2014-08-26 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc-4_9-branch / gcc / doc / md.texi
blobf6a710df7cf6176f1aa591a7e8bfde23d6020755
1 @c Copyright (C) 1988-2014 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
5 @ifset INTERNALS
6 @node Machine Desc
7 @chapter Machine Descriptions
8 @cindex machine descriptions
10 A machine description has two parts: a file of instruction patterns
11 (@file{.md} file) and a C header file of macro definitions.
13 The @file{.md} file for a target machine contains a pattern for each
14 instruction that the target machine supports (or at least each instruction
15 that is worth telling the compiler about).  It may also contain comments.
16 A semicolon causes the rest of the line to be a comment, unless the semicolon
17 is inside a quoted string.
19 See the next chapter for information on the C header file.
21 @menu
22 * Overview::            How the machine description is used.
23 * Patterns::            How to write instruction patterns.
24 * Example::             An explained example of a @code{define_insn} pattern.
25 * RTL Template::        The RTL template defines what insns match a pattern.
26 * Output Template::     The output template says how to make assembler code
27                         from such an insn.
28 * Output Statement::    For more generality, write C code to output
29                         the assembler code.
30 * Predicates::          Controlling what kinds of operands can be used
31                         for an insn.
32 * Constraints::         Fine-tuning operand selection.
33 * Standard Names::      Names mark patterns to use for code generation.
34 * Pattern Ordering::    When the order of patterns makes a difference.
35 * Dependent Patterns::  Having one pattern may make you need another.
36 * Jump Patterns::       Special considerations for patterns for jump insns.
37 * Looping Patterns::    How to define patterns for special looping insns.
38 * Insn Canonicalizations::Canonicalization of Instructions
39 * Expander Definitions::Generating a sequence of several RTL insns
40                         for a standard operation.
41 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
42 * Including Patterns::  Including Patterns in Machine Descriptions.
43 * Peephole Definitions::Defining machine-specific peephole optimizations.
44 * Insn Attributes::     Specifying the value of attributes for generated insns.
45 * Conditional Execution::Generating @code{define_insn} patterns for
46                          predication.
47 * Define Subst::        Generating @code{define_insn} and @code{define_expand}
48                         patterns from other patterns.
49 * Constant Definitions::Defining symbolic constants that can be used in the
50                         md file.
51 * Iterators::           Using iterators to generate patterns from a template.
52 @end menu
54 @node Overview
55 @section Overview of How the Machine Description is Used
57 There are three main conversions that happen in the compiler:
59 @enumerate
61 @item
62 The front end reads the source code and builds a parse tree.
64 @item
65 The parse tree is used to generate an RTL insn list based on named
66 instruction patterns.
68 @item
69 The insn list is matched against the RTL templates to produce assembler
70 code.
72 @end enumerate
74 For the generate pass, only the names of the insns matter, from either a
75 named @code{define_insn} or a @code{define_expand}.  The compiler will
76 choose the pattern with the right name and apply the operands according
77 to the documentation later in this chapter, without regard for the RTL
78 template or operand constraints.  Note that the names the compiler looks
79 for are hard-coded in the compiler---it will ignore unnamed patterns and
80 patterns with names it doesn't know about, but if you don't provide a
81 named pattern it needs, it will abort.
83 If a @code{define_insn} is used, the template given is inserted into the
84 insn list.  If a @code{define_expand} is used, one of three things
85 happens, based on the condition logic.  The condition logic may manually
86 create new insns for the insn list, say via @code{emit_insn()}, and
87 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
88 compiler to use an alternate way of performing that task.  If it invokes
89 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
90 is inserted, as if the @code{define_expand} were a @code{define_insn}.
92 Once the insn list is generated, various optimization passes convert,
93 replace, and rearrange the insns in the insn list.  This is where the
94 @code{define_split} and @code{define_peephole} patterns get used, for
95 example.
97 Finally, the insn list's RTL is matched up with the RTL templates in the
98 @code{define_insn} patterns, and those patterns are used to emit the
99 final assembly code.  For this purpose, each named @code{define_insn}
100 acts like it's unnamed, since the names are ignored.
102 @node Patterns
103 @section Everything about Instruction Patterns
104 @cindex patterns
105 @cindex instruction patterns
107 @findex define_insn
108 Each instruction pattern contains an incomplete RTL expression, with pieces
109 to be filled in later, operand constraints that restrict how the pieces can
110 be filled in, and an output pattern or C code to generate the assembler
111 output, all wrapped up in a @code{define_insn} expression.
113 A @code{define_insn} is an RTL expression containing four or five operands:
115 @enumerate
116 @item
117 An optional name.  The presence of a name indicate that this instruction
118 pattern can perform a certain standard job for the RTL-generation
119 pass of the compiler.  This pass knows certain names and will use
120 the instruction patterns with those names, if the names are defined
121 in the machine description.
123 The absence of a name is indicated by writing an empty string
124 where the name should go.  Nameless instruction patterns are never
125 used for generating RTL code, but they may permit several simpler insns
126 to be combined later on.
128 Names that are not thus known and used in RTL-generation have no
129 effect; they are equivalent to no name at all.
131 For the purpose of debugging the compiler, you may also specify a
132 name beginning with the @samp{*} character.  Such a name is used only
133 for identifying the instruction in RTL dumps; it is entirely equivalent
134 to having a nameless pattern for all other purposes.
136 @item
137 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
138 RTL expressions which show what the instruction should look like.  It is
139 incomplete because it may contain @code{match_operand},
140 @code{match_operator}, and @code{match_dup} expressions that stand for
141 operands of the instruction.
143 If the vector has only one element, that element is the template for the
144 instruction pattern.  If the vector has multiple elements, then the
145 instruction pattern is a @code{parallel} expression containing the
146 elements described.
148 @item
149 @cindex pattern conditions
150 @cindex conditions, in patterns
151 A condition.  This is a string which contains a C expression that is
152 the final test to decide whether an insn body matches this pattern.
154 @cindex named patterns and conditions
155 For a named pattern, the condition (if present) may not depend on
156 the data in the insn being matched, but only the target-machine-type
157 flags.  The compiler needs to test these conditions during
158 initialization in order to learn exactly which named instructions are
159 available in a particular run.
161 @findex operands
162 For nameless patterns, the condition is applied only when matching an
163 individual insn, and only after the insn has matched the pattern's
164 recognition template.  The insn's operands may be found in the vector
165 @code{operands}.  For an insn where the condition has once matched, it
166 can't be used to control register allocation, for example by excluding
167 certain hard registers or hard register combinations.
169 @item
170 The @dfn{output template}: a string that says how to output matching
171 insns as assembler code.  @samp{%} in this string specifies where
172 to substitute the value of an operand.  @xref{Output Template}.
174 When simple substitution isn't general enough, you can specify a piece
175 of C code to compute the output.  @xref{Output Statement}.
177 @item
178 Optionally, a vector containing the values of attributes for insns matching
179 this pattern.  @xref{Insn Attributes}.
180 @end enumerate
182 @node Example
183 @section Example of @code{define_insn}
184 @cindex @code{define_insn} example
186 Here is an actual example of an instruction pattern, for the 68000/68020.
188 @smallexample
189 (define_insn "tstsi"
190   [(set (cc0)
191         (match_operand:SI 0 "general_operand" "rm"))]
192   ""
193   "*
195   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
196     return \"tstl %0\";
197   return \"cmpl #0,%0\";
198 @}")
199 @end smallexample
201 @noindent
202 This can also be written using braced strings:
204 @smallexample
205 (define_insn "tstsi"
206   [(set (cc0)
207         (match_operand:SI 0 "general_operand" "rm"))]
208   ""
210   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
211     return "tstl %0";
212   return "cmpl #0,%0";
214 @end smallexample
216 This is an instruction that sets the condition codes based on the value of
217 a general operand.  It has no condition, so any insn whose RTL description
218 has the form shown may be handled according to this pattern.  The name
219 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
220 pass that, when it is necessary to test such a value, an insn to do so
221 can be constructed using this pattern.
223 The output control string is a piece of C code which chooses which
224 output template to return based on the kind of operand and the specific
225 type of CPU for which code is being generated.
227 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
229 @node RTL Template
230 @section RTL Template
231 @cindex RTL insn template
232 @cindex generating insns
233 @cindex insns, generating
234 @cindex recognizing insns
235 @cindex insns, recognizing
237 The RTL template is used to define which insns match the particular pattern
238 and how to find their operands.  For named patterns, the RTL template also
239 says how to construct an insn from specified operands.
241 Construction involves substituting specified operands into a copy of the
242 template.  Matching involves determining the values that serve as the
243 operands in the insn being matched.  Both of these activities are
244 controlled by special expression types that direct matching and
245 substitution of the operands.
247 @table @code
248 @findex match_operand
249 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
250 This expression is a placeholder for operand number @var{n} of
251 the insn.  When constructing an insn, operand number @var{n}
252 will be substituted at this point.  When matching an insn, whatever
253 appears at this position in the insn will be taken as operand
254 number @var{n}; but it must satisfy @var{predicate} or this instruction
255 pattern will not match at all.
257 Operand numbers must be chosen consecutively counting from zero in
258 each instruction pattern.  There may be only one @code{match_operand}
259 expression in the pattern for each operand number.  Usually operands
260 are numbered in the order of appearance in @code{match_operand}
261 expressions.  In the case of a @code{define_expand}, any operand numbers
262 used only in @code{match_dup} expressions have higher values than all
263 other operand numbers.
265 @var{predicate} is a string that is the name of a function that
266 accepts two arguments, an expression and a machine mode.
267 @xref{Predicates}.  During matching, the function will be called with
268 the putative operand as the expression and @var{m} as the mode
269 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
270 which normally causes @var{predicate} to accept any mode).  If it
271 returns zero, this instruction pattern fails to match.
272 @var{predicate} may be an empty string; then it means no test is to be
273 done on the operand, so anything which occurs in this position is
274 valid.
276 Most of the time, @var{predicate} will reject modes other than @var{m}---but
277 not always.  For example, the predicate @code{address_operand} uses
278 @var{m} as the mode of memory ref that the address should be valid for.
279 Many predicates accept @code{const_int} nodes even though their mode is
280 @code{VOIDmode}.
282 @var{constraint} controls reloading and the choice of the best register
283 class to use for a value, as explained later (@pxref{Constraints}).
284 If the constraint would be an empty string, it can be omitted.
286 People are often unclear on the difference between the constraint and the
287 predicate.  The predicate helps decide whether a given insn matches the
288 pattern.  The constraint plays no role in this decision; instead, it
289 controls various decisions in the case of an insn which does match.
291 @findex match_scratch
292 @item (match_scratch:@var{m} @var{n} @var{constraint})
293 This expression is also a placeholder for operand number @var{n}
294 and indicates that operand must be a @code{scratch} or @code{reg}
295 expression.
297 When matching patterns, this is equivalent to
299 @smallexample
300 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
301 @end smallexample
303 but, when generating RTL, it produces a (@code{scratch}:@var{m})
304 expression.
306 If the last few expressions in a @code{parallel} are @code{clobber}
307 expressions whose operands are either a hard register or
308 @code{match_scratch}, the combiner can add or delete them when
309 necessary.  @xref{Side Effects}.
311 @findex match_dup
312 @item (match_dup @var{n})
313 This expression is also a placeholder for operand number @var{n}.
314 It is used when the operand needs to appear more than once in the
315 insn.
317 In construction, @code{match_dup} acts just like @code{match_operand}:
318 the operand is substituted into the insn being constructed.  But in
319 matching, @code{match_dup} behaves differently.  It assumes that operand
320 number @var{n} has already been determined by a @code{match_operand}
321 appearing earlier in the recognition template, and it matches only an
322 identical-looking expression.
324 Note that @code{match_dup} should not be used to tell the compiler that
325 a particular register is being used for two operands (example:
326 @code{add} that adds one register to another; the second register is
327 both an input operand and the output operand).  Use a matching
328 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
329 operand is used in two places in the template, such as an instruction
330 that computes both a quotient and a remainder, where the opcode takes
331 two input operands but the RTL template has to refer to each of those
332 twice; once for the quotient pattern and once for the remainder pattern.
334 @findex match_operator
335 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
336 This pattern is a kind of placeholder for a variable RTL expression
337 code.
339 When constructing an insn, it stands for an RTL expression whose
340 expression code is taken from that of operand @var{n}, and whose
341 operands are constructed from the patterns @var{operands}.
343 When matching an expression, it matches an expression if the function
344 @var{predicate} returns nonzero on that expression @emph{and} the
345 patterns @var{operands} match the operands of the expression.
347 Suppose that the function @code{commutative_operator} is defined as
348 follows, to match any expression whose operator is one of the
349 commutative arithmetic operators of RTL and whose mode is @var{mode}:
351 @smallexample
353 commutative_integer_operator (x, mode)
354      rtx x;
355      enum machine_mode mode;
357   enum rtx_code code = GET_CODE (x);
358   if (GET_MODE (x) != mode)
359     return 0;
360   return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
361           || code == EQ || code == NE);
363 @end smallexample
365 Then the following pattern will match any RTL expression consisting
366 of a commutative operator applied to two general operands:
368 @smallexample
369 (match_operator:SI 3 "commutative_operator"
370   [(match_operand:SI 1 "general_operand" "g")
371    (match_operand:SI 2 "general_operand" "g")])
372 @end smallexample
374 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
375 because the expressions to be matched all contain two operands.
377 When this pattern does match, the two operands of the commutative
378 operator are recorded as operands 1 and 2 of the insn.  (This is done
379 by the two instances of @code{match_operand}.)  Operand 3 of the insn
380 will be the entire commutative expression: use @code{GET_CODE
381 (operands[3])} to see which commutative operator was used.
383 The machine mode @var{m} of @code{match_operator} works like that of
384 @code{match_operand}: it is passed as the second argument to the
385 predicate function, and that function is solely responsible for
386 deciding whether the expression to be matched ``has'' that mode.
388 When constructing an insn, argument 3 of the gen-function will specify
389 the operation (i.e.@: the expression code) for the expression to be
390 made.  It should be an RTL expression, whose expression code is copied
391 into a new expression whose operands are arguments 1 and 2 of the
392 gen-function.  The subexpressions of argument 3 are not used;
393 only its expression code matters.
395 When @code{match_operator} is used in a pattern for matching an insn,
396 it usually best if the operand number of the @code{match_operator}
397 is higher than that of the actual operands of the insn.  This improves
398 register allocation because the register allocator often looks at
399 operands 1 and 2 of insns to see if it can do register tying.
401 There is no way to specify constraints in @code{match_operator}.  The
402 operand of the insn which corresponds to the @code{match_operator}
403 never has any constraints because it is never reloaded as a whole.
404 However, if parts of its @var{operands} are matched by
405 @code{match_operand} patterns, those parts may have constraints of
406 their own.
408 @findex match_op_dup
409 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
410 Like @code{match_dup}, except that it applies to operators instead of
411 operands.  When constructing an insn, operand number @var{n} will be
412 substituted at this point.  But in matching, @code{match_op_dup} behaves
413 differently.  It assumes that operand number @var{n} has already been
414 determined by a @code{match_operator} appearing earlier in the
415 recognition template, and it matches only an identical-looking
416 expression.
418 @findex match_parallel
419 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
420 This pattern is a placeholder for an insn that consists of a
421 @code{parallel} expression with a variable number of elements.  This
422 expression should only appear at the top level of an insn pattern.
424 When constructing an insn, operand number @var{n} will be substituted at
425 this point.  When matching an insn, it matches if the body of the insn
426 is a @code{parallel} expression with at least as many elements as the
427 vector of @var{subpat} expressions in the @code{match_parallel}, if each
428 @var{subpat} matches the corresponding element of the @code{parallel},
429 @emph{and} the function @var{predicate} returns nonzero on the
430 @code{parallel} that is the body of the insn.  It is the responsibility
431 of the predicate to validate elements of the @code{parallel} beyond
432 those listed in the @code{match_parallel}.
434 A typical use of @code{match_parallel} is to match load and store
435 multiple expressions, which can contain a variable number of elements
436 in a @code{parallel}.  For example,
438 @smallexample
439 (define_insn ""
440   [(match_parallel 0 "load_multiple_operation"
441      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
442            (match_operand:SI 2 "memory_operand" "m"))
443       (use (reg:SI 179))
444       (clobber (reg:SI 179))])]
445   ""
446   "loadm 0,0,%1,%2")
447 @end smallexample
449 This example comes from @file{a29k.md}.  The function
450 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
451 that subsequent elements in the @code{parallel} are the same as the
452 @code{set} in the pattern, except that they are referencing subsequent
453 registers and memory locations.
455 An insn that matches this pattern might look like:
457 @smallexample
458 (parallel
459  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
460   (use (reg:SI 179))
461   (clobber (reg:SI 179))
462   (set (reg:SI 21)
463        (mem:SI (plus:SI (reg:SI 100)
464                         (const_int 4))))
465   (set (reg:SI 22)
466        (mem:SI (plus:SI (reg:SI 100)
467                         (const_int 8))))])
468 @end smallexample
470 @findex match_par_dup
471 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
472 Like @code{match_op_dup}, but for @code{match_parallel} instead of
473 @code{match_operator}.
475 @end table
477 @node Output Template
478 @section Output Templates and Operand Substitution
479 @cindex output templates
480 @cindex operand substitution
482 @cindex @samp{%} in template
483 @cindex percent sign
484 The @dfn{output template} is a string which specifies how to output the
485 assembler code for an instruction pattern.  Most of the template is a
486 fixed string which is output literally.  The character @samp{%} is used
487 to specify where to substitute an operand; it can also be used to
488 identify places where different variants of the assembler require
489 different syntax.
491 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
492 operand @var{n} at that point in the string.
494 @samp{%} followed by a letter and a digit says to output an operand in an
495 alternate fashion.  Four letters have standard, built-in meanings described
496 below.  The machine description macro @code{PRINT_OPERAND} can define
497 additional letters with nonstandard meanings.
499 @samp{%c@var{digit}} can be used to substitute an operand that is a
500 constant value without the syntax that normally indicates an immediate
501 operand.
503 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
504 the constant is negated before printing.
506 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
507 memory reference, with the actual operand treated as the address.  This may
508 be useful when outputting a ``load address'' instruction, because often the
509 assembler syntax for such an instruction requires you to write the operand
510 as if it were a memory reference.
512 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
513 instruction.
515 @samp{%=} outputs a number which is unique to each instruction in the
516 entire compilation.  This is useful for making local labels to be
517 referred to more than once in a single template that generates multiple
518 assembler instructions.
520 @samp{%} followed by a punctuation character specifies a substitution that
521 does not use an operand.  Only one case is standard: @samp{%%} outputs a
522 @samp{%} into the assembler code.  Other nonstandard cases can be
523 defined in the @code{PRINT_OPERAND} macro.  You must also define
524 which punctuation characters are valid with the
525 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
527 @cindex \
528 @cindex backslash
529 The template may generate multiple assembler instructions.  Write the text
530 for the instructions, with @samp{\;} between them.
532 @cindex matching operands
533 When the RTL contains two operands which are required by constraint to match
534 each other, the output template must refer only to the lower-numbered operand.
535 Matching operands are not always identical, and the rest of the compiler
536 arranges to put the proper RTL expression for printing into the lower-numbered
537 operand.
539 One use of nonstandard letters or punctuation following @samp{%} is to
540 distinguish between different assembler languages for the same machine; for
541 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
542 requires periods in most opcode names, while MIT syntax does not.  For
543 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
544 syntax.  The same file of patterns is used for both kinds of output syntax,
545 but the character sequence @samp{%.} is used in each place where Motorola
546 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
547 defines the sequence to output a period; the macro for MIT syntax defines
548 it to do nothing.
550 @cindex @code{#} in template
551 As a special case, a template consisting of the single character @code{#}
552 instructs the compiler to first split the insn, and then output the
553 resulting instructions separately.  This helps eliminate redundancy in the
554 output templates.   If you have a @code{define_insn} that needs to emit
555 multiple assembler instructions, and there is a matching @code{define_split}
556 already defined, then you can simply use @code{#} as the output template
557 instead of writing an output template that emits the multiple assembler
558 instructions.
560 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
561 of the form @samp{@{option0|option1|option2@}} in the templates.  These
562 describe multiple variants of assembler language syntax.
563 @xref{Instruction Output}.
565 @node Output Statement
566 @section C Statements for Assembler Output
567 @cindex output statements
568 @cindex C statements for assembler output
569 @cindex generating assembler output
571 Often a single fixed template string cannot produce correct and efficient
572 assembler code for all the cases that are recognized by a single
573 instruction pattern.  For example, the opcodes may depend on the kinds of
574 operands; or some unfortunate combinations of operands may require extra
575 machine instructions.
577 If the output control string starts with a @samp{@@}, then it is actually
578 a series of templates, each on a separate line.  (Blank lines and
579 leading spaces and tabs are ignored.)  The templates correspond to the
580 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
581 if a target machine has a two-address add instruction @samp{addr} to add
582 into a register and another @samp{addm} to add a register to memory, you
583 might write this pattern:
585 @smallexample
586 (define_insn "addsi3"
587   [(set (match_operand:SI 0 "general_operand" "=r,m")
588         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
589                  (match_operand:SI 2 "general_operand" "g,r")))]
590   ""
591   "@@
592    addr %2,%0
593    addm %2,%0")
594 @end smallexample
596 @cindex @code{*} in template
597 @cindex asterisk in template
598 If the output control string starts with a @samp{*}, then it is not an
599 output template but rather a piece of C program that should compute a
600 template.  It should execute a @code{return} statement to return the
601 template-string you want.  Most such templates use C string literals, which
602 require doublequote characters to delimit them.  To include these
603 doublequote characters in the string, prefix each one with @samp{\}.
605 If the output control string is written as a brace block instead of a
606 double-quoted string, it is automatically assumed to be C code.  In that
607 case, it is not necessary to put in a leading asterisk, or to escape the
608 doublequotes surrounding C string literals.
610 The operands may be found in the array @code{operands}, whose C data type
611 is @code{rtx []}.
613 It is very common to select different ways of generating assembler code
614 based on whether an immediate operand is within a certain range.  Be
615 careful when doing this, because the result of @code{INTVAL} is an
616 integer on the host machine.  If the host machine has more bits in an
617 @code{int} than the target machine has in the mode in which the constant
618 will be used, then some of the bits you get from @code{INTVAL} will be
619 superfluous.  For proper results, you must carefully disregard the
620 values of those bits.
622 @findex output_asm_insn
623 It is possible to output an assembler instruction and then go on to output
624 or compute more of them, using the subroutine @code{output_asm_insn}.  This
625 receives two arguments: a template-string and a vector of operands.  The
626 vector may be @code{operands}, or it may be another array of @code{rtx}
627 that you declare locally and initialize yourself.
629 @findex which_alternative
630 When an insn pattern has multiple alternatives in its constraints, often
631 the appearance of the assembler code is determined mostly by which alternative
632 was matched.  When this is so, the C code can test the variable
633 @code{which_alternative}, which is the ordinal number of the alternative
634 that was actually satisfied (0 for the first, 1 for the second alternative,
635 etc.).
637 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
638 for registers and @samp{clrmem} for memory locations.  Here is how
639 a pattern could use @code{which_alternative} to choose between them:
641 @smallexample
642 (define_insn ""
643   [(set (match_operand:SI 0 "general_operand" "=r,m")
644         (const_int 0))]
645   ""
646   @{
647   return (which_alternative == 0
648           ? "clrreg %0" : "clrmem %0");
649   @})
650 @end smallexample
652 The example above, where the assembler code to generate was
653 @emph{solely} determined by the alternative, could also have been specified
654 as follows, having the output control string start with a @samp{@@}:
656 @smallexample
657 @group
658 (define_insn ""
659   [(set (match_operand:SI 0 "general_operand" "=r,m")
660         (const_int 0))]
661   ""
662   "@@
663    clrreg %0
664    clrmem %0")
665 @end group
666 @end smallexample
668 If you just need a little bit of C code in one (or a few) alternatives,
669 you can use @samp{*} inside of a @samp{@@} multi-alternative template:
671 @smallexample
672 @group
673 (define_insn ""
674   [(set (match_operand:SI 0 "general_operand" "=r,<,m")
675         (const_int 0))]
676   ""
677   "@@
678    clrreg %0
679    * return stack_mem_p (operands[0]) ? \"push 0\" : \"clrmem %0\";
680    clrmem %0")
681 @end group
682 @end smallexample
684 @node Predicates
685 @section Predicates
686 @cindex predicates
687 @cindex operand predicates
688 @cindex operator predicates
690 A predicate determines whether a @code{match_operand} or
691 @code{match_operator} expression matches, and therefore whether the
692 surrounding instruction pattern will be used for that combination of
693 operands.  GCC has a number of machine-independent predicates, and you
694 can define machine-specific predicates as needed.  By convention,
695 predicates used with @code{match_operand} have names that end in
696 @samp{_operand}, and those used with @code{match_operator} have names
697 that end in @samp{_operator}.
699 All predicates are Boolean functions (in the mathematical sense) of
700 two arguments: the RTL expression that is being considered at that
701 position in the instruction pattern, and the machine mode that the
702 @code{match_operand} or @code{match_operator} specifies.  In this
703 section, the first argument is called @var{op} and the second argument
704 @var{mode}.  Predicates can be called from C as ordinary two-argument
705 functions; this can be useful in output templates or other
706 machine-specific code.
708 Operand predicates can allow operands that are not actually acceptable
709 to the hardware, as long as the constraints give reload the ability to
710 fix them up (@pxref{Constraints}).  However, GCC will usually generate
711 better code if the predicates specify the requirements of the machine
712 instructions as closely as possible.  Reload cannot fix up operands
713 that must be constants (``immediate operands''); you must use a
714 predicate that allows only constants, or else enforce the requirement
715 in the extra condition.
717 @cindex predicates and machine modes
718 @cindex normal predicates
719 @cindex special predicates
720 Most predicates handle their @var{mode} argument in a uniform manner.
721 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
722 any mode.  If @var{mode} is anything else, then @var{op} must have the
723 same mode, unless @var{op} is a @code{CONST_INT} or integer
724 @code{CONST_DOUBLE}.  These RTL expressions always have
725 @code{VOIDmode}, so it would be counterproductive to check that their
726 mode matches.  Instead, predicates that accept @code{CONST_INT} and/or
727 integer @code{CONST_DOUBLE} check that the value stored in the
728 constant will fit in the requested mode.
730 Predicates with this behavior are called @dfn{normal}.
731 @command{genrecog} can optimize the instruction recognizer based on
732 knowledge of how normal predicates treat modes.  It can also diagnose
733 certain kinds of common errors in the use of normal predicates; for
734 instance, it is almost always an error to use a normal predicate
735 without specifying a mode.
737 Predicates that do something different with their @var{mode} argument
738 are called @dfn{special}.  The generic predicates
739 @code{address_operand} and @code{pmode_register_operand} are special
740 predicates.  @command{genrecog} does not do any optimizations or
741 diagnosis when special predicates are used.
743 @menu
744 * Machine-Independent Predicates::  Predicates available to all back ends.
745 * Defining Predicates::             How to write machine-specific predicate
746                                     functions.
747 @end menu
749 @node Machine-Independent Predicates
750 @subsection Machine-Independent Predicates
751 @cindex machine-independent predicates
752 @cindex generic predicates
754 These are the generic predicates available to all back ends.  They are
755 defined in @file{recog.c}.  The first category of predicates allow
756 only constant, or @dfn{immediate}, operands.
758 @defun immediate_operand
759 This predicate allows any sort of constant that fits in @var{mode}.
760 It is an appropriate choice for instructions that take operands that
761 must be constant.
762 @end defun
764 @defun const_int_operand
765 This predicate allows any @code{CONST_INT} expression that fits in
766 @var{mode}.  It is an appropriate choice for an immediate operand that
767 does not allow a symbol or label.
768 @end defun
770 @defun const_double_operand
771 This predicate accepts any @code{CONST_DOUBLE} expression that has
772 exactly @var{mode}.  If @var{mode} is @code{VOIDmode}, it will also
773 accept @code{CONST_INT}.  It is intended for immediate floating point
774 constants.
775 @end defun
777 @noindent
778 The second category of predicates allow only some kind of machine
779 register.
781 @defun register_operand
782 This predicate allows any @code{REG} or @code{SUBREG} expression that
783 is valid for @var{mode}.  It is often suitable for arithmetic
784 instruction operands on a RISC machine.
785 @end defun
787 @defun pmode_register_operand
788 This is a slight variant on @code{register_operand} which works around
789 a limitation in the machine-description reader.
791 @smallexample
792 (match_operand @var{n} "pmode_register_operand" @var{constraint})
793 @end smallexample
795 @noindent
796 means exactly what
798 @smallexample
799 (match_operand:P @var{n} "register_operand" @var{constraint})
800 @end smallexample
802 @noindent
803 would mean, if the machine-description reader accepted @samp{:P}
804 mode suffixes.  Unfortunately, it cannot, because @code{Pmode} is an
805 alias for some other mode, and might vary with machine-specific
806 options.  @xref{Misc}.
807 @end defun
809 @defun scratch_operand
810 This predicate allows hard registers and @code{SCRATCH} expressions,
811 but not pseudo-registers.  It is used internally by @code{match_scratch};
812 it should not be used directly.
813 @end defun
815 @noindent
816 The third category of predicates allow only some kind of memory reference.
818 @defun memory_operand
819 This predicate allows any valid reference to a quantity of mode
820 @var{mode} in memory, as determined by the weak form of
821 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
822 @end defun
824 @defun address_operand
825 This predicate is a little unusual; it allows any operand that is a
826 valid expression for the @emph{address} of a quantity of mode
827 @var{mode}, again determined by the weak form of
828 @code{GO_IF_LEGITIMATE_ADDRESS}.  To first order, if
829 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
830 @code{memory_operand}, then @var{exp} is acceptable to
831 @code{address_operand}.  Note that @var{exp} does not necessarily have
832 the mode @var{mode}.
833 @end defun
835 @defun indirect_operand
836 This is a stricter form of @code{memory_operand} which allows only
837 memory references with a @code{general_operand} as the address
838 expression.  New uses of this predicate are discouraged, because
839 @code{general_operand} is very permissive, so it's hard to tell what
840 an @code{indirect_operand} does or does not allow.  If a target has
841 different requirements for memory operands for different instructions,
842 it is better to define target-specific predicates which enforce the
843 hardware's requirements explicitly.
844 @end defun
846 @defun push_operand
847 This predicate allows a memory reference suitable for pushing a value
848 onto the stack.  This will be a @code{MEM} which refers to
849 @code{stack_pointer_rtx}, with a side-effect in its address expression
850 (@pxref{Incdec}); which one is determined by the
851 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
852 @end defun
854 @defun pop_operand
855 This predicate allows a memory reference suitable for popping a value
856 off the stack.  Again, this will be a @code{MEM} referring to
857 @code{stack_pointer_rtx}, with a side-effect in its address
858 expression.  However, this time @code{STACK_POP_CODE} is expected.
859 @end defun
861 @noindent
862 The fourth category of predicates allow some combination of the above
863 operands.
865 @defun nonmemory_operand
866 This predicate allows any immediate or register operand valid for @var{mode}.
867 @end defun
869 @defun nonimmediate_operand
870 This predicate allows any register or memory operand valid for @var{mode}.
871 @end defun
873 @defun general_operand
874 This predicate allows any immediate, register, or memory operand
875 valid for @var{mode}.
876 @end defun
878 @noindent
879 Finally, there are two generic operator predicates.
881 @defun comparison_operator
882 This predicate matches any expression which performs an arithmetic
883 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
884 expression code.
885 @end defun
887 @defun ordered_comparison_operator
888 This predicate matches any expression which performs an arithmetic
889 comparison in @var{mode} and whose expression code is valid for integer
890 modes; that is, the expression code will be one of @code{eq}, @code{ne},
891 @code{lt}, @code{ltu}, @code{le}, @code{leu}, @code{gt}, @code{gtu},
892 @code{ge}, @code{geu}.
893 @end defun
895 @node Defining Predicates
896 @subsection Defining Machine-Specific Predicates
897 @cindex defining predicates
898 @findex define_predicate
899 @findex define_special_predicate
901 Many machines have requirements for their operands that cannot be
902 expressed precisely using the generic predicates.  You can define
903 additional predicates using @code{define_predicate} and
904 @code{define_special_predicate} expressions.  These expressions have
905 three operands:
907 @itemize @bullet
908 @item
909 The name of the predicate, as it will be referred to in
910 @code{match_operand} or @code{match_operator} expressions.
912 @item
913 An RTL expression which evaluates to true if the predicate allows the
914 operand @var{op}, false if it does not.  This expression can only use
915 the following RTL codes:
917 @table @code
918 @item MATCH_OPERAND
919 When written inside a predicate expression, a @code{MATCH_OPERAND}
920 expression evaluates to true if the predicate it names would allow
921 @var{op}.  The operand number and constraint are ignored.  Due to
922 limitations in @command{genrecog}, you can only refer to generic
923 predicates and predicates that have already been defined.
925 @item MATCH_CODE
926 This expression evaluates to true if @var{op} or a specified
927 subexpression of @var{op} has one of a given list of RTX codes.
929 The first operand of this expression is a string constant containing a
930 comma-separated list of RTX code names (in lower case).  These are the
931 codes for which the @code{MATCH_CODE} will be true.
933 The second operand is a string constant which indicates what
934 subexpression of @var{op} to examine.  If it is absent or the empty
935 string, @var{op} itself is examined.  Otherwise, the string constant
936 must be a sequence of digits and/or lowercase letters.  Each character
937 indicates a subexpression to extract from the current expression; for
938 the first character this is @var{op}, for the second and subsequent
939 characters it is the result of the previous character.  A digit
940 @var{n} extracts @samp{@w{XEXP (@var{e}, @var{n})}}; a letter @var{l}
941 extracts @samp{@w{XVECEXP (@var{e}, 0, @var{n})}} where @var{n} is the
942 alphabetic ordinal of @var{l} (0 for `a', 1 for 'b', and so on).  The
943 @code{MATCH_CODE} then examines the RTX code of the subexpression
944 extracted by the complete string.  It is not possible to extract
945 components of an @code{rtvec} that is not at position 0 within its RTX
946 object.
948 @item MATCH_TEST
949 This expression has one operand, a string constant containing a C
950 expression.  The predicate's arguments, @var{op} and @var{mode}, are
951 available with those names in the C expression.  The @code{MATCH_TEST}
952 evaluates to true if the C expression evaluates to a nonzero value.
953 @code{MATCH_TEST} expressions must not have side effects.
955 @item  AND
956 @itemx IOR
957 @itemx NOT
958 @itemx IF_THEN_ELSE
959 The basic @samp{MATCH_} expressions can be combined using these
960 logical operators, which have the semantics of the C operators
961 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively.  As
962 in Common Lisp, you may give an @code{AND} or @code{IOR} expression an
963 arbitrary number of arguments; this has exactly the same effect as
964 writing a chain of two-argument @code{AND} or @code{IOR} expressions.
965 @end table
967 @item
968 An optional block of C code, which should execute
969 @samp{@w{return true}} if the predicate is found to match and
970 @samp{@w{return false}} if it does not.  It must not have any side
971 effects.  The predicate arguments, @var{op} and @var{mode}, are
972 available with those names.
974 If a code block is present in a predicate definition, then the RTL
975 expression must evaluate to true @emph{and} the code block must
976 execute @samp{@w{return true}} for the predicate to allow the operand.
977 The RTL expression is evaluated first; do not re-check anything in the
978 code block that was checked in the RTL expression.
979 @end itemize
981 The program @command{genrecog} scans @code{define_predicate} and
982 @code{define_special_predicate} expressions to determine which RTX
983 codes are possibly allowed.  You should always make this explicit in
984 the RTL predicate expression, using @code{MATCH_OPERAND} and
985 @code{MATCH_CODE}.
987 Here is an example of a simple predicate definition, from the IA64
988 machine description:
990 @smallexample
991 @group
992 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
993 (define_predicate "small_addr_symbolic_operand"
994   (and (match_code "symbol_ref")
995        (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
996 @end group
997 @end smallexample
999 @noindent
1000 And here is another, showing the use of the C block.
1002 @smallexample
1003 @group
1004 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
1005 (define_predicate "gr_register_operand"
1006   (match_operand 0 "register_operand")
1008   unsigned int regno;
1009   if (GET_CODE (op) == SUBREG)
1010     op = SUBREG_REG (op);
1012   regno = REGNO (op);
1013   return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
1015 @end group
1016 @end smallexample
1018 Predicates written with @code{define_predicate} automatically include
1019 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
1020 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
1021 @code{CONST_DOUBLE}.  They do @emph{not} check specifically for
1022 integer @code{CONST_DOUBLE}, nor do they test that the value of either
1023 kind of constant fits in the requested mode.  This is because
1024 target-specific predicates that take constants usually have to do more
1025 stringent value checks anyway.  If you need the exact same treatment
1026 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
1027 provide, use a @code{MATCH_OPERAND} subexpression to call
1028 @code{const_int_operand}, @code{const_double_operand}, or
1029 @code{immediate_operand}.
1031 Predicates written with @code{define_special_predicate} do not get any
1032 automatic mode checks, and are treated as having special mode handling
1033 by @command{genrecog}.
1035 The program @command{genpreds} is responsible for generating code to
1036 test predicates.  It also writes a header file containing function
1037 declarations for all machine-specific predicates.  It is not necessary
1038 to declare these predicates in @file{@var{cpu}-protos.h}.
1039 @end ifset
1041 @c Most of this node appears by itself (in a different place) even
1042 @c when the INTERNALS flag is clear.  Passages that require the internals
1043 @c manual's context are conditionalized to appear only in the internals manual.
1044 @ifset INTERNALS
1045 @node Constraints
1046 @section Operand Constraints
1047 @cindex operand constraints
1048 @cindex constraints
1050 Each @code{match_operand} in an instruction pattern can specify
1051 constraints for the operands allowed.  The constraints allow you to
1052 fine-tune matching within the set of operands allowed by the
1053 predicate.
1055 @end ifset
1056 @ifclear INTERNALS
1057 @node Constraints
1058 @section Constraints for @code{asm} Operands
1059 @cindex operand constraints, @code{asm}
1060 @cindex constraints, @code{asm}
1061 @cindex @code{asm} constraints
1063 Here are specific details on what constraint letters you can use with
1064 @code{asm} operands.
1065 @end ifclear
1066 Constraints can say whether
1067 an operand may be in a register, and which kinds of register; whether the
1068 operand can be a memory reference, and which kinds of address; whether the
1069 operand may be an immediate constant, and which possible values it may
1070 have.  Constraints can also require two operands to match.
1071 Side-effects aren't allowed in operands of inline @code{asm}, unless
1072 @samp{<} or @samp{>} constraints are used, because there is no guarantee
1073 that the side-effects will happen exactly once in an instruction that can update
1074 the addressing register.
1076 @ifset INTERNALS
1077 @menu
1078 * Simple Constraints::  Basic use of constraints.
1079 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1080 * Class Preferences::   Constraints guide which hard register to put things in.
1081 * Modifiers::           More precise control over effects of constraints.
1082 * Machine Constraints:: Existing constraints for some particular machines.
1083 * Disable Insn Alternatives:: Disable insn alternatives using the @code{enabled} attribute.
1084 * Define Constraints::  How to define machine-specific constraints.
1085 * C Constraint Interface:: How to test constraints from C code.
1086 @end menu
1087 @end ifset
1089 @ifclear INTERNALS
1090 @menu
1091 * Simple Constraints::  Basic use of constraints.
1092 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1093 * Modifiers::           More precise control over effects of constraints.
1094 * Machine Constraints:: Special constraints for some particular machines.
1095 @end menu
1096 @end ifclear
1098 @node Simple Constraints
1099 @subsection Simple Constraints
1100 @cindex simple constraints
1102 The simplest kind of constraint is a string full of letters, each of
1103 which describes one kind of operand that is permitted.  Here are
1104 the letters that are allowed:
1106 @table @asis
1107 @item whitespace
1108 Whitespace characters are ignored and can be inserted at any position
1109 except the first.  This enables each alternative for different operands to
1110 be visually aligned in the machine description even if they have different
1111 number of constraints and modifiers.
1113 @cindex @samp{m} in constraint
1114 @cindex memory references in constraints
1115 @item @samp{m}
1116 A memory operand is allowed, with any kind of address that the machine
1117 supports in general.
1118 Note that the letter used for the general memory constraint can be
1119 re-defined by a back end using the @code{TARGET_MEM_CONSTRAINT} macro.
1121 @cindex offsettable address
1122 @cindex @samp{o} in constraint
1123 @item @samp{o}
1124 A memory operand is allowed, but only if the address is
1125 @dfn{offsettable}.  This means that adding a small integer (actually,
1126 the width in bytes of the operand, as determined by its machine mode)
1127 may be added to the address and the result is also a valid memory
1128 address.
1130 @cindex autoincrement/decrement addressing
1131 For example, an address which is constant is offsettable; so is an
1132 address that is the sum of a register and a constant (as long as a
1133 slightly larger constant is also within the range of address-offsets
1134 supported by the machine); but an autoincrement or autodecrement
1135 address is not offsettable.  More complicated indirect/indexed
1136 addresses may or may not be offsettable depending on the other
1137 addressing modes that the machine supports.
1139 Note that in an output operand which can be matched by another
1140 operand, the constraint letter @samp{o} is valid only when accompanied
1141 by both @samp{<} (if the target machine has predecrement addressing)
1142 and @samp{>} (if the target machine has preincrement addressing).
1144 @cindex @samp{V} in constraint
1145 @item @samp{V}
1146 A memory operand that is not offsettable.  In other words, anything that
1147 would fit the @samp{m} constraint but not the @samp{o} constraint.
1149 @cindex @samp{<} in constraint
1150 @item @samp{<}
1151 A memory operand with autodecrement addressing (either predecrement or
1152 postdecrement) is allowed.  In inline @code{asm} this constraint is only
1153 allowed if the operand is used exactly once in an instruction that can
1154 handle the side-effects.  Not using an operand with @samp{<} in constraint
1155 string in the inline @code{asm} pattern at all or using it in multiple
1156 instructions isn't valid, because the side-effects wouldn't be performed
1157 or would be performed more than once.  Furthermore, on some targets
1158 the operand with @samp{<} in constraint string must be accompanied by
1159 special instruction suffixes like @code{%U0} instruction suffix on PowerPC
1160 or @code{%P0} on IA-64.
1162 @cindex @samp{>} in constraint
1163 @item @samp{>}
1164 A memory operand with autoincrement addressing (either preincrement or
1165 postincrement) is allowed.  In inline @code{asm} the same restrictions
1166 as for @samp{<} apply.
1168 @cindex @samp{r} in constraint
1169 @cindex registers in constraints
1170 @item @samp{r}
1171 A register operand is allowed provided that it is in a general
1172 register.
1174 @cindex constants in constraints
1175 @cindex @samp{i} in constraint
1176 @item @samp{i}
1177 An immediate integer operand (one with constant value) is allowed.
1178 This includes symbolic constants whose values will be known only at
1179 assembly time or later.
1181 @cindex @samp{n} in constraint
1182 @item @samp{n}
1183 An immediate integer operand with a known numeric value is allowed.
1184 Many systems cannot support assembly-time constants for operands less
1185 than a word wide.  Constraints for these operands should use @samp{n}
1186 rather than @samp{i}.
1188 @cindex @samp{I} in constraint
1189 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1190 Other letters in the range @samp{I} through @samp{P} may be defined in
1191 a machine-dependent fashion to permit immediate integer operands with
1192 explicit integer values in specified ranges.  For example, on the
1193 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1194 This is the range permitted as a shift count in the shift
1195 instructions.
1197 @cindex @samp{E} in constraint
1198 @item @samp{E}
1199 An immediate floating operand (expression code @code{const_double}) is
1200 allowed, but only if the target floating point format is the same as
1201 that of the host machine (on which the compiler is running).
1203 @cindex @samp{F} in constraint
1204 @item @samp{F}
1205 An immediate floating operand (expression code @code{const_double} or
1206 @code{const_vector}) is allowed.
1208 @cindex @samp{G} in constraint
1209 @cindex @samp{H} in constraint
1210 @item @samp{G}, @samp{H}
1211 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1212 permit immediate floating operands in particular ranges of values.
1214 @cindex @samp{s} in constraint
1215 @item @samp{s}
1216 An immediate integer operand whose value is not an explicit integer is
1217 allowed.
1219 This might appear strange; if an insn allows a constant operand with a
1220 value not known at compile time, it certainly must allow any known
1221 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
1222 better code to be generated.
1224 For example, on the 68000 in a fullword instruction it is possible to
1225 use an immediate operand; but if the immediate value is between @minus{}128
1226 and 127, better code results from loading the value into a register and
1227 using the register.  This is because the load into the register can be
1228 done with a @samp{moveq} instruction.  We arrange for this to happen
1229 by defining the letter @samp{K} to mean ``any integer outside the
1230 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1231 constraints.
1233 @cindex @samp{g} in constraint
1234 @item @samp{g}
1235 Any register, memory or immediate integer operand is allowed, except for
1236 registers that are not general registers.
1238 @cindex @samp{X} in constraint
1239 @item @samp{X}
1240 @ifset INTERNALS
1241 Any operand whatsoever is allowed, even if it does not satisfy
1242 @code{general_operand}.  This is normally used in the constraint of
1243 a @code{match_scratch} when certain alternatives will not actually
1244 require a scratch register.
1245 @end ifset
1246 @ifclear INTERNALS
1247 Any operand whatsoever is allowed.
1248 @end ifclear
1250 @cindex @samp{0} in constraint
1251 @cindex digits in constraint
1252 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1253 An operand that matches the specified operand number is allowed.  If a
1254 digit is used together with letters within the same alternative, the
1255 digit should come last.
1257 This number is allowed to be more than a single digit.  If multiple
1258 digits are encountered consecutively, they are interpreted as a single
1259 decimal integer.  There is scant chance for ambiguity, since to-date
1260 it has never been desirable that @samp{10} be interpreted as matching
1261 either operand 1 @emph{or} operand 0.  Should this be desired, one
1262 can use multiple alternatives instead.
1264 @cindex matching constraint
1265 @cindex constraint, matching
1266 This is called a @dfn{matching constraint} and what it really means is
1267 that the assembler has only a single operand that fills two roles
1268 @ifset INTERNALS
1269 considered separate in the RTL insn.  For example, an add insn has two
1270 input operands and one output operand in the RTL, but on most CISC
1271 @end ifset
1272 @ifclear INTERNALS
1273 which @code{asm} distinguishes.  For example, an add instruction uses
1274 two input operands and an output operand, but on most CISC
1275 @end ifclear
1276 machines an add instruction really has only two operands, one of them an
1277 input-output operand:
1279 @smallexample
1280 addl #35,r12
1281 @end smallexample
1283 Matching constraints are used in these circumstances.
1284 More precisely, the two operands that match must include one input-only
1285 operand and one output-only operand.  Moreover, the digit must be a
1286 smaller number than the number of the operand that uses it in the
1287 constraint.
1289 @ifset INTERNALS
1290 For operands to match in a particular case usually means that they
1291 are identical-looking RTL expressions.  But in a few special cases
1292 specific kinds of dissimilarity are allowed.  For example, @code{*x}
1293 as an input operand will match @code{*x++} as an output operand.
1294 For proper results in such cases, the output template should always
1295 use the output-operand's number when printing the operand.
1296 @end ifset
1298 @cindex load address instruction
1299 @cindex push address instruction
1300 @cindex address constraints
1301 @cindex @samp{p} in constraint
1302 @item @samp{p}
1303 An operand that is a valid memory address is allowed.  This is
1304 for ``load address'' and ``push address'' instructions.
1306 @findex address_operand
1307 @samp{p} in the constraint must be accompanied by @code{address_operand}
1308 as the predicate in the @code{match_operand}.  This predicate interprets
1309 the mode specified in the @code{match_operand} as the mode of the memory
1310 reference for which the address would be valid.
1312 @cindex other register constraints
1313 @cindex extensible constraints
1314 @item @var{other-letters}
1315 Other letters can be defined in machine-dependent fashion to stand for
1316 particular classes of registers or other arbitrary operand types.
1317 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1318 for data, address and floating point registers.
1319 @end table
1321 @ifset INTERNALS
1322 In order to have valid assembler code, each operand must satisfy
1323 its constraint.  But a failure to do so does not prevent the pattern
1324 from applying to an insn.  Instead, it directs the compiler to modify
1325 the code so that the constraint will be satisfied.  Usually this is
1326 done by copying an operand into a register.
1328 Contrast, therefore, the two instruction patterns that follow:
1330 @smallexample
1331 (define_insn ""
1332   [(set (match_operand:SI 0 "general_operand" "=r")
1333         (plus:SI (match_dup 0)
1334                  (match_operand:SI 1 "general_operand" "r")))]
1335   ""
1336   "@dots{}")
1337 @end smallexample
1339 @noindent
1340 which has two operands, one of which must appear in two places, and
1342 @smallexample
1343 (define_insn ""
1344   [(set (match_operand:SI 0 "general_operand" "=r")
1345         (plus:SI (match_operand:SI 1 "general_operand" "0")
1346                  (match_operand:SI 2 "general_operand" "r")))]
1347   ""
1348   "@dots{}")
1349 @end smallexample
1351 @noindent
1352 which has three operands, two of which are required by a constraint to be
1353 identical.  If we are considering an insn of the form
1355 @smallexample
1356 (insn @var{n} @var{prev} @var{next}
1357   (set (reg:SI 3)
1358        (plus:SI (reg:SI 6) (reg:SI 109)))
1359   @dots{})
1360 @end smallexample
1362 @noindent
1363 the first pattern would not apply at all, because this insn does not
1364 contain two identical subexpressions in the right place.  The pattern would
1365 say, ``That does not look like an add instruction; try other patterns''.
1366 The second pattern would say, ``Yes, that's an add instruction, but there
1367 is something wrong with it''.  It would direct the reload pass of the
1368 compiler to generate additional insns to make the constraint true.  The
1369 results might look like this:
1371 @smallexample
1372 (insn @var{n2} @var{prev} @var{n}
1373   (set (reg:SI 3) (reg:SI 6))
1374   @dots{})
1376 (insn @var{n} @var{n2} @var{next}
1377   (set (reg:SI 3)
1378        (plus:SI (reg:SI 3) (reg:SI 109)))
1379   @dots{})
1380 @end smallexample
1382 It is up to you to make sure that each operand, in each pattern, has
1383 constraints that can handle any RTL expression that could be present for
1384 that operand.  (When multiple alternatives are in use, each pattern must,
1385 for each possible combination of operand expressions, have at least one
1386 alternative which can handle that combination of operands.)  The
1387 constraints don't need to @emph{allow} any possible operand---when this is
1388 the case, they do not constrain---but they must at least point the way to
1389 reloading any possible operand so that it will fit.
1391 @itemize @bullet
1392 @item
1393 If the constraint accepts whatever operands the predicate permits,
1394 there is no problem: reloading is never necessary for this operand.
1396 For example, an operand whose constraints permit everything except
1397 registers is safe provided its predicate rejects registers.
1399 An operand whose predicate accepts only constant values is safe
1400 provided its constraints include the letter @samp{i}.  If any possible
1401 constant value is accepted, then nothing less than @samp{i} will do;
1402 if the predicate is more selective, then the constraints may also be
1403 more selective.
1405 @item
1406 Any operand expression can be reloaded by copying it into a register.
1407 So if an operand's constraints allow some kind of register, it is
1408 certain to be safe.  It need not permit all classes of registers; the
1409 compiler knows how to copy a register into another register of the
1410 proper class in order to make an instruction valid.
1412 @cindex nonoffsettable memory reference
1413 @cindex memory reference, nonoffsettable
1414 @item
1415 A nonoffsettable memory reference can be reloaded by copying the
1416 address into a register.  So if the constraint uses the letter
1417 @samp{o}, all memory references are taken care of.
1419 @item
1420 A constant operand can be reloaded by allocating space in memory to
1421 hold it as preinitialized data.  Then the memory reference can be used
1422 in place of the constant.  So if the constraint uses the letters
1423 @samp{o} or @samp{m}, constant operands are not a problem.
1425 @item
1426 If the constraint permits a constant and a pseudo register used in an insn
1427 was not allocated to a hard register and is equivalent to a constant,
1428 the register will be replaced with the constant.  If the predicate does
1429 not permit a constant and the insn is re-recognized for some reason, the
1430 compiler will crash.  Thus the predicate must always recognize any
1431 objects allowed by the constraint.
1432 @end itemize
1434 If the operand's predicate can recognize registers, but the constraint does
1435 not permit them, it can make the compiler crash.  When this operand happens
1436 to be a register, the reload pass will be stymied, because it does not know
1437 how to copy a register temporarily into memory.
1439 If the predicate accepts a unary operator, the constraint applies to the
1440 operand.  For example, the MIPS processor at ISA level 3 supports an
1441 instruction which adds two registers in @code{SImode} to produce a
1442 @code{DImode} result, but only if the registers are correctly sign
1443 extended.  This predicate for the input operands accepts a
1444 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1445 to indicate the type of register that is required for the operand of the
1446 @code{sign_extend}.
1447 @end ifset
1449 @node Multi-Alternative
1450 @subsection Multiple Alternative Constraints
1451 @cindex multiple alternative constraints
1453 Sometimes a single instruction has multiple alternative sets of possible
1454 operands.  For example, on the 68000, a logical-or instruction can combine
1455 register or an immediate value into memory, or it can combine any kind of
1456 operand into a register; but it cannot combine one memory location into
1457 another.
1459 These constraints are represented as multiple alternatives.  An alternative
1460 can be described by a series of letters for each operand.  The overall
1461 constraint for an operand is made from the letters for this operand
1462 from the first alternative, a comma, the letters for this operand from
1463 the second alternative, a comma, and so on until the last alternative.
1464 @ifset INTERNALS
1465 Here is how it is done for fullword logical-or on the 68000:
1467 @smallexample
1468 (define_insn "iorsi3"
1469   [(set (match_operand:SI 0 "general_operand" "=m,d")
1470         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1471                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1472   @dots{})
1473 @end smallexample
1475 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1476 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1477 2.  The second alternative has @samp{d} (data register) for operand 0,
1478 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1479 @samp{%} in the constraints apply to all the alternatives; their
1480 meaning is explained in the next section (@pxref{Class Preferences}).
1481 @end ifset
1483 @c FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL
1484 If all the operands fit any one alternative, the instruction is valid.
1485 Otherwise, for each alternative, the compiler counts how many instructions
1486 must be added to copy the operands so that that alternative applies.
1487 The alternative requiring the least copying is chosen.  If two alternatives
1488 need the same amount of copying, the one that comes first is chosen.
1489 These choices can be altered with the @samp{?} and @samp{!} characters:
1491 @table @code
1492 @cindex @samp{?} in constraint
1493 @cindex question mark
1494 @item ?
1495 Disparage slightly the alternative that the @samp{?} appears in,
1496 as a choice when no alternative applies exactly.  The compiler regards
1497 this alternative as one unit more costly for each @samp{?} that appears
1498 in it.
1500 @cindex @samp{!} in constraint
1501 @cindex exclamation point
1502 @item !
1503 Disparage severely the alternative that the @samp{!} appears in.
1504 This alternative can still be used if it fits without reloading,
1505 but if reloading is needed, some other alternative will be used.
1506 @end table
1508 @ifset INTERNALS
1509 When an insn pattern has multiple alternatives in its constraints, often
1510 the appearance of the assembler code is determined mostly by which
1511 alternative was matched.  When this is so, the C code for writing the
1512 assembler code can use the variable @code{which_alternative}, which is
1513 the ordinal number of the alternative that was actually satisfied (0 for
1514 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1515 @end ifset
1517 @ifset INTERNALS
1518 @node Class Preferences
1519 @subsection Register Class Preferences
1520 @cindex class preference constraints
1521 @cindex register class preference constraints
1523 @cindex voting between constraint alternatives
1524 The operand constraints have another function: they enable the compiler
1525 to decide which kind of hardware register a pseudo register is best
1526 allocated to.  The compiler examines the constraints that apply to the
1527 insns that use the pseudo register, looking for the machine-dependent
1528 letters such as @samp{d} and @samp{a} that specify classes of registers.
1529 The pseudo register is put in whichever class gets the most ``votes''.
1530 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1531 favor of a general register.  The machine description says which registers
1532 are considered general.
1534 Of course, on some machines all registers are equivalent, and no register
1535 classes are defined.  Then none of this complexity is relevant.
1536 @end ifset
1538 @node Modifiers
1539 @subsection Constraint Modifier Characters
1540 @cindex modifiers in constraints
1541 @cindex constraint modifier characters
1543 @c prevent bad page break with this line
1544 Here are constraint modifier characters.
1546 @table @samp
1547 @cindex @samp{=} in constraint
1548 @item =
1549 Means that this operand is write-only for this instruction: the previous
1550 value is discarded and replaced by output data.
1552 @cindex @samp{+} in constraint
1553 @item +
1554 Means that this operand is both read and written by the instruction.
1556 When the compiler fixes up the operands to satisfy the constraints,
1557 it needs to know which operands are inputs to the instruction and
1558 which are outputs from it.  @samp{=} identifies an output; @samp{+}
1559 identifies an operand that is both input and output; all other operands
1560 are assumed to be input only.
1562 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1563 first character of the constraint string.
1565 @cindex @samp{&} in constraint
1566 @cindex earlyclobber operand
1567 @item &
1568 Means (in a particular alternative) that this operand is an
1569 @dfn{earlyclobber} operand, which is modified before the instruction is
1570 finished using the input operands.  Therefore, this operand may not lie
1571 in a register that is used as an input operand or as part of any memory
1572 address.
1574 @samp{&} applies only to the alternative in which it is written.  In
1575 constraints with multiple alternatives, sometimes one alternative
1576 requires @samp{&} while others do not.  See, for example, the
1577 @samp{movdf} insn of the 68000.
1579 An input operand can be tied to an earlyclobber operand if its only
1580 use as an input occurs before the early result is written.  Adding
1581 alternatives of this form often allows GCC to produce better code
1582 when only some of the inputs can be affected by the earlyclobber.
1583 See, for example, the @samp{mulsi3} insn of the ARM@.
1585 @samp{&} does not obviate the need to write @samp{=}.
1587 @cindex @samp{%} in constraint
1588 @item %
1589 Declares the instruction to be commutative for this operand and the
1590 following operand.  This means that the compiler may interchange the
1591 two operands if that is the cheapest way to make all operands fit the
1592 constraints.
1593 @ifset INTERNALS
1594 This is often used in patterns for addition instructions
1595 that really have only two operands: the result must go in one of the
1596 arguments.  Here for example, is how the 68000 halfword-add
1597 instruction is defined:
1599 @smallexample
1600 (define_insn "addhi3"
1601   [(set (match_operand:HI 0 "general_operand" "=m,r")
1602      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1603               (match_operand:HI 2 "general_operand" "di,g")))]
1604   @dots{})
1605 @end smallexample
1606 @end ifset
1607 GCC can only handle one commutative pair in an asm; if you use more,
1608 the compiler may fail.  Note that you need not use the modifier if
1609 the two alternatives are strictly identical; this would only waste
1610 time in the reload pass.  The modifier is not operational after
1611 register allocation, so the result of @code{define_peephole2}
1612 and @code{define_split}s performed after reload cannot rely on
1613 @samp{%} to make the intended insn match.
1615 @cindex @samp{#} in constraint
1616 @item #
1617 Says that all following characters, up to the next comma, are to be
1618 ignored as a constraint.  They are significant only for choosing
1619 register preferences.
1621 @cindex @samp{*} in constraint
1622 @item *
1623 Says that the following character should be ignored when choosing
1624 register preferences.  @samp{*} has no effect on the meaning of the
1625 constraint as a constraint, and no effect on reloading.  For LRA
1626 @samp{*} additionally disparages slightly the alternative if the
1627 following character matches the operand.
1629 @ifset INTERNALS
1630 Here is an example: the 68000 has an instruction to sign-extend a
1631 halfword in a data register, and can also sign-extend a value by
1632 copying it into an address register.  While either kind of register is
1633 acceptable, the constraints on an address-register destination are
1634 less strict, so it is best if register allocation makes an address
1635 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1636 constraint letter (for data register) is ignored when computing
1637 register preferences.
1639 @smallexample
1640 (define_insn "extendhisi2"
1641   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1642         (sign_extend:SI
1643          (match_operand:HI 1 "general_operand" "0,g")))]
1644   @dots{})
1645 @end smallexample
1646 @end ifset
1647 @end table
1649 @node Machine Constraints
1650 @subsection Constraints for Particular Machines
1651 @cindex machine specific constraints
1652 @cindex constraints, machine specific
1654 Whenever possible, you should use the general-purpose constraint letters
1655 in @code{asm} arguments, since they will convey meaning more readily to
1656 people reading your code.  Failing that, use the constraint letters
1657 that usually have very similar meanings across architectures.  The most
1658 commonly used constraints are @samp{m} and @samp{r} (for memory and
1659 general-purpose registers respectively; @pxref{Simple Constraints}), and
1660 @samp{I}, usually the letter indicating the most common
1661 immediate-constant format.
1663 Each architecture defines additional constraints.  These constraints
1664 are used by the compiler itself for instruction generation, as well as
1665 for @code{asm} statements; therefore, some of the constraints are not
1666 particularly useful for @code{asm}.  Here is a summary of some of the
1667 machine-dependent constraints available on some particular machines;
1668 it includes both constraints that are useful for @code{asm} and
1669 constraints that aren't.  The compiler source file mentioned in the
1670 table heading for each architecture is the definitive reference for
1671 the meanings of that architecture's constraints.
1673 @table @emph
1674 @item AArch64 family---@file{config/aarch64/constraints.md}
1675 @table @code
1676 @item k
1677 The stack pointer register (@code{SP})
1679 @item w
1680 Floating point or SIMD vector register
1682 @item I
1683 Integer constant that is valid as an immediate operand in an @code{ADD}
1684 instruction
1686 @item J
1687 Integer constant that is valid as an immediate operand in a @code{SUB}
1688 instruction (once negated)
1690 @item K
1691 Integer constant that can be used with a 32-bit logical instruction
1693 @item L
1694 Integer constant that can be used with a 64-bit logical instruction
1696 @item M
1697 Integer constant that is valid as an immediate operand in a 32-bit @code{MOV}
1698 pseudo instruction. The @code{MOV} may be assembled to one of several different
1699 machine instructions depending on the value
1701 @item N
1702 Integer constant that is valid as an immediate operand in a 64-bit @code{MOV}
1703 pseudo instruction
1705 @item S
1706 An absolute symbolic address or a label reference
1708 @item Y
1709 Floating point constant zero
1711 @item Z
1712 Integer constant zero
1714 @item Ush
1715 The high part (bits 12 and upwards) of the pc-relative address of a symbol
1716 within 4GB of the instruction
1718 @item Q
1719 A memory address which uses a single base register with no offset
1721 @item Ump
1722 A memory address suitable for a load/store pair instruction in SI, DI, SF and
1723 DF modes
1725 @end table
1728 @item ARC ---@file{config/arc/constraints.md}
1729 @table @code
1730 @item q
1731 Registers usable in ARCompact 16-bit instructions: @code{r0}-@code{r3},
1732 @code{r12}-@code{r15}.  This constraint can only match when the @option{-mq}
1733 option is in effect.
1735 @item e
1736 Registers usable as base-regs of memory addresses in ARCompact 16-bit memory
1737 instructions: @code{r0}-@code{r3}, @code{r12}-@code{r15}, @code{sp}.
1738 This constraint can only match when the @option{-mq}
1739 option is in effect.
1740 @item D
1741 ARC FPX (dpfp) 64-bit registers. @code{D0}, @code{D1}.
1743 @item I
1744 A signed 12-bit integer constant.
1746 @item Cal
1747 constant for arithmetic/logical operations.  This might be any constant
1748 that can be put into a long immediate by the assmbler or linker without
1749 involving a PIC relocation.
1751 @item K
1752 A 3-bit unsigned integer constant.
1754 @item L
1755 A 6-bit unsigned integer constant.
1757 @item CnL
1758 One's complement of a 6-bit unsigned integer constant.
1760 @item CmL
1761 Two's complement of a 6-bit unsigned integer constant.
1763 @item M
1764 A 5-bit unsigned integer constant.
1766 @item O
1767 A 7-bit unsigned integer constant.
1769 @item P
1770 A 8-bit unsigned integer constant.
1772 @item H
1773 Any const_double value.
1774 @end table
1776 @item ARM family---@file{config/arm/constraints.md}
1777 @table @code
1778 @item w
1779 VFP floating-point register
1781 @item G
1782 The floating-point constant 0.0
1784 @item I
1785 Integer that is valid as an immediate operand in a data processing
1786 instruction.  That is, an integer in the range 0 to 255 rotated by a
1787 multiple of 2
1789 @item J
1790 Integer in the range @minus{}4095 to 4095
1792 @item K
1793 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1795 @item L
1796 Integer that satisfies constraint @samp{I} when negated (twos complement)
1798 @item M
1799 Integer in the range 0 to 32
1801 @item Q
1802 A memory reference where the exact address is in a single register
1803 (`@samp{m}' is preferable for @code{asm} statements)
1805 @item R
1806 An item in the constant pool
1808 @item S
1809 A symbol in the text segment of the current file
1811 @item Uv
1812 A memory reference suitable for VFP load/store insns (reg+constant offset)
1814 @item Uy
1815 A memory reference suitable for iWMMXt load/store instructions.
1817 @item Uq
1818 A memory reference suitable for the ARMv4 ldrsb instruction.
1819 @end table
1821 @item AVR family---@file{config/avr/constraints.md}
1822 @table @code
1823 @item l
1824 Registers from r0 to r15
1826 @item a
1827 Registers from r16 to r23
1829 @item d
1830 Registers from r16 to r31
1832 @item w
1833 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1835 @item e
1836 Pointer register (r26--r31)
1838 @item b
1839 Base pointer register (r28--r31)
1841 @item q
1842 Stack pointer register (SPH:SPL)
1844 @item t
1845 Temporary register r0
1847 @item x
1848 Register pair X (r27:r26)
1850 @item y
1851 Register pair Y (r29:r28)
1853 @item z
1854 Register pair Z (r31:r30)
1856 @item I
1857 Constant greater than @minus{}1, less than 64
1859 @item J
1860 Constant greater than @minus{}64, less than 1
1862 @item K
1863 Constant integer 2
1865 @item L
1866 Constant integer 0
1868 @item M
1869 Constant that fits in 8 bits
1871 @item N
1872 Constant integer @minus{}1
1874 @item O
1875 Constant integer 8, 16, or 24
1877 @item P
1878 Constant integer 1
1880 @item G
1881 A floating point constant 0.0
1883 @item Q
1884 A memory address based on Y or Z pointer with displacement.
1885 @end table
1887 @item Epiphany---@file{config/epiphany/constraints.md}
1888 @table @code
1889 @item U16
1890 An unsigned 16-bit constant.
1892 @item K
1893 An unsigned 5-bit constant.
1895 @item L
1896 A signed 11-bit constant.
1898 @item Cm1
1899 A signed 11-bit constant added to @minus{}1.
1900 Can only match when the @option{-m1reg-@var{reg}} option is active.
1902 @item Cl1
1903 Left-shift of @minus{}1, i.e., a bit mask with a block of leading ones, the rest
1904 being a block of trailing zeroes.
1905 Can only match when the @option{-m1reg-@var{reg}} option is active.
1907 @item Cr1
1908 Right-shift of @minus{}1, i.e., a bit mask with a trailing block of ones, the
1909 rest being zeroes.  Or to put it another way, one less than a power of two.
1910 Can only match when the @option{-m1reg-@var{reg}} option is active.
1912 @item Cal
1913 Constant for arithmetic/logical operations.
1914 This is like @code{i}, except that for position independent code,
1915 no symbols / expressions needing relocations are allowed.
1917 @item Csy
1918 Symbolic constant for call/jump instruction.
1920 @item Rcs
1921 The register class usable in short insns.  This is a register class
1922 constraint, and can thus drive register allocation.
1923 This constraint won't match unless @option{-mprefer-short-insn-regs} is
1924 in effect.
1926 @item Rsc
1927 The the register class of registers that can be used to hold a
1928 sibcall call address.  I.e., a caller-saved register.
1930 @item Rct
1931 Core control register class.
1933 @item Rgs
1934 The register group usable in short insns.
1935 This constraint does not use a register class, so that it only
1936 passively matches suitable registers, and doesn't drive register allocation.
1938 @ifset INTERNALS
1939 @item Car
1940 Constant suitable for the addsi3_r pattern.  This is a valid offset
1941 For byte, halfword, or word addressing.
1942 @end ifset
1944 @item Rra
1945 Matches the return address if it can be replaced with the link register.
1947 @item Rcc
1948 Matches the integer condition code register.
1950 @item Sra
1951 Matches the return address if it is in a stack slot.
1953 @item Cfm
1954 Matches control register values to switch fp mode, which are encapsulated in
1955 @code{UNSPEC_FP_MODE}.
1956 @end table
1958 @item CR16 Architecture---@file{config/cr16/cr16.h}
1959 @table @code
1961 @item b
1962 Registers from r0 to r14 (registers without stack pointer)
1964 @item t
1965 Register from r0 to r11 (all 16-bit registers)
1967 @item p
1968 Register from r12 to r15 (all 32-bit registers)
1970 @item I
1971 Signed constant that fits in 4 bits
1973 @item J
1974 Signed constant that fits in 5 bits
1976 @item K
1977 Signed constant that fits in 6 bits
1979 @item L
1980 Unsigned constant that fits in 4 bits
1982 @item M
1983 Signed constant that fits in 32 bits
1985 @item N
1986 Check for 64 bits wide constants for add/sub instructions
1988 @item G
1989 Floating point constant that is legal for store immediate
1990 @end table
1992 @item Hewlett-Packard PA-RISC---@file{config/pa/pa.h}
1993 @table @code
1994 @item a
1995 General register 1
1997 @item f
1998 Floating point register
2000 @item q
2001 Shift amount register
2003 @item x
2004 Floating point register (deprecated)
2006 @item y
2007 Upper floating point register (32-bit), floating point register (64-bit)
2009 @item Z
2010 Any register
2012 @item I
2013 Signed 11-bit integer constant
2015 @item J
2016 Signed 14-bit integer constant
2018 @item K
2019 Integer constant that can be deposited with a @code{zdepi} instruction
2021 @item L
2022 Signed 5-bit integer constant
2024 @item M
2025 Integer constant 0
2027 @item N
2028 Integer constant that can be loaded with a @code{ldil} instruction
2030 @item O
2031 Integer constant whose value plus one is a power of 2
2033 @item P
2034 Integer constant that can be used for @code{and} operations in @code{depi}
2035 and @code{extru} instructions
2037 @item S
2038 Integer constant 31
2040 @item U
2041 Integer constant 63
2043 @item G
2044 Floating-point constant 0.0
2046 @item A
2047 A @code{lo_sum} data-linkage-table memory operand
2049 @item Q
2050 A memory operand that can be used as the destination operand of an
2051 integer store instruction
2053 @item R
2054 A scaled or unscaled indexed memory operand
2056 @item T
2057 A memory operand for floating-point loads and stores
2059 @item W
2060 A register indirect memory operand
2061 @end table
2063 @item picoChip family---@file{picochip.h}
2064 @table @code
2065 @item k
2066 Stack register.
2068 @item f
2069 Pointer register.  A register which can be used to access memory without
2070 supplying an offset.  Any other register can be used to access memory,
2071 but will need a constant offset.  In the case of the offset being zero,
2072 it is more efficient to use a pointer register, since this reduces code
2073 size.
2075 @item t
2076 A twin register.  A register which may be paired with an adjacent
2077 register to create a 32-bit register.
2079 @item a
2080 Any absolute memory address (e.g., symbolic constant, symbolic
2081 constant + offset).
2083 @item I
2084 4-bit signed integer.
2086 @item J
2087 4-bit unsigned integer.
2089 @item K
2090 8-bit signed integer.
2092 @item M
2093 Any constant whose absolute value is no greater than 4-bits.
2095 @item N
2096 10-bit signed integer
2098 @item O
2099 16-bit signed integer.
2101 @end table
2103 @item PowerPC and IBM RS6000---@file{config/rs6000/constraints.md}
2104 @table @code
2105 @item b
2106 Address base register
2108 @item d
2109 Floating point register (containing 64-bit value)
2111 @item f
2112 Floating point register (containing 32-bit value)
2114 @item v
2115 Altivec vector register
2117 @item wa
2118 Any VSX register if the -mvsx option was used or NO_REGS.
2120 @item wd
2121 VSX vector register to hold vector double data or NO_REGS.
2123 @item wf
2124 VSX vector register to hold vector float data or NO_REGS.
2126 @item wg
2127 If @option{-mmfpgpr} was used, a floating point register or NO_REGS.
2129 @item wl
2130 Floating point register if the LFIWAX instruction is enabled or NO_REGS.
2132 @item wm
2133 VSX register if direct move instructions are enabled, or NO_REGS.
2135 @item wn
2136 No register (NO_REGS).
2138 @item wr
2139 General purpose register if 64-bit instructions are enabled or NO_REGS.
2141 @item ws
2142 VSX vector register to hold scalar double values or NO_REGS.
2144 @item wt
2145 VSX vector register to hold 128 bit integer or NO_REGS.
2147 @item wu
2148 Altivec register to use for float/32-bit int loads/stores  or NO_REGS.
2150 @item wv
2151 Altivec register to use for double loads/stores  or NO_REGS.
2153 @item ww
2154 FP or VSX register to perform float operations under @option{-mvsx} or NO_REGS.
2156 @item wx
2157 Floating point register if the STFIWX instruction is enabled or NO_REGS.
2159 @item wy
2160 VSX vector register to hold scalar float values or NO_REGS.
2162 @item wz
2163 Floating point register if the LFIWZX instruction is enabled or NO_REGS.
2165 @item wD
2166 Int constant that is the element number of the 64-bit scalar in a vector.
2168 @item wQ
2169 A memory address that will work with the @code{lq} and @code{stq}
2170 instructions.
2172 @item h
2173 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
2175 @item q
2176 @samp{MQ} register
2178 @item c
2179 @samp{CTR} register
2181 @item l
2182 @samp{LINK} register
2184 @item x
2185 @samp{CR} register (condition register) number 0
2187 @item y
2188 @samp{CR} register (condition register)
2190 @item z
2191 @samp{XER[CA]} carry bit (part of the XER register)
2193 @item I
2194 Signed 16-bit constant
2196 @item J
2197 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
2198 @code{SImode} constants)
2200 @item K
2201 Unsigned 16-bit constant
2203 @item L
2204 Signed 16-bit constant shifted left 16 bits
2206 @item M
2207 Constant larger than 31
2209 @item N
2210 Exact power of 2
2212 @item O
2213 Zero
2215 @item P
2216 Constant whose negation is a signed 16-bit constant
2218 @item G
2219 Floating point constant that can be loaded into a register with one
2220 instruction per word
2222 @item H
2223 Integer/Floating point constant that can be loaded into a register using
2224 three instructions
2226 @item m
2227 Memory operand.
2228 Normally, @code{m} does not allow addresses that update the base register.
2229 If @samp{<} or @samp{>} constraint is also used, they are allowed and
2230 therefore on PowerPC targets in that case it is only safe
2231 to use @samp{m<>} in an @code{asm} statement if that @code{asm} statement
2232 accesses the operand exactly once.  The @code{asm} statement must also
2233 use @samp{%U@var{<opno>}} as a placeholder for the ``update'' flag in the
2234 corresponding load or store instruction.  For example:
2236 @smallexample
2237 asm ("st%U0 %1,%0" : "=m<>" (mem) : "r" (val));
2238 @end smallexample
2240 is correct but:
2242 @smallexample
2243 asm ("st %1,%0" : "=m<>" (mem) : "r" (val));
2244 @end smallexample
2246 is not.
2248 @item es
2249 A ``stable'' memory operand; that is, one which does not include any
2250 automodification of the base register.  This used to be useful when
2251 @samp{m} allowed automodification of the base register, but as those are now only
2252 allowed when @samp{<} or @samp{>} is used, @samp{es} is basically the same
2253 as @samp{m} without @samp{<} and @samp{>}.
2255 @item Q
2256 Memory operand that is an offset from a register (it is usually better
2257 to use @samp{m} or @samp{es} in @code{asm} statements)
2259 @item Z
2260 Memory operand that is an indexed or indirect from a register (it is
2261 usually better to use @samp{m} or @samp{es} in @code{asm} statements)
2263 @item R
2264 AIX TOC entry
2266 @item a
2267 Address operand that is an indexed or indirect from a register (@samp{p} is
2268 preferable for @code{asm} statements)
2270 @item S
2271 Constant suitable as a 64-bit mask operand
2273 @item T
2274 Constant suitable as a 32-bit mask operand
2276 @item U
2277 System V Release 4 small data area reference
2279 @item t
2280 AND masks that can be performed by two rldic@{l, r@} instructions
2282 @item W
2283 Vector constant that does not require memory
2285 @item j
2286 Vector constant that is all zeros.
2288 @end table
2290 @item Intel 386---@file{config/i386/constraints.md}
2291 @table @code
2292 @item R
2293 Legacy register---the eight integer registers available on all
2294 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
2295 @code{si}, @code{di}, @code{bp}, @code{sp}).
2297 @item q
2298 Any register accessible as @code{@var{r}l}.  In 32-bit mode, @code{a},
2299 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.
2301 @item Q
2302 Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
2303 @code{c}, and @code{d}.
2305 @ifset INTERNALS
2306 @item l
2307 Any register that can be used as the index in a base+index memory
2308 access: that is, any general register except the stack pointer.
2309 @end ifset
2311 @item a
2312 The @code{a} register.
2314 @item b
2315 The @code{b} register.
2317 @item c
2318 The @code{c} register.
2320 @item d
2321 The @code{d} register.
2323 @item S
2324 The @code{si} register.
2326 @item D
2327 The @code{di} register.
2329 @item A
2330 The @code{a} and @code{d} registers.  This class is used for instructions
2331 that return double word results in the @code{ax:dx} register pair.  Single
2332 word values will be allocated either in @code{ax} or @code{dx}.
2333 For example on i386 the following implements @code{rdtsc}:
2335 @smallexample
2336 unsigned long long rdtsc (void)
2338   unsigned long long tick;
2339   __asm__ __volatile__("rdtsc":"=A"(tick));
2340   return tick;
2342 @end smallexample
2344 This is not correct on x86_64 as it would allocate tick in either @code{ax}
2345 or @code{dx}.  You have to use the following variant instead:
2347 @smallexample
2348 unsigned long long rdtsc (void)
2350   unsigned int tickl, tickh;
2351   __asm__ __volatile__("rdtsc":"=a"(tickl),"=d"(tickh));
2352   return ((unsigned long long)tickh << 32)|tickl;
2354 @end smallexample
2357 @item f
2358 Any 80387 floating-point (stack) register.
2360 @item t
2361 Top of 80387 floating-point stack (@code{%st(0)}).
2363 @item u
2364 Second from top of 80387 floating-point stack (@code{%st(1)}).
2366 @item y
2367 Any MMX register.
2369 @item x
2370 Any SSE register.
2372 @item Yz
2373 First SSE register (@code{%xmm0}).
2375 @ifset INTERNALS
2376 @item Y2
2377 Any SSE register, when SSE2 is enabled.
2379 @item Yi
2380 Any SSE register, when SSE2 and inter-unit moves are enabled.
2382 @item Ym
2383 Any MMX register, when inter-unit moves are enabled.
2384 @end ifset
2386 @item I
2387 Integer constant in the range 0 @dots{} 31, for 32-bit shifts.
2389 @item J
2390 Integer constant in the range 0 @dots{} 63, for 64-bit shifts.
2392 @item K
2393 Signed 8-bit integer constant.
2395 @item L
2396 @code{0xFF} or @code{0xFFFF}, for andsi as a zero-extending move.
2398 @item M
2399 0, 1, 2, or 3 (shifts for the @code{lea} instruction).
2401 @item N
2402 Unsigned 8-bit integer constant (for @code{in} and @code{out}
2403 instructions).
2405 @ifset INTERNALS
2406 @item O
2407 Integer constant in the range 0 @dots{} 127, for 128-bit shifts.
2408 @end ifset
2410 @item G
2411 Standard 80387 floating point constant.
2413 @item C
2414 Standard SSE floating point constant.
2416 @item e
2417 32-bit signed integer constant, or a symbolic reference known
2418 to fit that range (for immediate operands in sign-extending x86-64
2419 instructions).
2421 @item Z
2422 32-bit unsigned integer constant, or a symbolic reference known
2423 to fit that range (for immediate operands in zero-extending x86-64
2424 instructions).
2426 @end table
2428 @item Intel IA-64---@file{config/ia64/ia64.h}
2429 @table @code
2430 @item a
2431 General register @code{r0} to @code{r3} for @code{addl} instruction
2433 @item b
2434 Branch register
2436 @item c
2437 Predicate register (@samp{c} as in ``conditional'')
2439 @item d
2440 Application register residing in M-unit
2442 @item e
2443 Application register residing in I-unit
2445 @item f
2446 Floating-point register
2448 @item m
2449 Memory operand.  If used together with @samp{<} or @samp{>},
2450 the operand can have postincrement and postdecrement which
2451 require printing with @samp{%Pn} on IA-64.
2453 @item G
2454 Floating-point constant 0.0 or 1.0
2456 @item I
2457 14-bit signed integer constant
2459 @item J
2460 22-bit signed integer constant
2462 @item K
2463 8-bit signed integer constant for logical instructions
2465 @item L
2466 8-bit adjusted signed integer constant for compare pseudo-ops
2468 @item M
2469 6-bit unsigned integer constant for shift counts
2471 @item N
2472 9-bit signed integer constant for load and store postincrements
2474 @item O
2475 The constant zero
2477 @item P
2478 0 or @minus{}1 for @code{dep} instruction
2480 @item Q
2481 Non-volatile memory for floating-point loads and stores
2483 @item R
2484 Integer constant in the range 1 to 4 for @code{shladd} instruction
2486 @item S
2487 Memory operand except postincrement and postdecrement.  This is
2488 now roughly the same as @samp{m} when not used together with @samp{<}
2489 or @samp{>}.
2490 @end table
2492 @item FRV---@file{config/frv/frv.h}
2493 @table @code
2494 @item a
2495 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
2497 @item b
2498 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
2500 @item c
2501 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
2502 @code{icc0} to @code{icc3}).
2504 @item d
2505 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
2507 @item e
2508 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
2509 Odd registers are excluded not in the class but through the use of a machine
2510 mode larger than 4 bytes.
2512 @item f
2513 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2515 @item h
2516 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2517 Odd registers are excluded not in the class but through the use of a machine
2518 mode larger than 4 bytes.
2520 @item l
2521 Register in the class @code{LR_REG} (the @code{lr} register).
2523 @item q
2524 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2525 Register numbers not divisible by 4 are excluded not in the class but through
2526 the use of a machine mode larger than 8 bytes.
2528 @item t
2529 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2531 @item u
2532 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2534 @item v
2535 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2537 @item w
2538 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2540 @item x
2541 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2542 Register numbers not divisible by 4 are excluded not in the class but through
2543 the use of a machine mode larger than 8 bytes.
2545 @item z
2546 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2548 @item A
2549 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2551 @item B
2552 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2554 @item C
2555 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2557 @item G
2558 Floating point constant zero
2560 @item I
2561 6-bit signed integer constant
2563 @item J
2564 10-bit signed integer constant
2566 @item L
2567 16-bit signed integer constant
2569 @item M
2570 16-bit unsigned integer constant
2572 @item N
2573 12-bit signed integer constant that is negative---i.e.@: in the
2574 range of @minus{}2048 to @minus{}1
2576 @item O
2577 Constant zero
2579 @item P
2580 12-bit signed integer constant that is greater than zero---i.e.@: in the
2581 range of 1 to 2047.
2583 @end table
2585 @item Blackfin family---@file{config/bfin/constraints.md}
2586 @table @code
2587 @item a
2588 P register
2590 @item d
2591 D register
2593 @item z
2594 A call clobbered P register.
2596 @item q@var{n}
2597 A single register.  If @var{n} is in the range 0 to 7, the corresponding D
2598 register.  If it is @code{A}, then the register P0.
2600 @item D
2601 Even-numbered D register
2603 @item W
2604 Odd-numbered D register
2606 @item e
2607 Accumulator register.
2609 @item A
2610 Even-numbered accumulator register.
2612 @item B
2613 Odd-numbered accumulator register.
2615 @item b
2616 I register
2618 @item v
2619 B register
2621 @item f
2622 M register
2624 @item c
2625 Registers used for circular buffering, i.e. I, B, or L registers.
2627 @item C
2628 The CC register.
2630 @item t
2631 LT0 or LT1.
2633 @item k
2634 LC0 or LC1.
2636 @item u
2637 LB0 or LB1.
2639 @item x
2640 Any D, P, B, M, I or L register.
2642 @item y
2643 Additional registers typically used only in prologues and epilogues: RETS,
2644 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2646 @item w
2647 Any register except accumulators or CC.
2649 @item Ksh
2650 Signed 16 bit integer (in the range @minus{}32768 to 32767)
2652 @item Kuh
2653 Unsigned 16 bit integer (in the range 0 to 65535)
2655 @item Ks7
2656 Signed 7 bit integer (in the range @minus{}64 to 63)
2658 @item Ku7
2659 Unsigned 7 bit integer (in the range 0 to 127)
2661 @item Ku5
2662 Unsigned 5 bit integer (in the range 0 to 31)
2664 @item Ks4
2665 Signed 4 bit integer (in the range @minus{}8 to 7)
2667 @item Ks3
2668 Signed 3 bit integer (in the range @minus{}3 to 4)
2670 @item Ku3
2671 Unsigned 3 bit integer (in the range 0 to 7)
2673 @item P@var{n}
2674 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2676 @item PA
2677 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2678 use with either accumulator.
2680 @item PB
2681 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2682 use only with accumulator A1.
2684 @item M1
2685 Constant 255.
2687 @item M2
2688 Constant 65535.
2690 @item J
2691 An integer constant with exactly a single bit set.
2693 @item L
2694 An integer constant with all bits set except exactly one.
2696 @item H
2698 @item Q
2699 Any SYMBOL_REF.
2700 @end table
2702 @item M32C---@file{config/m32c/m32c.c}
2703 @table @code
2704 @item Rsp
2705 @itemx Rfb
2706 @itemx Rsb
2707 @samp{$sp}, @samp{$fb}, @samp{$sb}.
2709 @item Rcr
2710 Any control register, when they're 16 bits wide (nothing if control
2711 registers are 24 bits wide)
2713 @item Rcl
2714 Any control register, when they're 24 bits wide.
2716 @item R0w
2717 @itemx R1w
2718 @itemx R2w
2719 @itemx R3w
2720 $r0, $r1, $r2, $r3.
2722 @item R02
2723 $r0 or $r2, or $r2r0 for 32 bit values.
2725 @item R13
2726 $r1 or $r3, or $r3r1 for 32 bit values.
2728 @item Rdi
2729 A register that can hold a 64 bit value.
2731 @item Rhl
2732 $r0 or $r1 (registers with addressable high/low bytes)
2734 @item R23
2735 $r2 or $r3
2737 @item Raa
2738 Address registers
2740 @item Raw
2741 Address registers when they're 16 bits wide.
2743 @item Ral
2744 Address registers when they're 24 bits wide.
2746 @item Rqi
2747 Registers that can hold QI values.
2749 @item Rad
2750 Registers that can be used with displacements ($a0, $a1, $sb).
2752 @item Rsi
2753 Registers that can hold 32 bit values.
2755 @item Rhi
2756 Registers that can hold 16 bit values.
2758 @item Rhc
2759 Registers chat can hold 16 bit values, including all control
2760 registers.
2762 @item Rra
2763 $r0 through R1, plus $a0 and $a1.
2765 @item Rfl
2766 The flags register.
2768 @item Rmm
2769 The memory-based pseudo-registers $mem0 through $mem15.
2771 @item Rpi
2772 Registers that can hold pointers (16 bit registers for r8c, m16c; 24
2773 bit registers for m32cm, m32c).
2775 @item Rpa
2776 Matches multiple registers in a PARALLEL to form a larger register.
2777 Used to match function return values.
2779 @item Is3
2780 @minus{}8 @dots{} 7
2782 @item IS1
2783 @minus{}128 @dots{} 127
2785 @item IS2
2786 @minus{}32768 @dots{} 32767
2788 @item IU2
2789 0 @dots{} 65535
2791 @item In4
2792 @minus{}8 @dots{} @minus{}1 or 1 @dots{} 8
2794 @item In5
2795 @minus{}16 @dots{} @minus{}1 or 1 @dots{} 16
2797 @item In6
2798 @minus{}32 @dots{} @minus{}1 or 1 @dots{} 32
2800 @item IM2
2801 @minus{}65536 @dots{} @minus{}1
2803 @item Ilb
2804 An 8 bit value with exactly one bit set.
2806 @item Ilw
2807 A 16 bit value with exactly one bit set.
2809 @item Sd
2810 The common src/dest memory addressing modes.
2812 @item Sa
2813 Memory addressed using $a0 or $a1.
2815 @item Si
2816 Memory addressed with immediate addresses.
2818 @item Ss
2819 Memory addressed using the stack pointer ($sp).
2821 @item Sf
2822 Memory addressed using the frame base register ($fb).
2824 @item Ss
2825 Memory addressed using the small base register ($sb).
2827 @item S1
2828 $r1h
2829 @end table
2831 @item MeP---@file{config/mep/constraints.md}
2832 @table @code
2834 @item a
2835 The $sp register.
2837 @item b
2838 The $tp register.
2840 @item c
2841 Any control register.
2843 @item d
2844 Either the $hi or the $lo register.
2846 @item em
2847 Coprocessor registers that can be directly loaded ($c0-$c15).
2849 @item ex
2850 Coprocessor registers that can be moved to each other.
2852 @item er
2853 Coprocessor registers that can be moved to core registers.
2855 @item h
2856 The $hi register.
2858 @item j
2859 The $rpc register.
2861 @item l
2862 The $lo register.
2864 @item t
2865 Registers which can be used in $tp-relative addressing.
2867 @item v
2868 The $gp register.
2870 @item x
2871 The coprocessor registers.
2873 @item y
2874 The coprocessor control registers.
2876 @item z
2877 The $0 register.
2879 @item A
2880 User-defined register set A.
2882 @item B
2883 User-defined register set B.
2885 @item C
2886 User-defined register set C.
2888 @item D
2889 User-defined register set D.
2891 @item I
2892 Offsets for $gp-rel addressing.
2894 @item J
2895 Constants that can be used directly with boolean insns.
2897 @item K
2898 Constants that can be moved directly to registers.
2900 @item L
2901 Small constants that can be added to registers.
2903 @item M
2904 Long shift counts.
2906 @item N
2907 Small constants that can be compared to registers.
2909 @item O
2910 Constants that can be loaded into the top half of registers.
2912 @item S
2913 Signed 8-bit immediates.
2915 @item T
2916 Symbols encoded for $tp-rel or $gp-rel addressing.
2918 @item U
2919 Non-constant addresses for loading/saving coprocessor registers.
2921 @item W
2922 The top half of a symbol's value.
2924 @item Y
2925 A register indirect address without offset.
2927 @item Z
2928 Symbolic references to the control bus.
2930 @end table
2932 @item MicroBlaze---@file{config/microblaze/constraints.md}
2933 @table @code
2934 @item d
2935 A general register (@code{r0} to @code{r31}).
2937 @item z
2938 A status register (@code{rmsr}, @code{$fcc1} to @code{$fcc7}).
2940 @end table
2942 @item MIPS---@file{config/mips/constraints.md}
2943 @table @code
2944 @item d
2945 An address register.  This is equivalent to @code{r} unless
2946 generating MIPS16 code.
2948 @item f
2949 A floating-point register (if available).
2951 @item h
2952 Formerly the @code{hi} register.  This constraint is no longer supported.
2954 @item l
2955 The @code{lo} register.  Use this register to store values that are
2956 no bigger than a word.
2958 @item x
2959 The concatenated @code{hi} and @code{lo} registers.  Use this register
2960 to store doubleword values.
2962 @item c
2963 A register suitable for use in an indirect jump.  This will always be
2964 @code{$25} for @option{-mabicalls}.
2966 @item v
2967 Register @code{$3}.  Do not use this constraint in new code;
2968 it is retained only for compatibility with glibc.
2970 @item y
2971 Equivalent to @code{r}; retained for backwards compatibility.
2973 @item z
2974 A floating-point condition code register.
2976 @item I
2977 A signed 16-bit constant (for arithmetic instructions).
2979 @item J
2980 Integer zero.
2982 @item K
2983 An unsigned 16-bit constant (for logic instructions).
2985 @item L
2986 A signed 32-bit constant in which the lower 16 bits are zero.
2987 Such constants can be loaded using @code{lui}.
2989 @item M
2990 A constant that cannot be loaded using @code{lui}, @code{addiu}
2991 or @code{ori}.
2993 @item N
2994 A constant in the range @minus{}65535 to @minus{}1 (inclusive).
2996 @item O
2997 A signed 15-bit constant.
2999 @item P
3000 A constant in the range 1 to 65535 (inclusive).
3002 @item G
3003 Floating-point zero.
3005 @item R
3006 An address that can be used in a non-macro load or store.
3008 @item ZC
3009 When compiling microMIPS code, this constraint matches a memory operand
3010 whose address is formed from a base register and a 12-bit offset.  These
3011 operands can be used for microMIPS instructions such as @code{ll} and
3012 @code{sc}.  When not compiling for microMIPS code, @code{ZC} is
3013 equivalent to @code{R}.
3015 @item ZD
3016 When compiling microMIPS code, this constraint matches an address operand
3017 that is formed from a base register and a 12-bit offset.  These operands
3018 can be used for microMIPS instructions such as @code{prefetch}.  When
3019 not compiling for microMIPS code, @code{ZD} is equivalent to @code{p}.
3020 @end table
3022 @item Motorola 680x0---@file{config/m68k/constraints.md}
3023 @table @code
3024 @item a
3025 Address register
3027 @item d
3028 Data register
3030 @item f
3031 68881 floating-point register, if available
3033 @item I
3034 Integer in the range 1 to 8
3036 @item J
3037 16-bit signed number
3039 @item K
3040 Signed number whose magnitude is greater than 0x80
3042 @item L
3043 Integer in the range @minus{}8 to @minus{}1
3045 @item M
3046 Signed number whose magnitude is greater than 0x100
3048 @item N
3049 Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
3051 @item O
3052 16 (for rotate using swap)
3054 @item P
3055 Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
3057 @item R
3058 Numbers that mov3q can handle
3060 @item G
3061 Floating point constant that is not a 68881 constant
3063 @item S
3064 Operands that satisfy 'm' when -mpcrel is in effect
3066 @item T
3067 Operands that satisfy 's' when -mpcrel is not in effect
3069 @item Q
3070 Address register indirect addressing mode
3072 @item U
3073 Register offset addressing
3075 @item W
3076 const_call_operand
3078 @item Cs
3079 symbol_ref or const
3081 @item Ci
3082 const_int
3084 @item C0
3085 const_int 0
3087 @item Cj
3088 Range of signed numbers that don't fit in 16 bits
3090 @item Cmvq
3091 Integers valid for mvq
3093 @item Capsw
3094 Integers valid for a moveq followed by a swap
3096 @item Cmvz
3097 Integers valid for mvz
3099 @item Cmvs
3100 Integers valid for mvs
3102 @item Ap
3103 push_operand
3105 @item Ac
3106 Non-register operands allowed in clr
3108 @end table
3110 @item Moxie---@file{config/moxie/constraints.md}
3111 @table @code
3112 @item A
3113 An absolute address
3115 @item B
3116 An offset address
3118 @item W
3119 A register indirect memory operand
3121 @item I
3122 A constant in the range of 0 to 255.
3124 @item N
3125 A constant in the range of 0 to @minus{}255.
3127 @end table
3129 @item MSP430--@file{config/msp430/constraints.md}
3130 @table @code
3132 @item R12
3133 Register R12.
3135 @item R13
3136 Register R13.
3138 @item K
3139 Integer constant 1.
3141 @item L
3142 Integer constant -1^20..1^19.
3144 @item M
3145 Integer constant 1-4.
3147 @item Ya
3148 Memory references which do not require an extended MOVX instruction.
3150 @item Yl
3151 Memory reference, labels only.
3153 @item Ys
3154 Memory reference, stack only.
3156 @end table
3158 @item NDS32---@file{config/nds32/constraints.md}
3159 @table @code
3160 @item w
3161 LOW register class $r0 to $r7 constraint for V3/V3M ISA.
3162 @item l
3163 LOW register class $r0 to $r7.
3164 @item d
3165 MIDDLE register class $r0 to $r11, $r16 to $r19.
3166 @item h
3167 HIGH register class $r12 to $r14, $r20 to $r31.
3168 @item t
3169 Temporary assist register $ta (i.e.@: $r15).
3170 @item k
3171 Stack register $sp.
3172 @item Iu03
3173 Unsigned immediate 3-bit value.
3174 @item In03
3175 Negative immediate 3-bit value in the range of @minus{}7--0.
3176 @item Iu04
3177 Unsigned immediate 4-bit value.
3178 @item Is05
3179 Signed immediate 5-bit value.
3180 @item Iu05
3181 Unsigned immediate 5-bit value.
3182 @item In05
3183 Negative immediate 5-bit value in the range of @minus{}31--0.
3184 @item Ip05
3185 Unsigned immediate 5-bit value for movpi45 instruction with range 16--47.
3186 @item Iu06
3187 Unsigned immediate 6-bit value constraint for addri36.sp instruction.
3188 @item Iu08
3189 Unsigned immediate 8-bit value.
3190 @item Iu09
3191 Unsigned immediate 9-bit value.
3192 @item Is10
3193 Signed immediate 10-bit value.
3194 @item Is11
3195 Signed immediate 11-bit value.
3196 @item Is15
3197 Signed immediate 15-bit value.
3198 @item Iu15
3199 Unsigned immediate 15-bit value.
3200 @item Ic15
3201 A constant which is not in the range of imm15u but ok for bclr instruction.
3202 @item Ie15
3203 A constant which is not in the range of imm15u but ok for bset instruction.
3204 @item It15
3205 A constant which is not in the range of imm15u but ok for btgl instruction.
3206 @item Ii15
3207 A constant whose compliment value is in the range of imm15u
3208 and ok for bitci instruction.
3209 @item Is16
3210 Signed immediate 16-bit value.
3211 @item Is17
3212 Signed immediate 17-bit value.
3213 @item Is19
3214 Signed immediate 19-bit value.
3215 @item Is20
3216 Signed immediate 20-bit value.
3217 @item Ihig
3218 The immediate value that can be simply set high 20-bit.
3219 @item Izeb
3220 The immediate value 0xff.
3221 @item Izeh
3222 The immediate value 0xffff.
3223 @item Ixls
3224 The immediate value 0x01.
3225 @item Ix11
3226 The immediate value 0x7ff.
3227 @item Ibms
3228 The immediate value with power of 2.
3229 @item Ifex
3230 The immediate value with power of 2 minus 1.
3231 @item U33
3232 Memory constraint for 333 format.
3233 @item U45
3234 Memory constraint for 45 format.
3235 @item U37
3236 Memory constraint for 37 format.
3237 @end table
3239 @item Nios II family---@file{config/nios2/constraints.md}
3240 @table @code
3242 @item I
3243 Integer that is valid as an immediate operand in an
3244 instruction taking a signed 16-bit number. Range
3245 @minus{}32768 to 32767.
3247 @item J
3248 Integer that is valid as an immediate operand in an
3249 instruction taking an unsigned 16-bit number. Range
3250 0 to 65535.
3252 @item K
3253 Integer that is valid as an immediate operand in an
3254 instruction taking only the upper 16-bits of a
3255 32-bit number. Range 32-bit numbers with the lower
3256 16-bits being 0.
3258 @item L
3259 Integer that is valid as an immediate operand for a 
3260 shift instruction. Range 0 to 31.
3262 @item M
3263 Integer that is valid as an immediate operand for
3264 only the value 0. Can be used in conjunction with
3265 the format modifier @code{z} to use @code{r0}
3266 instead of @code{0} in the assembly output.
3268 @item N
3269 Integer that is valid as an immediate operand for
3270 a custom instruction opcode. Range 0 to 255.
3272 @item S
3273 Matches immediates which are addresses in the small
3274 data section and therefore can be added to @code{gp}
3275 as a 16-bit immediate to re-create their 32-bit value.
3277 @ifset INTERNALS
3278 @item T
3279 A @code{const} wrapped @code{UNSPEC} expression,
3280 representing a supported PIC or TLS relocation.
3281 @end ifset
3283 @end table
3285 @item PDP-11---@file{config/pdp11/constraints.md}
3286 @table @code
3287 @item a
3288 Floating point registers AC0 through AC3.  These can be loaded from/to
3289 memory with a single instruction.
3291 @item d
3292 Odd numbered general registers (R1, R3, R5).  These are used for
3293 16-bit multiply operations.
3295 @item f
3296 Any of the floating point registers (AC0 through AC5).
3298 @item G
3299 Floating point constant 0.
3301 @item I
3302 An integer constant that fits in 16 bits.
3304 @item J
3305 An integer constant whose low order 16 bits are zero.
3307 @item K
3308 An integer constant that does not meet the constraints for codes
3309 @samp{I} or @samp{J}.
3311 @item L
3312 The integer constant 1.
3314 @item M
3315 The integer constant @minus{}1.
3317 @item N
3318 The integer constant 0.
3320 @item O
3321 Integer constants @minus{}4 through @minus{}1 and 1 through 4; shifts by these
3322 amounts are handled as multiple single-bit shifts rather than a single
3323 variable-length shift.
3325 @item Q
3326 A memory reference which requires an additional word (address or
3327 offset) after the opcode.
3329 @item R
3330 A memory reference that is encoded within the opcode.
3332 @end table
3334 @item RL78---@file{config/rl78/constraints.md}
3335 @table @code
3337 @item Int3
3338 An integer constant in the range 1 @dots{} 7.
3339 @item Int8
3340 An integer constant in the range 0 @dots{} 255.
3341 @item J
3342 An integer constant in the range @minus{}255 @dots{} 0
3343 @item K
3344 The integer constant 1.
3345 @item L
3346 The integer constant -1.
3347 @item M
3348 The integer constant 0.
3349 @item N
3350 The integer constant 2.
3351 @item O
3352 The integer constant -2.
3353 @item P
3354 An integer constant in the range 1 @dots{} 15.
3355 @item Qbi
3356 The built-in compare types--eq, ne, gtu, ltu, geu, and leu.
3357 @item Qsc
3358 The synthetic compare types--gt, lt, ge, and le.
3359 @item Wab
3360 A memory reference with an absolute address.
3361 @item Wbc
3362 A memory reference using @code{BC} as a base register, with an optional offset.
3363 @item Wca
3364 A memory reference using @code{AX}, @code{BC}, @code{DE}, or @code{HL} for the address, for calls.
3365 @item Wcv
3366 A memory reference using any 16-bit register pair for the address, for calls.
3367 @item Wd2
3368 A memory reference using @code{DE} as a base register, with an optional offset.
3369 @item Wde
3370 A memory reference using @code{DE} as a base register, without any offset.
3371 @item Wfr
3372 Any memory reference to an address in the far address space.
3373 @item Wh1
3374 A memory reference using @code{HL} as a base register, with an optional one-byte offset.
3375 @item Whb
3376 A memory reference using @code{HL} as a base register, with @code{B} or @code{C} as the index register.
3377 @item Whl
3378 A memory reference using @code{HL} as a base register, without any offset.
3379 @item Ws1
3380 A memory reference using @code{SP} as a base register, with an optional one-byte offset.
3381 @item Y
3382 Any memory reference to an address in the near address space.
3383 @item A
3384 The @code{AX} register.
3385 @item B
3386 The @code{BC} register.
3387 @item D
3388 The @code{DE} register.
3389 @item R
3390 @code{A} through @code{L} registers.
3391 @item S
3392 The @code{SP} register.
3393 @item T
3394 The @code{HL} register.
3395 @item Z08W
3396 The 16-bit @code{R8} register.
3397 @item Z10W
3398 The 16-bit @code{R10} register.
3399 @item Zint
3400 The registers reserved for interrupts (@code{R24} to @code{R31}).
3401 @item a
3402 The @code{A} register.
3403 @item b
3404 The @code{B} register.
3405 @item c
3406 The @code{C} register.
3407 @item d
3408 The @code{D} register.
3409 @item e
3410 The @code{E} register.
3411 @item h
3412 The @code{H} register.
3413 @item l
3414 The @code{L} register.
3415 @item v
3416 The virtual registers.
3417 @item w
3418 The @code{PSW} register.
3419 @item x
3420 The @code{X} register.
3422 @end table
3424 @item RX---@file{config/rx/constraints.md}
3425 @table @code
3426 @item Q
3427 An address which does not involve register indirect addressing or
3428 pre/post increment/decrement addressing.
3430 @item Symbol
3431 A symbol reference.
3433 @item Int08
3434 A constant in the range @minus{}256 to 255, inclusive.
3436 @item Sint08
3437 A constant in the range @minus{}128 to 127, inclusive.
3439 @item Sint16
3440 A constant in the range @minus{}32768 to 32767, inclusive.
3442 @item Sint24
3443 A constant in the range @minus{}8388608 to 8388607, inclusive.
3445 @item Uint04
3446 A constant in the range 0 to 15, inclusive.
3448 @end table
3450 @need 1000
3451 @item SPARC---@file{config/sparc/sparc.h}
3452 @table @code
3453 @item f
3454 Floating-point register on the SPARC-V8 architecture and
3455 lower floating-point register on the SPARC-V9 architecture.
3457 @item e
3458 Floating-point register.  It is equivalent to @samp{f} on the
3459 SPARC-V8 architecture and contains both lower and upper
3460 floating-point registers on the SPARC-V9 architecture.
3462 @item c
3463 Floating-point condition code register.
3465 @item d
3466 Lower floating-point register.  It is only valid on the SPARC-V9
3467 architecture when the Visual Instruction Set is available.
3469 @item b
3470 Floating-point register.  It is only valid on the SPARC-V9 architecture
3471 when the Visual Instruction Set is available.
3473 @item h
3474 64-bit global or out register for the SPARC-V8+ architecture.
3476 @item C
3477 The constant all-ones, for floating-point.
3479 @item A
3480 Signed 5-bit constant
3482 @item D
3483 A vector constant
3485 @item I
3486 Signed 13-bit constant
3488 @item J
3489 Zero
3491 @item K
3492 32-bit constant with the low 12 bits clear (a constant that can be
3493 loaded with the @code{sethi} instruction)
3495 @item L
3496 A constant in the range supported by @code{movcc} instructions (11-bit
3497 signed immediate)
3499 @item M
3500 A constant in the range supported by @code{movrcc} instructions (10-bit
3501 signed immediate)
3503 @item N
3504 Same as @samp{K}, except that it verifies that bits that are not in the
3505 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
3506 modes wider than @code{SImode}
3508 @item O
3509 The constant 4096
3511 @item G
3512 Floating-point zero
3514 @item H
3515 Signed 13-bit constant, sign-extended to 32 or 64 bits
3517 @item P
3518 The constant -1
3520 @item Q
3521 Floating-point constant whose integral representation can
3522 be moved into an integer register using a single sethi
3523 instruction
3525 @item R
3526 Floating-point constant whose integral representation can
3527 be moved into an integer register using a single mov
3528 instruction
3530 @item S
3531 Floating-point constant whose integral representation can
3532 be moved into an integer register using a high/lo_sum
3533 instruction sequence
3535 @item T
3536 Memory address aligned to an 8-byte boundary
3538 @item U
3539 Even register
3541 @item W
3542 Memory address for @samp{e} constraint registers
3544 @item w
3545 Memory address with only a base register
3547 @item Y
3548 Vector zero
3550 @end table
3552 @item SPU---@file{config/spu/spu.h}
3553 @table @code
3554 @item a
3555 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 64 bit value.
3557 @item c
3558 An immediate for and/xor/or instructions.  const_int is treated as a 64 bit value.
3560 @item d
3561 An immediate for the @code{iohl} instruction.  const_int is treated as a 64 bit value.
3563 @item f
3564 An immediate which can be loaded with @code{fsmbi}.
3566 @item A
3567 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 32 bit value.
3569 @item B
3570 An immediate for most arithmetic instructions.  const_int is treated as a 32 bit value.
3572 @item C
3573 An immediate for and/xor/or instructions.  const_int is treated as a 32 bit value.
3575 @item D
3576 An immediate for the @code{iohl} instruction.  const_int is treated as a 32 bit value.
3578 @item I
3579 A constant in the range [@minus{}64, 63] for shift/rotate instructions.
3581 @item J
3582 An unsigned 7-bit constant for conversion/nop/channel instructions.
3584 @item K
3585 A signed 10-bit constant for most arithmetic instructions.
3587 @item M
3588 A signed 16 bit immediate for @code{stop}.
3590 @item N
3591 An unsigned 16-bit constant for @code{iohl} and @code{fsmbi}.
3593 @item O
3594 An unsigned 7-bit constant whose 3 least significant bits are 0.
3596 @item P
3597 An unsigned 3-bit constant for 16-byte rotates and shifts
3599 @item R
3600 Call operand, reg, for indirect calls
3602 @item S
3603 Call operand, symbol, for relative calls.
3605 @item T
3606 Call operand, const_int, for absolute calls.
3608 @item U
3609 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is sign extended to 128 bit.
3611 @item W
3612 An immediate for shift and rotate instructions.  const_int is treated as a 32 bit value.
3614 @item Y
3615 An immediate for and/xor/or instructions.  const_int is sign extended as a 128 bit.
3617 @item Z
3618 An immediate for the @code{iohl} instruction.  const_int is sign extended to 128 bit.
3620 @end table
3622 @item S/390 and zSeries---@file{config/s390/s390.h}
3623 @table @code
3624 @item a
3625 Address register (general purpose register except r0)
3627 @item c
3628 Condition code register
3630 @item d
3631 Data register (arbitrary general purpose register)
3633 @item f
3634 Floating-point register
3636 @item I
3637 Unsigned 8-bit constant (0--255)
3639 @item J
3640 Unsigned 12-bit constant (0--4095)
3642 @item K
3643 Signed 16-bit constant (@minus{}32768--32767)
3645 @item L
3646 Value appropriate as displacement.
3647 @table @code
3648 @item (0..4095)
3649 for short displacement
3650 @item (@minus{}524288..524287)
3651 for long displacement
3652 @end table
3654 @item M
3655 Constant integer with a value of 0x7fffffff.
3657 @item N
3658 Multiple letter constraint followed by 4 parameter letters.
3659 @table @code
3660 @item 0..9:
3661 number of the part counting from most to least significant
3662 @item H,Q:
3663 mode of the part
3664 @item D,S,H:
3665 mode of the containing operand
3666 @item 0,F:
3667 value of the other parts (F---all bits set)
3668 @end table
3669 The constraint matches if the specified part of a constant
3670 has a value different from its other parts.
3672 @item Q
3673 Memory reference without index register and with short displacement.
3675 @item R
3676 Memory reference with index register and short displacement.
3678 @item S
3679 Memory reference without index register but with long displacement.
3681 @item T
3682 Memory reference with index register and long displacement.
3684 @item U
3685 Pointer with short displacement.
3687 @item W
3688 Pointer with long displacement.
3690 @item Y
3691 Shift count operand.
3693 @end table
3695 @item Score family---@file{config/score/score.h}
3696 @table @code
3697 @item d
3698 Registers from r0 to r32.
3700 @item e
3701 Registers from r0 to r16.
3703 @item t
3704 r8---r11 or r22---r27 registers.
3706 @item h
3707 hi register.
3709 @item l
3710 lo register.
3712 @item x
3713 hi + lo register.
3715 @item q
3716 cnt register.
3718 @item y
3719 lcb register.
3721 @item z
3722 scb register.
3724 @item a
3725 cnt + lcb + scb register.
3727 @item c
3728 cr0---cr15 register.
3730 @item b
3731 cp1 registers.
3733 @item f
3734 cp2 registers.
3736 @item i
3737 cp3 registers.
3739 @item j
3740 cp1 + cp2 + cp3 registers.
3742 @item I
3743 High 16-bit constant (32-bit constant with 16 LSBs zero).
3745 @item J
3746 Unsigned 5 bit integer (in the range 0 to 31).
3748 @item K
3749 Unsigned 16 bit integer (in the range 0 to 65535).
3751 @item L
3752 Signed 16 bit integer (in the range @minus{}32768 to 32767).
3754 @item M
3755 Unsigned 14 bit integer (in the range 0 to 16383).
3757 @item N
3758 Signed 14 bit integer (in the range @minus{}8192 to 8191).
3760 @item Z
3761 Any SYMBOL_REF.
3762 @end table
3764 @item Xstormy16---@file{config/stormy16/stormy16.h}
3765 @table @code
3766 @item a
3767 Register r0.
3769 @item b
3770 Register r1.
3772 @item c
3773 Register r2.
3775 @item d
3776 Register r8.
3778 @item e
3779 Registers r0 through r7.
3781 @item t
3782 Registers r0 and r1.
3784 @item y
3785 The carry register.
3787 @item z
3788 Registers r8 and r9.
3790 @item I
3791 A constant between 0 and 3 inclusive.
3793 @item J
3794 A constant that has exactly one bit set.
3796 @item K
3797 A constant that has exactly one bit clear.
3799 @item L
3800 A constant between 0 and 255 inclusive.
3802 @item M
3803 A constant between @minus{}255 and 0 inclusive.
3805 @item N
3806 A constant between @minus{}3 and 0 inclusive.
3808 @item O
3809 A constant between 1 and 4 inclusive.
3811 @item P
3812 A constant between @minus{}4 and @minus{}1 inclusive.
3814 @item Q
3815 A memory reference that is a stack push.
3817 @item R
3818 A memory reference that is a stack pop.
3820 @item S
3821 A memory reference that refers to a constant address of known value.
3823 @item T
3824 The register indicated by Rx (not implemented yet).
3826 @item U
3827 A constant that is not between 2 and 15 inclusive.
3829 @item Z
3830 The constant 0.
3832 @end table
3834 @item TI C6X family---@file{config/c6x/constraints.md}
3835 @table @code
3836 @item a
3837 Register file A (A0--A31).
3839 @item b
3840 Register file B (B0--B31).
3842 @item A
3843 Predicate registers in register file A (A0--A2 on C64X and
3844 higher, A1 and A2 otherwise).
3846 @item B
3847 Predicate registers in register file B (B0--B2).
3849 @item C
3850 A call-used register in register file B (B0--B9, B16--B31).
3852 @item Da
3853 Register file A, excluding predicate registers (A3--A31,
3854 plus A0 if not C64X or higher).
3856 @item Db
3857 Register file B, excluding predicate registers (B3--B31).
3859 @item Iu4
3860 Integer constant in the range 0 @dots{} 15.
3862 @item Iu5
3863 Integer constant in the range 0 @dots{} 31.
3865 @item In5
3866 Integer constant in the range @minus{}31 @dots{} 0.
3868 @item Is5
3869 Integer constant in the range @minus{}16 @dots{} 15.
3871 @item I5x
3872 Integer constant that can be the operand of an ADDA or a SUBA insn.
3874 @item IuB
3875 Integer constant in the range 0 @dots{} 65535.
3877 @item IsB
3878 Integer constant in the range @minus{}32768 @dots{} 32767.
3880 @item IsC
3881 Integer constant in the range @math{-2^{20}} @dots{} @math{2^{20} - 1}.
3883 @item Jc
3884 Integer constant that is a valid mask for the clr instruction.
3886 @item Js
3887 Integer constant that is a valid mask for the set instruction.
3889 @item Q
3890 Memory location with A base register.
3892 @item R
3893 Memory location with B base register.
3895 @ifset INTERNALS
3896 @item S0
3897 On C64x+ targets, a GP-relative small data reference.
3899 @item S1
3900 Any kind of @code{SYMBOL_REF}, for use in a call address.
3902 @item Si
3903 Any kind of immediate operand, unless it matches the S0 constraint.
3905 @item T
3906 Memory location with B base register, but not using a long offset.
3908 @item W
3909 A memory operand with an address that can't be used in an unaligned access.
3911 @end ifset
3912 @item Z
3913 Register B14 (aka DP).
3915 @end table
3917 @item TILE-Gx---@file{config/tilegx/constraints.md}
3918 @table @code
3919 @item R00
3920 @itemx R01
3921 @itemx R02
3922 @itemx R03
3923 @itemx R04
3924 @itemx R05
3925 @itemx R06
3926 @itemx R07
3927 @itemx R08
3928 @itemx R09
3929 @itemx R10
3930 Each of these represents a register constraint for an individual
3931 register, from r0 to r10.
3933 @item I
3934 Signed 8-bit integer constant.
3936 @item J
3937 Signed 16-bit integer constant.
3939 @item K
3940 Unsigned 16-bit integer constant.
3942 @item L
3943 Integer constant that fits in one signed byte when incremented by one
3944 (@minus{}129 @dots{} 126).
3946 @item m
3947 Memory operand.  If used together with @samp{<} or @samp{>}, the
3948 operand can have postincrement which requires printing with @samp{%In}
3949 and @samp{%in} on TILE-Gx.  For example:
3951 @smallexample
3952 asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val));
3953 @end smallexample
3955 @item M
3956 A bit mask suitable for the BFINS instruction.
3958 @item N
3959 Integer constant that is a byte tiled out eight times.
3961 @item O
3962 The integer zero constant.
3964 @item P
3965 Integer constant that is a sign-extended byte tiled out as four shorts.
3967 @item Q
3968 Integer constant that fits in one signed byte when incremented
3969 (@minus{}129 @dots{} 126), but excluding -1.
3971 @item S
3972 Integer constant that has all 1 bits consecutive and starting at bit 0.
3974 @item T
3975 A 16-bit fragment of a got, tls, or pc-relative reference.
3977 @item U
3978 Memory operand except postincrement.  This is roughly the same as
3979 @samp{m} when not used together with @samp{<} or @samp{>}.
3981 @item W
3982 An 8-element vector constant with identical elements.
3984 @item Y
3985 A 4-element vector constant with identical elements.
3987 @item Z0
3988 The integer constant 0xffffffff.
3990 @item Z1
3991 The integer constant 0xffffffff00000000.
3993 @end table
3995 @item TILEPro---@file{config/tilepro/constraints.md}
3996 @table @code
3997 @item R00
3998 @itemx R01
3999 @itemx R02
4000 @itemx R03
4001 @itemx R04
4002 @itemx R05
4003 @itemx R06
4004 @itemx R07
4005 @itemx R08
4006 @itemx R09
4007 @itemx R10
4008 Each of these represents a register constraint for an individual
4009 register, from r0 to r10.
4011 @item I
4012 Signed 8-bit integer constant.
4014 @item J
4015 Signed 16-bit integer constant.
4017 @item K
4018 Nonzero integer constant with low 16 bits zero.
4020 @item L
4021 Integer constant that fits in one signed byte when incremented by one
4022 (@minus{}129 @dots{} 126).
4024 @item m
4025 Memory operand.  If used together with @samp{<} or @samp{>}, the
4026 operand can have postincrement which requires printing with @samp{%In}
4027 and @samp{%in} on TILEPro.  For example:
4029 @smallexample
4030 asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val));
4031 @end smallexample
4033 @item M
4034 A bit mask suitable for the MM instruction.
4036 @item N
4037 Integer constant that is a byte tiled out four times.
4039 @item O
4040 The integer zero constant.
4042 @item P
4043 Integer constant that is a sign-extended byte tiled out as two shorts.
4045 @item Q
4046 Integer constant that fits in one signed byte when incremented
4047 (@minus{}129 @dots{} 126), but excluding -1.
4049 @item T
4050 A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative
4051 reference.
4053 @item U
4054 Memory operand except postincrement.  This is roughly the same as
4055 @samp{m} when not used together with @samp{<} or @samp{>}.
4057 @item W
4058 A 4-element vector constant with identical elements.
4060 @item Y
4061 A 2-element vector constant with identical elements.
4063 @end table
4065 @item Xtensa---@file{config/xtensa/constraints.md}
4066 @table @code
4067 @item a
4068 General-purpose 32-bit register
4070 @item b
4071 One-bit boolean register
4073 @item A
4074 MAC16 40-bit accumulator register
4076 @item I
4077 Signed 12-bit integer constant, for use in MOVI instructions
4079 @item J
4080 Signed 8-bit integer constant, for use in ADDI instructions
4082 @item K
4083 Integer constant valid for BccI instructions
4085 @item L
4086 Unsigned constant valid for BccUI instructions
4088 @end table
4090 @end table
4092 @ifset INTERNALS
4093 @node Disable Insn Alternatives
4094 @subsection Disable insn alternatives using the @code{enabled} attribute
4095 @cindex enabled
4097 The @code{enabled} insn attribute may be used to disable certain insn
4098 alternatives for machine-specific reasons.  This is useful when adding
4099 new instructions to an existing pattern which are only available for
4100 certain cpu architecture levels as specified with the @code{-march=}
4101 option.
4103 If an insn alternative is disabled, then it will never be used.  The
4104 compiler treats the constraints for the disabled alternative as
4105 unsatisfiable.
4107 In order to make use of the @code{enabled} attribute a back end has to add
4108 in the machine description files:
4110 @enumerate
4111 @item
4112 A definition of the @code{enabled} insn attribute.  The attribute is
4113 defined as usual using the @code{define_attr} command.  This
4114 definition should be based on other insn attributes and/or target flags.
4115 The @code{enabled} attribute is a numeric attribute and should evaluate to
4116 @code{(const_int 1)} for an enabled alternative and to
4117 @code{(const_int 0)} otherwise.
4118 @item
4119 A definition of another insn attribute used to describe for what
4120 reason an insn alternative might be available or
4121 not.  E.g. @code{cpu_facility} as in the example below.
4122 @item
4123 An assignment for the second attribute to each insn definition
4124 combining instructions which are not all available under the same
4125 circumstances.  (Note: It obviously only makes sense for definitions
4126 with more than one alternative.  Otherwise the insn pattern should be
4127 disabled or enabled using the insn condition.)
4128 @end enumerate
4130 E.g. the following two patterns could easily be merged using the @code{enabled}
4131 attribute:
4133 @smallexample
4135 (define_insn "*movdi_old"
4136   [(set (match_operand:DI 0 "register_operand" "=d")
4137         (match_operand:DI 1 "register_operand" " d"))]
4138   "!TARGET_NEW"
4139   "lgr %0,%1")
4141 (define_insn "*movdi_new"
4142   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
4143         (match_operand:DI 1 "register_operand" " d,d,f"))]
4144   "TARGET_NEW"
4145   "@@
4146    lgr  %0,%1
4147    ldgr %0,%1
4148    lgdr %0,%1")
4150 @end smallexample
4154 @smallexample
4156 (define_insn "*movdi_combined"
4157   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
4158         (match_operand:DI 1 "register_operand" " d,d,f"))]
4159   ""
4160   "@@
4161    lgr  %0,%1
4162    ldgr %0,%1
4163    lgdr %0,%1"
4164   [(set_attr "cpu_facility" "*,new,new")])
4166 @end smallexample
4168 with the @code{enabled} attribute defined like this:
4170 @smallexample
4172 (define_attr "cpu_facility" "standard,new" (const_string "standard"))
4174 (define_attr "enabled" ""
4175   (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
4176          (and (eq_attr "cpu_facility" "new")
4177               (ne (symbol_ref "TARGET_NEW") (const_int 0)))
4178          (const_int 1)]
4179         (const_int 0)))
4181 @end smallexample
4183 @end ifset
4185 @ifset INTERNALS
4186 @node Define Constraints
4187 @subsection Defining Machine-Specific Constraints
4188 @cindex defining constraints
4189 @cindex constraints, defining
4191 Machine-specific constraints fall into two categories: register and
4192 non-register constraints.  Within the latter category, constraints
4193 which allow subsets of all possible memory or address operands should
4194 be specially marked, to give @code{reload} more information.
4196 Machine-specific constraints can be given names of arbitrary length,
4197 but they must be entirely composed of letters, digits, underscores
4198 (@samp{_}), and angle brackets (@samp{< >}).  Like C identifiers, they
4199 must begin with a letter or underscore.
4201 In order to avoid ambiguity in operand constraint strings, no
4202 constraint can have a name that begins with any other constraint's
4203 name.  For example, if @code{x} is defined as a constraint name,
4204 @code{xy} may not be, and vice versa.  As a consequence of this rule,
4205 no constraint may begin with one of the generic constraint letters:
4206 @samp{E F V X g i m n o p r s}.
4208 Register constraints correspond directly to register classes.
4209 @xref{Register Classes}.  There is thus not much flexibility in their
4210 definitions.
4212 @deffn {MD Expression} define_register_constraint name regclass docstring
4213 All three arguments are string constants.
4214 @var{name} is the name of the constraint, as it will appear in
4215 @code{match_operand} expressions.  If @var{name} is a multi-letter
4216 constraint its length shall be the same for all constraints starting
4217 with the same letter.  @var{regclass} can be either the
4218 name of the corresponding register class (@pxref{Register Classes}),
4219 or a C expression which evaluates to the appropriate register class.
4220 If it is an expression, it must have no side effects, and it cannot
4221 look at the operand.  The usual use of expressions is to map some
4222 register constraints to @code{NO_REGS} when the register class
4223 is not available on a given subarchitecture.
4225 @var{docstring} is a sentence documenting the meaning of the
4226 constraint.  Docstrings are explained further below.
4227 @end deffn
4229 Non-register constraints are more like predicates: the constraint
4230 definition gives a Boolean expression which indicates whether the
4231 constraint matches.
4233 @deffn {MD Expression} define_constraint name docstring exp
4234 The @var{name} and @var{docstring} arguments are the same as for
4235 @code{define_register_constraint}, but note that the docstring comes
4236 immediately after the name for these expressions.  @var{exp} is an RTL
4237 expression, obeying the same rules as the RTL expressions in predicate
4238 definitions.  @xref{Defining Predicates}, for details.  If it
4239 evaluates true, the constraint matches; if it evaluates false, it
4240 doesn't. Constraint expressions should indicate which RTL codes they
4241 might match, just like predicate expressions.
4243 @code{match_test} C expressions have access to the
4244 following variables:
4246 @table @var
4247 @item op
4248 The RTL object defining the operand.
4249 @item mode
4250 The machine mode of @var{op}.
4251 @item ival
4252 @samp{INTVAL (@var{op})}, if @var{op} is a @code{const_int}.
4253 @item hval
4254 @samp{CONST_DOUBLE_HIGH (@var{op})}, if @var{op} is an integer
4255 @code{const_double}.
4256 @item lval
4257 @samp{CONST_DOUBLE_LOW (@var{op})}, if @var{op} is an integer
4258 @code{const_double}.
4259 @item rval
4260 @samp{CONST_DOUBLE_REAL_VALUE (@var{op})}, if @var{op} is a floating-point
4261 @code{const_double}.
4262 @end table
4264 The @var{*val} variables should only be used once another piece of the
4265 expression has verified that @var{op} is the appropriate kind of RTL
4266 object.
4267 @end deffn
4269 Most non-register constraints should be defined with
4270 @code{define_constraint}.  The remaining two definition expressions
4271 are only appropriate for constraints that should be handled specially
4272 by @code{reload} if they fail to match.
4274 @deffn {MD Expression} define_memory_constraint name docstring exp
4275 Use this expression for constraints that match a subset of all memory
4276 operands: that is, @code{reload} can make them match by converting the
4277 operand to the form @samp{@w{(mem (reg @var{X}))}}, where @var{X} is a
4278 base register (from the register class specified by
4279 @code{BASE_REG_CLASS}, @pxref{Register Classes}).
4281 For example, on the S/390, some instructions do not accept arbitrary
4282 memory references, but only those that do not make use of an index
4283 register.  The constraint letter @samp{Q} is defined to represent a
4284 memory address of this type.  If @samp{Q} is defined with
4285 @code{define_memory_constraint}, a @samp{Q} constraint can handle any
4286 memory operand, because @code{reload} knows it can simply copy the
4287 memory address into a base register if required.  This is analogous to
4288 the way an @samp{o} constraint can handle any memory operand.
4290 The syntax and semantics are otherwise identical to
4291 @code{define_constraint}.
4292 @end deffn
4294 @deffn {MD Expression} define_address_constraint name docstring exp
4295 Use this expression for constraints that match a subset of all address
4296 operands: that is, @code{reload} can make the constraint match by
4297 converting the operand to the form @samp{@w{(reg @var{X})}}, again
4298 with @var{X} a base register.
4300 Constraints defined with @code{define_address_constraint} can only be
4301 used with the @code{address_operand} predicate, or machine-specific
4302 predicates that work the same way.  They are treated analogously to
4303 the generic @samp{p} constraint.
4305 The syntax and semantics are otherwise identical to
4306 @code{define_constraint}.
4307 @end deffn
4309 For historical reasons, names beginning with the letters @samp{G H}
4310 are reserved for constraints that match only @code{const_double}s, and
4311 names beginning with the letters @samp{I J K L M N O P} are reserved
4312 for constraints that match only @code{const_int}s.  This may change in
4313 the future.  For the time being, constraints with these names must be
4314 written in a stylized form, so that @code{genpreds} can tell you did
4315 it correctly:
4317 @smallexample
4318 @group
4319 (define_constraint "[@var{GHIJKLMNOP}]@dots{}"
4320   "@var{doc}@dots{}"
4321   (and (match_code "const_int")  ; @r{@code{const_double} for G/H}
4322        @var{condition}@dots{}))            ; @r{usually a @code{match_test}}
4323 @end group
4324 @end smallexample
4325 @c the semicolons line up in the formatted manual
4327 It is fine to use names beginning with other letters for constraints
4328 that match @code{const_double}s or @code{const_int}s.
4330 Each docstring in a constraint definition should be one or more complete
4331 sentences, marked up in Texinfo format.  @emph{They are currently unused.}
4332 In the future they will be copied into the GCC manual, in @ref{Machine
4333 Constraints}, replacing the hand-maintained tables currently found in
4334 that section.  Also, in the future the compiler may use this to give
4335 more helpful diagnostics when poor choice of @code{asm} constraints
4336 causes a reload failure.
4338 If you put the pseudo-Texinfo directive @samp{@@internal} at the
4339 beginning of a docstring, then (in the future) it will appear only in
4340 the internals manual's version of the machine-specific constraint tables.
4341 Use this for constraints that should not appear in @code{asm} statements.
4343 @node C Constraint Interface
4344 @subsection Testing constraints from C
4345 @cindex testing constraints
4346 @cindex constraints, testing
4348 It is occasionally useful to test a constraint from C code rather than
4349 implicitly via the constraint string in a @code{match_operand}.  The
4350 generated file @file{tm_p.h} declares a few interfaces for working
4351 with machine-specific constraints.  None of these interfaces work with
4352 the generic constraints described in @ref{Simple Constraints}.  This
4353 may change in the future.
4355 @strong{Warning:} @file{tm_p.h} may declare other functions that
4356 operate on constraints, besides the ones documented here.  Do not use
4357 those functions from machine-dependent code.  They exist to implement
4358 the old constraint interface that machine-independent components of
4359 the compiler still expect.  They will change or disappear in the
4360 future.
4362 Some valid constraint names are not valid C identifiers, so there is a
4363 mangling scheme for referring to them from C@.  Constraint names that
4364 do not contain angle brackets or underscores are left unchanged.
4365 Underscores are doubled, each @samp{<} is replaced with @samp{_l}, and
4366 each @samp{>} with @samp{_g}.  Here are some examples:
4368 @c the @c's prevent double blank lines in the printed manual.
4369 @example
4370 @multitable {Original} {Mangled}
4371 @item @strong{Original} @tab @strong{Mangled}  @c
4372 @item @code{x}     @tab @code{x}       @c
4373 @item @code{P42x}  @tab @code{P42x}    @c
4374 @item @code{P4_x}  @tab @code{P4__x}   @c
4375 @item @code{P4>x}  @tab @code{P4_gx}   @c
4376 @item @code{P4>>}  @tab @code{P4_g_g}  @c
4377 @item @code{P4_g>} @tab @code{P4__g_g} @c
4378 @end multitable
4379 @end example
4381 Throughout this section, the variable @var{c} is either a constraint
4382 in the abstract sense, or a constant from @code{enum constraint_num};
4383 the variable @var{m} is a mangled constraint name (usually as part of
4384 a larger identifier).
4386 @deftp Enum constraint_num
4387 For each machine-specific constraint, there is a corresponding
4388 enumeration constant: @samp{CONSTRAINT_} plus the mangled name of the
4389 constraint.  Functions that take an @code{enum constraint_num} as an
4390 argument expect one of these constants.
4392 Machine-independent constraints do not have associated constants.
4393 This may change in the future.
4394 @end deftp
4396 @deftypefun {inline bool} satisfies_constraint_@var{m} (rtx @var{exp})
4397 For each machine-specific, non-register constraint @var{m}, there is
4398 one of these functions; it returns @code{true} if @var{exp} satisfies the
4399 constraint.  These functions are only visible if @file{rtl.h} was included
4400 before @file{tm_p.h}.
4401 @end deftypefun
4403 @deftypefun bool constraint_satisfied_p (rtx @var{exp}, enum constraint_num @var{c})
4404 Like the @code{satisfies_constraint_@var{m}} functions, but the
4405 constraint to test is given as an argument, @var{c}.  If @var{c}
4406 specifies a register constraint, this function will always return
4407 @code{false}.
4408 @end deftypefun
4410 @deftypefun {enum reg_class} regclass_for_constraint (enum constraint_num @var{c})
4411 Returns the register class associated with @var{c}.  If @var{c} is not
4412 a register constraint, or those registers are not available for the
4413 currently selected subtarget, returns @code{NO_REGS}.
4414 @end deftypefun
4416 Here is an example use of @code{satisfies_constraint_@var{m}}.  In
4417 peephole optimizations (@pxref{Peephole Definitions}), operand
4418 constraint strings are ignored, so if there are relevant constraints,
4419 they must be tested in the C condition.  In the example, the
4420 optimization is applied if operand 2 does @emph{not} satisfy the
4421 @samp{K} constraint.  (This is a simplified version of a peephole
4422 definition from the i386 machine description.)
4424 @smallexample
4425 (define_peephole2
4426   [(match_scratch:SI 3 "r")
4427    (set (match_operand:SI 0 "register_operand" "")
4428         (mult:SI (match_operand:SI 1 "memory_operand" "")
4429                  (match_operand:SI 2 "immediate_operand" "")))]
4431   "!satisfies_constraint_K (operands[2])"
4433   [(set (match_dup 3) (match_dup 1))
4434    (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
4436   "")
4437 @end smallexample
4439 @node Standard Names
4440 @section Standard Pattern Names For Generation
4441 @cindex standard pattern names
4442 @cindex pattern names
4443 @cindex names, pattern
4445 Here is a table of the instruction names that are meaningful in the RTL
4446 generation pass of the compiler.  Giving one of these names to an
4447 instruction pattern tells the RTL generation pass that it can use the
4448 pattern to accomplish a certain task.
4450 @table @asis
4451 @cindex @code{mov@var{m}} instruction pattern
4452 @item @samp{mov@var{m}}
4453 Here @var{m} stands for a two-letter machine mode name, in lowercase.
4454 This instruction pattern moves data with that machine mode from operand
4455 1 to operand 0.  For example, @samp{movsi} moves full-word data.
4457 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
4458 own mode is wider than @var{m}, the effect of this instruction is
4459 to store the specified value in the part of the register that corresponds
4460 to mode @var{m}.  Bits outside of @var{m}, but which are within the
4461 same target word as the @code{subreg} are undefined.  Bits which are
4462 outside the target word are left unchanged.
4464 This class of patterns is special in several ways.  First of all, each
4465 of these names up to and including full word size @emph{must} be defined,
4466 because there is no other way to copy a datum from one place to another.
4467 If there are patterns accepting operands in larger modes,
4468 @samp{mov@var{m}} must be defined for integer modes of those sizes.
4470 Second, these patterns are not used solely in the RTL generation pass.
4471 Even the reload pass can generate move insns to copy values from stack
4472 slots into temporary registers.  When it does so, one of the operands is
4473 a hard register and the other is an operand that can need to be reloaded
4474 into a register.
4476 @findex force_reg
4477 Therefore, when given such a pair of operands, the pattern must generate
4478 RTL which needs no reloading and needs no temporary registers---no
4479 registers other than the operands.  For example, if you support the
4480 pattern with a @code{define_expand}, then in such a case the
4481 @code{define_expand} mustn't call @code{force_reg} or any other such
4482 function which might generate new pseudo registers.
4484 This requirement exists even for subword modes on a RISC machine where
4485 fetching those modes from memory normally requires several insns and
4486 some temporary registers.
4488 @findex change_address
4489 During reload a memory reference with an invalid address may be passed
4490 as an operand.  Such an address will be replaced with a valid address
4491 later in the reload pass.  In this case, nothing may be done with the
4492 address except to use it as it stands.  If it is copied, it will not be
4493 replaced with a valid address.  No attempt should be made to make such
4494 an address into a valid address and no routine (such as
4495 @code{change_address}) that will do so may be called.  Note that
4496 @code{general_operand} will fail when applied to such an address.
4498 @findex reload_in_progress
4499 The global variable @code{reload_in_progress} (which must be explicitly
4500 declared if required) can be used to determine whether such special
4501 handling is required.
4503 The variety of operands that have reloads depends on the rest of the
4504 machine description, but typically on a RISC machine these can only be
4505 pseudo registers that did not get hard registers, while on other
4506 machines explicit memory references will get optional reloads.
4508 If a scratch register is required to move an object to or from memory,
4509 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
4511 If there are cases which need scratch registers during or after reload,
4512 you must provide an appropriate secondary_reload target hook.
4514 @findex can_create_pseudo_p
4515 The macro @code{can_create_pseudo_p} can be used to determine if it
4516 is unsafe to create new pseudo registers.  If this variable is nonzero, then
4517 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
4519 The constraints on a @samp{mov@var{m}} must permit moving any hard
4520 register to any other hard register provided that
4521 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
4522 @code{TARGET_REGISTER_MOVE_COST} applied to their classes returns a value
4523 of 2.
4525 It is obligatory to support floating point @samp{mov@var{m}}
4526 instructions into and out of any registers that can hold fixed point
4527 values, because unions and structures (which have modes @code{SImode} or
4528 @code{DImode}) can be in those registers and they may have floating
4529 point members.
4531 There may also be a need to support fixed point @samp{mov@var{m}}
4532 instructions in and out of floating point registers.  Unfortunately, I
4533 have forgotten why this was so, and I don't know whether it is still
4534 true.  If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
4535 floating point registers, then the constraints of the fixed point
4536 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
4537 reload into a floating point register.
4539 @cindex @code{reload_in} instruction pattern
4540 @cindex @code{reload_out} instruction pattern
4541 @item @samp{reload_in@var{m}}
4542 @itemx @samp{reload_out@var{m}}
4543 These named patterns have been obsoleted by the target hook
4544 @code{secondary_reload}.
4546 Like @samp{mov@var{m}}, but used when a scratch register is required to
4547 move between operand 0 and operand 1.  Operand 2 describes the scratch
4548 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
4549 macro in @pxref{Register Classes}.
4551 There are special restrictions on the form of the @code{match_operand}s
4552 used in these patterns.  First, only the predicate for the reload
4553 operand is examined, i.e., @code{reload_in} examines operand 1, but not
4554 the predicates for operand 0 or 2.  Second, there may be only one
4555 alternative in the constraints.  Third, only a single register class
4556 letter may be used for the constraint; subsequent constraint letters
4557 are ignored.  As a special exception, an empty constraint string
4558 matches the @code{ALL_REGS} register class.  This may relieve ports
4559 of the burden of defining an @code{ALL_REGS} constraint letter just
4560 for these patterns.
4562 @cindex @code{movstrict@var{m}} instruction pattern
4563 @item @samp{movstrict@var{m}}
4564 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
4565 with mode @var{m} of a register whose natural mode is wider,
4566 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
4567 any of the register except the part which belongs to mode @var{m}.
4569 @cindex @code{movmisalign@var{m}} instruction pattern
4570 @item @samp{movmisalign@var{m}}
4571 This variant of a move pattern is designed to load or store a value
4572 from a memory address that is not naturally aligned for its mode.
4573 For a store, the memory will be in operand 0; for a load, the memory
4574 will be in operand 1.  The other operand is guaranteed not to be a
4575 memory, so that it's easy to tell whether this is a load or store.
4577 This pattern is used by the autovectorizer, and when expanding a
4578 @code{MISALIGNED_INDIRECT_REF} expression.
4580 @cindex @code{load_multiple} instruction pattern
4581 @item @samp{load_multiple}
4582 Load several consecutive memory locations into consecutive registers.
4583 Operand 0 is the first of the consecutive registers, operand 1
4584 is the first memory location, and operand 2 is a constant: the
4585 number of consecutive registers.
4587 Define this only if the target machine really has such an instruction;
4588 do not define this if the most efficient way of loading consecutive
4589 registers from memory is to do them one at a time.
4591 On some machines, there are restrictions as to which consecutive
4592 registers can be stored into memory, such as particular starting or
4593 ending register numbers or only a range of valid counts.  For those
4594 machines, use a @code{define_expand} (@pxref{Expander Definitions})
4595 and make the pattern fail if the restrictions are not met.
4597 Write the generated insn as a @code{parallel} with elements being a
4598 @code{set} of one register from the appropriate memory location (you may
4599 also need @code{use} or @code{clobber} elements).  Use a
4600 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
4601 @file{rs6000.md} for examples of the use of this insn pattern.
4603 @cindex @samp{store_multiple} instruction pattern
4604 @item @samp{store_multiple}
4605 Similar to @samp{load_multiple}, but store several consecutive registers
4606 into consecutive memory locations.  Operand 0 is the first of the
4607 consecutive memory locations, operand 1 is the first register, and
4608 operand 2 is a constant: the number of consecutive registers.
4610 @cindex @code{vec_load_lanes@var{m}@var{n}} instruction pattern
4611 @item @samp{vec_load_lanes@var{m}@var{n}}
4612 Perform an interleaved load of several vectors from memory operand 1
4613 into register operand 0.  Both operands have mode @var{m}.  The register
4614 operand is viewed as holding consecutive vectors of mode @var{n},
4615 while the memory operand is a flat array that contains the same number
4616 of elements.  The operation is equivalent to:
4618 @smallexample
4619 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4620 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4621   for (i = 0; i < c; i++)
4622     operand0[i][j] = operand1[j * c + i];
4623 @end smallexample
4625 For example, @samp{vec_load_lanestiv4hi} loads 8 16-bit values
4626 from memory into a register of mode @samp{TI}@.  The register
4627 contains two consecutive vectors of mode @samp{V4HI}@.
4629 This pattern can only be used if:
4630 @smallexample
4631 TARGET_ARRAY_MODE_SUPPORTED_P (@var{n}, @var{c})
4632 @end smallexample
4633 is true.  GCC assumes that, if a target supports this kind of
4634 instruction for some mode @var{n}, it also supports unaligned
4635 loads for vectors of mode @var{n}.
4637 @cindex @code{vec_store_lanes@var{m}@var{n}} instruction pattern
4638 @item @samp{vec_store_lanes@var{m}@var{n}}
4639 Equivalent to @samp{vec_load_lanes@var{m}@var{n}}, with the memory
4640 and register operands reversed.  That is, the instruction is
4641 equivalent to:
4643 @smallexample
4644 int c = GET_MODE_SIZE (@var{m}) / GET_MODE_SIZE (@var{n});
4645 for (j = 0; j < GET_MODE_NUNITS (@var{n}); j++)
4646   for (i = 0; i < c; i++)
4647     operand0[j * c + i] = operand1[i][j];
4648 @end smallexample
4650 for a memory operand 0 and register operand 1.
4652 @cindex @code{vec_set@var{m}} instruction pattern
4653 @item @samp{vec_set@var{m}}
4654 Set given field in the vector value.  Operand 0 is the vector to modify,
4655 operand 1 is new value of field and operand 2 specify the field index.
4657 @cindex @code{vec_extract@var{m}} instruction pattern
4658 @item @samp{vec_extract@var{m}}
4659 Extract given field from the vector value.  Operand 1 is the vector, operand 2
4660 specify field index and operand 0 place to store value into.
4662 @cindex @code{vec_init@var{m}} instruction pattern
4663 @item @samp{vec_init@var{m}}
4664 Initialize the vector to given values.  Operand 0 is the vector to initialize
4665 and operand 1 is parallel containing values for individual fields.
4667 @cindex @code{vcond@var{m}@var{n}} instruction pattern
4668 @item @samp{vcond@var{m}@var{n}}
4669 Output a conditional vector move.  Operand 0 is the destination to
4670 receive a combination of operand 1 and operand 2, which are of mode @var{m},
4671 dependent on the outcome of the predicate in operand 3 which is a
4672 vector comparison with operands of mode @var{n} in operands 4 and 5.  The
4673 modes @var{m} and @var{n} should have the same size.  Operand 0
4674 will be set to the value @var{op1} & @var{msk} | @var{op2} & ~@var{msk}
4675 where @var{msk} is computed by element-wise evaluation of the vector
4676 comparison with a truth value of all-ones and a false value of all-zeros.
4678 @cindex @code{vec_perm@var{m}} instruction pattern
4679 @item @samp{vec_perm@var{m}}
4680 Output a (variable) vector permutation.  Operand 0 is the destination
4681 to receive elements from operand 1 and operand 2, which are of mode
4682 @var{m}.  Operand 3 is the @dfn{selector}.  It is an integral mode
4683 vector of the same width and number of elements as mode @var{m}.
4685 The input elements are numbered from 0 in operand 1 through
4686 @math{2*@var{N}-1} in operand 2.  The elements of the selector must
4687 be computed modulo @math{2*@var{N}}.  Note that if
4688 @code{rtx_equal_p(operand1, operand2)}, this can be implemented
4689 with just operand 1 and selector elements modulo @var{N}.
4691 In order to make things easy for a number of targets, if there is no
4692 @samp{vec_perm} pattern for mode @var{m}, but there is for mode @var{q}
4693 where @var{q} is a vector of @code{QImode} of the same width as @var{m},
4694 the middle-end will lower the mode @var{m} @code{VEC_PERM_EXPR} to
4695 mode @var{q}.
4697 @cindex @code{vec_perm_const@var{m}} instruction pattern
4698 @item @samp{vec_perm_const@var{m}}
4699 Like @samp{vec_perm} except that the permutation is a compile-time
4700 constant.  That is, operand 3, the @dfn{selector}, is a @code{CONST_VECTOR}.
4702 Some targets cannot perform a permutation with a variable selector,
4703 but can efficiently perform a constant permutation.  Further, the
4704 target hook @code{vec_perm_ok} is queried to determine if the 
4705 specific constant permutation is available efficiently; the named
4706 pattern is never expanded without @code{vec_perm_ok} returning true.
4708 There is no need for a target to supply both @samp{vec_perm@var{m}}
4709 and @samp{vec_perm_const@var{m}} if the former can trivially implement
4710 the operation with, say, the vector constant loaded into a register.
4712 @cindex @code{push@var{m}1} instruction pattern
4713 @item @samp{push@var{m}1}
4714 Output a push instruction.  Operand 0 is value to push.  Used only when
4715 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
4716 missing and in such case an @code{mov} expander is used instead, with a
4717 @code{MEM} expression forming the push operation.  The @code{mov} expander
4718 method is deprecated.
4720 @cindex @code{add@var{m}3} instruction pattern
4721 @item @samp{add@var{m}3}
4722 Add operand 2 and operand 1, storing the result in operand 0.  All operands
4723 must have mode @var{m}.  This can be used even on two-address machines, by
4724 means of constraints requiring operands 1 and 0 to be the same location.
4726 @cindex @code{addptr@var{m}3} instruction pattern
4727 @item @samp{addptr@var{m}3}
4728 Like @code{add@var{m}3} but is guaranteed to only be used for address
4729 calculations.  The expanded code is not allowed to clobber the
4730 condition code.  It only needs to be defined if @code{add@var{m}3}
4731 sets the condition code.  If adds used for address calculations and
4732 normal adds are not compatible it is required to expand a distinct
4733 pattern (e.g. using an unspec).  The pattern is used by LRA to emit
4734 address calculations.  @code{add@var{m}3} is used if
4735 @code{addptr@var{m}3} is not defined.
4737 @cindex @code{ssadd@var{m}3} instruction pattern
4738 @cindex @code{usadd@var{m}3} instruction pattern
4739 @cindex @code{sub@var{m}3} instruction pattern
4740 @cindex @code{sssub@var{m}3} instruction pattern
4741 @cindex @code{ussub@var{m}3} instruction pattern
4742 @cindex @code{mul@var{m}3} instruction pattern
4743 @cindex @code{ssmul@var{m}3} instruction pattern
4744 @cindex @code{usmul@var{m}3} instruction pattern
4745 @cindex @code{div@var{m}3} instruction pattern
4746 @cindex @code{ssdiv@var{m}3} instruction pattern
4747 @cindex @code{udiv@var{m}3} instruction pattern
4748 @cindex @code{usdiv@var{m}3} instruction pattern
4749 @cindex @code{mod@var{m}3} instruction pattern
4750 @cindex @code{umod@var{m}3} instruction pattern
4751 @cindex @code{umin@var{m}3} instruction pattern
4752 @cindex @code{umax@var{m}3} instruction pattern
4753 @cindex @code{and@var{m}3} instruction pattern
4754 @cindex @code{ior@var{m}3} instruction pattern
4755 @cindex @code{xor@var{m}3} instruction pattern
4756 @item @samp{ssadd@var{m}3}, @samp{usadd@var{m}3}
4757 @itemx @samp{sub@var{m}3}, @samp{sssub@var{m}3}, @samp{ussub@var{m}3}
4758 @itemx @samp{mul@var{m}3}, @samp{ssmul@var{m}3}, @samp{usmul@var{m}3}
4759 @itemx @samp{div@var{m}3}, @samp{ssdiv@var{m}3}
4760 @itemx @samp{udiv@var{m}3}, @samp{usdiv@var{m}3}
4761 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
4762 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
4763 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
4764 Similar, for other arithmetic operations.
4766 @cindex @code{fma@var{m}4} instruction pattern
4767 @item @samp{fma@var{m}4}
4768 Multiply operand 2 and operand 1, then add operand 3, storing the
4769 result in operand 0 without doing an intermediate rounding step.  All
4770 operands must have mode @var{m}.  This pattern is used to implement
4771 the @code{fma}, @code{fmaf}, and @code{fmal} builtin functions from
4772 the ISO C99 standard.
4774 @cindex @code{fms@var{m}4} instruction pattern
4775 @item @samp{fms@var{m}4}
4776 Like @code{fma@var{m}4}, except operand 3 subtracted from the
4777 product instead of added to the product.  This is represented
4778 in the rtl as
4780 @smallexample
4781 (fma:@var{m} @var{op1} @var{op2} (neg:@var{m} @var{op3}))
4782 @end smallexample
4784 @cindex @code{fnma@var{m}4} instruction pattern
4785 @item @samp{fnma@var{m}4}
4786 Like @code{fma@var{m}4} except that the intermediate product
4787 is negated before being added to operand 3.  This is represented
4788 in the rtl as
4790 @smallexample
4791 (fma:@var{m} (neg:@var{m} @var{op1}) @var{op2} @var{op3})
4792 @end smallexample
4794 @cindex @code{fnms@var{m}4} instruction pattern
4795 @item @samp{fnms@var{m}4}
4796 Like @code{fms@var{m}4} except that the intermediate product
4797 is negated before subtracting operand 3.  This is represented
4798 in the rtl as
4800 @smallexample
4801 (fma:@var{m} (neg:@var{m} @var{op1}) @var{op2} (neg:@var{m} @var{op3}))
4802 @end smallexample
4804 @cindex @code{min@var{m}3} instruction pattern
4805 @cindex @code{max@var{m}3} instruction pattern
4806 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
4807 Signed minimum and maximum operations.  When used with floating point,
4808 if both operands are zeros, or if either operand is @code{NaN}, then
4809 it is unspecified which of the two operands is returned as the result.
4811 @cindex @code{reduc_smin_@var{m}} instruction pattern
4812 @cindex @code{reduc_smax_@var{m}} instruction pattern
4813 @item @samp{reduc_smin_@var{m}}, @samp{reduc_smax_@var{m}}
4814 Find the signed minimum/maximum of the elements of a vector. The vector is
4815 operand 1, and the scalar result is stored in the least significant bits of
4816 operand 0 (also a vector). The output and input vector should have the same
4817 modes.
4819 @cindex @code{reduc_umin_@var{m}} instruction pattern
4820 @cindex @code{reduc_umax_@var{m}} instruction pattern
4821 @item @samp{reduc_umin_@var{m}}, @samp{reduc_umax_@var{m}}
4822 Find the unsigned minimum/maximum of the elements of a vector. The vector is
4823 operand 1, and the scalar result is stored in the least significant bits of
4824 operand 0 (also a vector). The output and input vector should have the same
4825 modes.
4827 @cindex @code{reduc_splus_@var{m}} instruction pattern
4828 @item @samp{reduc_splus_@var{m}}
4829 Compute the sum of the signed elements of a vector. The vector is operand 1,
4830 and the scalar result is stored in the least significant bits of operand 0
4831 (also a vector). The output and input vector should have the same modes.
4833 @cindex @code{reduc_uplus_@var{m}} instruction pattern
4834 @item @samp{reduc_uplus_@var{m}}
4835 Compute the sum of the unsigned elements of a vector. The vector is operand 1,
4836 and the scalar result is stored in the least significant bits of operand 0
4837 (also a vector). The output and input vector should have the same modes.
4839 @cindex @code{sdot_prod@var{m}} instruction pattern
4840 @item @samp{sdot_prod@var{m}}
4841 @cindex @code{udot_prod@var{m}} instruction pattern
4842 @item @samp{udot_prod@var{m}}
4843 Compute the sum of the products of two signed/unsigned elements.
4844 Operand 1 and operand 2 are of the same mode. Their product, which is of a
4845 wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or
4846 wider than the mode of the product. The result is placed in operand 0, which
4847 is of the same mode as operand 3.
4849 @cindex @code{ssum_widen@var{m3}} instruction pattern
4850 @item @samp{ssum_widen@var{m3}}
4851 @cindex @code{usum_widen@var{m3}} instruction pattern
4852 @item @samp{usum_widen@var{m3}}
4853 Operands 0 and 2 are of the same mode, which is wider than the mode of
4854 operand 1. Add operand 1 to operand 2 and place the widened result in
4855 operand 0. (This is used express accumulation of elements into an accumulator
4856 of a wider mode.)
4858 @cindex @code{vec_shl_@var{m}} instruction pattern
4859 @cindex @code{vec_shr_@var{m}} instruction pattern
4860 @item @samp{vec_shl_@var{m}}, @samp{vec_shr_@var{m}}
4861 Whole vector left/right shift in bits.
4862 Operand 1 is a vector to be shifted.
4863 Operand 2 is an integer shift amount in bits.
4864 Operand 0 is where the resulting shifted vector is stored.
4865 The output and input vectors should have the same modes.
4867 @cindex @code{vec_pack_trunc_@var{m}} instruction pattern
4868 @item @samp{vec_pack_trunc_@var{m}}
4869 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
4870 are vectors of the same mode having N integral or floating point elements
4871 of size S@.  Operand 0 is the resulting vector in which 2*N elements of
4872 size N/2 are concatenated after narrowing them down using truncation.
4874 @cindex @code{vec_pack_ssat_@var{m}} instruction pattern
4875 @cindex @code{vec_pack_usat_@var{m}} instruction pattern
4876 @item @samp{vec_pack_ssat_@var{m}}, @samp{vec_pack_usat_@var{m}}
4877 Narrow (demote) and merge the elements of two vectors.  Operands 1 and 2
4878 are vectors of the same mode having N integral elements of size S.
4879 Operand 0 is the resulting vector in which the elements of the two input
4880 vectors are concatenated after narrowing them down using signed/unsigned
4881 saturating arithmetic.
4883 @cindex @code{vec_pack_sfix_trunc_@var{m}} instruction pattern
4884 @cindex @code{vec_pack_ufix_trunc_@var{m}} instruction pattern
4885 @item @samp{vec_pack_sfix_trunc_@var{m}}, @samp{vec_pack_ufix_trunc_@var{m}}
4886 Narrow, convert to signed/unsigned integral type and merge the elements
4887 of two vectors.  Operands 1 and 2 are vectors of the same mode having N
4888 floating point elements of size S@.  Operand 0 is the resulting vector
4889 in which 2*N elements of size N/2 are concatenated.
4891 @cindex @code{vec_unpacks_hi_@var{m}} instruction pattern
4892 @cindex @code{vec_unpacks_lo_@var{m}} instruction pattern
4893 @item @samp{vec_unpacks_hi_@var{m}}, @samp{vec_unpacks_lo_@var{m}}
4894 Extract and widen (promote) the high/low part of a vector of signed
4895 integral or floating point elements.  The input vector (operand 1) has N
4896 elements of size S@.  Widen (promote) the high/low elements of the vector
4897 using signed or floating point extension and place the resulting N/2
4898 values of size 2*S in the output vector (operand 0).
4900 @cindex @code{vec_unpacku_hi_@var{m}} instruction pattern
4901 @cindex @code{vec_unpacku_lo_@var{m}} instruction pattern
4902 @item @samp{vec_unpacku_hi_@var{m}}, @samp{vec_unpacku_lo_@var{m}}
4903 Extract and widen (promote) the high/low part of a vector of unsigned
4904 integral elements.  The input vector (operand 1) has N elements of size S.
4905 Widen (promote) the high/low elements of the vector using zero extension and
4906 place the resulting N/2 values of size 2*S in the output vector (operand 0).
4908 @cindex @code{vec_unpacks_float_hi_@var{m}} instruction pattern
4909 @cindex @code{vec_unpacks_float_lo_@var{m}} instruction pattern
4910 @cindex @code{vec_unpacku_float_hi_@var{m}} instruction pattern
4911 @cindex @code{vec_unpacku_float_lo_@var{m}} instruction pattern
4912 @item @samp{vec_unpacks_float_hi_@var{m}}, @samp{vec_unpacks_float_lo_@var{m}}
4913 @itemx @samp{vec_unpacku_float_hi_@var{m}}, @samp{vec_unpacku_float_lo_@var{m}}
4914 Extract, convert to floating point type and widen the high/low part of a
4915 vector of signed/unsigned integral elements.  The input vector (operand 1)
4916 has N elements of size S@.  Convert the high/low elements of the vector using
4917 floating point conversion and place the resulting N/2 values of size 2*S in
4918 the output vector (operand 0).
4920 @cindex @code{vec_widen_umult_hi_@var{m}} instruction pattern
4921 @cindex @code{vec_widen_umult_lo_@var{m}} instruction pattern
4922 @cindex @code{vec_widen_smult_hi_@var{m}} instruction pattern
4923 @cindex @code{vec_widen_smult_lo_@var{m}} instruction pattern
4924 @cindex @code{vec_widen_umult_even_@var{m}} instruction pattern
4925 @cindex @code{vec_widen_umult_odd_@var{m}} instruction pattern
4926 @cindex @code{vec_widen_smult_even_@var{m}} instruction pattern
4927 @cindex @code{vec_widen_smult_odd_@var{m}} instruction pattern
4928 @item @samp{vec_widen_umult_hi_@var{m}}, @samp{vec_widen_umult_lo_@var{m}}
4929 @itemx @samp{vec_widen_smult_hi_@var{m}}, @samp{vec_widen_smult_lo_@var{m}}
4930 @itemx @samp{vec_widen_umult_even_@var{m}}, @samp{vec_widen_umult_odd_@var{m}}
4931 @itemx @samp{vec_widen_smult_even_@var{m}}, @samp{vec_widen_smult_odd_@var{m}}
4932 Signed/Unsigned widening multiplication.  The two inputs (operands 1 and 2)
4933 are vectors with N signed/unsigned elements of size S@.  Multiply the high/low
4934 or even/odd elements of the two vectors, and put the N/2 products of size 2*S
4935 in the output vector (operand 0). A target shouldn't implement even/odd pattern
4936 pair if it is less efficient than lo/hi one.
4938 @cindex @code{vec_widen_ushiftl_hi_@var{m}} instruction pattern
4939 @cindex @code{vec_widen_ushiftl_lo_@var{m}} instruction pattern
4940 @cindex @code{vec_widen_sshiftl_hi_@var{m}} instruction pattern
4941 @cindex @code{vec_widen_sshiftl_lo_@var{m}} instruction pattern
4942 @item @samp{vec_widen_ushiftl_hi_@var{m}}, @samp{vec_widen_ushiftl_lo_@var{m}}
4943 @itemx @samp{vec_widen_sshiftl_hi_@var{m}}, @samp{vec_widen_sshiftl_lo_@var{m}}
4944 Signed/Unsigned widening shift left.  The first input (operand 1) is a vector
4945 with N signed/unsigned elements of size S@.  Operand 2 is a constant.  Shift
4946 the high/low elements of operand 1, and put the N/2 results of size 2*S in the
4947 output vector (operand 0).
4949 @cindex @code{mulhisi3} instruction pattern
4950 @item @samp{mulhisi3}
4951 Multiply operands 1 and 2, which have mode @code{HImode}, and store
4952 a @code{SImode} product in operand 0.
4954 @cindex @code{mulqihi3} instruction pattern
4955 @cindex @code{mulsidi3} instruction pattern
4956 @item @samp{mulqihi3}, @samp{mulsidi3}
4957 Similar widening-multiplication instructions of other widths.
4959 @cindex @code{umulqihi3} instruction pattern
4960 @cindex @code{umulhisi3} instruction pattern
4961 @cindex @code{umulsidi3} instruction pattern
4962 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
4963 Similar widening-multiplication instructions that do unsigned
4964 multiplication.
4966 @cindex @code{usmulqihi3} instruction pattern
4967 @cindex @code{usmulhisi3} instruction pattern
4968 @cindex @code{usmulsidi3} instruction pattern
4969 @item @samp{usmulqihi3}, @samp{usmulhisi3}, @samp{usmulsidi3}
4970 Similar widening-multiplication instructions that interpret the first
4971 operand as unsigned and the second operand as signed, then do a signed
4972 multiplication.
4974 @cindex @code{smul@var{m}3_highpart} instruction pattern
4975 @item @samp{smul@var{m}3_highpart}
4976 Perform a signed multiplication of operands 1 and 2, which have mode
4977 @var{m}, and store the most significant half of the product in operand 0.
4978 The least significant half of the product is discarded.
4980 @cindex @code{umul@var{m}3_highpart} instruction pattern
4981 @item @samp{umul@var{m}3_highpart}
4982 Similar, but the multiplication is unsigned.
4984 @cindex @code{madd@var{m}@var{n}4} instruction pattern
4985 @item @samp{madd@var{m}@var{n}4}
4986 Multiply operands 1 and 2, sign-extend them to mode @var{n}, add
4987 operand 3, and store the result in operand 0.  Operands 1 and 2
4988 have mode @var{m} and operands 0 and 3 have mode @var{n}.
4989 Both modes must be integer or fixed-point modes and @var{n} must be twice
4990 the size of @var{m}.
4992 In other words, @code{madd@var{m}@var{n}4} is like
4993 @code{mul@var{m}@var{n}3} except that it also adds operand 3.
4995 These instructions are not allowed to @code{FAIL}.
4997 @cindex @code{umadd@var{m}@var{n}4} instruction pattern
4998 @item @samp{umadd@var{m}@var{n}4}
4999 Like @code{madd@var{m}@var{n}4}, but zero-extend the multiplication
5000 operands instead of sign-extending them.
5002 @cindex @code{ssmadd@var{m}@var{n}4} instruction pattern
5003 @item @samp{ssmadd@var{m}@var{n}4}
5004 Like @code{madd@var{m}@var{n}4}, but all involved operations must be
5005 signed-saturating.
5007 @cindex @code{usmadd@var{m}@var{n}4} instruction pattern
5008 @item @samp{usmadd@var{m}@var{n}4}
5009 Like @code{umadd@var{m}@var{n}4}, but all involved operations must be
5010 unsigned-saturating.
5012 @cindex @code{msub@var{m}@var{n}4} instruction pattern
5013 @item @samp{msub@var{m}@var{n}4}
5014 Multiply operands 1 and 2, sign-extend them to mode @var{n}, subtract the
5015 result from operand 3, and store the result in operand 0.  Operands 1 and 2
5016 have mode @var{m} and operands 0 and 3 have mode @var{n}.
5017 Both modes must be integer or fixed-point modes and @var{n} must be twice
5018 the size of @var{m}.
5020 In other words, @code{msub@var{m}@var{n}4} is like
5021 @code{mul@var{m}@var{n}3} except that it also subtracts the result
5022 from operand 3.
5024 These instructions are not allowed to @code{FAIL}.
5026 @cindex @code{umsub@var{m}@var{n}4} instruction pattern
5027 @item @samp{umsub@var{m}@var{n}4}
5028 Like @code{msub@var{m}@var{n}4}, but zero-extend the multiplication
5029 operands instead of sign-extending them.
5031 @cindex @code{ssmsub@var{m}@var{n}4} instruction pattern
5032 @item @samp{ssmsub@var{m}@var{n}4}
5033 Like @code{msub@var{m}@var{n}4}, but all involved operations must be
5034 signed-saturating.
5036 @cindex @code{usmsub@var{m}@var{n}4} instruction pattern
5037 @item @samp{usmsub@var{m}@var{n}4}
5038 Like @code{umsub@var{m}@var{n}4}, but all involved operations must be
5039 unsigned-saturating.
5041 @cindex @code{divmod@var{m}4} instruction pattern
5042 @item @samp{divmod@var{m}4}
5043 Signed division that produces both a quotient and a remainder.
5044 Operand 1 is divided by operand 2 to produce a quotient stored
5045 in operand 0 and a remainder stored in operand 3.
5047 For machines with an instruction that produces both a quotient and a
5048 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
5049 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
5050 allows optimization in the relatively common case when both the quotient
5051 and remainder are computed.
5053 If an instruction that just produces a quotient or just a remainder
5054 exists and is more efficient than the instruction that produces both,
5055 write the output routine of @samp{divmod@var{m}4} to call
5056 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
5057 quotient or remainder and generate the appropriate instruction.
5059 @cindex @code{udivmod@var{m}4} instruction pattern
5060 @item @samp{udivmod@var{m}4}
5061 Similar, but does unsigned division.
5063 @anchor{shift patterns}
5064 @cindex @code{ashl@var{m}3} instruction pattern
5065 @cindex @code{ssashl@var{m}3} instruction pattern
5066 @cindex @code{usashl@var{m}3} instruction pattern
5067 @item @samp{ashl@var{m}3}, @samp{ssashl@var{m}3}, @samp{usashl@var{m}3}
5068 Arithmetic-shift operand 1 left by a number of bits specified by operand
5069 2, and store the result in operand 0.  Here @var{m} is the mode of
5070 operand 0 and operand 1; operand 2's mode is specified by the
5071 instruction pattern, and the compiler will convert the operand to that
5072 mode before generating the instruction.  The meaning of out-of-range shift
5073 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
5074 @xref{TARGET_SHIFT_TRUNCATION_MASK}.  Operand 2 is always a scalar type.
5076 @cindex @code{ashr@var{m}3} instruction pattern
5077 @cindex @code{lshr@var{m}3} instruction pattern
5078 @cindex @code{rotl@var{m}3} instruction pattern
5079 @cindex @code{rotr@var{m}3} instruction pattern
5080 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
5081 Other shift and rotate instructions, analogous to the
5082 @code{ashl@var{m}3} instructions.  Operand 2 is always a scalar type.
5084 @cindex @code{vashl@var{m}3} instruction pattern
5085 @cindex @code{vashr@var{m}3} instruction pattern
5086 @cindex @code{vlshr@var{m}3} instruction pattern
5087 @cindex @code{vrotl@var{m}3} instruction pattern
5088 @cindex @code{vrotr@var{m}3} instruction pattern
5089 @item @samp{vashl@var{m}3}, @samp{vashr@var{m}3}, @samp{vlshr@var{m}3}, @samp{vrotl@var{m}3}, @samp{vrotr@var{m}3}
5090 Vector shift and rotate instructions that take vectors as operand 2
5091 instead of a scalar type.
5093 @cindex @code{bswap@var{m}2} instruction pattern
5094 @item @samp{bswap@var{m}2}
5095 Reverse the order of bytes of operand 1 and store the result in operand 0.
5097 @cindex @code{neg@var{m}2} instruction pattern
5098 @cindex @code{ssneg@var{m}2} instruction pattern
5099 @cindex @code{usneg@var{m}2} instruction pattern
5100 @item @samp{neg@var{m}2}, @samp{ssneg@var{m}2}, @samp{usneg@var{m}2}
5101 Negate operand 1 and store the result in operand 0.
5103 @cindex @code{abs@var{m}2} instruction pattern
5104 @item @samp{abs@var{m}2}
5105 Store the absolute value of operand 1 into operand 0.
5107 @cindex @code{sqrt@var{m}2} instruction pattern
5108 @item @samp{sqrt@var{m}2}
5109 Store the square root of operand 1 into operand 0.
5111 The @code{sqrt} built-in function of C always uses the mode which
5112 corresponds to the C data type @code{double} and the @code{sqrtf}
5113 built-in function uses the mode which corresponds to the C data
5114 type @code{float}.
5116 @cindex @code{fmod@var{m}3} instruction pattern
5117 @item @samp{fmod@var{m}3}
5118 Store the remainder of dividing operand 1 by operand 2 into
5119 operand 0, rounded towards zero to an integer.
5121 The @code{fmod} built-in function of C always uses the mode which
5122 corresponds to the C data type @code{double} and the @code{fmodf}
5123 built-in function uses the mode which corresponds to the C data
5124 type @code{float}.
5126 @cindex @code{remainder@var{m}3} instruction pattern
5127 @item @samp{remainder@var{m}3}
5128 Store the remainder of dividing operand 1 by operand 2 into
5129 operand 0, rounded to the nearest integer.
5131 The @code{remainder} built-in function of C always uses the mode
5132 which corresponds to the C data type @code{double} and the
5133 @code{remainderf} built-in function uses the mode which corresponds
5134 to the C data type @code{float}.
5136 @cindex @code{cos@var{m}2} instruction pattern
5137 @item @samp{cos@var{m}2}
5138 Store the cosine of operand 1 into operand 0.
5140 The @code{cos} built-in function of C always uses the mode which
5141 corresponds to the C data type @code{double} and the @code{cosf}
5142 built-in function uses the mode which corresponds to the C data
5143 type @code{float}.
5145 @cindex @code{sin@var{m}2} instruction pattern
5146 @item @samp{sin@var{m}2}
5147 Store the sine of operand 1 into operand 0.
5149 The @code{sin} built-in function of C always uses the mode which
5150 corresponds to the C data type @code{double} and the @code{sinf}
5151 built-in function uses the mode which corresponds to the C data
5152 type @code{float}.
5154 @cindex @code{sincos@var{m}3} instruction pattern
5155 @item @samp{sincos@var{m}3}
5156 Store the cosine of operand 2 into operand 0 and the sine of
5157 operand 2 into operand 1.
5159 The @code{sin} and @code{cos} built-in functions of C always use the
5160 mode which corresponds to the C data type @code{double} and the
5161 @code{sinf} and @code{cosf} built-in function use the mode which
5162 corresponds to the C data type @code{float}.
5163 Targets that can calculate the sine and cosine simultaneously can
5164 implement this pattern as opposed to implementing individual
5165 @code{sin@var{m}2} and @code{cos@var{m}2} patterns.  The @code{sin}
5166 and @code{cos} built-in functions will then be expanded to the
5167 @code{sincos@var{m}3} pattern, with one of the output values
5168 left unused.
5170 @cindex @code{exp@var{m}2} instruction pattern
5171 @item @samp{exp@var{m}2}
5172 Store the exponential of operand 1 into operand 0.
5174 The @code{exp} built-in function of C always uses the mode which
5175 corresponds to the C data type @code{double} and the @code{expf}
5176 built-in function uses the mode which corresponds to the C data
5177 type @code{float}.
5179 @cindex @code{log@var{m}2} instruction pattern
5180 @item @samp{log@var{m}2}
5181 Store the natural logarithm of operand 1 into operand 0.
5183 The @code{log} built-in function of C always uses the mode which
5184 corresponds to the C data type @code{double} and the @code{logf}
5185 built-in function uses the mode which corresponds to the C data
5186 type @code{float}.
5188 @cindex @code{pow@var{m}3} instruction pattern
5189 @item @samp{pow@var{m}3}
5190 Store the value of operand 1 raised to the exponent operand 2
5191 into operand 0.
5193 The @code{pow} built-in function of C always uses the mode which
5194 corresponds to the C data type @code{double} and the @code{powf}
5195 built-in function uses the mode which corresponds to the C data
5196 type @code{float}.
5198 @cindex @code{atan2@var{m}3} instruction pattern
5199 @item @samp{atan2@var{m}3}
5200 Store the arc tangent (inverse tangent) of operand 1 divided by
5201 operand 2 into operand 0, using the signs of both arguments to
5202 determine the quadrant of the result.
5204 The @code{atan2} built-in function of C always uses the mode which
5205 corresponds to the C data type @code{double} and the @code{atan2f}
5206 built-in function uses the mode which corresponds to the C data
5207 type @code{float}.
5209 @cindex @code{floor@var{m}2} instruction pattern
5210 @item @samp{floor@var{m}2}
5211 Store the largest integral value not greater than argument.
5213 The @code{floor} built-in function of C always uses the mode which
5214 corresponds to the C data type @code{double} and the @code{floorf}
5215 built-in function uses the mode which corresponds to the C data
5216 type @code{float}.
5218 @cindex @code{btrunc@var{m}2} instruction pattern
5219 @item @samp{btrunc@var{m}2}
5220 Store the argument rounded to integer towards zero.
5222 The @code{trunc} built-in function of C always uses the mode which
5223 corresponds to the C data type @code{double} and the @code{truncf}
5224 built-in function uses the mode which corresponds to the C data
5225 type @code{float}.
5227 @cindex @code{round@var{m}2} instruction pattern
5228 @item @samp{round@var{m}2}
5229 Store the argument rounded to integer away from zero.
5231 The @code{round} built-in function of C always uses the mode which
5232 corresponds to the C data type @code{double} and the @code{roundf}
5233 built-in function uses the mode which corresponds to the C data
5234 type @code{float}.
5236 @cindex @code{ceil@var{m}2} instruction pattern
5237 @item @samp{ceil@var{m}2}
5238 Store the argument rounded to integer away from zero.
5240 The @code{ceil} built-in function of C always uses the mode which
5241 corresponds to the C data type @code{double} and the @code{ceilf}
5242 built-in function uses the mode which corresponds to the C data
5243 type @code{float}.
5245 @cindex @code{nearbyint@var{m}2} instruction pattern
5246 @item @samp{nearbyint@var{m}2}
5247 Store the argument rounded according to the default rounding mode
5249 The @code{nearbyint} built-in function of C always uses the mode which
5250 corresponds to the C data type @code{double} and the @code{nearbyintf}
5251 built-in function uses the mode which corresponds to the C data
5252 type @code{float}.
5254 @cindex @code{rint@var{m}2} instruction pattern
5255 @item @samp{rint@var{m}2}
5256 Store the argument rounded according to the default rounding mode and
5257 raise the inexact exception when the result differs in value from
5258 the argument
5260 The @code{rint} built-in function of C always uses the mode which
5261 corresponds to the C data type @code{double} and the @code{rintf}
5262 built-in function uses the mode which corresponds to the C data
5263 type @code{float}.
5265 @cindex @code{lrint@var{m}@var{n}2}
5266 @item @samp{lrint@var{m}@var{n}2}
5267 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5268 point mode @var{n} as a signed number according to the current
5269 rounding mode and store in operand 0 (which has mode @var{n}).
5271 @cindex @code{lround@var{m}@var{n}2}
5272 @item @samp{lround@var{m}@var{n}2}
5273 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5274 point mode @var{n} as a signed number rounding to nearest and away
5275 from zero and store in operand 0 (which has mode @var{n}).
5277 @cindex @code{lfloor@var{m}@var{n}2}
5278 @item @samp{lfloor@var{m}@var{n}2}
5279 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5280 point mode @var{n} as a signed number rounding down and store in
5281 operand 0 (which has mode @var{n}).
5283 @cindex @code{lceil@var{m}@var{n}2}
5284 @item @samp{lceil@var{m}@var{n}2}
5285 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5286 point mode @var{n} as a signed number rounding up and store in
5287 operand 0 (which has mode @var{n}).
5289 @cindex @code{copysign@var{m}3} instruction pattern
5290 @item @samp{copysign@var{m}3}
5291 Store a value with the magnitude of operand 1 and the sign of operand
5292 2 into operand 0.
5294 The @code{copysign} built-in function of C always uses the mode which
5295 corresponds to the C data type @code{double} and the @code{copysignf}
5296 built-in function uses the mode which corresponds to the C data
5297 type @code{float}.
5299 @cindex @code{ffs@var{m}2} instruction pattern
5300 @item @samp{ffs@var{m}2}
5301 Store into operand 0 one plus the index of the least significant 1-bit
5302 of operand 1.  If operand 1 is zero, store zero.  @var{m} is the mode
5303 of operand 0; operand 1's mode is specified by the instruction
5304 pattern, and the compiler will convert the operand to that mode before
5305 generating the instruction.
5307 The @code{ffs} built-in function of C always uses the mode which
5308 corresponds to the C data type @code{int}.
5310 @cindex @code{clrsb@var{m}2} instruction pattern
5311 @item @samp{clrsb@var{m}2}
5312 Count leading redundant sign bits.
5313 Store into operand 0 the number of redundant sign bits in operand 1, starting
5314 at the most significant bit position.
5315 A redundant sign bit is defined as any sign bit after the first. As such,
5316 this count will be one less than the count of leading sign bits.
5318 @cindex @code{clz@var{m}2} instruction pattern
5319 @item @samp{clz@var{m}2}
5320 Store into operand 0 the number of leading 0-bits in operand 1, starting
5321 at the most significant bit position.  If operand 1 is 0, the
5322 @code{CLZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
5323 the result is undefined or has a useful value.
5324 @var{m} is the mode of operand 0; operand 1's mode is
5325 specified by the instruction pattern, and the compiler will convert the
5326 operand to that mode before generating the instruction.
5328 @cindex @code{ctz@var{m}2} instruction pattern
5329 @item @samp{ctz@var{m}2}
5330 Store into operand 0 the number of trailing 0-bits in operand 1, starting
5331 at the least significant bit position.  If operand 1 is 0, the
5332 @code{CTZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
5333 the result is undefined or has a useful value.
5334 @var{m} is the mode of operand 0; operand 1's mode is
5335 specified by the instruction pattern, and the compiler will convert the
5336 operand to that mode before generating the instruction.
5338 @cindex @code{popcount@var{m}2} instruction pattern
5339 @item @samp{popcount@var{m}2}
5340 Store into operand 0 the number of 1-bits in operand 1.  @var{m} is the
5341 mode of operand 0; operand 1's mode is specified by the instruction
5342 pattern, and the compiler will convert the operand to that mode before
5343 generating the instruction.
5345 @cindex @code{parity@var{m}2} instruction pattern
5346 @item @samp{parity@var{m}2}
5347 Store into operand 0 the parity of operand 1, i.e.@: the number of 1-bits
5348 in operand 1 modulo 2.  @var{m} is the mode of operand 0; operand 1's mode
5349 is specified by the instruction pattern, and the compiler will convert
5350 the operand to that mode before generating the instruction.
5352 @cindex @code{one_cmpl@var{m}2} instruction pattern
5353 @item @samp{one_cmpl@var{m}2}
5354 Store the bitwise-complement of operand 1 into operand 0.
5356 @cindex @code{movmem@var{m}} instruction pattern
5357 @item @samp{movmem@var{m}}
5358 Block move instruction.  The destination and source blocks of memory
5359 are the first two operands, and both are @code{mem:BLK}s with an
5360 address in mode @code{Pmode}.
5362 The number of bytes to move is the third operand, in mode @var{m}.
5363 Usually, you specify @code{Pmode} for @var{m}.  However, if you can
5364 generate better code knowing the range of valid lengths is smaller than
5365 those representable in a full Pmode pointer, you should provide
5366 a pattern with a
5367 mode corresponding to the range of values you can handle efficiently
5368 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
5369 that appear negative) and also a pattern with @code{Pmode}.
5371 The fourth operand is the known shared alignment of the source and
5372 destination, in the form of a @code{const_int} rtx.  Thus, if the
5373 compiler knows that both source and destination are word-aligned,
5374 it may provide the value 4 for this operand.
5376 Optional operands 5 and 6 specify expected alignment and size of block
5377 respectively.  The expected alignment differs from alignment in operand 4
5378 in a way that the blocks are not required to be aligned according to it in
5379 all cases. This expected alignment is also in bytes, just like operand 4.
5380 Expected size, when unknown, is set to @code{(const_int -1)}.
5382 Descriptions of multiple @code{movmem@var{m}} patterns can only be
5383 beneficial if the patterns for smaller modes have fewer restrictions
5384 on their first, second and fourth operands.  Note that the mode @var{m}
5385 in @code{movmem@var{m}} does not impose any restriction on the mode of
5386 individually moved data units in the block.
5388 These patterns need not give special consideration to the possibility
5389 that the source and destination strings might overlap.
5391 @cindex @code{movstr} instruction pattern
5392 @item @samp{movstr}
5393 String copy instruction, with @code{stpcpy} semantics.  Operand 0 is
5394 an output operand in mode @code{Pmode}.  The addresses of the
5395 destination and source strings are operands 1 and 2, and both are
5396 @code{mem:BLK}s with addresses in mode @code{Pmode}.  The execution of
5397 the expansion of this pattern should store in operand 0 the address in
5398 which the @code{NUL} terminator was stored in the destination string.
5400 This patern has also several optional operands that are same as in
5401 @code{setmem}.
5403 @cindex @code{setmem@var{m}} instruction pattern
5404 @item @samp{setmem@var{m}}
5405 Block set instruction.  The destination string is the first operand,
5406 given as a @code{mem:BLK} whose address is in mode @code{Pmode}.  The
5407 number of bytes to set is the second operand, in mode @var{m}.  The value to
5408 initialize the memory with is the third operand. Targets that only support the
5409 clearing of memory should reject any value that is not the constant 0.  See
5410 @samp{movmem@var{m}} for a discussion of the choice of mode.
5412 The fourth operand is the known alignment of the destination, in the form
5413 of a @code{const_int} rtx.  Thus, if the compiler knows that the
5414 destination is word-aligned, it may provide the value 4 for this
5415 operand.
5417 Optional operands 5 and 6 specify expected alignment and size of block
5418 respectively.  The expected alignment differs from alignment in operand 4
5419 in a way that the blocks are not required to be aligned according to it in
5420 all cases. This expected alignment is also in bytes, just like operand 4.
5421 Expected size, when unknown, is set to @code{(const_int -1)}.
5422 Operand 7 is the minimal size of the block and operand 8 is the
5423 maximal size of the block (NULL if it can not be represented as CONST_INT).
5424 Operand 9 is the probable maximal size (i.e. we can not rely on it for correctness,
5425 but it can be used for choosing proper code sequence for a given size).
5427 The use for multiple @code{setmem@var{m}} is as for @code{movmem@var{m}}.
5429 @cindex @code{cmpstrn@var{m}} instruction pattern
5430 @item @samp{cmpstrn@var{m}}
5431 String compare instruction, with five operands.  Operand 0 is the output;
5432 it has mode @var{m}.  The remaining four operands are like the operands
5433 of @samp{movmem@var{m}}.  The two memory blocks specified are compared
5434 byte by byte in lexicographic order starting at the beginning of each
5435 string.  The instruction is not allowed to prefetch more than one byte
5436 at a time since either string may end in the first byte and reading past
5437 that may access an invalid page or segment and cause a fault.  The
5438 comparison terminates early if the fetched bytes are different or if
5439 they are equal to zero.  The effect of the instruction is to store a
5440 value in operand 0 whose sign indicates the result of the comparison.
5442 @cindex @code{cmpstr@var{m}} instruction pattern
5443 @item @samp{cmpstr@var{m}}
5444 String compare instruction, without known maximum length.  Operand 0 is the
5445 output; it has mode @var{m}.  The second and third operand are the blocks of
5446 memory to be compared; both are @code{mem:BLK} with an address in mode
5447 @code{Pmode}.
5449 The fourth operand is the known shared alignment of the source and
5450 destination, in the form of a @code{const_int} rtx.  Thus, if the
5451 compiler knows that both source and destination are word-aligned,
5452 it may provide the value 4 for this operand.
5454 The two memory blocks specified are compared byte by byte in lexicographic
5455 order starting at the beginning of each string.  The instruction is not allowed
5456 to prefetch more than one byte at a time since either string may end in the
5457 first byte and reading past that may access an invalid page or segment and
5458 cause a fault.  The comparison will terminate when the fetched bytes
5459 are different or if they are equal to zero.  The effect of the
5460 instruction is to store a value in operand 0 whose sign indicates the
5461 result of the comparison.
5463 @cindex @code{cmpmem@var{m}} instruction pattern
5464 @item @samp{cmpmem@var{m}}
5465 Block compare instruction, with five operands like the operands
5466 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
5467 byte by byte in lexicographic order starting at the beginning of each
5468 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
5469 any bytes in the two memory blocks.  Also unlike @samp{cmpstr@var{m}}
5470 the comparison will not stop if both bytes are zero.  The effect of
5471 the instruction is to store a value in operand 0 whose sign indicates
5472 the result of the comparison.
5474 @cindex @code{strlen@var{m}} instruction pattern
5475 @item @samp{strlen@var{m}}
5476 Compute the length of a string, with three operands.
5477 Operand 0 is the result (of mode @var{m}), operand 1 is
5478 a @code{mem} referring to the first character of the string,
5479 operand 2 is the character to search for (normally zero),
5480 and operand 3 is a constant describing the known alignment
5481 of the beginning of the string.
5483 @cindex @code{float@var{m}@var{n}2} instruction pattern
5484 @item @samp{float@var{m}@var{n}2}
5485 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
5486 floating point mode @var{n} and store in operand 0 (which has mode
5487 @var{n}).
5489 @cindex @code{floatuns@var{m}@var{n}2} instruction pattern
5490 @item @samp{floatuns@var{m}@var{n}2}
5491 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
5492 to floating point mode @var{n} and store in operand 0 (which has mode
5493 @var{n}).
5495 @cindex @code{fix@var{m}@var{n}2} instruction pattern
5496 @item @samp{fix@var{m}@var{n}2}
5497 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5498 point mode @var{n} as a signed number and store in operand 0 (which
5499 has mode @var{n}).  This instruction's result is defined only when
5500 the value of operand 1 is an integer.
5502 If the machine description defines this pattern, it also needs to
5503 define the @code{ftrunc} pattern.
5505 @cindex @code{fixuns@var{m}@var{n}2} instruction pattern
5506 @item @samp{fixuns@var{m}@var{n}2}
5507 Convert operand 1 (valid for floating point mode @var{m}) to fixed
5508 point mode @var{n} as an unsigned number and store in operand 0 (which
5509 has mode @var{n}).  This instruction's result is defined only when the
5510 value of operand 1 is an integer.
5512 @cindex @code{ftrunc@var{m}2} instruction pattern
5513 @item @samp{ftrunc@var{m}2}
5514 Convert operand 1 (valid for floating point mode @var{m}) to an
5515 integer value, still represented in floating point mode @var{m}, and
5516 store it in operand 0 (valid for floating point mode @var{m}).
5518 @cindex @code{fix_trunc@var{m}@var{n}2} instruction pattern
5519 @item @samp{fix_trunc@var{m}@var{n}2}
5520 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
5521 of mode @var{m} by converting the value to an integer.
5523 @cindex @code{fixuns_trunc@var{m}@var{n}2} instruction pattern
5524 @item @samp{fixuns_trunc@var{m}@var{n}2}
5525 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
5526 value of mode @var{m} by converting the value to an integer.
5528 @cindex @code{trunc@var{m}@var{n}2} instruction pattern
5529 @item @samp{trunc@var{m}@var{n}2}
5530 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
5531 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
5532 point or both floating point.
5534 @cindex @code{extend@var{m}@var{n}2} instruction pattern
5535 @item @samp{extend@var{m}@var{n}2}
5536 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
5537 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
5538 point or both floating point.
5540 @cindex @code{zero_extend@var{m}@var{n}2} instruction pattern
5541 @item @samp{zero_extend@var{m}@var{n}2}
5542 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
5543 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
5544 point.
5546 @cindex @code{fract@var{m}@var{n}2} instruction pattern
5547 @item @samp{fract@var{m}@var{n}2}
5548 Convert operand 1 of mode @var{m} to mode @var{n} and store in
5549 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
5550 could be fixed-point to fixed-point, signed integer to fixed-point,
5551 fixed-point to signed integer, floating-point to fixed-point,
5552 or fixed-point to floating-point.
5553 When overflows or underflows happen, the results are undefined.
5555 @cindex @code{satfract@var{m}@var{n}2} instruction pattern
5556 @item @samp{satfract@var{m}@var{n}2}
5557 Convert operand 1 of mode @var{m} to mode @var{n} and store in
5558 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
5559 could be fixed-point to fixed-point, signed integer to fixed-point,
5560 or floating-point to fixed-point.
5561 When overflows or underflows happen, the instruction saturates the
5562 results to the maximum or the minimum.
5564 @cindex @code{fractuns@var{m}@var{n}2} instruction pattern
5565 @item @samp{fractuns@var{m}@var{n}2}
5566 Convert operand 1 of mode @var{m} to mode @var{n} and store in
5567 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
5568 could be unsigned integer to fixed-point, or
5569 fixed-point to unsigned integer.
5570 When overflows or underflows happen, the results are undefined.
5572 @cindex @code{satfractuns@var{m}@var{n}2} instruction pattern
5573 @item @samp{satfractuns@var{m}@var{n}2}
5574 Convert unsigned integer operand 1 of mode @var{m} to fixed-point mode
5575 @var{n} and store in operand 0 (which has mode @var{n}).
5576 When overflows or underflows happen, the instruction saturates the
5577 results to the maximum or the minimum.
5579 @cindex @code{extv@var{m}} instruction pattern
5580 @item @samp{extv@var{m}}
5581 Extract a bit-field from register operand 1, sign-extend it, and store
5582 it in operand 0.  Operand 2 specifies the width of the field in bits
5583 and operand 3 the starting bit, which counts from the most significant
5584 bit if @samp{BITS_BIG_ENDIAN} is true and from the least significant bit
5585 otherwise.
5587 Operands 0 and 1 both have mode @var{m}.  Operands 2 and 3 have a
5588 target-specific mode.
5590 @cindex @code{extvmisalign@var{m}} instruction pattern
5591 @item @samp{extvmisalign@var{m}}
5592 Extract a bit-field from memory operand 1, sign extend it, and store
5593 it in operand 0.  Operand 2 specifies the width in bits and operand 3
5594 the starting bit.  The starting bit is always somewhere in the first byte of
5595 operand 1; it counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
5596 is true and from the least significant bit otherwise.
5598 Operand 0 has mode @var{m} while operand 1 has @code{BLK} mode.
5599 Operands 2 and 3 have a target-specific mode.
5601 The instruction must not read beyond the last byte of the bit-field.
5603 @cindex @code{extzv@var{m}} instruction pattern
5604 @item @samp{extzv@var{m}}
5605 Like @samp{extv@var{m}} except that the bit-field value is zero-extended.
5607 @cindex @code{extzvmisalign@var{m}} instruction pattern
5608 @item @samp{extzvmisalign@var{m}}
5609 Like @samp{extvmisalign@var{m}} except that the bit-field value is
5610 zero-extended.
5612 @cindex @code{insv@var{m}} instruction pattern
5613 @item @samp{insv@var{m}}
5614 Insert operand 3 into a bit-field of register operand 0.  Operand 1
5615 specifies the width of the field in bits and operand 2 the starting bit,
5616 which counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
5617 is true and from the least significant bit otherwise.
5619 Operands 0 and 3 both have mode @var{m}.  Operands 1 and 2 have a
5620 target-specific mode.
5622 @cindex @code{insvmisalign@var{m}} instruction pattern
5623 @item @samp{insvmisalign@var{m}}
5624 Insert operand 3 into a bit-field of memory operand 0.  Operand 1
5625 specifies the width of the field in bits and operand 2 the starting bit.
5626 The starting bit is always somewhere in the first byte of operand 0;
5627 it counts from the most significant bit if @samp{BITS_BIG_ENDIAN}
5628 is true and from the least significant bit otherwise.
5630 Operand 3 has mode @var{m} while operand 0 has @code{BLK} mode.
5631 Operands 1 and 2 have a target-specific mode.
5633 The instruction must not read or write beyond the last byte of the bit-field.
5635 @cindex @code{extv} instruction pattern
5636 @item @samp{extv}
5637 Extract a bit-field from operand 1 (a register or memory operand), where
5638 operand 2 specifies the width in bits and operand 3 the starting bit,
5639 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
5640 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
5641 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
5642 be valid for @code{word_mode}.
5644 The RTL generation pass generates this instruction only with constants
5645 for operands 2 and 3 and the constant is never zero for operand 2.
5647 The bit-field value is sign-extended to a full word integer
5648 before it is stored in operand 0.
5650 This pattern is deprecated; please use @samp{extv@var{m}} and
5651 @code{extvmisalign@var{m}} instead.
5653 @cindex @code{extzv} instruction pattern
5654 @item @samp{extzv}
5655 Like @samp{extv} except that the bit-field value is zero-extended.
5657 This pattern is deprecated; please use @samp{extzv@var{m}} and
5658 @code{extzvmisalign@var{m}} instead.
5660 @cindex @code{insv} instruction pattern
5661 @item @samp{insv}
5662 Store operand 3 (which must be valid for @code{word_mode}) into a
5663 bit-field in operand 0, where operand 1 specifies the width in bits and
5664 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
5665 @code{word_mode}; often @code{word_mode} is allowed only for registers.
5666 Operands 1 and 2 must be valid for @code{word_mode}.
5668 The RTL generation pass generates this instruction only with constants
5669 for operands 1 and 2 and the constant is never zero for operand 1.
5671 This pattern is deprecated; please use @samp{insv@var{m}} and
5672 @code{insvmisalign@var{m}} instead.
5674 @cindex @code{mov@var{mode}cc} instruction pattern
5675 @item @samp{mov@var{mode}cc}
5676 Conditionally move operand 2 or operand 3 into operand 0 according to the
5677 comparison in operand 1.  If the comparison is true, operand 2 is moved
5678 into operand 0, otherwise operand 3 is moved.
5680 The mode of the operands being compared need not be the same as the operands
5681 being moved.  Some machines, sparc64 for example, have instructions that
5682 conditionally move an integer value based on the floating point condition
5683 codes and vice versa.
5685 If the machine does not have conditional move instructions, do not
5686 define these patterns.
5688 @cindex @code{add@var{mode}cc} instruction pattern
5689 @item @samp{add@var{mode}cc}
5690 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
5691 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
5692 comparison in operand 1.  If the comparison is false, operand 2 is moved into
5693 operand 0, otherwise (operand 2 + operand 3) is moved.
5695 @cindex @code{cstore@var{mode}4} instruction pattern
5696 @item @samp{cstore@var{mode}4}
5697 Store zero or nonzero in operand 0 according to whether a comparison
5698 is true.  Operand 1 is a comparison operator.  Operand 2 and operand 3
5699 are the first and second operand of the comparison, respectively.
5700 You specify the mode that operand 0 must have when you write the
5701 @code{match_operand} expression.  The compiler automatically sees which
5702 mode you have used and supplies an operand of that mode.
5704 The value stored for a true condition must have 1 as its low bit, or
5705 else must be negative.  Otherwise the instruction is not suitable and
5706 you should omit it from the machine description.  You describe to the
5707 compiler exactly which value is stored by defining the macro
5708 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
5709 found that can be used for all the possible comparison operators, you
5710 should pick one and use a @code{define_expand} to map all results
5711 onto the one you chose.
5713 These operations may @code{FAIL}, but should do so only in relatively
5714 uncommon cases; if they would @code{FAIL} for common cases involving
5715 integer comparisons, it is best to restrict the predicates to not
5716 allow these operands.  Likewise if a given comparison operator will
5717 always fail, independent of the operands (for floating-point modes, the
5718 @code{ordered_comparison_operator} predicate is often useful in this case).
5720 If this pattern is omitted, the compiler will generate a conditional
5721 branch---for example, it may copy a constant one to the target and branching
5722 around an assignment of zero to the target---or a libcall.  If the predicate
5723 for operand 1 only rejects some operators, it will also try reordering the
5724 operands and/or inverting the result value (e.g.@: by an exclusive OR).
5725 These possibilities could be cheaper or equivalent to the instructions
5726 used for the @samp{cstore@var{mode}4} pattern followed by those required
5727 to convert a positive result from @code{STORE_FLAG_VALUE} to 1; in this
5728 case, you can and should make operand 1's predicate reject some operators
5729 in the @samp{cstore@var{mode}4} pattern, or remove the pattern altogether
5730 from the machine description.
5732 @cindex @code{cbranch@var{mode}4} instruction pattern
5733 @item @samp{cbranch@var{mode}4}
5734 Conditional branch instruction combined with a compare instruction.
5735 Operand 0 is a comparison operator.  Operand 1 and operand 2 are the
5736 first and second operands of the comparison, respectively.  Operand 3
5737 is a @code{label_ref} that refers to the label to jump to.
5739 @cindex @code{jump} instruction pattern
5740 @item @samp{jump}
5741 A jump inside a function; an unconditional branch.  Operand 0 is the
5742 @code{label_ref} of the label to jump to.  This pattern name is mandatory
5743 on all machines.
5745 @cindex @code{call} instruction pattern
5746 @item @samp{call}
5747 Subroutine call instruction returning no value.  Operand 0 is the
5748 function to call; operand 1 is the number of bytes of arguments pushed
5749 as a @code{const_int}; operand 2 is the number of registers used as
5750 operands.
5752 On most machines, operand 2 is not actually stored into the RTL
5753 pattern.  It is supplied for the sake of some RISC machines which need
5754 to put this information into the assembler code; they can put it in
5755 the RTL instead of operand 1.
5757 Operand 0 should be a @code{mem} RTX whose address is the address of the
5758 function.  Note, however, that this address can be a @code{symbol_ref}
5759 expression even if it would not be a legitimate memory address on the
5760 target machine.  If it is also not a valid argument for a call
5761 instruction, the pattern for this operation should be a
5762 @code{define_expand} (@pxref{Expander Definitions}) that places the
5763 address into a register and uses that register in the call instruction.
5765 @cindex @code{call_value} instruction pattern
5766 @item @samp{call_value}
5767 Subroutine call instruction returning a value.  Operand 0 is the hard
5768 register in which the value is returned.  There are three more
5769 operands, the same as the three operands of the @samp{call}
5770 instruction (but with numbers increased by one).
5772 Subroutines that return @code{BLKmode} objects use the @samp{call}
5773 insn.
5775 @cindex @code{call_pop} instruction pattern
5776 @cindex @code{call_value_pop} instruction pattern
5777 @item @samp{call_pop}, @samp{call_value_pop}
5778 Similar to @samp{call} and @samp{call_value}, except used if defined and
5779 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
5780 that contains both the function call and a @code{set} to indicate the
5781 adjustment made to the frame pointer.
5783 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
5784 patterns increases the number of functions for which the frame pointer
5785 can be eliminated, if desired.
5787 @cindex @code{untyped_call} instruction pattern
5788 @item @samp{untyped_call}
5789 Subroutine call instruction returning a value of any type.  Operand 0 is
5790 the function to call; operand 1 is a memory location where the result of
5791 calling the function is to be stored; operand 2 is a @code{parallel}
5792 expression where each element is a @code{set} expression that indicates
5793 the saving of a function return value into the result block.
5795 This instruction pattern should be defined to support
5796 @code{__builtin_apply} on machines where special instructions are needed
5797 to call a subroutine with arbitrary arguments or to save the value
5798 returned.  This instruction pattern is required on machines that have
5799 multiple registers that can hold a return value
5800 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
5802 @cindex @code{return} instruction pattern
5803 @item @samp{return}
5804 Subroutine return instruction.  This instruction pattern name should be
5805 defined only if a single instruction can do all the work of returning
5806 from a function.
5808 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
5809 RTL generation phase.  In this case it is to support machines where
5810 multiple instructions are usually needed to return from a function, but
5811 some class of functions only requires one instruction to implement a
5812 return.  Normally, the applicable functions are those which do not need
5813 to save any registers or allocate stack space.
5815 It is valid for this pattern to expand to an instruction using
5816 @code{simple_return} if no epilogue is required.
5818 @cindex @code{simple_return} instruction pattern
5819 @item @samp{simple_return}
5820 Subroutine return instruction.  This instruction pattern name should be
5821 defined only if a single instruction can do all the work of returning
5822 from a function on a path where no epilogue is required.  This pattern
5823 is very similar to the @code{return} instruction pattern, but it is emitted
5824 only by the shrink-wrapping optimization on paths where the function
5825 prologue has not been executed, and a function return should occur without
5826 any of the effects of the epilogue.  Additional uses may be introduced on
5827 paths where both the prologue and the epilogue have executed.
5829 @findex reload_completed
5830 @findex leaf_function_p
5831 For such machines, the condition specified in this pattern should only
5832 be true when @code{reload_completed} is nonzero and the function's
5833 epilogue would only be a single instruction.  For machines with register
5834 windows, the routine @code{leaf_function_p} may be used to determine if
5835 a register window push is required.
5837 Machines that have conditional return instructions should define patterns
5838 such as
5840 @smallexample
5841 (define_insn ""
5842   [(set (pc)
5843         (if_then_else (match_operator
5844                          0 "comparison_operator"
5845                          [(cc0) (const_int 0)])
5846                       (return)
5847                       (pc)))]
5848   "@var{condition}"
5849   "@dots{}")
5850 @end smallexample
5852 where @var{condition} would normally be the same condition specified on the
5853 named @samp{return} pattern.
5855 @cindex @code{untyped_return} instruction pattern
5856 @item @samp{untyped_return}
5857 Untyped subroutine return instruction.  This instruction pattern should
5858 be defined to support @code{__builtin_return} on machines where special
5859 instructions are needed to return a value of any type.
5861 Operand 0 is a memory location where the result of calling a function
5862 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
5863 expression where each element is a @code{set} expression that indicates
5864 the restoring of a function return value from the result block.
5866 @cindex @code{nop} instruction pattern
5867 @item @samp{nop}
5868 No-op instruction.  This instruction pattern name should always be defined
5869 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
5870 RTL pattern.
5872 @cindex @code{indirect_jump} instruction pattern
5873 @item @samp{indirect_jump}
5874 An instruction to jump to an address which is operand zero.
5875 This pattern name is mandatory on all machines.
5877 @cindex @code{casesi} instruction pattern
5878 @item @samp{casesi}
5879 Instruction to jump through a dispatch table, including bounds checking.
5880 This instruction takes five operands:
5882 @enumerate
5883 @item
5884 The index to dispatch on, which has mode @code{SImode}.
5886 @item
5887 The lower bound for indices in the table, an integer constant.
5889 @item
5890 The total range of indices in the table---the largest index
5891 minus the smallest one (both inclusive).
5893 @item
5894 A label that precedes the table itself.
5896 @item
5897 A label to jump to if the index has a value outside the bounds.
5898 @end enumerate
5900 The table is an @code{addr_vec} or @code{addr_diff_vec} inside of a
5901 @code{jump_table_data}.  The number of elements in the table is one plus the
5902 difference between the upper bound and the lower bound.
5904 @cindex @code{tablejump} instruction pattern
5905 @item @samp{tablejump}
5906 Instruction to jump to a variable address.  This is a low-level
5907 capability which can be used to implement a dispatch table when there
5908 is no @samp{casesi} pattern.
5910 This pattern requires two operands: the address or offset, and a label
5911 which should immediately precede the jump table.  If the macro
5912 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
5913 operand is an offset which counts from the address of the table; otherwise,
5914 it is an absolute address to jump to.  In either case, the first operand has
5915 mode @code{Pmode}.
5917 The @samp{tablejump} insn is always the last insn before the jump
5918 table it uses.  Its assembler code normally has no need to use the
5919 second operand, but you should incorporate it in the RTL pattern so
5920 that the jump optimizer will not delete the table as unreachable code.
5923 @cindex @code{decrement_and_branch_until_zero} instruction pattern
5924 @item @samp{decrement_and_branch_until_zero}
5925 Conditional branch instruction that decrements a register and
5926 jumps if the register is nonzero.  Operand 0 is the register to
5927 decrement and test; operand 1 is the label to jump to if the
5928 register is nonzero.  @xref{Looping Patterns}.
5930 This optional instruction pattern is only used by the combiner,
5931 typically for loops reversed by the loop optimizer when strength
5932 reduction is enabled.
5934 @cindex @code{doloop_end} instruction pattern
5935 @item @samp{doloop_end}
5936 Conditional branch instruction that decrements a register and
5937 jumps if the register is nonzero.  Operand 0 is the register to
5938 decrement and test; operand 1 is the label to jump to if the
5939 register is nonzero.
5940 @xref{Looping Patterns}.
5942 This optional instruction pattern should be defined for machines with
5943 low-overhead looping instructions as the loop optimizer will try to
5944 modify suitable loops to utilize it.  The target hook
5945 @code{TARGET_CAN_USE_DOLOOP_P} controls the conditions under which
5946 low-overhead loops can be used.
5948 @cindex @code{doloop_begin} instruction pattern
5949 @item @samp{doloop_begin}
5950 Companion instruction to @code{doloop_end} required for machines that
5951 need to perform some initialization, such as loading a special counter
5952 register.  Operand 1 is the associated @code{doloop_end} pattern and
5953 operand 0 is the register that it decrements.
5955 If initialization insns do not always need to be emitted, use a
5956 @code{define_expand} (@pxref{Expander Definitions}) and make it fail.
5958 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
5959 @item @samp{canonicalize_funcptr_for_compare}
5960 Canonicalize the function pointer in operand 1 and store the result
5961 into operand 0.
5963 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
5964 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
5965 and also has mode @code{Pmode}.
5967 Canonicalization of a function pointer usually involves computing
5968 the address of the function which would be called if the function
5969 pointer were used in an indirect call.
5971 Only define this pattern if function pointers on the target machine
5972 can have different values but still call the same function when
5973 used in an indirect call.
5975 @cindex @code{save_stack_block} instruction pattern
5976 @cindex @code{save_stack_function} instruction pattern
5977 @cindex @code{save_stack_nonlocal} instruction pattern
5978 @cindex @code{restore_stack_block} instruction pattern
5979 @cindex @code{restore_stack_function} instruction pattern
5980 @cindex @code{restore_stack_nonlocal} instruction pattern
5981 @item @samp{save_stack_block}
5982 @itemx @samp{save_stack_function}
5983 @itemx @samp{save_stack_nonlocal}
5984 @itemx @samp{restore_stack_block}
5985 @itemx @samp{restore_stack_function}
5986 @itemx @samp{restore_stack_nonlocal}
5987 Most machines save and restore the stack pointer by copying it to or
5988 from an object of mode @code{Pmode}.  Do not define these patterns on
5989 such machines.
5991 Some machines require special handling for stack pointer saves and
5992 restores.  On those machines, define the patterns corresponding to the
5993 non-standard cases by using a @code{define_expand} (@pxref{Expander
5994 Definitions}) that produces the required insns.  The three types of
5995 saves and restores are:
5997 @enumerate
5998 @item
5999 @samp{save_stack_block} saves the stack pointer at the start of a block
6000 that allocates a variable-sized object, and @samp{restore_stack_block}
6001 restores the stack pointer when the block is exited.
6003 @item
6004 @samp{save_stack_function} and @samp{restore_stack_function} do a
6005 similar job for the outermost block of a function and are used when the
6006 function allocates variable-sized objects or calls @code{alloca}.  Only
6007 the epilogue uses the restored stack pointer, allowing a simpler save or
6008 restore sequence on some machines.
6010 @item
6011 @samp{save_stack_nonlocal} is used in functions that contain labels
6012 branched to by nested functions.  It saves the stack pointer in such a
6013 way that the inner function can use @samp{restore_stack_nonlocal} to
6014 restore the stack pointer.  The compiler generates code to restore the
6015 frame and argument pointer registers, but some machines require saving
6016 and restoring additional data such as register window information or
6017 stack backchains.  Place insns in these patterns to save and restore any
6018 such required data.
6019 @end enumerate
6021 When saving the stack pointer, operand 0 is the save area and operand 1
6022 is the stack pointer.  The mode used to allocate the save area defaults
6023 to @code{Pmode} but you can override that choice by defining the
6024 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
6025 specify an integral mode, or @code{VOIDmode} if no save area is needed
6026 for a particular type of save (either because no save is needed or
6027 because a machine-specific save area can be used).  Operand 0 is the
6028 stack pointer and operand 1 is the save area for restore operations.  If
6029 @samp{save_stack_block} is defined, operand 0 must not be
6030 @code{VOIDmode} since these saves can be arbitrarily nested.
6032 A save area is a @code{mem} that is at a constant offset from
6033 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
6034 nonlocal gotos and a @code{reg} in the other two cases.
6036 @cindex @code{allocate_stack} instruction pattern
6037 @item @samp{allocate_stack}
6038 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
6039 the stack pointer to create space for dynamically allocated data.
6041 Store the resultant pointer to this space into operand 0.  If you
6042 are allocating space from the main stack, do this by emitting a
6043 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
6044 If you are allocating the space elsewhere, generate code to copy the
6045 location of the space to operand 0.  In the latter case, you must
6046 ensure this space gets freed when the corresponding space on the main
6047 stack is free.
6049 Do not define this pattern if all that must be done is the subtraction.
6050 Some machines require other operations such as stack probes or
6051 maintaining the back chain.  Define this pattern to emit those
6052 operations in addition to updating the stack pointer.
6054 @cindex @code{check_stack} instruction pattern
6055 @item @samp{check_stack}
6056 If stack checking (@pxref{Stack Checking}) cannot be done on your system by
6057 probing the stack, define this pattern to perform the needed check and signal
6058 an error if the stack has overflowed.  The single operand is the address in
6059 the stack farthest from the current stack pointer that you need to validate.
6060 Normally, on platforms where this pattern is needed, you would obtain the
6061 stack limit from a global or thread-specific variable or register.
6063 @cindex @code{probe_stack_address} instruction pattern
6064 @item @samp{probe_stack_address}
6065 If stack checking (@pxref{Stack Checking}) can be done on your system by
6066 probing the stack but without the need to actually access it, define this
6067 pattern and signal an error if the stack has overflowed.  The single operand
6068 is the memory address in the stack that needs to be probed.
6070 @cindex @code{probe_stack} instruction pattern
6071 @item @samp{probe_stack}
6072 If stack checking (@pxref{Stack Checking}) can be done on your system by
6073 probing the stack but doing it with a ``store zero'' instruction is not valid
6074 or optimal, define this pattern to do the probing differently and signal an
6075 error if the stack has overflowed.  The single operand is the memory reference
6076 in the stack that needs to be probed.
6078 @cindex @code{nonlocal_goto} instruction pattern
6079 @item @samp{nonlocal_goto}
6080 Emit code to generate a non-local goto, e.g., a jump from one function
6081 to a label in an outer function.  This pattern has four arguments,
6082 each representing a value to be used in the jump.  The first
6083 argument is to be loaded into the frame pointer, the second is
6084 the address to branch to (code to dispatch to the actual label),
6085 the third is the address of a location where the stack is saved,
6086 and the last is the address of the label, to be placed in the
6087 location for the incoming static chain.
6089 On most machines you need not define this pattern, since GCC will
6090 already generate the correct code, which is to load the frame pointer
6091 and static chain, restore the stack (using the
6092 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
6093 to the dispatcher.  You need only define this pattern if this code will
6094 not work on your machine.
6096 @cindex @code{nonlocal_goto_receiver} instruction pattern
6097 @item @samp{nonlocal_goto_receiver}
6098 This pattern, if defined, contains code needed at the target of a
6099 nonlocal goto after the code already generated by GCC@.  You will not
6100 normally need to define this pattern.  A typical reason why you might
6101 need this pattern is if some value, such as a pointer to a global table,
6102 must be restored when the frame pointer is restored.  Note that a nonlocal
6103 goto only occurs within a unit-of-translation, so a global table pointer
6104 that is shared by all functions of a given module need not be restored.
6105 There are no arguments.
6107 @cindex @code{exception_receiver} instruction pattern
6108 @item @samp{exception_receiver}
6109 This pattern, if defined, contains code needed at the site of an
6110 exception handler that isn't needed at the site of a nonlocal goto.  You
6111 will not normally need to define this pattern.  A typical reason why you
6112 might need this pattern is if some value, such as a pointer to a global
6113 table, must be restored after control flow is branched to the handler of
6114 an exception.  There are no arguments.
6116 @cindex @code{builtin_setjmp_setup} instruction pattern
6117 @item @samp{builtin_setjmp_setup}
6118 This pattern, if defined, contains additional code needed to initialize
6119 the @code{jmp_buf}.  You will not normally need to define this pattern.
6120 A typical reason why you might need this pattern is if some value, such
6121 as a pointer to a global table, must be restored.  Though it is
6122 preferred that the pointer value be recalculated if possible (given the
6123 address of a label for instance).  The single argument is a pointer to
6124 the @code{jmp_buf}.  Note that the buffer is five words long and that
6125 the first three are normally used by the generic mechanism.
6127 @cindex @code{builtin_setjmp_receiver} instruction pattern
6128 @item @samp{builtin_setjmp_receiver}
6129 This pattern, if defined, contains code needed at the site of a
6130 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
6131 will not normally need to define this pattern.  A typical reason why you
6132 might need this pattern is if some value, such as a pointer to a global
6133 table, must be restored.  It takes one argument, which is the label
6134 to which builtin_longjmp transferred control; this pattern may be emitted
6135 at a small offset from that label.
6137 @cindex @code{builtin_longjmp} instruction pattern
6138 @item @samp{builtin_longjmp}
6139 This pattern, if defined, performs the entire action of the longjmp.
6140 You will not normally need to define this pattern unless you also define
6141 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
6142 @code{jmp_buf}.
6144 @cindex @code{eh_return} instruction pattern
6145 @item @samp{eh_return}
6146 This pattern, if defined, affects the way @code{__builtin_eh_return},
6147 and thence the call frame exception handling library routines, are
6148 built.  It is intended to handle non-trivial actions needed along
6149 the abnormal return path.
6151 The address of the exception handler to which the function should return
6152 is passed as operand to this pattern.  It will normally need to copied by
6153 the pattern to some special register or memory location.
6154 If the pattern needs to determine the location of the target call
6155 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
6156 if defined; it will have already been assigned.
6158 If this pattern is not defined, the default action will be to simply
6159 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
6160 that macro or this pattern needs to be defined if call frame exception
6161 handling is to be used.
6163 @cindex @code{prologue} instruction pattern
6164 @anchor{prologue instruction pattern}
6165 @item @samp{prologue}
6166 This pattern, if defined, emits RTL for entry to a function.  The function
6167 entry is responsible for setting up the stack frame, initializing the frame
6168 pointer register, saving callee saved registers, etc.
6170 Using a prologue pattern is generally preferred over defining
6171 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
6173 The @code{prologue} pattern is particularly useful for targets which perform
6174 instruction scheduling.
6176 @cindex @code{window_save} instruction pattern
6177 @anchor{window_save instruction pattern}
6178 @item @samp{window_save}
6179 This pattern, if defined, emits RTL for a register window save.  It should
6180 be defined if the target machine has register windows but the window events
6181 are decoupled from calls to subroutines.  The canonical example is the SPARC
6182 architecture.
6184 @cindex @code{epilogue} instruction pattern
6185 @anchor{epilogue instruction pattern}
6186 @item @samp{epilogue}
6187 This pattern emits RTL for exit from a function.  The function
6188 exit is responsible for deallocating the stack frame, restoring callee saved
6189 registers and emitting the return instruction.
6191 Using an epilogue pattern is generally preferred over defining
6192 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
6194 The @code{epilogue} pattern is particularly useful for targets which perform
6195 instruction scheduling or which have delay slots for their return instruction.
6197 @cindex @code{sibcall_epilogue} instruction pattern
6198 @item @samp{sibcall_epilogue}
6199 This pattern, if defined, emits RTL for exit from a function without the final
6200 branch back to the calling function.  This pattern will be emitted before any
6201 sibling call (aka tail call) sites.
6203 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
6204 parameter passing or any stack slots for arguments passed to the current
6205 function.
6207 @cindex @code{trap} instruction pattern
6208 @item @samp{trap}
6209 This pattern, if defined, signals an error, typically by causing some
6210 kind of signal to be raised.  Among other places, it is used by the Java
6211 front end to signal `invalid array index' exceptions.
6213 @cindex @code{ctrap@var{MM}4} instruction pattern
6214 @item @samp{ctrap@var{MM}4}
6215 Conditional trap instruction.  Operand 0 is a piece of RTL which
6216 performs a comparison, and operands 1 and 2 are the arms of the
6217 comparison.  Operand 3 is the trap code, an integer.
6219 A typical @code{ctrap} pattern looks like
6221 @smallexample
6222 (define_insn "ctrapsi4"
6223   [(trap_if (match_operator 0 "trap_operator"
6224              [(match_operand 1 "register_operand")
6225               (match_operand 2 "immediate_operand")])
6226             (match_operand 3 "const_int_operand" "i"))]
6227   ""
6228   "@dots{}")
6229 @end smallexample
6231 @cindex @code{prefetch} instruction pattern
6232 @item @samp{prefetch}
6234 This pattern, if defined, emits code for a non-faulting data prefetch
6235 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
6236 is a constant 1 if the prefetch is preparing for a write to the memory
6237 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
6238 temporal locality of the data and is a value between 0 and 3, inclusive; 0
6239 means that the data has no temporal locality, so it need not be left in the
6240 cache after the access; 3 means that the data has a high degree of temporal
6241 locality and should be left in all levels of cache possible;  1 and 2 mean,
6242 respectively, a low or moderate degree of temporal locality.
6244 Targets that do not support write prefetches or locality hints can ignore
6245 the values of operands 1 and 2.
6247 @cindex @code{blockage} instruction pattern
6248 @item @samp{blockage}
6250 This pattern defines a pseudo insn that prevents the instruction
6251 scheduler and other passes from moving instructions and using register
6252 equivalences across the boundary defined by the blockage insn.
6253 This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM.
6255 @cindex @code{memory_barrier} instruction pattern
6256 @item @samp{memory_barrier}
6258 If the target memory model is not fully synchronous, then this pattern
6259 should be defined to an instruction that orders both loads and stores
6260 before the instruction with respect to loads and stores after the instruction.
6261 This pattern has no operands.
6263 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
6264 @item @samp{sync_compare_and_swap@var{mode}}
6266 This pattern, if defined, emits code for an atomic compare-and-swap
6267 operation.  Operand 1 is the memory on which the atomic operation is
6268 performed.  Operand 2 is the ``old'' value to be compared against the
6269 current contents of the memory location.  Operand 3 is the ``new'' value
6270 to store in the memory if the compare succeeds.  Operand 0 is the result
6271 of the operation; it should contain the contents of the memory
6272 before the operation.  If the compare succeeds, this should obviously be
6273 a copy of operand 2.
6275 This pattern must show that both operand 0 and operand 1 are modified.
6277 This pattern must issue any memory barrier instructions such that all
6278 memory operations before the atomic operation occur before the atomic
6279 operation and all memory operations after the atomic operation occur
6280 after the atomic operation.
6282 For targets where the success or failure of the compare-and-swap
6283 operation is available via the status flags, it is possible to
6284 avoid a separate compare operation and issue the subsequent
6285 branch or store-flag operation immediately after the compare-and-swap.
6286 To this end, GCC will look for a @code{MODE_CC} set in the
6287 output of @code{sync_compare_and_swap@var{mode}}; if the machine
6288 description includes such a set, the target should also define special
6289 @code{cbranchcc4} and/or @code{cstorecc4} instructions.  GCC will then
6290 be able to take the destination of the @code{MODE_CC} set and pass it
6291 to the @code{cbranchcc4} or @code{cstorecc4} pattern as the first
6292 operand of the comparison (the second will be @code{(const_int 0)}).
6294 For targets where the operating system may provide support for this
6295 operation via library calls, the @code{sync_compare_and_swap_optab}
6296 may be initialized to a function with the same interface as the
6297 @code{__sync_val_compare_and_swap_@var{n}} built-in.  If the entire
6298 set of @var{__sync} builtins are supported via library calls, the
6299 target can initialize all of the optabs at once with
6300 @code{init_sync_libfuncs}.
6301 For the purposes of C++11 @code{std::atomic::is_lock_free}, it is
6302 assumed that these library calls do @emph{not} use any kind of
6303 interruptable locking.
6305 @cindex @code{sync_add@var{mode}} instruction pattern
6306 @cindex @code{sync_sub@var{mode}} instruction pattern
6307 @cindex @code{sync_ior@var{mode}} instruction pattern
6308 @cindex @code{sync_and@var{mode}} instruction pattern
6309 @cindex @code{sync_xor@var{mode}} instruction pattern
6310 @cindex @code{sync_nand@var{mode}} instruction pattern
6311 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
6312 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
6313 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
6315 These patterns emit code for an atomic operation on memory.
6316 Operand 0 is the memory on which the atomic operation is performed.
6317 Operand 1 is the second operand to the binary operator.
6319 This pattern must issue any memory barrier instructions such that all
6320 memory operations before the atomic operation occur before the atomic
6321 operation and all memory operations after the atomic operation occur
6322 after the atomic operation.
6324 If these patterns are not defined, the operation will be constructed
6325 from a compare-and-swap operation, if defined.
6327 @cindex @code{sync_old_add@var{mode}} instruction pattern
6328 @cindex @code{sync_old_sub@var{mode}} instruction pattern
6329 @cindex @code{sync_old_ior@var{mode}} instruction pattern
6330 @cindex @code{sync_old_and@var{mode}} instruction pattern
6331 @cindex @code{sync_old_xor@var{mode}} instruction pattern
6332 @cindex @code{sync_old_nand@var{mode}} instruction pattern
6333 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
6334 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
6335 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
6337 These patterns emit code for an atomic operation on memory,
6338 and return the value that the memory contained before the operation.
6339 Operand 0 is the result value, operand 1 is the memory on which the
6340 atomic operation is performed, and operand 2 is the second operand
6341 to the binary operator.
6343 This pattern must issue any memory barrier instructions such that all
6344 memory operations before the atomic operation occur before the atomic
6345 operation and all memory operations after the atomic operation occur
6346 after the atomic operation.
6348 If these patterns are not defined, the operation will be constructed
6349 from a compare-and-swap operation, if defined.
6351 @cindex @code{sync_new_add@var{mode}} instruction pattern
6352 @cindex @code{sync_new_sub@var{mode}} instruction pattern
6353 @cindex @code{sync_new_ior@var{mode}} instruction pattern
6354 @cindex @code{sync_new_and@var{mode}} instruction pattern
6355 @cindex @code{sync_new_xor@var{mode}} instruction pattern
6356 @cindex @code{sync_new_nand@var{mode}} instruction pattern
6357 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
6358 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
6359 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
6361 These patterns are like their @code{sync_old_@var{op}} counterparts,
6362 except that they return the value that exists in the memory location
6363 after the operation, rather than before the operation.
6365 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
6366 @item @samp{sync_lock_test_and_set@var{mode}}
6368 This pattern takes two forms, based on the capabilities of the target.
6369 In either case, operand 0 is the result of the operand, operand 1 is
6370 the memory on which the atomic operation is performed, and operand 2
6371 is the value to set in the lock.
6373 In the ideal case, this operation is an atomic exchange operation, in
6374 which the previous value in memory operand is copied into the result
6375 operand, and the value operand is stored in the memory operand.
6377 For less capable targets, any value operand that is not the constant 1
6378 should be rejected with @code{FAIL}.  In this case the target may use
6379 an atomic test-and-set bit operation.  The result operand should contain
6380 1 if the bit was previously set and 0 if the bit was previously clear.
6381 The true contents of the memory operand are implementation defined.
6383 This pattern must issue any memory barrier instructions such that the
6384 pattern as a whole acts as an acquire barrier, that is all memory
6385 operations after the pattern do not occur until the lock is acquired.
6387 If this pattern is not defined, the operation will be constructed from
6388 a compare-and-swap operation, if defined.
6390 @cindex @code{sync_lock_release@var{mode}} instruction pattern
6391 @item @samp{sync_lock_release@var{mode}}
6393 This pattern, if defined, releases a lock set by
6394 @code{sync_lock_test_and_set@var{mode}}.  Operand 0 is the memory
6395 that contains the lock; operand 1 is the value to store in the lock.
6397 If the target doesn't implement full semantics for
6398 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
6399 the constant 0 should be rejected with @code{FAIL}, and the true contents
6400 of the memory operand are implementation defined.
6402 This pattern must issue any memory barrier instructions such that the
6403 pattern as a whole acts as a release barrier, that is the lock is
6404 released only after all previous memory operations have completed.
6406 If this pattern is not defined, then a @code{memory_barrier} pattern
6407 will be emitted, followed by a store of the value to the memory operand.
6409 @cindex @code{atomic_compare_and_swap@var{mode}} instruction pattern
6410 @item @samp{atomic_compare_and_swap@var{mode}} 
6411 This pattern, if defined, emits code for an atomic compare-and-swap
6412 operation with memory model semantics.  Operand 2 is the memory on which
6413 the atomic operation is performed.  Operand 0 is an output operand which
6414 is set to true or false based on whether the operation succeeded.  Operand
6415 1 is an output operand which is set to the contents of the memory before
6416 the operation was attempted.  Operand 3 is the value that is expected to
6417 be in memory.  Operand 4 is the value to put in memory if the expected
6418 value is found there.  Operand 5 is set to 1 if this compare and swap is to
6419 be treated as a weak operation.  Operand 6 is the memory model to be used
6420 if the operation is a success.  Operand 7 is the memory model to be used
6421 if the operation fails.
6423 If memory referred to in operand 2 contains the value in operand 3, then
6424 operand 4 is stored in memory pointed to by operand 2 and fencing based on
6425 the memory model in operand 6 is issued.  
6427 If memory referred to in operand 2 does not contain the value in operand 3,
6428 then fencing based on the memory model in operand 7 is issued.
6430 If a target does not support weak compare-and-swap operations, or the port
6431 elects not to implement weak operations, the argument in operand 5 can be
6432 ignored.  Note a strong implementation must be provided.
6434 If this pattern is not provided, the @code{__atomic_compare_exchange}
6435 built-in functions will utilize the legacy @code{sync_compare_and_swap}
6436 pattern with an @code{__ATOMIC_SEQ_CST} memory model.
6438 @cindex @code{atomic_load@var{mode}} instruction pattern
6439 @item @samp{atomic_load@var{mode}}
6440 This pattern implements an atomic load operation with memory model
6441 semantics.  Operand 1 is the memory address being loaded from.  Operand 0
6442 is the result of the load.  Operand 2 is the memory model to be used for
6443 the load operation.
6445 If not present, the @code{__atomic_load} built-in function will either
6446 resort to a normal load with memory barriers, or a compare-and-swap
6447 operation if a normal load would not be atomic.
6449 @cindex @code{atomic_store@var{mode}} instruction pattern
6450 @item @samp{atomic_store@var{mode}}
6451 This pattern implements an atomic store operation with memory model
6452 semantics.  Operand 0 is the memory address being stored to.  Operand 1
6453 is the value to be written.  Operand 2 is the memory model to be used for
6454 the operation.
6456 If not present, the @code{__atomic_store} built-in function will attempt to
6457 perform a normal store and surround it with any required memory fences.  If
6458 the store would not be atomic, then an @code{__atomic_exchange} is
6459 attempted with the result being ignored.
6461 @cindex @code{atomic_exchange@var{mode}} instruction pattern
6462 @item @samp{atomic_exchange@var{mode}}
6463 This pattern implements an atomic exchange operation with memory model
6464 semantics.  Operand 1 is the memory location the operation is performed on.
6465 Operand 0 is an output operand which is set to the original value contained
6466 in the memory pointed to by operand 1.  Operand 2 is the value to be
6467 stored.  Operand 3 is the memory model to be used.
6469 If this pattern is not present, the built-in function
6470 @code{__atomic_exchange} will attempt to preform the operation with a
6471 compare and swap loop.
6473 @cindex @code{atomic_add@var{mode}} instruction pattern
6474 @cindex @code{atomic_sub@var{mode}} instruction pattern
6475 @cindex @code{atomic_or@var{mode}} instruction pattern
6476 @cindex @code{atomic_and@var{mode}} instruction pattern
6477 @cindex @code{atomic_xor@var{mode}} instruction pattern
6478 @cindex @code{atomic_nand@var{mode}} instruction pattern
6479 @item @samp{atomic_add@var{mode}}, @samp{atomic_sub@var{mode}}
6480 @itemx @samp{atomic_or@var{mode}}, @samp{atomic_and@var{mode}}
6481 @itemx @samp{atomic_xor@var{mode}}, @samp{atomic_nand@var{mode}}
6483 These patterns emit code for an atomic operation on memory with memory
6484 model semantics. Operand 0 is the memory on which the atomic operation is
6485 performed.  Operand 1 is the second operand to the binary operator.
6486 Operand 2 is the memory model to be used by the operation.
6488 If these patterns are not defined, attempts will be made to use legacy
6489 @code{sync} patterns, or equivalent patterns which return a result.  If
6490 none of these are available a compare-and-swap loop will be used.
6492 @cindex @code{atomic_fetch_add@var{mode}} instruction pattern
6493 @cindex @code{atomic_fetch_sub@var{mode}} instruction pattern
6494 @cindex @code{atomic_fetch_or@var{mode}} instruction pattern
6495 @cindex @code{atomic_fetch_and@var{mode}} instruction pattern
6496 @cindex @code{atomic_fetch_xor@var{mode}} instruction pattern
6497 @cindex @code{atomic_fetch_nand@var{mode}} instruction pattern
6498 @item @samp{atomic_fetch_add@var{mode}}, @samp{atomic_fetch_sub@var{mode}}
6499 @itemx @samp{atomic_fetch_or@var{mode}}, @samp{atomic_fetch_and@var{mode}}
6500 @itemx @samp{atomic_fetch_xor@var{mode}}, @samp{atomic_fetch_nand@var{mode}}
6502 These patterns emit code for an atomic operation on memory with memory
6503 model semantics, and return the original value. Operand 0 is an output 
6504 operand which contains the value of the memory location before the 
6505 operation was performed.  Operand 1 is the memory on which the atomic 
6506 operation is performed.  Operand 2 is the second operand to the binary
6507 operator.  Operand 3 is the memory model to be used by the operation.
6509 If these patterns are not defined, attempts will be made to use legacy
6510 @code{sync} patterns.  If none of these are available a compare-and-swap
6511 loop will be used.
6513 @cindex @code{atomic_add_fetch@var{mode}} instruction pattern
6514 @cindex @code{atomic_sub_fetch@var{mode}} instruction pattern
6515 @cindex @code{atomic_or_fetch@var{mode}} instruction pattern
6516 @cindex @code{atomic_and_fetch@var{mode}} instruction pattern
6517 @cindex @code{atomic_xor_fetch@var{mode}} instruction pattern
6518 @cindex @code{atomic_nand_fetch@var{mode}} instruction pattern
6519 @item @samp{atomic_add_fetch@var{mode}}, @samp{atomic_sub_fetch@var{mode}}
6520 @itemx @samp{atomic_or_fetch@var{mode}}, @samp{atomic_and_fetch@var{mode}}
6521 @itemx @samp{atomic_xor_fetch@var{mode}}, @samp{atomic_nand_fetch@var{mode}}
6523 These patterns emit code for an atomic operation on memory with memory
6524 model semantics and return the result after the operation is performed.
6525 Operand 0 is an output operand which contains the value after the
6526 operation.  Operand 1 is the memory on which the atomic operation is
6527 performed.  Operand 2 is the second operand to the binary operator.
6528 Operand 3 is the memory model to be used by the operation.
6530 If these patterns are not defined, attempts will be made to use legacy
6531 @code{sync} patterns, or equivalent patterns which return the result before
6532 the operation followed by the arithmetic operation required to produce the
6533 result.  If none of these are available a compare-and-swap loop will be
6534 used.
6536 @cindex @code{atomic_test_and_set} instruction pattern
6537 @item @samp{atomic_test_and_set}
6539 This pattern emits code for @code{__builtin_atomic_test_and_set}.
6540 Operand 0 is an output operand which is set to true if the previous
6541 previous contents of the byte was "set", and false otherwise.  Operand 1
6542 is the @code{QImode} memory to be modified.  Operand 2 is the memory
6543 model to be used.
6545 The specific value that defines "set" is implementation defined, and
6546 is normally based on what is performed by the native atomic test and set
6547 instruction.
6549 @cindex @code{mem_thread_fence@var{mode}} instruction pattern
6550 @item @samp{mem_thread_fence@var{mode}}
6551 This pattern emits code required to implement a thread fence with
6552 memory model semantics.  Operand 0 is the memory model to be used.
6554 If this pattern is not specified, all memory models except
6555 @code{__ATOMIC_RELAXED} will result in issuing a @code{sync_synchronize}
6556 barrier pattern.
6558 @cindex @code{mem_signal_fence@var{mode}} instruction pattern
6559 @item @samp{mem_signal_fence@var{mode}}
6560 This pattern emits code required to implement a signal fence with
6561 memory model semantics.  Operand 0 is the memory model to be used.
6563 This pattern should impact the compiler optimizers the same way that
6564 mem_signal_fence does, but it does not need to issue any barrier
6565 instructions.
6567 If this pattern is not specified, all memory models except
6568 @code{__ATOMIC_RELAXED} will result in issuing a @code{sync_synchronize}
6569 barrier pattern.
6571 @cindex @code{get_thread_pointer@var{mode}} instruction pattern
6572 @cindex @code{set_thread_pointer@var{mode}} instruction pattern
6573 @item @samp{get_thread_pointer@var{mode}}
6574 @itemx @samp{set_thread_pointer@var{mode}}
6575 These patterns emit code that reads/sets the TLS thread pointer. Currently,
6576 these are only needed if the target needs to support the
6577 @code{__builtin_thread_pointer} and @code{__builtin_set_thread_pointer}
6578 builtins.
6580 The get/set patterns have a single output/input operand respectively,
6581 with @var{mode} intended to be @code{Pmode}.
6583 @cindex @code{stack_protect_set} instruction pattern
6584 @item @samp{stack_protect_set}
6586 This pattern, if defined, moves a @code{ptr_mode} value from the memory
6587 in operand 1 to the memory in operand 0 without leaving the value in
6588 a register afterward.  This is to avoid leaking the value some place
6589 that an attacker might use to rewrite the stack guard slot after
6590 having clobbered it.
6592 If this pattern is not defined, then a plain move pattern is generated.
6594 @cindex @code{stack_protect_test} instruction pattern
6595 @item @samp{stack_protect_test}
6597 This pattern, if defined, compares a @code{ptr_mode} value from the
6598 memory in operand 1 with the memory in operand 0 without leaving the
6599 value in a register afterward and branches to operand 2 if the values
6600 were equal.
6602 If this pattern is not defined, then a plain compare pattern and
6603 conditional branch pattern is used.
6605 @cindex @code{clear_cache} instruction pattern
6606 @item @samp{clear_cache}
6608 This pattern, if defined, flushes the instruction cache for a region of
6609 memory.  The region is bounded to by the Pmode pointers in operand 0
6610 inclusive and operand 1 exclusive.
6612 If this pattern is not defined, a call to the library function
6613 @code{__clear_cache} is used.
6615 @end table
6617 @end ifset
6618 @c Each of the following nodes are wrapped in separate
6619 @c "@ifset INTERNALS" to work around memory limits for the default
6620 @c configuration in older tetex distributions.  Known to not work:
6621 @c tetex-1.0.7, known to work: tetex-2.0.2.
6622 @ifset INTERNALS
6623 @node Pattern Ordering
6624 @section When the Order of Patterns Matters
6625 @cindex Pattern Ordering
6626 @cindex Ordering of Patterns
6628 Sometimes an insn can match more than one instruction pattern.  Then the
6629 pattern that appears first in the machine description is the one used.
6630 Therefore, more specific patterns (patterns that will match fewer things)
6631 and faster instructions (those that will produce better code when they
6632 do match) should usually go first in the description.
6634 In some cases the effect of ordering the patterns can be used to hide
6635 a pattern when it is not valid.  For example, the 68000 has an
6636 instruction for converting a fullword to floating point and another
6637 for converting a byte to floating point.  An instruction converting
6638 an integer to floating point could match either one.  We put the
6639 pattern to convert the fullword first to make sure that one will
6640 be used rather than the other.  (Otherwise a large integer might
6641 be generated as a single-byte immediate quantity, which would not work.)
6642 Instead of using this pattern ordering it would be possible to make the
6643 pattern for convert-a-byte smart enough to deal properly with any
6644 constant value.
6646 @end ifset
6647 @ifset INTERNALS
6648 @node Dependent Patterns
6649 @section Interdependence of Patterns
6650 @cindex Dependent Patterns
6651 @cindex Interdependence of Patterns
6653 In some cases machines support instructions identical except for the
6654 machine mode of one or more operands.  For example, there may be
6655 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
6656 patterns are
6658 @smallexample
6659 (set (match_operand:SI 0 @dots{})
6660      (extend:SI (match_operand:HI 1 @dots{})))
6662 (set (match_operand:SI 0 @dots{})
6663      (extend:SI (match_operand:QI 1 @dots{})))
6664 @end smallexample
6666 @noindent
6667 Constant integers do not specify a machine mode, so an instruction to
6668 extend a constant value could match either pattern.  The pattern it
6669 actually will match is the one that appears first in the file.  For correct
6670 results, this must be the one for the widest possible mode (@code{HImode},
6671 here).  If the pattern matches the @code{QImode} instruction, the results
6672 will be incorrect if the constant value does not actually fit that mode.
6674 Such instructions to extend constants are rarely generated because they are
6675 optimized away, but they do occasionally happen in nonoptimized
6676 compilations.
6678 If a constraint in a pattern allows a constant, the reload pass may
6679 replace a register with a constant permitted by the constraint in some
6680 cases.  Similarly for memory references.  Because of this substitution,
6681 you should not provide separate patterns for increment and decrement
6682 instructions.  Instead, they should be generated from the same pattern
6683 that supports register-register add insns by examining the operands and
6684 generating the appropriate machine instruction.
6686 @end ifset
6687 @ifset INTERNALS
6688 @node Jump Patterns
6689 @section Defining Jump Instruction Patterns
6690 @cindex jump instruction patterns
6691 @cindex defining jump instruction patterns
6693 GCC does not assume anything about how the machine realizes jumps.
6694 The machine description should define a single pattern, usually
6695 a @code{define_expand}, which expands to all the required insns.
6697 Usually, this would be a comparison insn to set the condition code
6698 and a separate branch insn testing the condition code and branching
6699 or not according to its value.  For many machines, however,
6700 separating compares and branches is limiting, which is why the
6701 more flexible approach with one @code{define_expand} is used in GCC.
6702 The machine description becomes clearer for architectures that
6703 have compare-and-branch instructions but no condition code.  It also
6704 works better when different sets of comparison operators are supported
6705 by different kinds of conditional branches (e.g. integer vs. floating-point),
6706 or by conditional branches with respect to conditional stores.
6708 Two separate insns are always used if the machine description represents
6709 a condition code register using the legacy RTL expression @code{(cc0)},
6710 and on most machines that use a separate condition code register
6711 (@pxref{Condition Code}).  For machines that use @code{(cc0)}, in
6712 fact, the set and use of the condition code must be separate and
6713 adjacent@footnote{@code{note} insns can separate them, though.}, thus
6714 allowing flags in @code{cc_status} to be used (@pxref{Condition Code}) and
6715 so that the comparison and branch insns could be located from each other
6716 by using the functions @code{prev_cc0_setter} and @code{next_cc0_user}.
6718 Even in this case having a single entry point for conditional branches
6719 is advantageous, because it handles equally well the case where a single
6720 comparison instruction records the results of both signed and unsigned
6721 comparison of the given operands (with the branch insns coming in distinct
6722 signed and unsigned flavors) as in the x86 or SPARC, and the case where
6723 there are distinct signed and unsigned compare instructions and only
6724 one set of conditional branch instructions as in the PowerPC.
6726 @end ifset
6727 @ifset INTERNALS
6728 @node Looping Patterns
6729 @section Defining Looping Instruction Patterns
6730 @cindex looping instruction patterns
6731 @cindex defining looping instruction patterns
6733 Some machines have special jump instructions that can be utilized to
6734 make loops more efficient.  A common example is the 68000 @samp{dbra}
6735 instruction which performs a decrement of a register and a branch if the
6736 result was greater than zero.  Other machines, in particular digital
6737 signal processors (DSPs), have special block repeat instructions to
6738 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
6739 DSPs have a block repeat instruction that loads special registers to
6740 mark the top and end of a loop and to count the number of loop
6741 iterations.  This avoids the need for fetching and executing a
6742 @samp{dbra}-like instruction and avoids pipeline stalls associated with
6743 the jump.
6745 GCC has three special named patterns to support low overhead looping.
6746 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
6747 and @samp{doloop_end}.  The first pattern,
6748 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
6749 generation but may be emitted during the instruction combination phase.
6750 This requires the assistance of the loop optimizer, using information
6751 collected during strength reduction, to reverse a loop to count down to
6752 zero.  Some targets also require the loop optimizer to add a
6753 @code{REG_NONNEG} note to indicate that the iteration count is always
6754 positive.  This is needed if the target performs a signed loop
6755 termination test.  For example, the 68000 uses a pattern similar to the
6756 following for its @code{dbra} instruction:
6758 @smallexample
6759 @group
6760 (define_insn "decrement_and_branch_until_zero"
6761   [(set (pc)
6762         (if_then_else
6763           (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
6764                        (const_int -1))
6765               (const_int 0))
6766           (label_ref (match_operand 1 "" ""))
6767           (pc)))
6768    (set (match_dup 0)
6769         (plus:SI (match_dup 0)
6770                  (const_int -1)))]
6771   "find_reg_note (insn, REG_NONNEG, 0)"
6772   "@dots{}")
6773 @end group
6774 @end smallexample
6776 Note that since the insn is both a jump insn and has an output, it must
6777 deal with its own reloads, hence the `m' constraints.  Also note that
6778 since this insn is generated by the instruction combination phase
6779 combining two sequential insns together into an implicit parallel insn,
6780 the iteration counter needs to be biased by the same amount as the
6781 decrement operation, in this case @minus{}1.  Note that the following similar
6782 pattern will not be matched by the combiner.
6784 @smallexample
6785 @group
6786 (define_insn "decrement_and_branch_until_zero"
6787   [(set (pc)
6788         (if_then_else
6789           (ge (match_operand:SI 0 "general_operand" "+d*am")
6790               (const_int 1))
6791           (label_ref (match_operand 1 "" ""))
6792           (pc)))
6793    (set (match_dup 0)
6794         (plus:SI (match_dup 0)
6795                  (const_int -1)))]
6796   "find_reg_note (insn, REG_NONNEG, 0)"
6797   "@dots{}")
6798 @end group
6799 @end smallexample
6801 The other two special looping patterns, @samp{doloop_begin} and
6802 @samp{doloop_end}, are emitted by the loop optimizer for certain
6803 well-behaved loops with a finite number of loop iterations using
6804 information collected during strength reduction.
6806 The @samp{doloop_end} pattern describes the actual looping instruction
6807 (or the implicit looping operation) and the @samp{doloop_begin} pattern
6808 is an optional companion pattern that can be used for initialization
6809 needed for some low-overhead looping instructions.
6811 Note that some machines require the actual looping instruction to be
6812 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
6813 the true RTL for a looping instruction at the top of the loop can cause
6814 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
6815 emitted at the end of the loop.  The machine dependent reorg pass checks
6816 for the presence of this @code{doloop} insn and then searches back to
6817 the top of the loop, where it inserts the true looping insn (provided
6818 there are no instructions in the loop which would cause problems).  Any
6819 additional labels can be emitted at this point.  In addition, if the
6820 desired special iteration counter register was not allocated, this
6821 machine dependent reorg pass could emit a traditional compare and jump
6822 instruction pair.
6824 The essential difference between the
6825 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
6826 patterns is that the loop optimizer allocates an additional pseudo
6827 register for the latter as an iteration counter.  This pseudo register
6828 cannot be used within the loop (i.e., general induction variables cannot
6829 be derived from it), however, in many cases the loop induction variable
6830 may become redundant and removed by the flow pass.
6833 @end ifset
6834 @ifset INTERNALS
6835 @node Insn Canonicalizations
6836 @section Canonicalization of Instructions
6837 @cindex canonicalization of instructions
6838 @cindex insn canonicalization
6840 There are often cases where multiple RTL expressions could represent an
6841 operation performed by a single machine instruction.  This situation is
6842 most commonly encountered with logical, branch, and multiply-accumulate
6843 instructions.  In such cases, the compiler attempts to convert these
6844 multiple RTL expressions into a single canonical form to reduce the
6845 number of insn patterns required.
6847 In addition to algebraic simplifications, following canonicalizations
6848 are performed:
6850 @itemize @bullet
6851 @item
6852 For commutative and comparison operators, a constant is always made the
6853 second operand.  If a machine only supports a constant as the second
6854 operand, only patterns that match a constant in the second operand need
6855 be supplied.
6857 @item
6858 For associative operators, a sequence of operators will always chain
6859 to the left; for instance, only the left operand of an integer @code{plus}
6860 can itself be a @code{plus}.  @code{and}, @code{ior}, @code{xor},
6861 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
6862 @code{umax} are associative when applied to integers, and sometimes to
6863 floating-point.
6865 @item
6866 @cindex @code{neg}, canonicalization of
6867 @cindex @code{not}, canonicalization of
6868 @cindex @code{mult}, canonicalization of
6869 @cindex @code{plus}, canonicalization of
6870 @cindex @code{minus}, canonicalization of
6871 For these operators, if only one operand is a @code{neg}, @code{not},
6872 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
6873 first operand.
6875 @item
6876 In combinations of @code{neg}, @code{mult}, @code{plus}, and
6877 @code{minus}, the @code{neg} operations (if any) will be moved inside
6878 the operations as far as possible.  For instance,
6879 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
6880 @code{(plus (mult (neg B) C) A)} is canonicalized as
6881 @code{(minus A (mult B C))}.
6883 @cindex @code{compare}, canonicalization of
6884 @item
6885 For the @code{compare} operator, a constant is always the second operand
6886 if the first argument is a condition code register or @code{(cc0)}.
6888 @item
6889 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
6890 @code{minus} is made the first operand under the same conditions as
6891 above.
6893 @item
6894 @code{(ltu (plus @var{a} @var{b}) @var{b})} is converted to
6895 @code{(ltu (plus @var{a} @var{b}) @var{a})}. Likewise with @code{geu} instead
6896 of @code{ltu}.
6898 @item
6899 @code{(minus @var{x} (const_int @var{n}))} is converted to
6900 @code{(plus @var{x} (const_int @var{-n}))}.
6902 @item
6903 Within address computations (i.e., inside @code{mem}), a left shift is
6904 converted into the appropriate multiplication by a power of two.
6906 @cindex @code{ior}, canonicalization of
6907 @cindex @code{and}, canonicalization of
6908 @cindex De Morgan's law
6909 @item
6910 De Morgan's Law is used to move bitwise negation inside a bitwise
6911 logical-and or logical-or operation.  If this results in only one
6912 operand being a @code{not} expression, it will be the first one.
6914 A machine that has an instruction that performs a bitwise logical-and of one
6915 operand with the bitwise negation of the other should specify the pattern
6916 for that instruction as
6918 @smallexample
6919 (define_insn ""
6920   [(set (match_operand:@var{m} 0 @dots{})
6921         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
6922                      (match_operand:@var{m} 2 @dots{})))]
6923   "@dots{}"
6924   "@dots{}")
6925 @end smallexample
6927 @noindent
6928 Similarly, a pattern for a ``NAND'' instruction should be written
6930 @smallexample
6931 (define_insn ""
6932   [(set (match_operand:@var{m} 0 @dots{})
6933         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
6934                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
6935   "@dots{}"
6936   "@dots{}")
6937 @end smallexample
6939 In both cases, it is not necessary to include patterns for the many
6940 logically equivalent RTL expressions.
6942 @cindex @code{xor}, canonicalization of
6943 @item
6944 The only possible RTL expressions involving both bitwise exclusive-or
6945 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
6946 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
6948 @item
6949 The sum of three items, one of which is a constant, will only appear in
6950 the form
6952 @smallexample
6953 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
6954 @end smallexample
6956 @cindex @code{zero_extract}, canonicalization of
6957 @cindex @code{sign_extract}, canonicalization of
6958 @item
6959 Equality comparisons of a group of bits (usually a single bit) with zero
6960 will be written using @code{zero_extract} rather than the equivalent
6961 @code{and} or @code{sign_extract} operations.
6963 @cindex @code{mult}, canonicalization of
6964 @item
6965 @code{(sign_extend:@var{m1} (mult:@var{m2} (sign_extend:@var{m2} @var{x})
6966 (sign_extend:@var{m2} @var{y})))} is converted to @code{(mult:@var{m1}
6967 (sign_extend:@var{m1} @var{x}) (sign_extend:@var{m1} @var{y}))}, and likewise
6968 for @code{zero_extend}.
6970 @item
6971 @code{(sign_extend:@var{m1} (mult:@var{m2} (ashiftrt:@var{m2}
6972 @var{x} @var{s}) (sign_extend:@var{m2} @var{y})))} is converted
6973 to @code{(mult:@var{m1} (sign_extend:@var{m1} (ashiftrt:@var{m2}
6974 @var{x} @var{s})) (sign_extend:@var{m1} @var{y}))}, and likewise for
6975 patterns using @code{zero_extend} and @code{lshiftrt}.  If the second
6976 operand of @code{mult} is also a shift, then that is extended also.
6977 This transformation is only applied when it can be proven that the
6978 original operation had sufficient precision to prevent overflow.
6980 @end itemize
6982 Further canonicalization rules are defined in the function
6983 @code{commutative_operand_precedence} in @file{gcc/rtlanal.c}.
6985 @end ifset
6986 @ifset INTERNALS
6987 @node Expander Definitions
6988 @section Defining RTL Sequences for Code Generation
6989 @cindex expander definitions
6990 @cindex code generation RTL sequences
6991 @cindex defining RTL sequences for code generation
6993 On some target machines, some standard pattern names for RTL generation
6994 cannot be handled with single insn, but a sequence of RTL insns can
6995 represent them.  For these target machines, you can write a
6996 @code{define_expand} to specify how to generate the sequence of RTL@.
6998 @findex define_expand
6999 A @code{define_expand} is an RTL expression that looks almost like a
7000 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
7001 only for RTL generation and it can produce more than one RTL insn.
7003 A @code{define_expand} RTX has four operands:
7005 @itemize @bullet
7006 @item
7007 The name.  Each @code{define_expand} must have a name, since the only
7008 use for it is to refer to it by name.
7010 @item
7011 The RTL template.  This is a vector of RTL expressions representing
7012 a sequence of separate instructions.  Unlike @code{define_insn}, there
7013 is no implicit surrounding @code{PARALLEL}.
7015 @item
7016 The condition, a string containing a C expression.  This expression is
7017 used to express how the availability of this pattern depends on
7018 subclasses of target machine, selected by command-line options when GCC
7019 is run.  This is just like the condition of a @code{define_insn} that
7020 has a standard name.  Therefore, the condition (if present) may not
7021 depend on the data in the insn being matched, but only the
7022 target-machine-type flags.  The compiler needs to test these conditions
7023 during initialization in order to learn exactly which named instructions
7024 are available in a particular run.
7026 @item
7027 The preparation statements, a string containing zero or more C
7028 statements which are to be executed before RTL code is generated from
7029 the RTL template.
7031 Usually these statements prepare temporary registers for use as
7032 internal operands in the RTL template, but they can also generate RTL
7033 insns directly by calling routines such as @code{emit_insn}, etc.
7034 Any such insns precede the ones that come from the RTL template.
7036 @item
7037 Optionally, a vector containing the values of attributes. @xref{Insn
7038 Attributes}.
7039 @end itemize
7041 Every RTL insn emitted by a @code{define_expand} must match some
7042 @code{define_insn} in the machine description.  Otherwise, the compiler
7043 will crash when trying to generate code for the insn or trying to optimize
7046 The RTL template, in addition to controlling generation of RTL insns,
7047 also describes the operands that need to be specified when this pattern
7048 is used.  In particular, it gives a predicate for each operand.
7050 A true operand, which needs to be specified in order to generate RTL from
7051 the pattern, should be described with a @code{match_operand} in its first
7052 occurrence in the RTL template.  This enters information on the operand's
7053 predicate into the tables that record such things.  GCC uses the
7054 information to preload the operand into a register if that is required for
7055 valid RTL code.  If the operand is referred to more than once, subsequent
7056 references should use @code{match_dup}.
7058 The RTL template may also refer to internal ``operands'' which are
7059 temporary registers or labels used only within the sequence made by the
7060 @code{define_expand}.  Internal operands are substituted into the RTL
7061 template with @code{match_dup}, never with @code{match_operand}.  The
7062 values of the internal operands are not passed in as arguments by the
7063 compiler when it requests use of this pattern.  Instead, they are computed
7064 within the pattern, in the preparation statements.  These statements
7065 compute the values and store them into the appropriate elements of
7066 @code{operands} so that @code{match_dup} can find them.
7068 There are two special macros defined for use in the preparation statements:
7069 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
7070 as a statement.
7072 @table @code
7074 @findex DONE
7075 @item DONE
7076 Use the @code{DONE} macro to end RTL generation for the pattern.  The
7077 only RTL insns resulting from the pattern on this occasion will be
7078 those already emitted by explicit calls to @code{emit_insn} within the
7079 preparation statements; the RTL template will not be generated.
7081 @findex FAIL
7082 @item FAIL
7083 Make the pattern fail on this occasion.  When a pattern fails, it means
7084 that the pattern was not truly available.  The calling routines in the
7085 compiler will try other strategies for code generation using other patterns.
7087 Failure is currently supported only for binary (addition, multiplication,
7088 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
7089 operations.
7090 @end table
7092 If the preparation falls through (invokes neither @code{DONE} nor
7093 @code{FAIL}), then the @code{define_expand} acts like a
7094 @code{define_insn} in that the RTL template is used to generate the
7095 insn.
7097 The RTL template is not used for matching, only for generating the
7098 initial insn list.  If the preparation statement always invokes
7099 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
7100 list of operands, such as this example:
7102 @smallexample
7103 @group
7104 (define_expand "addsi3"
7105   [(match_operand:SI 0 "register_operand" "")
7106    (match_operand:SI 1 "register_operand" "")
7107    (match_operand:SI 2 "register_operand" "")]
7108 @end group
7109 @group
7110   ""
7111   "
7113   handle_add (operands[0], operands[1], operands[2]);
7114   DONE;
7115 @}")
7116 @end group
7117 @end smallexample
7119 Here is an example, the definition of left-shift for the SPUR chip:
7121 @smallexample
7122 @group
7123 (define_expand "ashlsi3"
7124   [(set (match_operand:SI 0 "register_operand" "")
7125         (ashift:SI
7126 @end group
7127 @group
7128           (match_operand:SI 1 "register_operand" "")
7129           (match_operand:SI 2 "nonmemory_operand" "")))]
7130   ""
7131   "
7132 @end group
7133 @end smallexample
7135 @smallexample
7136 @group
7138   if (GET_CODE (operands[2]) != CONST_INT
7139       || (unsigned) INTVAL (operands[2]) > 3)
7140     FAIL;
7141 @}")
7142 @end group
7143 @end smallexample
7145 @noindent
7146 This example uses @code{define_expand} so that it can generate an RTL insn
7147 for shifting when the shift-count is in the supported range of 0 to 3 but
7148 fail in other cases where machine insns aren't available.  When it fails,
7149 the compiler tries another strategy using different patterns (such as, a
7150 library call).
7152 If the compiler were able to handle nontrivial condition-strings in
7153 patterns with names, then it would be possible to use a
7154 @code{define_insn} in that case.  Here is another case (zero-extension
7155 on the 68000) which makes more use of the power of @code{define_expand}:
7157 @smallexample
7158 (define_expand "zero_extendhisi2"
7159   [(set (match_operand:SI 0 "general_operand" "")
7160         (const_int 0))
7161    (set (strict_low_part
7162           (subreg:HI
7163             (match_dup 0)
7164             0))
7165         (match_operand:HI 1 "general_operand" ""))]
7166   ""
7167   "operands[1] = make_safe_from (operands[1], operands[0]);")
7168 @end smallexample
7170 @noindent
7171 @findex make_safe_from
7172 Here two RTL insns are generated, one to clear the entire output operand
7173 and the other to copy the input operand into its low half.  This sequence
7174 is incorrect if the input operand refers to [the old value of] the output
7175 operand, so the preparation statement makes sure this isn't so.  The
7176 function @code{make_safe_from} copies the @code{operands[1]} into a
7177 temporary register if it refers to @code{operands[0]}.  It does this
7178 by emitting another RTL insn.
7180 Finally, a third example shows the use of an internal operand.
7181 Zero-extension on the SPUR chip is done by @code{and}-ing the result
7182 against a halfword mask.  But this mask cannot be represented by a
7183 @code{const_int} because the constant value is too large to be legitimate
7184 on this machine.  So it must be copied into a register with
7185 @code{force_reg} and then the register used in the @code{and}.
7187 @smallexample
7188 (define_expand "zero_extendhisi2"
7189   [(set (match_operand:SI 0 "register_operand" "")
7190         (and:SI (subreg:SI
7191                   (match_operand:HI 1 "register_operand" "")
7192                   0)
7193                 (match_dup 2)))]
7194   ""
7195   "operands[2]
7196      = force_reg (SImode, GEN_INT (65535)); ")
7197 @end smallexample
7199 @emph{Note:} If the @code{define_expand} is used to serve a
7200 standard binary or unary arithmetic operation or a bit-field operation,
7201 then the last insn it generates must not be a @code{code_label},
7202 @code{barrier} or @code{note}.  It must be an @code{insn},
7203 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
7204 at the end, emit an insn to copy the result of the operation into
7205 itself.  Such an insn will generate no code, but it can avoid problems
7206 in the compiler.
7208 @end ifset
7209 @ifset INTERNALS
7210 @node Insn Splitting
7211 @section Defining How to Split Instructions
7212 @cindex insn splitting
7213 @cindex instruction splitting
7214 @cindex splitting instructions
7216 There are two cases where you should specify how to split a pattern
7217 into multiple insns.  On machines that have instructions requiring
7218 delay slots (@pxref{Delay Slots}) or that have instructions whose
7219 output is not available for multiple cycles (@pxref{Processor pipeline
7220 description}), the compiler phases that optimize these cases need to
7221 be able to move insns into one-instruction delay slots.  However, some
7222 insns may generate more than one machine instruction.  These insns
7223 cannot be placed into a delay slot.
7225 Often you can rewrite the single insn as a list of individual insns,
7226 each corresponding to one machine instruction.  The disadvantage of
7227 doing so is that it will cause the compilation to be slower and require
7228 more space.  If the resulting insns are too complex, it may also
7229 suppress some optimizations.  The compiler splits the insn if there is a
7230 reason to believe that it might improve instruction or delay slot
7231 scheduling.
7233 The insn combiner phase also splits putative insns.  If three insns are
7234 merged into one insn with a complex expression that cannot be matched by
7235 some @code{define_insn} pattern, the combiner phase attempts to split
7236 the complex pattern into two insns that are recognized.  Usually it can
7237 break the complex pattern into two patterns by splitting out some
7238 subexpression.  However, in some other cases, such as performing an
7239 addition of a large constant in two insns on a RISC machine, the way to
7240 split the addition into two insns is machine-dependent.
7242 @findex define_split
7243 The @code{define_split} definition tells the compiler how to split a
7244 complex insn into several simpler insns.  It looks like this:
7246 @smallexample
7247 (define_split
7248   [@var{insn-pattern}]
7249   "@var{condition}"
7250   [@var{new-insn-pattern-1}
7251    @var{new-insn-pattern-2}
7252    @dots{}]
7253   "@var{preparation-statements}")
7254 @end smallexample
7256 @var{insn-pattern} is a pattern that needs to be split and
7257 @var{condition} is the final condition to be tested, as in a
7258 @code{define_insn}.  When an insn matching @var{insn-pattern} and
7259 satisfying @var{condition} is found, it is replaced in the insn list
7260 with the insns given by @var{new-insn-pattern-1},
7261 @var{new-insn-pattern-2}, etc.
7263 The @var{preparation-statements} are similar to those statements that
7264 are specified for @code{define_expand} (@pxref{Expander Definitions})
7265 and are executed before the new RTL is generated to prepare for the
7266 generated code or emit some insns whose pattern is not fixed.  Unlike
7267 those in @code{define_expand}, however, these statements must not
7268 generate any new pseudo-registers.  Once reload has completed, they also
7269 must not allocate any space in the stack frame.
7271 Patterns are matched against @var{insn-pattern} in two different
7272 circumstances.  If an insn needs to be split for delay slot scheduling
7273 or insn scheduling, the insn is already known to be valid, which means
7274 that it must have been matched by some @code{define_insn} and, if
7275 @code{reload_completed} is nonzero, is known to satisfy the constraints
7276 of that @code{define_insn}.  In that case, the new insn patterns must
7277 also be insns that are matched by some @code{define_insn} and, if
7278 @code{reload_completed} is nonzero, must also satisfy the constraints
7279 of those definitions.
7281 As an example of this usage of @code{define_split}, consider the following
7282 example from @file{a29k.md}, which splits a @code{sign_extend} from
7283 @code{HImode} to @code{SImode} into a pair of shift insns:
7285 @smallexample
7286 (define_split
7287   [(set (match_operand:SI 0 "gen_reg_operand" "")
7288         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
7289   ""
7290   [(set (match_dup 0)
7291         (ashift:SI (match_dup 1)
7292                    (const_int 16)))
7293    (set (match_dup 0)
7294         (ashiftrt:SI (match_dup 0)
7295                      (const_int 16)))]
7296   "
7297 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
7298 @end smallexample
7300 When the combiner phase tries to split an insn pattern, it is always the
7301 case that the pattern is @emph{not} matched by any @code{define_insn}.
7302 The combiner pass first tries to split a single @code{set} expression
7303 and then the same @code{set} expression inside a @code{parallel}, but
7304 followed by a @code{clobber} of a pseudo-reg to use as a scratch
7305 register.  In these cases, the combiner expects exactly two new insn
7306 patterns to be generated.  It will verify that these patterns match some
7307 @code{define_insn} definitions, so you need not do this test in the
7308 @code{define_split} (of course, there is no point in writing a
7309 @code{define_split} that will never produce insns that match).
7311 Here is an example of this use of @code{define_split}, taken from
7312 @file{rs6000.md}:
7314 @smallexample
7315 (define_split
7316   [(set (match_operand:SI 0 "gen_reg_operand" "")
7317         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
7318                  (match_operand:SI 2 "non_add_cint_operand" "")))]
7319   ""
7320   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
7321    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
7324   int low = INTVAL (operands[2]) & 0xffff;
7325   int high = (unsigned) INTVAL (operands[2]) >> 16;
7327   if (low & 0x8000)
7328     high++, low |= 0xffff0000;
7330   operands[3] = GEN_INT (high << 16);
7331   operands[4] = GEN_INT (low);
7332 @}")
7333 @end smallexample
7335 Here the predicate @code{non_add_cint_operand} matches any
7336 @code{const_int} that is @emph{not} a valid operand of a single add
7337 insn.  The add with the smaller displacement is written so that it
7338 can be substituted into the address of a subsequent operation.
7340 An example that uses a scratch register, from the same file, generates
7341 an equality comparison of a register and a large constant:
7343 @smallexample
7344 (define_split
7345   [(set (match_operand:CC 0 "cc_reg_operand" "")
7346         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
7347                     (match_operand:SI 2 "non_short_cint_operand" "")))
7348    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
7349   "find_single_use (operands[0], insn, 0)
7350    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
7351        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
7352   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
7353    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
7354   "
7356   /* @r{Get the constant we are comparing against, C, and see what it
7357      looks like sign-extended to 16 bits.  Then see what constant
7358      could be XOR'ed with C to get the sign-extended value.}  */
7360   int c = INTVAL (operands[2]);
7361   int sextc = (c << 16) >> 16;
7362   int xorv = c ^ sextc;
7364   operands[4] = GEN_INT (xorv);
7365   operands[5] = GEN_INT (sextc);
7366 @}")
7367 @end smallexample
7369 To avoid confusion, don't write a single @code{define_split} that
7370 accepts some insns that match some @code{define_insn} as well as some
7371 insns that don't.  Instead, write two separate @code{define_split}
7372 definitions, one for the insns that are valid and one for the insns that
7373 are not valid.
7375 The splitter is allowed to split jump instructions into sequence of
7376 jumps or create new jumps in while splitting non-jump instructions.  As
7377 the central flowgraph and branch prediction information needs to be updated,
7378 several restriction apply.
7380 Splitting of jump instruction into sequence that over by another jump
7381 instruction is always valid, as compiler expect identical behavior of new
7382 jump.  When new sequence contains multiple jump instructions or new labels,
7383 more assistance is needed.  Splitter is required to create only unconditional
7384 jumps, or simple conditional jump instructions.  Additionally it must attach a
7385 @code{REG_BR_PROB} note to each conditional jump.  A global variable
7386 @code{split_branch_probability} holds the probability of the original branch in case
7387 it was a simple conditional jump, @minus{}1 otherwise.  To simplify
7388 recomputing of edge frequencies, the new sequence is required to have only
7389 forward jumps to the newly created labels.
7391 @findex define_insn_and_split
7392 For the common case where the pattern of a define_split exactly matches the
7393 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
7394 this:
7396 @smallexample
7397 (define_insn_and_split
7398   [@var{insn-pattern}]
7399   "@var{condition}"
7400   "@var{output-template}"
7401   "@var{split-condition}"
7402   [@var{new-insn-pattern-1}
7403    @var{new-insn-pattern-2}
7404    @dots{}]
7405   "@var{preparation-statements}"
7406   [@var{insn-attributes}])
7408 @end smallexample
7410 @var{insn-pattern}, @var{condition}, @var{output-template}, and
7411 @var{insn-attributes} are used as in @code{define_insn}.  The
7412 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
7413 in a @code{define_split}.  The @var{split-condition} is also used as in
7414 @code{define_split}, with the additional behavior that if the condition starts
7415 with @samp{&&}, the condition used for the split will be the constructed as a
7416 logical ``and'' of the split condition with the insn condition.  For example,
7417 from i386.md:
7419 @smallexample
7420 (define_insn_and_split "zero_extendhisi2_and"
7421   [(set (match_operand:SI 0 "register_operand" "=r")
7422      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
7423    (clobber (reg:CC 17))]
7424   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
7425   "#"
7426   "&& reload_completed"
7427   [(parallel [(set (match_dup 0)
7428                    (and:SI (match_dup 0) (const_int 65535)))
7429               (clobber (reg:CC 17))])]
7430   ""
7431   [(set_attr "type" "alu1")])
7433 @end smallexample
7435 In this case, the actual split condition will be
7436 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
7438 The @code{define_insn_and_split} construction provides exactly the same
7439 functionality as two separate @code{define_insn} and @code{define_split}
7440 patterns.  It exists for compactness, and as a maintenance tool to prevent
7441 having to ensure the two patterns' templates match.
7443 @end ifset
7444 @ifset INTERNALS
7445 @node Including Patterns
7446 @section Including Patterns in Machine Descriptions.
7447 @cindex insn includes
7449 @findex include
7450 The @code{include} pattern tells the compiler tools where to
7451 look for patterns that are in files other than in the file
7452 @file{.md}.  This is used only at build time and there is no preprocessing allowed.
7454 It looks like:
7456 @smallexample
7458 (include
7459   @var{pathname})
7460 @end smallexample
7462 For example:
7464 @smallexample
7466 (include "filestuff")
7468 @end smallexample
7470 Where @var{pathname} is a string that specifies the location of the file,
7471 specifies the include file to be in @file{gcc/config/target/filestuff}.  The
7472 directory @file{gcc/config/target} is regarded as the default directory.
7475 Machine descriptions may be split up into smaller more manageable subsections
7476 and placed into subdirectories.
7478 By specifying:
7480 @smallexample
7482 (include "BOGUS/filestuff")
7484 @end smallexample
7486 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
7488 Specifying an absolute path for the include file such as;
7489 @smallexample
7491 (include "/u2/BOGUS/filestuff")
7493 @end smallexample
7494 is permitted but is not encouraged.
7496 @subsection RTL Generation Tool Options for Directory Search
7497 @cindex directory options .md
7498 @cindex options, directory search
7499 @cindex search options
7501 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
7502 For example:
7504 @smallexample
7506 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
7508 @end smallexample
7511 Add the directory @var{dir} to the head of the list of directories to be
7512 searched for header files.  This can be used to override a system machine definition
7513 file, substituting your own version, since these directories are
7514 searched before the default machine description file directories.  If you use more than
7515 one @option{-I} option, the directories are scanned in left-to-right
7516 order; the standard default directory come after.
7519 @end ifset
7520 @ifset INTERNALS
7521 @node Peephole Definitions
7522 @section Machine-Specific Peephole Optimizers
7523 @cindex peephole optimizer definitions
7524 @cindex defining peephole optimizers
7526 In addition to instruction patterns the @file{md} file may contain
7527 definitions of machine-specific peephole optimizations.
7529 The combiner does not notice certain peephole optimizations when the data
7530 flow in the program does not suggest that it should try them.  For example,
7531 sometimes two consecutive insns related in purpose can be combined even
7532 though the second one does not appear to use a register computed in the
7533 first one.  A machine-specific peephole optimizer can detect such
7534 opportunities.
7536 There are two forms of peephole definitions that may be used.  The
7537 original @code{define_peephole} is run at assembly output time to
7538 match insns and substitute assembly text.  Use of @code{define_peephole}
7539 is deprecated.
7541 A newer @code{define_peephole2} matches insns and substitutes new
7542 insns.  The @code{peephole2} pass is run after register allocation
7543 but before scheduling, which may result in much better code for
7544 targets that do scheduling.
7546 @menu
7547 * define_peephole::     RTL to Text Peephole Optimizers
7548 * define_peephole2::    RTL to RTL Peephole Optimizers
7549 @end menu
7551 @end ifset
7552 @ifset INTERNALS
7553 @node define_peephole
7554 @subsection RTL to Text Peephole Optimizers
7555 @findex define_peephole
7557 @need 1000
7558 A definition looks like this:
7560 @smallexample
7561 (define_peephole
7562   [@var{insn-pattern-1}
7563    @var{insn-pattern-2}
7564    @dots{}]
7565   "@var{condition}"
7566   "@var{template}"
7567   "@var{optional-insn-attributes}")
7568 @end smallexample
7570 @noindent
7571 The last string operand may be omitted if you are not using any
7572 machine-specific information in this machine description.  If present,
7573 it must obey the same rules as in a @code{define_insn}.
7575 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
7576 consecutive insns.  The optimization applies to a sequence of insns when
7577 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
7578 the next, and so on.
7580 Each of the insns matched by a peephole must also match a
7581 @code{define_insn}.  Peepholes are checked only at the last stage just
7582 before code generation, and only optionally.  Therefore, any insn which
7583 would match a peephole but no @code{define_insn} will cause a crash in code
7584 generation in an unoptimized compilation, or at various optimization
7585 stages.
7587 The operands of the insns are matched with @code{match_operands},
7588 @code{match_operator}, and @code{match_dup}, as usual.  What is not
7589 usual is that the operand numbers apply to all the insn patterns in the
7590 definition.  So, you can check for identical operands in two insns by
7591 using @code{match_operand} in one insn and @code{match_dup} in the
7592 other.
7594 The operand constraints used in @code{match_operand} patterns do not have
7595 any direct effect on the applicability of the peephole, but they will
7596 be validated afterward, so make sure your constraints are general enough
7597 to apply whenever the peephole matches.  If the peephole matches
7598 but the constraints are not satisfied, the compiler will crash.
7600 It is safe to omit constraints in all the operands of the peephole; or
7601 you can write constraints which serve as a double-check on the criteria
7602 previously tested.
7604 Once a sequence of insns matches the patterns, the @var{condition} is
7605 checked.  This is a C expression which makes the final decision whether to
7606 perform the optimization (we do so if the expression is nonzero).  If
7607 @var{condition} is omitted (in other words, the string is empty) then the
7608 optimization is applied to every sequence of insns that matches the
7609 patterns.
7611 The defined peephole optimizations are applied after register allocation
7612 is complete.  Therefore, the peephole definition can check which
7613 operands have ended up in which kinds of registers, just by looking at
7614 the operands.
7616 @findex prev_active_insn
7617 The way to refer to the operands in @var{condition} is to write
7618 @code{operands[@var{i}]} for operand number @var{i} (as matched by
7619 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
7620 to refer to the last of the insns being matched; use
7621 @code{prev_active_insn} to find the preceding insns.
7623 @findex dead_or_set_p
7624 When optimizing computations with intermediate results, you can use
7625 @var{condition} to match only when the intermediate results are not used
7626 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
7627 @var{op})}, where @var{insn} is the insn in which you expect the value
7628 to be used for the last time (from the value of @code{insn}, together
7629 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
7630 value (from @code{operands[@var{i}]}).
7632 Applying the optimization means replacing the sequence of insns with one
7633 new insn.  The @var{template} controls ultimate output of assembler code
7634 for this combined insn.  It works exactly like the template of a
7635 @code{define_insn}.  Operand numbers in this template are the same ones
7636 used in matching the original sequence of insns.
7638 The result of a defined peephole optimizer does not need to match any of
7639 the insn patterns in the machine description; it does not even have an
7640 opportunity to match them.  The peephole optimizer definition itself serves
7641 as the insn pattern to control how the insn is output.
7643 Defined peephole optimizers are run as assembler code is being output,
7644 so the insns they produce are never combined or rearranged in any way.
7646 Here is an example, taken from the 68000 machine description:
7648 @smallexample
7649 (define_peephole
7650   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
7651    (set (match_operand:DF 0 "register_operand" "=f")
7652         (match_operand:DF 1 "register_operand" "ad"))]
7653   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
7655   rtx xoperands[2];
7656   xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
7657 #ifdef MOTOROLA
7658   output_asm_insn ("move.l %1,(sp)", xoperands);
7659   output_asm_insn ("move.l %1,-(sp)", operands);
7660   return "fmove.d (sp)+,%0";
7661 #else
7662   output_asm_insn ("movel %1,sp@@", xoperands);
7663   output_asm_insn ("movel %1,sp@@-", operands);
7664   return "fmoved sp@@+,%0";
7665 #endif
7667 @end smallexample
7669 @need 1000
7670 The effect of this optimization is to change
7672 @smallexample
7673 @group
7674 jbsr _foobar
7675 addql #4,sp
7676 movel d1,sp@@-
7677 movel d0,sp@@-
7678 fmoved sp@@+,fp0
7679 @end group
7680 @end smallexample
7682 @noindent
7683 into
7685 @smallexample
7686 @group
7687 jbsr _foobar
7688 movel d1,sp@@
7689 movel d0,sp@@-
7690 fmoved sp@@+,fp0
7691 @end group
7692 @end smallexample
7694 @ignore
7695 @findex CC_REVERSED
7696 If a peephole matches a sequence including one or more jump insns, you must
7697 take account of the flags such as @code{CC_REVERSED} which specify that the
7698 condition codes are represented in an unusual manner.  The compiler
7699 automatically alters any ordinary conditional jumps which occur in such
7700 situations, but the compiler cannot alter jumps which have been replaced by
7701 peephole optimizations.  So it is up to you to alter the assembler code
7702 that the peephole produces.  Supply C code to write the assembler output,
7703 and in this C code check the condition code status flags and change the
7704 assembler code as appropriate.
7705 @end ignore
7707 @var{insn-pattern-1} and so on look @emph{almost} like the second
7708 operand of @code{define_insn}.  There is one important difference: the
7709 second operand of @code{define_insn} consists of one or more RTX's
7710 enclosed in square brackets.  Usually, there is only one: then the same
7711 action can be written as an element of a @code{define_peephole}.  But
7712 when there are multiple actions in a @code{define_insn}, they are
7713 implicitly enclosed in a @code{parallel}.  Then you must explicitly
7714 write the @code{parallel}, and the square brackets within it, in the
7715 @code{define_peephole}.  Thus, if an insn pattern looks like this,
7717 @smallexample
7718 (define_insn "divmodsi4"
7719   [(set (match_operand:SI 0 "general_operand" "=d")
7720         (div:SI (match_operand:SI 1 "general_operand" "0")
7721                 (match_operand:SI 2 "general_operand" "dmsK")))
7722    (set (match_operand:SI 3 "general_operand" "=d")
7723         (mod:SI (match_dup 1) (match_dup 2)))]
7724   "TARGET_68020"
7725   "divsl%.l %2,%3:%0")
7726 @end smallexample
7728 @noindent
7729 then the way to mention this insn in a peephole is as follows:
7731 @smallexample
7732 (define_peephole
7733   [@dots{}
7734    (parallel
7735     [(set (match_operand:SI 0 "general_operand" "=d")
7736           (div:SI (match_operand:SI 1 "general_operand" "0")
7737                   (match_operand:SI 2 "general_operand" "dmsK")))
7738      (set (match_operand:SI 3 "general_operand" "=d")
7739           (mod:SI (match_dup 1) (match_dup 2)))])
7740    @dots{}]
7741   @dots{})
7742 @end smallexample
7744 @end ifset
7745 @ifset INTERNALS
7746 @node define_peephole2
7747 @subsection RTL to RTL Peephole Optimizers
7748 @findex define_peephole2
7750 The @code{define_peephole2} definition tells the compiler how to
7751 substitute one sequence of instructions for another sequence,
7752 what additional scratch registers may be needed and what their
7753 lifetimes must be.
7755 @smallexample
7756 (define_peephole2
7757   [@var{insn-pattern-1}
7758    @var{insn-pattern-2}
7759    @dots{}]
7760   "@var{condition}"
7761   [@var{new-insn-pattern-1}
7762    @var{new-insn-pattern-2}
7763    @dots{}]
7764   "@var{preparation-statements}")
7765 @end smallexample
7767 The definition is almost identical to @code{define_split}
7768 (@pxref{Insn Splitting}) except that the pattern to match is not a
7769 single instruction, but a sequence of instructions.
7771 It is possible to request additional scratch registers for use in the
7772 output template.  If appropriate registers are not free, the pattern
7773 will simply not match.
7775 @findex match_scratch
7776 @findex match_dup
7777 Scratch registers are requested with a @code{match_scratch} pattern at
7778 the top level of the input pattern.  The allocated register (initially) will
7779 be dead at the point requested within the original sequence.  If the scratch
7780 is used at more than a single point, a @code{match_dup} pattern at the
7781 top level of the input pattern marks the last position in the input sequence
7782 at which the register must be available.
7784 Here is an example from the IA-32 machine description:
7786 @smallexample
7787 (define_peephole2
7788   [(match_scratch:SI 2 "r")
7789    (parallel [(set (match_operand:SI 0 "register_operand" "")
7790                    (match_operator:SI 3 "arith_or_logical_operator"
7791                      [(match_dup 0)
7792                       (match_operand:SI 1 "memory_operand" "")]))
7793               (clobber (reg:CC 17))])]
7794   "! optimize_size && ! TARGET_READ_MODIFY"
7795   [(set (match_dup 2) (match_dup 1))
7796    (parallel [(set (match_dup 0)
7797                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
7798               (clobber (reg:CC 17))])]
7799   "")
7800 @end smallexample
7802 @noindent
7803 This pattern tries to split a load from its use in the hopes that we'll be
7804 able to schedule around the memory load latency.  It allocates a single
7805 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
7806 to be live only at the point just before the arithmetic.
7808 A real example requiring extended scratch lifetimes is harder to come by,
7809 so here's a silly made-up example:
7811 @smallexample
7812 (define_peephole2
7813   [(match_scratch:SI 4 "r")
7814    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
7815    (set (match_operand:SI 2 "" "") (match_dup 1))
7816    (match_dup 4)
7817    (set (match_operand:SI 3 "" "") (match_dup 1))]
7818   "/* @r{determine 1 does not overlap 0 and 2} */"
7819   [(set (match_dup 4) (match_dup 1))
7820    (set (match_dup 0) (match_dup 4))
7821    (set (match_dup 2) (match_dup 4))
7822    (set (match_dup 3) (match_dup 4))]
7823   "")
7824 @end smallexample
7826 @noindent
7827 If we had not added the @code{(match_dup 4)} in the middle of the input
7828 sequence, it might have been the case that the register we chose at the
7829 beginning of the sequence is killed by the first or second @code{set}.
7831 @end ifset
7832 @ifset INTERNALS
7833 @node Insn Attributes
7834 @section Instruction Attributes
7835 @cindex insn attributes
7836 @cindex instruction attributes
7838 In addition to describing the instruction supported by the target machine,
7839 the @file{md} file also defines a group of @dfn{attributes} and a set of
7840 values for each.  Every generated insn is assigned a value for each attribute.
7841 One possible attribute would be the effect that the insn has on the machine's
7842 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
7843 to track the condition codes.
7845 @menu
7846 * Defining Attributes:: Specifying attributes and their values.
7847 * Expressions::         Valid expressions for attribute values.
7848 * Tagging Insns::       Assigning attribute values to insns.
7849 * Attr Example::        An example of assigning attributes.
7850 * Insn Lengths::        Computing the length of insns.
7851 * Constant Attributes:: Defining attributes that are constant.
7852 * Mnemonic Attribute::  Obtain the instruction mnemonic as attribute value.
7853 * Delay Slots::         Defining delay slots required for a machine.
7854 * Processor pipeline description:: Specifying information for insn scheduling.
7855 @end menu
7857 @end ifset
7858 @ifset INTERNALS
7859 @node Defining Attributes
7860 @subsection Defining Attributes and their Values
7861 @cindex defining attributes and their values
7862 @cindex attributes, defining
7864 @findex define_attr
7865 The @code{define_attr} expression is used to define each attribute required
7866 by the target machine.  It looks like:
7868 @smallexample
7869 (define_attr @var{name} @var{list-of-values} @var{default})
7870 @end smallexample
7872 @var{name} is a string specifying the name of the attribute being
7873 defined.  Some attributes are used in a special way by the rest of the
7874 compiler. The @code{enabled} attribute can be used to conditionally
7875 enable or disable insn alternatives (@pxref{Disable Insn
7876 Alternatives}). The @code{predicable} attribute, together with a
7877 suitable @code{define_cond_exec} (@pxref{Conditional Execution}), can
7878 be used to automatically generate conditional variants of instruction
7879 patterns. The @code{mnemonic} attribute can be used to check for the
7880 instruction mnemonic (@pxref{Mnemonic Attribute}).  The compiler
7881 internally uses the names @code{ce_enabled} and @code{nonce_enabled},
7882 so they should not be used elsewhere as alternative names.
7884 @var{list-of-values} is either a string that specifies a comma-separated
7885 list of values that can be assigned to the attribute, or a null string to
7886 indicate that the attribute takes numeric values.
7888 @var{default} is an attribute expression that gives the value of this
7889 attribute for insns that match patterns whose definition does not include
7890 an explicit value for this attribute.  @xref{Attr Example}, for more
7891 information on the handling of defaults.  @xref{Constant Attributes},
7892 for information on attributes that do not depend on any particular insn.
7894 @findex insn-attr.h
7895 For each defined attribute, a number of definitions are written to the
7896 @file{insn-attr.h} file.  For cases where an explicit set of values is
7897 specified for an attribute, the following are defined:
7899 @itemize @bullet
7900 @item
7901 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
7903 @item
7904 An enumerated class is defined for @samp{attr_@var{name}} with
7905 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
7906 the attribute name and value are first converted to uppercase.
7908 @item
7909 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
7910 returns the attribute value for that insn.
7911 @end itemize
7913 For example, if the following is present in the @file{md} file:
7915 @smallexample
7916 (define_attr "type" "branch,fp,load,store,arith" @dots{})
7917 @end smallexample
7919 @noindent
7920 the following lines will be written to the file @file{insn-attr.h}.
7922 @smallexample
7923 #define HAVE_ATTR_type 1
7924 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
7925                  TYPE_STORE, TYPE_ARITH@};
7926 extern enum attr_type get_attr_type ();
7927 @end smallexample
7929 If the attribute takes numeric values, no @code{enum} type will be
7930 defined and the function to obtain the attribute's value will return
7931 @code{int}.
7933 There are attributes which are tied to a specific meaning.  These
7934 attributes are not free to use for other purposes:
7936 @table @code
7937 @item length
7938 The @code{length} attribute is used to calculate the length of emitted
7939 code chunks.  This is especially important when verifying branch
7940 distances. @xref{Insn Lengths}.
7942 @item enabled
7943 The @code{enabled} attribute can be defined to prevent certain
7944 alternatives of an insn definition from being used during code
7945 generation. @xref{Disable Insn Alternatives}.
7947 @item mnemonic
7948 The @code{mnemonic} attribute can be defined to implement instruction
7949 specific checks in e.g. the pipeline description.
7950 @xref{Mnemonic Attribute}.
7951 @end table
7953 For each of these special attributes, the corresponding
7954 @samp{HAVE_ATTR_@var{name}} @samp{#define} is also written when the
7955 attribute is not defined; in that case, it is defined as @samp{0}.
7957 @findex define_enum_attr
7958 @anchor{define_enum_attr}
7959 Another way of defining an attribute is to use:
7961 @smallexample
7962 (define_enum_attr "@var{attr}" "@var{enum}" @var{default})
7963 @end smallexample
7965 This works in just the same way as @code{define_attr}, except that
7966 the list of values is taken from a separate enumeration called
7967 @var{enum} (@pxref{define_enum}).  This form allows you to use
7968 the same list of values for several attributes without having to
7969 repeat the list each time.  For example:
7971 @smallexample
7972 (define_enum "processor" [
7973   model_a
7974   model_b
7975   @dots{}
7977 (define_enum_attr "arch" "processor"
7978   (const (symbol_ref "target_arch")))
7979 (define_enum_attr "tune" "processor"
7980   (const (symbol_ref "target_tune")))
7981 @end smallexample
7983 defines the same attributes as:
7985 @smallexample
7986 (define_attr "arch" "model_a,model_b,@dots{}"
7987   (const (symbol_ref "target_arch")))
7988 (define_attr "tune" "model_a,model_b,@dots{}"
7989   (const (symbol_ref "target_tune")))
7990 @end smallexample
7992 but without duplicating the processor list.  The second example defines two
7993 separate C enums (@code{attr_arch} and @code{attr_tune}) whereas the first
7994 defines a single C enum (@code{processor}).
7995 @end ifset
7996 @ifset INTERNALS
7997 @node Expressions
7998 @subsection Attribute Expressions
7999 @cindex attribute expressions
8001 RTL expressions used to define attributes use the codes described above
8002 plus a few specific to attribute definitions, to be discussed below.
8003 Attribute value expressions must have one of the following forms:
8005 @table @code
8006 @cindex @code{const_int} and attributes
8007 @item (const_int @var{i})
8008 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
8009 must be non-negative.
8011 The value of a numeric attribute can be specified either with a
8012 @code{const_int}, or as an integer represented as a string in
8013 @code{const_string}, @code{eq_attr} (see below), @code{attr},
8014 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
8015 overrides on specific instructions (@pxref{Tagging Insns}).
8017 @cindex @code{const_string} and attributes
8018 @item (const_string @var{value})
8019 The string @var{value} specifies a constant attribute value.
8020 If @var{value} is specified as @samp{"*"}, it means that the default value of
8021 the attribute is to be used for the insn containing this expression.
8022 @samp{"*"} obviously cannot be used in the @var{default} expression
8023 of a @code{define_attr}.
8025 If the attribute whose value is being specified is numeric, @var{value}
8026 must be a string containing a non-negative integer (normally
8027 @code{const_int} would be used in this case).  Otherwise, it must
8028 contain one of the valid values for the attribute.
8030 @cindex @code{if_then_else} and attributes
8031 @item (if_then_else @var{test} @var{true-value} @var{false-value})
8032 @var{test} specifies an attribute test, whose format is defined below.
8033 The value of this expression is @var{true-value} if @var{test} is true,
8034 otherwise it is @var{false-value}.
8036 @cindex @code{cond} and attributes
8037 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
8038 The first operand of this expression is a vector containing an even
8039 number of expressions and consisting of pairs of @var{test} and @var{value}
8040 expressions.  The value of the @code{cond} expression is that of the
8041 @var{value} corresponding to the first true @var{test} expression.  If
8042 none of the @var{test} expressions are true, the value of the @code{cond}
8043 expression is that of the @var{default} expression.
8044 @end table
8046 @var{test} expressions can have one of the following forms:
8048 @table @code
8049 @cindex @code{const_int} and attribute tests
8050 @item (const_int @var{i})
8051 This test is true if @var{i} is nonzero and false otherwise.
8053 @cindex @code{not} and attributes
8054 @cindex @code{ior} and attributes
8055 @cindex @code{and} and attributes
8056 @item (not @var{test})
8057 @itemx (ior @var{test1} @var{test2})
8058 @itemx (and @var{test1} @var{test2})
8059 These tests are true if the indicated logical function is true.
8061 @cindex @code{match_operand} and attributes
8062 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
8063 This test is true if operand @var{n} of the insn whose attribute value
8064 is being determined has mode @var{m} (this part of the test is ignored
8065 if @var{m} is @code{VOIDmode}) and the function specified by the string
8066 @var{pred} returns a nonzero value when passed operand @var{n} and mode
8067 @var{m} (this part of the test is ignored if @var{pred} is the null
8068 string).
8070 The @var{constraints} operand is ignored and should be the null string.
8072 @cindex @code{match_test} and attributes
8073 @item (match_test @var{c-expr})
8074 The test is true if C expression @var{c-expr} is true.  In non-constant
8075 attributes, @var{c-expr} has access to the following variables:
8077 @table @var
8078 @item insn
8079 The rtl instruction under test.
8080 @item which_alternative
8081 The @code{define_insn} alternative that @var{insn} matches.
8082 @xref{Output Statement}.
8083 @item operands
8084 An array of @var{insn}'s rtl operands.
8085 @end table
8087 @var{c-expr} behaves like the condition in a C @code{if} statement,
8088 so there is no need to explicitly convert the expression into a boolean
8089 0 or 1 value.  For example, the following two tests are equivalent:
8091 @smallexample
8092 (match_test "x & 2")
8093 (match_test "(x & 2) != 0")
8094 @end smallexample
8096 @cindex @code{le} and attributes
8097 @cindex @code{leu} and attributes
8098 @cindex @code{lt} and attributes
8099 @cindex @code{gt} and attributes
8100 @cindex @code{gtu} and attributes
8101 @cindex @code{ge} and attributes
8102 @cindex @code{geu} and attributes
8103 @cindex @code{ne} and attributes
8104 @cindex @code{eq} and attributes
8105 @cindex @code{plus} and attributes
8106 @cindex @code{minus} and attributes
8107 @cindex @code{mult} and attributes
8108 @cindex @code{div} and attributes
8109 @cindex @code{mod} and attributes
8110 @cindex @code{abs} and attributes
8111 @cindex @code{neg} and attributes
8112 @cindex @code{ashift} and attributes
8113 @cindex @code{lshiftrt} and attributes
8114 @cindex @code{ashiftrt} and attributes
8115 @item (le @var{arith1} @var{arith2})
8116 @itemx (leu @var{arith1} @var{arith2})
8117 @itemx (lt @var{arith1} @var{arith2})
8118 @itemx (ltu @var{arith1} @var{arith2})
8119 @itemx (gt @var{arith1} @var{arith2})
8120 @itemx (gtu @var{arith1} @var{arith2})
8121 @itemx (ge @var{arith1} @var{arith2})
8122 @itemx (geu @var{arith1} @var{arith2})
8123 @itemx (ne @var{arith1} @var{arith2})
8124 @itemx (eq @var{arith1} @var{arith2})
8125 These tests are true if the indicated comparison of the two arithmetic
8126 expressions is true.  Arithmetic expressions are formed with
8127 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
8128 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
8129 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
8131 @findex get_attr
8132 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
8133 Lengths},for additional forms).  @code{symbol_ref} is a string
8134 denoting a C expression that yields an @code{int} when evaluated by the
8135 @samp{get_attr_@dots{}} routine.  It should normally be a global
8136 variable.
8138 @findex eq_attr
8139 @item (eq_attr @var{name} @var{value})
8140 @var{name} is a string specifying the name of an attribute.
8142 @var{value} is a string that is either a valid value for attribute
8143 @var{name}, a comma-separated list of values, or @samp{!} followed by a
8144 value or list.  If @var{value} does not begin with a @samp{!}, this
8145 test is true if the value of the @var{name} attribute of the current
8146 insn is in the list specified by @var{value}.  If @var{value} begins
8147 with a @samp{!}, this test is true if the attribute's value is
8148 @emph{not} in the specified list.
8150 For example,
8152 @smallexample
8153 (eq_attr "type" "load,store")
8154 @end smallexample
8156 @noindent
8157 is equivalent to
8159 @smallexample
8160 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
8161 @end smallexample
8163 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
8164 value of the compiler variable @code{which_alternative}
8165 (@pxref{Output Statement}) and the values must be small integers.  For
8166 example,
8168 @smallexample
8169 (eq_attr "alternative" "2,3")
8170 @end smallexample
8172 @noindent
8173 is equivalent to
8175 @smallexample
8176 (ior (eq (symbol_ref "which_alternative") (const_int 2))
8177      (eq (symbol_ref "which_alternative") (const_int 3)))
8178 @end smallexample
8180 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
8181 where the value of the attribute being tested is known for all insns matching
8182 a particular pattern.  This is by far the most common case.
8184 @findex attr_flag
8185 @item (attr_flag @var{name})
8186 The value of an @code{attr_flag} expression is true if the flag
8187 specified by @var{name} is true for the @code{insn} currently being
8188 scheduled.
8190 @var{name} is a string specifying one of a fixed set of flags to test.
8191 Test the flags @code{forward} and @code{backward} to determine the
8192 direction of a conditional branch.
8194 This example describes a conditional branch delay slot which
8195 can be nullified for forward branches that are taken (annul-true) or
8196 for backward branches which are not taken (annul-false).
8198 @smallexample
8199 (define_delay (eq_attr "type" "cbranch")
8200   [(eq_attr "in_branch_delay" "true")
8201    (and (eq_attr "in_branch_delay" "true")
8202         (attr_flag "forward"))
8203    (and (eq_attr "in_branch_delay" "true")
8204         (attr_flag "backward"))])
8205 @end smallexample
8207 The @code{forward} and @code{backward} flags are false if the current
8208 @code{insn} being scheduled is not a conditional branch.
8210 @code{attr_flag} is only used during delay slot scheduling and has no
8211 meaning to other passes of the compiler.
8213 @findex attr
8214 @item (attr @var{name})
8215 The value of another attribute is returned.  This is most useful
8216 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
8217 produce more efficient code for non-numeric attributes.
8218 @end table
8220 @end ifset
8221 @ifset INTERNALS
8222 @node Tagging Insns
8223 @subsection Assigning Attribute Values to Insns
8224 @cindex tagging insns
8225 @cindex assigning attribute values to insns
8227 The value assigned to an attribute of an insn is primarily determined by
8228 which pattern is matched by that insn (or which @code{define_peephole}
8229 generated it).  Every @code{define_insn} and @code{define_peephole} can
8230 have an optional last argument to specify the values of attributes for
8231 matching insns.  The value of any attribute not specified in a particular
8232 insn is set to the default value for that attribute, as specified in its
8233 @code{define_attr}.  Extensive use of default values for attributes
8234 permits the specification of the values for only one or two attributes
8235 in the definition of most insn patterns, as seen in the example in the
8236 next section.
8238 The optional last argument of @code{define_insn} and
8239 @code{define_peephole} is a vector of expressions, each of which defines
8240 the value for a single attribute.  The most general way of assigning an
8241 attribute's value is to use a @code{set} expression whose first operand is an
8242 @code{attr} expression giving the name of the attribute being set.  The
8243 second operand of the @code{set} is an attribute expression
8244 (@pxref{Expressions}) giving the value of the attribute.
8246 When the attribute value depends on the @samp{alternative} attribute
8247 (i.e., which is the applicable alternative in the constraint of the
8248 insn), the @code{set_attr_alternative} expression can be used.  It
8249 allows the specification of a vector of attribute expressions, one for
8250 each alternative.
8252 @findex set_attr
8253 When the generality of arbitrary attribute expressions is not required,
8254 the simpler @code{set_attr} expression can be used, which allows
8255 specifying a string giving either a single attribute value or a list
8256 of attribute values, one for each alternative.
8258 The form of each of the above specifications is shown below.  In each case,
8259 @var{name} is a string specifying the attribute to be set.
8261 @table @code
8262 @item (set_attr @var{name} @var{value-string})
8263 @var{value-string} is either a string giving the desired attribute value,
8264 or a string containing a comma-separated list giving the values for
8265 succeeding alternatives.  The number of elements must match the number
8266 of alternatives in the constraint of the insn pattern.
8268 Note that it may be useful to specify @samp{*} for some alternative, in
8269 which case the attribute will assume its default value for insns matching
8270 that alternative.
8272 @findex set_attr_alternative
8273 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
8274 Depending on the alternative of the insn, the value will be one of the
8275 specified values.  This is a shorthand for using a @code{cond} with
8276 tests on the @samp{alternative} attribute.
8278 @findex attr
8279 @item (set (attr @var{name}) @var{value})
8280 The first operand of this @code{set} must be the special RTL expression
8281 @code{attr}, whose sole operand is a string giving the name of the
8282 attribute being set.  @var{value} is the value of the attribute.
8283 @end table
8285 The following shows three different ways of representing the same
8286 attribute value specification:
8288 @smallexample
8289 (set_attr "type" "load,store,arith")
8291 (set_attr_alternative "type"
8292                       [(const_string "load") (const_string "store")
8293                        (const_string "arith")])
8295 (set (attr "type")
8296      (cond [(eq_attr "alternative" "1") (const_string "load")
8297             (eq_attr "alternative" "2") (const_string "store")]
8298            (const_string "arith")))
8299 @end smallexample
8301 @need 1000
8302 @findex define_asm_attributes
8303 The @code{define_asm_attributes} expression provides a mechanism to
8304 specify the attributes assigned to insns produced from an @code{asm}
8305 statement.  It has the form:
8307 @smallexample
8308 (define_asm_attributes [@var{attr-sets}])
8309 @end smallexample
8311 @noindent
8312 where @var{attr-sets} is specified the same as for both the
8313 @code{define_insn} and the @code{define_peephole} expressions.
8315 These values will typically be the ``worst case'' attribute values.  For
8316 example, they might indicate that the condition code will be clobbered.
8318 A specification for a @code{length} attribute is handled specially.  The
8319 way to compute the length of an @code{asm} insn is to multiply the
8320 length specified in the expression @code{define_asm_attributes} by the
8321 number of machine instructions specified in the @code{asm} statement,
8322 determined by counting the number of semicolons and newlines in the
8323 string.  Therefore, the value of the @code{length} attribute specified
8324 in a @code{define_asm_attributes} should be the maximum possible length
8325 of a single machine instruction.
8327 @end ifset
8328 @ifset INTERNALS
8329 @node Attr Example
8330 @subsection Example of Attribute Specifications
8331 @cindex attribute specifications example
8332 @cindex attribute specifications
8334 The judicious use of defaulting is important in the efficient use of
8335 insn attributes.  Typically, insns are divided into @dfn{types} and an
8336 attribute, customarily called @code{type}, is used to represent this
8337 value.  This attribute is normally used only to define the default value
8338 for other attributes.  An example will clarify this usage.
8340 Assume we have a RISC machine with a condition code and in which only
8341 full-word operations are performed in registers.  Let us assume that we
8342 can divide all insns into loads, stores, (integer) arithmetic
8343 operations, floating point operations, and branches.
8345 Here we will concern ourselves with determining the effect of an insn on
8346 the condition code and will limit ourselves to the following possible
8347 effects:  The condition code can be set unpredictably (clobbered), not
8348 be changed, be set to agree with the results of the operation, or only
8349 changed if the item previously set into the condition code has been
8350 modified.
8352 Here is part of a sample @file{md} file for such a machine:
8354 @smallexample
8355 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
8357 (define_attr "cc" "clobber,unchanged,set,change0"
8358              (cond [(eq_attr "type" "load")
8359                         (const_string "change0")
8360                     (eq_attr "type" "store,branch")
8361                         (const_string "unchanged")
8362                     (eq_attr "type" "arith")
8363                         (if_then_else (match_operand:SI 0 "" "")
8364                                       (const_string "set")
8365                                       (const_string "clobber"))]
8366                    (const_string "clobber")))
8368 (define_insn ""
8369   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
8370         (match_operand:SI 1 "general_operand" "r,m,r"))]
8371   ""
8372   "@@
8373    move %0,%1
8374    load %0,%1
8375    store %0,%1"
8376   [(set_attr "type" "arith,load,store")])
8377 @end smallexample
8379 Note that we assume in the above example that arithmetic operations
8380 performed on quantities smaller than a machine word clobber the condition
8381 code since they will set the condition code to a value corresponding to the
8382 full-word result.
8384 @end ifset
8385 @ifset INTERNALS
8386 @node Insn Lengths
8387 @subsection Computing the Length of an Insn
8388 @cindex insn lengths, computing
8389 @cindex computing the length of an insn
8391 For many machines, multiple types of branch instructions are provided, each
8392 for different length branch displacements.  In most cases, the assembler
8393 will choose the correct instruction to use.  However, when the assembler
8394 cannot do so, GCC can when a special attribute, the @code{length}
8395 attribute, is defined.  This attribute must be defined to have numeric
8396 values by specifying a null string in its @code{define_attr}.
8398 In the case of the @code{length} attribute, two additional forms of
8399 arithmetic terms are allowed in test expressions:
8401 @table @code
8402 @cindex @code{match_dup} and attributes
8403 @item (match_dup @var{n})
8404 This refers to the address of operand @var{n} of the current insn, which
8405 must be a @code{label_ref}.
8407 @cindex @code{pc} and attributes
8408 @item (pc)
8409 This refers to the address of the @emph{current} insn.  It might have
8410 been more consistent with other usage to make this the address of the
8411 @emph{next} insn but this would be confusing because the length of the
8412 current insn is to be computed.
8413 @end table
8415 @cindex @code{addr_vec}, length of
8416 @cindex @code{addr_diff_vec}, length of
8417 For normal insns, the length will be determined by value of the
8418 @code{length} attribute.  In the case of @code{addr_vec} and
8419 @code{addr_diff_vec} insn patterns, the length is computed as
8420 the number of vectors multiplied by the size of each vector.
8422 Lengths are measured in addressable storage units (bytes).
8424 The following macros can be used to refine the length computation:
8426 @table @code
8427 @findex ADJUST_INSN_LENGTH
8428 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
8429 If defined, modifies the length assigned to instruction @var{insn} as a
8430 function of the context in which it is used.  @var{length} is an lvalue
8431 that contains the initially computed length of the insn and should be
8432 updated with the correct length of the insn.
8434 This macro will normally not be required.  A case in which it is
8435 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
8436 insn must be increased by two to compensate for the fact that alignment
8437 may be required.
8438 @end table
8440 @findex get_attr_length
8441 The routine that returns @code{get_attr_length} (the value of the
8442 @code{length} attribute) can be used by the output routine to
8443 determine the form of the branch instruction to be written, as the
8444 example below illustrates.
8446 As an example of the specification of variable-length branches, consider
8447 the IBM 360.  If we adopt the convention that a register will be set to
8448 the starting address of a function, we can jump to labels within 4k of
8449 the start using a four-byte instruction.  Otherwise, we need a six-byte
8450 sequence to load the address from memory and then branch to it.
8452 On such a machine, a pattern for a branch instruction might be specified
8453 as follows:
8455 @smallexample
8456 (define_insn "jump"
8457   [(set (pc)
8458         (label_ref (match_operand 0 "" "")))]
8459   ""
8461    return (get_attr_length (insn) == 4
8462            ? "b %l0" : "l r15,=a(%l0); br r15");
8464   [(set (attr "length")
8465         (if_then_else (lt (match_dup 0) (const_int 4096))
8466                       (const_int 4)
8467                       (const_int 6)))])
8468 @end smallexample
8470 @end ifset
8471 @ifset INTERNALS
8472 @node Constant Attributes
8473 @subsection Constant Attributes
8474 @cindex constant attributes
8476 A special form of @code{define_attr}, where the expression for the
8477 default value is a @code{const} expression, indicates an attribute that
8478 is constant for a given run of the compiler.  Constant attributes may be
8479 used to specify which variety of processor is used.  For example,
8481 @smallexample
8482 (define_attr "cpu" "m88100,m88110,m88000"
8483  (const
8484   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
8485          (symbol_ref "TARGET_88110") (const_string "m88110")]
8486         (const_string "m88000"))))
8488 (define_attr "memory" "fast,slow"
8489  (const
8490   (if_then_else (symbol_ref "TARGET_FAST_MEM")
8491                 (const_string "fast")
8492                 (const_string "slow"))))
8493 @end smallexample
8495 The routine generated for constant attributes has no parameters as it
8496 does not depend on any particular insn.  RTL expressions used to define
8497 the value of a constant attribute may use the @code{symbol_ref} form,
8498 but may not use either the @code{match_operand} form or @code{eq_attr}
8499 forms involving insn attributes.
8501 @end ifset
8502 @ifset INTERNALS
8503 @node Mnemonic Attribute
8504 @subsection Mnemonic Attribute
8505 @cindex mnemonic attribute
8507 The @code{mnemonic} attribute is a string type attribute holding the
8508 instruction mnemonic for an insn alternative.  The attribute values
8509 will automatically be generated by the machine description parser if
8510 there is an attribute definition in the md file:
8512 @smallexample
8513 (define_attr "mnemonic" "unknown" (const_string "unknown"))
8514 @end smallexample
8516 The default value can be freely chosen as long as it does not collide
8517 with any of the instruction mnemonics.  This value will be used
8518 whenever the machine description parser is not able to determine the
8519 mnemonic string.  This might be the case for output templates
8520 containing more than a single instruction as in
8521 @code{"mvcle\t%0,%1,0\;jo\t.-4"}.
8523 The @code{mnemonic} attribute set is not generated automatically if the
8524 instruction string is generated via C code.
8526 An existing @code{mnemonic} attribute set in an insn definition will not
8527 be overriden by the md file parser.  That way it is possible to
8528 manually set the instruction mnemonics for the cases where the md file
8529 parser fails to determine it automatically.
8531 The @code{mnemonic} attribute is useful for dealing with instruction
8532 specific properties in the pipeline description without defining
8533 additional insn attributes.
8535 @smallexample
8536 (define_attr "ooo_expanded" ""
8537   (cond [(eq_attr "mnemonic" "dlr,dsgr,d,dsgf,stam,dsgfr,dlgr")
8538          (const_int 1)]
8539         (const_int 0)))
8540 @end smallexample
8542 @end ifset
8543 @ifset INTERNALS
8544 @node Delay Slots
8545 @subsection Delay Slot Scheduling
8546 @cindex delay slots, defining
8548 The insn attribute mechanism can be used to specify the requirements for
8549 delay slots, if any, on a target machine.  An instruction is said to
8550 require a @dfn{delay slot} if some instructions that are physically
8551 after the instruction are executed as if they were located before it.
8552 Classic examples are branch and call instructions, which often execute
8553 the following instruction before the branch or call is performed.
8555 On some machines, conditional branch instructions can optionally
8556 @dfn{annul} instructions in the delay slot.  This means that the
8557 instruction will not be executed for certain branch outcomes.  Both
8558 instructions that annul if the branch is true and instructions that
8559 annul if the branch is false are supported.
8561 Delay slot scheduling differs from instruction scheduling in that
8562 determining whether an instruction needs a delay slot is dependent only
8563 on the type of instruction being generated, not on data flow between the
8564 instructions.  See the next section for a discussion of data-dependent
8565 instruction scheduling.
8567 @findex define_delay
8568 The requirement of an insn needing one or more delay slots is indicated
8569 via the @code{define_delay} expression.  It has the following form:
8571 @smallexample
8572 (define_delay @var{test}
8573               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
8574                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
8575                @dots{}])
8576 @end smallexample
8578 @var{test} is an attribute test that indicates whether this
8579 @code{define_delay} applies to a particular insn.  If so, the number of
8580 required delay slots is determined by the length of the vector specified
8581 as the second argument.  An insn placed in delay slot @var{n} must
8582 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
8583 attribute test that specifies which insns may be annulled if the branch
8584 is true.  Similarly, @var{annul-false-n} specifies which insns in the
8585 delay slot may be annulled if the branch is false.  If annulling is not
8586 supported for that delay slot, @code{(nil)} should be coded.
8588 For example, in the common case where branch and call insns require
8589 a single delay slot, which may contain any insn other than a branch or
8590 call, the following would be placed in the @file{md} file:
8592 @smallexample
8593 (define_delay (eq_attr "type" "branch,call")
8594               [(eq_attr "type" "!branch,call") (nil) (nil)])
8595 @end smallexample
8597 Multiple @code{define_delay} expressions may be specified.  In this
8598 case, each such expression specifies different delay slot requirements
8599 and there must be no insn for which tests in two @code{define_delay}
8600 expressions are both true.
8602 For example, if we have a machine that requires one delay slot for branches
8603 but two for calls,  no delay slot can contain a branch or call insn,
8604 and any valid insn in the delay slot for the branch can be annulled if the
8605 branch is true, we might represent this as follows:
8607 @smallexample
8608 (define_delay (eq_attr "type" "branch")
8609    [(eq_attr "type" "!branch,call")
8610     (eq_attr "type" "!branch,call")
8611     (nil)])
8613 (define_delay (eq_attr "type" "call")
8614               [(eq_attr "type" "!branch,call") (nil) (nil)
8615                (eq_attr "type" "!branch,call") (nil) (nil)])
8616 @end smallexample
8617 @c the above is *still* too long.  --mew 4feb93
8619 @end ifset
8620 @ifset INTERNALS
8621 @node Processor pipeline description
8622 @subsection Specifying processor pipeline description
8623 @cindex processor pipeline description
8624 @cindex processor functional units
8625 @cindex instruction latency time
8626 @cindex interlock delays
8627 @cindex data dependence delays
8628 @cindex reservation delays
8629 @cindex pipeline hazard recognizer
8630 @cindex automaton based pipeline description
8631 @cindex regular expressions
8632 @cindex deterministic finite state automaton
8633 @cindex automaton based scheduler
8634 @cindex RISC
8635 @cindex VLIW
8637 To achieve better performance, most modern processors
8638 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
8639 processors) have many @dfn{functional units} on which several
8640 instructions can be executed simultaneously.  An instruction starts
8641 execution if its issue conditions are satisfied.  If not, the
8642 instruction is stalled until its conditions are satisfied.  Such
8643 @dfn{interlock (pipeline) delay} causes interruption of the fetching
8644 of successor instructions (or demands nop instructions, e.g.@: for some
8645 MIPS processors).
8647 There are two major kinds of interlock delays in modern processors.
8648 The first one is a data dependence delay determining @dfn{instruction
8649 latency time}.  The instruction execution is not started until all
8650 source data have been evaluated by prior instructions (there are more
8651 complex cases when the instruction execution starts even when the data
8652 are not available but will be ready in given time after the
8653 instruction execution start).  Taking the data dependence delays into
8654 account is simple.  The data dependence (true, output, and
8655 anti-dependence) delay between two instructions is given by a
8656 constant.  In most cases this approach is adequate.  The second kind
8657 of interlock delays is a reservation delay.  The reservation delay
8658 means that two instructions under execution will be in need of shared
8659 processors resources, i.e.@: buses, internal registers, and/or
8660 functional units, which are reserved for some time.  Taking this kind
8661 of delay into account is complex especially for modern @acronym{RISC}
8662 processors.
8664 The task of exploiting more processor parallelism is solved by an
8665 instruction scheduler.  For a better solution to this problem, the
8666 instruction scheduler has to have an adequate description of the
8667 processor parallelism (or @dfn{pipeline description}).  GCC
8668 machine descriptions describe processor parallelism and functional
8669 unit reservations for groups of instructions with the aid of
8670 @dfn{regular expressions}.
8672 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
8673 figure out the possibility of the instruction issue by the processor
8674 on a given simulated processor cycle.  The pipeline hazard recognizer is
8675 automatically generated from the processor pipeline description.  The
8676 pipeline hazard recognizer generated from the machine description
8677 is based on a deterministic finite state automaton (@acronym{DFA}):
8678 the instruction issue is possible if there is a transition from one
8679 automaton state to another one.  This algorithm is very fast, and
8680 furthermore, its speed is not dependent on processor
8681 complexity@footnote{However, the size of the automaton depends on
8682 processor complexity.  To limit this effect, machine descriptions
8683 can split orthogonal parts of the machine description among several
8684 automata: but then, since each of these must be stepped independently,
8685 this does cause a small decrease in the algorithm's performance.}.
8687 @cindex automaton based pipeline description
8688 The rest of this section describes the directives that constitute
8689 an automaton-based processor pipeline description.  The order of
8690 these constructions within the machine description file is not
8691 important.
8693 @findex define_automaton
8694 @cindex pipeline hazard recognizer
8695 The following optional construction describes names of automata
8696 generated and used for the pipeline hazards recognition.  Sometimes
8697 the generated finite state automaton used by the pipeline hazard
8698 recognizer is large.  If we use more than one automaton and bind functional
8699 units to the automata, the total size of the automata is usually
8700 less than the size of the single automaton.  If there is no one such
8701 construction, only one finite state automaton is generated.
8703 @smallexample
8704 (define_automaton @var{automata-names})
8705 @end smallexample
8707 @var{automata-names} is a string giving names of the automata.  The
8708 names are separated by commas.  All the automata should have unique names.
8709 The automaton name is used in the constructions @code{define_cpu_unit} and
8710 @code{define_query_cpu_unit}.
8712 @findex define_cpu_unit
8713 @cindex processor functional units
8714 Each processor functional unit used in the description of instruction
8715 reservations should be described by the following construction.
8717 @smallexample
8718 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
8719 @end smallexample
8721 @var{unit-names} is a string giving the names of the functional units
8722 separated by commas.  Don't use name @samp{nothing}, it is reserved
8723 for other goals.
8725 @var{automaton-name} is a string giving the name of the automaton with
8726 which the unit is bound.  The automaton should be described in
8727 construction @code{define_automaton}.  You should give
8728 @dfn{automaton-name}, if there is a defined automaton.
8730 The assignment of units to automata are constrained by the uses of the
8731 units in insn reservations.  The most important constraint is: if a
8732 unit reservation is present on a particular cycle of an alternative
8733 for an insn reservation, then some unit from the same automaton must
8734 be present on the same cycle for the other alternatives of the insn
8735 reservation.  The rest of the constraints are mentioned in the
8736 description of the subsequent constructions.
8738 @findex define_query_cpu_unit
8739 @cindex querying function unit reservations
8740 The following construction describes CPU functional units analogously
8741 to @code{define_cpu_unit}.  The reservation of such units can be
8742 queried for an automaton state.  The instruction scheduler never
8743 queries reservation of functional units for given automaton state.  So
8744 as a rule, you don't need this construction.  This construction could
8745 be used for future code generation goals (e.g.@: to generate
8746 @acronym{VLIW} insn templates).
8748 @smallexample
8749 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
8750 @end smallexample
8752 @var{unit-names} is a string giving names of the functional units
8753 separated by commas.
8755 @var{automaton-name} is a string giving the name of the automaton with
8756 which the unit is bound.
8758 @findex define_insn_reservation
8759 @cindex instruction latency time
8760 @cindex regular expressions
8761 @cindex data bypass
8762 The following construction is the major one to describe pipeline
8763 characteristics of an instruction.
8765 @smallexample
8766 (define_insn_reservation @var{insn-name} @var{default_latency}
8767                          @var{condition} @var{regexp})
8768 @end smallexample
8770 @var{default_latency} is a number giving latency time of the
8771 instruction.  There is an important difference between the old
8772 description and the automaton based pipeline description.  The latency
8773 time is used for all dependencies when we use the old description.  In
8774 the automaton based pipeline description, the given latency time is only
8775 used for true dependencies.  The cost of anti-dependencies is always
8776 zero and the cost of output dependencies is the difference between
8777 latency times of the producing and consuming insns (if the difference
8778 is negative, the cost is considered to be zero).  You can always
8779 change the default costs for any description by using the target hook
8780 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
8782 @var{insn-name} is a string giving the internal name of the insn.  The
8783 internal names are used in constructions @code{define_bypass} and in
8784 the automaton description file generated for debugging.  The internal
8785 name has nothing in common with the names in @code{define_insn}.  It is a
8786 good practice to use insn classes described in the processor manual.
8788 @var{condition} defines what RTL insns are described by this
8789 construction.  You should remember that you will be in trouble if
8790 @var{condition} for two or more different
8791 @code{define_insn_reservation} constructions is TRUE for an insn.  In
8792 this case what reservation will be used for the insn is not defined.
8793 Such cases are not checked during generation of the pipeline hazards
8794 recognizer because in general recognizing that two conditions may have
8795 the same value is quite difficult (especially if the conditions
8796 contain @code{symbol_ref}).  It is also not checked during the
8797 pipeline hazard recognizer work because it would slow down the
8798 recognizer considerably.
8800 @var{regexp} is a string describing the reservation of the cpu's functional
8801 units by the instruction.  The reservations are described by a regular
8802 expression according to the following syntax:
8804 @smallexample
8805        regexp = regexp "," oneof
8806               | oneof
8808        oneof = oneof "|" allof
8809              | allof
8811        allof = allof "+" repeat
8812              | repeat
8814        repeat = element "*" number
8815               | element
8817        element = cpu_function_unit_name
8818                | reservation_name
8819                | result_name
8820                | "nothing"
8821                | "(" regexp ")"
8822 @end smallexample
8824 @itemize @bullet
8825 @item
8826 @samp{,} is used for describing the start of the next cycle in
8827 the reservation.
8829 @item
8830 @samp{|} is used for describing a reservation described by the first
8831 regular expression @strong{or} a reservation described by the second
8832 regular expression @strong{or} etc.
8834 @item
8835 @samp{+} is used for describing a reservation described by the first
8836 regular expression @strong{and} a reservation described by the
8837 second regular expression @strong{and} etc.
8839 @item
8840 @samp{*} is used for convenience and simply means a sequence in which
8841 the regular expression are repeated @var{number} times with cycle
8842 advancing (see @samp{,}).
8844 @item
8845 @samp{cpu_function_unit_name} denotes reservation of the named
8846 functional unit.
8848 @item
8849 @samp{reservation_name} --- see description of construction
8850 @samp{define_reservation}.
8852 @item
8853 @samp{nothing} denotes no unit reservations.
8854 @end itemize
8856 @findex define_reservation
8857 Sometimes unit reservations for different insns contain common parts.
8858 In such case, you can simplify the pipeline description by describing
8859 the common part by the following construction
8861 @smallexample
8862 (define_reservation @var{reservation-name} @var{regexp})
8863 @end smallexample
8865 @var{reservation-name} is a string giving name of @var{regexp}.
8866 Functional unit names and reservation names are in the same name
8867 space.  So the reservation names should be different from the
8868 functional unit names and can not be the reserved name @samp{nothing}.
8870 @findex define_bypass
8871 @cindex instruction latency time
8872 @cindex data bypass
8873 The following construction is used to describe exceptions in the
8874 latency time for given instruction pair.  This is so called bypasses.
8876 @smallexample
8877 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
8878                [@var{guard}])
8879 @end smallexample
8881 @var{number} defines when the result generated by the instructions
8882 given in string @var{out_insn_names} will be ready for the
8883 instructions given in string @var{in_insn_names}.  Each of these
8884 strings is a comma-separated list of filename-style globs and
8885 they refer to the names of @code{define_insn_reservation}s.
8886 For example:
8887 @smallexample
8888 (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*")
8889 @end smallexample
8890 defines a bypass between instructions that start with
8891 @samp{cpu1_load_} or @samp{cpu1_store_} and those that start with
8892 @samp{cpu1_load_}.
8894 @var{guard} is an optional string giving the name of a C function which
8895 defines an additional guard for the bypass.  The function will get the
8896 two insns as parameters.  If the function returns zero the bypass will
8897 be ignored for this case.  The additional guard is necessary to
8898 recognize complicated bypasses, e.g.@: when the consumer is only an address
8899 of insn @samp{store} (not a stored value).
8901 If there are more one bypass with the same output and input insns, the
8902 chosen bypass is the first bypass with a guard in description whose
8903 guard function returns nonzero.  If there is no such bypass, then
8904 bypass without the guard function is chosen.
8906 @findex exclusion_set
8907 @findex presence_set
8908 @findex final_presence_set
8909 @findex absence_set
8910 @findex final_absence_set
8911 @cindex VLIW
8912 @cindex RISC
8913 The following five constructions are usually used to describe
8914 @acronym{VLIW} processors, or more precisely, to describe a placement
8915 of small instructions into @acronym{VLIW} instruction slots.  They
8916 can be used for @acronym{RISC} processors, too.
8918 @smallexample
8919 (exclusion_set @var{unit-names} @var{unit-names})
8920 (presence_set @var{unit-names} @var{patterns})
8921 (final_presence_set @var{unit-names} @var{patterns})
8922 (absence_set @var{unit-names} @var{patterns})
8923 (final_absence_set @var{unit-names} @var{patterns})
8924 @end smallexample
8926 @var{unit-names} is a string giving names of functional units
8927 separated by commas.
8929 @var{patterns} is a string giving patterns of functional units
8930 separated by comma.  Currently pattern is one unit or units
8931 separated by white-spaces.
8933 The first construction (@samp{exclusion_set}) means that each
8934 functional unit in the first string can not be reserved simultaneously
8935 with a unit whose name is in the second string and vice versa.  For
8936 example, the construction is useful for describing processors
8937 (e.g.@: some SPARC processors) with a fully pipelined floating point
8938 functional unit which can execute simultaneously only single floating
8939 point insns or only double floating point insns.
8941 The second construction (@samp{presence_set}) means that each
8942 functional unit in the first string can not be reserved unless at
8943 least one of pattern of units whose names are in the second string is
8944 reserved.  This is an asymmetric relation.  For example, it is useful
8945 for description that @acronym{VLIW} @samp{slot1} is reserved after
8946 @samp{slot0} reservation.  We could describe it by the following
8947 construction
8949 @smallexample
8950 (presence_set "slot1" "slot0")
8951 @end smallexample
8953 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
8954 reservation.  In this case we could write
8956 @smallexample
8957 (presence_set "slot1" "slot0 b0")
8958 @end smallexample
8960 The third construction (@samp{final_presence_set}) is analogous to
8961 @samp{presence_set}.  The difference between them is when checking is
8962 done.  When an instruction is issued in given automaton state
8963 reflecting all current and planned unit reservations, the automaton
8964 state is changed.  The first state is a source state, the second one
8965 is a result state.  Checking for @samp{presence_set} is done on the
8966 source state reservation, checking for @samp{final_presence_set} is
8967 done on the result reservation.  This construction is useful to
8968 describe a reservation which is actually two subsequent reservations.
8969 For example, if we use
8971 @smallexample
8972 (presence_set "slot1" "slot0")
8973 @end smallexample
8975 the following insn will be never issued (because @samp{slot1} requires
8976 @samp{slot0} which is absent in the source state).
8978 @smallexample
8979 (define_reservation "insn_and_nop" "slot0 + slot1")
8980 @end smallexample
8982 but it can be issued if we use analogous @samp{final_presence_set}.
8984 The forth construction (@samp{absence_set}) means that each functional
8985 unit in the first string can be reserved only if each pattern of units
8986 whose names are in the second string is not reserved.  This is an
8987 asymmetric relation (actually @samp{exclusion_set} is analogous to
8988 this one but it is symmetric).  For example it might be useful in a
8989 @acronym{VLIW} description to say that @samp{slot0} cannot be reserved
8990 after either @samp{slot1} or @samp{slot2} have been reserved.  This
8991 can be described as:
8993 @smallexample
8994 (absence_set "slot0" "slot1, slot2")
8995 @end smallexample
8997 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
8998 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
8999 this case we could write
9001 @smallexample
9002 (absence_set "slot2" "slot0 b0, slot1 b1")
9003 @end smallexample
9005 All functional units mentioned in a set should belong to the same
9006 automaton.
9008 The last construction (@samp{final_absence_set}) is analogous to
9009 @samp{absence_set} but checking is done on the result (state)
9010 reservation.  See comments for @samp{final_presence_set}.
9012 @findex automata_option
9013 @cindex deterministic finite state automaton
9014 @cindex nondeterministic finite state automaton
9015 @cindex finite state automaton minimization
9016 You can control the generator of the pipeline hazard recognizer with
9017 the following construction.
9019 @smallexample
9020 (automata_option @var{options})
9021 @end smallexample
9023 @var{options} is a string giving options which affect the generated
9024 code.  Currently there are the following options:
9026 @itemize @bullet
9027 @item
9028 @dfn{no-minimization} makes no minimization of the automaton.  This is
9029 only worth to do when we are debugging the description and need to
9030 look more accurately at reservations of states.
9032 @item
9033 @dfn{time} means printing time statistics about the generation of
9034 automata.
9036 @item
9037 @dfn{stats} means printing statistics about the generated automata
9038 such as the number of DFA states, NDFA states and arcs.
9040 @item
9041 @dfn{v} means a generation of the file describing the result automata.
9042 The file has suffix @samp{.dfa} and can be used for the description
9043 verification and debugging.
9045 @item
9046 @dfn{w} means a generation of warning instead of error for
9047 non-critical errors.
9049 @item
9050 @dfn{no-comb-vect} prevents the automaton generator from generating
9051 two data structures and comparing them for space efficiency.  Using
9052 a comb vector to represent transitions may be better, but it can be
9053 very expensive to construct.  This option is useful if the build
9054 process spends an unacceptably long time in genautomata.
9056 @item
9057 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
9058 the treatment of operator @samp{|} in the regular expressions.  The
9059 usual treatment of the operator is to try the first alternative and,
9060 if the reservation is not possible, the second alternative.  The
9061 nondeterministic treatment means trying all alternatives, some of them
9062 may be rejected by reservations in the subsequent insns.
9064 @item
9065 @dfn{collapse-ndfa} modifies the behaviour of the generator when
9066 producing an automaton.  An additional state transition to collapse a
9067 nondeterministic @acronym{NDFA} state to a deterministic @acronym{DFA}
9068 state is generated.  It can be triggered by passing @code{const0_rtx} to
9069 state_transition.  In such an automaton, cycle advance transitions are
9070 available only for these collapsed states.  This option is useful for
9071 ports that want to use the @code{ndfa} option, but also want to use
9072 @code{define_query_cpu_unit} to assign units to insns issued in a cycle.
9074 @item
9075 @dfn{progress} means output of a progress bar showing how many states
9076 were generated so far for automaton being processed.  This is useful
9077 during debugging a @acronym{DFA} description.  If you see too many
9078 generated states, you could interrupt the generator of the pipeline
9079 hazard recognizer and try to figure out a reason for generation of the
9080 huge automaton.
9081 @end itemize
9083 As an example, consider a superscalar @acronym{RISC} machine which can
9084 issue three insns (two integer insns and one floating point insn) on
9085 the cycle but can finish only two insns.  To describe this, we define
9086 the following functional units.
9088 @smallexample
9089 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
9090 (define_cpu_unit "port0, port1")
9091 @end smallexample
9093 All simple integer insns can be executed in any integer pipeline and
9094 their result is ready in two cycles.  The simple integer insns are
9095 issued into the first pipeline unless it is reserved, otherwise they
9096 are issued into the second pipeline.  Integer division and
9097 multiplication insns can be executed only in the second integer
9098 pipeline and their results are ready correspondingly in 8 and 4
9099 cycles.  The integer division is not pipelined, i.e.@: the subsequent
9100 integer division insn can not be issued until the current division
9101 insn finished.  Floating point insns are fully pipelined and their
9102 results are ready in 3 cycles.  Where the result of a floating point
9103 insn is used by an integer insn, an additional delay of one cycle is
9104 incurred.  To describe all of this we could specify
9106 @smallexample
9107 (define_cpu_unit "div")
9109 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
9110                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
9112 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
9113                          "i1_pipeline, nothing*2, (port0 | port1)")
9115 (define_insn_reservation "div" 8 (eq_attr "type" "div")
9116                          "i1_pipeline, div*7, div + (port0 | port1)")
9118 (define_insn_reservation "float" 3 (eq_attr "type" "float")
9119                          "f_pipeline, nothing, (port0 | port1))
9121 (define_bypass 4 "float" "simple,mult,div")
9122 @end smallexample
9124 To simplify the description we could describe the following reservation
9126 @smallexample
9127 (define_reservation "finish" "port0|port1")
9128 @end smallexample
9130 and use it in all @code{define_insn_reservation} as in the following
9131 construction
9133 @smallexample
9134 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
9135                          "(i0_pipeline | i1_pipeline), finish")
9136 @end smallexample
9139 @end ifset
9140 @ifset INTERNALS
9141 @node Conditional Execution
9142 @section Conditional Execution
9143 @cindex conditional execution
9144 @cindex predication
9146 A number of architectures provide for some form of conditional
9147 execution, or predication.  The hallmark of this feature is the
9148 ability to nullify most of the instructions in the instruction set.
9149 When the instruction set is large and not entirely symmetric, it
9150 can be quite tedious to describe these forms directly in the
9151 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
9153 @findex define_cond_exec
9154 @smallexample
9155 (define_cond_exec
9156   [@var{predicate-pattern}]
9157   "@var{condition}"
9158   "@var{output-template}"
9159   "@var{optional-insn-attribues}")
9160 @end smallexample
9162 @var{predicate-pattern} is the condition that must be true for the
9163 insn to be executed at runtime and should match a relational operator.
9164 One can use @code{match_operator} to match several relational operators
9165 at once.  Any @code{match_operand} operands must have no more than one
9166 alternative.
9168 @var{condition} is a C expression that must be true for the generated
9169 pattern to match.
9171 @findex current_insn_predicate
9172 @var{output-template} is a string similar to the @code{define_insn}
9173 output template (@pxref{Output Template}), except that the @samp{*}
9174 and @samp{@@} special cases do not apply.  This is only useful if the
9175 assembly text for the predicate is a simple prefix to the main insn.
9176 In order to handle the general case, there is a global variable
9177 @code{current_insn_predicate} that will contain the entire predicate
9178 if the current insn is predicated, and will otherwise be @code{NULL}.
9180 @var{optional-insn-attributes} is an optional vector of attributes that gets
9181 appended to the insn attributes of the produced cond_exec rtx. It can
9182 be used to add some distinguishing attribute to cond_exec rtxs produced
9183 that way. An example usage would be to use this attribute in conjunction
9184 with attributes on the main pattern to disable particular alternatives under
9185 certain conditions.
9187 When @code{define_cond_exec} is used, an implicit reference to
9188 the @code{predicable} instruction attribute is made.
9189 @xref{Insn Attributes}.  This attribute must be a boolean (i.e.@: have
9190 exactly two elements in its @var{list-of-values}), with the possible
9191 values being @code{no} and @code{yes}.  The default and all uses in
9192 the insns must be a simple constant, not a complex expressions.  It
9193 may, however, depend on the alternative, by using a comma-separated
9194 list of values.  If that is the case, the port should also define an
9195 @code{enabled} attribute (@pxref{Disable Insn Alternatives}), which
9196 should also allow only @code{no} and @code{yes} as its values.
9198 For each @code{define_insn} for which the @code{predicable}
9199 attribute is true, a new @code{define_insn} pattern will be
9200 generated that matches a predicated version of the instruction.
9201 For example,
9203 @smallexample
9204 (define_insn "addsi"
9205   [(set (match_operand:SI 0 "register_operand" "r")
9206         (plus:SI (match_operand:SI 1 "register_operand" "r")
9207                  (match_operand:SI 2 "register_operand" "r")))]
9208   "@var{test1}"
9209   "add %2,%1,%0")
9211 (define_cond_exec
9212   [(ne (match_operand:CC 0 "register_operand" "c")
9213        (const_int 0))]
9214   "@var{test2}"
9215   "(%0)")
9216 @end smallexample
9218 @noindent
9219 generates a new pattern
9221 @smallexample
9222 (define_insn ""
9223   [(cond_exec
9224      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
9225      (set (match_operand:SI 0 "register_operand" "r")
9226           (plus:SI (match_operand:SI 1 "register_operand" "r")
9227                    (match_operand:SI 2 "register_operand" "r"))))]
9228   "(@var{test2}) && (@var{test1})"
9229   "(%3) add %2,%1,%0")
9230 @end smallexample
9232 @end ifset
9233 @ifset INTERNALS
9234 @node Define Subst
9235 @section RTL Templates Transformations
9236 @cindex define_subst
9238 For some hardware architectures there are common cases when the RTL
9239 templates for the instructions can be derived from the other RTL
9240 templates using simple transformations.  E.g., @file{i386.md} contains
9241 an RTL template for the ordinary @code{sub} instruction---
9242 @code{*subsi_1}, and for the @code{sub} instruction with subsequent
9243 zero-extension---@code{*subsi_1_zext}.  Such cases can be easily
9244 implemented by a single meta-template capable of generating a modified
9245 case based on the initial one:
9247 @findex define_subst
9248 @smallexample
9249 (define_subst "@var{name}"
9250   [@var{input-template}]
9251   "@var{condition}"
9252   [@var{output-template}])
9253 @end smallexample
9254 @var{input-template} is a pattern describing the source RTL template,
9255 which will be transformed.
9257 @var{condition} is a C expression that is conjunct with the condition
9258 from the input-template to generate a condition to be used in the
9259 output-template.
9261 @var{output-template} is a pattern that will be used in the resulting
9262 template.
9264 @code{define_subst} mechanism is tightly coupled with the notion of the
9265 subst attribute (@pxref{Subst Iterators}).  The use of
9266 @code{define_subst} is triggered by a reference to a subst attribute in
9267 the transforming RTL template.  This reference initiates duplication of
9268 the source RTL template and substitution of the attributes with their
9269 values.  The source RTL template is left unchanged, while the copy is
9270 transformed by @code{define_subst}.  This transformation can fail in the
9271 case when the source RTL template is not matched against the
9272 input-template of the @code{define_subst}.  In such case the copy is
9273 deleted.
9275 @code{define_subst} can be used only in @code{define_insn} and
9276 @code{define_expand}, it cannot be used in other expressions (e.g. in
9277 @code{define_insn_and_split}).
9279 @menu
9280 * Define Subst Example::            Example of @code{define_subst} work.
9281 * Define Subst Pattern Matching::   Process of template comparison.
9282 * Define Subst Output Template::    Generation of output template.
9283 @end menu
9285 @node Define Subst Example
9286 @subsection @code{define_subst} Example
9287 @cindex define_subst
9289 To illustrate how @code{define_subst} works, let us examine a simple
9290 template transformation.
9292 Suppose there are two kinds of instructions: one that touches flags and
9293 the other that does not.  The instructions of the second type could be
9294 generated with the following @code{define_subst}:
9296 @smallexample
9297 (define_subst "add_clobber_subst"
9298   [(set (match_operand:SI 0 "" "")
9299         (match_operand:SI 1 "" ""))]
9300   ""
9301   [(set (match_dup 0)
9302         (match_dup 1))
9303    (clobber (reg:CC FLAGS_REG))]
9304 @end smallexample
9306 This @code{define_subst} can be applied to any RTL pattern containing
9307 @code{set} of mode SI and generates a copy with clobber when it is
9308 applied.
9310 Assume there is an RTL template for a @code{max} instruction to be used
9311 in @code{define_subst} mentioned above:
9313 @smallexample
9314 (define_insn "maxsi"
9315   [(set (match_operand:SI 0 "register_operand" "=r")
9316         (max:SI
9317           (match_operand:SI 1 "register_operand" "r")
9318           (match_operand:SI 2 "register_operand" "r")))]
9319   ""
9320   "max\t@{%2, %1, %0|%0, %1, %2@}"
9321  [@dots{}])
9322 @end smallexample
9324 To mark the RTL template for @code{define_subst} application,
9325 subst-attributes are used.  They should be declared in advance:
9327 @smallexample
9328 (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber")
9329 @end smallexample
9331 Here @samp{add_clobber_name} is the attribute name,
9332 @samp{add_clobber_subst} is the name of the corresponding
9333 @code{define_subst}, the third argument (@samp{_noclobber}) is the
9334 attribute value that would be substituted into the unchanged version of
9335 the source RTL template, and the last argument (@samp{_clobber}) is the
9336 value that would be substituted into the second, transformed,
9337 version of the RTL template.
9339 Once the subst-attribute has been defined, it should be used in RTL
9340 templates which need to be processed by the @code{define_subst}.  So,
9341 the original RTL template should be changed:
9343 @smallexample
9344 (define_insn "maxsi<add_clobber_name>"
9345   [(set (match_operand:SI 0 "register_operand" "=r")
9346         (max:SI
9347           (match_operand:SI 1 "register_operand" "r")
9348           (match_operand:SI 2 "register_operand" "r")))]
9349   ""
9350   "max\t@{%2, %1, %0|%0, %1, %2@}"
9351  [@dots{}])
9352 @end smallexample
9354 The result of the @code{define_subst} usage would look like the following:
9356 @smallexample
9357 (define_insn "maxsi_noclobber"
9358   [(set (match_operand:SI 0 "register_operand" "=r")
9359         (max:SI
9360           (match_operand:SI 1 "register_operand" "r")
9361           (match_operand:SI 2 "register_operand" "r")))]
9362   ""
9363   "max\t@{%2, %1, %0|%0, %1, %2@}"
9364  [@dots{}])
9365 (define_insn "maxsi_clobber"
9366   [(set (match_operand:SI 0 "register_operand" "=r")
9367         (max:SI
9368           (match_operand:SI 1 "register_operand" "r")
9369           (match_operand:SI 2 "register_operand" "r")))
9370    (clobber (reg:CC FLAGS_REG))]
9371   ""
9372   "max\t@{%2, %1, %0|%0, %1, %2@}"
9373  [@dots{}])
9374 @end smallexample
9376 @node Define Subst Pattern Matching
9377 @subsection Pattern Matching in @code{define_subst}
9378 @cindex define_subst
9380 All expressions, allowed in @code{define_insn} or @code{define_expand},
9381 are allowed in the input-template of @code{define_subst}, except
9382 @code{match_par_dup}, @code{match_scratch}, @code{match_parallel}. The
9383 meanings of expressions in the input-template were changed:
9385 @code{match_operand} matches any expression (possibly, a subtree in
9386 RTL-template), if modes of the @code{match_operand} and this expression
9387 are the same, or mode of the @code{match_operand} is @code{VOIDmode}, or
9388 this expression is @code{match_dup}, @code{match_op_dup}.  If the
9389 expression is @code{match_operand} too, and predicate of
9390 @code{match_operand} from the input pattern is not empty, then the
9391 predicates are compared.  That can be used for more accurate filtering
9392 of accepted RTL-templates.
9394 @code{match_operator} matches common operators (like @code{plus},
9395 @code{minus}), @code{unspec}, @code{unspec_volatile} operators and
9396 @code{match_operator}s from the original pattern if the modes match and
9397 @code{match_operator} from the input pattern has the same number of
9398 operands as the operator from the original pattern.
9400 @node Define Subst Output Template
9401 @subsection Generation of output template in @code{define_subst}
9402 @cindex define_subst
9404 If all necessary checks for @code{define_subst} application pass, a new
9405 RTL-pattern, based on the output-template, is created to replace the old
9406 template.  Like in input-patterns, meanings of some RTL expressions are
9407 changed when they are used in output-patterns of a @code{define_subst}.
9408 Thus, @code{match_dup} is used for copying the whole expression from the
9409 original pattern, which matched corresponding @code{match_operand} from
9410 the input pattern.
9412 @code{match_dup N} is used in the output template to be replaced with
9413 the expression from the original pattern, which matched
9414 @code{match_operand N} from the input pattern.  As a consequence,
9415 @code{match_dup} cannot be used to point to @code{match_operand}s from
9416 the output pattern, it should always refer to a @code{match_operand}
9417 from the input pattern.
9419 In the output template one can refer to the expressions from the
9420 original pattern and create new ones.  For instance, some operands could
9421 be added by means of standard @code{match_operand}.
9423 After replacing @code{match_dup} with some RTL-subtree from the original
9424 pattern, it could happen that several @code{match_operand}s in the
9425 output pattern have the same indexes.  It is unknown, how many and what
9426 indexes would be used in the expression which would replace
9427 @code{match_dup}, so such conflicts in indexes are inevitable.  To
9428 overcome this issue, @code{match_operands} and @code{match_operators},
9429 which were introduced into the output pattern, are renumerated when all
9430 @code{match_dup}s are replaced.
9432 Number of alternatives in @code{match_operand}s introduced into the
9433 output template @code{M} could differ from the number of alternatives in
9434 the original pattern @code{N}, so in the resultant pattern there would
9435 be @code{N*M} alternatives.  Thus, constraints from the original pattern
9436 would be duplicated @code{N} times, constraints from the output pattern
9437 would be duplicated @code{M} times, producing all possible combinations.
9438 @end ifset
9440 @ifset INTERNALS
9441 @node Constant Definitions
9442 @section Constant Definitions
9443 @cindex constant definitions
9444 @findex define_constants
9446 Using literal constants inside instruction patterns reduces legibility and
9447 can be a maintenance problem.
9449 To overcome this problem, you may use the @code{define_constants}
9450 expression.  It contains a vector of name-value pairs.  From that
9451 point on, wherever any of the names appears in the MD file, it is as
9452 if the corresponding value had been written instead.  You may use
9453 @code{define_constants} multiple times; each appearance adds more
9454 constants to the table.  It is an error to redefine a constant with
9455 a different value.
9457 To come back to the a29k load multiple example, instead of
9459 @smallexample
9460 (define_insn ""
9461   [(match_parallel 0 "load_multiple_operation"
9462      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
9463            (match_operand:SI 2 "memory_operand" "m"))
9464       (use (reg:SI 179))
9465       (clobber (reg:SI 179))])]
9466   ""
9467   "loadm 0,0,%1,%2")
9468 @end smallexample
9470 You could write:
9472 @smallexample
9473 (define_constants [
9474     (R_BP 177)
9475     (R_FC 178)
9476     (R_CR 179)
9477     (R_Q  180)
9480 (define_insn ""
9481   [(match_parallel 0 "load_multiple_operation"
9482      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
9483            (match_operand:SI 2 "memory_operand" "m"))
9484       (use (reg:SI R_CR))
9485       (clobber (reg:SI R_CR))])]
9486   ""
9487   "loadm 0,0,%1,%2")
9488 @end smallexample
9490 The constants that are defined with a define_constant are also output
9491 in the insn-codes.h header file as #defines.
9493 @cindex enumerations
9494 @findex define_c_enum
9495 You can also use the machine description file to define enumerations.
9496 Like the constants defined by @code{define_constant}, these enumerations
9497 are visible to both the machine description file and the main C code.
9499 The syntax is as follows:
9501 @smallexample
9502 (define_c_enum "@var{name}" [
9503   @var{value0}
9504   @var{value1}
9505   @dots{}
9506   @var{valuen}
9508 @end smallexample
9510 This definition causes the equivalent of the following C code to appear
9511 in @file{insn-constants.h}:
9513 @smallexample
9514 enum @var{name} @{
9515   @var{value0} = 0,
9516   @var{value1} = 1,
9517   @dots{}
9518   @var{valuen} = @var{n}
9520 #define NUM_@var{cname}_VALUES (@var{n} + 1)
9521 @end smallexample
9523 where @var{cname} is the capitalized form of @var{name}.
9524 It also makes each @var{valuei} available in the machine description
9525 file, just as if it had been declared with:
9527 @smallexample
9528 (define_constants [(@var{valuei} @var{i})])
9529 @end smallexample
9531 Each @var{valuei} is usually an upper-case identifier and usually
9532 begins with @var{cname}.
9534 You can split the enumeration definition into as many statements as
9535 you like.  The above example is directly equivalent to:
9537 @smallexample
9538 (define_c_enum "@var{name}" [@var{value0}])
9539 (define_c_enum "@var{name}" [@var{value1}])
9540 @dots{}
9541 (define_c_enum "@var{name}" [@var{valuen}])
9542 @end smallexample
9544 Splitting the enumeration helps to improve the modularity of each
9545 individual @code{.md} file.  For example, if a port defines its
9546 synchronization instructions in a separate @file{sync.md} file,
9547 it is convenient to define all synchronization-specific enumeration
9548 values in @file{sync.md} rather than in the main @file{.md} file.
9550 Some enumeration names have special significance to GCC:
9552 @table @code
9553 @item unspecv
9554 @findex unspec_volatile
9555 If an enumeration called @code{unspecv} is defined, GCC will use it
9556 when printing out @code{unspec_volatile} expressions.  For example:
9558 @smallexample
9559 (define_c_enum "unspecv" [
9560   UNSPECV_BLOCKAGE
9562 @end smallexample
9564 causes GCC to print @samp{(unspec_volatile @dots{} 0)} as:
9566 @smallexample
9567 (unspec_volatile ... UNSPECV_BLOCKAGE)
9568 @end smallexample
9570 @item unspec
9571 @findex unspec
9572 If an enumeration called @code{unspec} is defined, GCC will use
9573 it when printing out @code{unspec} expressions.  GCC will also use
9574 it when printing out @code{unspec_volatile} expressions unless an
9575 @code{unspecv} enumeration is also defined.  You can therefore
9576 decide whether to keep separate enumerations for volatile and
9577 non-volatile expressions or whether to use the same enumeration
9578 for both.
9579 @end table
9581 @findex define_enum
9582 @anchor{define_enum}
9583 Another way of defining an enumeration is to use @code{define_enum}:
9585 @smallexample
9586 (define_enum "@var{name}" [
9587   @var{value0}
9588   @var{value1}
9589   @dots{}
9590   @var{valuen}
9592 @end smallexample
9594 This directive implies:
9596 @smallexample
9597 (define_c_enum "@var{name}" [
9598   @var{cname}_@var{cvalue0}
9599   @var{cname}_@var{cvalue1}
9600   @dots{}
9601   @var{cname}_@var{cvaluen}
9603 @end smallexample
9605 @findex define_enum_attr
9606 where @var{cvaluei} is the capitalized form of @var{valuei}.
9607 However, unlike @code{define_c_enum}, the enumerations defined
9608 by @code{define_enum} can be used in attribute specifications
9609 (@pxref{define_enum_attr}).
9610 @end ifset
9611 @ifset INTERNALS
9612 @node Iterators
9613 @section Iterators
9614 @cindex iterators in @file{.md} files
9616 Ports often need to define similar patterns for more than one machine
9617 mode or for more than one rtx code.  GCC provides some simple iterator
9618 facilities to make this process easier.
9620 @menu
9621 * Mode Iterators::         Generating variations of patterns for different modes.
9622 * Code Iterators::         Doing the same for codes.
9623 * Int Iterators::          Doing the same for integers.
9624 * Subst Iterators::        Generating variations of patterns for define_subst.
9625 @end menu
9627 @node Mode Iterators
9628 @subsection Mode Iterators
9629 @cindex mode iterators in @file{.md} files
9631 Ports often need to define similar patterns for two or more different modes.
9632 For example:
9634 @itemize @bullet
9635 @item
9636 If a processor has hardware support for both single and double
9637 floating-point arithmetic, the @code{SFmode} patterns tend to be
9638 very similar to the @code{DFmode} ones.
9640 @item
9641 If a port uses @code{SImode} pointers in one configuration and
9642 @code{DImode} pointers in another, it will usually have very similar
9643 @code{SImode} and @code{DImode} patterns for manipulating pointers.
9644 @end itemize
9646 Mode iterators allow several patterns to be instantiated from one
9647 @file{.md} file template.  They can be used with any type of
9648 rtx-based construct, such as a @code{define_insn},
9649 @code{define_split}, or @code{define_peephole2}.
9651 @menu
9652 * Defining Mode Iterators:: Defining a new mode iterator.
9653 * Substitutions::           Combining mode iterators with substitutions
9654 * Examples::                Examples
9655 @end menu
9657 @node Defining Mode Iterators
9658 @subsubsection Defining Mode Iterators
9659 @findex define_mode_iterator
9661 The syntax for defining a mode iterator is:
9663 @smallexample
9664 (define_mode_iterator @var{name} [(@var{mode1} "@var{cond1}") @dots{} (@var{moden} "@var{condn}")])
9665 @end smallexample
9667 This allows subsequent @file{.md} file constructs to use the mode suffix
9668 @code{:@var{name}}.  Every construct that does so will be expanded
9669 @var{n} times, once with every use of @code{:@var{name}} replaced by
9670 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
9671 and so on.  In the expansion for a particular @var{modei}, every
9672 C condition will also require that @var{condi} be true.
9674 For example:
9676 @smallexample
9677 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
9678 @end smallexample
9680 defines a new mode suffix @code{:P}.  Every construct that uses
9681 @code{:P} will be expanded twice, once with every @code{:P} replaced
9682 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
9683 The @code{:SI} version will only apply if @code{Pmode == SImode} and
9684 the @code{:DI} version will only apply if @code{Pmode == DImode}.
9686 As with other @file{.md} conditions, an empty string is treated
9687 as ``always true''.  @code{(@var{mode} "")} can also be abbreviated
9688 to @code{@var{mode}}.  For example:
9690 @smallexample
9691 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
9692 @end smallexample
9694 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
9695 but that the @code{:SI} expansion has no such constraint.
9697 Iterators are applied in the order they are defined.  This can be
9698 significant if two iterators are used in a construct that requires
9699 substitutions.  @xref{Substitutions}.
9701 @node Substitutions
9702 @subsubsection Substitution in Mode Iterators
9703 @findex define_mode_attr
9705 If an @file{.md} file construct uses mode iterators, each version of the
9706 construct will often need slightly different strings or modes.  For
9707 example:
9709 @itemize @bullet
9710 @item
9711 When a @code{define_expand} defines several @code{add@var{m}3} patterns
9712 (@pxref{Standard Names}), each expander will need to use the
9713 appropriate mode name for @var{m}.
9715 @item
9716 When a @code{define_insn} defines several instruction patterns,
9717 each instruction will often use a different assembler mnemonic.
9719 @item
9720 When a @code{define_insn} requires operands with different modes,
9721 using an iterator for one of the operand modes usually requires a specific
9722 mode for the other operand(s).
9723 @end itemize
9725 GCC supports such variations through a system of ``mode attributes''.
9726 There are two standard attributes: @code{mode}, which is the name of
9727 the mode in lower case, and @code{MODE}, which is the same thing in
9728 upper case.  You can define other attributes using:
9730 @smallexample
9731 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") @dots{} (@var{moden} "@var{valuen}")])
9732 @end smallexample
9734 where @var{name} is the name of the attribute and @var{valuei}
9735 is the value associated with @var{modei}.
9737 When GCC replaces some @var{:iterator} with @var{:mode}, it will scan
9738 each string and mode in the pattern for sequences of the form
9739 @code{<@var{iterator}:@var{attr}>}, where @var{attr} is the name of a
9740 mode attribute.  If the attribute is defined for @var{mode}, the whole
9741 @code{<@dots{}>} sequence will be replaced by the appropriate attribute
9742 value.
9744 For example, suppose an @file{.md} file has:
9746 @smallexample
9747 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
9748 (define_mode_attr load [(SI "lw") (DI "ld")])
9749 @end smallexample
9751 If one of the patterns that uses @code{:P} contains the string
9752 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
9753 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
9754 @code{"ld\t%0,%1"}.
9756 Here is an example of using an attribute for a mode:
9758 @smallexample
9759 (define_mode_iterator LONG [SI DI])
9760 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
9761 (define_insn @dots{}
9762   (sign_extend:LONG (match_operand:<LONG:SHORT> @dots{})) @dots{})
9763 @end smallexample
9765 The @code{@var{iterator}:} prefix may be omitted, in which case the
9766 substitution will be attempted for every iterator expansion.
9768 @node Examples
9769 @subsubsection Mode Iterator Examples
9771 Here is an example from the MIPS port.  It defines the following
9772 modes and attributes (among others):
9774 @smallexample
9775 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
9776 (define_mode_attr d [(SI "") (DI "d")])
9777 @end smallexample
9779 and uses the following template to define both @code{subsi3}
9780 and @code{subdi3}:
9782 @smallexample
9783 (define_insn "sub<mode>3"
9784   [(set (match_operand:GPR 0 "register_operand" "=d")
9785         (minus:GPR (match_operand:GPR 1 "register_operand" "d")
9786                    (match_operand:GPR 2 "register_operand" "d")))]
9787   ""
9788   "<d>subu\t%0,%1,%2"
9789   [(set_attr "type" "arith")
9790    (set_attr "mode" "<MODE>")])
9791 @end smallexample
9793 This is exactly equivalent to:
9795 @smallexample
9796 (define_insn "subsi3"
9797   [(set (match_operand:SI 0 "register_operand" "=d")
9798         (minus:SI (match_operand:SI 1 "register_operand" "d")
9799                   (match_operand:SI 2 "register_operand" "d")))]
9800   ""
9801   "subu\t%0,%1,%2"
9802   [(set_attr "type" "arith")
9803    (set_attr "mode" "SI")])
9805 (define_insn "subdi3"
9806   [(set (match_operand:DI 0 "register_operand" "=d")
9807         (minus:DI (match_operand:DI 1 "register_operand" "d")
9808                   (match_operand:DI 2 "register_operand" "d")))]
9809   ""
9810   "dsubu\t%0,%1,%2"
9811   [(set_attr "type" "arith")
9812    (set_attr "mode" "DI")])
9813 @end smallexample
9815 @node Code Iterators
9816 @subsection Code Iterators
9817 @cindex code iterators in @file{.md} files
9818 @findex define_code_iterator
9819 @findex define_code_attr
9821 Code iterators operate in a similar way to mode iterators.  @xref{Mode Iterators}.
9823 The construct:
9825 @smallexample
9826 (define_code_iterator @var{name} [(@var{code1} "@var{cond1}") @dots{} (@var{coden} "@var{condn}")])
9827 @end smallexample
9829 defines a pseudo rtx code @var{name} that can be instantiated as
9830 @var{codei} if condition @var{condi} is true.  Each @var{codei}
9831 must have the same rtx format.  @xref{RTL Classes}.
9833 As with mode iterators, each pattern that uses @var{name} will be
9834 expanded @var{n} times, once with all uses of @var{name} replaced by
9835 @var{code1}, once with all uses replaced by @var{code2}, and so on.
9836 @xref{Defining Mode Iterators}.
9838 It is possible to define attributes for codes as well as for modes.
9839 There are two standard code attributes: @code{code}, the name of the
9840 code in lower case, and @code{CODE}, the name of the code in upper case.
9841 Other attributes are defined using:
9843 @smallexample
9844 (define_code_attr @var{name} [(@var{code1} "@var{value1}") @dots{} (@var{coden} "@var{valuen}")])
9845 @end smallexample
9847 Here's an example of code iterators in action, taken from the MIPS port:
9849 @smallexample
9850 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
9851                                 eq ne gt ge lt le gtu geu ltu leu])
9853 (define_expand "b<code>"
9854   [(set (pc)
9855         (if_then_else (any_cond:CC (cc0)
9856                                    (const_int 0))
9857                       (label_ref (match_operand 0 ""))
9858                       (pc)))]
9859   ""
9861   gen_conditional_branch (operands, <CODE>);
9862   DONE;
9864 @end smallexample
9866 This is equivalent to:
9868 @smallexample
9869 (define_expand "bunordered"
9870   [(set (pc)
9871         (if_then_else (unordered:CC (cc0)
9872                                     (const_int 0))
9873                       (label_ref (match_operand 0 ""))
9874                       (pc)))]
9875   ""
9877   gen_conditional_branch (operands, UNORDERED);
9878   DONE;
9881 (define_expand "bordered"
9882   [(set (pc)
9883         (if_then_else (ordered:CC (cc0)
9884                                   (const_int 0))
9885                       (label_ref (match_operand 0 ""))
9886                       (pc)))]
9887   ""
9889   gen_conditional_branch (operands, ORDERED);
9890   DONE;
9893 @dots{}
9894 @end smallexample
9896 @node Int Iterators
9897 @subsection Int Iterators
9898 @cindex int iterators in @file{.md} files
9899 @findex define_int_iterator
9900 @findex define_int_attr
9902 Int iterators operate in a similar way to code iterators.  @xref{Code Iterators}.
9904 The construct:
9906 @smallexample
9907 (define_int_iterator @var{name} [(@var{int1} "@var{cond1}") @dots{} (@var{intn} "@var{condn}")])
9908 @end smallexample
9910 defines a pseudo integer constant @var{name} that can be instantiated as
9911 @var{inti} if condition @var{condi} is true.  Each @var{int}
9912 must have the same rtx format.  @xref{RTL Classes}. Int iterators can appear
9913 in only those rtx fields that have 'i' as the specifier. This means that
9914 each @var{int} has to be a constant defined using define_constant or
9915 define_c_enum.
9917 As with mode and code iterators, each pattern that uses @var{name} will be
9918 expanded @var{n} times, once with all uses of @var{name} replaced by
9919 @var{int1}, once with all uses replaced by @var{int2}, and so on.
9920 @xref{Defining Mode Iterators}.
9922 It is possible to define attributes for ints as well as for codes and modes.
9923 Attributes are defined using:
9925 @smallexample
9926 (define_int_attr @var{name} [(@var{int1} "@var{value1}") @dots{} (@var{intn} "@var{valuen}")])
9927 @end smallexample
9929 Here's an example of int iterators in action, taken from the ARM port:
9931 @smallexample
9932 (define_int_iterator QABSNEG [UNSPEC_VQABS UNSPEC_VQNEG])
9934 (define_int_attr absneg [(UNSPEC_VQABS "abs") (UNSPEC_VQNEG "neg")])
9936 (define_insn "neon_vq<absneg><mode>"
9937   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
9938         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
9939                        (match_operand:SI 2 "immediate_operand" "i")]
9940                       QABSNEG))]
9941   "TARGET_NEON"
9942   "vq<absneg>.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
9943   [(set_attr "type" "neon_vqneg_vqabs")]
9946 @end smallexample
9948 This is equivalent to:
9950 @smallexample
9951 (define_insn "neon_vqabs<mode>"
9952   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
9953         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
9954                        (match_operand:SI 2 "immediate_operand" "i")]
9955                       UNSPEC_VQABS))]
9956   "TARGET_NEON"
9957   "vqabs.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
9958   [(set_attr "type" "neon_vqneg_vqabs")]
9961 (define_insn "neon_vqneg<mode>"
9962   [(set (match_operand:VDQIW 0 "s_register_operand" "=w")
9963         (unspec:VDQIW [(match_operand:VDQIW 1 "s_register_operand" "w")
9964                        (match_operand:SI 2 "immediate_operand" "i")]
9965                       UNSPEC_VQNEG))]
9966   "TARGET_NEON"
9967   "vqneg.<V_s_elem>\t%<V_reg>0, %<V_reg>1"
9968   [(set_attr "type" "neon_vqneg_vqabs")]
9971 @end smallexample
9973 @node Subst Iterators
9974 @subsection Subst Iterators
9975 @cindex subst iterators in @file{.md} files
9976 @findex define_subst
9977 @findex define_subst_attr
9979 Subst iterators are special type of iterators with the following
9980 restrictions: they could not be declared explicitly, they always have
9981 only two values, and they do not have explicit dedicated name.
9982 Subst-iterators are triggered only when corresponding subst-attribute is
9983 used in RTL-pattern.
9985 Subst iterators transform templates in the following way: the templates
9986 are duplicated, the subst-attributes in these templates are replaced
9987 with the corresponding values, and a new attribute is implicitly added
9988 to the given @code{define_insn}/@code{define_expand}.  The name of the
9989 added attribute matches the name of @code{define_subst}.  Such
9990 attributes are declared implicitly, and it is not allowed to have a
9991 @code{define_attr} named as a @code{define_subst}.
9993 Each subst iterator is linked to a @code{define_subst}.  It is declared
9994 implicitly by the first appearance of the corresponding
9995 @code{define_subst_attr}, and it is not allowed to define it explicitly.
9997 Declarations of subst-attributes have the following syntax:
9999 @findex define_subst_attr
10000 @smallexample
10001 (define_subst_attr "@var{name}"
10002   "@var{subst-name}"
10003   "@var{no-subst-value}"
10004   "@var{subst-applied-value}")
10005 @end smallexample
10007 @var{name} is a string with which the given subst-attribute could be
10008 referred to.
10010 @var{subst-name} shows which @code{define_subst} should be applied to an
10011 RTL-template if the given subst-attribute is present in the
10012 RTL-template.
10014 @var{no-subst-value} is a value with which subst-attribute would be
10015 replaced in the first copy of the original RTL-template.
10017 @var{subst-applied-value} is a value with which subst-attribute would be
10018 replaced in the second copy of the original RTL-template.
10020 @end ifset