MAX
39 #endif
41 #ifndef MIN_UNITS_PER_WORD
42 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
43 #endif
45 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
47 /* Modes for each hard register that we can save. The smallest mode is wide
48 enough to save the entire contents of the register. When saving the
49 register because it is live we first try to save in multi-register modes.
50 If that is not possible the save is done one register at a time. */
52 static enum machine_mode
53 regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
55 /* For each hard register, a place on the stack where it can be saved,
56 if needed. */
58 static rtx
59 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
61 /* We will only make a register eligible for caller-save if it can be
62 saved in its widest mode with a simple SET insn as long as the memory
63 address is valid. We record the INSN_CODE is those insns here since
64 when we emit them, the addresses might not be valid, so they might not
65 be recognized. */
67 static enum insn_code
68 reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
69 static enum insn_code
70 reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
72 /* Set of hard regs currently residing in save area (during insn scan). */
74 static HARD_REG_SET hard_regs_saved;
76 /* Number of registers currently in hard_regs_saved. */
78 static int n_regs_saved;
80 /* Computed by mark_referenced_regs, all regs referenced in a given
81 insn. */
82 static HARD_REG_SET referenced_regs;
84 /* Computed in mark_set_regs, holds all registers set by the current
85 instruction. */
86 static HARD_REG_SET this_insn_sets;
89 static void mark_set_regs PARAMS ((rtx, rtx, void *));
90 static void mark_referenced_regs PARAMS ((rtx));
91 static int insert_save PARAMS ((struct insn_chain *, int, int,
92 HARD_REG_SET *,
93 enum machine_mode *));
94 static int insert_restore PARAMS ((struct insn_chain *, int, int,
95 int, enum machine_mode *));
96 static struct insn_chain *insert_one_insn PARAMS ((struct insn_chain *, int,
97 enum insn_code, rtx));
98 static void add_stored_regs PARAMS ((rtx, rtx, void *));
100 /* Initialize for caller-save.
102 Look at all the hard registers that are used by a call and for which
103 regclass.c has not already excluded from being used across a call.
105 Ensure that we can find a mode to save the register and that there is a
106 simple insn to save and restore the register. This latter check avoids
107 problems that would occur if we tried to save the MQ register of some
108 machines directly into memory. */
110 void
111 init_caller_save ()
113 rtx addr_reg;
114 int offset;
115 rtx address;
116 int i, j;
117 enum machine_mode mode;
119 /* First find all the registers that we need to deal with and all
120 the modes that they can have. If we can't find a mode to use,
121 we can't have the register live over calls. */
123 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
125 if (call_used_regs[i] && ! call_fixed_regs[i])
127 for (j = 1; j <= MOVE_MAX_WORDS; j++)
129 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
130 VOIDmode);
131 if (regno_save_mode[i][j] == VOIDmode && j == 1)
133 call_fixed_regs[i] = 1;
134 SET_HARD_REG_BIT (call_fixed_reg_set, i);
138 else
139 regno_save_mode[i][1] = VOIDmode;
142 /* The following code tries to approximate the conditions under which
143 we can easily save and restore a register without scratch registers or
144 other complexities. It will usually work, except under conditions where
145 the validity of an insn operand is dependent on the address offset.
146 No such cases are currently known.
148 We first find a typical offset from some BASE_REG_CLASS register.
149 This address is chosen by finding the first register in the class
150 and by finding the smallest power of two that is a valid offset from
151 that register in every mode we will use to save registers. */
153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
154 if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
155 break;
157 if (i == FIRST_PSEUDO_REGISTER)
158 abort ();
160 addr_reg = gen_rtx_REG (Pmode, i);
162 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
164 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
166 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
167 if (regno_save_mode[i][1] != VOIDmode
168 && ! strict_memory_address_p (regno_save_mode[i][1], address))
169 break;
171 if (i == FIRST_PSEUDO_REGISTER)
172 break;
175 /* If we didn't find a valid address, we must use register indirect. */
176 if (offset == 0)
177 address = addr_reg;
179 /* Next we try to form an insn to save and restore the register. We
180 see if such an insn is recognized and meets its constraints. */
182 start_sequence ();
184 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
185 for (mode = 0 ; mode < MAX_MACHINE_MODE; mode++)
186 if (HARD_REGNO_MODE_OK (i, mode))
188 rtx mem = gen_rtx_MEM (mode, address);
189 rtx reg = gen_rtx_REG (mode, i);
190 rtx savepat = gen_rtx_SET (VOIDmode, mem, reg);
191 rtx restpat = gen_rtx_SET (VOIDmode, reg, mem);
192 rtx saveinsn = emit_insn (savepat);
193 rtx restinsn = emit_insn (restpat);
194 int ok;
196 reg_save_code[i][mode] = recog_memoized (saveinsn);
197 reg_restore_code[i][mode] = recog_memoized (restinsn);
199 /* Now extract both insns and see if we can meet their
200 constraints. */
201 ok = (reg_save_code[i][mode] != (enum insn_code)-1
202 && reg_restore_code[i][mode] != (enum insn_code)-1);
203 if (ok)
205 extract_insn (saveinsn);
206 ok = constrain_operands (1);
207 extract_insn (restinsn);
208 ok &= constrain_operands (1);
211 if (! ok)
213 reg_save_code[i][mode] = (enum insn_code) -1;
214 reg_restore_code[i][mode] = (enum insn_code) -1;
217 else
219 reg_save_code[i][mode] = (enum insn_code) -1;
220 reg_restore_code[i][mode] = (enum insn_code) -1;
222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
223 for (j = 1; j <= MOVE_MAX_WORDS; j++)
224 if (reg_save_code [i][regno_save_mode[i][j]] == (enum insn_code) -1)
226 regno_save_mode[i][j] = VOIDmode;
227 if (j == 1)
229 call_fixed_regs[i] = 1;
230 SET_HARD_REG_BIT (call_fixed_reg_set, i);
234 end_sequence ();
237 /* Initialize save areas by showing that we haven't allocated any yet. */
239 void
240 init_save_areas ()
242 int i, j;
244 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
245 for (j = 1; j <= MOVE_MAX_WORDS; j++)
246 regno_save_mem[i][j] = 0;
249 /* Allocate save areas for any hard registers that might need saving.
250 We take a conservative approach here and look for call-clobbered hard
251 registers that are assigned to pseudos that cross calls. This may
252 overestimate slightly (especially if some of these registers are later
253 used as spill registers), but it should not be significant.
255 Future work:
257 In the fallback case we should iterate backwards across all possible
258 modes for the save, choosing the largest available one instead of
259 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
261 We do not try to use "move multiple" instructions that exist
262 on some machines (such as the 68k moveml). It could be a win to try
263 and use them when possible. The hard part is doing it in a way that is
264 machine independent since they might be saving non-consecutive
265 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
267 void
268 setup_save_areas ()
270 int i, j, k;
271 unsigned int r;
272 HARD_REG_SET hard_regs_used;
274 /* Allocate space in the save area for the largest multi-register
275 pseudos first, then work backwards to single register
276 pseudos. */
278 /* Find and record all call-used hard-registers in this function. */
279 CLEAR_HARD_REG_SET (hard_regs_used);
280 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
281 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
283 unsigned int regno = reg_renumber[i];
284 unsigned int endregno
285 = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
287 for (r = regno; r < endregno; r++)
288 if (call_used_regs[r])
289 SET_HARD_REG_BIT (hard_regs_used, r);
292 /* Now run through all the call-used hard-registers and allocate
293 space for them in the caller-save area. Try to allocate space
294 in a manner which allows multi-register saves/restores to be done. */
296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
297 for (j = MOVE_MAX_WORDS; j > 0; j--)
299 int do_save = 1;
301 /* If no mode exists for this size, try another. Also break out
302 if we have already saved this hard register. */
303 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
304 continue;
306 /* See if any register in this group has been saved. */
307 for (k = 0; k < j; k++)
308 if (regno_save_mem[i + k][1])
310 do_save = 0;
311 break;
313 if (! do_save)
314 continue;
316 for (k = 0; k < j; k++)
317 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
319 do_save = 0;
320 break;
322 if (! do_save)
323 continue;
325 /* We have found an acceptable mode to store in. */
326 regno_save_mem[i][j]
327 = assign_stack_local (regno_save_mode[i][j],
328 GET_MODE_SIZE (regno_save_mode[i][j]), 0);
330 /* Setup single word save area just in case... */
331 for (k = 0; k < j; k++)
333 /* This should not depend on WORDS_BIG_ENDIAN.
334 The order of words in regs is the same as in memory. */
335 rtx temp = gen_rtx_MEM (regno_save_mode[i + k][1],
336 XEXP (regno_save_mem[i][j], 0));
338 regno_save_mem[i + k][1]
339 = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
343 /* Now loop again and set the alias set of any save areas we made to
344 the alias set used to represent frame objects. */
345 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
346 for (j = MOVE_MAX_WORDS; j > 0; j--)
347 if (regno_save_mem[i][j] != 0)
348 MEM_ALIAS_SET (regno_save_mem[i][j]) = get_frame_alias_set ();
351 /* Find the places where hard regs are live across calls and save them. */
353 void
354 save_call_clobbered_regs ()
356 struct insn_chain *chain, *next;
357 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
359 CLEAR_HARD_REG_SET (hard_regs_saved);
360 n_regs_saved = 0;
362 for (chain = reload_insn_chain; chain != 0; chain = next)
364 rtx insn = chain->insn;
365 enum rtx_code code = GET_CODE (insn);
367 next = chain->next;
369 if (chain->is_caller_save_insn)
370 abort ();
372 if (GET_RTX_CLASS (code) == 'i')
374 /* If some registers have been saved, see if INSN references
375 any of them. We must restore them before the insn if so. */
377 if (n_regs_saved)
379 int regno;
381 if (code == JUMP_INSN)
382 /* Restore all registers if this is a JUMP_INSN. */
383 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
384 else
386 CLEAR_HARD_REG_SET (referenced_regs);
387 mark_referenced_regs (PATTERN (insn));
388 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
391 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
392 if (TEST_HARD_REG_BIT (referenced_regs, regno))
393 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
396 if (code == CALL_INSN)
398 int regno;
399 HARD_REG_SET hard_regs_to_save;
401 /* Use the register life information in CHAIN to compute which
402 regs are live during the call. */
403 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
404 &chain->live_throughout);
405 /* Save hard registers always in the widest mode availble. */
406 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
407 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
408 save_mode [regno] = regno_save_mode [regno][1];
409 else
410 save_mode [regno] = VOIDmode;
412 /* Look trought all live pseudos, mark their hard registers
413 and choose proper mode for saving. */
414 EXECUTE_IF_SET_IN_REG_SET
415 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno,
417 int r = reg_renumber[regno];
418 int nregs;
420 if (r >= 0)
422 enum machine_mode mode;
424 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
425 mode = HARD_REGNO_CALLER_SAVE_MODE
426 (r, nregs, PSEUDO_REGNO_MODE (regno));
427 if (GET_MODE_BITSIZE (mode)
428 > GET_MODE_BITSIZE (save_mode[r]))
429 save_mode[r] = mode;
430 while (nregs-- > 0)
431 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
433 else
434 abort ();
437 /* Record all registers set in this call insn. These don't need
438 to be saved. N.B. the call insn might set a subreg of a
439 multi-hard-reg pseudo; then the pseudo is considered live
440 during the call, but the subreg that is set isn't. */
441 CLEAR_HARD_REG_SET (this_insn_sets);
442 note_stores (PATTERN (insn), mark_set_regs, NULL);
444 /* Compute which hard regs must be saved before this call. */
445 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
446 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
447 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
448 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
450 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
451 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
452 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
454 /* Must recompute n_regs_saved. */
455 n_regs_saved = 0;
456 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
457 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
458 n_regs_saved++;
462 if (chain->next == 0 || chain->next->block > chain->block)
464 int regno;
465 /* At the end of the basic block, we must restore any registers that
466 remain saved. If the last insn in the block is a JUMP_INSN, put
467 the restore before the insn, otherwise, put it after the insn. */
469 if (n_regs_saved)
470 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
471 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
472 regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN,
473 regno, MOVE_MAX_WORDS, save_mode);
478 /* Here from note_stores when an insn stores a value in a register.
479 Set the proper bit or bits in this_insn_sets. All pseudos that have
480 been assigned hard regs have had their register number changed already,
481 so we can ignore pseudos. */
482 static void
483 mark_set_regs (reg, setter, data)
484 rtx reg;
485 rtx setter ATTRIBUTE_UNUSED;
486 void *data ATTRIBUTE_UNUSED;
488 register int regno, endregno, i;
489 enum machine_mode mode = GET_MODE (reg);
490 int word = 0;
492 if (GET_CODE (reg) == SUBREG)
494 word = SUBREG_WORD (reg);
495 reg = SUBREG_REG (reg);
498 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
499 return;
501 regno = REGNO (reg) + word;
502 endregno = regno + HARD_REGNO_NREGS (regno, mode);
504 for (i = regno; i < endregno; i++)
505 SET_HARD_REG_BIT (this_insn_sets, i);
508 /* Here from note_stores when an insn stores a value in a register.
509 Set the proper bit or bits in the passed regset. All pseudos that have
510 been assigned hard regs have had their register number changed already,
511 so we can ignore pseudos. */
512 static void
513 add_stored_regs (reg, setter, data)
514 rtx reg;
515 rtx setter;
516 void *data;
518 register int regno, endregno, i;
519 enum machine_mode mode = GET_MODE (reg);
520 int word = 0;
522 if (GET_CODE (setter) == CLOBBER)
523 return;
525 while (GET_CODE (reg) == SUBREG)
527 word += SUBREG_WORD (reg);
528 reg = SUBREG_REG (reg);
531 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
532 return;
534 regno = REGNO (reg) + word;
535 endregno = regno + HARD_REGNO_NREGS (regno, mode);
537 for (i = regno; i < endregno; i++)
538 SET_REGNO_REG_SET ((regset) data, i);
541 /* Walk X and record all referenced registers in REFERENCED_REGS. */
542 static void
543 mark_referenced_regs (x)
544 rtx x;
546 enum rtx_code code = GET_CODE (x);
547 const char *fmt;
548 int i, j;
550 if (code == SET)
551 mark_referenced_regs (SET_SRC (x));
552 if (code == SET || code == CLOBBER)
554 x = SET_DEST (x);
555 code = GET_CODE (x);
556 if (code == REG || code == PC || code == CC0
557 || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
558 /* If we're setting only part of a multi-word register,
559 we shall mark it as referenced, because the words
560 that are not being set should be restored. */
561 && ((GET_MODE_SIZE (GET_MODE (x))
562 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
563 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
564 <= UNITS_PER_WORD))))
565 return;
567 if (code == MEM || code == SUBREG)
569 x = XEXP (x, 0);
570 code = GET_CODE (x);
573 if (code == REG)
575 int regno = REGNO (x);
576 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
577 : reg_renumber[regno]);
579 if (hardregno >= 0)
581 int nregs = HARD_REGNO_NREGS (hardregno, GET_MODE (x));
582 while (nregs-- > 0)
583 SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
585 /* If this is a pseudo that did not get a hard register, scan its
586 memory location, since it might involve the use of another
587 register, which might be saved. */
588 else if (reg_equiv_mem[regno] != 0)
589 mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
590 else if (reg_equiv_address[regno] != 0)
591 mark_referenced_regs (reg_equiv_address[regno]);
592 return;
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
598 if (fmt[i] == 'e')
599 mark_referenced_regs (XEXP (x, i));
600 else if (fmt[i] == 'E')
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
602 mark_referenced_regs (XVECEXP (x, i, j));
606 /* Insert a sequence of insns to restore. Place these insns in front of
607 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
608 the maximum number of registers which should be restored during this call.
609 It should never be less than 1 since we only work with entire registers.
611 Note that we have verified in init_caller_save that we can do this
612 with a simple SET, so use it. Set INSN_CODE to what we save there
613 since the address might not be valid so the insn might not be recognized.
614 These insns will be reloaded and have register elimination done by
615 find_reload, so we need not worry about that here.
617 Return the extra number of registers saved. */
619 static int
620 insert_restore (chain, before_p, regno, maxrestore, save_mode)
621 struct insn_chain *chain;
622 int before_p;
623 int regno;
624 int maxrestore;
625 enum machine_mode *save_mode;
627 int i, k;
628 rtx pat = NULL_RTX;
629 enum insn_code code = CODE_FOR_nothing;
630 unsigned int numregs = 0;
631 struct insn_chain *new;
632 rtx mem;
634 /* A common failure mode if register status is not correct in the RTL
635 is for this routine to be called with a REGNO we didn't expect to
636 save. That will cause us to write an insn with a (nil) SET_DEST
637 or SET_SRC. Instead of doing so and causing a crash later, check
638 for this common case and abort here instead. This will remove one
639 step in debugging such problems. */
641 if (regno_save_mem[regno][1] == 0)
642 abort ();
644 /* Get the pattern to emit and update our status.
646 See if we can restore `maxrestore' registers at once. Work
647 backwards to the single register case. */
648 for (i = maxrestore; i > 0; i--)
650 int j;
651 int ok = 1;
653 if (regno_save_mem[regno][i] == 0)
654 continue;
656 for (j = 0; j < i; j++)
657 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
659 ok = 0;
660 break;
662 /* Must do this one restore at a time */
663 if (! ok)
664 continue;
666 numregs = i;
667 break;
670 mem = regno_save_mem [regno][numregs];
671 if (save_mode [regno] != VOIDmode
672 && save_mode [regno] != GET_MODE (mem)
673 && numregs == HARD_REGNO_NREGS (regno, save_mode [regno]))
674 mem = change_address (mem, save_mode[regno], XEXP (mem, 0));
675 pat = gen_rtx_SET (VOIDmode,
676 gen_rtx_REG (GET_MODE (mem),
677 regno), mem);
678 code = reg_restore_code[regno][GET_MODE (mem)];
679 new = insert_one_insn (chain, before_p, code, pat);
681 /* Clear status for all registers we restored. */
682 for (k = 0; k < i; k++)
684 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
685 SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
686 n_regs_saved--;
691 /* Tell our callers how many extra registers we saved/restored */
692 return numregs - 1;
695 /* Like insert_restore above, but save registers instead. */
696 static int
697 insert_save (chain, before_p, regno, to_save, save_mode)
698 struct insn_chain *chain;
699 int before_p;
700 int regno;
701 HARD_REG_SET *to_save;
702 enum machine_mode *save_mode;
704 int i;
705 unsigned int k;
706 rtx pat = NULL_RTX;
707 enum insn_code code = CODE_FOR_nothing;
708 unsigned int numregs = 0;
709 struct insn_chain *new;
710 rtx mem;
712 /* A common failure mode if register status is not correct in the RTL
713 is for this routine to be called with a REGNO we didn't expect to
714 save. That will cause us to write an insn with a (nil) SET_DEST
715 or SET_SRC. Instead of doing so and causing a crash later, check
716 for this common case and abort here instead. This will remove one
717 step in debugging such problems. */
719 if (regno_save_mem[regno][1] == 0)
720 abort ();
722 /* Get the pattern to emit and update our status.
724 See if we can save several registers with a single instruction.
725 Work backwards to the single register case. */
726 for (i = MOVE_MAX_WORDS; i > 0; i--)
728 int j;
729 int ok = 1;
730 if (regno_save_mem[regno][i] == 0)
731 continue;
733 for (j = 0; j < i; j++)
734 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
736 ok = 0;
737 break;
739 /* Must do this one save at a time */
740 if (! ok)
741 continue;
743 numregs = i;
744 break;
747 mem = regno_save_mem [regno][numregs];
748 if (save_mode [regno] != VOIDmode
749 && save_mode [regno] != GET_MODE (mem)
750 && numregs == HARD_REGNO_NREGS (regno, save_mode [regno]))
751 mem = change_address (mem, save_mode[regno], XEXP (mem, 0));
752 pat = gen_rtx_SET (VOIDmode, mem,
753 gen_rtx_REG (GET_MODE (mem),
754 regno));
755 code = reg_save_code[regno][GET_MODE (mem)];
756 new = insert_one_insn (chain, before_p, code, pat);
758 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
759 for (k = 0; k < numregs; k++)
761 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
762 SET_REGNO_REG_SET (&new->dead_or_set, regno + k);
763 n_regs_saved++;
766 /* Tell our callers how many extra registers we saved/restored */
767 return numregs - 1;
770 /* Emit a new caller-save insn and set the code. */
771 static struct insn_chain *
772 insert_one_insn (chain, before_p, code, pat)
773 struct insn_chain *chain;
774 int before_p;
775 enum insn_code code;
776 rtx pat;
778 rtx insn = chain->insn;
779 struct insn_chain *new;
781 #ifdef HAVE_cc0
782 /* If INSN references CC0, put our insns in front of the insn that sets
783 CC0. This is always safe, since the only way we could be passed an
784 insn that references CC0 is for a restore, and doing a restore earlier
785 isn't a problem. We do, however, assume here that CALL_INSNs don't
786 reference CC0. Guard against non-INSN's like CODE_LABEL. */
788 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
789 && before_p
790 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
791 chain = chain->prev, insn = chain->insn;
792 #endif
794 new = new_insn_chain ();
795 if (before_p)
797 rtx link;
799 new->prev = chain->prev;
800 if (new->prev != 0)
801 new->prev->next = new;
802 else
803 reload_insn_chain = new;
805 chain->prev = new;
806 new->next = chain;
807 new->insn = emit_insn_before (pat, insn);
808 /* ??? It would be nice if we could exclude the already / still saved
809 registers from the live sets. */
810 COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
811 /* Registers that die in CHAIN->INSN still live in the new insn. */
812 for (link = REG_NOTES (chain->insn); link; link = XEXP (link, 1))
814 if (REG_NOTE_KIND (link) == REG_DEAD)
816 rtx reg = XEXP (link, 0);
817 int regno, i;
819 if (GET_CODE (reg) != REG)
820 abort ();
822 regno = REGNO (reg);
823 if (regno >= FIRST_PSEUDO_REGISTER)
824 regno = reg_renumber[regno];
825 if (regno < 0)
826 continue;
827 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
828 i >= 0; i--)
829 SET_REGNO_REG_SET (&new->live_throughout, regno + i);
832 CLEAR_REG_SET (&new->dead_or_set);
833 if (chain->insn == BLOCK_HEAD (chain->block))
834 BLOCK_HEAD (chain->block) = new->insn;
836 else
838 new->next = chain->next;
839 if (new->next != 0)
840 new->next->prev = new;
841 chain->next = new;
842 new->prev = chain;
843 new->insn = emit_insn_after (pat, insn);
844 /* ??? It would be nice if we could exclude the already / still saved
845 registers from the live sets, and observe REG_UNUSED notes. */
846 COPY_REG_SET (&new->live_throughout, &chain->live_throughout);
847 /* Registers that are set in CHAIN->INSN live in the new insn.
848 (Unless there is a REG_UNUSED note for them, but we don't
849 look for them here.) */
850 note_stores (PATTERN (chain->insn), add_stored_regs,
851 &new->live_throughout);
852 CLEAR_REG_SET (&new->dead_or_set);
853 if (chain->insn == BLOCK_END (chain->block))
854 BLOCK_END (chain->block) = new->insn;
856 new->block = chain->block;
857 new->is_caller_save_insn = 1;
859 INSN_CODE (new->insn) = code;
860 return new;