* reload.c (find_reloads): Swap operand_loc pointers for
[official-gcc.git] / gcc / reload.c
blob950d6fd30880371c52dcb3b1773362b6e148e001
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 if (insn_class == NO_REGS)
392 abort ();
393 if (in_p
394 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
395 abort ();
398 /* The scratch register's constraint must start with "=&". */
399 if (insn_data[(int) icode].operand[2].constraint[0] != '='
400 || insn_data[(int) icode].operand[2].constraint[1] != '&')
401 abort ();
403 if (reg_class_subset_p (reload_class, insn_class))
404 mode = insn_data[(int) icode].operand[2].mode;
405 else
407 const char *t_constraint
408 = &insn_data[(int) icode].operand[2].constraint[2];
409 char t_letter = *t_constraint;
410 class = insn_class;
411 t_mode = insn_data[(int) icode].operand[2].mode;
412 t_class = (t_letter == 'r' ? GENERAL_REGS
413 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
414 t_constraint));
415 t_icode = icode;
416 icode = CODE_FOR_nothing;
420 /* This case isn't valid, so fail. Reload is allowed to use the same
421 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
422 in the case of a secondary register, we actually need two different
423 registers for correct code. We fail here to prevent the possibility of
424 silently generating incorrect code later.
426 The convention is that secondary input reloads are valid only if the
427 secondary_class is different from class. If you have such a case, you
428 can not use secondary reloads, you must work around the problem some
429 other way.
431 Allow this when a reload_in/out pattern is being used. I.e. assume
432 that the generated code handles this case. */
434 if (in_p && class == reload_class && icode == CODE_FOR_nothing
435 && t_icode == CODE_FOR_nothing)
436 abort ();
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
670 /* Find the largest class for which every register number plus N is valid in
671 M1 (if in range) and is cheap to move into REGNO.
672 Abort if no such class exists. */
674 static enum reg_class
675 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
676 unsigned int dest_regno ATTRIBUTE_UNUSED)
678 int best_cost = -1;
679 int class;
680 int regno;
681 enum reg_class best_class = NO_REGS;
682 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
683 unsigned int best_size = 0;
684 int cost;
686 for (class = 1; class < N_REG_CLASSES; class++)
688 int bad = 0;
689 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
690 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
691 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
692 && ! HARD_REGNO_MODE_OK (regno + n, m1))
693 bad = 1;
695 if (bad)
696 continue;
697 cost = REGISTER_MOVE_COST (m1, class, dest_class);
699 if ((reg_class_size[class] > best_size
700 && (best_cost < 0 || best_cost >= cost))
701 || best_cost > cost)
703 best_class = class;
704 best_size = reg_class_size[class];
705 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
709 if (best_size == 0)
710 abort ();
712 return best_class;
715 /* Return the number of a previously made reload that can be combined with
716 a new one, or n_reloads if none of the existing reloads can be used.
717 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
718 push_reload, they determine the kind of the new reload that we try to
719 combine. P_IN points to the corresponding value of IN, which can be
720 modified by this function.
721 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
723 static int
724 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
725 enum reload_type type, int opnum, int dont_share)
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
740 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
741 for the same thing since that can cause us to need more reload registers
742 than we otherwise would. */
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (class, rld[i].class)
746 || reg_class_subset_p (rld[i].class, class))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
757 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
758 return i;
760 /* Reloading a plain reg for input can match a reload to postincrement
761 that reg, since the postincrement's value is the right value.
762 Likewise, it can match a preincrement reload, since we regard
763 the preincrementation as happening before any ref in this insn
764 to that register. */
765 for (i = 0; i < n_reloads; i++)
766 if ((reg_class_subset_p (class, rld[i].class)
767 || reg_class_subset_p (rld[i].class, class))
768 /* If the existing reload has a register, it must fit our
769 class. */
770 && (rld[i].reg_rtx == 0
771 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
772 true_regnum (rld[i].reg_rtx)))
773 && out == 0 && rld[i].out == 0 && rld[i].in != 0
774 && ((REG_P (in)
775 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
776 && MATCHES (XEXP (rld[i].in, 0), in))
777 || (REG_P (rld[i].in)
778 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
779 && MATCHES (XEXP (in, 0), rld[i].in)))
780 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
781 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
782 && MERGABLE_RELOADS (type, rld[i].when_needed,
783 opnum, rld[i].opnum))
785 /* Make sure reload_in ultimately has the increment,
786 not the plain register. */
787 if (REG_P (in))
788 *p_in = rld[i].in;
789 return i;
791 return n_reloads;
794 /* Return nonzero if X is a SUBREG which will require reloading of its
795 SUBREG_REG expression. */
797 static int
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
800 rtx inner;
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
804 return 0;
806 inner = SUBREG_REG (x);
808 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810 return 1;
812 /* If INNER is not a hard register, then INNER will not need to
813 be reloaded. */
814 if (!REG_P (inner)
815 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
816 return 0;
818 /* If INNER is not ok for MODE, then INNER will need reloading. */
819 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
820 return 1;
822 /* If the outer part is a word or smaller, INNER larger than a
823 word and the number of regs for INNER is not the same as the
824 number of words in INNER, then INNER will need reloading. */
825 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 && output
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
832 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
833 requiring an extra reload register. The caller has already found that
834 IN contains some reference to REGNO, so check that we can produce the
835 new value in a single step. E.g. if we have
836 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
837 instruction that adds one to a register, this should succeed.
838 However, if we have something like
839 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
840 needs to be loaded into a register first, we need a separate reload
841 register.
842 Such PLUS reloads are generated by find_reload_address_part.
843 The out-of-range PLUS expressions are usually introduced in the instruction
844 patterns by register elimination and substituting pseudos without a home
845 by their function-invariant equivalences. */
846 static int
847 can_reload_into (rtx in, int regno, enum machine_mode mode)
849 rtx dst, test_insn;
850 int r = 0;
851 struct recog_data save_recog_data;
853 /* For matching constraints, we often get notional input reloads where
854 we want to use the original register as the reload register. I.e.
855 technically this is a non-optional input-output reload, but IN is
856 already a valid register, and has been chosen as the reload register.
857 Speed this up, since it trivially works. */
858 if (REG_P (in))
859 return 1;
861 /* To test MEMs properly, we'd have to take into account all the reloads
862 that are already scheduled, which can become quite complicated.
863 And since we've already handled address reloads for this MEM, it
864 should always succeed anyway. */
865 if (MEM_P (in))
866 return 1;
868 /* If we can make a simple SET insn that does the job, everything should
869 be fine. */
870 dst = gen_rtx_REG (mode, regno);
871 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
872 save_recog_data = recog_data;
873 if (recog_memoized (test_insn) >= 0)
875 extract_insn (test_insn);
876 r = constrain_operands (1);
878 recog_data = save_recog_data;
879 return r;
882 /* Record one reload that needs to be performed.
883 IN is an rtx saying where the data are to be found before this instruction.
884 OUT says where they must be stored after the instruction.
885 (IN is zero for data not read, and OUT is zero for data not written.)
886 INLOC and OUTLOC point to the places in the instructions where
887 IN and OUT were found.
888 If IN and OUT are both nonzero, it means the same register must be used
889 to reload both IN and OUT.
891 CLASS is a register class required for the reloaded data.
892 INMODE is the machine mode that the instruction requires
893 for the reg that replaces IN and OUTMODE is likewise for OUT.
895 If IN is zero, then OUT's location and mode should be passed as
896 INLOC and INMODE.
898 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
900 OPTIONAL nonzero means this reload does not need to be performed:
901 it can be discarded if that is more convenient.
903 OPNUM and TYPE say what the purpose of this reload is.
905 The return value is the reload-number for this reload.
907 If both IN and OUT are nonzero, in some rare cases we might
908 want to make two separate reloads. (Actually we never do this now.)
909 Therefore, the reload-number for OUT is stored in
910 output_reloadnum when we return; the return value applies to IN.
911 Usually (presently always), when IN and OUT are nonzero,
912 the two reload-numbers are equal, but the caller should be careful to
913 distinguish them. */
916 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
917 enum reg_class class, enum machine_mode inmode,
918 enum machine_mode outmode, int strict_low, int optional,
919 int opnum, enum reload_type type)
921 int i;
922 int dont_share = 0;
923 int dont_remove_subreg = 0;
924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 int secondary_in_reload = -1, secondary_out_reload = -1;
926 enum insn_code secondary_in_icode = CODE_FOR_nothing;
927 enum insn_code secondary_out_icode = CODE_FOR_nothing;
929 /* INMODE and/or OUTMODE could be VOIDmode if no mode
930 has been specified for the operand. In that case,
931 use the operand's mode as the mode to reload. */
932 if (inmode == VOIDmode && in != 0)
933 inmode = GET_MODE (in);
934 if (outmode == VOIDmode && out != 0)
935 outmode = GET_MODE (out);
937 /* If IN is a pseudo register everywhere-equivalent to a constant, and
938 it is not in a hard register, reload straight from the constant,
939 since we want to get rid of such pseudo registers.
940 Often this is done earlier, but not always in find_reloads_address. */
941 if (in != 0 && REG_P (in))
943 int regno = REGNO (in);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 in = reg_equiv_constant[regno];
950 /* Likewise for OUT. Of course, OUT will never be equivalent to
951 an actual constant, but it might be equivalent to a memory location
952 (in the case of a parameter). */
953 if (out != 0 && REG_P (out))
955 int regno = REGNO (out);
957 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
958 && reg_equiv_constant[regno] != 0)
959 out = reg_equiv_constant[regno];
962 /* If we have a read-write operand with an address side-effect,
963 change either IN or OUT so the side-effect happens only once. */
964 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
965 switch (GET_CODE (XEXP (in, 0)))
967 case POST_INC: case POST_DEC: case POST_MODIFY:
968 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
969 break;
971 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
972 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
973 break;
975 default:
976 break;
979 /* If we are reloading a (SUBREG constant ...), really reload just the
980 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
981 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
982 a pseudo and hence will become a MEM) with M1 wider than M2 and the
983 register is a pseudo, also reload the inside expression.
984 For machines that extend byte loads, do this for any SUBREG of a pseudo
985 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
986 M2 is an integral mode that gets extended when loaded.
987 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
988 either M1 is not valid for R or M2 is wider than a word but we only
989 need one word to store an M2-sized quantity in R.
990 (However, if OUT is nonzero, we need to reload the reg *and*
991 the subreg, so do nothing here, and let following statement handle it.)
993 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
994 we can't handle it here because CONST_INT does not indicate a mode.
996 Similarly, we must reload the inside expression if we have a
997 STRICT_LOW_PART (presumably, in == out in the cas).
999 Also reload the inner expression if it does not require a secondary
1000 reload but the SUBREG does.
1002 Finally, reload the inner expression if it is a register that is in
1003 the class whose registers cannot be referenced in a different size
1004 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1005 cannot reload just the inside since we might end up with the wrong
1006 register class. But if it is inside a STRICT_LOW_PART, we have
1007 no choice, so we hope we do get the right register class there. */
1009 if (in != 0 && GET_CODE (in) == SUBREG
1010 && (subreg_lowpart_p (in) || strict_low)
1011 #ifdef CANNOT_CHANGE_MODE_CLASS
1012 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1013 #endif
1014 && (CONSTANT_P (SUBREG_REG (in))
1015 || GET_CODE (SUBREG_REG (in)) == PLUS
1016 || strict_low
1017 || (((REG_P (SUBREG_REG (in))
1018 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1019 || MEM_P (SUBREG_REG (in)))
1020 && ((GET_MODE_SIZE (inmode)
1021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 #ifdef LOAD_EXTEND_OP
1023 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1025 <= UNITS_PER_WORD)
1026 && (GET_MODE_SIZE (inmode)
1027 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1029 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1030 #endif
1031 #ifdef WORD_REGISTER_OPERATIONS
1032 || ((GET_MODE_SIZE (inmode)
1033 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1034 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1035 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1036 / UNITS_PER_WORD)))
1037 #endif
1039 || (REG_P (SUBREG_REG (in))
1040 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1041 /* The case where out is nonzero
1042 is handled differently in the following statement. */
1043 && (out == 0 || subreg_lowpart_p (in))
1044 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1045 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1046 > UNITS_PER_WORD)
1047 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 / UNITS_PER_WORD)
1049 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1050 [GET_MODE (SUBREG_REG (in))]))
1051 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1052 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1053 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1054 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1055 GET_MODE (SUBREG_REG (in)),
1056 SUBREG_REG (in))
1057 == NO_REGS))
1058 #endif
1059 #ifdef CANNOT_CHANGE_MODE_CLASS
1060 || (REG_P (SUBREG_REG (in))
1061 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1062 && REG_CANNOT_CHANGE_MODE_P
1063 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1064 #endif
1067 in_subreg_loc = inloc;
1068 inloc = &SUBREG_REG (in);
1069 in = *inloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (MEM_P (in))
1072 /* This is supposed to happen only for paradoxical subregs made by
1073 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1074 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1075 abort ();
1076 #endif
1077 inmode = GET_MODE (in);
1080 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1081 either M1 is not valid for R or M2 is wider than a word but we only
1082 need one word to store an M2-sized quantity in R.
1084 However, we must reload the inner reg *as well as* the subreg in
1085 that case. */
1087 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0. */
1090 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1092 enum reg_class in_class = class;
1094 if (REG_P (SUBREG_REG (in)))
1095 in_class
1096 = find_valid_class (inmode,
1097 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1098 GET_MODE (SUBREG_REG (in)),
1099 SUBREG_BYTE (in),
1100 GET_MODE (in)),
1101 REGNO (SUBREG_REG (in)));
1103 /* This relies on the fact that emit_reload_insns outputs the
1104 instructions for input reloads of type RELOAD_OTHER in the same
1105 order as the reloads. Thus if the outer reload is also of type
1106 RELOAD_OTHER, we are guaranteed that this inner reload will be
1107 output before the outer reload. */
1108 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1109 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1110 dont_remove_subreg = 1;
1113 /* Similarly for paradoxical and problematical SUBREGs on the output.
1114 Note that there is no reason we need worry about the previous value
1115 of SUBREG_REG (out); even if wider than out,
1116 storing in a subreg is entitled to clobber it all
1117 (except in the case of STRICT_LOW_PART,
1118 and in that case the constraint should label it input-output.) */
1119 if (out != 0 && GET_CODE (out) == SUBREG
1120 && (subreg_lowpart_p (out) || strict_low)
1121 #ifdef CANNOT_CHANGE_MODE_CLASS
1122 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1123 #endif
1124 && (CONSTANT_P (SUBREG_REG (out))
1125 || strict_low
1126 || (((REG_P (SUBREG_REG (out))
1127 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1128 || MEM_P (SUBREG_REG (out)))
1129 && ((GET_MODE_SIZE (outmode)
1130 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1131 #ifdef WORD_REGISTER_OPERATIONS
1132 || ((GET_MODE_SIZE (outmode)
1133 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1134 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1135 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1136 / UNITS_PER_WORD)))
1137 #endif
1139 || (REG_P (SUBREG_REG (out))
1140 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1141 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1142 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1143 > UNITS_PER_WORD)
1144 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1145 / UNITS_PER_WORD)
1146 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1147 [GET_MODE (SUBREG_REG (out))]))
1148 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1149 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1150 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1151 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1152 GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #endif
1156 #ifdef CANNOT_CHANGE_MODE_CLASS
1157 || (REG_P (SUBREG_REG (out))
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1160 GET_MODE (SUBREG_REG (out)),
1161 outmode))
1162 #endif
1165 out_subreg_loc = outloc;
1166 outloc = &SUBREG_REG (out);
1167 out = *outloc;
1168 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1169 if (MEM_P (out)
1170 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1171 abort ();
1172 #endif
1173 outmode = GET_MODE (out);
1176 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1177 either M1 is not valid for R or M2 is wider than a word but we only
1178 need one word to store an M2-sized quantity in R.
1180 However, we must reload the inner reg *as well as* the subreg in
1181 that case. In this case, the inner reg is an in-out reload. */
1183 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1185 /* This relies on the fact that emit_reload_insns outputs the
1186 instructions for output reloads of type RELOAD_OTHER in reverse
1187 order of the reloads. Thus if the outer reload is also of type
1188 RELOAD_OTHER, we are guaranteed that this inner reload will be
1189 output after the outer reload. */
1190 dont_remove_subreg = 1;
1191 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1192 &SUBREG_REG (out),
1193 find_valid_class (outmode,
1194 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1195 GET_MODE (SUBREG_REG (out)),
1196 SUBREG_BYTE (out),
1197 GET_MODE (out)),
1198 REGNO (SUBREG_REG (out))),
1199 VOIDmode, VOIDmode, 0, 0,
1200 opnum, RELOAD_OTHER);
1203 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1204 if (in != 0 && out != 0 && MEM_P (out)
1205 && (REG_P (in) || MEM_P (in))
1206 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1207 dont_share = 1;
1209 /* If IN is a SUBREG of a hard register, make a new REG. This
1210 simplifies some of the cases below. */
1212 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1213 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1214 && ! dont_remove_subreg)
1215 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1217 /* Similarly for OUT. */
1218 if (out != 0 && GET_CODE (out) == SUBREG
1219 && REG_P (SUBREG_REG (out))
1220 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1221 && ! dont_remove_subreg)
1222 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1224 /* Narrow down the class of register wanted if that is
1225 desirable on this machine for efficiency. */
1226 if (in != 0)
1227 class = PREFERRED_RELOAD_CLASS (in, class);
1229 /* Output reloads may need analogous treatment, different in detail. */
1230 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1231 if (out != 0)
1232 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1233 #endif
1235 /* Make sure we use a class that can handle the actual pseudo
1236 inside any subreg. For example, on the 386, QImode regs
1237 can appear within SImode subregs. Although GENERAL_REGS
1238 can handle SImode, QImode needs a smaller class. */
1239 #ifdef LIMIT_RELOAD_CLASS
1240 if (in_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (inmode, class);
1242 else if (in != 0 && GET_CODE (in) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1245 if (out_subreg_loc)
1246 class = LIMIT_RELOAD_CLASS (outmode, class);
1247 if (out != 0 && GET_CODE (out) == SUBREG)
1248 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1249 #endif
1251 /* Verify that this class is at least possible for the mode that
1252 is specified. */
1253 if (this_insn_is_asm)
1255 enum machine_mode mode;
1256 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1257 mode = inmode;
1258 else
1259 mode = outmode;
1260 if (mode == VOIDmode)
1262 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1263 mode = word_mode;
1264 if (in != 0)
1265 inmode = word_mode;
1266 if (out != 0)
1267 outmode = word_mode;
1269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1270 if (HARD_REGNO_MODE_OK (i, mode)
1271 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1273 int nregs = hard_regno_nregs[i][mode];
1275 int j;
1276 for (j = 1; j < nregs; j++)
1277 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1278 break;
1279 if (j == nregs)
1280 break;
1282 if (i == FIRST_PSEUDO_REGISTER)
1284 error_for_asm (this_insn, "impossible register constraint in `asm'");
1285 class = ALL_REGS;
1289 /* Optional output reloads are always OK even if we have no register class,
1290 since the function of these reloads is only to have spill_reg_store etc.
1291 set, so that the storing insn can be deleted later. */
1292 if (class == NO_REGS
1293 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1294 abort ();
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1305 if (in != 0)
1306 secondary_in_reload
1307 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1308 &secondary_in_icode);
1309 #endif
1311 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1312 if (out != 0 && GET_CODE (out) != SCRATCH)
1313 secondary_out_reload
1314 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1315 type, &secondary_out_icode);
1316 #endif
1318 /* We found no existing reload suitable for re-use.
1319 So add an additional reload. */
1321 #ifdef SECONDARY_MEMORY_NEEDED
1322 /* If a memory location is needed for the copy, make one. */
1323 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1324 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1326 class, inmode))
1327 get_secondary_mem (in, inmode, opnum, type);
1328 #endif
1330 i = n_reloads;
1331 rld[i].in = in;
1332 rld[i].out = out;
1333 rld[i].class = class;
1334 rld[i].inmode = inmode;
1335 rld[i].outmode = outmode;
1336 rld[i].reg_rtx = 0;
1337 rld[i].optional = optional;
1338 rld[i].inc = 0;
1339 rld[i].nocombine = 0;
1340 rld[i].in_reg = inloc ? *inloc : 0;
1341 rld[i].out_reg = outloc ? *outloc : 0;
1342 rld[i].opnum = opnum;
1343 rld[i].when_needed = type;
1344 rld[i].secondary_in_reload = secondary_in_reload;
1345 rld[i].secondary_out_reload = secondary_out_reload;
1346 rld[i].secondary_in_icode = secondary_in_icode;
1347 rld[i].secondary_out_icode = secondary_out_icode;
1348 rld[i].secondary_p = 0;
1350 n_reloads++;
1352 #ifdef SECONDARY_MEMORY_NEEDED
1353 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1355 && SECONDARY_MEMORY_NEEDED (class,
1356 REGNO_REG_CLASS (reg_or_subregno (out)),
1357 outmode))
1358 get_secondary_mem (out, outmode, opnum, type);
1359 #endif
1361 else
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
1373 if (outmode != VOIDmode
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
1376 if (in != 0)
1378 rtx in_reg = inloc ? *inloc : 0;
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
1383 address reloads altogether.
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
1398 if (opnum > rld[i].opnum)
1400 remove_address_replacements (in);
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
1404 else
1405 remove_address_replacements (rld[i].in);
1407 rld[i].in = in;
1408 rld[i].in_reg = in_reg;
1410 if (out != 0)
1412 rld[i].out = out;
1413 rld[i].out_reg = outloc ? *outloc : 0;
1415 if (reg_class_subset_p (class, rld[i].class))
1416 rld[i].class = class;
1417 rld[i].optional &= optional;
1418 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1419 opnum, rld[i].opnum))
1420 rld[i].when_needed = RELOAD_OTHER;
1421 rld[i].opnum = MIN (rld[i].opnum, opnum);
1424 /* If the ostensible rtx being reloaded differs from the rtx found
1425 in the location to substitute, this reload is not safe to combine
1426 because we cannot reliably tell whether it appears in the insn. */
1428 if (in != 0 && in != *inloc)
1429 rld[i].nocombine = 1;
1431 #if 0
1432 /* This was replaced by changes in find_reloads_address_1 and the new
1433 function inc_for_reload, which go with a new meaning of reload_inc. */
1435 /* If this is an IN/OUT reload in an insn that sets the CC,
1436 it must be for an autoincrement. It doesn't work to store
1437 the incremented value after the insn because that would clobber the CC.
1438 So we must do the increment of the value reloaded from,
1439 increment it, store it back, then decrement again. */
1440 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1442 out = 0;
1443 rld[i].out = 0;
1444 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1445 /* If we did not find a nonzero amount-to-increment-by,
1446 that contradicts the belief that IN is being incremented
1447 in an address in this insn. */
1448 if (rld[i].inc == 0)
1449 abort ();
1451 #endif
1453 /* If we will replace IN and OUT with the reload-reg,
1454 record where they are located so that substitution need
1455 not do a tree walk. */
1457 if (replace_reloads)
1459 if (inloc != 0)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->subreg_loc = in_subreg_loc;
1464 r->where = inloc;
1465 r->mode = inmode;
1467 if (outloc != 0 && outloc != inloc)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->where = outloc;
1472 r->subreg_loc = out_subreg_loc;
1473 r->mode = outmode;
1477 /* If this reload is just being introduced and it has both
1478 an incoming quantity and an outgoing quantity that are
1479 supposed to be made to match, see if either one of the two
1480 can serve as the place to reload into.
1482 If one of them is acceptable, set rld[i].reg_rtx
1483 to that one. */
1485 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1487 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1488 inmode, outmode,
1489 rld[i].class, i,
1490 earlyclobber_operand_p (out));
1492 /* If the outgoing register already contains the same value
1493 as the incoming one, we can dispense with loading it.
1494 The easiest way to tell the caller that is to give a phony
1495 value for the incoming operand (same as outgoing one). */
1496 if (rld[i].reg_rtx == out
1497 && (REG_P (in) || CONSTANT_P (in))
1498 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1499 static_reload_reg_p, i, inmode))
1500 rld[i].in = out;
1503 /* If this is an input reload and the operand contains a register that
1504 dies in this insn and is used nowhere else, see if it is the right class
1505 to be used for this reload. Use it if so. (This occurs most commonly
1506 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1507 this if it is also an output reload that mentions the register unless
1508 the output is a SUBREG that clobbers an entire register.
1510 Note that the operand might be one of the spill regs, if it is a
1511 pseudo reg and we are in a block where spilling has not taken place.
1512 But if there is no spilling in this block, that is OK.
1513 An explicitly used hard reg cannot be a spill reg. */
1515 if (rld[i].reg_rtx == 0 && in != 0)
1517 rtx note;
1518 int regno;
1519 enum machine_mode rel_mode = inmode;
1521 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1522 rel_mode = outmode;
1524 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1525 if (REG_NOTE_KIND (note) == REG_DEAD
1526 && REG_P (XEXP (note, 0))
1527 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1528 && reg_mentioned_p (XEXP (note, 0), in)
1529 && ! refers_to_regno_for_reload_p (regno,
1530 (regno
1531 + hard_regno_nregs[regno]
1532 [rel_mode]),
1533 PATTERN (this_insn), inloc)
1534 /* If this is also an output reload, IN cannot be used as
1535 the reload register if it is set in this insn unless IN
1536 is also OUT. */
1537 && (out == 0 || in == out
1538 || ! hard_reg_set_here_p (regno,
1539 (regno
1540 + hard_regno_nregs[regno]
1541 [rel_mode]),
1542 PATTERN (this_insn)))
1543 /* ??? Why is this code so different from the previous?
1544 Is there any simple coherent way to describe the two together?
1545 What's going on here. */
1546 && (in != out
1547 || (GET_CODE (in) == SUBREG
1548 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1549 / UNITS_PER_WORD)
1550 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1551 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1552 /* Make sure the operand fits in the reg that dies. */
1553 && (GET_MODE_SIZE (rel_mode)
1554 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1555 && HARD_REGNO_MODE_OK (regno, inmode)
1556 && HARD_REGNO_MODE_OK (regno, outmode))
1558 unsigned int offs;
1559 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1560 hard_regno_nregs[regno][outmode]);
1562 for (offs = 0; offs < nregs; offs++)
1563 if (fixed_regs[regno + offs]
1564 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1565 regno + offs))
1566 break;
1568 if (offs == nregs
1569 && (! (refers_to_regno_for_reload_p
1570 (regno, (regno + hard_regno_nregs[regno][inmode]),
1571 in, (rtx *)0))
1572 || can_reload_into (in, regno, inmode)))
1574 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1575 break;
1580 if (out)
1581 output_reloadnum = i;
1583 return i;
1586 /* Record an additional place we must replace a value
1587 for which we have already recorded a reload.
1588 RELOADNUM is the value returned by push_reload
1589 when the reload was recorded.
1590 This is used in insn patterns that use match_dup. */
1592 static void
1593 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1595 if (replace_reloads)
1597 struct replacement *r = &replacements[n_replacements++];
1598 r->what = reloadnum;
1599 r->where = loc;
1600 r->subreg_loc = 0;
1601 r->mode = mode;
1605 /* Duplicate any replacement we have recorded to apply at
1606 location ORIG_LOC to also be performed at DUP_LOC.
1607 This is used in insn patterns that use match_dup. */
1609 static void
1610 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1612 int i, n = n_replacements;
1614 for (i = 0; i < n; i++)
1616 struct replacement *r = &replacements[i];
1617 if (r->where == orig_loc)
1618 push_replacement (dup_loc, r->what, r->mode);
1622 /* Transfer all replacements that used to be in reload FROM to be in
1623 reload TO. */
1625 void
1626 transfer_replacements (int to, int from)
1628 int i;
1630 for (i = 0; i < n_replacements; i++)
1631 if (replacements[i].what == from)
1632 replacements[i].what = to;
1635 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1636 or a subpart of it. If we have any replacements registered for IN_RTX,
1637 cancel the reloads that were supposed to load them.
1638 Return nonzero if we canceled any reloads. */
1640 remove_address_replacements (rtx in_rtx)
1642 int i, j;
1643 char reload_flags[MAX_RELOADS];
1644 int something_changed = 0;
1646 memset (reload_flags, 0, sizeof reload_flags);
1647 for (i = 0, j = 0; i < n_replacements; i++)
1649 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1650 reload_flags[replacements[i].what] |= 1;
1651 else
1653 replacements[j++] = replacements[i];
1654 reload_flags[replacements[i].what] |= 2;
1657 /* Note that the following store must be done before the recursive calls. */
1658 n_replacements = j;
1660 for (i = n_reloads - 1; i >= 0; i--)
1662 if (reload_flags[i] == 1)
1664 deallocate_reload_reg (i);
1665 remove_address_replacements (rld[i].in);
1666 rld[i].in = 0;
1667 something_changed = 1;
1670 return something_changed;
1673 /* If there is only one output reload, and it is not for an earlyclobber
1674 operand, try to combine it with a (logically unrelated) input reload
1675 to reduce the number of reload registers needed.
1677 This is safe if the input reload does not appear in
1678 the value being output-reloaded, because this implies
1679 it is not needed any more once the original insn completes.
1681 If that doesn't work, see we can use any of the registers that
1682 die in this insn as a reload register. We can if it is of the right
1683 class and does not appear in the value being output-reloaded. */
1685 static void
1686 combine_reloads (void)
1688 int i;
1689 int output_reload = -1;
1690 int secondary_out = -1;
1691 rtx note;
1693 /* Find the output reload; return unless there is exactly one
1694 and that one is mandatory. */
1696 for (i = 0; i < n_reloads; i++)
1697 if (rld[i].out != 0)
1699 if (output_reload >= 0)
1700 return;
1701 output_reload = i;
1704 if (output_reload < 0 || rld[output_reload].optional)
1705 return;
1707 /* An input-output reload isn't combinable. */
1709 if (rld[output_reload].in != 0)
1710 return;
1712 /* If this reload is for an earlyclobber operand, we can't do anything. */
1713 if (earlyclobber_operand_p (rld[output_reload].out))
1714 return;
1716 /* If there is a reload for part of the address of this operand, we would
1717 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1718 its life to the point where doing this combine would not lower the
1719 number of spill registers needed. */
1720 for (i = 0; i < n_reloads; i++)
1721 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1722 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1723 && rld[i].opnum == rld[output_reload].opnum)
1724 return;
1726 /* Check each input reload; can we combine it? */
1728 for (i = 0; i < n_reloads; i++)
1729 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1730 /* Life span of this reload must not extend past main insn. */
1731 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1732 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1733 && rld[i].when_needed != RELOAD_OTHER
1734 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1735 == CLASS_MAX_NREGS (rld[output_reload].class,
1736 rld[output_reload].outmode))
1737 && rld[i].inc == 0
1738 && rld[i].reg_rtx == 0
1739 #ifdef SECONDARY_MEMORY_NEEDED
1740 /* Don't combine two reloads with different secondary
1741 memory locations. */
1742 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1743 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1744 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1746 #endif
1747 && (SMALL_REGISTER_CLASSES
1748 ? (rld[i].class == rld[output_reload].class)
1749 : (reg_class_subset_p (rld[i].class,
1750 rld[output_reload].class)
1751 || reg_class_subset_p (rld[output_reload].class,
1752 rld[i].class)))
1753 && (MATCHES (rld[i].in, rld[output_reload].out)
1754 /* Args reversed because the first arg seems to be
1755 the one that we imagine being modified
1756 while the second is the one that might be affected. */
1757 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1758 rld[i].in)
1759 /* However, if the input is a register that appears inside
1760 the output, then we also can't share.
1761 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1762 If the same reload reg is used for both reg 69 and the
1763 result to be stored in memory, then that result
1764 will clobber the address of the memory ref. */
1765 && ! (REG_P (rld[i].in)
1766 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1767 rld[output_reload].out))))
1768 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1769 rld[i].when_needed != RELOAD_FOR_INPUT)
1770 && (reg_class_size[(int) rld[i].class]
1771 || SMALL_REGISTER_CLASSES)
1772 /* We will allow making things slightly worse by combining an
1773 input and an output, but no worse than that. */
1774 && (rld[i].when_needed == RELOAD_FOR_INPUT
1775 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1777 int j;
1779 /* We have found a reload to combine with! */
1780 rld[i].out = rld[output_reload].out;
1781 rld[i].out_reg = rld[output_reload].out_reg;
1782 rld[i].outmode = rld[output_reload].outmode;
1783 /* Mark the old output reload as inoperative. */
1784 rld[output_reload].out = 0;
1785 /* The combined reload is needed for the entire insn. */
1786 rld[i].when_needed = RELOAD_OTHER;
1787 /* If the output reload had a secondary reload, copy it. */
1788 if (rld[output_reload].secondary_out_reload != -1)
1790 rld[i].secondary_out_reload
1791 = rld[output_reload].secondary_out_reload;
1792 rld[i].secondary_out_icode
1793 = rld[output_reload].secondary_out_icode;
1796 #ifdef SECONDARY_MEMORY_NEEDED
1797 /* Copy any secondary MEM. */
1798 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1799 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1800 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1801 #endif
1802 /* If required, minimize the register class. */
1803 if (reg_class_subset_p (rld[output_reload].class,
1804 rld[i].class))
1805 rld[i].class = rld[output_reload].class;
1807 /* Transfer all replacements from the old reload to the combined. */
1808 for (j = 0; j < n_replacements; j++)
1809 if (replacements[j].what == output_reload)
1810 replacements[j].what = i;
1812 return;
1815 /* If this insn has only one operand that is modified or written (assumed
1816 to be the first), it must be the one corresponding to this reload. It
1817 is safe to use anything that dies in this insn for that output provided
1818 that it does not occur in the output (we already know it isn't an
1819 earlyclobber. If this is an asm insn, give up. */
1821 if (INSN_CODE (this_insn) == -1)
1822 return;
1824 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1825 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1826 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1827 return;
1829 /* See if some hard register that dies in this insn and is not used in
1830 the output is the right class. Only works if the register we pick
1831 up can fully hold our output reload. */
1832 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1833 if (REG_NOTE_KIND (note) == REG_DEAD
1834 && REG_P (XEXP (note, 0))
1835 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1836 rld[output_reload].out)
1837 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1838 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1839 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1840 REGNO (XEXP (note, 0)))
1841 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1842 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1843 /* Ensure that a secondary or tertiary reload for this output
1844 won't want this register. */
1845 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1846 || (! (TEST_HARD_REG_BIT
1847 (reg_class_contents[(int) rld[secondary_out].class],
1848 REGNO (XEXP (note, 0))))
1849 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1850 || ! (TEST_HARD_REG_BIT
1851 (reg_class_contents[(int) rld[secondary_out].class],
1852 REGNO (XEXP (note, 0)))))))
1853 && ! fixed_regs[REGNO (XEXP (note, 0))])
1855 rld[output_reload].reg_rtx
1856 = gen_rtx_REG (rld[output_reload].outmode,
1857 REGNO (XEXP (note, 0)));
1858 return;
1862 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1863 See if one of IN and OUT is a register that may be used;
1864 this is desirable since a spill-register won't be needed.
1865 If so, return the register rtx that proves acceptable.
1867 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1868 CLASS is the register class required for the reload.
1870 If FOR_REAL is >= 0, it is the number of the reload,
1871 and in some cases when it can be discovered that OUT doesn't need
1872 to be computed, clear out rld[FOR_REAL].out.
1874 If FOR_REAL is -1, this should not be done, because this call
1875 is just to see if a register can be found, not to find and install it.
1877 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1878 puts an additional constraint on being able to use IN for OUT since
1879 IN must not appear elsewhere in the insn (it is assumed that IN itself
1880 is safe from the earlyclobber). */
1882 static rtx
1883 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1884 enum machine_mode inmode, enum machine_mode outmode,
1885 enum reg_class class, int for_real, int earlyclobber)
1887 rtx in = real_in;
1888 rtx out = real_out;
1889 int in_offset = 0;
1890 int out_offset = 0;
1891 rtx value = 0;
1893 /* If operands exceed a word, we can't use either of them
1894 unless they have the same size. */
1895 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1896 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1897 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1898 return 0;
1900 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1901 respectively refers to a hard register. */
1903 /* Find the inside of any subregs. */
1904 while (GET_CODE (out) == SUBREG)
1906 if (REG_P (SUBREG_REG (out))
1907 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1908 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1909 GET_MODE (SUBREG_REG (out)),
1910 SUBREG_BYTE (out),
1911 GET_MODE (out));
1912 out = SUBREG_REG (out);
1914 while (GET_CODE (in) == SUBREG)
1916 if (REG_P (SUBREG_REG (in))
1917 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1918 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1919 GET_MODE (SUBREG_REG (in)),
1920 SUBREG_BYTE (in),
1921 GET_MODE (in));
1922 in = SUBREG_REG (in);
1925 /* Narrow down the reg class, the same way push_reload will;
1926 otherwise we might find a dummy now, but push_reload won't. */
1927 class = PREFERRED_RELOAD_CLASS (in, class);
1929 /* See if OUT will do. */
1930 if (REG_P (out)
1931 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1933 unsigned int regno = REGNO (out) + out_offset;
1934 unsigned int nwords = hard_regno_nregs[regno][outmode];
1935 rtx saved_rtx;
1937 /* When we consider whether the insn uses OUT,
1938 ignore references within IN. They don't prevent us
1939 from copying IN into OUT, because those refs would
1940 move into the insn that reloads IN.
1942 However, we only ignore IN in its role as this reload.
1943 If the insn uses IN elsewhere and it contains OUT,
1944 that counts. We can't be sure it's the "same" operand
1945 so it might not go through this reload. */
1946 saved_rtx = *inloc;
1947 *inloc = const0_rtx;
1949 if (regno < FIRST_PSEUDO_REGISTER
1950 && HARD_REGNO_MODE_OK (regno, outmode)
1951 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1952 PATTERN (this_insn), outloc))
1954 unsigned int i;
1956 for (i = 0; i < nwords; i++)
1957 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1958 regno + i))
1959 break;
1961 if (i == nwords)
1963 if (REG_P (real_out))
1964 value = real_out;
1965 else
1966 value = gen_rtx_REG (outmode, regno);
1970 *inloc = saved_rtx;
1973 /* Consider using IN if OUT was not acceptable
1974 or if OUT dies in this insn (like the quotient in a divmod insn).
1975 We can't use IN unless it is dies in this insn,
1976 which means we must know accurately which hard regs are live.
1977 Also, the result can't go in IN if IN is used within OUT,
1978 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1979 if (hard_regs_live_known
1980 && REG_P (in)
1981 && REGNO (in) < FIRST_PSEUDO_REGISTER
1982 && (value == 0
1983 || find_reg_note (this_insn, REG_UNUSED, real_out))
1984 && find_reg_note (this_insn, REG_DEAD, real_in)
1985 && !fixed_regs[REGNO (in)]
1986 && HARD_REGNO_MODE_OK (REGNO (in),
1987 /* The only case where out and real_out might
1988 have different modes is where real_out
1989 is a subreg, and in that case, out
1990 has a real mode. */
1991 (GET_MODE (out) != VOIDmode
1992 ? GET_MODE (out) : outmode)))
1994 unsigned int regno = REGNO (in) + in_offset;
1995 unsigned int nwords = hard_regno_nregs[regno][inmode];
1997 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1998 && ! hard_reg_set_here_p (regno, regno + nwords,
1999 PATTERN (this_insn))
2000 && (! earlyclobber
2001 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2002 PATTERN (this_insn), inloc)))
2004 unsigned int i;
2006 for (i = 0; i < nwords; i++)
2007 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2008 regno + i))
2009 break;
2011 if (i == nwords)
2013 /* If we were going to use OUT as the reload reg
2014 and changed our mind, it means OUT is a dummy that
2015 dies here. So don't bother copying value to it. */
2016 if (for_real >= 0 && value == real_out)
2017 rld[for_real].out = 0;
2018 if (REG_P (real_in))
2019 value = real_in;
2020 else
2021 value = gen_rtx_REG (inmode, regno);
2026 return value;
2029 /* This page contains subroutines used mainly for determining
2030 whether the IN or an OUT of a reload can serve as the
2031 reload register. */
2033 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2036 earlyclobber_operand_p (rtx x)
2038 int i;
2040 for (i = 0; i < n_earlyclobbers; i++)
2041 if (reload_earlyclobbers[i] == x)
2042 return 1;
2044 return 0;
2047 /* Return 1 if expression X alters a hard reg in the range
2048 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2049 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2050 X should be the body of an instruction. */
2052 static int
2053 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2055 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2057 rtx op0 = SET_DEST (x);
2059 while (GET_CODE (op0) == SUBREG)
2060 op0 = SUBREG_REG (op0);
2061 if (REG_P (op0))
2063 unsigned int r = REGNO (op0);
2065 /* See if this reg overlaps range under consideration. */
2066 if (r < end_regno
2067 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2068 return 1;
2071 else if (GET_CODE (x) == PARALLEL)
2073 int i = XVECLEN (x, 0) - 1;
2075 for (; i >= 0; i--)
2076 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2077 return 1;
2080 return 0;
2083 /* Return 1 if ADDR is a valid memory address for mode MODE,
2084 and check that each pseudo reg has the proper kind of
2085 hard reg. */
2088 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2090 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2091 return 0;
2093 win:
2094 return 1;
2097 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2098 if they are the same hard reg, and has special hacks for
2099 autoincrement and autodecrement.
2100 This is specifically intended for find_reloads to use
2101 in determining whether two operands match.
2102 X is the operand whose number is the lower of the two.
2104 The value is 2 if Y contains a pre-increment that matches
2105 a non-incrementing address in X. */
2107 /* ??? To be completely correct, we should arrange to pass
2108 for X the output operand and for Y the input operand.
2109 For now, we assume that the output operand has the lower number
2110 because that is natural in (SET output (... input ...)). */
2113 operands_match_p (rtx x, rtx y)
2115 int i;
2116 RTX_CODE code = GET_CODE (x);
2117 const char *fmt;
2118 int success_2;
2120 if (x == y)
2121 return 1;
2122 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2123 && (REG_P (y) || (GET_CODE (y) == SUBREG
2124 && REG_P (SUBREG_REG (y)))))
2126 int j;
2128 if (code == SUBREG)
2130 i = REGNO (SUBREG_REG (x));
2131 if (i >= FIRST_PSEUDO_REGISTER)
2132 goto slow;
2133 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2134 GET_MODE (SUBREG_REG (x)),
2135 SUBREG_BYTE (x),
2136 GET_MODE (x));
2138 else
2139 i = REGNO (x);
2141 if (GET_CODE (y) == SUBREG)
2143 j = REGNO (SUBREG_REG (y));
2144 if (j >= FIRST_PSEUDO_REGISTER)
2145 goto slow;
2146 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2147 GET_MODE (SUBREG_REG (y)),
2148 SUBREG_BYTE (y),
2149 GET_MODE (y));
2151 else
2152 j = REGNO (y);
2154 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2155 multiple hard register group, so that for example (reg:DI 0) and
2156 (reg:SI 1) will be considered the same register. */
2157 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2158 && i < FIRST_PSEUDO_REGISTER)
2159 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2160 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2161 && j < FIRST_PSEUDO_REGISTER)
2162 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2164 return i == j;
2166 /* If two operands must match, because they are really a single
2167 operand of an assembler insn, then two postincrements are invalid
2168 because the assembler insn would increment only once.
2169 On the other hand, a postincrement matches ordinary indexing
2170 if the postincrement is the output operand. */
2171 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2172 return operands_match_p (XEXP (x, 0), y);
2173 /* Two preincrements are invalid
2174 because the assembler insn would increment only once.
2175 On the other hand, a preincrement matches ordinary indexing
2176 if the preincrement is the input operand.
2177 In this case, return 2, since some callers need to do special
2178 things when this happens. */
2179 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2180 || GET_CODE (y) == PRE_MODIFY)
2181 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2183 slow:
2185 /* Now we have disposed of all the cases
2186 in which different rtx codes can match. */
2187 if (code != GET_CODE (y))
2188 return 0;
2189 if (code == LABEL_REF)
2190 return XEXP (x, 0) == XEXP (y, 0);
2191 if (code == SYMBOL_REF)
2192 return XSTR (x, 0) == XSTR (y, 0);
2194 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2196 if (GET_MODE (x) != GET_MODE (y))
2197 return 0;
2199 /* Compare the elements. If any pair of corresponding elements
2200 fail to match, return 0 for the whole things. */
2202 success_2 = 0;
2203 fmt = GET_RTX_FORMAT (code);
2204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2206 int val, j;
2207 switch (fmt[i])
2209 case 'w':
2210 if (XWINT (x, i) != XWINT (y, i))
2211 return 0;
2212 break;
2214 case 'i':
2215 if (XINT (x, i) != XINT (y, i))
2216 return 0;
2217 break;
2219 case 'e':
2220 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2221 if (val == 0)
2222 return 0;
2223 /* If any subexpression returns 2,
2224 we should return 2 if we are successful. */
2225 if (val == 2)
2226 success_2 = 1;
2227 break;
2229 case '0':
2230 break;
2232 case 'E':
2233 if (XVECLEN (x, i) != XVECLEN (y, i))
2234 return 0;
2235 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2237 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2238 if (val == 0)
2239 return 0;
2240 if (val == 2)
2241 success_2 = 1;
2243 break;
2245 /* It is believed that rtx's at this level will never
2246 contain anything but integers and other rtx's,
2247 except for within LABEL_REFs and SYMBOL_REFs. */
2248 default:
2249 abort ();
2252 return 1 + success_2;
2255 /* Describe the range of registers or memory referenced by X.
2256 If X is a register, set REG_FLAG and put the first register
2257 number into START and the last plus one into END.
2258 If X is a memory reference, put a base address into BASE
2259 and a range of integer offsets into START and END.
2260 If X is pushing on the stack, we can assume it causes no trouble,
2261 so we set the SAFE field. */
2263 static struct decomposition
2264 decompose (rtx x)
2266 struct decomposition val;
2267 int all_const = 0;
2269 memset (&val, 0, sizeof (val));
2271 if (MEM_P (x))
2273 rtx base = NULL_RTX, offset = 0;
2274 rtx addr = XEXP (x, 0);
2276 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2277 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2279 val.base = XEXP (addr, 0);
2280 val.start = -GET_MODE_SIZE (GET_MODE (x));
2281 val.end = GET_MODE_SIZE (GET_MODE (x));
2282 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2283 return val;
2286 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2288 if (GET_CODE (XEXP (addr, 1)) == PLUS
2289 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2290 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2292 val.base = XEXP (addr, 0);
2293 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2294 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2295 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2296 return val;
2300 if (GET_CODE (addr) == CONST)
2302 addr = XEXP (addr, 0);
2303 all_const = 1;
2305 if (GET_CODE (addr) == PLUS)
2307 if (CONSTANT_P (XEXP (addr, 0)))
2309 base = XEXP (addr, 1);
2310 offset = XEXP (addr, 0);
2312 else if (CONSTANT_P (XEXP (addr, 1)))
2314 base = XEXP (addr, 0);
2315 offset = XEXP (addr, 1);
2319 if (offset == 0)
2321 base = addr;
2322 offset = const0_rtx;
2324 if (GET_CODE (offset) == CONST)
2325 offset = XEXP (offset, 0);
2326 if (GET_CODE (offset) == PLUS)
2328 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2330 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2331 offset = XEXP (offset, 0);
2333 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2335 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2336 offset = XEXP (offset, 1);
2338 else
2340 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2341 offset = const0_rtx;
2344 else if (GET_CODE (offset) != CONST_INT)
2346 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2347 offset = const0_rtx;
2350 if (all_const && GET_CODE (base) == PLUS)
2351 base = gen_rtx_CONST (GET_MODE (base), base);
2353 if (GET_CODE (offset) != CONST_INT)
2354 abort ();
2356 val.start = INTVAL (offset);
2357 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2358 val.base = base;
2359 return val;
2361 else if (REG_P (x))
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2367 /* A pseudo with no hard reg. */
2368 val.start = REGNO (x);
2369 val.end = val.start + 1;
2371 else
2372 /* A hard reg. */
2373 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2375 else if (GET_CODE (x) == SUBREG)
2377 if (!REG_P (SUBREG_REG (x)))
2378 /* This could be more precise, but it's good enough. */
2379 return decompose (SUBREG_REG (x));
2380 val.reg_flag = 1;
2381 val.start = true_regnum (x);
2382 if (val.start < 0)
2383 return decompose (SUBREG_REG (x));
2384 else
2385 /* A hard reg. */
2386 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2388 else if (CONSTANT_P (x)
2389 /* This hasn't been assigned yet, so it can't conflict yet. */
2390 || GET_CODE (x) == SCRATCH)
2391 val.safe = 1;
2392 else
2393 abort ();
2394 return val;
2397 /* Return 1 if altering Y will not modify the value of X.
2398 Y is also described by YDATA, which should be decompose (Y). */
2400 static int
2401 immune_p (rtx x, rtx y, struct decomposition ydata)
2403 struct decomposition xdata;
2405 if (ydata.reg_flag)
2406 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2407 if (ydata.safe)
2408 return 1;
2410 if (!MEM_P (y))
2411 abort ();
2412 /* If Y is memory and X is not, Y can't affect X. */
2413 if (!MEM_P (x))
2414 return 1;
2416 xdata = decompose (x);
2418 if (! rtx_equal_p (xdata.base, ydata.base))
2420 /* If bases are distinct symbolic constants, there is no overlap. */
2421 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2422 return 1;
2423 /* Constants and stack slots never overlap. */
2424 if (CONSTANT_P (xdata.base)
2425 && (ydata.base == frame_pointer_rtx
2426 || ydata.base == hard_frame_pointer_rtx
2427 || ydata.base == stack_pointer_rtx))
2428 return 1;
2429 if (CONSTANT_P (ydata.base)
2430 && (xdata.base == frame_pointer_rtx
2431 || xdata.base == hard_frame_pointer_rtx
2432 || xdata.base == stack_pointer_rtx))
2433 return 1;
2434 /* If either base is variable, we don't know anything. */
2435 return 0;
2438 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2441 /* Similar, but calls decompose. */
2444 safe_from_earlyclobber (rtx op, rtx clobber)
2446 struct decomposition early_data;
2448 early_data = decompose (clobber);
2449 return immune_p (op, clobber, early_data);
2452 /* Main entry point of this file: search the body of INSN
2453 for values that need reloading and record them with push_reload.
2454 REPLACE nonzero means record also where the values occur
2455 so that subst_reloads can be used.
2457 IND_LEVELS says how many levels of indirection are supported by this
2458 machine; a value of zero means that a memory reference is not a valid
2459 memory address.
2461 LIVE_KNOWN says we have valid information about which hard
2462 regs are live at each point in the program; this is true when
2463 we are called from global_alloc but false when stupid register
2464 allocation has been done.
2466 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2467 which is nonnegative if the reg has been commandeered for reloading into.
2468 It is copied into STATIC_RELOAD_REG_P and referenced from there
2469 by various subroutines.
2471 Return TRUE if some operands need to be changed, because of swapping
2472 commutative operands, reg_equiv_address substitution, or whatever. */
2475 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2476 short *reload_reg_p)
2478 int insn_code_number;
2479 int i, j;
2480 int noperands;
2481 /* These start out as the constraints for the insn
2482 and they are chewed up as we consider alternatives. */
2483 char *constraints[MAX_RECOG_OPERANDS];
2484 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2485 a register. */
2486 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2487 char pref_or_nothing[MAX_RECOG_OPERANDS];
2488 /* Nonzero for a MEM operand whose entire address needs a reload.
2489 May be -1 to indicate the entire address may or may not need a reload. */
2490 int address_reloaded[MAX_RECOG_OPERANDS];
2491 /* Nonzero for an address operand that needs to be completely reloaded.
2492 May be -1 to indicate the entire operand may or may not need a reload. */
2493 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use for operand. */
2495 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2496 /* Value of enum reload_type to use within address of operand. */
2497 enum reload_type address_type[MAX_RECOG_OPERANDS];
2498 /* Save the usage of each operand. */
2499 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2500 int no_input_reloads = 0, no_output_reloads = 0;
2501 int n_alternatives;
2502 int this_alternative[MAX_RECOG_OPERANDS];
2503 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2504 char this_alternative_win[MAX_RECOG_OPERANDS];
2505 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2506 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2507 int this_alternative_matches[MAX_RECOG_OPERANDS];
2508 int swapped;
2509 int goal_alternative[MAX_RECOG_OPERANDS];
2510 int this_alternative_number;
2511 int goal_alternative_number = 0;
2512 int operand_reloadnum[MAX_RECOG_OPERANDS];
2513 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2514 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2515 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2516 char goal_alternative_win[MAX_RECOG_OPERANDS];
2517 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2518 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2519 int goal_alternative_swapped;
2520 int best;
2521 int commutative;
2522 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2523 rtx substed_operand[MAX_RECOG_OPERANDS];
2524 rtx body = PATTERN (insn);
2525 rtx set = single_set (insn);
2526 int goal_earlyclobber = 0, this_earlyclobber;
2527 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2528 int retval = 0;
2530 this_insn = insn;
2531 n_reloads = 0;
2532 n_replacements = 0;
2533 n_earlyclobbers = 0;
2534 replace_reloads = replace;
2535 hard_regs_live_known = live_known;
2536 static_reload_reg_p = reload_reg_p;
2538 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2539 neither are insns that SET cc0. Insns that use CC0 are not allowed
2540 to have any input reloads. */
2541 if (JUMP_P (insn) || CALL_P (insn))
2542 no_output_reloads = 1;
2544 #ifdef HAVE_cc0
2545 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2546 no_input_reloads = 1;
2547 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2548 no_output_reloads = 1;
2549 #endif
2551 #ifdef SECONDARY_MEMORY_NEEDED
2552 /* The eliminated forms of any secondary memory locations are per-insn, so
2553 clear them out here. */
2555 if (secondary_memlocs_elim_used)
2557 memset (secondary_memlocs_elim, 0,
2558 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2559 secondary_memlocs_elim_used = 0;
2561 #endif
2563 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2564 is cheap to move between them. If it is not, there may not be an insn
2565 to do the copy, so we may need a reload. */
2566 if (GET_CODE (body) == SET
2567 && REG_P (SET_DEST (body))
2568 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2569 && REG_P (SET_SRC (body))
2570 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2571 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2572 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2573 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2574 return 0;
2576 extract_insn (insn);
2578 noperands = reload_n_operands = recog_data.n_operands;
2579 n_alternatives = recog_data.n_alternatives;
2581 /* Just return "no reloads" if insn has no operands with constraints. */
2582 if (noperands == 0 || n_alternatives == 0)
2583 return 0;
2585 insn_code_number = INSN_CODE (insn);
2586 this_insn_is_asm = insn_code_number < 0;
2588 memcpy (operand_mode, recog_data.operand_mode,
2589 noperands * sizeof (enum machine_mode));
2590 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2592 commutative = -1;
2594 /* If we will need to know, later, whether some pair of operands
2595 are the same, we must compare them now and save the result.
2596 Reloading the base and index registers will clobber them
2597 and afterward they will fail to match. */
2599 for (i = 0; i < noperands; i++)
2601 char *p;
2602 int c;
2604 substed_operand[i] = recog_data.operand[i];
2605 p = constraints[i];
2607 modified[i] = RELOAD_READ;
2609 /* Scan this operand's constraint to see if it is an output operand,
2610 an in-out operand, is commutative, or should match another. */
2612 while ((c = *p))
2614 p += CONSTRAINT_LEN (c, p);
2615 switch (c)
2617 case '=':
2618 modified[i] = RELOAD_WRITE;
2619 break;
2620 case '+':
2621 modified[i] = RELOAD_READ_WRITE;
2622 break;
2623 case '%':
2625 /* The last operand should not be marked commutative. */
2626 if (i == noperands - 1)
2627 abort ();
2629 /* We currently only support one commutative pair of
2630 operands. Some existing asm code currently uses more
2631 than one pair. Previously, that would usually work,
2632 but sometimes it would crash the compiler. We
2633 continue supporting that case as well as we can by
2634 silently ignoring all but the first pair. In the
2635 future we may handle it correctly. */
2636 if (commutative < 0)
2637 commutative = i;
2638 else if (!this_insn_is_asm)
2639 abort ();
2641 break;
2642 /* Use of ISDIGIT is tempting here, but it may get expensive because
2643 of locale support we don't want. */
2644 case '0': case '1': case '2': case '3': case '4':
2645 case '5': case '6': case '7': case '8': case '9':
2647 c = strtoul (p - 1, &p, 10);
2649 operands_match[c][i]
2650 = operands_match_p (recog_data.operand[c],
2651 recog_data.operand[i]);
2653 /* An operand may not match itself. */
2654 if (c == i)
2655 abort ();
2657 /* If C can be commuted with C+1, and C might need to match I,
2658 then C+1 might also need to match I. */
2659 if (commutative >= 0)
2661 if (c == commutative || c == commutative + 1)
2663 int other = c + (c == commutative ? 1 : -1);
2664 operands_match[other][i]
2665 = operands_match_p (recog_data.operand[other],
2666 recog_data.operand[i]);
2668 if (i == commutative || i == commutative + 1)
2670 int other = i + (i == commutative ? 1 : -1);
2671 operands_match[c][other]
2672 = operands_match_p (recog_data.operand[c],
2673 recog_data.operand[other]);
2675 /* Note that C is supposed to be less than I.
2676 No need to consider altering both C and I because in
2677 that case we would alter one into the other. */
2684 /* Examine each operand that is a memory reference or memory address
2685 and reload parts of the addresses into index registers.
2686 Also here any references to pseudo regs that didn't get hard regs
2687 but are equivalent to constants get replaced in the insn itself
2688 with those constants. Nobody will ever see them again.
2690 Finally, set up the preferred classes of each operand. */
2692 for (i = 0; i < noperands; i++)
2694 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2696 address_reloaded[i] = 0;
2697 address_operand_reloaded[i] = 0;
2698 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2699 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2700 : RELOAD_OTHER);
2701 address_type[i]
2702 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2703 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2704 : RELOAD_OTHER);
2706 if (*constraints[i] == 0)
2707 /* Ignore things like match_operator operands. */
2709 else if (constraints[i][0] == 'p'
2710 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2712 address_operand_reloaded[i]
2713 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2714 recog_data.operand[i],
2715 recog_data.operand_loc[i],
2716 i, operand_type[i], ind_levels, insn);
2718 /* If we now have a simple operand where we used to have a
2719 PLUS or MULT, re-recognize and try again. */
2720 if ((OBJECT_P (*recog_data.operand_loc[i])
2721 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2722 && (GET_CODE (recog_data.operand[i]) == MULT
2723 || GET_CODE (recog_data.operand[i]) == PLUS))
2725 INSN_CODE (insn) = -1;
2726 retval = find_reloads (insn, replace, ind_levels, live_known,
2727 reload_reg_p);
2728 return retval;
2731 recog_data.operand[i] = *recog_data.operand_loc[i];
2732 substed_operand[i] = recog_data.operand[i];
2734 /* Address operands are reloaded in their existing mode,
2735 no matter what is specified in the machine description. */
2736 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2738 else if (code == MEM)
2740 address_reloaded[i]
2741 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2742 recog_data.operand_loc[i],
2743 XEXP (recog_data.operand[i], 0),
2744 &XEXP (recog_data.operand[i], 0),
2745 i, address_type[i], ind_levels, insn);
2746 recog_data.operand[i] = *recog_data.operand_loc[i];
2747 substed_operand[i] = recog_data.operand[i];
2749 else if (code == SUBREG)
2751 rtx reg = SUBREG_REG (recog_data.operand[i]);
2752 rtx op
2753 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2754 ind_levels,
2755 set != 0
2756 && &SET_DEST (set) == recog_data.operand_loc[i],
2757 insn,
2758 &address_reloaded[i]);
2760 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2761 that didn't get a hard register, emit a USE with a REG_EQUAL
2762 note in front so that we might inherit a previous, possibly
2763 wider reload. */
2765 if (replace
2766 && MEM_P (op)
2767 && REG_P (reg)
2768 && (GET_MODE_SIZE (GET_MODE (reg))
2769 >= GET_MODE_SIZE (GET_MODE (op))))
2770 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2771 insn),
2772 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2774 substed_operand[i] = recog_data.operand[i] = op;
2776 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2777 /* We can get a PLUS as an "operand" as a result of register
2778 elimination. See eliminate_regs and gen_reload. We handle
2779 a unary operator by reloading the operand. */
2780 substed_operand[i] = recog_data.operand[i]
2781 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2782 ind_levels, 0, insn,
2783 &address_reloaded[i]);
2784 else if (code == REG)
2786 /* This is equivalent to calling find_reloads_toplev.
2787 The code is duplicated for speed.
2788 When we find a pseudo always equivalent to a constant,
2789 we replace it by the constant. We must be sure, however,
2790 that we don't try to replace it in the insn in which it
2791 is being set. */
2792 int regno = REGNO (recog_data.operand[i]);
2793 if (reg_equiv_constant[regno] != 0
2794 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2796 /* Record the existing mode so that the check if constants are
2797 allowed will work when operand_mode isn't specified. */
2799 if (operand_mode[i] == VOIDmode)
2800 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2802 substed_operand[i] = recog_data.operand[i]
2803 = reg_equiv_constant[regno];
2805 if (reg_equiv_memory_loc[regno] != 0
2806 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2807 /* We need not give a valid is_set_dest argument since the case
2808 of a constant equivalence was checked above. */
2809 substed_operand[i] = recog_data.operand[i]
2810 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2811 ind_levels, 0, insn,
2812 &address_reloaded[i]);
2814 /* If the operand is still a register (we didn't replace it with an
2815 equivalent), get the preferred class to reload it into. */
2816 code = GET_CODE (recog_data.operand[i]);
2817 preferred_class[i]
2818 = ((code == REG && REGNO (recog_data.operand[i])
2819 >= FIRST_PSEUDO_REGISTER)
2820 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2821 : NO_REGS);
2822 pref_or_nothing[i]
2823 = (code == REG
2824 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2825 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2828 /* If this is simply a copy from operand 1 to operand 0, merge the
2829 preferred classes for the operands. */
2830 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2831 && recog_data.operand[1] == SET_SRC (set))
2833 preferred_class[0] = preferred_class[1]
2834 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2835 pref_or_nothing[0] |= pref_or_nothing[1];
2836 pref_or_nothing[1] |= pref_or_nothing[0];
2839 /* Now see what we need for pseudo-regs that didn't get hard regs
2840 or got the wrong kind of hard reg. For this, we must consider
2841 all the operands together against the register constraints. */
2843 best = MAX_RECOG_OPERANDS * 2 + 600;
2845 swapped = 0;
2846 goal_alternative_swapped = 0;
2847 try_swapped:
2849 /* The constraints are made of several alternatives.
2850 Each operand's constraint looks like foo,bar,... with commas
2851 separating the alternatives. The first alternatives for all
2852 operands go together, the second alternatives go together, etc.
2854 First loop over alternatives. */
2856 for (this_alternative_number = 0;
2857 this_alternative_number < n_alternatives;
2858 this_alternative_number++)
2860 /* Loop over operands for one constraint alternative. */
2861 /* LOSERS counts those that don't fit this alternative
2862 and would require loading. */
2863 int losers = 0;
2864 /* BAD is set to 1 if it some operand can't fit this alternative
2865 even after reloading. */
2866 int bad = 0;
2867 /* REJECT is a count of how undesirable this alternative says it is
2868 if any reloading is required. If the alternative matches exactly
2869 then REJECT is ignored, but otherwise it gets this much
2870 counted against it in addition to the reloading needed. Each
2871 ? counts three times here since we want the disparaging caused by
2872 a bad register class to only count 1/3 as much. */
2873 int reject = 0;
2875 this_earlyclobber = 0;
2877 for (i = 0; i < noperands; i++)
2879 char *p = constraints[i];
2880 char *end;
2881 int len;
2882 int win = 0;
2883 int did_match = 0;
2884 /* 0 => this operand can be reloaded somehow for this alternative. */
2885 int badop = 1;
2886 /* 0 => this operand can be reloaded if the alternative allows regs. */
2887 int winreg = 0;
2888 int c;
2889 int m;
2890 rtx operand = recog_data.operand[i];
2891 int offset = 0;
2892 /* Nonzero means this is a MEM that must be reloaded into a reg
2893 regardless of what the constraint says. */
2894 int force_reload = 0;
2895 int offmemok = 0;
2896 /* Nonzero if a constant forced into memory would be OK for this
2897 operand. */
2898 int constmemok = 0;
2899 int earlyclobber = 0;
2901 /* If the predicate accepts a unary operator, it means that
2902 we need to reload the operand, but do not do this for
2903 match_operator and friends. */
2904 if (UNARY_P (operand) && *p != 0)
2905 operand = XEXP (operand, 0);
2907 /* If the operand is a SUBREG, extract
2908 the REG or MEM (or maybe even a constant) within.
2909 (Constants can occur as a result of reg_equiv_constant.) */
2911 while (GET_CODE (operand) == SUBREG)
2913 /* Offset only matters when operand is a REG and
2914 it is a hard reg. This is because it is passed
2915 to reg_fits_class_p if it is a REG and all pseudos
2916 return 0 from that function. */
2917 if (REG_P (SUBREG_REG (operand))
2918 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2920 if (!subreg_offset_representable_p
2921 (REGNO (SUBREG_REG (operand)),
2922 GET_MODE (SUBREG_REG (operand)),
2923 SUBREG_BYTE (operand),
2924 GET_MODE (operand)))
2925 force_reload = 1;
2926 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2927 GET_MODE (SUBREG_REG (operand)),
2928 SUBREG_BYTE (operand),
2929 GET_MODE (operand));
2931 operand = SUBREG_REG (operand);
2932 /* Force reload if this is a constant or PLUS or if there may
2933 be a problem accessing OPERAND in the outer mode. */
2934 if (CONSTANT_P (operand)
2935 || GET_CODE (operand) == PLUS
2936 /* We must force a reload of paradoxical SUBREGs
2937 of a MEM because the alignment of the inner value
2938 may not be enough to do the outer reference. On
2939 big-endian machines, it may also reference outside
2940 the object.
2942 On machines that extend byte operations and we have a
2943 SUBREG where both the inner and outer modes are no wider
2944 than a word and the inner mode is narrower, is integral,
2945 and gets extended when loaded from memory, combine.c has
2946 made assumptions about the behavior of the machine in such
2947 register access. If the data is, in fact, in memory we
2948 must always load using the size assumed to be in the
2949 register and let the insn do the different-sized
2950 accesses.
2952 This is doubly true if WORD_REGISTER_OPERATIONS. In
2953 this case eliminate_regs has left non-paradoxical
2954 subregs for push_reload to see. Make sure it does
2955 by forcing the reload.
2957 ??? When is it right at this stage to have a subreg
2958 of a mem that is _not_ to be handled specially? IMO
2959 those should have been reduced to just a mem. */
2960 || ((MEM_P (operand)
2961 || (REG_P (operand)
2962 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2963 #ifndef WORD_REGISTER_OPERATIONS
2964 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2965 < BIGGEST_ALIGNMENT)
2966 && (GET_MODE_SIZE (operand_mode[i])
2967 > GET_MODE_SIZE (GET_MODE (operand))))
2968 || BYTES_BIG_ENDIAN
2969 #ifdef LOAD_EXTEND_OP
2970 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2971 && (GET_MODE_SIZE (GET_MODE (operand))
2972 <= UNITS_PER_WORD)
2973 && (GET_MODE_SIZE (operand_mode[i])
2974 > GET_MODE_SIZE (GET_MODE (operand)))
2975 && INTEGRAL_MODE_P (GET_MODE (operand))
2976 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2977 #endif
2979 #endif
2982 force_reload = 1;
2985 this_alternative[i] = (int) NO_REGS;
2986 this_alternative_win[i] = 0;
2987 this_alternative_match_win[i] = 0;
2988 this_alternative_offmemok[i] = 0;
2989 this_alternative_earlyclobber[i] = 0;
2990 this_alternative_matches[i] = -1;
2992 /* An empty constraint or empty alternative
2993 allows anything which matched the pattern. */
2994 if (*p == 0 || *p == ',')
2995 win = 1, badop = 0;
2997 /* Scan this alternative's specs for this operand;
2998 set WIN if the operand fits any letter in this alternative.
2999 Otherwise, clear BADOP if this operand could
3000 fit some letter after reloads,
3001 or set WINREG if this operand could fit after reloads
3002 provided the constraint allows some registers. */
3005 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3007 case '\0':
3008 len = 0;
3009 break;
3010 case ',':
3011 c = '\0';
3012 break;
3014 case '=': case '+': case '*':
3015 break;
3017 case '%':
3018 /* We only support one commutative marker, the first
3019 one. We already set commutative above. */
3020 break;
3022 case '?':
3023 reject += 6;
3024 break;
3026 case '!':
3027 reject = 600;
3028 break;
3030 case '#':
3031 /* Ignore rest of this alternative as far as
3032 reloading is concerned. */
3034 p++;
3035 while (*p && *p != ',');
3036 len = 0;
3037 break;
3039 case '0': case '1': case '2': case '3': case '4':
3040 case '5': case '6': case '7': case '8': case '9':
3041 m = strtoul (p, &end, 10);
3042 p = end;
3043 len = 0;
3045 this_alternative_matches[i] = m;
3046 /* We are supposed to match a previous operand.
3047 If we do, we win if that one did.
3048 If we do not, count both of the operands as losers.
3049 (This is too conservative, since most of the time
3050 only a single reload insn will be needed to make
3051 the two operands win. As a result, this alternative
3052 may be rejected when it is actually desirable.) */
3053 if ((swapped && (m != commutative || i != commutative + 1))
3054 /* If we are matching as if two operands were swapped,
3055 also pretend that operands_match had been computed
3056 with swapped.
3057 But if I is the second of those and C is the first,
3058 don't exchange them, because operands_match is valid
3059 only on one side of its diagonal. */
3060 ? (operands_match
3061 [(m == commutative || m == commutative + 1)
3062 ? 2 * commutative + 1 - m : m]
3063 [(i == commutative || i == commutative + 1)
3064 ? 2 * commutative + 1 - i : i])
3065 : operands_match[m][i])
3067 /* If we are matching a non-offsettable address where an
3068 offsettable address was expected, then we must reject
3069 this combination, because we can't reload it. */
3070 if (this_alternative_offmemok[m]
3071 && MEM_P (recog_data.operand[m])
3072 && this_alternative[m] == (int) NO_REGS
3073 && ! this_alternative_win[m])
3074 bad = 1;
3076 did_match = this_alternative_win[m];
3078 else
3080 /* Operands don't match. */
3081 rtx value;
3082 int loc1, loc2;
3083 /* Retroactively mark the operand we had to match
3084 as a loser, if it wasn't already. */
3085 if (this_alternative_win[m])
3086 losers++;
3087 this_alternative_win[m] = 0;
3088 if (this_alternative[m] == (int) NO_REGS)
3089 bad = 1;
3090 /* But count the pair only once in the total badness of
3091 this alternative, if the pair can be a dummy reload.
3092 The pointers in operand_loc are not swapped; swap
3093 them by hand if necessary. */
3094 if (swapped && i == commutative)
3095 loc1 = commutative + 1;
3096 else if (swapped && i == commutative + 1)
3097 loc1 = commutative;
3098 else
3099 loc1 = i;
3100 if (swapped && m == commutative)
3101 loc2 = commutative + 1;
3102 else if (swapped && m == commutative + 1)
3103 loc2 = commutative;
3104 else
3105 loc2 = m;
3106 value
3107 = find_dummy_reload (recog_data.operand[i],
3108 recog_data.operand[m],
3109 recog_data.operand_loc[loc1],
3110 recog_data.operand_loc[loc2],
3111 operand_mode[i], operand_mode[m],
3112 this_alternative[m], -1,
3113 this_alternative_earlyclobber[m]);
3115 if (value != 0)
3116 losers--;
3118 /* This can be fixed with reloads if the operand
3119 we are supposed to match can be fixed with reloads. */
3120 badop = 0;
3121 this_alternative[i] = this_alternative[m];
3123 /* If we have to reload this operand and some previous
3124 operand also had to match the same thing as this
3125 operand, we don't know how to do that. So reject this
3126 alternative. */
3127 if (! did_match || force_reload)
3128 for (j = 0; j < i; j++)
3129 if (this_alternative_matches[j]
3130 == this_alternative_matches[i])
3131 badop = 1;
3132 break;
3134 case 'p':
3135 /* All necessary reloads for an address_operand
3136 were handled in find_reloads_address. */
3137 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3138 win = 1;
3139 badop = 0;
3140 break;
3142 case 'm':
3143 if (force_reload)
3144 break;
3145 if (MEM_P (operand)
3146 || (REG_P (operand)
3147 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3148 && reg_renumber[REGNO (operand)] < 0))
3149 win = 1;
3150 if (CONST_POOL_OK_P (operand))
3151 badop = 0;
3152 constmemok = 1;
3153 break;
3155 case '<':
3156 if (MEM_P (operand)
3157 && ! address_reloaded[i]
3158 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3159 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3160 win = 1;
3161 break;
3163 case '>':
3164 if (MEM_P (operand)
3165 && ! address_reloaded[i]
3166 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3167 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3168 win = 1;
3169 break;
3171 /* Memory operand whose address is not offsettable. */
3172 case 'V':
3173 if (force_reload)
3174 break;
3175 if (MEM_P (operand)
3176 && ! (ind_levels ? offsettable_memref_p (operand)
3177 : offsettable_nonstrict_memref_p (operand))
3178 /* Certain mem addresses will become offsettable
3179 after they themselves are reloaded. This is important;
3180 we don't want our own handling of unoffsettables
3181 to override the handling of reg_equiv_address. */
3182 && !(REG_P (XEXP (operand, 0))
3183 && (ind_levels == 0
3184 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3185 win = 1;
3186 break;
3188 /* Memory operand whose address is offsettable. */
3189 case 'o':
3190 if (force_reload)
3191 break;
3192 if ((MEM_P (operand)
3193 /* If IND_LEVELS, find_reloads_address won't reload a
3194 pseudo that didn't get a hard reg, so we have to
3195 reject that case. */
3196 && ((ind_levels ? offsettable_memref_p (operand)
3197 : offsettable_nonstrict_memref_p (operand))
3198 /* A reloaded address is offsettable because it is now
3199 just a simple register indirect. */
3200 || address_reloaded[i] == 1))
3201 || (REG_P (operand)
3202 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3203 && reg_renumber[REGNO (operand)] < 0
3204 /* If reg_equiv_address is nonzero, we will be
3205 loading it into a register; hence it will be
3206 offsettable, but we cannot say that reg_equiv_mem
3207 is offsettable without checking. */
3208 && ((reg_equiv_mem[REGNO (operand)] != 0
3209 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3210 || (reg_equiv_address[REGNO (operand)] != 0))))
3211 win = 1;
3212 if (CONST_POOL_OK_P (operand)
3213 || MEM_P (operand))
3214 badop = 0;
3215 constmemok = 1;
3216 offmemok = 1;
3217 break;
3219 case '&':
3220 /* Output operand that is stored before the need for the
3221 input operands (and their index registers) is over. */
3222 earlyclobber = 1, this_earlyclobber = 1;
3223 break;
3225 case 'E':
3226 case 'F':
3227 if (GET_CODE (operand) == CONST_DOUBLE
3228 || (GET_CODE (operand) == CONST_VECTOR
3229 && (GET_MODE_CLASS (GET_MODE (operand))
3230 == MODE_VECTOR_FLOAT)))
3231 win = 1;
3232 break;
3234 case 'G':
3235 case 'H':
3236 if (GET_CODE (operand) == CONST_DOUBLE
3237 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3238 win = 1;
3239 break;
3241 case 's':
3242 if (GET_CODE (operand) == CONST_INT
3243 || (GET_CODE (operand) == CONST_DOUBLE
3244 && GET_MODE (operand) == VOIDmode))
3245 break;
3246 case 'i':
3247 if (CONSTANT_P (operand)
3248 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3249 win = 1;
3250 break;
3252 case 'n':
3253 if (GET_CODE (operand) == CONST_INT
3254 || (GET_CODE (operand) == CONST_DOUBLE
3255 && GET_MODE (operand) == VOIDmode))
3256 win = 1;
3257 break;
3259 case 'I':
3260 case 'J':
3261 case 'K':
3262 case 'L':
3263 case 'M':
3264 case 'N':
3265 case 'O':
3266 case 'P':
3267 if (GET_CODE (operand) == CONST_INT
3268 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3269 win = 1;
3270 break;
3272 case 'X':
3273 win = 1;
3274 break;
3276 case 'g':
3277 if (! force_reload
3278 /* A PLUS is never a valid operand, but reload can make
3279 it from a register when eliminating registers. */
3280 && GET_CODE (operand) != PLUS
3281 /* A SCRATCH is not a valid operand. */
3282 && GET_CODE (operand) != SCRATCH
3283 && (! CONSTANT_P (operand)
3284 || ! flag_pic
3285 || LEGITIMATE_PIC_OPERAND_P (operand))
3286 && (GENERAL_REGS == ALL_REGS
3287 || !REG_P (operand)
3288 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3289 && reg_renumber[REGNO (operand)] < 0)))
3290 win = 1;
3291 /* Drop through into 'r' case. */
3293 case 'r':
3294 this_alternative[i]
3295 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3296 goto reg;
3298 default:
3299 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3301 #ifdef EXTRA_CONSTRAINT_STR
3302 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3304 if (force_reload)
3305 break;
3306 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3307 win = 1;
3308 /* If the address was already reloaded,
3309 we win as well. */
3310 else if (MEM_P (operand)
3311 && address_reloaded[i] == 1)
3312 win = 1;
3313 /* Likewise if the address will be reloaded because
3314 reg_equiv_address is nonzero. For reg_equiv_mem
3315 we have to check. */
3316 else if (REG_P (operand)
3317 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3318 && reg_renumber[REGNO (operand)] < 0
3319 && ((reg_equiv_mem[REGNO (operand)] != 0
3320 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3321 || (reg_equiv_address[REGNO (operand)] != 0)))
3322 win = 1;
3324 /* If we didn't already win, we can reload
3325 constants via force_const_mem, and other
3326 MEMs by reloading the address like for 'o'. */
3327 if (CONST_POOL_OK_P (operand)
3328 || MEM_P (operand))
3329 badop = 0;
3330 constmemok = 1;
3331 offmemok = 1;
3332 break;
3334 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3336 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3337 win = 1;
3339 /* If we didn't already win, we can reload
3340 the address into a base register. */
3341 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3342 badop = 0;
3343 break;
3346 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3347 win = 1;
3348 #endif
3349 break;
3352 this_alternative[i]
3353 = (int) (reg_class_subunion
3354 [this_alternative[i]]
3355 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3356 reg:
3357 if (GET_MODE (operand) == BLKmode)
3358 break;
3359 winreg = 1;
3360 if (REG_P (operand)
3361 && reg_fits_class_p (operand, this_alternative[i],
3362 offset, GET_MODE (recog_data.operand[i])))
3363 win = 1;
3364 break;
3366 while ((p += len), c);
3368 constraints[i] = p;
3370 /* If this operand could be handled with a reg,
3371 and some reg is allowed, then this operand can be handled. */
3372 if (winreg && this_alternative[i] != (int) NO_REGS)
3373 badop = 0;
3375 /* Record which operands fit this alternative. */
3376 this_alternative_earlyclobber[i] = earlyclobber;
3377 if (win && ! force_reload)
3378 this_alternative_win[i] = 1;
3379 else if (did_match && ! force_reload)
3380 this_alternative_match_win[i] = 1;
3381 else
3383 int const_to_mem = 0;
3385 this_alternative_offmemok[i] = offmemok;
3386 losers++;
3387 if (badop)
3388 bad = 1;
3389 /* Alternative loses if it has no regs for a reg operand. */
3390 if (REG_P (operand)
3391 && this_alternative[i] == (int) NO_REGS
3392 && this_alternative_matches[i] < 0)
3393 bad = 1;
3395 /* If this is a constant that is reloaded into the desired
3396 class by copying it to memory first, count that as another
3397 reload. This is consistent with other code and is
3398 required to avoid choosing another alternative when
3399 the constant is moved into memory by this function on
3400 an early reload pass. Note that the test here is
3401 precisely the same as in the code below that calls
3402 force_const_mem. */
3403 if (CONST_POOL_OK_P (operand)
3404 && ((PREFERRED_RELOAD_CLASS (operand,
3405 (enum reg_class) this_alternative[i])
3406 == NO_REGS)
3407 || no_input_reloads)
3408 && operand_mode[i] != VOIDmode)
3410 const_to_mem = 1;
3411 if (this_alternative[i] != (int) NO_REGS)
3412 losers++;
3415 /* If we can't reload this value at all, reject this
3416 alternative. Note that we could also lose due to
3417 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3418 here. */
3420 if (! CONSTANT_P (operand)
3421 && (enum reg_class) this_alternative[i] != NO_REGS
3422 && (PREFERRED_RELOAD_CLASS (operand,
3423 (enum reg_class) this_alternative[i])
3424 == NO_REGS))
3425 bad = 1;
3427 /* Alternative loses if it requires a type of reload not
3428 permitted for this insn. We can always reload SCRATCH
3429 and objects with a REG_UNUSED note. */
3430 else if (GET_CODE (operand) != SCRATCH
3431 && modified[i] != RELOAD_READ && no_output_reloads
3432 && ! find_reg_note (insn, REG_UNUSED, operand))
3433 bad = 1;
3434 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3435 && ! const_to_mem)
3436 bad = 1;
3438 /* We prefer to reload pseudos over reloading other things,
3439 since such reloads may be able to be eliminated later.
3440 If we are reloading a SCRATCH, we won't be generating any
3441 insns, just using a register, so it is also preferred.
3442 So bump REJECT in other cases. Don't do this in the
3443 case where we are forcing a constant into memory and
3444 it will then win since we don't want to have a different
3445 alternative match then. */
3446 if (! (REG_P (operand)
3447 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3448 && GET_CODE (operand) != SCRATCH
3449 && ! (const_to_mem && constmemok))
3450 reject += 2;
3452 /* Input reloads can be inherited more often than output
3453 reloads can be removed, so penalize output reloads. */
3454 if (operand_type[i] != RELOAD_FOR_INPUT
3455 && GET_CODE (operand) != SCRATCH)
3456 reject++;
3459 /* If this operand is a pseudo register that didn't get a hard
3460 reg and this alternative accepts some register, see if the
3461 class that we want is a subset of the preferred class for this
3462 register. If not, but it intersects that class, use the
3463 preferred class instead. If it does not intersect the preferred
3464 class, show that usage of this alternative should be discouraged;
3465 it will be discouraged more still if the register is `preferred
3466 or nothing'. We do this because it increases the chance of
3467 reusing our spill register in a later insn and avoiding a pair
3468 of memory stores and loads.
3470 Don't bother with this if this alternative will accept this
3471 operand.
3473 Don't do this for a multiword operand, since it is only a
3474 small win and has the risk of requiring more spill registers,
3475 which could cause a large loss.
3477 Don't do this if the preferred class has only one register
3478 because we might otherwise exhaust the class. */
3480 if (! win && ! did_match
3481 && this_alternative[i] != (int) NO_REGS
3482 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3483 && reg_class_size[(int) preferred_class[i]] > 1)
3485 if (! reg_class_subset_p (this_alternative[i],
3486 preferred_class[i]))
3488 /* Since we don't have a way of forming the intersection,
3489 we just do something special if the preferred class
3490 is a subset of the class we have; that's the most
3491 common case anyway. */
3492 if (reg_class_subset_p (preferred_class[i],
3493 this_alternative[i]))
3494 this_alternative[i] = (int) preferred_class[i];
3495 else
3496 reject += (2 + 2 * pref_or_nothing[i]);
3501 /* Now see if any output operands that are marked "earlyclobber"
3502 in this alternative conflict with any input operands
3503 or any memory addresses. */
3505 for (i = 0; i < noperands; i++)
3506 if (this_alternative_earlyclobber[i]
3507 && (this_alternative_win[i] || this_alternative_match_win[i]))
3509 struct decomposition early_data;
3511 early_data = decompose (recog_data.operand[i]);
3513 if (modified[i] == RELOAD_READ)
3514 abort ();
3516 if (this_alternative[i] == NO_REGS)
3518 this_alternative_earlyclobber[i] = 0;
3519 if (this_insn_is_asm)
3520 error_for_asm (this_insn,
3521 "`&' constraint used with no register class");
3522 else
3523 abort ();
3526 for (j = 0; j < noperands; j++)
3527 /* Is this an input operand or a memory ref? */
3528 if ((MEM_P (recog_data.operand[j])
3529 || modified[j] != RELOAD_WRITE)
3530 && j != i
3531 /* Ignore things like match_operator operands. */
3532 && *recog_data.constraints[j] != 0
3533 /* Don't count an input operand that is constrained to match
3534 the early clobber operand. */
3535 && ! (this_alternative_matches[j] == i
3536 && rtx_equal_p (recog_data.operand[i],
3537 recog_data.operand[j]))
3538 /* Is it altered by storing the earlyclobber operand? */
3539 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3540 early_data))
3542 /* If the output is in a single-reg class,
3543 it's costly to reload it, so reload the input instead. */
3544 if (reg_class_size[this_alternative[i]] == 1
3545 && (REG_P (recog_data.operand[j])
3546 || GET_CODE (recog_data.operand[j]) == SUBREG))
3548 losers++;
3549 this_alternative_win[j] = 0;
3550 this_alternative_match_win[j] = 0;
3552 else
3553 break;
3555 /* If an earlyclobber operand conflicts with something,
3556 it must be reloaded, so request this and count the cost. */
3557 if (j != noperands)
3559 losers++;
3560 this_alternative_win[i] = 0;
3561 this_alternative_match_win[j] = 0;
3562 for (j = 0; j < noperands; j++)
3563 if (this_alternative_matches[j] == i
3564 && this_alternative_match_win[j])
3566 this_alternative_win[j] = 0;
3567 this_alternative_match_win[j] = 0;
3568 losers++;
3573 /* If one alternative accepts all the operands, no reload required,
3574 choose that alternative; don't consider the remaining ones. */
3575 if (losers == 0)
3577 /* Unswap these so that they are never swapped at `finish'. */
3578 if (commutative >= 0)
3580 recog_data.operand[commutative] = substed_operand[commutative];
3581 recog_data.operand[commutative + 1]
3582 = substed_operand[commutative + 1];
3584 for (i = 0; i < noperands; i++)
3586 goal_alternative_win[i] = this_alternative_win[i];
3587 goal_alternative_match_win[i] = this_alternative_match_win[i];
3588 goal_alternative[i] = this_alternative[i];
3589 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3590 goal_alternative_matches[i] = this_alternative_matches[i];
3591 goal_alternative_earlyclobber[i]
3592 = this_alternative_earlyclobber[i];
3594 goal_alternative_number = this_alternative_number;
3595 goal_alternative_swapped = swapped;
3596 goal_earlyclobber = this_earlyclobber;
3597 goto finish;
3600 /* REJECT, set by the ! and ? constraint characters and when a register
3601 would be reloaded into a non-preferred class, discourages the use of
3602 this alternative for a reload goal. REJECT is incremented by six
3603 for each ? and two for each non-preferred class. */
3604 losers = losers * 6 + reject;
3606 /* If this alternative can be made to work by reloading,
3607 and it needs less reloading than the others checked so far,
3608 record it as the chosen goal for reloading. */
3609 if (! bad && best > losers)
3611 for (i = 0; i < noperands; i++)
3613 goal_alternative[i] = this_alternative[i];
3614 goal_alternative_win[i] = this_alternative_win[i];
3615 goal_alternative_match_win[i] = this_alternative_match_win[i];
3616 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3617 goal_alternative_matches[i] = this_alternative_matches[i];
3618 goal_alternative_earlyclobber[i]
3619 = this_alternative_earlyclobber[i];
3621 goal_alternative_swapped = swapped;
3622 best = losers;
3623 goal_alternative_number = this_alternative_number;
3624 goal_earlyclobber = this_earlyclobber;
3628 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3629 then we need to try each alternative twice,
3630 the second time matching those two operands
3631 as if we had exchanged them.
3632 To do this, really exchange them in operands.
3634 If we have just tried the alternatives the second time,
3635 return operands to normal and drop through. */
3637 if (commutative >= 0)
3639 swapped = !swapped;
3640 if (swapped)
3642 enum reg_class tclass;
3643 int t;
3645 recog_data.operand[commutative] = substed_operand[commutative + 1];
3646 recog_data.operand[commutative + 1] = substed_operand[commutative];
3647 /* Swap the duplicates too. */
3648 for (i = 0; i < recog_data.n_dups; i++)
3649 if (recog_data.dup_num[i] == commutative
3650 || recog_data.dup_num[i] == commutative + 1)
3651 *recog_data.dup_loc[i]
3652 = recog_data.operand[(int) recog_data.dup_num[i]];
3654 tclass = preferred_class[commutative];
3655 preferred_class[commutative] = preferred_class[commutative + 1];
3656 preferred_class[commutative + 1] = tclass;
3658 t = pref_or_nothing[commutative];
3659 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3660 pref_or_nothing[commutative + 1] = t;
3662 memcpy (constraints, recog_data.constraints,
3663 noperands * sizeof (char *));
3664 goto try_swapped;
3666 else
3668 recog_data.operand[commutative] = substed_operand[commutative];
3669 recog_data.operand[commutative + 1]
3670 = substed_operand[commutative + 1];
3671 /* Unswap the duplicates too. */
3672 for (i = 0; i < recog_data.n_dups; i++)
3673 if (recog_data.dup_num[i] == commutative
3674 || recog_data.dup_num[i] == commutative + 1)
3675 *recog_data.dup_loc[i]
3676 = recog_data.operand[(int) recog_data.dup_num[i]];
3680 /* The operands don't meet the constraints.
3681 goal_alternative describes the alternative
3682 that we could reach by reloading the fewest operands.
3683 Reload so as to fit it. */
3685 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3687 /* No alternative works with reloads?? */
3688 if (insn_code_number >= 0)
3689 fatal_insn ("unable to generate reloads for:", insn);
3690 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3691 /* Avoid further trouble with this insn. */
3692 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3693 n_reloads = 0;
3694 return 0;
3697 /* Jump to `finish' from above if all operands are valid already.
3698 In that case, goal_alternative_win is all 1. */
3699 finish:
3701 /* Right now, for any pair of operands I and J that are required to match,
3702 with I < J,
3703 goal_alternative_matches[J] is I.
3704 Set up goal_alternative_matched as the inverse function:
3705 goal_alternative_matched[I] = J. */
3707 for (i = 0; i < noperands; i++)
3708 goal_alternative_matched[i] = -1;
3710 for (i = 0; i < noperands; i++)
3711 if (! goal_alternative_win[i]
3712 && goal_alternative_matches[i] >= 0)
3713 goal_alternative_matched[goal_alternative_matches[i]] = i;
3715 for (i = 0; i < noperands; i++)
3716 goal_alternative_win[i] |= goal_alternative_match_win[i];
3718 /* If the best alternative is with operands 1 and 2 swapped,
3719 consider them swapped before reporting the reloads. Update the
3720 operand numbers of any reloads already pushed. */
3722 if (goal_alternative_swapped)
3724 rtx tem;
3726 tem = substed_operand[commutative];
3727 substed_operand[commutative] = substed_operand[commutative + 1];
3728 substed_operand[commutative + 1] = tem;
3729 tem = recog_data.operand[commutative];
3730 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3731 recog_data.operand[commutative + 1] = tem;
3732 tem = *recog_data.operand_loc[commutative];
3733 *recog_data.operand_loc[commutative]
3734 = *recog_data.operand_loc[commutative + 1];
3735 *recog_data.operand_loc[commutative + 1] = tem;
3737 for (i = 0; i < n_reloads; i++)
3739 if (rld[i].opnum == commutative)
3740 rld[i].opnum = commutative + 1;
3741 else if (rld[i].opnum == commutative + 1)
3742 rld[i].opnum = commutative;
3746 for (i = 0; i < noperands; i++)
3748 operand_reloadnum[i] = -1;
3750 /* If this is an earlyclobber operand, we need to widen the scope.
3751 The reload must remain valid from the start of the insn being
3752 reloaded until after the operand is stored into its destination.
3753 We approximate this with RELOAD_OTHER even though we know that we
3754 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3756 One special case that is worth checking is when we have an
3757 output that is earlyclobber but isn't used past the insn (typically
3758 a SCRATCH). In this case, we only need have the reload live
3759 through the insn itself, but not for any of our input or output
3760 reloads.
3761 But we must not accidentally narrow the scope of an existing
3762 RELOAD_OTHER reload - leave these alone.
3764 In any case, anything needed to address this operand can remain
3765 however they were previously categorized. */
3767 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3768 operand_type[i]
3769 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3770 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3773 /* Any constants that aren't allowed and can't be reloaded
3774 into registers are here changed into memory references. */
3775 for (i = 0; i < noperands; i++)
3776 if (! goal_alternative_win[i]
3777 && CONST_POOL_OK_P (recog_data.operand[i])
3778 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3779 (enum reg_class) goal_alternative[i])
3780 == NO_REGS)
3781 || no_input_reloads)
3782 && operand_mode[i] != VOIDmode)
3784 substed_operand[i] = recog_data.operand[i]
3785 = find_reloads_toplev (force_const_mem (operand_mode[i],
3786 recog_data.operand[i]),
3787 i, address_type[i], ind_levels, 0, insn,
3788 NULL);
3789 if (alternative_allows_memconst (recog_data.constraints[i],
3790 goal_alternative_number))
3791 goal_alternative_win[i] = 1;
3794 /* Record the values of the earlyclobber operands for the caller. */
3795 if (goal_earlyclobber)
3796 for (i = 0; i < noperands; i++)
3797 if (goal_alternative_earlyclobber[i])
3798 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3800 /* Now record reloads for all the operands that need them. */
3801 for (i = 0; i < noperands; i++)
3802 if (! goal_alternative_win[i])
3804 /* Operands that match previous ones have already been handled. */
3805 if (goal_alternative_matches[i] >= 0)
3807 /* Handle an operand with a nonoffsettable address
3808 appearing where an offsettable address will do
3809 by reloading the address into a base register.
3811 ??? We can also do this when the operand is a register and
3812 reg_equiv_mem is not offsettable, but this is a bit tricky,
3813 so we don't bother with it. It may not be worth doing. */
3814 else if (goal_alternative_matched[i] == -1
3815 && goal_alternative_offmemok[i]
3816 && MEM_P (recog_data.operand[i]))
3818 operand_reloadnum[i]
3819 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3820 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3821 MODE_BASE_REG_CLASS (VOIDmode),
3822 GET_MODE (XEXP (recog_data.operand[i], 0)),
3823 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3824 rld[operand_reloadnum[i]].inc
3825 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3827 /* If this operand is an output, we will have made any
3828 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3829 now we are treating part of the operand as an input, so
3830 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3832 if (modified[i] == RELOAD_WRITE)
3834 for (j = 0; j < n_reloads; j++)
3836 if (rld[j].opnum == i)
3838 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3839 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3840 else if (rld[j].when_needed
3841 == RELOAD_FOR_OUTADDR_ADDRESS)
3842 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3847 else if (goal_alternative_matched[i] == -1)
3849 operand_reloadnum[i]
3850 = push_reload ((modified[i] != RELOAD_WRITE
3851 ? recog_data.operand[i] : 0),
3852 (modified[i] != RELOAD_READ
3853 ? recog_data.operand[i] : 0),
3854 (modified[i] != RELOAD_WRITE
3855 ? recog_data.operand_loc[i] : 0),
3856 (modified[i] != RELOAD_READ
3857 ? recog_data.operand_loc[i] : 0),
3858 (enum reg_class) goal_alternative[i],
3859 (modified[i] == RELOAD_WRITE
3860 ? VOIDmode : operand_mode[i]),
3861 (modified[i] == RELOAD_READ
3862 ? VOIDmode : operand_mode[i]),
3863 (insn_code_number < 0 ? 0
3864 : insn_data[insn_code_number].operand[i].strict_low),
3865 0, i, operand_type[i]);
3867 /* In a matching pair of operands, one must be input only
3868 and the other must be output only.
3869 Pass the input operand as IN and the other as OUT. */
3870 else if (modified[i] == RELOAD_READ
3871 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3873 operand_reloadnum[i]
3874 = push_reload (recog_data.operand[i],
3875 recog_data.operand[goal_alternative_matched[i]],
3876 recog_data.operand_loc[i],
3877 recog_data.operand_loc[goal_alternative_matched[i]],
3878 (enum reg_class) goal_alternative[i],
3879 operand_mode[i],
3880 operand_mode[goal_alternative_matched[i]],
3881 0, 0, i, RELOAD_OTHER);
3882 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3884 else if (modified[i] == RELOAD_WRITE
3885 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3887 operand_reloadnum[goal_alternative_matched[i]]
3888 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3889 recog_data.operand[i],
3890 recog_data.operand_loc[goal_alternative_matched[i]],
3891 recog_data.operand_loc[i],
3892 (enum reg_class) goal_alternative[i],
3893 operand_mode[goal_alternative_matched[i]],
3894 operand_mode[i],
3895 0, 0, i, RELOAD_OTHER);
3896 operand_reloadnum[i] = output_reloadnum;
3898 else if (insn_code_number >= 0)
3899 abort ();
3900 else
3902 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3903 /* Avoid further trouble with this insn. */
3904 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3905 n_reloads = 0;
3906 return 0;
3909 else if (goal_alternative_matched[i] < 0
3910 && goal_alternative_matches[i] < 0
3911 && address_operand_reloaded[i] != 1
3912 && optimize)
3914 /* For each non-matching operand that's a MEM or a pseudo-register
3915 that didn't get a hard register, make an optional reload.
3916 This may get done even if the insn needs no reloads otherwise. */
3918 rtx operand = recog_data.operand[i];
3920 while (GET_CODE (operand) == SUBREG)
3921 operand = SUBREG_REG (operand);
3922 if ((MEM_P (operand)
3923 || (REG_P (operand)
3924 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3925 /* If this is only for an output, the optional reload would not
3926 actually cause us to use a register now, just note that
3927 something is stored here. */
3928 && ((enum reg_class) goal_alternative[i] != NO_REGS
3929 || modified[i] == RELOAD_WRITE)
3930 && ! no_input_reloads
3931 /* An optional output reload might allow to delete INSN later.
3932 We mustn't make in-out reloads on insns that are not permitted
3933 output reloads.
3934 If this is an asm, we can't delete it; we must not even call
3935 push_reload for an optional output reload in this case,
3936 because we can't be sure that the constraint allows a register,
3937 and push_reload verifies the constraints for asms. */
3938 && (modified[i] == RELOAD_READ
3939 || (! no_output_reloads && ! this_insn_is_asm)))
3940 operand_reloadnum[i]
3941 = push_reload ((modified[i] != RELOAD_WRITE
3942 ? recog_data.operand[i] : 0),
3943 (modified[i] != RELOAD_READ
3944 ? recog_data.operand[i] : 0),
3945 (modified[i] != RELOAD_WRITE
3946 ? recog_data.operand_loc[i] : 0),
3947 (modified[i] != RELOAD_READ
3948 ? recog_data.operand_loc[i] : 0),
3949 (enum reg_class) goal_alternative[i],
3950 (modified[i] == RELOAD_WRITE
3951 ? VOIDmode : operand_mode[i]),
3952 (modified[i] == RELOAD_READ
3953 ? VOIDmode : operand_mode[i]),
3954 (insn_code_number < 0 ? 0
3955 : insn_data[insn_code_number].operand[i].strict_low),
3956 1, i, operand_type[i]);
3957 /* If a memory reference remains (either as a MEM or a pseudo that
3958 did not get a hard register), yet we can't make an optional
3959 reload, check if this is actually a pseudo register reference;
3960 we then need to emit a USE and/or a CLOBBER so that reload
3961 inheritance will do the right thing. */
3962 else if (replace
3963 && (MEM_P (operand)
3964 || (REG_P (operand)
3965 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3966 && reg_renumber [REGNO (operand)] < 0)))
3968 operand = *recog_data.operand_loc[i];
3970 while (GET_CODE (operand) == SUBREG)
3971 operand = SUBREG_REG (operand);
3972 if (REG_P (operand))
3974 if (modified[i] != RELOAD_WRITE)
3975 /* We mark the USE with QImode so that we recognize
3976 it as one that can be safely deleted at the end
3977 of reload. */
3978 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3979 insn), QImode);
3980 if (modified[i] != RELOAD_READ)
3981 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3985 else if (goal_alternative_matches[i] >= 0
3986 && goal_alternative_win[goal_alternative_matches[i]]
3987 && modified[i] == RELOAD_READ
3988 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3989 && ! no_input_reloads && ! no_output_reloads
3990 && optimize)
3992 /* Similarly, make an optional reload for a pair of matching
3993 objects that are in MEM or a pseudo that didn't get a hard reg. */
3995 rtx operand = recog_data.operand[i];
3997 while (GET_CODE (operand) == SUBREG)
3998 operand = SUBREG_REG (operand);
3999 if ((MEM_P (operand)
4000 || (REG_P (operand)
4001 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4002 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4003 != NO_REGS))
4004 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4005 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4006 recog_data.operand[i],
4007 recog_data.operand_loc[goal_alternative_matches[i]],
4008 recog_data.operand_loc[i],
4009 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4010 operand_mode[goal_alternative_matches[i]],
4011 operand_mode[i],
4012 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4015 /* Perform whatever substitutions on the operands we are supposed
4016 to make due to commutativity or replacement of registers
4017 with equivalent constants or memory slots. */
4019 for (i = 0; i < noperands; i++)
4021 /* We only do this on the last pass through reload, because it is
4022 possible for some data (like reg_equiv_address) to be changed during
4023 later passes. Moreover, we loose the opportunity to get a useful
4024 reload_{in,out}_reg when we do these replacements. */
4026 if (replace)
4028 rtx substitution = substed_operand[i];
4030 *recog_data.operand_loc[i] = substitution;
4032 /* If we're replacing an operand with a LABEL_REF, we need
4033 to make sure that there's a REG_LABEL note attached to
4034 this instruction. */
4035 if (!JUMP_P (insn)
4036 && GET_CODE (substitution) == LABEL_REF
4037 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4038 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4039 XEXP (substitution, 0),
4040 REG_NOTES (insn));
4042 else
4043 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4046 /* If this insn pattern contains any MATCH_DUP's, make sure that
4047 they will be substituted if the operands they match are substituted.
4048 Also do now any substitutions we already did on the operands.
4050 Don't do this if we aren't making replacements because we might be
4051 propagating things allocated by frame pointer elimination into places
4052 it doesn't expect. */
4054 if (insn_code_number >= 0 && replace)
4055 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4057 int opno = recog_data.dup_num[i];
4058 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4059 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4062 #if 0
4063 /* This loses because reloading of prior insns can invalidate the equivalence
4064 (or at least find_equiv_reg isn't smart enough to find it any more),
4065 causing this insn to need more reload regs than it needed before.
4066 It may be too late to make the reload regs available.
4067 Now this optimization is done safely in choose_reload_regs. */
4069 /* For each reload of a reg into some other class of reg,
4070 search for an existing equivalent reg (same value now) in the right class.
4071 We can use it as long as we don't need to change its contents. */
4072 for (i = 0; i < n_reloads; i++)
4073 if (rld[i].reg_rtx == 0
4074 && rld[i].in != 0
4075 && REG_P (rld[i].in)
4076 && rld[i].out == 0)
4078 rld[i].reg_rtx
4079 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4080 static_reload_reg_p, 0, rld[i].inmode);
4081 /* Prevent generation of insn to load the value
4082 because the one we found already has the value. */
4083 if (rld[i].reg_rtx)
4084 rld[i].in = rld[i].reg_rtx;
4086 #endif
4088 /* Perhaps an output reload can be combined with another
4089 to reduce needs by one. */
4090 if (!goal_earlyclobber)
4091 combine_reloads ();
4093 /* If we have a pair of reloads for parts of an address, they are reloading
4094 the same object, the operands themselves were not reloaded, and they
4095 are for two operands that are supposed to match, merge the reloads and
4096 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4098 for (i = 0; i < n_reloads; i++)
4100 int k;
4102 for (j = i + 1; j < n_reloads; j++)
4103 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4104 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4105 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4106 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4107 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4108 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4109 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4110 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4111 && rtx_equal_p (rld[i].in, rld[j].in)
4112 && (operand_reloadnum[rld[i].opnum] < 0
4113 || rld[operand_reloadnum[rld[i].opnum]].optional)
4114 && (operand_reloadnum[rld[j].opnum] < 0
4115 || rld[operand_reloadnum[rld[j].opnum]].optional)
4116 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4117 || (goal_alternative_matches[rld[j].opnum]
4118 == rld[i].opnum)))
4120 for (k = 0; k < n_replacements; k++)
4121 if (replacements[k].what == j)
4122 replacements[k].what = i;
4124 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4125 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4126 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4127 else
4128 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4129 rld[j].in = 0;
4133 /* Scan all the reloads and update their type.
4134 If a reload is for the address of an operand and we didn't reload
4135 that operand, change the type. Similarly, change the operand number
4136 of a reload when two operands match. If a reload is optional, treat it
4137 as though the operand isn't reloaded.
4139 ??? This latter case is somewhat odd because if we do the optional
4140 reload, it means the object is hanging around. Thus we need only
4141 do the address reload if the optional reload was NOT done.
4143 Change secondary reloads to be the address type of their operand, not
4144 the normal type.
4146 If an operand's reload is now RELOAD_OTHER, change any
4147 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4148 RELOAD_FOR_OTHER_ADDRESS. */
4150 for (i = 0; i < n_reloads; i++)
4152 if (rld[i].secondary_p
4153 && rld[i].when_needed == operand_type[rld[i].opnum])
4154 rld[i].when_needed = address_type[rld[i].opnum];
4156 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4157 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4158 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4159 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4160 && (operand_reloadnum[rld[i].opnum] < 0
4161 || rld[operand_reloadnum[rld[i].opnum]].optional))
4163 /* If we have a secondary reload to go along with this reload,
4164 change its type to RELOAD_FOR_OPADDR_ADDR. */
4166 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4167 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4168 && rld[i].secondary_in_reload != -1)
4170 int secondary_in_reload = rld[i].secondary_in_reload;
4172 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4174 /* If there's a tertiary reload we have to change it also. */
4175 if (secondary_in_reload > 0
4176 && rld[secondary_in_reload].secondary_in_reload != -1)
4177 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4178 = RELOAD_FOR_OPADDR_ADDR;
4181 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4182 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4183 && rld[i].secondary_out_reload != -1)
4185 int secondary_out_reload = rld[i].secondary_out_reload;
4187 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4189 /* If there's a tertiary reload we have to change it also. */
4190 if (secondary_out_reload
4191 && rld[secondary_out_reload].secondary_out_reload != -1)
4192 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4193 = RELOAD_FOR_OPADDR_ADDR;
4196 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4197 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4198 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4199 else
4200 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4203 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4204 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4205 && operand_reloadnum[rld[i].opnum] >= 0
4206 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4207 == RELOAD_OTHER))
4208 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4210 if (goal_alternative_matches[rld[i].opnum] >= 0)
4211 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4214 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4215 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4216 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4218 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4219 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4220 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4221 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4222 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4223 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4224 This is complicated by the fact that a single operand can have more
4225 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4226 choose_reload_regs without affecting code quality, and cases that
4227 actually fail are extremely rare, so it turns out to be better to fix
4228 the problem here by not generating cases that choose_reload_regs will
4229 fail for. */
4230 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4231 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4232 a single operand.
4233 We can reduce the register pressure by exploiting that a
4234 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4235 does not conflict with any of them, if it is only used for the first of
4236 the RELOAD_FOR_X_ADDRESS reloads. */
4238 int first_op_addr_num = -2;
4239 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4240 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4241 int need_change = 0;
4242 /* We use last_op_addr_reload and the contents of the above arrays
4243 first as flags - -2 means no instance encountered, -1 means exactly
4244 one instance encountered.
4245 If more than one instance has been encountered, we store the reload
4246 number of the first reload of the kind in question; reload numbers
4247 are known to be non-negative. */
4248 for (i = 0; i < noperands; i++)
4249 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4250 for (i = n_reloads - 1; i >= 0; i--)
4252 switch (rld[i].when_needed)
4254 case RELOAD_FOR_OPERAND_ADDRESS:
4255 if (++first_op_addr_num >= 0)
4257 first_op_addr_num = i;
4258 need_change = 1;
4260 break;
4261 case RELOAD_FOR_INPUT_ADDRESS:
4262 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4264 first_inpaddr_num[rld[i].opnum] = i;
4265 need_change = 1;
4267 break;
4268 case RELOAD_FOR_OUTPUT_ADDRESS:
4269 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4271 first_outpaddr_num[rld[i].opnum] = i;
4272 need_change = 1;
4274 break;
4275 default:
4276 break;
4280 if (need_change)
4282 for (i = 0; i < n_reloads; i++)
4284 int first_num;
4285 enum reload_type type;
4287 switch (rld[i].when_needed)
4289 case RELOAD_FOR_OPADDR_ADDR:
4290 first_num = first_op_addr_num;
4291 type = RELOAD_FOR_OPERAND_ADDRESS;
4292 break;
4293 case RELOAD_FOR_INPADDR_ADDRESS:
4294 first_num = first_inpaddr_num[rld[i].opnum];
4295 type = RELOAD_FOR_INPUT_ADDRESS;
4296 break;
4297 case RELOAD_FOR_OUTADDR_ADDRESS:
4298 first_num = first_outpaddr_num[rld[i].opnum];
4299 type = RELOAD_FOR_OUTPUT_ADDRESS;
4300 break;
4301 default:
4302 continue;
4304 if (first_num < 0)
4305 continue;
4306 else if (i > first_num)
4307 rld[i].when_needed = type;
4308 else
4310 /* Check if the only TYPE reload that uses reload I is
4311 reload FIRST_NUM. */
4312 for (j = n_reloads - 1; j > first_num; j--)
4314 if (rld[j].when_needed == type
4315 && (rld[i].secondary_p
4316 ? rld[j].secondary_in_reload == i
4317 : reg_mentioned_p (rld[i].in, rld[j].in)))
4319 rld[i].when_needed = type;
4320 break;
4328 /* See if we have any reloads that are now allowed to be merged
4329 because we've changed when the reload is needed to
4330 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4331 check for the most common cases. */
4333 for (i = 0; i < n_reloads; i++)
4334 if (rld[i].in != 0 && rld[i].out == 0
4335 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4336 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4337 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4338 for (j = 0; j < n_reloads; j++)
4339 if (i != j && rld[j].in != 0 && rld[j].out == 0
4340 && rld[j].when_needed == rld[i].when_needed
4341 && MATCHES (rld[i].in, rld[j].in)
4342 && rld[i].class == rld[j].class
4343 && !rld[i].nocombine && !rld[j].nocombine
4344 && rld[i].reg_rtx == rld[j].reg_rtx)
4346 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4347 transfer_replacements (i, j);
4348 rld[j].in = 0;
4351 #ifdef HAVE_cc0
4352 /* If we made any reloads for addresses, see if they violate a
4353 "no input reloads" requirement for this insn. But loads that we
4354 do after the insn (such as for output addresses) are fine. */
4355 if (no_input_reloads)
4356 for (i = 0; i < n_reloads; i++)
4357 if (rld[i].in != 0
4358 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4359 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4360 abort ();
4361 #endif
4363 /* Compute reload_mode and reload_nregs. */
4364 for (i = 0; i < n_reloads; i++)
4366 rld[i].mode
4367 = (rld[i].inmode == VOIDmode
4368 || (GET_MODE_SIZE (rld[i].outmode)
4369 > GET_MODE_SIZE (rld[i].inmode)))
4370 ? rld[i].outmode : rld[i].inmode;
4372 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4375 /* Special case a simple move with an input reload and a
4376 destination of a hard reg, if the hard reg is ok, use it. */
4377 for (i = 0; i < n_reloads; i++)
4378 if (rld[i].when_needed == RELOAD_FOR_INPUT
4379 && GET_CODE (PATTERN (insn)) == SET
4380 && REG_P (SET_DEST (PATTERN (insn)))
4381 && SET_SRC (PATTERN (insn)) == rld[i].in)
4383 rtx dest = SET_DEST (PATTERN (insn));
4384 unsigned int regno = REGNO (dest);
4386 if (regno < FIRST_PSEUDO_REGISTER
4387 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4388 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4390 int nr = hard_regno_nregs[regno][rld[i].mode];
4391 int ok = 1, nri;
4393 for (nri = 1; nri < nr; nri ++)
4394 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4395 ok = 0;
4397 if (ok)
4398 rld[i].reg_rtx = dest;
4402 return retval;
4405 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4406 accepts a memory operand with constant address. */
4408 static int
4409 alternative_allows_memconst (const char *constraint, int altnum)
4411 int c;
4412 /* Skip alternatives before the one requested. */
4413 while (altnum > 0)
4415 while (*constraint++ != ',');
4416 altnum--;
4418 /* Scan the requested alternative for 'm' or 'o'.
4419 If one of them is present, this alternative accepts memory constants. */
4420 for (; (c = *constraint) && c != ',' && c != '#';
4421 constraint += CONSTRAINT_LEN (c, constraint))
4422 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4423 return 1;
4424 return 0;
4427 /* Scan X for memory references and scan the addresses for reloading.
4428 Also checks for references to "constant" regs that we want to eliminate
4429 and replaces them with the values they stand for.
4430 We may alter X destructively if it contains a reference to such.
4431 If X is just a constant reg, we return the equivalent value
4432 instead of X.
4434 IND_LEVELS says how many levels of indirect addressing this machine
4435 supports.
4437 OPNUM and TYPE identify the purpose of the reload.
4439 IS_SET_DEST is true if X is the destination of a SET, which is not
4440 appropriate to be replaced by a constant.
4442 INSN, if nonzero, is the insn in which we do the reload. It is used
4443 to determine if we may generate output reloads, and where to put USEs
4444 for pseudos that we have to replace with stack slots.
4446 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4447 result of find_reloads_address. */
4449 static rtx
4450 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4451 int ind_levels, int is_set_dest, rtx insn,
4452 int *address_reloaded)
4454 RTX_CODE code = GET_CODE (x);
4456 const char *fmt = GET_RTX_FORMAT (code);
4457 int i;
4458 int copied;
4460 if (code == REG)
4462 /* This code is duplicated for speed in find_reloads. */
4463 int regno = REGNO (x);
4464 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4465 x = reg_equiv_constant[regno];
4466 #if 0
4467 /* This creates (subreg (mem...)) which would cause an unnecessary
4468 reload of the mem. */
4469 else if (reg_equiv_mem[regno] != 0)
4470 x = reg_equiv_mem[regno];
4471 #endif
4472 else if (reg_equiv_memory_loc[regno]
4473 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4475 rtx mem = make_memloc (x, regno);
4476 if (reg_equiv_address[regno]
4477 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4479 /* If this is not a toplevel operand, find_reloads doesn't see
4480 this substitution. We have to emit a USE of the pseudo so
4481 that delete_output_reload can see it. */
4482 if (replace_reloads && recog_data.operand[opnum] != x)
4483 /* We mark the USE with QImode so that we recognize it
4484 as one that can be safely deleted at the end of
4485 reload. */
4486 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4487 QImode);
4488 x = mem;
4489 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4490 opnum, type, ind_levels, insn);
4491 if (address_reloaded)
4492 *address_reloaded = i;
4495 return x;
4497 if (code == MEM)
4499 rtx tem = x;
4501 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4502 opnum, type, ind_levels, insn);
4503 if (address_reloaded)
4504 *address_reloaded = i;
4506 return tem;
4509 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4511 /* Check for SUBREG containing a REG that's equivalent to a constant.
4512 If the constant has a known value, truncate it right now.
4513 Similarly if we are extracting a single-word of a multi-word
4514 constant. If the constant is symbolic, allow it to be substituted
4515 normally. push_reload will strip the subreg later. If the
4516 constant is VOIDmode, abort because we will lose the mode of
4517 the register (this should never happen because one of the cases
4518 above should handle it). */
4520 int regno = REGNO (SUBREG_REG (x));
4521 rtx tem;
4523 if (subreg_lowpart_p (x)
4524 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4525 && reg_equiv_constant[regno] != 0
4526 && (tem = gen_lowpart_common (GET_MODE (x),
4527 reg_equiv_constant[regno])) != 0)
4528 return tem;
4530 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4531 && reg_equiv_constant[regno] != 0)
4533 tem =
4534 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4535 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4536 if (!tem)
4537 abort ();
4538 return tem;
4541 /* If the subreg contains a reg that will be converted to a mem,
4542 convert the subreg to a narrower memref now.
4543 Otherwise, we would get (subreg (mem ...) ...),
4544 which would force reload of the mem.
4546 We also need to do this if there is an equivalent MEM that is
4547 not offsettable. In that case, alter_subreg would produce an
4548 invalid address on big-endian machines.
4550 For machines that extend byte loads, we must not reload using
4551 a wider mode if we have a paradoxical SUBREG. find_reloads will
4552 force a reload in that case. So we should not do anything here. */
4554 else if (regno >= FIRST_PSEUDO_REGISTER
4555 #ifdef LOAD_EXTEND_OP
4556 && (GET_MODE_SIZE (GET_MODE (x))
4557 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4558 #endif
4559 && (reg_equiv_address[regno] != 0
4560 || (reg_equiv_mem[regno] != 0
4561 && (! strict_memory_address_p (GET_MODE (x),
4562 XEXP (reg_equiv_mem[regno], 0))
4563 || ! offsettable_memref_p (reg_equiv_mem[regno])
4564 || num_not_at_initial_offset))))
4565 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4566 insn);
4569 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4571 if (fmt[i] == 'e')
4573 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4574 ind_levels, is_set_dest, insn,
4575 address_reloaded);
4576 /* If we have replaced a reg with it's equivalent memory loc -
4577 that can still be handled here e.g. if it's in a paradoxical
4578 subreg - we must make the change in a copy, rather than using
4579 a destructive change. This way, find_reloads can still elect
4580 not to do the change. */
4581 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4583 x = shallow_copy_rtx (x);
4584 copied = 1;
4586 XEXP (x, i) = new_part;
4589 return x;
4592 /* Return a mem ref for the memory equivalent of reg REGNO.
4593 This mem ref is not shared with anything. */
4595 static rtx
4596 make_memloc (rtx ad, int regno)
4598 /* We must rerun eliminate_regs, in case the elimination
4599 offsets have changed. */
4600 rtx tem
4601 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4603 /* If TEM might contain a pseudo, we must copy it to avoid
4604 modifying it when we do the substitution for the reload. */
4605 if (rtx_varies_p (tem, 0))
4606 tem = copy_rtx (tem);
4608 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4609 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4611 /* Copy the result if it's still the same as the equivalence, to avoid
4612 modifying it when we do the substitution for the reload. */
4613 if (tem == reg_equiv_memory_loc[regno])
4614 tem = copy_rtx (tem);
4615 return tem;
4618 /* Returns true if AD could be turned into a valid memory reference
4619 to mode MODE by reloading the part pointed to by PART into a
4620 register. */
4622 static int
4623 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4625 int retv;
4626 rtx tem = *part;
4627 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4629 *part = reg;
4630 retv = memory_address_p (mode, ad);
4631 *part = tem;
4633 return retv;
4636 /* Record all reloads needed for handling memory address AD
4637 which appears in *LOC in a memory reference to mode MODE
4638 which itself is found in location *MEMREFLOC.
4639 Note that we take shortcuts assuming that no multi-reg machine mode
4640 occurs as part of an address.
4642 OPNUM and TYPE specify the purpose of this reload.
4644 IND_LEVELS says how many levels of indirect addressing this machine
4645 supports.
4647 INSN, if nonzero, is the insn in which we do the reload. It is used
4648 to determine if we may generate output reloads, and where to put USEs
4649 for pseudos that we have to replace with stack slots.
4651 Value is one if this address is reloaded or replaced as a whole; it is
4652 zero if the top level of this address was not reloaded or replaced, and
4653 it is -1 if it may or may not have been reloaded or replaced.
4655 Note that there is no verification that the address will be valid after
4656 this routine does its work. Instead, we rely on the fact that the address
4657 was valid when reload started. So we need only undo things that reload
4658 could have broken. These are wrong register types, pseudos not allocated
4659 to a hard register, and frame pointer elimination. */
4661 static int
4662 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4663 rtx *loc, int opnum, enum reload_type type,
4664 int ind_levels, rtx insn)
4666 int regno;
4667 int removed_and = 0;
4668 int op_index;
4669 rtx tem;
4671 /* If the address is a register, see if it is a legitimate address and
4672 reload if not. We first handle the cases where we need not reload
4673 or where we must reload in a non-standard way. */
4675 if (REG_P (ad))
4677 regno = REGNO (ad);
4679 /* If the register is equivalent to an invariant expression, substitute
4680 the invariant, and eliminate any eliminable register references. */
4681 tem = reg_equiv_constant[regno];
4682 if (tem != 0
4683 && (tem = eliminate_regs (tem, mode, insn))
4684 && strict_memory_address_p (mode, tem))
4686 *loc = ad = tem;
4687 return 0;
4690 tem = reg_equiv_memory_loc[regno];
4691 if (tem != 0)
4693 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4695 tem = make_memloc (ad, regno);
4696 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4698 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4699 &XEXP (tem, 0), opnum,
4700 ADDR_TYPE (type), ind_levels, insn);
4702 /* We can avoid a reload if the register's equivalent memory
4703 expression is valid as an indirect memory address.
4704 But not all addresses are valid in a mem used as an indirect
4705 address: only reg or reg+constant. */
4707 if (ind_levels > 0
4708 && strict_memory_address_p (mode, tem)
4709 && (REG_P (XEXP (tem, 0))
4710 || (GET_CODE (XEXP (tem, 0)) == PLUS
4711 && REG_P (XEXP (XEXP (tem, 0), 0))
4712 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4714 /* TEM is not the same as what we'll be replacing the
4715 pseudo with after reload, put a USE in front of INSN
4716 in the final reload pass. */
4717 if (replace_reloads
4718 && num_not_at_initial_offset
4719 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4721 *loc = tem;
4722 /* We mark the USE with QImode so that we
4723 recognize it as one that can be safely
4724 deleted at the end of reload. */
4725 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4726 insn), QImode);
4728 /* This doesn't really count as replacing the address
4729 as a whole, since it is still a memory access. */
4731 return 0;
4733 ad = tem;
4737 /* The only remaining case where we can avoid a reload is if this is a
4738 hard register that is valid as a base register and which is not the
4739 subject of a CLOBBER in this insn. */
4741 else if (regno < FIRST_PSEUDO_REGISTER
4742 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4743 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4744 return 0;
4746 /* If we do not have one of the cases above, we must do the reload. */
4747 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4748 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4749 return 1;
4752 if (strict_memory_address_p (mode, ad))
4754 /* The address appears valid, so reloads are not needed.
4755 But the address may contain an eliminable register.
4756 This can happen because a machine with indirect addressing
4757 may consider a pseudo register by itself a valid address even when
4758 it has failed to get a hard reg.
4759 So do a tree-walk to find and eliminate all such regs. */
4761 /* But first quickly dispose of a common case. */
4762 if (GET_CODE (ad) == PLUS
4763 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4764 && REG_P (XEXP (ad, 0))
4765 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4766 return 0;
4768 subst_reg_equivs_changed = 0;
4769 *loc = subst_reg_equivs (ad, insn);
4771 if (! subst_reg_equivs_changed)
4772 return 0;
4774 /* Check result for validity after substitution. */
4775 if (strict_memory_address_p (mode, ad))
4776 return 0;
4779 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4782 if (memrefloc)
4784 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4785 ind_levels, win);
4787 break;
4788 win:
4789 *memrefloc = copy_rtx (*memrefloc);
4790 XEXP (*memrefloc, 0) = ad;
4791 move_replacements (&ad, &XEXP (*memrefloc, 0));
4792 return -1;
4794 while (0);
4795 #endif
4797 /* The address is not valid. We have to figure out why. First see if
4798 we have an outer AND and remove it if so. Then analyze what's inside. */
4800 if (GET_CODE (ad) == AND)
4802 removed_and = 1;
4803 loc = &XEXP (ad, 0);
4804 ad = *loc;
4807 /* One possibility for why the address is invalid is that it is itself
4808 a MEM. This can happen when the frame pointer is being eliminated, a
4809 pseudo is not allocated to a hard register, and the offset between the
4810 frame and stack pointers is not its initial value. In that case the
4811 pseudo will have been replaced by a MEM referring to the
4812 stack pointer. */
4813 if (MEM_P (ad))
4815 /* First ensure that the address in this MEM is valid. Then, unless
4816 indirect addresses are valid, reload the MEM into a register. */
4817 tem = ad;
4818 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4819 opnum, ADDR_TYPE (type),
4820 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4822 /* If tem was changed, then we must create a new memory reference to
4823 hold it and store it back into memrefloc. */
4824 if (tem != ad && memrefloc)
4826 *memrefloc = copy_rtx (*memrefloc);
4827 copy_replacements (tem, XEXP (*memrefloc, 0));
4828 loc = &XEXP (*memrefloc, 0);
4829 if (removed_and)
4830 loc = &XEXP (*loc, 0);
4833 /* Check similar cases as for indirect addresses as above except
4834 that we can allow pseudos and a MEM since they should have been
4835 taken care of above. */
4837 if (ind_levels == 0
4838 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4839 || MEM_P (XEXP (tem, 0))
4840 || ! (REG_P (XEXP (tem, 0))
4841 || (GET_CODE (XEXP (tem, 0)) == PLUS
4842 && REG_P (XEXP (XEXP (tem, 0), 0))
4843 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4845 /* Must use TEM here, not AD, since it is the one that will
4846 have any subexpressions reloaded, if needed. */
4847 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4848 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4849 VOIDmode, 0,
4850 0, opnum, type);
4851 return ! removed_and;
4853 else
4854 return 0;
4857 /* If we have address of a stack slot but it's not valid because the
4858 displacement is too large, compute the sum in a register.
4859 Handle all base registers here, not just fp/ap/sp, because on some
4860 targets (namely SH) we can also get too large displacements from
4861 big-endian corrections. */
4862 else if (GET_CODE (ad) == PLUS
4863 && REG_P (XEXP (ad, 0))
4864 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4865 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4866 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4868 /* Unshare the MEM rtx so we can safely alter it. */
4869 if (memrefloc)
4871 *memrefloc = copy_rtx (*memrefloc);
4872 loc = &XEXP (*memrefloc, 0);
4873 if (removed_and)
4874 loc = &XEXP (*loc, 0);
4877 if (double_reg_address_ok)
4879 /* Unshare the sum as well. */
4880 *loc = ad = copy_rtx (ad);
4882 /* Reload the displacement into an index reg.
4883 We assume the frame pointer or arg pointer is a base reg. */
4884 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4885 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4886 type, ind_levels);
4887 return 0;
4889 else
4891 /* If the sum of two regs is not necessarily valid,
4892 reload the sum into a base reg.
4893 That will at least work. */
4894 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4895 Pmode, opnum, type, ind_levels);
4897 return ! removed_and;
4900 /* If we have an indexed stack slot, there are three possible reasons why
4901 it might be invalid: The index might need to be reloaded, the address
4902 might have been made by frame pointer elimination and hence have a
4903 constant out of range, or both reasons might apply.
4905 We can easily check for an index needing reload, but even if that is the
4906 case, we might also have an invalid constant. To avoid making the
4907 conservative assumption and requiring two reloads, we see if this address
4908 is valid when not interpreted strictly. If it is, the only problem is
4909 that the index needs a reload and find_reloads_address_1 will take care
4910 of it.
4912 Handle all base registers here, not just fp/ap/sp, because on some
4913 targets (namely SPARC) we can also get invalid addresses from preventive
4914 subreg big-endian corrections made by find_reloads_toplev. We
4915 can also get expressions involving LO_SUM (rather than PLUS) from
4916 find_reloads_subreg_address.
4918 If we decide to do something, it must be that `double_reg_address_ok'
4919 is true. We generate a reload of the base register + constant and
4920 rework the sum so that the reload register will be added to the index.
4921 This is safe because we know the address isn't shared.
4923 We check for the base register as both the first and second operand of
4924 the innermost PLUS and/or LO_SUM. */
4926 for (op_index = 0; op_index < 2; ++op_index)
4928 rtx operand;
4930 if (!(GET_CODE (ad) == PLUS
4931 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4932 && (GET_CODE (XEXP (ad, 0)) == PLUS
4933 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4934 continue;
4936 operand = XEXP (XEXP (ad, 0), op_index);
4937 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4938 continue;
4940 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4941 || operand == frame_pointer_rtx
4942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4943 || operand == hard_frame_pointer_rtx
4944 #endif
4945 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4946 || operand == arg_pointer_rtx
4947 #endif
4948 || operand == stack_pointer_rtx)
4949 && ! maybe_memory_address_p (mode, ad,
4950 &XEXP (XEXP (ad, 0), op_index)))
4952 rtx offset_reg;
4953 rtx addend;
4955 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4956 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4958 /* Form the adjusted address. */
4959 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4960 ad = gen_rtx_PLUS (GET_MODE (ad),
4961 op_index == 0 ? offset_reg : addend,
4962 op_index == 0 ? addend : offset_reg);
4963 else
4964 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4965 op_index == 0 ? offset_reg : addend,
4966 op_index == 0 ? addend : offset_reg);
4967 *loc = ad;
4969 find_reloads_address_part (XEXP (ad, op_index),
4970 &XEXP (ad, op_index),
4971 MODE_BASE_REG_CLASS (mode),
4972 GET_MODE (ad), opnum, type, ind_levels);
4973 find_reloads_address_1 (mode,
4974 XEXP (ad, 1 - op_index), 1,
4975 &XEXP (ad, 1 - op_index), opnum,
4976 type, 0, insn);
4978 return 0;
4982 /* See if address becomes valid when an eliminable register
4983 in a sum is replaced. */
4985 tem = ad;
4986 if (GET_CODE (ad) == PLUS)
4987 tem = subst_indexed_address (ad);
4988 if (tem != ad && strict_memory_address_p (mode, tem))
4990 /* Ok, we win that way. Replace any additional eliminable
4991 registers. */
4993 subst_reg_equivs_changed = 0;
4994 tem = subst_reg_equivs (tem, insn);
4996 /* Make sure that didn't make the address invalid again. */
4998 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5000 *loc = tem;
5001 return 0;
5005 /* If constants aren't valid addresses, reload the constant address
5006 into a register. */
5007 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5009 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5010 Unshare it so we can safely alter it. */
5011 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5012 && CONSTANT_POOL_ADDRESS_P (ad))
5014 *memrefloc = copy_rtx (*memrefloc);
5015 loc = &XEXP (*memrefloc, 0);
5016 if (removed_and)
5017 loc = &XEXP (*loc, 0);
5020 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5021 Pmode, opnum, type, ind_levels);
5022 return ! removed_and;
5025 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5026 insn);
5029 /* Find all pseudo regs appearing in AD
5030 that are eliminable in favor of equivalent values
5031 and do not have hard regs; replace them by their equivalents.
5032 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5033 front of it for pseudos that we have to replace with stack slots. */
5035 static rtx
5036 subst_reg_equivs (rtx ad, rtx insn)
5038 RTX_CODE code = GET_CODE (ad);
5039 int i;
5040 const char *fmt;
5042 switch (code)
5044 case HIGH:
5045 case CONST_INT:
5046 case CONST:
5047 case CONST_DOUBLE:
5048 case CONST_VECTOR:
5049 case SYMBOL_REF:
5050 case LABEL_REF:
5051 case PC:
5052 case CC0:
5053 return ad;
5055 case REG:
5057 int regno = REGNO (ad);
5059 if (reg_equiv_constant[regno] != 0)
5061 subst_reg_equivs_changed = 1;
5062 return reg_equiv_constant[regno];
5064 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5066 rtx mem = make_memloc (ad, regno);
5067 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5069 subst_reg_equivs_changed = 1;
5070 /* We mark the USE with QImode so that we recognize it
5071 as one that can be safely deleted at the end of
5072 reload. */
5073 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5074 QImode);
5075 return mem;
5079 return ad;
5081 case PLUS:
5082 /* Quickly dispose of a common case. */
5083 if (XEXP (ad, 0) == frame_pointer_rtx
5084 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5085 return ad;
5086 break;
5088 default:
5089 break;
5092 fmt = GET_RTX_FORMAT (code);
5093 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5094 if (fmt[i] == 'e')
5095 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5096 return ad;
5099 /* Compute the sum of X and Y, making canonicalizations assumed in an
5100 address, namely: sum constant integers, surround the sum of two
5101 constants with a CONST, put the constant as the second operand, and
5102 group the constant on the outermost sum.
5104 This routine assumes both inputs are already in canonical form. */
5107 form_sum (rtx x, rtx y)
5109 rtx tem;
5110 enum machine_mode mode = GET_MODE (x);
5112 if (mode == VOIDmode)
5113 mode = GET_MODE (y);
5115 if (mode == VOIDmode)
5116 mode = Pmode;
5118 if (GET_CODE (x) == CONST_INT)
5119 return plus_constant (y, INTVAL (x));
5120 else if (GET_CODE (y) == CONST_INT)
5121 return plus_constant (x, INTVAL (y));
5122 else if (CONSTANT_P (x))
5123 tem = x, x = y, y = tem;
5125 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5126 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5128 /* Note that if the operands of Y are specified in the opposite
5129 order in the recursive calls below, infinite recursion will occur. */
5130 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5131 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5133 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5134 constant will have been placed second. */
5135 if (CONSTANT_P (x) && CONSTANT_P (y))
5137 if (GET_CODE (x) == CONST)
5138 x = XEXP (x, 0);
5139 if (GET_CODE (y) == CONST)
5140 y = XEXP (y, 0);
5142 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5145 return gen_rtx_PLUS (mode, x, y);
5148 /* If ADDR is a sum containing a pseudo register that should be
5149 replaced with a constant (from reg_equiv_constant),
5150 return the result of doing so, and also apply the associative
5151 law so that the result is more likely to be a valid address.
5152 (But it is not guaranteed to be one.)
5154 Note that at most one register is replaced, even if more are
5155 replaceable. Also, we try to put the result into a canonical form
5156 so it is more likely to be a valid address.
5158 In all other cases, return ADDR. */
5160 static rtx
5161 subst_indexed_address (rtx addr)
5163 rtx op0 = 0, op1 = 0, op2 = 0;
5164 rtx tem;
5165 int regno;
5167 if (GET_CODE (addr) == PLUS)
5169 /* Try to find a register to replace. */
5170 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5171 if (REG_P (op0)
5172 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5173 && reg_renumber[regno] < 0
5174 && reg_equiv_constant[regno] != 0)
5175 op0 = reg_equiv_constant[regno];
5176 else if (REG_P (op1)
5177 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5178 && reg_renumber[regno] < 0
5179 && reg_equiv_constant[regno] != 0)
5180 op1 = reg_equiv_constant[regno];
5181 else if (GET_CODE (op0) == PLUS
5182 && (tem = subst_indexed_address (op0)) != op0)
5183 op0 = tem;
5184 else if (GET_CODE (op1) == PLUS
5185 && (tem = subst_indexed_address (op1)) != op1)
5186 op1 = tem;
5187 else
5188 return addr;
5190 /* Pick out up to three things to add. */
5191 if (GET_CODE (op1) == PLUS)
5192 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5193 else if (GET_CODE (op0) == PLUS)
5194 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5196 /* Compute the sum. */
5197 if (op2 != 0)
5198 op1 = form_sum (op1, op2);
5199 if (op1 != 0)
5200 op0 = form_sum (op0, op1);
5202 return op0;
5204 return addr;
5207 /* Update the REG_INC notes for an insn. It updates all REG_INC
5208 notes for the instruction which refer to REGNO the to refer
5209 to the reload number.
5211 INSN is the insn for which any REG_INC notes need updating.
5213 REGNO is the register number which has been reloaded.
5215 RELOADNUM is the reload number. */
5217 static void
5218 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5219 int reloadnum ATTRIBUTE_UNUSED)
5221 #ifdef AUTO_INC_DEC
5222 rtx link;
5224 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5225 if (REG_NOTE_KIND (link) == REG_INC
5226 && (int) REGNO (XEXP (link, 0)) == regno)
5227 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5228 #endif
5231 /* Record the pseudo registers we must reload into hard registers in a
5232 subexpression of a would-be memory address, X referring to a value
5233 in mode MODE. (This function is not called if the address we find
5234 is strictly valid.)
5236 CONTEXT = 1 means we are considering regs as index regs,
5237 = 0 means we are considering them as base regs.
5239 OPNUM and TYPE specify the purpose of any reloads made.
5241 IND_LEVELS says how many levels of indirect addressing are
5242 supported at this point in the address.
5244 INSN, if nonzero, is the insn in which we do the reload. It is used
5245 to determine if we may generate output reloads.
5247 We return nonzero if X, as a whole, is reloaded or replaced. */
5249 /* Note that we take shortcuts assuming that no multi-reg machine mode
5250 occurs as part of an address.
5251 Also, this is not fully machine-customizable; it works for machines
5252 such as VAXen and 68000's and 32000's, but other possible machines
5253 could have addressing modes that this does not handle right. */
5255 static int
5256 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5257 rtx *loc, int opnum, enum reload_type type,
5258 int ind_levels, rtx insn)
5260 RTX_CODE code = GET_CODE (x);
5262 switch (code)
5264 case PLUS:
5266 rtx orig_op0 = XEXP (x, 0);
5267 rtx orig_op1 = XEXP (x, 1);
5268 RTX_CODE code0 = GET_CODE (orig_op0);
5269 RTX_CODE code1 = GET_CODE (orig_op1);
5270 rtx op0 = orig_op0;
5271 rtx op1 = orig_op1;
5273 if (GET_CODE (op0) == SUBREG)
5275 op0 = SUBREG_REG (op0);
5276 code0 = GET_CODE (op0);
5277 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5278 op0 = gen_rtx_REG (word_mode,
5279 (REGNO (op0) +
5280 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5281 GET_MODE (SUBREG_REG (orig_op0)),
5282 SUBREG_BYTE (orig_op0),
5283 GET_MODE (orig_op0))));
5286 if (GET_CODE (op1) == SUBREG)
5288 op1 = SUBREG_REG (op1);
5289 code1 = GET_CODE (op1);
5290 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5291 /* ??? Why is this given op1's mode and above for
5292 ??? op0 SUBREGs we use word_mode? */
5293 op1 = gen_rtx_REG (GET_MODE (op1),
5294 (REGNO (op1) +
5295 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5296 GET_MODE (SUBREG_REG (orig_op1)),
5297 SUBREG_BYTE (orig_op1),
5298 GET_MODE (orig_op1))));
5300 /* Plus in the index register may be created only as a result of
5301 register remateralization for expression like &localvar*4. Reload it.
5302 It may be possible to combine the displacement on the outer level,
5303 but it is probably not worthwhile to do so. */
5304 if (context)
5306 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5307 opnum, ADDR_TYPE (type), ind_levels, insn);
5308 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5309 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5310 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5311 return 1;
5314 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5315 || code0 == ZERO_EXTEND || code1 == MEM)
5317 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5318 type, ind_levels, insn);
5319 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5320 type, ind_levels, insn);
5323 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5324 || code1 == ZERO_EXTEND || code0 == MEM)
5326 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5327 type, ind_levels, insn);
5328 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5329 type, ind_levels, insn);
5332 else if (code0 == CONST_INT || code0 == CONST
5333 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5334 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5335 type, ind_levels, insn);
5337 else if (code1 == CONST_INT || code1 == CONST
5338 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5339 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5340 type, ind_levels, insn);
5342 else if (code0 == REG && code1 == REG)
5344 if (REG_OK_FOR_INDEX_P (op0)
5345 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5346 return 0;
5347 else if (REG_OK_FOR_INDEX_P (op1)
5348 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5349 return 0;
5350 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5351 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5352 type, ind_levels, insn);
5353 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5354 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5355 type, ind_levels, insn);
5356 else if (REG_OK_FOR_INDEX_P (op1))
5357 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5358 type, ind_levels, insn);
5359 else if (REG_OK_FOR_INDEX_P (op0))
5360 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5361 type, ind_levels, insn);
5362 else
5364 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5365 type, ind_levels, insn);
5366 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5367 type, ind_levels, insn);
5371 else if (code0 == REG)
5373 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5374 type, ind_levels, insn);
5375 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5376 type, ind_levels, insn);
5379 else if (code1 == REG)
5381 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5382 type, ind_levels, insn);
5383 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5384 type, ind_levels, insn);
5388 return 0;
5390 case POST_MODIFY:
5391 case PRE_MODIFY:
5393 rtx op0 = XEXP (x, 0);
5394 rtx op1 = XEXP (x, 1);
5396 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5397 return 0;
5399 /* Currently, we only support {PRE,POST}_MODIFY constructs
5400 where a base register is {inc,dec}remented by the contents
5401 of another register or by a constant value. Thus, these
5402 operands must match. */
5403 if (op0 != XEXP (op1, 0))
5404 abort ();
5406 /* Require index register (or constant). Let's just handle the
5407 register case in the meantime... If the target allows
5408 auto-modify by a constant then we could try replacing a pseudo
5409 register with its equivalent constant where applicable. */
5410 if (REG_P (XEXP (op1, 1)))
5411 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5412 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5413 opnum, type, ind_levels, insn);
5415 if (REG_P (XEXP (op1, 0)))
5417 int regno = REGNO (XEXP (op1, 0));
5418 int reloadnum;
5420 /* A register that is incremented cannot be constant! */
5421 if (regno >= FIRST_PSEUDO_REGISTER
5422 && reg_equiv_constant[regno] != 0)
5423 abort ();
5425 /* Handle a register that is equivalent to a memory location
5426 which cannot be addressed directly. */
5427 if (reg_equiv_memory_loc[regno] != 0
5428 && (reg_equiv_address[regno] != 0
5429 || num_not_at_initial_offset))
5431 rtx tem = make_memloc (XEXP (x, 0), regno);
5433 if (reg_equiv_address[regno]
5434 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5436 /* First reload the memory location's address.
5437 We can't use ADDR_TYPE (type) here, because we need to
5438 write back the value after reading it, hence we actually
5439 need two registers. */
5440 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5441 &XEXP (tem, 0), opnum,
5442 RELOAD_OTHER,
5443 ind_levels, insn);
5445 /* Then reload the memory location into a base
5446 register. */
5447 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5448 &XEXP (op1, 0),
5449 MODE_BASE_REG_CLASS (mode),
5450 GET_MODE (x), GET_MODE (x), 0,
5451 0, opnum, RELOAD_OTHER);
5453 update_auto_inc_notes (this_insn, regno, reloadnum);
5454 return 0;
5458 if (reg_renumber[regno] >= 0)
5459 regno = reg_renumber[regno];
5461 /* We require a base register here... */
5462 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5464 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5465 &XEXP (op1, 0), &XEXP (x, 0),
5466 MODE_BASE_REG_CLASS (mode),
5467 GET_MODE (x), GET_MODE (x), 0, 0,
5468 opnum, RELOAD_OTHER);
5470 update_auto_inc_notes (this_insn, regno, reloadnum);
5471 return 0;
5474 else
5475 abort ();
5477 return 0;
5479 case POST_INC:
5480 case POST_DEC:
5481 case PRE_INC:
5482 case PRE_DEC:
5483 if (REG_P (XEXP (x, 0)))
5485 int regno = REGNO (XEXP (x, 0));
5486 int value = 0;
5487 rtx x_orig = x;
5489 /* A register that is incremented cannot be constant! */
5490 if (regno >= FIRST_PSEUDO_REGISTER
5491 && reg_equiv_constant[regno] != 0)
5492 abort ();
5494 /* Handle a register that is equivalent to a memory location
5495 which cannot be addressed directly. */
5496 if (reg_equiv_memory_loc[regno] != 0
5497 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5499 rtx tem = make_memloc (XEXP (x, 0), regno);
5500 if (reg_equiv_address[regno]
5501 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5503 /* First reload the memory location's address.
5504 We can't use ADDR_TYPE (type) here, because we need to
5505 write back the value after reading it, hence we actually
5506 need two registers. */
5507 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5508 &XEXP (tem, 0), opnum, type,
5509 ind_levels, insn);
5510 /* Put this inside a new increment-expression. */
5511 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5512 /* Proceed to reload that, as if it contained a register. */
5516 /* If we have a hard register that is ok as an index,
5517 don't make a reload. If an autoincrement of a nice register
5518 isn't "valid", it must be that no autoincrement is "valid".
5519 If that is true and something made an autoincrement anyway,
5520 this must be a special context where one is allowed.
5521 (For example, a "push" instruction.)
5522 We can't improve this address, so leave it alone. */
5524 /* Otherwise, reload the autoincrement into a suitable hard reg
5525 and record how much to increment by. */
5527 if (reg_renumber[regno] >= 0)
5528 regno = reg_renumber[regno];
5529 if ((regno >= FIRST_PSEUDO_REGISTER
5530 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5531 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5533 int reloadnum;
5535 /* If we can output the register afterwards, do so, this
5536 saves the extra update.
5537 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5538 CALL_INSN - and it does not set CC0.
5539 But don't do this if we cannot directly address the
5540 memory location, since this will make it harder to
5541 reuse address reloads, and increases register pressure.
5542 Also don't do this if we can probably update x directly. */
5543 rtx equiv = (MEM_P (XEXP (x, 0))
5544 ? XEXP (x, 0)
5545 : reg_equiv_mem[regno]);
5546 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5547 if (insn && NONJUMP_INSN_P (insn) && equiv
5548 && memory_operand (equiv, GET_MODE (equiv))
5549 #ifdef HAVE_cc0
5550 && ! sets_cc0_p (PATTERN (insn))
5551 #endif
5552 && ! (icode != CODE_FOR_nothing
5553 && ((*insn_data[icode].operand[0].predicate)
5554 (equiv, Pmode))
5555 && ((*insn_data[icode].operand[1].predicate)
5556 (equiv, Pmode))))
5558 /* We use the original pseudo for loc, so that
5559 emit_reload_insns() knows which pseudo this
5560 reload refers to and updates the pseudo rtx, not
5561 its equivalent memory location, as well as the
5562 corresponding entry in reg_last_reload_reg. */
5563 loc = &XEXP (x_orig, 0);
5564 x = XEXP (x, 0);
5565 reloadnum
5566 = push_reload (x, x, loc, loc,
5567 (context ? INDEX_REG_CLASS :
5568 MODE_BASE_REG_CLASS (mode)),
5569 GET_MODE (x), GET_MODE (x), 0, 0,
5570 opnum, RELOAD_OTHER);
5572 else
5574 reloadnum
5575 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5576 (context ? INDEX_REG_CLASS :
5577 MODE_BASE_REG_CLASS (mode)),
5578 GET_MODE (x), GET_MODE (x), 0, 0,
5579 opnum, type);
5580 rld[reloadnum].inc
5581 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5583 value = 1;
5586 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5587 reloadnum);
5589 return value;
5592 else if (MEM_P (XEXP (x, 0)))
5594 /* This is probably the result of a substitution, by eliminate_regs,
5595 of an equivalent address for a pseudo that was not allocated to a
5596 hard register. Verify that the specified address is valid and
5597 reload it into a register. */
5598 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5599 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5600 rtx link;
5601 int reloadnum;
5603 /* Since we know we are going to reload this item, don't decrement
5604 for the indirection level.
5606 Note that this is actually conservative: it would be slightly
5607 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5608 reload1.c here. */
5609 /* We can't use ADDR_TYPE (type) here, because we need to
5610 write back the value after reading it, hence we actually
5611 need two registers. */
5612 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5613 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5614 opnum, type, ind_levels, insn);
5616 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5617 (context ? INDEX_REG_CLASS :
5618 MODE_BASE_REG_CLASS (mode)),
5619 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5620 rld[reloadnum].inc
5621 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5623 link = FIND_REG_INC_NOTE (this_insn, tem);
5624 if (link != 0)
5625 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5627 return 1;
5629 return 0;
5631 case MEM:
5632 /* This is probably the result of a substitution, by eliminate_regs, of
5633 an equivalent address for a pseudo that was not allocated to a hard
5634 register. Verify that the specified address is valid and reload it
5635 into a register.
5637 Since we know we are going to reload this item, don't decrement for
5638 the indirection level.
5640 Note that this is actually conservative: it would be slightly more
5641 efficient to use the value of SPILL_INDIRECT_LEVELS from
5642 reload1.c here. */
5644 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5645 opnum, ADDR_TYPE (type), ind_levels, insn);
5646 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5647 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5648 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5649 return 1;
5651 case REG:
5653 int regno = REGNO (x);
5655 if (reg_equiv_constant[regno] != 0)
5657 find_reloads_address_part (reg_equiv_constant[regno], loc,
5658 (context ? INDEX_REG_CLASS :
5659 MODE_BASE_REG_CLASS (mode)),
5660 GET_MODE (x), opnum, type, ind_levels);
5661 return 1;
5664 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5665 that feeds this insn. */
5666 if (reg_equiv_mem[regno] != 0)
5668 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5669 (context ? INDEX_REG_CLASS :
5670 MODE_BASE_REG_CLASS (mode)),
5671 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5672 return 1;
5674 #endif
5676 if (reg_equiv_memory_loc[regno]
5677 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5679 rtx tem = make_memloc (x, regno);
5680 if (reg_equiv_address[regno] != 0
5681 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5683 x = tem;
5684 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5685 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5686 ind_levels, insn);
5690 if (reg_renumber[regno] >= 0)
5691 regno = reg_renumber[regno];
5693 if ((regno >= FIRST_PSEUDO_REGISTER
5694 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5695 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5697 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5698 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5699 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5700 return 1;
5703 /* If a register appearing in an address is the subject of a CLOBBER
5704 in this insn, reload it into some other register to be safe.
5705 The CLOBBER is supposed to make the register unavailable
5706 from before this insn to after it. */
5707 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5709 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5710 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5711 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5712 return 1;
5715 return 0;
5717 case SUBREG:
5718 if (REG_P (SUBREG_REG (x)))
5720 /* If this is a SUBREG of a hard register and the resulting register
5721 is of the wrong class, reload the whole SUBREG. This avoids
5722 needless copies if SUBREG_REG is multi-word. */
5723 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5725 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5727 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5728 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5730 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5731 (context ? INDEX_REG_CLASS :
5732 MODE_BASE_REG_CLASS (mode)),
5733 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5734 return 1;
5737 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5738 is larger than the class size, then reload the whole SUBREG. */
5739 else
5741 enum reg_class class = (context ? INDEX_REG_CLASS
5742 : MODE_BASE_REG_CLASS (mode));
5743 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5744 > reg_class_size[class])
5746 x = find_reloads_subreg_address (x, 0, opnum, type,
5747 ind_levels, insn);
5748 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5749 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5750 return 1;
5754 break;
5756 default:
5757 break;
5761 const char *fmt = GET_RTX_FORMAT (code);
5762 int i;
5764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5766 if (fmt[i] == 'e')
5767 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5768 opnum, type, ind_levels, insn);
5772 return 0;
5775 /* X, which is found at *LOC, is a part of an address that needs to be
5776 reloaded into a register of class CLASS. If X is a constant, or if
5777 X is a PLUS that contains a constant, check that the constant is a
5778 legitimate operand and that we are supposed to be able to load
5779 it into the register.
5781 If not, force the constant into memory and reload the MEM instead.
5783 MODE is the mode to use, in case X is an integer constant.
5785 OPNUM and TYPE describe the purpose of any reloads made.
5787 IND_LEVELS says how many levels of indirect addressing this machine
5788 supports. */
5790 static void
5791 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5792 enum machine_mode mode, int opnum,
5793 enum reload_type type, int ind_levels)
5795 if (CONSTANT_P (x)
5796 && (! LEGITIMATE_CONSTANT_P (x)
5797 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5799 rtx tem;
5801 tem = x = force_const_mem (mode, x);
5802 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5803 opnum, type, ind_levels, 0);
5806 else if (GET_CODE (x) == PLUS
5807 && CONSTANT_P (XEXP (x, 1))
5808 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5809 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5811 rtx tem;
5813 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5814 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5815 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5816 opnum, type, ind_levels, 0);
5819 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5820 mode, VOIDmode, 0, 0, opnum, type);
5823 /* X, a subreg of a pseudo, is a part of an address that needs to be
5824 reloaded.
5826 If the pseudo is equivalent to a memory location that cannot be directly
5827 addressed, make the necessary address reloads.
5829 If address reloads have been necessary, or if the address is changed
5830 by register elimination, return the rtx of the memory location;
5831 otherwise, return X.
5833 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5834 memory location.
5836 OPNUM and TYPE identify the purpose of the reload.
5838 IND_LEVELS says how many levels of indirect addressing are
5839 supported at this point in the address.
5841 INSN, if nonzero, is the insn in which we do the reload. It is used
5842 to determine where to put USEs for pseudos that we have to replace with
5843 stack slots. */
5845 static rtx
5846 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5847 enum reload_type type, int ind_levels, rtx insn)
5849 int regno = REGNO (SUBREG_REG (x));
5851 if (reg_equiv_memory_loc[regno])
5853 /* If the address is not directly addressable, or if the address is not
5854 offsettable, then it must be replaced. */
5855 if (! force_replace
5856 && (reg_equiv_address[regno]
5857 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5858 force_replace = 1;
5860 if (force_replace || num_not_at_initial_offset)
5862 rtx tem = make_memloc (SUBREG_REG (x), regno);
5864 /* If the address changes because of register elimination, then
5865 it must be replaced. */
5866 if (force_replace
5867 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5869 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5870 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5871 int offset;
5873 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5874 hold the correct (negative) byte offset. */
5875 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5876 offset = inner_size - outer_size;
5877 else
5878 offset = SUBREG_BYTE (x);
5880 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5881 PUT_MODE (tem, GET_MODE (x));
5883 /* If this was a paradoxical subreg that we replaced, the
5884 resulting memory must be sufficiently aligned to allow
5885 us to widen the mode of the memory. */
5886 if (outer_size > inner_size && STRICT_ALIGNMENT)
5888 rtx base;
5890 base = XEXP (tem, 0);
5891 if (GET_CODE (base) == PLUS)
5893 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5894 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5895 return x;
5896 base = XEXP (base, 0);
5898 if (!REG_P (base)
5899 || (REGNO_POINTER_ALIGN (REGNO (base))
5900 < outer_size * BITS_PER_UNIT))
5901 return x;
5904 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5905 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5906 ind_levels, insn);
5908 /* If this is not a toplevel operand, find_reloads doesn't see
5909 this substitution. We have to emit a USE of the pseudo so
5910 that delete_output_reload can see it. */
5911 if (replace_reloads && recog_data.operand[opnum] != x)
5912 /* We mark the USE with QImode so that we recognize it
5913 as one that can be safely deleted at the end of
5914 reload. */
5915 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5916 SUBREG_REG (x)),
5917 insn), QImode);
5918 x = tem;
5922 return x;
5925 /* Substitute into the current INSN the registers into which we have reloaded
5926 the things that need reloading. The array `replacements'
5927 contains the locations of all pointers that must be changed
5928 and says what to replace them with.
5930 Return the rtx that X translates into; usually X, but modified. */
5932 void
5933 subst_reloads (rtx insn)
5935 int i;
5937 for (i = 0; i < n_replacements; i++)
5939 struct replacement *r = &replacements[i];
5940 rtx reloadreg = rld[r->what].reg_rtx;
5941 if (reloadreg)
5943 #ifdef ENABLE_CHECKING
5944 /* Internal consistency test. Check that we don't modify
5945 anything in the equivalence arrays. Whenever something from
5946 those arrays needs to be reloaded, it must be unshared before
5947 being substituted into; the equivalence must not be modified.
5948 Otherwise, if the equivalence is used after that, it will
5949 have been modified, and the thing substituted (probably a
5950 register) is likely overwritten and not a usable equivalence. */
5951 int check_regno;
5953 for (check_regno = 0; check_regno < max_regno; check_regno++)
5955 #define CHECK_MODF(ARRAY) \
5956 if (ARRAY[check_regno] \
5957 && loc_mentioned_in_p (r->where, \
5958 ARRAY[check_regno])) \
5959 abort ()
5961 CHECK_MODF (reg_equiv_constant);
5962 CHECK_MODF (reg_equiv_memory_loc);
5963 CHECK_MODF (reg_equiv_address);
5964 CHECK_MODF (reg_equiv_mem);
5965 #undef CHECK_MODF
5967 #endif /* ENABLE_CHECKING */
5969 /* If we're replacing a LABEL_REF with a register, add a
5970 REG_LABEL note to indicate to flow which label this
5971 register refers to. */
5972 if (GET_CODE (*r->where) == LABEL_REF
5973 && JUMP_P (insn))
5974 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5975 XEXP (*r->where, 0),
5976 REG_NOTES (insn));
5978 /* Encapsulate RELOADREG so its machine mode matches what
5979 used to be there. Note that gen_lowpart_common will
5980 do the wrong thing if RELOADREG is multi-word. RELOADREG
5981 will always be a REG here. */
5982 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5983 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5985 /* If we are putting this into a SUBREG and RELOADREG is a
5986 SUBREG, we would be making nested SUBREGs, so we have to fix
5987 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5989 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5991 if (GET_MODE (*r->subreg_loc)
5992 == GET_MODE (SUBREG_REG (reloadreg)))
5993 *r->subreg_loc = SUBREG_REG (reloadreg);
5994 else
5996 int final_offset =
5997 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5999 /* When working with SUBREGs the rule is that the byte
6000 offset must be a multiple of the SUBREG's mode. */
6001 final_offset = (final_offset /
6002 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6003 final_offset = (final_offset *
6004 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6006 *r->where = SUBREG_REG (reloadreg);
6007 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6010 else
6011 *r->where = reloadreg;
6013 /* If reload got no reg and isn't optional, something's wrong. */
6014 else if (! rld[r->what].optional)
6015 abort ();
6019 /* Make a copy of any replacements being done into X and move those
6020 copies to locations in Y, a copy of X. */
6022 void
6023 copy_replacements (rtx x, rtx y)
6025 /* We can't support X being a SUBREG because we might then need to know its
6026 location if something inside it was replaced. */
6027 if (GET_CODE (x) == SUBREG)
6028 abort ();
6030 copy_replacements_1 (&x, &y, n_replacements);
6033 static void
6034 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6036 int i, j;
6037 rtx x, y;
6038 struct replacement *r;
6039 enum rtx_code code;
6040 const char *fmt;
6042 for (j = 0; j < orig_replacements; j++)
6044 if (replacements[j].subreg_loc == px)
6046 r = &replacements[n_replacements++];
6047 r->where = replacements[j].where;
6048 r->subreg_loc = py;
6049 r->what = replacements[j].what;
6050 r->mode = replacements[j].mode;
6052 else if (replacements[j].where == px)
6054 r = &replacements[n_replacements++];
6055 r->where = py;
6056 r->subreg_loc = 0;
6057 r->what = replacements[j].what;
6058 r->mode = replacements[j].mode;
6062 x = *px;
6063 y = *py;
6064 code = GET_CODE (x);
6065 fmt = GET_RTX_FORMAT (code);
6067 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6069 if (fmt[i] == 'e')
6070 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6071 else if (fmt[i] == 'E')
6072 for (j = XVECLEN (x, i); --j >= 0; )
6073 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6074 orig_replacements);
6078 /* Change any replacements being done to *X to be done to *Y. */
6080 void
6081 move_replacements (rtx *x, rtx *y)
6083 int i;
6085 for (i = 0; i < n_replacements; i++)
6086 if (replacements[i].subreg_loc == x)
6087 replacements[i].subreg_loc = y;
6088 else if (replacements[i].where == x)
6090 replacements[i].where = y;
6091 replacements[i].subreg_loc = 0;
6095 /* If LOC was scheduled to be replaced by something, return the replacement.
6096 Otherwise, return *LOC. */
6099 find_replacement (rtx *loc)
6101 struct replacement *r;
6103 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6105 rtx reloadreg = rld[r->what].reg_rtx;
6107 if (reloadreg && r->where == loc)
6109 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6110 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6112 return reloadreg;
6114 else if (reloadreg && r->subreg_loc == loc)
6116 /* RELOADREG must be either a REG or a SUBREG.
6118 ??? Is it actually still ever a SUBREG? If so, why? */
6120 if (REG_P (reloadreg))
6121 return gen_rtx_REG (GET_MODE (*loc),
6122 (REGNO (reloadreg) +
6123 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6124 GET_MODE (SUBREG_REG (*loc)),
6125 SUBREG_BYTE (*loc),
6126 GET_MODE (*loc))));
6127 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6128 return reloadreg;
6129 else
6131 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6133 /* When working with SUBREGs the rule is that the byte
6134 offset must be a multiple of the SUBREG's mode. */
6135 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6136 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6137 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6138 final_offset);
6143 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6144 what's inside and make a new rtl if so. */
6145 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6146 || GET_CODE (*loc) == MULT)
6148 rtx x = find_replacement (&XEXP (*loc, 0));
6149 rtx y = find_replacement (&XEXP (*loc, 1));
6151 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6152 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6155 return *loc;
6158 /* Return nonzero if register in range [REGNO, ENDREGNO)
6159 appears either explicitly or implicitly in X
6160 other than being stored into (except for earlyclobber operands).
6162 References contained within the substructure at LOC do not count.
6163 LOC may be zero, meaning don't ignore anything.
6165 This is similar to refers_to_regno_p in rtlanal.c except that we
6166 look at equivalences for pseudos that didn't get hard registers. */
6169 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6170 rtx x, rtx *loc)
6172 int i;
6173 unsigned int r;
6174 RTX_CODE code;
6175 const char *fmt;
6177 if (x == 0)
6178 return 0;
6180 repeat:
6181 code = GET_CODE (x);
6183 switch (code)
6185 case REG:
6186 r = REGNO (x);
6188 /* If this is a pseudo, a hard register must not have been allocated.
6189 X must therefore either be a constant or be in memory. */
6190 if (r >= FIRST_PSEUDO_REGISTER)
6192 if (reg_equiv_memory_loc[r])
6193 return refers_to_regno_for_reload_p (regno, endregno,
6194 reg_equiv_memory_loc[r],
6195 (rtx*) 0);
6197 if (reg_equiv_constant[r])
6198 return 0;
6200 abort ();
6203 return (endregno > r
6204 && regno < r + (r < FIRST_PSEUDO_REGISTER
6205 ? hard_regno_nregs[r][GET_MODE (x)]
6206 : 1));
6208 case SUBREG:
6209 /* If this is a SUBREG of a hard reg, we can see exactly which
6210 registers are being modified. Otherwise, handle normally. */
6211 if (REG_P (SUBREG_REG (x))
6212 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6214 unsigned int inner_regno = subreg_regno (x);
6215 unsigned int inner_endregno
6216 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6217 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6219 return endregno > inner_regno && regno < inner_endregno;
6221 break;
6223 case CLOBBER:
6224 case SET:
6225 if (&SET_DEST (x) != loc
6226 /* Note setting a SUBREG counts as referring to the REG it is in for
6227 a pseudo but not for hard registers since we can
6228 treat each word individually. */
6229 && ((GET_CODE (SET_DEST (x)) == SUBREG
6230 && loc != &SUBREG_REG (SET_DEST (x))
6231 && REG_P (SUBREG_REG (SET_DEST (x)))
6232 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6233 && refers_to_regno_for_reload_p (regno, endregno,
6234 SUBREG_REG (SET_DEST (x)),
6235 loc))
6236 /* If the output is an earlyclobber operand, this is
6237 a conflict. */
6238 || ((!REG_P (SET_DEST (x))
6239 || earlyclobber_operand_p (SET_DEST (x)))
6240 && refers_to_regno_for_reload_p (regno, endregno,
6241 SET_DEST (x), loc))))
6242 return 1;
6244 if (code == CLOBBER || loc == &SET_SRC (x))
6245 return 0;
6246 x = SET_SRC (x);
6247 goto repeat;
6249 default:
6250 break;
6253 /* X does not match, so try its subexpressions. */
6255 fmt = GET_RTX_FORMAT (code);
6256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6258 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6260 if (i == 0)
6262 x = XEXP (x, 0);
6263 goto repeat;
6265 else
6266 if (refers_to_regno_for_reload_p (regno, endregno,
6267 XEXP (x, i), loc))
6268 return 1;
6270 else if (fmt[i] == 'E')
6272 int j;
6273 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6274 if (loc != &XVECEXP (x, i, j)
6275 && refers_to_regno_for_reload_p (regno, endregno,
6276 XVECEXP (x, i, j), loc))
6277 return 1;
6280 return 0;
6283 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6284 we check if any register number in X conflicts with the relevant register
6285 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6286 contains a MEM (we don't bother checking for memory addresses that can't
6287 conflict because we expect this to be a rare case.
6289 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6290 that we look at equivalences for pseudos that didn't get hard registers. */
6293 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6295 int regno, endregno;
6297 /* Overly conservative. */
6298 if (GET_CODE (x) == STRICT_LOW_PART
6299 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6300 x = XEXP (x, 0);
6302 /* If either argument is a constant, then modifying X can not affect IN. */
6303 if (CONSTANT_P (x) || CONSTANT_P (in))
6304 return 0;
6305 else if (GET_CODE (x) == SUBREG)
6307 regno = REGNO (SUBREG_REG (x));
6308 if (regno < FIRST_PSEUDO_REGISTER)
6309 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6310 GET_MODE (SUBREG_REG (x)),
6311 SUBREG_BYTE (x),
6312 GET_MODE (x));
6314 else if (REG_P (x))
6316 regno = REGNO (x);
6318 /* If this is a pseudo, it must not have been assigned a hard register.
6319 Therefore, it must either be in memory or be a constant. */
6321 if (regno >= FIRST_PSEUDO_REGISTER)
6323 if (reg_equiv_memory_loc[regno])
6324 return refers_to_mem_for_reload_p (in);
6325 else if (reg_equiv_constant[regno])
6326 return 0;
6327 abort ();
6330 else if (MEM_P (x))
6331 return refers_to_mem_for_reload_p (in);
6332 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6333 || GET_CODE (x) == CC0)
6334 return reg_mentioned_p (x, in);
6335 else if (GET_CODE (x) == PLUS)
6337 /* We actually want to know if X is mentioned somewhere inside IN.
6338 We must not say that (plus (sp) (const_int 124)) is in
6339 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6340 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6341 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6342 while (MEM_P (in))
6343 in = XEXP (in, 0);
6344 if (REG_P (in))
6345 return 0;
6346 else if (GET_CODE (in) == PLUS)
6347 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6348 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6349 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6350 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6352 else
6353 abort ();
6355 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6356 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6358 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6361 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6362 registers. */
6365 refers_to_mem_for_reload_p (rtx x)
6367 const char *fmt;
6368 int i;
6370 if (MEM_P (x))
6371 return 1;
6373 if (REG_P (x))
6374 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6375 && reg_equiv_memory_loc[REGNO (x)]);
6377 fmt = GET_RTX_FORMAT (GET_CODE (x));
6378 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6379 if (fmt[i] == 'e'
6380 && (MEM_P (XEXP (x, i))
6381 || refers_to_mem_for_reload_p (XEXP (x, i))))
6382 return 1;
6384 return 0;
6387 /* Check the insns before INSN to see if there is a suitable register
6388 containing the same value as GOAL.
6389 If OTHER is -1, look for a register in class CLASS.
6390 Otherwise, just see if register number OTHER shares GOAL's value.
6392 Return an rtx for the register found, or zero if none is found.
6394 If RELOAD_REG_P is (short *)1,
6395 we reject any hard reg that appears in reload_reg_rtx
6396 because such a hard reg is also needed coming into this insn.
6398 If RELOAD_REG_P is any other nonzero value,
6399 it is a vector indexed by hard reg number
6400 and we reject any hard reg whose element in the vector is nonnegative
6401 as well as any that appears in reload_reg_rtx.
6403 If GOAL is zero, then GOALREG is a register number; we look
6404 for an equivalent for that register.
6406 MODE is the machine mode of the value we want an equivalence for.
6407 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6409 This function is used by jump.c as well as in the reload pass.
6411 If GOAL is the sum of the stack pointer and a constant, we treat it
6412 as if it were a constant except that sp is required to be unchanging. */
6415 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6416 short *reload_reg_p, int goalreg, enum machine_mode mode)
6418 rtx p = insn;
6419 rtx goaltry, valtry, value, where;
6420 rtx pat;
6421 int regno = -1;
6422 int valueno;
6423 int goal_mem = 0;
6424 int goal_const = 0;
6425 int goal_mem_addr_varies = 0;
6426 int need_stable_sp = 0;
6427 int nregs;
6428 int valuenregs;
6429 int num = 0;
6431 if (goal == 0)
6432 regno = goalreg;
6433 else if (REG_P (goal))
6434 regno = REGNO (goal);
6435 else if (MEM_P (goal))
6437 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6438 if (MEM_VOLATILE_P (goal))
6439 return 0;
6440 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6441 return 0;
6442 /* An address with side effects must be reexecuted. */
6443 switch (code)
6445 case POST_INC:
6446 case PRE_INC:
6447 case POST_DEC:
6448 case PRE_DEC:
6449 case POST_MODIFY:
6450 case PRE_MODIFY:
6451 return 0;
6452 default:
6453 break;
6455 goal_mem = 1;
6457 else if (CONSTANT_P (goal))
6458 goal_const = 1;
6459 else if (GET_CODE (goal) == PLUS
6460 && XEXP (goal, 0) == stack_pointer_rtx
6461 && CONSTANT_P (XEXP (goal, 1)))
6462 goal_const = need_stable_sp = 1;
6463 else if (GET_CODE (goal) == PLUS
6464 && XEXP (goal, 0) == frame_pointer_rtx
6465 && CONSTANT_P (XEXP (goal, 1)))
6466 goal_const = 1;
6467 else
6468 return 0;
6470 num = 0;
6471 /* Scan insns back from INSN, looking for one that copies
6472 a value into or out of GOAL.
6473 Stop and give up if we reach a label. */
6475 while (1)
6477 p = PREV_INSN (p);
6478 num++;
6479 if (p == 0 || LABEL_P (p)
6480 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6481 return 0;
6483 if (NONJUMP_INSN_P (p)
6484 /* If we don't want spill regs ... */
6485 && (! (reload_reg_p != 0
6486 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6487 /* ... then ignore insns introduced by reload; they aren't
6488 useful and can cause results in reload_as_needed to be
6489 different from what they were when calculating the need for
6490 spills. If we notice an input-reload insn here, we will
6491 reject it below, but it might hide a usable equivalent.
6492 That makes bad code. It may even abort: perhaps no reg was
6493 spilled for this insn because it was assumed we would find
6494 that equivalent. */
6495 || INSN_UID (p) < reload_first_uid))
6497 rtx tem;
6498 pat = single_set (p);
6500 /* First check for something that sets some reg equal to GOAL. */
6501 if (pat != 0
6502 && ((regno >= 0
6503 && true_regnum (SET_SRC (pat)) == regno
6504 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6506 (regno >= 0
6507 && true_regnum (SET_DEST (pat)) == regno
6508 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6510 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6511 /* When looking for stack pointer + const,
6512 make sure we don't use a stack adjust. */
6513 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6514 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6515 || (goal_mem
6516 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6517 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6518 || (goal_mem
6519 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6520 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6521 /* If we are looking for a constant,
6522 and something equivalent to that constant was copied
6523 into a reg, we can use that reg. */
6524 || (goal_const && REG_NOTES (p) != 0
6525 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6526 && ((rtx_equal_p (XEXP (tem, 0), goal)
6527 && (valueno
6528 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6529 || (REG_P (SET_DEST (pat))
6530 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6531 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6532 == MODE_FLOAT)
6533 && GET_CODE (goal) == CONST_INT
6534 && 0 != (goaltry
6535 = operand_subword (XEXP (tem, 0), 0, 0,
6536 VOIDmode))
6537 && rtx_equal_p (goal, goaltry)
6538 && (valtry
6539 = operand_subword (SET_DEST (pat), 0, 0,
6540 VOIDmode))
6541 && (valueno = true_regnum (valtry)) >= 0)))
6542 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6543 NULL_RTX))
6544 && REG_P (SET_DEST (pat))
6545 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6546 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6547 == MODE_FLOAT)
6548 && GET_CODE (goal) == CONST_INT
6549 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6550 VOIDmode))
6551 && rtx_equal_p (goal, goaltry)
6552 && (valtry
6553 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6554 && (valueno = true_regnum (valtry)) >= 0)))
6556 if (other >= 0)
6558 if (valueno != other)
6559 continue;
6561 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6562 continue;
6563 else
6565 int i;
6567 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6568 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6569 valueno + i))
6570 break;
6571 if (i >= 0)
6572 continue;
6574 value = valtry;
6575 where = p;
6576 break;
6581 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6582 (or copying VALUE into GOAL, if GOAL is also a register).
6583 Now verify that VALUE is really valid. */
6585 /* VALUENO is the register number of VALUE; a hard register. */
6587 /* Don't try to re-use something that is killed in this insn. We want
6588 to be able to trust REG_UNUSED notes. */
6589 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6590 return 0;
6592 /* If we propose to get the value from the stack pointer or if GOAL is
6593 a MEM based on the stack pointer, we need a stable SP. */
6594 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6595 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6596 goal)))
6597 need_stable_sp = 1;
6599 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6600 if (GET_MODE (value) != mode)
6601 return 0;
6603 /* Reject VALUE if it was loaded from GOAL
6604 and is also a register that appears in the address of GOAL. */
6606 if (goal_mem && value == SET_DEST (single_set (where))
6607 && refers_to_regno_for_reload_p (valueno,
6608 (valueno
6609 + hard_regno_nregs[valueno][mode]),
6610 goal, (rtx*) 0))
6611 return 0;
6613 /* Reject registers that overlap GOAL. */
6615 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6616 nregs = hard_regno_nregs[regno][mode];
6617 else
6618 nregs = 1;
6619 valuenregs = hard_regno_nregs[valueno][mode];
6621 if (!goal_mem && !goal_const
6622 && regno + nregs > valueno && regno < valueno + valuenregs)
6623 return 0;
6625 /* Reject VALUE if it is one of the regs reserved for reloads.
6626 Reload1 knows how to reuse them anyway, and it would get
6627 confused if we allocated one without its knowledge.
6628 (Now that insns introduced by reload are ignored above,
6629 this case shouldn't happen, but I'm not positive.) */
6631 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6633 int i;
6634 for (i = 0; i < valuenregs; ++i)
6635 if (reload_reg_p[valueno + i] >= 0)
6636 return 0;
6639 /* Reject VALUE if it is a register being used for an input reload
6640 even if it is not one of those reserved. */
6642 if (reload_reg_p != 0)
6644 int i;
6645 for (i = 0; i < n_reloads; i++)
6646 if (rld[i].reg_rtx != 0 && rld[i].in)
6648 int regno1 = REGNO (rld[i].reg_rtx);
6649 int nregs1 = hard_regno_nregs[regno1]
6650 [GET_MODE (rld[i].reg_rtx)];
6651 if (regno1 < valueno + valuenregs
6652 && regno1 + nregs1 > valueno)
6653 return 0;
6657 if (goal_mem)
6658 /* We must treat frame pointer as varying here,
6659 since it can vary--in a nonlocal goto as generated by expand_goto. */
6660 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6662 /* Now verify that the values of GOAL and VALUE remain unaltered
6663 until INSN is reached. */
6665 p = insn;
6666 while (1)
6668 p = PREV_INSN (p);
6669 if (p == where)
6670 return value;
6672 /* Don't trust the conversion past a function call
6673 if either of the two is in a call-clobbered register, or memory. */
6674 if (CALL_P (p))
6676 int i;
6678 if (goal_mem || need_stable_sp)
6679 return 0;
6681 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6682 for (i = 0; i < nregs; ++i)
6683 if (call_used_regs[regno + i])
6684 return 0;
6686 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6687 for (i = 0; i < valuenregs; ++i)
6688 if (call_used_regs[valueno + i])
6689 return 0;
6690 #ifdef NON_SAVING_SETJMP
6691 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6692 return 0;
6693 #endif
6696 if (INSN_P (p))
6698 pat = PATTERN (p);
6700 /* Watch out for unspec_volatile, and volatile asms. */
6701 if (volatile_insn_p (pat))
6702 return 0;
6704 /* If this insn P stores in either GOAL or VALUE, return 0.
6705 If GOAL is a memory ref and this insn writes memory, return 0.
6706 If GOAL is a memory ref and its address is not constant,
6707 and this insn P changes a register used in GOAL, return 0. */
6709 if (GET_CODE (pat) == COND_EXEC)
6710 pat = COND_EXEC_CODE (pat);
6711 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6713 rtx dest = SET_DEST (pat);
6714 while (GET_CODE (dest) == SUBREG
6715 || GET_CODE (dest) == ZERO_EXTRACT
6716 || GET_CODE (dest) == SIGN_EXTRACT
6717 || GET_CODE (dest) == STRICT_LOW_PART)
6718 dest = XEXP (dest, 0);
6719 if (REG_P (dest))
6721 int xregno = REGNO (dest);
6722 int xnregs;
6723 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6724 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6725 else
6726 xnregs = 1;
6727 if (xregno < regno + nregs && xregno + xnregs > regno)
6728 return 0;
6729 if (xregno < valueno + valuenregs
6730 && xregno + xnregs > valueno)
6731 return 0;
6732 if (goal_mem_addr_varies
6733 && reg_overlap_mentioned_for_reload_p (dest, goal))
6734 return 0;
6735 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6736 return 0;
6738 else if (goal_mem && MEM_P (dest)
6739 && ! push_operand (dest, GET_MODE (dest)))
6740 return 0;
6741 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6742 && reg_equiv_memory_loc[regno] != 0)
6743 return 0;
6744 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6745 return 0;
6747 else if (GET_CODE (pat) == PARALLEL)
6749 int i;
6750 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6752 rtx v1 = XVECEXP (pat, 0, i);
6753 if (GET_CODE (v1) == COND_EXEC)
6754 v1 = COND_EXEC_CODE (v1);
6755 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6757 rtx dest = SET_DEST (v1);
6758 while (GET_CODE (dest) == SUBREG
6759 || GET_CODE (dest) == ZERO_EXTRACT
6760 || GET_CODE (dest) == SIGN_EXTRACT
6761 || GET_CODE (dest) == STRICT_LOW_PART)
6762 dest = XEXP (dest, 0);
6763 if (REG_P (dest))
6765 int xregno = REGNO (dest);
6766 int xnregs;
6767 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6768 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6769 else
6770 xnregs = 1;
6771 if (xregno < regno + nregs
6772 && xregno + xnregs > regno)
6773 return 0;
6774 if (xregno < valueno + valuenregs
6775 && xregno + xnregs > valueno)
6776 return 0;
6777 if (goal_mem_addr_varies
6778 && reg_overlap_mentioned_for_reload_p (dest,
6779 goal))
6780 return 0;
6781 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6782 return 0;
6784 else if (goal_mem && MEM_P (dest)
6785 && ! push_operand (dest, GET_MODE (dest)))
6786 return 0;
6787 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6788 && reg_equiv_memory_loc[regno] != 0)
6789 return 0;
6790 else if (need_stable_sp
6791 && push_operand (dest, GET_MODE (dest)))
6792 return 0;
6797 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6799 rtx link;
6801 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6802 link = XEXP (link, 1))
6804 pat = XEXP (link, 0);
6805 if (GET_CODE (pat) == CLOBBER)
6807 rtx dest = SET_DEST (pat);
6809 if (REG_P (dest))
6811 int xregno = REGNO (dest);
6812 int xnregs
6813 = hard_regno_nregs[xregno][GET_MODE (dest)];
6815 if (xregno < regno + nregs
6816 && xregno + xnregs > regno)
6817 return 0;
6818 else if (xregno < valueno + valuenregs
6819 && xregno + xnregs > valueno)
6820 return 0;
6821 else if (goal_mem_addr_varies
6822 && reg_overlap_mentioned_for_reload_p (dest,
6823 goal))
6824 return 0;
6827 else if (goal_mem && MEM_P (dest)
6828 && ! push_operand (dest, GET_MODE (dest)))
6829 return 0;
6830 else if (need_stable_sp
6831 && push_operand (dest, GET_MODE (dest)))
6832 return 0;
6837 #ifdef AUTO_INC_DEC
6838 /* If this insn auto-increments or auto-decrements
6839 either regno or valueno, return 0 now.
6840 If GOAL is a memory ref and its address is not constant,
6841 and this insn P increments a register used in GOAL, return 0. */
6843 rtx link;
6845 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6846 if (REG_NOTE_KIND (link) == REG_INC
6847 && REG_P (XEXP (link, 0)))
6849 int incno = REGNO (XEXP (link, 0));
6850 if (incno < regno + nregs && incno >= regno)
6851 return 0;
6852 if (incno < valueno + valuenregs && incno >= valueno)
6853 return 0;
6854 if (goal_mem_addr_varies
6855 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6856 goal))
6857 return 0;
6860 #endif
6865 /* Find a place where INCED appears in an increment or decrement operator
6866 within X, and return the amount INCED is incremented or decremented by.
6867 The value is always positive. */
6869 static int
6870 find_inc_amount (rtx x, rtx inced)
6872 enum rtx_code code = GET_CODE (x);
6873 const char *fmt;
6874 int i;
6876 if (code == MEM)
6878 rtx addr = XEXP (x, 0);
6879 if ((GET_CODE (addr) == PRE_DEC
6880 || GET_CODE (addr) == POST_DEC
6881 || GET_CODE (addr) == PRE_INC
6882 || GET_CODE (addr) == POST_INC)
6883 && XEXP (addr, 0) == inced)
6884 return GET_MODE_SIZE (GET_MODE (x));
6885 else if ((GET_CODE (addr) == PRE_MODIFY
6886 || GET_CODE (addr) == POST_MODIFY)
6887 && GET_CODE (XEXP (addr, 1)) == PLUS
6888 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6889 && XEXP (addr, 0) == inced
6890 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6892 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6893 return i < 0 ? -i : i;
6897 fmt = GET_RTX_FORMAT (code);
6898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6900 if (fmt[i] == 'e')
6902 int tem = find_inc_amount (XEXP (x, i), inced);
6903 if (tem != 0)
6904 return tem;
6906 if (fmt[i] == 'E')
6908 int j;
6909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6911 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6912 if (tem != 0)
6913 return tem;
6918 return 0;
6921 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6922 If SETS is nonzero, also consider SETs. */
6925 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6926 int sets)
6928 unsigned int nregs = hard_regno_nregs[regno][mode];
6929 unsigned int endregno = regno + nregs;
6931 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6932 || (sets && GET_CODE (PATTERN (insn)) == SET))
6933 && REG_P (XEXP (PATTERN (insn), 0)))
6935 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6937 return test >= regno && test < endregno;
6940 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6942 int i = XVECLEN (PATTERN (insn), 0) - 1;
6944 for (; i >= 0; i--)
6946 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6947 if ((GET_CODE (elt) == CLOBBER
6948 || (sets && GET_CODE (PATTERN (insn)) == SET))
6949 && REG_P (XEXP (elt, 0)))
6951 unsigned int test = REGNO (XEXP (elt, 0));
6953 if (test >= regno && test < endregno)
6954 return 1;
6959 return 0;
6962 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6964 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6966 int regno;
6968 if (GET_MODE (reloadreg) == mode)
6969 return reloadreg;
6971 regno = REGNO (reloadreg);
6973 if (WORDS_BIG_ENDIAN)
6974 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6975 - (int) hard_regno_nregs[regno][mode];
6977 return gen_rtx_REG (mode, regno);
6980 static const char *const reload_when_needed_name[] =
6982 "RELOAD_FOR_INPUT",
6983 "RELOAD_FOR_OUTPUT",
6984 "RELOAD_FOR_INSN",
6985 "RELOAD_FOR_INPUT_ADDRESS",
6986 "RELOAD_FOR_INPADDR_ADDRESS",
6987 "RELOAD_FOR_OUTPUT_ADDRESS",
6988 "RELOAD_FOR_OUTADDR_ADDRESS",
6989 "RELOAD_FOR_OPERAND_ADDRESS",
6990 "RELOAD_FOR_OPADDR_ADDR",
6991 "RELOAD_OTHER",
6992 "RELOAD_FOR_OTHER_ADDRESS"
6995 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6997 /* These functions are used to print the variables set by 'find_reloads' */
6999 void
7000 debug_reload_to_stream (FILE *f)
7002 int r;
7003 const char *prefix;
7005 if (! f)
7006 f = stderr;
7007 for (r = 0; r < n_reloads; r++)
7009 fprintf (f, "Reload %d: ", r);
7011 if (rld[r].in != 0)
7013 fprintf (f, "reload_in (%s) = ",
7014 GET_MODE_NAME (rld[r].inmode));
7015 print_inline_rtx (f, rld[r].in, 24);
7016 fprintf (f, "\n\t");
7019 if (rld[r].out != 0)
7021 fprintf (f, "reload_out (%s) = ",
7022 GET_MODE_NAME (rld[r].outmode));
7023 print_inline_rtx (f, rld[r].out, 24);
7024 fprintf (f, "\n\t");
7027 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7029 fprintf (f, "%s (opnum = %d)",
7030 reload_when_needed_name[(int) rld[r].when_needed],
7031 rld[r].opnum);
7033 if (rld[r].optional)
7034 fprintf (f, ", optional");
7036 if (rld[r].nongroup)
7037 fprintf (f, ", nongroup");
7039 if (rld[r].inc != 0)
7040 fprintf (f, ", inc by %d", rld[r].inc);
7042 if (rld[r].nocombine)
7043 fprintf (f, ", can't combine");
7045 if (rld[r].secondary_p)
7046 fprintf (f, ", secondary_reload_p");
7048 if (rld[r].in_reg != 0)
7050 fprintf (f, "\n\treload_in_reg: ");
7051 print_inline_rtx (f, rld[r].in_reg, 24);
7054 if (rld[r].out_reg != 0)
7056 fprintf (f, "\n\treload_out_reg: ");
7057 print_inline_rtx (f, rld[r].out_reg, 24);
7060 if (rld[r].reg_rtx != 0)
7062 fprintf (f, "\n\treload_reg_rtx: ");
7063 print_inline_rtx (f, rld[r].reg_rtx, 24);
7066 prefix = "\n\t";
7067 if (rld[r].secondary_in_reload != -1)
7069 fprintf (f, "%ssecondary_in_reload = %d",
7070 prefix, rld[r].secondary_in_reload);
7071 prefix = ", ";
7074 if (rld[r].secondary_out_reload != -1)
7075 fprintf (f, "%ssecondary_out_reload = %d\n",
7076 prefix, rld[r].secondary_out_reload);
7078 prefix = "\n\t";
7079 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7081 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7082 insn_data[rld[r].secondary_in_icode].name);
7083 prefix = ", ";
7086 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7087 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7088 insn_data[rld[r].secondary_out_icode].name);
7090 fprintf (f, "\n");
7094 void
7095 debug_reload (void)
7097 debug_reload_to_stream (stderr);