* doc/invoke.texi: Add cpu_type power6x
[official-gcc.git] / gcc / fold-const.c
blob0ac3c8656d2afca6dc74155da87926f1ee54d816
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* Non-zero if we are folding constants inside an initializer; zero
63 otherwise. */
64 int folding_initializer = 0;
66 /* The following constants represent a bit based encoding of GCC's
67 comparison operators. This encoding simplifies transformations
68 on relational comparison operators, such as AND and OR. */
69 enum comparison_code {
70 COMPCODE_FALSE = 0,
71 COMPCODE_LT = 1,
72 COMPCODE_EQ = 2,
73 COMPCODE_LE = 3,
74 COMPCODE_GT = 4,
75 COMPCODE_LTGT = 5,
76 COMPCODE_GE = 6,
77 COMPCODE_ORD = 7,
78 COMPCODE_UNORD = 8,
79 COMPCODE_UNLT = 9,
80 COMPCODE_UNEQ = 10,
81 COMPCODE_UNLE = 11,
82 COMPCODE_UNGT = 12,
83 COMPCODE_NE = 13,
84 COMPCODE_UNGE = 14,
85 COMPCODE_TRUE = 15
88 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
89 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
90 static bool negate_mathfn_p (enum built_in_function);
91 static bool negate_expr_p (tree);
92 static tree negate_expr (tree);
93 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
94 static tree associate_trees (tree, tree, enum tree_code, tree);
95 static tree const_binop (enum tree_code, tree, tree, int);
96 static enum comparison_code comparison_to_compcode (enum tree_code);
97 static enum tree_code compcode_to_comparison (enum comparison_code);
98 static tree combine_comparisons (enum tree_code, enum tree_code,
99 enum tree_code, tree, tree, tree);
100 static int truth_value_p (enum tree_code);
101 static int operand_equal_for_comparison_p (tree, tree, tree);
102 static int twoval_comparison_p (tree, tree *, tree *, int *);
103 static tree eval_subst (tree, tree, tree, tree, tree);
104 static tree pedantic_omit_one_operand (tree, tree, tree);
105 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
106 static tree make_bit_field_ref (tree, tree, int, int, int);
107 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
108 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
109 enum machine_mode *, int *, int *,
110 tree *, tree *);
111 static int all_ones_mask_p (tree, int);
112 static tree sign_bit_p (tree, tree);
113 static int simple_operand_p (tree);
114 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
115 static tree range_predecessor (tree);
116 static tree range_successor (tree);
117 static tree make_range (tree, int *, tree *, tree *);
118 static tree build_range_check (tree, tree, int, tree, tree);
119 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
120 tree);
121 static tree fold_range_test (enum tree_code, tree, tree, tree);
122 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
123 static tree unextend (tree, int, int, tree);
124 static tree fold_truthop (enum tree_code, tree, tree, tree);
125 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
126 static tree extract_muldiv (tree, tree, enum tree_code, tree);
127 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
128 static int multiple_of_p (tree, tree, tree);
129 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
130 tree, tree,
131 tree, tree, int);
132 static bool fold_real_zero_addition_p (tree, tree, int);
133 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
134 tree, tree, tree);
135 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
136 static tree fold_div_compare (enum tree_code, tree, tree, tree);
137 static bool reorder_operands_p (tree, tree);
138 static tree fold_negate_const (tree, tree);
139 static tree fold_not_const (tree, tree);
140 static tree fold_relational_const (enum tree_code, tree, tree, tree);
141 static int native_encode_expr (tree, unsigned char *, int);
142 static tree native_interpret_expr (tree, unsigned char *, int);
145 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
146 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
147 and SUM1. Then this yields nonzero if overflow occurred during the
148 addition.
150 Overflow occurs if A and B have the same sign, but A and SUM differ in
151 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
152 sign. */
153 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
155 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
156 We do that by representing the two-word integer in 4 words, with only
157 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
158 number. The value of the word is LOWPART + HIGHPART * BASE. */
160 #define LOWPART(x) \
161 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
162 #define HIGHPART(x) \
163 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
164 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
166 /* Unpack a two-word integer into 4 words.
167 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
168 WORDS points to the array of HOST_WIDE_INTs. */
170 static void
171 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
173 words[0] = LOWPART (low);
174 words[1] = HIGHPART (low);
175 words[2] = LOWPART (hi);
176 words[3] = HIGHPART (hi);
179 /* Pack an array of 4 words into a two-word integer.
180 WORDS points to the array of words.
181 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
183 static void
184 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
185 HOST_WIDE_INT *hi)
187 *low = words[0] + words[1] * BASE;
188 *hi = words[2] + words[3] * BASE;
191 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
192 in overflow of the value, when >0 we are only interested in signed
193 overflow, for <0 we are interested in any overflow. OVERFLOWED
194 indicates whether overflow has already occurred. CONST_OVERFLOWED
195 indicates whether constant overflow has already occurred. We force
196 T's value to be within range of T's type (by setting to 0 or 1 all
197 the bits outside the type's range). We set TREE_OVERFLOWED if,
198 OVERFLOWED is nonzero,
199 or OVERFLOWABLE is >0 and signed overflow occurs
200 or OVERFLOWABLE is <0 and any overflow occurs
201 We set TREE_CONSTANT_OVERFLOWED if,
202 CONST_OVERFLOWED is nonzero
203 or we set TREE_OVERFLOWED.
204 We return either the original T, or a copy. */
206 tree
207 force_fit_type (tree t, int overflowable,
208 bool overflowed, bool overflowed_const)
210 unsigned HOST_WIDE_INT low;
211 HOST_WIDE_INT high;
212 unsigned int prec;
213 int sign_extended_type;
215 gcc_assert (TREE_CODE (t) == INTEGER_CST);
217 low = TREE_INT_CST_LOW (t);
218 high = TREE_INT_CST_HIGH (t);
220 if (POINTER_TYPE_P (TREE_TYPE (t))
221 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
222 prec = POINTER_SIZE;
223 else
224 prec = TYPE_PRECISION (TREE_TYPE (t));
225 /* Size types *are* sign extended. */
226 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
227 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
228 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
230 /* First clear all bits that are beyond the type's precision. */
232 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
234 else if (prec > HOST_BITS_PER_WIDE_INT)
235 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
236 else
238 high = 0;
239 if (prec < HOST_BITS_PER_WIDE_INT)
240 low &= ~((HOST_WIDE_INT) (-1) << prec);
243 if (!sign_extended_type)
244 /* No sign extension */;
245 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
246 /* Correct width already. */;
247 else if (prec > HOST_BITS_PER_WIDE_INT)
249 /* Sign extend top half? */
250 if (high & ((unsigned HOST_WIDE_INT)1
251 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
252 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
254 else if (prec == HOST_BITS_PER_WIDE_INT)
256 if ((HOST_WIDE_INT)low < 0)
257 high = -1;
259 else
261 /* Sign extend bottom half? */
262 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
264 high = -1;
265 low |= (HOST_WIDE_INT)(-1) << prec;
269 /* If the value changed, return a new node. */
270 if (overflowed || overflowed_const
271 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
273 t = build_int_cst_wide (TREE_TYPE (t), low, high);
275 if (overflowed
276 || overflowable < 0
277 || (overflowable > 0 && sign_extended_type))
279 t = copy_node (t);
280 TREE_OVERFLOW (t) = 1;
281 TREE_CONSTANT_OVERFLOW (t) = 1;
283 else if (overflowed_const)
285 t = copy_node (t);
286 TREE_CONSTANT_OVERFLOW (t) = 1;
290 return t;
293 /* Add two doubleword integers with doubleword result.
294 Return nonzero if the operation overflows according to UNSIGNED_P.
295 Each argument is given as two `HOST_WIDE_INT' pieces.
296 One argument is L1 and H1; the other, L2 and H2.
297 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
300 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
301 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
302 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
303 bool unsigned_p)
305 unsigned HOST_WIDE_INT l;
306 HOST_WIDE_INT h;
308 l = l1 + l2;
309 h = h1 + h2 + (l < l1);
311 *lv = l;
312 *hv = h;
314 if (unsigned_p)
315 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
316 else
317 return OVERFLOW_SUM_SIGN (h1, h2, h);
320 /* Negate a doubleword integer with doubleword result.
321 Return nonzero if the operation overflows, assuming it's signed.
322 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
323 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
326 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
327 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
329 if (l1 == 0)
331 *lv = 0;
332 *hv = - h1;
333 return (*hv & h1) < 0;
335 else
337 *lv = -l1;
338 *hv = ~h1;
339 return 0;
343 /* Multiply two doubleword integers with doubleword result.
344 Return nonzero if the operation overflows according to UNSIGNED_P.
345 Each argument is given as two `HOST_WIDE_INT' pieces.
346 One argument is L1 and H1; the other, L2 and H2.
347 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
350 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
351 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
352 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
353 bool unsigned_p)
355 HOST_WIDE_INT arg1[4];
356 HOST_WIDE_INT arg2[4];
357 HOST_WIDE_INT prod[4 * 2];
358 unsigned HOST_WIDE_INT carry;
359 int i, j, k;
360 unsigned HOST_WIDE_INT toplow, neglow;
361 HOST_WIDE_INT tophigh, neghigh;
363 encode (arg1, l1, h1);
364 encode (arg2, l2, h2);
366 memset (prod, 0, sizeof prod);
368 for (i = 0; i < 4; i++)
370 carry = 0;
371 for (j = 0; j < 4; j++)
373 k = i + j;
374 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
375 carry += arg1[i] * arg2[j];
376 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
377 carry += prod[k];
378 prod[k] = LOWPART (carry);
379 carry = HIGHPART (carry);
381 prod[i + 4] = carry;
384 decode (prod, lv, hv);
385 decode (prod + 4, &toplow, &tophigh);
387 /* Unsigned overflow is immediate. */
388 if (unsigned_p)
389 return (toplow | tophigh) != 0;
391 /* Check for signed overflow by calculating the signed representation of the
392 top half of the result; it should agree with the low half's sign bit. */
393 if (h1 < 0)
395 neg_double (l2, h2, &neglow, &neghigh);
396 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
398 if (h2 < 0)
400 neg_double (l1, h1, &neglow, &neghigh);
401 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
403 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
406 /* Shift the doubleword integer in L1, H1 left by COUNT places
407 keeping only PREC bits of result.
408 Shift right if COUNT is negative.
409 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
410 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
412 void
413 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
414 HOST_WIDE_INT count, unsigned int prec,
415 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
417 unsigned HOST_WIDE_INT signmask;
419 if (count < 0)
421 rshift_double (l1, h1, -count, prec, lv, hv, arith);
422 return;
425 if (SHIFT_COUNT_TRUNCATED)
426 count %= prec;
428 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
430 /* Shifting by the host word size is undefined according to the
431 ANSI standard, so we must handle this as a special case. */
432 *hv = 0;
433 *lv = 0;
435 else if (count >= HOST_BITS_PER_WIDE_INT)
437 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
438 *lv = 0;
440 else
442 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
443 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
444 *lv = l1 << count;
447 /* Sign extend all bits that are beyond the precision. */
449 signmask = -((prec > HOST_BITS_PER_WIDE_INT
450 ? ((unsigned HOST_WIDE_INT) *hv
451 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
452 : (*lv >> (prec - 1))) & 1);
454 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
456 else if (prec >= HOST_BITS_PER_WIDE_INT)
458 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
459 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
461 else
463 *hv = signmask;
464 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
465 *lv |= signmask << prec;
469 /* Shift the doubleword integer in L1, H1 right by COUNT places
470 keeping only PREC bits of result. COUNT must be positive.
471 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
472 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
474 void
475 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
476 HOST_WIDE_INT count, unsigned int prec,
477 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
478 int arith)
480 unsigned HOST_WIDE_INT signmask;
482 signmask = (arith
483 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
484 : 0);
486 if (SHIFT_COUNT_TRUNCATED)
487 count %= prec;
489 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
491 /* Shifting by the host word size is undefined according to the
492 ANSI standard, so we must handle this as a special case. */
493 *hv = 0;
494 *lv = 0;
496 else if (count >= HOST_BITS_PER_WIDE_INT)
498 *hv = 0;
499 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
501 else
503 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
504 *lv = ((l1 >> count)
505 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
508 /* Zero / sign extend all bits that are beyond the precision. */
510 if (count >= (HOST_WIDE_INT)prec)
512 *hv = signmask;
513 *lv = signmask;
515 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
517 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
519 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
520 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
522 else
524 *hv = signmask;
525 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
526 *lv |= signmask << (prec - count);
530 /* Rotate the doubleword integer in L1, H1 left by COUNT places
531 keeping only PREC bits of result.
532 Rotate right if COUNT is negative.
533 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
535 void
536 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
537 HOST_WIDE_INT count, unsigned int prec,
538 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
540 unsigned HOST_WIDE_INT s1l, s2l;
541 HOST_WIDE_INT s1h, s2h;
543 count %= prec;
544 if (count < 0)
545 count += prec;
547 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
548 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
549 *lv = s1l | s2l;
550 *hv = s1h | s2h;
553 /* Rotate the doubleword integer in L1, H1 left by COUNT places
554 keeping only PREC bits of result. COUNT must be positive.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
557 void
558 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
565 count %= prec;
566 if (count < 0)
567 count += prec;
569 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
575 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
576 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
577 CODE is a tree code for a kind of division, one of
578 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
579 or EXACT_DIV_EXPR
580 It controls how the quotient is rounded to an integer.
581 Return nonzero if the operation overflows.
582 UNS nonzero says do unsigned division. */
585 div_and_round_double (enum tree_code code, int uns,
586 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
587 HOST_WIDE_INT hnum_orig,
588 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
589 HOST_WIDE_INT hden_orig,
590 unsigned HOST_WIDE_INT *lquo,
591 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
592 HOST_WIDE_INT *hrem)
594 int quo_neg = 0;
595 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
596 HOST_WIDE_INT den[4], quo[4];
597 int i, j;
598 unsigned HOST_WIDE_INT work;
599 unsigned HOST_WIDE_INT carry = 0;
600 unsigned HOST_WIDE_INT lnum = lnum_orig;
601 HOST_WIDE_INT hnum = hnum_orig;
602 unsigned HOST_WIDE_INT lden = lden_orig;
603 HOST_WIDE_INT hden = hden_orig;
604 int overflow = 0;
606 if (hden == 0 && lden == 0)
607 overflow = 1, lden = 1;
609 /* Calculate quotient sign and convert operands to unsigned. */
610 if (!uns)
612 if (hnum < 0)
614 quo_neg = ~ quo_neg;
615 /* (minimum integer) / (-1) is the only overflow case. */
616 if (neg_double (lnum, hnum, &lnum, &hnum)
617 && ((HOST_WIDE_INT) lden & hden) == -1)
618 overflow = 1;
620 if (hden < 0)
622 quo_neg = ~ quo_neg;
623 neg_double (lden, hden, &lden, &hden);
627 if (hnum == 0 && hden == 0)
628 { /* single precision */
629 *hquo = *hrem = 0;
630 /* This unsigned division rounds toward zero. */
631 *lquo = lnum / lden;
632 goto finish_up;
635 if (hnum == 0)
636 { /* trivial case: dividend < divisor */
637 /* hden != 0 already checked. */
638 *hquo = *lquo = 0;
639 *hrem = hnum;
640 *lrem = lnum;
641 goto finish_up;
644 memset (quo, 0, sizeof quo);
646 memset (num, 0, sizeof num); /* to zero 9th element */
647 memset (den, 0, sizeof den);
649 encode (num, lnum, hnum);
650 encode (den, lden, hden);
652 /* Special code for when the divisor < BASE. */
653 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
655 /* hnum != 0 already checked. */
656 for (i = 4 - 1; i >= 0; i--)
658 work = num[i] + carry * BASE;
659 quo[i] = work / lden;
660 carry = work % lden;
663 else
665 /* Full double precision division,
666 with thanks to Don Knuth's "Seminumerical Algorithms". */
667 int num_hi_sig, den_hi_sig;
668 unsigned HOST_WIDE_INT quo_est, scale;
670 /* Find the highest nonzero divisor digit. */
671 for (i = 4 - 1;; i--)
672 if (den[i] != 0)
674 den_hi_sig = i;
675 break;
678 /* Insure that the first digit of the divisor is at least BASE/2.
679 This is required by the quotient digit estimation algorithm. */
681 scale = BASE / (den[den_hi_sig] + 1);
682 if (scale > 1)
683 { /* scale divisor and dividend */
684 carry = 0;
685 for (i = 0; i <= 4 - 1; i++)
687 work = (num[i] * scale) + carry;
688 num[i] = LOWPART (work);
689 carry = HIGHPART (work);
692 num[4] = carry;
693 carry = 0;
694 for (i = 0; i <= 4 - 1; i++)
696 work = (den[i] * scale) + carry;
697 den[i] = LOWPART (work);
698 carry = HIGHPART (work);
699 if (den[i] != 0) den_hi_sig = i;
703 num_hi_sig = 4;
705 /* Main loop */
706 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
708 /* Guess the next quotient digit, quo_est, by dividing the first
709 two remaining dividend digits by the high order quotient digit.
710 quo_est is never low and is at most 2 high. */
711 unsigned HOST_WIDE_INT tmp;
713 num_hi_sig = i + den_hi_sig + 1;
714 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
715 if (num[num_hi_sig] != den[den_hi_sig])
716 quo_est = work / den[den_hi_sig];
717 else
718 quo_est = BASE - 1;
720 /* Refine quo_est so it's usually correct, and at most one high. */
721 tmp = work - quo_est * den[den_hi_sig];
722 if (tmp < BASE
723 && (den[den_hi_sig - 1] * quo_est
724 > (tmp * BASE + num[num_hi_sig - 2])))
725 quo_est--;
727 /* Try QUO_EST as the quotient digit, by multiplying the
728 divisor by QUO_EST and subtracting from the remaining dividend.
729 Keep in mind that QUO_EST is the I - 1st digit. */
731 carry = 0;
732 for (j = 0; j <= den_hi_sig; j++)
734 work = quo_est * den[j] + carry;
735 carry = HIGHPART (work);
736 work = num[i + j] - LOWPART (work);
737 num[i + j] = LOWPART (work);
738 carry += HIGHPART (work) != 0;
741 /* If quo_est was high by one, then num[i] went negative and
742 we need to correct things. */
743 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
745 quo_est--;
746 carry = 0; /* add divisor back in */
747 for (j = 0; j <= den_hi_sig; j++)
749 work = num[i + j] + den[j] + carry;
750 carry = HIGHPART (work);
751 num[i + j] = LOWPART (work);
754 num [num_hi_sig] += carry;
757 /* Store the quotient digit. */
758 quo[i] = quo_est;
762 decode (quo, lquo, hquo);
764 finish_up:
765 /* If result is negative, make it so. */
766 if (quo_neg)
767 neg_double (*lquo, *hquo, lquo, hquo);
769 /* Compute trial remainder: rem = num - (quo * den) */
770 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
771 neg_double (*lrem, *hrem, lrem, hrem);
772 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
774 switch (code)
776 case TRUNC_DIV_EXPR:
777 case TRUNC_MOD_EXPR: /* round toward zero */
778 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
779 return overflow;
781 case FLOOR_DIV_EXPR:
782 case FLOOR_MOD_EXPR: /* round toward negative infinity */
783 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
785 /* quo = quo - 1; */
786 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
787 lquo, hquo);
789 else
790 return overflow;
791 break;
793 case CEIL_DIV_EXPR:
794 case CEIL_MOD_EXPR: /* round toward positive infinity */
795 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
797 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
798 lquo, hquo);
800 else
801 return overflow;
802 break;
804 case ROUND_DIV_EXPR:
805 case ROUND_MOD_EXPR: /* round to closest integer */
807 unsigned HOST_WIDE_INT labs_rem = *lrem;
808 HOST_WIDE_INT habs_rem = *hrem;
809 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
810 HOST_WIDE_INT habs_den = hden, htwice;
812 /* Get absolute values. */
813 if (*hrem < 0)
814 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
815 if (hden < 0)
816 neg_double (lden, hden, &labs_den, &habs_den);
818 /* If (2 * abs (lrem) >= abs (lden)) */
819 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
820 labs_rem, habs_rem, &ltwice, &htwice);
822 if (((unsigned HOST_WIDE_INT) habs_den
823 < (unsigned HOST_WIDE_INT) htwice)
824 || (((unsigned HOST_WIDE_INT) habs_den
825 == (unsigned HOST_WIDE_INT) htwice)
826 && (labs_den < ltwice)))
828 if (*hquo < 0)
829 /* quo = quo - 1; */
830 add_double (*lquo, *hquo,
831 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
832 else
833 /* quo = quo + 1; */
834 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
835 lquo, hquo);
837 else
838 return overflow;
840 break;
842 default:
843 gcc_unreachable ();
846 /* Compute true remainder: rem = num - (quo * den) */
847 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
848 neg_double (*lrem, *hrem, lrem, hrem);
849 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
850 return overflow;
853 /* If ARG2 divides ARG1 with zero remainder, carries out the division
854 of type CODE and returns the quotient.
855 Otherwise returns NULL_TREE. */
857 static tree
858 div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
860 unsigned HOST_WIDE_INT int1l, int2l;
861 HOST_WIDE_INT int1h, int2h;
862 unsigned HOST_WIDE_INT quol, reml;
863 HOST_WIDE_INT quoh, remh;
864 tree type = TREE_TYPE (arg1);
865 int uns = TYPE_UNSIGNED (type);
867 int1l = TREE_INT_CST_LOW (arg1);
868 int1h = TREE_INT_CST_HIGH (arg1);
869 int2l = TREE_INT_CST_LOW (arg2);
870 int2h = TREE_INT_CST_HIGH (arg2);
872 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
873 &quol, &quoh, &reml, &remh);
874 if (remh != 0 || reml != 0)
875 return NULL_TREE;
877 return build_int_cst_wide (type, quol, quoh);
880 /* Return true if the built-in mathematical function specified by CODE
881 is odd, i.e. -f(x) == f(-x). */
883 static bool
884 negate_mathfn_p (enum built_in_function code)
886 switch (code)
888 CASE_FLT_FN (BUILT_IN_ASIN):
889 CASE_FLT_FN (BUILT_IN_ASINH):
890 CASE_FLT_FN (BUILT_IN_ATAN):
891 CASE_FLT_FN (BUILT_IN_ATANH):
892 CASE_FLT_FN (BUILT_IN_CBRT):
893 CASE_FLT_FN (BUILT_IN_SIN):
894 CASE_FLT_FN (BUILT_IN_SINH):
895 CASE_FLT_FN (BUILT_IN_TAN):
896 CASE_FLT_FN (BUILT_IN_TANH):
897 return true;
899 default:
900 break;
902 return false;
905 /* Check whether we may negate an integer constant T without causing
906 overflow. */
908 bool
909 may_negate_without_overflow_p (tree t)
911 unsigned HOST_WIDE_INT val;
912 unsigned int prec;
913 tree type;
915 gcc_assert (TREE_CODE (t) == INTEGER_CST);
917 type = TREE_TYPE (t);
918 if (TYPE_UNSIGNED (type))
919 return false;
921 prec = TYPE_PRECISION (type);
922 if (prec > HOST_BITS_PER_WIDE_INT)
924 if (TREE_INT_CST_LOW (t) != 0)
925 return true;
926 prec -= HOST_BITS_PER_WIDE_INT;
927 val = TREE_INT_CST_HIGH (t);
929 else
930 val = TREE_INT_CST_LOW (t);
931 if (prec < HOST_BITS_PER_WIDE_INT)
932 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
933 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
936 /* Determine whether an expression T can be cheaply negated using
937 the function negate_expr without introducing undefined overflow. */
939 static bool
940 negate_expr_p (tree t)
942 tree type;
944 if (t == 0)
945 return false;
947 type = TREE_TYPE (t);
949 STRIP_SIGN_NOPS (t);
950 switch (TREE_CODE (t))
952 case INTEGER_CST:
953 if (TYPE_UNSIGNED (type)
954 || (flag_wrapv && ! flag_trapv))
955 return true;
957 /* Check that -CST will not overflow type. */
958 return may_negate_without_overflow_p (t);
959 case BIT_NOT_EXPR:
960 return INTEGRAL_TYPE_P (type)
961 && (TYPE_UNSIGNED (type)
962 || (flag_wrapv && !flag_trapv));
964 case REAL_CST:
965 case NEGATE_EXPR:
966 return true;
968 case COMPLEX_CST:
969 return negate_expr_p (TREE_REALPART (t))
970 && negate_expr_p (TREE_IMAGPART (t));
972 case PLUS_EXPR:
973 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
974 return false;
975 /* -(A + B) -> (-B) - A. */
976 if (negate_expr_p (TREE_OPERAND (t, 1))
977 && reorder_operands_p (TREE_OPERAND (t, 0),
978 TREE_OPERAND (t, 1)))
979 return true;
980 /* -(A + B) -> (-A) - B. */
981 return negate_expr_p (TREE_OPERAND (t, 0));
983 case MINUS_EXPR:
984 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
985 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
986 && reorder_operands_p (TREE_OPERAND (t, 0),
987 TREE_OPERAND (t, 1));
989 case MULT_EXPR:
990 if (TYPE_UNSIGNED (TREE_TYPE (t)))
991 break;
993 /* Fall through. */
995 case RDIV_EXPR:
996 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
997 return negate_expr_p (TREE_OPERAND (t, 1))
998 || negate_expr_p (TREE_OPERAND (t, 0));
999 break;
1001 case TRUNC_DIV_EXPR:
1002 case ROUND_DIV_EXPR:
1003 case FLOOR_DIV_EXPR:
1004 case CEIL_DIV_EXPR:
1005 case EXACT_DIV_EXPR:
1006 if (TYPE_UNSIGNED (TREE_TYPE (t)) || flag_wrapv)
1007 break;
1008 return negate_expr_p (TREE_OPERAND (t, 1))
1009 || negate_expr_p (TREE_OPERAND (t, 0));
1011 case NOP_EXPR:
1012 /* Negate -((double)float) as (double)(-float). */
1013 if (TREE_CODE (type) == REAL_TYPE)
1015 tree tem = strip_float_extensions (t);
1016 if (tem != t)
1017 return negate_expr_p (tem);
1019 break;
1021 case CALL_EXPR:
1022 /* Negate -f(x) as f(-x). */
1023 if (negate_mathfn_p (builtin_mathfn_code (t)))
1024 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
1025 break;
1027 case RSHIFT_EXPR:
1028 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1029 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1031 tree op1 = TREE_OPERAND (t, 1);
1032 if (TREE_INT_CST_HIGH (op1) == 0
1033 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1034 == TREE_INT_CST_LOW (op1))
1035 return true;
1037 break;
1039 default:
1040 break;
1042 return false;
1045 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1046 simplification is possible.
1047 If negate_expr_p would return true for T, NULL_TREE will never be
1048 returned. */
1050 static tree
1051 fold_negate_expr (tree t)
1053 tree type = TREE_TYPE (t);
1054 tree tem;
1056 switch (TREE_CODE (t))
1058 /* Convert - (~A) to A + 1. */
1059 case BIT_NOT_EXPR:
1060 if (INTEGRAL_TYPE_P (type))
1061 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1062 build_int_cst (type, 1));
1063 break;
1065 case INTEGER_CST:
1066 tem = fold_negate_const (t, type);
1067 if (! TREE_OVERFLOW (tem)
1068 || TYPE_UNSIGNED (type)
1069 || ! flag_trapv)
1070 return tem;
1071 break;
1073 case REAL_CST:
1074 tem = fold_negate_const (t, type);
1075 /* Two's complement FP formats, such as c4x, may overflow. */
1076 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1077 return tem;
1078 break;
1080 case COMPLEX_CST:
1082 tree rpart = negate_expr (TREE_REALPART (t));
1083 tree ipart = negate_expr (TREE_IMAGPART (t));
1085 if ((TREE_CODE (rpart) == REAL_CST
1086 && TREE_CODE (ipart) == REAL_CST)
1087 || (TREE_CODE (rpart) == INTEGER_CST
1088 && TREE_CODE (ipart) == INTEGER_CST))
1089 return build_complex (type, rpart, ipart);
1091 break;
1093 case NEGATE_EXPR:
1094 return TREE_OPERAND (t, 0);
1096 case PLUS_EXPR:
1097 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1099 /* -(A + B) -> (-B) - A. */
1100 if (negate_expr_p (TREE_OPERAND (t, 1))
1101 && reorder_operands_p (TREE_OPERAND (t, 0),
1102 TREE_OPERAND (t, 1)))
1104 tem = negate_expr (TREE_OPERAND (t, 1));
1105 return fold_build2 (MINUS_EXPR, type,
1106 tem, TREE_OPERAND (t, 0));
1109 /* -(A + B) -> (-A) - B. */
1110 if (negate_expr_p (TREE_OPERAND (t, 0)))
1112 tem = negate_expr (TREE_OPERAND (t, 0));
1113 return fold_build2 (MINUS_EXPR, type,
1114 tem, TREE_OPERAND (t, 1));
1117 break;
1119 case MINUS_EXPR:
1120 /* - (A - B) -> B - A */
1121 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1122 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1123 return fold_build2 (MINUS_EXPR, type,
1124 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1125 break;
1127 case MULT_EXPR:
1128 if (TYPE_UNSIGNED (type))
1129 break;
1131 /* Fall through. */
1133 case RDIV_EXPR:
1134 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1136 tem = TREE_OPERAND (t, 1);
1137 if (negate_expr_p (tem))
1138 return fold_build2 (TREE_CODE (t), type,
1139 TREE_OPERAND (t, 0), negate_expr (tem));
1140 tem = TREE_OPERAND (t, 0);
1141 if (negate_expr_p (tem))
1142 return fold_build2 (TREE_CODE (t), type,
1143 negate_expr (tem), TREE_OPERAND (t, 1));
1145 break;
1147 case TRUNC_DIV_EXPR:
1148 case ROUND_DIV_EXPR:
1149 case FLOOR_DIV_EXPR:
1150 case CEIL_DIV_EXPR:
1151 case EXACT_DIV_EXPR:
1152 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
1154 tem = TREE_OPERAND (t, 1);
1155 if (negate_expr_p (tem))
1156 return fold_build2 (TREE_CODE (t), type,
1157 TREE_OPERAND (t, 0), negate_expr (tem));
1158 tem = TREE_OPERAND (t, 0);
1159 if (negate_expr_p (tem))
1160 return fold_build2 (TREE_CODE (t), type,
1161 negate_expr (tem), TREE_OPERAND (t, 1));
1163 break;
1165 case NOP_EXPR:
1166 /* Convert -((double)float) into (double)(-float). */
1167 if (TREE_CODE (type) == REAL_TYPE)
1169 tem = strip_float_extensions (t);
1170 if (tem != t && negate_expr_p (tem))
1171 return negate_expr (tem);
1173 break;
1175 case CALL_EXPR:
1176 /* Negate -f(x) as f(-x). */
1177 if (negate_mathfn_p (builtin_mathfn_code (t))
1178 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1180 tree fndecl, arg, arglist;
1182 fndecl = get_callee_fndecl (t);
1183 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1184 arglist = build_tree_list (NULL_TREE, arg);
1185 return build_function_call_expr (fndecl, arglist);
1187 break;
1189 case RSHIFT_EXPR:
1190 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1191 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1193 tree op1 = TREE_OPERAND (t, 1);
1194 if (TREE_INT_CST_HIGH (op1) == 0
1195 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1196 == TREE_INT_CST_LOW (op1))
1198 tree ntype = TYPE_UNSIGNED (type)
1199 ? lang_hooks.types.signed_type (type)
1200 : lang_hooks.types.unsigned_type (type);
1201 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1202 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1203 return fold_convert (type, temp);
1206 break;
1208 default:
1209 break;
1212 return NULL_TREE;
1215 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1216 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1217 return NULL_TREE. */
1219 static tree
1220 negate_expr (tree t)
1222 tree type, tem;
1224 if (t == NULL_TREE)
1225 return NULL_TREE;
1227 type = TREE_TYPE (t);
1228 STRIP_SIGN_NOPS (t);
1230 tem = fold_negate_expr (t);
1231 if (!tem)
1232 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1233 return fold_convert (type, tem);
1236 /* Split a tree IN into a constant, literal and variable parts that could be
1237 combined with CODE to make IN. "constant" means an expression with
1238 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1239 commutative arithmetic operation. Store the constant part into *CONP,
1240 the literal in *LITP and return the variable part. If a part isn't
1241 present, set it to null. If the tree does not decompose in this way,
1242 return the entire tree as the variable part and the other parts as null.
1244 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1245 case, we negate an operand that was subtracted. Except if it is a
1246 literal for which we use *MINUS_LITP instead.
1248 If NEGATE_P is true, we are negating all of IN, again except a literal
1249 for which we use *MINUS_LITP instead.
1251 If IN is itself a literal or constant, return it as appropriate.
1253 Note that we do not guarantee that any of the three values will be the
1254 same type as IN, but they will have the same signedness and mode. */
1256 static tree
1257 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1258 tree *minus_litp, int negate_p)
1260 tree var = 0;
1262 *conp = 0;
1263 *litp = 0;
1264 *minus_litp = 0;
1266 /* Strip any conversions that don't change the machine mode or signedness. */
1267 STRIP_SIGN_NOPS (in);
1269 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1270 *litp = in;
1271 else if (TREE_CODE (in) == code
1272 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1273 /* We can associate addition and subtraction together (even
1274 though the C standard doesn't say so) for integers because
1275 the value is not affected. For reals, the value might be
1276 affected, so we can't. */
1277 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1278 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1280 tree op0 = TREE_OPERAND (in, 0);
1281 tree op1 = TREE_OPERAND (in, 1);
1282 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1283 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1285 /* First see if either of the operands is a literal, then a constant. */
1286 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1287 *litp = op0, op0 = 0;
1288 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1289 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1291 if (op0 != 0 && TREE_CONSTANT (op0))
1292 *conp = op0, op0 = 0;
1293 else if (op1 != 0 && TREE_CONSTANT (op1))
1294 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1296 /* If we haven't dealt with either operand, this is not a case we can
1297 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1298 if (op0 != 0 && op1 != 0)
1299 var = in;
1300 else if (op0 != 0)
1301 var = op0;
1302 else
1303 var = op1, neg_var_p = neg1_p;
1305 /* Now do any needed negations. */
1306 if (neg_litp_p)
1307 *minus_litp = *litp, *litp = 0;
1308 if (neg_conp_p)
1309 *conp = negate_expr (*conp);
1310 if (neg_var_p)
1311 var = negate_expr (var);
1313 else if (TREE_CONSTANT (in))
1314 *conp = in;
1315 else
1316 var = in;
1318 if (negate_p)
1320 if (*litp)
1321 *minus_litp = *litp, *litp = 0;
1322 else if (*minus_litp)
1323 *litp = *minus_litp, *minus_litp = 0;
1324 *conp = negate_expr (*conp);
1325 var = negate_expr (var);
1328 return var;
1331 /* Re-associate trees split by the above function. T1 and T2 are either
1332 expressions to associate or null. Return the new expression, if any. If
1333 we build an operation, do it in TYPE and with CODE. */
1335 static tree
1336 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1338 if (t1 == 0)
1339 return t2;
1340 else if (t2 == 0)
1341 return t1;
1343 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1344 try to fold this since we will have infinite recursion. But do
1345 deal with any NEGATE_EXPRs. */
1346 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1347 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1349 if (code == PLUS_EXPR)
1351 if (TREE_CODE (t1) == NEGATE_EXPR)
1352 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1353 fold_convert (type, TREE_OPERAND (t1, 0)));
1354 else if (TREE_CODE (t2) == NEGATE_EXPR)
1355 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1356 fold_convert (type, TREE_OPERAND (t2, 0)));
1357 else if (integer_zerop (t2))
1358 return fold_convert (type, t1);
1360 else if (code == MINUS_EXPR)
1362 if (integer_zerop (t2))
1363 return fold_convert (type, t1);
1366 return build2 (code, type, fold_convert (type, t1),
1367 fold_convert (type, t2));
1370 return fold_build2 (code, type, fold_convert (type, t1),
1371 fold_convert (type, t2));
1374 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1375 to produce a new constant. Return NULL_TREE if we don't know how
1376 to evaluate CODE at compile-time.
1378 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1380 tree
1381 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1383 unsigned HOST_WIDE_INT int1l, int2l;
1384 HOST_WIDE_INT int1h, int2h;
1385 unsigned HOST_WIDE_INT low;
1386 HOST_WIDE_INT hi;
1387 unsigned HOST_WIDE_INT garbagel;
1388 HOST_WIDE_INT garbageh;
1389 tree t;
1390 tree type = TREE_TYPE (arg1);
1391 int uns = TYPE_UNSIGNED (type);
1392 int is_sizetype
1393 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1394 int overflow = 0;
1396 int1l = TREE_INT_CST_LOW (arg1);
1397 int1h = TREE_INT_CST_HIGH (arg1);
1398 int2l = TREE_INT_CST_LOW (arg2);
1399 int2h = TREE_INT_CST_HIGH (arg2);
1401 switch (code)
1403 case BIT_IOR_EXPR:
1404 low = int1l | int2l, hi = int1h | int2h;
1405 break;
1407 case BIT_XOR_EXPR:
1408 low = int1l ^ int2l, hi = int1h ^ int2h;
1409 break;
1411 case BIT_AND_EXPR:
1412 low = int1l & int2l, hi = int1h & int2h;
1413 break;
1415 case RSHIFT_EXPR:
1416 int2l = -int2l;
1417 case LSHIFT_EXPR:
1418 /* It's unclear from the C standard whether shifts can overflow.
1419 The following code ignores overflow; perhaps a C standard
1420 interpretation ruling is needed. */
1421 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1422 &low, &hi, !uns);
1423 break;
1425 case RROTATE_EXPR:
1426 int2l = - int2l;
1427 case LROTATE_EXPR:
1428 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1429 &low, &hi);
1430 break;
1432 case PLUS_EXPR:
1433 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1434 break;
1436 case MINUS_EXPR:
1437 neg_double (int2l, int2h, &low, &hi);
1438 add_double (int1l, int1h, low, hi, &low, &hi);
1439 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1440 break;
1442 case MULT_EXPR:
1443 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1444 break;
1446 case TRUNC_DIV_EXPR:
1447 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1448 case EXACT_DIV_EXPR:
1449 /* This is a shortcut for a common special case. */
1450 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1451 && ! TREE_CONSTANT_OVERFLOW (arg1)
1452 && ! TREE_CONSTANT_OVERFLOW (arg2)
1453 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1455 if (code == CEIL_DIV_EXPR)
1456 int1l += int2l - 1;
1458 low = int1l / int2l, hi = 0;
1459 break;
1462 /* ... fall through ... */
1464 case ROUND_DIV_EXPR:
1465 if (int2h == 0 && int2l == 0)
1466 return NULL_TREE;
1467 if (int2h == 0 && int2l == 1)
1469 low = int1l, hi = int1h;
1470 break;
1472 if (int1l == int2l && int1h == int2h
1473 && ! (int1l == 0 && int1h == 0))
1475 low = 1, hi = 0;
1476 break;
1478 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1479 &low, &hi, &garbagel, &garbageh);
1480 break;
1482 case TRUNC_MOD_EXPR:
1483 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1484 /* This is a shortcut for a common special case. */
1485 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1486 && ! TREE_CONSTANT_OVERFLOW (arg1)
1487 && ! TREE_CONSTANT_OVERFLOW (arg2)
1488 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1490 if (code == CEIL_MOD_EXPR)
1491 int1l += int2l - 1;
1492 low = int1l % int2l, hi = 0;
1493 break;
1496 /* ... fall through ... */
1498 case ROUND_MOD_EXPR:
1499 if (int2h == 0 && int2l == 0)
1500 return NULL_TREE;
1501 overflow = div_and_round_double (code, uns,
1502 int1l, int1h, int2l, int2h,
1503 &garbagel, &garbageh, &low, &hi);
1504 break;
1506 case MIN_EXPR:
1507 case MAX_EXPR:
1508 if (uns)
1509 low = (((unsigned HOST_WIDE_INT) int1h
1510 < (unsigned HOST_WIDE_INT) int2h)
1511 || (((unsigned HOST_WIDE_INT) int1h
1512 == (unsigned HOST_WIDE_INT) int2h)
1513 && int1l < int2l));
1514 else
1515 low = (int1h < int2h
1516 || (int1h == int2h && int1l < int2l));
1518 if (low == (code == MIN_EXPR))
1519 low = int1l, hi = int1h;
1520 else
1521 low = int2l, hi = int2h;
1522 break;
1524 default:
1525 return NULL_TREE;
1528 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1530 if (notrunc)
1532 /* Propagate overflow flags ourselves. */
1533 if (((!uns || is_sizetype) && overflow)
1534 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1536 t = copy_node (t);
1537 TREE_OVERFLOW (t) = 1;
1538 TREE_CONSTANT_OVERFLOW (t) = 1;
1540 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1542 t = copy_node (t);
1543 TREE_CONSTANT_OVERFLOW (t) = 1;
1546 else
1547 t = force_fit_type (t, 1,
1548 ((!uns || is_sizetype) && overflow)
1549 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1550 TREE_CONSTANT_OVERFLOW (arg1)
1551 | TREE_CONSTANT_OVERFLOW (arg2));
1553 return t;
1556 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1557 constant. We assume ARG1 and ARG2 have the same data type, or at least
1558 are the same kind of constant and the same machine mode. Return zero if
1559 combining the constants is not allowed in the current operating mode.
1561 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1563 static tree
1564 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1566 /* Sanity check for the recursive cases. */
1567 if (!arg1 || !arg2)
1568 return NULL_TREE;
1570 STRIP_NOPS (arg1);
1571 STRIP_NOPS (arg2);
1573 if (TREE_CODE (arg1) == INTEGER_CST)
1574 return int_const_binop (code, arg1, arg2, notrunc);
1576 if (TREE_CODE (arg1) == REAL_CST)
1578 enum machine_mode mode;
1579 REAL_VALUE_TYPE d1;
1580 REAL_VALUE_TYPE d2;
1581 REAL_VALUE_TYPE value;
1582 REAL_VALUE_TYPE result;
1583 bool inexact;
1584 tree t, type;
1586 /* The following codes are handled by real_arithmetic. */
1587 switch (code)
1589 case PLUS_EXPR:
1590 case MINUS_EXPR:
1591 case MULT_EXPR:
1592 case RDIV_EXPR:
1593 case MIN_EXPR:
1594 case MAX_EXPR:
1595 break;
1597 default:
1598 return NULL_TREE;
1601 d1 = TREE_REAL_CST (arg1);
1602 d2 = TREE_REAL_CST (arg2);
1604 type = TREE_TYPE (arg1);
1605 mode = TYPE_MODE (type);
1607 /* Don't perform operation if we honor signaling NaNs and
1608 either operand is a NaN. */
1609 if (HONOR_SNANS (mode)
1610 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1611 return NULL_TREE;
1613 /* Don't perform operation if it would raise a division
1614 by zero exception. */
1615 if (code == RDIV_EXPR
1616 && REAL_VALUES_EQUAL (d2, dconst0)
1617 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1618 return NULL_TREE;
1620 /* If either operand is a NaN, just return it. Otherwise, set up
1621 for floating-point trap; we return an overflow. */
1622 if (REAL_VALUE_ISNAN (d1))
1623 return arg1;
1624 else if (REAL_VALUE_ISNAN (d2))
1625 return arg2;
1627 inexact = real_arithmetic (&value, code, &d1, &d2);
1628 real_convert (&result, mode, &value);
1630 /* Don't constant fold this floating point operation if
1631 the result has overflowed and flag_trapping_math. */
1632 if (flag_trapping_math
1633 && MODE_HAS_INFINITIES (mode)
1634 && REAL_VALUE_ISINF (result)
1635 && !REAL_VALUE_ISINF (d1)
1636 && !REAL_VALUE_ISINF (d2))
1637 return NULL_TREE;
1639 /* Don't constant fold this floating point operation if the
1640 result may dependent upon the run-time rounding mode and
1641 flag_rounding_math is set, or if GCC's software emulation
1642 is unable to accurately represent the result. */
1643 if ((flag_rounding_math
1644 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1645 && !flag_unsafe_math_optimizations))
1646 && (inexact || !real_identical (&result, &value)))
1647 return NULL_TREE;
1649 t = build_real (type, result);
1651 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1652 TREE_CONSTANT_OVERFLOW (t)
1653 = TREE_OVERFLOW (t)
1654 | TREE_CONSTANT_OVERFLOW (arg1)
1655 | TREE_CONSTANT_OVERFLOW (arg2);
1656 return t;
1659 if (TREE_CODE (arg1) == COMPLEX_CST)
1661 tree type = TREE_TYPE (arg1);
1662 tree r1 = TREE_REALPART (arg1);
1663 tree i1 = TREE_IMAGPART (arg1);
1664 tree r2 = TREE_REALPART (arg2);
1665 tree i2 = TREE_IMAGPART (arg2);
1666 tree real, imag;
1668 switch (code)
1670 case PLUS_EXPR:
1671 case MINUS_EXPR:
1672 real = const_binop (code, r1, r2, notrunc);
1673 imag = const_binop (code, i1, i2, notrunc);
1674 break;
1676 case MULT_EXPR:
1677 real = const_binop (MINUS_EXPR,
1678 const_binop (MULT_EXPR, r1, r2, notrunc),
1679 const_binop (MULT_EXPR, i1, i2, notrunc),
1680 notrunc);
1681 imag = const_binop (PLUS_EXPR,
1682 const_binop (MULT_EXPR, r1, i2, notrunc),
1683 const_binop (MULT_EXPR, i1, r2, notrunc),
1684 notrunc);
1685 break;
1687 case RDIV_EXPR:
1689 tree magsquared
1690 = const_binop (PLUS_EXPR,
1691 const_binop (MULT_EXPR, r2, r2, notrunc),
1692 const_binop (MULT_EXPR, i2, i2, notrunc),
1693 notrunc);
1694 tree t1
1695 = const_binop (PLUS_EXPR,
1696 const_binop (MULT_EXPR, r1, r2, notrunc),
1697 const_binop (MULT_EXPR, i1, i2, notrunc),
1698 notrunc);
1699 tree t2
1700 = const_binop (MINUS_EXPR,
1701 const_binop (MULT_EXPR, i1, r2, notrunc),
1702 const_binop (MULT_EXPR, r1, i2, notrunc),
1703 notrunc);
1705 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1706 code = TRUNC_DIV_EXPR;
1708 real = const_binop (code, t1, magsquared, notrunc);
1709 imag = const_binop (code, t2, magsquared, notrunc);
1711 break;
1713 default:
1714 return NULL_TREE;
1717 if (real && imag)
1718 return build_complex (type, real, imag);
1721 return NULL_TREE;
1724 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1725 indicates which particular sizetype to create. */
1727 tree
1728 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1730 return build_int_cst (sizetype_tab[(int) kind], number);
1733 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1734 is a tree code. The type of the result is taken from the operands.
1735 Both must be the same type integer type and it must be a size type.
1736 If the operands are constant, so is the result. */
1738 tree
1739 size_binop (enum tree_code code, tree arg0, tree arg1)
1741 tree type = TREE_TYPE (arg0);
1743 if (arg0 == error_mark_node || arg1 == error_mark_node)
1744 return error_mark_node;
1746 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1747 && type == TREE_TYPE (arg1));
1749 /* Handle the special case of two integer constants faster. */
1750 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1752 /* And some specific cases even faster than that. */
1753 if (code == PLUS_EXPR && integer_zerop (arg0))
1754 return arg1;
1755 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1756 && integer_zerop (arg1))
1757 return arg0;
1758 else if (code == MULT_EXPR && integer_onep (arg0))
1759 return arg1;
1761 /* Handle general case of two integer constants. */
1762 return int_const_binop (code, arg0, arg1, 0);
1765 return fold_build2 (code, type, arg0, arg1);
1768 /* Given two values, either both of sizetype or both of bitsizetype,
1769 compute the difference between the two values. Return the value
1770 in signed type corresponding to the type of the operands. */
1772 tree
1773 size_diffop (tree arg0, tree arg1)
1775 tree type = TREE_TYPE (arg0);
1776 tree ctype;
1778 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1779 && type == TREE_TYPE (arg1));
1781 /* If the type is already signed, just do the simple thing. */
1782 if (!TYPE_UNSIGNED (type))
1783 return size_binop (MINUS_EXPR, arg0, arg1);
1785 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1787 /* If either operand is not a constant, do the conversions to the signed
1788 type and subtract. The hardware will do the right thing with any
1789 overflow in the subtraction. */
1790 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1791 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1792 fold_convert (ctype, arg1));
1794 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1795 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1796 overflow) and negate (which can't either). Special-case a result
1797 of zero while we're here. */
1798 if (tree_int_cst_equal (arg0, arg1))
1799 return build_int_cst (ctype, 0);
1800 else if (tree_int_cst_lt (arg1, arg0))
1801 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1802 else
1803 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
1804 fold_convert (ctype, size_binop (MINUS_EXPR,
1805 arg1, arg0)));
1808 /* A subroutine of fold_convert_const handling conversions of an
1809 INTEGER_CST to another integer type. */
1811 static tree
1812 fold_convert_const_int_from_int (tree type, tree arg1)
1814 tree t;
1816 /* Given an integer constant, make new constant with new type,
1817 appropriately sign-extended or truncated. */
1818 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1819 TREE_INT_CST_HIGH (arg1));
1821 t = force_fit_type (t,
1822 /* Don't set the overflow when
1823 converting a pointer */
1824 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1825 (TREE_INT_CST_HIGH (arg1) < 0
1826 && (TYPE_UNSIGNED (type)
1827 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1828 | TREE_OVERFLOW (arg1),
1829 TREE_CONSTANT_OVERFLOW (arg1));
1831 return t;
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
1840 int overflow = 0;
1841 tree t;
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1852 HOST_WIDE_INT high, low;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1856 switch (code)
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1862 case FIX_CEIL_EXPR:
1863 real_ceil (&r, VOIDmode, &x);
1864 break;
1866 case FIX_FLOOR_EXPR:
1867 real_floor (&r, VOIDmode, &x);
1868 break;
1870 case FIX_ROUND_EXPR:
1871 real_round (&r, VOIDmode, &x);
1872 break;
1874 default:
1875 gcc_unreachable ();
1878 /* If R is NaN, return zero and show we have an overflow. */
1879 if (REAL_VALUE_ISNAN (r))
1881 overflow = 1;
1882 high = 0;
1883 low = 0;
1886 /* See if R is less than the lower bound or greater than the
1887 upper bound. */
1889 if (! overflow)
1891 tree lt = TYPE_MIN_VALUE (type);
1892 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1893 if (REAL_VALUES_LESS (r, l))
1895 overflow = 1;
1896 high = TREE_INT_CST_HIGH (lt);
1897 low = TREE_INT_CST_LOW (lt);
1901 if (! overflow)
1903 tree ut = TYPE_MAX_VALUE (type);
1904 if (ut)
1906 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1907 if (REAL_VALUES_LESS (u, r))
1909 overflow = 1;
1910 high = TREE_INT_CST_HIGH (ut);
1911 low = TREE_INT_CST_LOW (ut);
1916 if (! overflow)
1917 REAL_VALUE_TO_INT (&low, &high, r);
1919 t = build_int_cst_wide (type, low, high);
1921 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1922 TREE_CONSTANT_OVERFLOW (arg1));
1923 return t;
1926 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1927 to another floating point type. */
1929 static tree
1930 fold_convert_const_real_from_real (tree type, tree arg1)
1932 REAL_VALUE_TYPE value;
1933 tree t;
1935 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1936 t = build_real (type, value);
1938 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1939 TREE_CONSTANT_OVERFLOW (t)
1940 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1941 return t;
1944 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1945 type TYPE. If no simplification can be done return NULL_TREE. */
1947 static tree
1948 fold_convert_const (enum tree_code code, tree type, tree arg1)
1950 if (TREE_TYPE (arg1) == type)
1951 return arg1;
1953 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1955 if (TREE_CODE (arg1) == INTEGER_CST)
1956 return fold_convert_const_int_from_int (type, arg1);
1957 else if (TREE_CODE (arg1) == REAL_CST)
1958 return fold_convert_const_int_from_real (code, type, arg1);
1960 else if (TREE_CODE (type) == REAL_TYPE)
1962 if (TREE_CODE (arg1) == INTEGER_CST)
1963 return build_real_from_int_cst (type, arg1);
1964 if (TREE_CODE (arg1) == REAL_CST)
1965 return fold_convert_const_real_from_real (type, arg1);
1967 return NULL_TREE;
1970 /* Construct a vector of zero elements of vector type TYPE. */
1972 static tree
1973 build_zero_vector (tree type)
1975 tree elem, list;
1976 int i, units;
1978 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1979 units = TYPE_VECTOR_SUBPARTS (type);
1981 list = NULL_TREE;
1982 for (i = 0; i < units; i++)
1983 list = tree_cons (NULL_TREE, elem, list);
1984 return build_vector (type, list);
1987 /* Convert expression ARG to type TYPE. Used by the middle-end for
1988 simple conversions in preference to calling the front-end's convert. */
1990 tree
1991 fold_convert (tree type, tree arg)
1993 tree orig = TREE_TYPE (arg);
1994 tree tem;
1996 if (type == orig)
1997 return arg;
1999 if (TREE_CODE (arg) == ERROR_MARK
2000 || TREE_CODE (type) == ERROR_MARK
2001 || TREE_CODE (orig) == ERROR_MARK)
2002 return error_mark_node;
2004 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
2005 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
2006 TYPE_MAIN_VARIANT (orig)))
2007 return fold_build1 (NOP_EXPR, type, arg);
2009 switch (TREE_CODE (type))
2011 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2012 case POINTER_TYPE: case REFERENCE_TYPE:
2013 case OFFSET_TYPE:
2014 if (TREE_CODE (arg) == INTEGER_CST)
2016 tem = fold_convert_const (NOP_EXPR, type, arg);
2017 if (tem != NULL_TREE)
2018 return tem;
2020 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2021 || TREE_CODE (orig) == OFFSET_TYPE)
2022 return fold_build1 (NOP_EXPR, type, arg);
2023 if (TREE_CODE (orig) == COMPLEX_TYPE)
2025 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2026 return fold_convert (type, tem);
2028 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2029 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2030 return fold_build1 (NOP_EXPR, type, arg);
2032 case REAL_TYPE:
2033 if (TREE_CODE (arg) == INTEGER_CST)
2035 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2036 if (tem != NULL_TREE)
2037 return tem;
2039 else if (TREE_CODE (arg) == REAL_CST)
2041 tem = fold_convert_const (NOP_EXPR, type, arg);
2042 if (tem != NULL_TREE)
2043 return tem;
2046 switch (TREE_CODE (orig))
2048 case INTEGER_TYPE:
2049 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2050 case POINTER_TYPE: case REFERENCE_TYPE:
2051 return fold_build1 (FLOAT_EXPR, type, arg);
2053 case REAL_TYPE:
2054 return fold_build1 (NOP_EXPR, type, arg);
2056 case COMPLEX_TYPE:
2057 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2058 return fold_convert (type, tem);
2060 default:
2061 gcc_unreachable ();
2064 case COMPLEX_TYPE:
2065 switch (TREE_CODE (orig))
2067 case INTEGER_TYPE:
2068 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2069 case POINTER_TYPE: case REFERENCE_TYPE:
2070 case REAL_TYPE:
2071 return build2 (COMPLEX_EXPR, type,
2072 fold_convert (TREE_TYPE (type), arg),
2073 fold_convert (TREE_TYPE (type), integer_zero_node));
2074 case COMPLEX_TYPE:
2076 tree rpart, ipart;
2078 if (TREE_CODE (arg) == COMPLEX_EXPR)
2080 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2081 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2082 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2085 arg = save_expr (arg);
2086 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2087 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2088 rpart = fold_convert (TREE_TYPE (type), rpart);
2089 ipart = fold_convert (TREE_TYPE (type), ipart);
2090 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2093 default:
2094 gcc_unreachable ();
2097 case VECTOR_TYPE:
2098 if (integer_zerop (arg))
2099 return build_zero_vector (type);
2100 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2101 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2102 || TREE_CODE (orig) == VECTOR_TYPE);
2103 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2105 case VOID_TYPE:
2106 return fold_build1 (NOP_EXPR, type, fold_ignored_result (arg));
2108 default:
2109 gcc_unreachable ();
2113 /* Return false if expr can be assumed not to be an lvalue, true
2114 otherwise. */
2116 static bool
2117 maybe_lvalue_p (tree x)
2119 /* We only need to wrap lvalue tree codes. */
2120 switch (TREE_CODE (x))
2122 case VAR_DECL:
2123 case PARM_DECL:
2124 case RESULT_DECL:
2125 case LABEL_DECL:
2126 case FUNCTION_DECL:
2127 case SSA_NAME:
2129 case COMPONENT_REF:
2130 case INDIRECT_REF:
2131 case ALIGN_INDIRECT_REF:
2132 case MISALIGNED_INDIRECT_REF:
2133 case ARRAY_REF:
2134 case ARRAY_RANGE_REF:
2135 case BIT_FIELD_REF:
2136 case OBJ_TYPE_REF:
2138 case REALPART_EXPR:
2139 case IMAGPART_EXPR:
2140 case PREINCREMENT_EXPR:
2141 case PREDECREMENT_EXPR:
2142 case SAVE_EXPR:
2143 case TRY_CATCH_EXPR:
2144 case WITH_CLEANUP_EXPR:
2145 case COMPOUND_EXPR:
2146 case MODIFY_EXPR:
2147 case TARGET_EXPR:
2148 case COND_EXPR:
2149 case BIND_EXPR:
2150 case MIN_EXPR:
2151 case MAX_EXPR:
2152 break;
2154 default:
2155 /* Assume the worst for front-end tree codes. */
2156 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2157 break;
2158 return false;
2161 return true;
2164 /* Return an expr equal to X but certainly not valid as an lvalue. */
2166 tree
2167 non_lvalue (tree x)
2169 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2170 us. */
2171 if (in_gimple_form)
2172 return x;
2174 if (! maybe_lvalue_p (x))
2175 return x;
2176 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2179 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2180 Zero means allow extended lvalues. */
2182 int pedantic_lvalues;
2184 /* When pedantic, return an expr equal to X but certainly not valid as a
2185 pedantic lvalue. Otherwise, return X. */
2187 static tree
2188 pedantic_non_lvalue (tree x)
2190 if (pedantic_lvalues)
2191 return non_lvalue (x);
2192 else
2193 return x;
2196 /* Given a tree comparison code, return the code that is the logical inverse
2197 of the given code. It is not safe to do this for floating-point
2198 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2199 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2201 enum tree_code
2202 invert_tree_comparison (enum tree_code code, bool honor_nans)
2204 if (honor_nans && flag_trapping_math)
2205 return ERROR_MARK;
2207 switch (code)
2209 case EQ_EXPR:
2210 return NE_EXPR;
2211 case NE_EXPR:
2212 return EQ_EXPR;
2213 case GT_EXPR:
2214 return honor_nans ? UNLE_EXPR : LE_EXPR;
2215 case GE_EXPR:
2216 return honor_nans ? UNLT_EXPR : LT_EXPR;
2217 case LT_EXPR:
2218 return honor_nans ? UNGE_EXPR : GE_EXPR;
2219 case LE_EXPR:
2220 return honor_nans ? UNGT_EXPR : GT_EXPR;
2221 case LTGT_EXPR:
2222 return UNEQ_EXPR;
2223 case UNEQ_EXPR:
2224 return LTGT_EXPR;
2225 case UNGT_EXPR:
2226 return LE_EXPR;
2227 case UNGE_EXPR:
2228 return LT_EXPR;
2229 case UNLT_EXPR:
2230 return GE_EXPR;
2231 case UNLE_EXPR:
2232 return GT_EXPR;
2233 case ORDERED_EXPR:
2234 return UNORDERED_EXPR;
2235 case UNORDERED_EXPR:
2236 return ORDERED_EXPR;
2237 default:
2238 gcc_unreachable ();
2242 /* Similar, but return the comparison that results if the operands are
2243 swapped. This is safe for floating-point. */
2245 enum tree_code
2246 swap_tree_comparison (enum tree_code code)
2248 switch (code)
2250 case EQ_EXPR:
2251 case NE_EXPR:
2252 case ORDERED_EXPR:
2253 case UNORDERED_EXPR:
2254 case LTGT_EXPR:
2255 case UNEQ_EXPR:
2256 return code;
2257 case GT_EXPR:
2258 return LT_EXPR;
2259 case GE_EXPR:
2260 return LE_EXPR;
2261 case LT_EXPR:
2262 return GT_EXPR;
2263 case LE_EXPR:
2264 return GE_EXPR;
2265 case UNGT_EXPR:
2266 return UNLT_EXPR;
2267 case UNGE_EXPR:
2268 return UNLE_EXPR;
2269 case UNLT_EXPR:
2270 return UNGT_EXPR;
2271 case UNLE_EXPR:
2272 return UNGE_EXPR;
2273 default:
2274 gcc_unreachable ();
2279 /* Convert a comparison tree code from an enum tree_code representation
2280 into a compcode bit-based encoding. This function is the inverse of
2281 compcode_to_comparison. */
2283 static enum comparison_code
2284 comparison_to_compcode (enum tree_code code)
2286 switch (code)
2288 case LT_EXPR:
2289 return COMPCODE_LT;
2290 case EQ_EXPR:
2291 return COMPCODE_EQ;
2292 case LE_EXPR:
2293 return COMPCODE_LE;
2294 case GT_EXPR:
2295 return COMPCODE_GT;
2296 case NE_EXPR:
2297 return COMPCODE_NE;
2298 case GE_EXPR:
2299 return COMPCODE_GE;
2300 case ORDERED_EXPR:
2301 return COMPCODE_ORD;
2302 case UNORDERED_EXPR:
2303 return COMPCODE_UNORD;
2304 case UNLT_EXPR:
2305 return COMPCODE_UNLT;
2306 case UNEQ_EXPR:
2307 return COMPCODE_UNEQ;
2308 case UNLE_EXPR:
2309 return COMPCODE_UNLE;
2310 case UNGT_EXPR:
2311 return COMPCODE_UNGT;
2312 case LTGT_EXPR:
2313 return COMPCODE_LTGT;
2314 case UNGE_EXPR:
2315 return COMPCODE_UNGE;
2316 default:
2317 gcc_unreachable ();
2321 /* Convert a compcode bit-based encoding of a comparison operator back
2322 to GCC's enum tree_code representation. This function is the
2323 inverse of comparison_to_compcode. */
2325 static enum tree_code
2326 compcode_to_comparison (enum comparison_code code)
2328 switch (code)
2330 case COMPCODE_LT:
2331 return LT_EXPR;
2332 case COMPCODE_EQ:
2333 return EQ_EXPR;
2334 case COMPCODE_LE:
2335 return LE_EXPR;
2336 case COMPCODE_GT:
2337 return GT_EXPR;
2338 case COMPCODE_NE:
2339 return NE_EXPR;
2340 case COMPCODE_GE:
2341 return GE_EXPR;
2342 case COMPCODE_ORD:
2343 return ORDERED_EXPR;
2344 case COMPCODE_UNORD:
2345 return UNORDERED_EXPR;
2346 case COMPCODE_UNLT:
2347 return UNLT_EXPR;
2348 case COMPCODE_UNEQ:
2349 return UNEQ_EXPR;
2350 case COMPCODE_UNLE:
2351 return UNLE_EXPR;
2352 case COMPCODE_UNGT:
2353 return UNGT_EXPR;
2354 case COMPCODE_LTGT:
2355 return LTGT_EXPR;
2356 case COMPCODE_UNGE:
2357 return UNGE_EXPR;
2358 default:
2359 gcc_unreachable ();
2363 /* Return a tree for the comparison which is the combination of
2364 doing the AND or OR (depending on CODE) of the two operations LCODE
2365 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2366 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2367 if this makes the transformation invalid. */
2369 tree
2370 combine_comparisons (enum tree_code code, enum tree_code lcode,
2371 enum tree_code rcode, tree truth_type,
2372 tree ll_arg, tree lr_arg)
2374 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2375 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2376 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2377 enum comparison_code compcode;
2379 switch (code)
2381 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2382 compcode = lcompcode & rcompcode;
2383 break;
2385 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2386 compcode = lcompcode | rcompcode;
2387 break;
2389 default:
2390 return NULL_TREE;
2393 if (!honor_nans)
2395 /* Eliminate unordered comparisons, as well as LTGT and ORD
2396 which are not used unless the mode has NaNs. */
2397 compcode &= ~COMPCODE_UNORD;
2398 if (compcode == COMPCODE_LTGT)
2399 compcode = COMPCODE_NE;
2400 else if (compcode == COMPCODE_ORD)
2401 compcode = COMPCODE_TRUE;
2403 else if (flag_trapping_math)
2405 /* Check that the original operation and the optimized ones will trap
2406 under the same condition. */
2407 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2408 && (lcompcode != COMPCODE_EQ)
2409 && (lcompcode != COMPCODE_ORD);
2410 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2411 && (rcompcode != COMPCODE_EQ)
2412 && (rcompcode != COMPCODE_ORD);
2413 bool trap = (compcode & COMPCODE_UNORD) == 0
2414 && (compcode != COMPCODE_EQ)
2415 && (compcode != COMPCODE_ORD);
2417 /* In a short-circuited boolean expression the LHS might be
2418 such that the RHS, if evaluated, will never trap. For
2419 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2420 if neither x nor y is NaN. (This is a mixed blessing: for
2421 example, the expression above will never trap, hence
2422 optimizing it to x < y would be invalid). */
2423 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2424 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2425 rtrap = false;
2427 /* If the comparison was short-circuited, and only the RHS
2428 trapped, we may now generate a spurious trap. */
2429 if (rtrap && !ltrap
2430 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2431 return NULL_TREE;
2433 /* If we changed the conditions that cause a trap, we lose. */
2434 if ((ltrap || rtrap) != trap)
2435 return NULL_TREE;
2438 if (compcode == COMPCODE_TRUE)
2439 return constant_boolean_node (true, truth_type);
2440 else if (compcode == COMPCODE_FALSE)
2441 return constant_boolean_node (false, truth_type);
2442 else
2443 return fold_build2 (compcode_to_comparison (compcode),
2444 truth_type, ll_arg, lr_arg);
2447 /* Return nonzero if CODE is a tree code that represents a truth value. */
2449 static int
2450 truth_value_p (enum tree_code code)
2452 return (TREE_CODE_CLASS (code) == tcc_comparison
2453 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2454 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2455 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2458 /* Return nonzero if two operands (typically of the same tree node)
2459 are necessarily equal. If either argument has side-effects this
2460 function returns zero. FLAGS modifies behavior as follows:
2462 If OEP_ONLY_CONST is set, only return nonzero for constants.
2463 This function tests whether the operands are indistinguishable;
2464 it does not test whether they are equal using C's == operation.
2465 The distinction is important for IEEE floating point, because
2466 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2467 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2469 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2470 even though it may hold multiple values during a function.
2471 This is because a GCC tree node guarantees that nothing else is
2472 executed between the evaluation of its "operands" (which may often
2473 be evaluated in arbitrary order). Hence if the operands themselves
2474 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2475 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2476 unset means assuming isochronic (or instantaneous) tree equivalence.
2477 Unless comparing arbitrary expression trees, such as from different
2478 statements, this flag can usually be left unset.
2480 If OEP_PURE_SAME is set, then pure functions with identical arguments
2481 are considered the same. It is used when the caller has other ways
2482 to ensure that global memory is unchanged in between. */
2485 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2487 /* If either is ERROR_MARK, they aren't equal. */
2488 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2489 return 0;
2491 /* If both types don't have the same signedness, then we can't consider
2492 them equal. We must check this before the STRIP_NOPS calls
2493 because they may change the signedness of the arguments. */
2494 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2495 return 0;
2497 /* If both types don't have the same precision, then it is not safe
2498 to strip NOPs. */
2499 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2500 return 0;
2502 STRIP_NOPS (arg0);
2503 STRIP_NOPS (arg1);
2505 /* In case both args are comparisons but with different comparison
2506 code, try to swap the comparison operands of one arg to produce
2507 a match and compare that variant. */
2508 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2509 && COMPARISON_CLASS_P (arg0)
2510 && COMPARISON_CLASS_P (arg1))
2512 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2514 if (TREE_CODE (arg0) == swap_code)
2515 return operand_equal_p (TREE_OPERAND (arg0, 0),
2516 TREE_OPERAND (arg1, 1), flags)
2517 && operand_equal_p (TREE_OPERAND (arg0, 1),
2518 TREE_OPERAND (arg1, 0), flags);
2521 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2522 /* This is needed for conversions and for COMPONENT_REF.
2523 Might as well play it safe and always test this. */
2524 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2525 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2526 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2527 return 0;
2529 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2530 We don't care about side effects in that case because the SAVE_EXPR
2531 takes care of that for us. In all other cases, two expressions are
2532 equal if they have no side effects. If we have two identical
2533 expressions with side effects that should be treated the same due
2534 to the only side effects being identical SAVE_EXPR's, that will
2535 be detected in the recursive calls below. */
2536 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2537 && (TREE_CODE (arg0) == SAVE_EXPR
2538 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2539 return 1;
2541 /* Next handle constant cases, those for which we can return 1 even
2542 if ONLY_CONST is set. */
2543 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2544 switch (TREE_CODE (arg0))
2546 case INTEGER_CST:
2547 return (! TREE_CONSTANT_OVERFLOW (arg0)
2548 && ! TREE_CONSTANT_OVERFLOW (arg1)
2549 && tree_int_cst_equal (arg0, arg1));
2551 case REAL_CST:
2552 return (! TREE_CONSTANT_OVERFLOW (arg0)
2553 && ! TREE_CONSTANT_OVERFLOW (arg1)
2554 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2555 TREE_REAL_CST (arg1)));
2557 case VECTOR_CST:
2559 tree v1, v2;
2561 if (TREE_CONSTANT_OVERFLOW (arg0)
2562 || TREE_CONSTANT_OVERFLOW (arg1))
2563 return 0;
2565 v1 = TREE_VECTOR_CST_ELTS (arg0);
2566 v2 = TREE_VECTOR_CST_ELTS (arg1);
2567 while (v1 && v2)
2569 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2570 flags))
2571 return 0;
2572 v1 = TREE_CHAIN (v1);
2573 v2 = TREE_CHAIN (v2);
2576 return v1 == v2;
2579 case COMPLEX_CST:
2580 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2581 flags)
2582 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2583 flags));
2585 case STRING_CST:
2586 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2587 && ! memcmp (TREE_STRING_POINTER (arg0),
2588 TREE_STRING_POINTER (arg1),
2589 TREE_STRING_LENGTH (arg0)));
2591 case ADDR_EXPR:
2592 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2594 default:
2595 break;
2598 if (flags & OEP_ONLY_CONST)
2599 return 0;
2601 /* Define macros to test an operand from arg0 and arg1 for equality and a
2602 variant that allows null and views null as being different from any
2603 non-null value. In the latter case, if either is null, the both
2604 must be; otherwise, do the normal comparison. */
2605 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2606 TREE_OPERAND (arg1, N), flags)
2608 #define OP_SAME_WITH_NULL(N) \
2609 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2610 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2612 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2614 case tcc_unary:
2615 /* Two conversions are equal only if signedness and modes match. */
2616 switch (TREE_CODE (arg0))
2618 case NOP_EXPR:
2619 case CONVERT_EXPR:
2620 case FIX_CEIL_EXPR:
2621 case FIX_TRUNC_EXPR:
2622 case FIX_FLOOR_EXPR:
2623 case FIX_ROUND_EXPR:
2624 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2625 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2626 return 0;
2627 break;
2628 default:
2629 break;
2632 return OP_SAME (0);
2635 case tcc_comparison:
2636 case tcc_binary:
2637 if (OP_SAME (0) && OP_SAME (1))
2638 return 1;
2640 /* For commutative ops, allow the other order. */
2641 return (commutative_tree_code (TREE_CODE (arg0))
2642 && operand_equal_p (TREE_OPERAND (arg0, 0),
2643 TREE_OPERAND (arg1, 1), flags)
2644 && operand_equal_p (TREE_OPERAND (arg0, 1),
2645 TREE_OPERAND (arg1, 0), flags));
2647 case tcc_reference:
2648 /* If either of the pointer (or reference) expressions we are
2649 dereferencing contain a side effect, these cannot be equal. */
2650 if (TREE_SIDE_EFFECTS (arg0)
2651 || TREE_SIDE_EFFECTS (arg1))
2652 return 0;
2654 switch (TREE_CODE (arg0))
2656 case INDIRECT_REF:
2657 case ALIGN_INDIRECT_REF:
2658 case MISALIGNED_INDIRECT_REF:
2659 case REALPART_EXPR:
2660 case IMAGPART_EXPR:
2661 return OP_SAME (0);
2663 case ARRAY_REF:
2664 case ARRAY_RANGE_REF:
2665 /* Operands 2 and 3 may be null. */
2666 return (OP_SAME (0)
2667 && OP_SAME (1)
2668 && OP_SAME_WITH_NULL (2)
2669 && OP_SAME_WITH_NULL (3));
2671 case COMPONENT_REF:
2672 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2673 may be NULL when we're called to compare MEM_EXPRs. */
2674 return OP_SAME_WITH_NULL (0)
2675 && OP_SAME (1)
2676 && OP_SAME_WITH_NULL (2);
2678 case BIT_FIELD_REF:
2679 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2681 default:
2682 return 0;
2685 case tcc_expression:
2686 switch (TREE_CODE (arg0))
2688 case ADDR_EXPR:
2689 case TRUTH_NOT_EXPR:
2690 return OP_SAME (0);
2692 case TRUTH_ANDIF_EXPR:
2693 case TRUTH_ORIF_EXPR:
2694 return OP_SAME (0) && OP_SAME (1);
2696 case TRUTH_AND_EXPR:
2697 case TRUTH_OR_EXPR:
2698 case TRUTH_XOR_EXPR:
2699 if (OP_SAME (0) && OP_SAME (1))
2700 return 1;
2702 /* Otherwise take into account this is a commutative operation. */
2703 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2704 TREE_OPERAND (arg1, 1), flags)
2705 && operand_equal_p (TREE_OPERAND (arg0, 1),
2706 TREE_OPERAND (arg1, 0), flags));
2708 case CALL_EXPR:
2709 /* If the CALL_EXPRs call different functions, then they
2710 clearly can not be equal. */
2711 if (!OP_SAME (0))
2712 return 0;
2715 unsigned int cef = call_expr_flags (arg0);
2716 if (flags & OEP_PURE_SAME)
2717 cef &= ECF_CONST | ECF_PURE;
2718 else
2719 cef &= ECF_CONST;
2720 if (!cef)
2721 return 0;
2724 /* Now see if all the arguments are the same. operand_equal_p
2725 does not handle TREE_LIST, so we walk the operands here
2726 feeding them to operand_equal_p. */
2727 arg0 = TREE_OPERAND (arg0, 1);
2728 arg1 = TREE_OPERAND (arg1, 1);
2729 while (arg0 && arg1)
2731 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2732 flags))
2733 return 0;
2735 arg0 = TREE_CHAIN (arg0);
2736 arg1 = TREE_CHAIN (arg1);
2739 /* If we get here and both argument lists are exhausted
2740 then the CALL_EXPRs are equal. */
2741 return ! (arg0 || arg1);
2743 default:
2744 return 0;
2747 case tcc_declaration:
2748 /* Consider __builtin_sqrt equal to sqrt. */
2749 return (TREE_CODE (arg0) == FUNCTION_DECL
2750 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2751 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2752 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2754 default:
2755 return 0;
2758 #undef OP_SAME
2759 #undef OP_SAME_WITH_NULL
2762 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2763 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2765 When in doubt, return 0. */
2767 static int
2768 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2770 int unsignedp1, unsignedpo;
2771 tree primarg0, primarg1, primother;
2772 unsigned int correct_width;
2774 if (operand_equal_p (arg0, arg1, 0))
2775 return 1;
2777 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2778 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2779 return 0;
2781 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2782 and see if the inner values are the same. This removes any
2783 signedness comparison, which doesn't matter here. */
2784 primarg0 = arg0, primarg1 = arg1;
2785 STRIP_NOPS (primarg0);
2786 STRIP_NOPS (primarg1);
2787 if (operand_equal_p (primarg0, primarg1, 0))
2788 return 1;
2790 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2791 actual comparison operand, ARG0.
2793 First throw away any conversions to wider types
2794 already present in the operands. */
2796 primarg1 = get_narrower (arg1, &unsignedp1);
2797 primother = get_narrower (other, &unsignedpo);
2799 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2800 if (unsignedp1 == unsignedpo
2801 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2802 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2804 tree type = TREE_TYPE (arg0);
2806 /* Make sure shorter operand is extended the right way
2807 to match the longer operand. */
2808 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2809 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2811 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2812 return 1;
2815 return 0;
2818 /* See if ARG is an expression that is either a comparison or is performing
2819 arithmetic on comparisons. The comparisons must only be comparing
2820 two different values, which will be stored in *CVAL1 and *CVAL2; if
2821 they are nonzero it means that some operands have already been found.
2822 No variables may be used anywhere else in the expression except in the
2823 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2824 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2826 If this is true, return 1. Otherwise, return zero. */
2828 static int
2829 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2831 enum tree_code code = TREE_CODE (arg);
2832 enum tree_code_class class = TREE_CODE_CLASS (code);
2834 /* We can handle some of the tcc_expression cases here. */
2835 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2836 class = tcc_unary;
2837 else if (class == tcc_expression
2838 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2839 || code == COMPOUND_EXPR))
2840 class = tcc_binary;
2842 else if (class == tcc_expression && code == SAVE_EXPR
2843 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2845 /* If we've already found a CVAL1 or CVAL2, this expression is
2846 two complex to handle. */
2847 if (*cval1 || *cval2)
2848 return 0;
2850 class = tcc_unary;
2851 *save_p = 1;
2854 switch (class)
2856 case tcc_unary:
2857 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2859 case tcc_binary:
2860 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2861 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2862 cval1, cval2, save_p));
2864 case tcc_constant:
2865 return 1;
2867 case tcc_expression:
2868 if (code == COND_EXPR)
2869 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2870 cval1, cval2, save_p)
2871 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2872 cval1, cval2, save_p)
2873 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2874 cval1, cval2, save_p));
2875 return 0;
2877 case tcc_comparison:
2878 /* First see if we can handle the first operand, then the second. For
2879 the second operand, we know *CVAL1 can't be zero. It must be that
2880 one side of the comparison is each of the values; test for the
2881 case where this isn't true by failing if the two operands
2882 are the same. */
2884 if (operand_equal_p (TREE_OPERAND (arg, 0),
2885 TREE_OPERAND (arg, 1), 0))
2886 return 0;
2888 if (*cval1 == 0)
2889 *cval1 = TREE_OPERAND (arg, 0);
2890 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2892 else if (*cval2 == 0)
2893 *cval2 = TREE_OPERAND (arg, 0);
2894 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2896 else
2897 return 0;
2899 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2901 else if (*cval2 == 0)
2902 *cval2 = TREE_OPERAND (arg, 1);
2903 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2905 else
2906 return 0;
2908 return 1;
2910 default:
2911 return 0;
2915 /* ARG is a tree that is known to contain just arithmetic operations and
2916 comparisons. Evaluate the operations in the tree substituting NEW0 for
2917 any occurrence of OLD0 as an operand of a comparison and likewise for
2918 NEW1 and OLD1. */
2920 static tree
2921 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2923 tree type = TREE_TYPE (arg);
2924 enum tree_code code = TREE_CODE (arg);
2925 enum tree_code_class class = TREE_CODE_CLASS (code);
2927 /* We can handle some of the tcc_expression cases here. */
2928 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
2929 class = tcc_unary;
2930 else if (class == tcc_expression
2931 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2932 class = tcc_binary;
2934 switch (class)
2936 case tcc_unary:
2937 return fold_build1 (code, type,
2938 eval_subst (TREE_OPERAND (arg, 0),
2939 old0, new0, old1, new1));
2941 case tcc_binary:
2942 return fold_build2 (code, type,
2943 eval_subst (TREE_OPERAND (arg, 0),
2944 old0, new0, old1, new1),
2945 eval_subst (TREE_OPERAND (arg, 1),
2946 old0, new0, old1, new1));
2948 case tcc_expression:
2949 switch (code)
2951 case SAVE_EXPR:
2952 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2954 case COMPOUND_EXPR:
2955 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2957 case COND_EXPR:
2958 return fold_build3 (code, type,
2959 eval_subst (TREE_OPERAND (arg, 0),
2960 old0, new0, old1, new1),
2961 eval_subst (TREE_OPERAND (arg, 1),
2962 old0, new0, old1, new1),
2963 eval_subst (TREE_OPERAND (arg, 2),
2964 old0, new0, old1, new1));
2965 default:
2966 break;
2968 /* Fall through - ??? */
2970 case tcc_comparison:
2972 tree arg0 = TREE_OPERAND (arg, 0);
2973 tree arg1 = TREE_OPERAND (arg, 1);
2975 /* We need to check both for exact equality and tree equality. The
2976 former will be true if the operand has a side-effect. In that
2977 case, we know the operand occurred exactly once. */
2979 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2980 arg0 = new0;
2981 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2982 arg0 = new1;
2984 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2985 arg1 = new0;
2986 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2987 arg1 = new1;
2989 return fold_build2 (code, type, arg0, arg1);
2992 default:
2993 return arg;
2997 /* Return a tree for the case when the result of an expression is RESULT
2998 converted to TYPE and OMITTED was previously an operand of the expression
2999 but is now not needed (e.g., we folded OMITTED * 0).
3001 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3002 the conversion of RESULT to TYPE. */
3004 tree
3005 omit_one_operand (tree type, tree result, tree omitted)
3007 tree t = fold_convert (type, result);
3009 if (TREE_SIDE_EFFECTS (omitted))
3010 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3012 return non_lvalue (t);
3015 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3017 static tree
3018 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3020 tree t = fold_convert (type, result);
3022 if (TREE_SIDE_EFFECTS (omitted))
3023 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3025 return pedantic_non_lvalue (t);
3028 /* Return a tree for the case when the result of an expression is RESULT
3029 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3030 of the expression but are now not needed.
3032 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3033 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3034 evaluated before OMITTED2. Otherwise, if neither has side effects,
3035 just do the conversion of RESULT to TYPE. */
3037 tree
3038 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3040 tree t = fold_convert (type, result);
3042 if (TREE_SIDE_EFFECTS (omitted2))
3043 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3044 if (TREE_SIDE_EFFECTS (omitted1))
3045 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3047 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3051 /* Return a simplified tree node for the truth-negation of ARG. This
3052 never alters ARG itself. We assume that ARG is an operation that
3053 returns a truth value (0 or 1).
3055 FIXME: one would think we would fold the result, but it causes
3056 problems with the dominator optimizer. */
3058 tree
3059 fold_truth_not_expr (tree arg)
3061 tree type = TREE_TYPE (arg);
3062 enum tree_code code = TREE_CODE (arg);
3064 /* If this is a comparison, we can simply invert it, except for
3065 floating-point non-equality comparisons, in which case we just
3066 enclose a TRUTH_NOT_EXPR around what we have. */
3068 if (TREE_CODE_CLASS (code) == tcc_comparison)
3070 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3071 if (FLOAT_TYPE_P (op_type)
3072 && flag_trapping_math
3073 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3074 && code != NE_EXPR && code != EQ_EXPR)
3075 return NULL_TREE;
3076 else
3078 code = invert_tree_comparison (code,
3079 HONOR_NANS (TYPE_MODE (op_type)));
3080 if (code == ERROR_MARK)
3081 return NULL_TREE;
3082 else
3083 return build2 (code, type,
3084 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3088 switch (code)
3090 case INTEGER_CST:
3091 return constant_boolean_node (integer_zerop (arg), type);
3093 case TRUTH_AND_EXPR:
3094 return build2 (TRUTH_OR_EXPR, type,
3095 invert_truthvalue (TREE_OPERAND (arg, 0)),
3096 invert_truthvalue (TREE_OPERAND (arg, 1)));
3098 case TRUTH_OR_EXPR:
3099 return build2 (TRUTH_AND_EXPR, type,
3100 invert_truthvalue (TREE_OPERAND (arg, 0)),
3101 invert_truthvalue (TREE_OPERAND (arg, 1)));
3103 case TRUTH_XOR_EXPR:
3104 /* Here we can invert either operand. We invert the first operand
3105 unless the second operand is a TRUTH_NOT_EXPR in which case our
3106 result is the XOR of the first operand with the inside of the
3107 negation of the second operand. */
3109 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3110 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3111 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3112 else
3113 return build2 (TRUTH_XOR_EXPR, type,
3114 invert_truthvalue (TREE_OPERAND (arg, 0)),
3115 TREE_OPERAND (arg, 1));
3117 case TRUTH_ANDIF_EXPR:
3118 return build2 (TRUTH_ORIF_EXPR, type,
3119 invert_truthvalue (TREE_OPERAND (arg, 0)),
3120 invert_truthvalue (TREE_OPERAND (arg, 1)));
3122 case TRUTH_ORIF_EXPR:
3123 return build2 (TRUTH_ANDIF_EXPR, type,
3124 invert_truthvalue (TREE_OPERAND (arg, 0)),
3125 invert_truthvalue (TREE_OPERAND (arg, 1)));
3127 case TRUTH_NOT_EXPR:
3128 return TREE_OPERAND (arg, 0);
3130 case COND_EXPR:
3132 tree arg1 = TREE_OPERAND (arg, 1);
3133 tree arg2 = TREE_OPERAND (arg, 2);
3134 /* A COND_EXPR may have a throw as one operand, which
3135 then has void type. Just leave void operands
3136 as they are. */
3137 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3138 VOID_TYPE_P (TREE_TYPE (arg1))
3139 ? arg1 : invert_truthvalue (arg1),
3140 VOID_TYPE_P (TREE_TYPE (arg2))
3141 ? arg2 : invert_truthvalue (arg2));
3144 case COMPOUND_EXPR:
3145 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3146 invert_truthvalue (TREE_OPERAND (arg, 1)));
3148 case NON_LVALUE_EXPR:
3149 return invert_truthvalue (TREE_OPERAND (arg, 0));
3151 case NOP_EXPR:
3152 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3153 return build1 (TRUTH_NOT_EXPR, type, arg);
3155 case CONVERT_EXPR:
3156 case FLOAT_EXPR:
3157 return build1 (TREE_CODE (arg), type,
3158 invert_truthvalue (TREE_OPERAND (arg, 0)));
3160 case BIT_AND_EXPR:
3161 if (!integer_onep (TREE_OPERAND (arg, 1)))
3162 break;
3163 return build2 (EQ_EXPR, type, arg,
3164 build_int_cst (type, 0));
3166 case SAVE_EXPR:
3167 return build1 (TRUTH_NOT_EXPR, type, arg);
3169 case CLEANUP_POINT_EXPR:
3170 return build1 (CLEANUP_POINT_EXPR, type,
3171 invert_truthvalue (TREE_OPERAND (arg, 0)));
3173 default:
3174 break;
3177 return NULL_TREE;
3180 /* Return a simplified tree node for the truth-negation of ARG. This
3181 never alters ARG itself. We assume that ARG is an operation that
3182 returns a truth value (0 or 1).
3184 FIXME: one would think we would fold the result, but it causes
3185 problems with the dominator optimizer. */
3187 tree
3188 invert_truthvalue (tree arg)
3190 tree tem;
3192 if (TREE_CODE (arg) == ERROR_MARK)
3193 return arg;
3195 tem = fold_truth_not_expr (arg);
3196 if (!tem)
3197 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3199 return tem;
3202 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3203 operands are another bit-wise operation with a common input. If so,
3204 distribute the bit operations to save an operation and possibly two if
3205 constants are involved. For example, convert
3206 (A | B) & (A | C) into A | (B & C)
3207 Further simplification will occur if B and C are constants.
3209 If this optimization cannot be done, 0 will be returned. */
3211 static tree
3212 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3214 tree common;
3215 tree left, right;
3217 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3218 || TREE_CODE (arg0) == code
3219 || (TREE_CODE (arg0) != BIT_AND_EXPR
3220 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3221 return 0;
3223 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3225 common = TREE_OPERAND (arg0, 0);
3226 left = TREE_OPERAND (arg0, 1);
3227 right = TREE_OPERAND (arg1, 1);
3229 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3231 common = TREE_OPERAND (arg0, 0);
3232 left = TREE_OPERAND (arg0, 1);
3233 right = TREE_OPERAND (arg1, 0);
3235 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3237 common = TREE_OPERAND (arg0, 1);
3238 left = TREE_OPERAND (arg0, 0);
3239 right = TREE_OPERAND (arg1, 1);
3241 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3243 common = TREE_OPERAND (arg0, 1);
3244 left = TREE_OPERAND (arg0, 0);
3245 right = TREE_OPERAND (arg1, 0);
3247 else
3248 return 0;
3250 return fold_build2 (TREE_CODE (arg0), type, common,
3251 fold_build2 (code, type, left, right));
3254 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3255 with code CODE. This optimization is unsafe. */
3256 static tree
3257 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3259 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3260 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3262 /* (A / C) +- (B / C) -> (A +- B) / C. */
3263 if (mul0 == mul1
3264 && operand_equal_p (TREE_OPERAND (arg0, 1),
3265 TREE_OPERAND (arg1, 1), 0))
3266 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3267 fold_build2 (code, type,
3268 TREE_OPERAND (arg0, 0),
3269 TREE_OPERAND (arg1, 0)),
3270 TREE_OPERAND (arg0, 1));
3272 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3273 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3274 TREE_OPERAND (arg1, 0), 0)
3275 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3276 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3278 REAL_VALUE_TYPE r0, r1;
3279 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3280 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3281 if (!mul0)
3282 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3283 if (!mul1)
3284 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3285 real_arithmetic (&r0, code, &r0, &r1);
3286 return fold_build2 (MULT_EXPR, type,
3287 TREE_OPERAND (arg0, 0),
3288 build_real (type, r0));
3291 return NULL_TREE;
3294 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3295 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3297 static tree
3298 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3299 int unsignedp)
3301 tree result;
3303 if (bitpos == 0)
3305 tree size = TYPE_SIZE (TREE_TYPE (inner));
3306 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3307 || POINTER_TYPE_P (TREE_TYPE (inner)))
3308 && host_integerp (size, 0)
3309 && tree_low_cst (size, 0) == bitsize)
3310 return fold_convert (type, inner);
3313 result = build3 (BIT_FIELD_REF, type, inner,
3314 size_int (bitsize), bitsize_int (bitpos));
3316 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3318 return result;
3321 /* Optimize a bit-field compare.
3323 There are two cases: First is a compare against a constant and the
3324 second is a comparison of two items where the fields are at the same
3325 bit position relative to the start of a chunk (byte, halfword, word)
3326 large enough to contain it. In these cases we can avoid the shift
3327 implicit in bitfield extractions.
3329 For constants, we emit a compare of the shifted constant with the
3330 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3331 compared. For two fields at the same position, we do the ANDs with the
3332 similar mask and compare the result of the ANDs.
3334 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3335 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3336 are the left and right operands of the comparison, respectively.
3338 If the optimization described above can be done, we return the resulting
3339 tree. Otherwise we return zero. */
3341 static tree
3342 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3343 tree lhs, tree rhs)
3345 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3346 tree type = TREE_TYPE (lhs);
3347 tree signed_type, unsigned_type;
3348 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3349 enum machine_mode lmode, rmode, nmode;
3350 int lunsignedp, runsignedp;
3351 int lvolatilep = 0, rvolatilep = 0;
3352 tree linner, rinner = NULL_TREE;
3353 tree mask;
3354 tree offset;
3356 /* Get all the information about the extractions being done. If the bit size
3357 if the same as the size of the underlying object, we aren't doing an
3358 extraction at all and so can do nothing. We also don't want to
3359 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3360 then will no longer be able to replace it. */
3361 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3362 &lunsignedp, &lvolatilep, false);
3363 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3364 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3365 return 0;
3367 if (!const_p)
3369 /* If this is not a constant, we can only do something if bit positions,
3370 sizes, and signedness are the same. */
3371 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3372 &runsignedp, &rvolatilep, false);
3374 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3375 || lunsignedp != runsignedp || offset != 0
3376 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3377 return 0;
3380 /* See if we can find a mode to refer to this field. We should be able to,
3381 but fail if we can't. */
3382 nmode = get_best_mode (lbitsize, lbitpos,
3383 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3384 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3385 TYPE_ALIGN (TREE_TYPE (rinner))),
3386 word_mode, lvolatilep || rvolatilep);
3387 if (nmode == VOIDmode)
3388 return 0;
3390 /* Set signed and unsigned types of the precision of this mode for the
3391 shifts below. */
3392 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3393 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3395 /* Compute the bit position and size for the new reference and our offset
3396 within it. If the new reference is the same size as the original, we
3397 won't optimize anything, so return zero. */
3398 nbitsize = GET_MODE_BITSIZE (nmode);
3399 nbitpos = lbitpos & ~ (nbitsize - 1);
3400 lbitpos -= nbitpos;
3401 if (nbitsize == lbitsize)
3402 return 0;
3404 if (BYTES_BIG_ENDIAN)
3405 lbitpos = nbitsize - lbitsize - lbitpos;
3407 /* Make the mask to be used against the extracted field. */
3408 mask = build_int_cst (unsigned_type, -1);
3409 mask = force_fit_type (mask, 0, false, false);
3410 mask = fold_convert (unsigned_type, mask);
3411 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3412 mask = const_binop (RSHIFT_EXPR, mask,
3413 size_int (nbitsize - lbitsize - lbitpos), 0);
3415 if (! const_p)
3416 /* If not comparing with constant, just rework the comparison
3417 and return. */
3418 return build2 (code, compare_type,
3419 build2 (BIT_AND_EXPR, unsigned_type,
3420 make_bit_field_ref (linner, unsigned_type,
3421 nbitsize, nbitpos, 1),
3422 mask),
3423 build2 (BIT_AND_EXPR, unsigned_type,
3424 make_bit_field_ref (rinner, unsigned_type,
3425 nbitsize, nbitpos, 1),
3426 mask));
3428 /* Otherwise, we are handling the constant case. See if the constant is too
3429 big for the field. Warn and return a tree of for 0 (false) if so. We do
3430 this not only for its own sake, but to avoid having to test for this
3431 error case below. If we didn't, we might generate wrong code.
3433 For unsigned fields, the constant shifted right by the field length should
3434 be all zero. For signed fields, the high-order bits should agree with
3435 the sign bit. */
3437 if (lunsignedp)
3439 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3440 fold_convert (unsigned_type, rhs),
3441 size_int (lbitsize), 0)))
3443 warning (0, "comparison is always %d due to width of bit-field",
3444 code == NE_EXPR);
3445 return constant_boolean_node (code == NE_EXPR, compare_type);
3448 else
3450 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3451 size_int (lbitsize - 1), 0);
3452 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3454 warning (0, "comparison is always %d due to width of bit-field",
3455 code == NE_EXPR);
3456 return constant_boolean_node (code == NE_EXPR, compare_type);
3460 /* Single-bit compares should always be against zero. */
3461 if (lbitsize == 1 && ! integer_zerop (rhs))
3463 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3464 rhs = build_int_cst (type, 0);
3467 /* Make a new bitfield reference, shift the constant over the
3468 appropriate number of bits and mask it with the computed mask
3469 (in case this was a signed field). If we changed it, make a new one. */
3470 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3471 if (lvolatilep)
3473 TREE_SIDE_EFFECTS (lhs) = 1;
3474 TREE_THIS_VOLATILE (lhs) = 1;
3477 rhs = const_binop (BIT_AND_EXPR,
3478 const_binop (LSHIFT_EXPR,
3479 fold_convert (unsigned_type, rhs),
3480 size_int (lbitpos), 0),
3481 mask, 0);
3483 return build2 (code, compare_type,
3484 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3485 rhs);
3488 /* Subroutine for fold_truthop: decode a field reference.
3490 If EXP is a comparison reference, we return the innermost reference.
3492 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3493 set to the starting bit number.
3495 If the innermost field can be completely contained in a mode-sized
3496 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3498 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3499 otherwise it is not changed.
3501 *PUNSIGNEDP is set to the signedness of the field.
3503 *PMASK is set to the mask used. This is either contained in a
3504 BIT_AND_EXPR or derived from the width of the field.
3506 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3508 Return 0 if this is not a component reference or is one that we can't
3509 do anything with. */
3511 static tree
3512 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3513 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3514 int *punsignedp, int *pvolatilep,
3515 tree *pmask, tree *pand_mask)
3517 tree outer_type = 0;
3518 tree and_mask = 0;
3519 tree mask, inner, offset;
3520 tree unsigned_type;
3521 unsigned int precision;
3523 /* All the optimizations using this function assume integer fields.
3524 There are problems with FP fields since the type_for_size call
3525 below can fail for, e.g., XFmode. */
3526 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3527 return 0;
3529 /* We are interested in the bare arrangement of bits, so strip everything
3530 that doesn't affect the machine mode. However, record the type of the
3531 outermost expression if it may matter below. */
3532 if (TREE_CODE (exp) == NOP_EXPR
3533 || TREE_CODE (exp) == CONVERT_EXPR
3534 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3535 outer_type = TREE_TYPE (exp);
3536 STRIP_NOPS (exp);
3538 if (TREE_CODE (exp) == BIT_AND_EXPR)
3540 and_mask = TREE_OPERAND (exp, 1);
3541 exp = TREE_OPERAND (exp, 0);
3542 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3543 if (TREE_CODE (and_mask) != INTEGER_CST)
3544 return 0;
3547 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3548 punsignedp, pvolatilep, false);
3549 if ((inner == exp && and_mask == 0)
3550 || *pbitsize < 0 || offset != 0
3551 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3552 return 0;
3554 /* If the number of bits in the reference is the same as the bitsize of
3555 the outer type, then the outer type gives the signedness. Otherwise
3556 (in case of a small bitfield) the signedness is unchanged. */
3557 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3558 *punsignedp = TYPE_UNSIGNED (outer_type);
3560 /* Compute the mask to access the bitfield. */
3561 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3562 precision = TYPE_PRECISION (unsigned_type);
3564 mask = build_int_cst (unsigned_type, -1);
3565 mask = force_fit_type (mask, 0, false, false);
3567 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3568 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3570 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3571 if (and_mask != 0)
3572 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
3573 fold_convert (unsigned_type, and_mask), mask);
3575 *pmask = mask;
3576 *pand_mask = and_mask;
3577 return inner;
3580 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3581 bit positions. */
3583 static int
3584 all_ones_mask_p (tree mask, int size)
3586 tree type = TREE_TYPE (mask);
3587 unsigned int precision = TYPE_PRECISION (type);
3588 tree tmask;
3590 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3591 tmask = force_fit_type (tmask, 0, false, false);
3593 return
3594 tree_int_cst_equal (mask,
3595 const_binop (RSHIFT_EXPR,
3596 const_binop (LSHIFT_EXPR, tmask,
3597 size_int (precision - size),
3599 size_int (precision - size), 0));
3602 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3603 represents the sign bit of EXP's type. If EXP represents a sign
3604 or zero extension, also test VAL against the unextended type.
3605 The return value is the (sub)expression whose sign bit is VAL,
3606 or NULL_TREE otherwise. */
3608 static tree
3609 sign_bit_p (tree exp, tree val)
3611 unsigned HOST_WIDE_INT mask_lo, lo;
3612 HOST_WIDE_INT mask_hi, hi;
3613 int width;
3614 tree t;
3616 /* Tree EXP must have an integral type. */
3617 t = TREE_TYPE (exp);
3618 if (! INTEGRAL_TYPE_P (t))
3619 return NULL_TREE;
3621 /* Tree VAL must be an integer constant. */
3622 if (TREE_CODE (val) != INTEGER_CST
3623 || TREE_CONSTANT_OVERFLOW (val))
3624 return NULL_TREE;
3626 width = TYPE_PRECISION (t);
3627 if (width > HOST_BITS_PER_WIDE_INT)
3629 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3630 lo = 0;
3632 mask_hi = ((unsigned HOST_WIDE_INT) -1
3633 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3634 mask_lo = -1;
3636 else
3638 hi = 0;
3639 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3641 mask_hi = 0;
3642 mask_lo = ((unsigned HOST_WIDE_INT) -1
3643 >> (HOST_BITS_PER_WIDE_INT - width));
3646 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3647 treat VAL as if it were unsigned. */
3648 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3649 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3650 return exp;
3652 /* Handle extension from a narrower type. */
3653 if (TREE_CODE (exp) == NOP_EXPR
3654 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3655 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3657 return NULL_TREE;
3660 /* Subroutine for fold_truthop: determine if an operand is simple enough
3661 to be evaluated unconditionally. */
3663 static int
3664 simple_operand_p (tree exp)
3666 /* Strip any conversions that don't change the machine mode. */
3667 STRIP_NOPS (exp);
3669 return (CONSTANT_CLASS_P (exp)
3670 || TREE_CODE (exp) == SSA_NAME
3671 || (DECL_P (exp)
3672 && ! TREE_ADDRESSABLE (exp)
3673 && ! TREE_THIS_VOLATILE (exp)
3674 && ! DECL_NONLOCAL (exp)
3675 /* Don't regard global variables as simple. They may be
3676 allocated in ways unknown to the compiler (shared memory,
3677 #pragma weak, etc). */
3678 && ! TREE_PUBLIC (exp)
3679 && ! DECL_EXTERNAL (exp)
3680 /* Loading a static variable is unduly expensive, but global
3681 registers aren't expensive. */
3682 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3685 /* The following functions are subroutines to fold_range_test and allow it to
3686 try to change a logical combination of comparisons into a range test.
3688 For example, both
3689 X == 2 || X == 3 || X == 4 || X == 5
3691 X >= 2 && X <= 5
3692 are converted to
3693 (unsigned) (X - 2) <= 3
3695 We describe each set of comparisons as being either inside or outside
3696 a range, using a variable named like IN_P, and then describe the
3697 range with a lower and upper bound. If one of the bounds is omitted,
3698 it represents either the highest or lowest value of the type.
3700 In the comments below, we represent a range by two numbers in brackets
3701 preceded by a "+" to designate being inside that range, or a "-" to
3702 designate being outside that range, so the condition can be inverted by
3703 flipping the prefix. An omitted bound is represented by a "-". For
3704 example, "- [-, 10]" means being outside the range starting at the lowest
3705 possible value and ending at 10, in other words, being greater than 10.
3706 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3707 always false.
3709 We set up things so that the missing bounds are handled in a consistent
3710 manner so neither a missing bound nor "true" and "false" need to be
3711 handled using a special case. */
3713 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3714 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3715 and UPPER1_P are nonzero if the respective argument is an upper bound
3716 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3717 must be specified for a comparison. ARG1 will be converted to ARG0's
3718 type if both are specified. */
3720 static tree
3721 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3722 tree arg1, int upper1_p)
3724 tree tem;
3725 int result;
3726 int sgn0, sgn1;
3728 /* If neither arg represents infinity, do the normal operation.
3729 Else, if not a comparison, return infinity. Else handle the special
3730 comparison rules. Note that most of the cases below won't occur, but
3731 are handled for consistency. */
3733 if (arg0 != 0 && arg1 != 0)
3735 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3736 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3737 STRIP_NOPS (tem);
3738 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3741 if (TREE_CODE_CLASS (code) != tcc_comparison)
3742 return 0;
3744 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3745 for neither. In real maths, we cannot assume open ended ranges are
3746 the same. But, this is computer arithmetic, where numbers are finite.
3747 We can therefore make the transformation of any unbounded range with
3748 the value Z, Z being greater than any representable number. This permits
3749 us to treat unbounded ranges as equal. */
3750 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3751 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3752 switch (code)
3754 case EQ_EXPR:
3755 result = sgn0 == sgn1;
3756 break;
3757 case NE_EXPR:
3758 result = sgn0 != sgn1;
3759 break;
3760 case LT_EXPR:
3761 result = sgn0 < sgn1;
3762 break;
3763 case LE_EXPR:
3764 result = sgn0 <= sgn1;
3765 break;
3766 case GT_EXPR:
3767 result = sgn0 > sgn1;
3768 break;
3769 case GE_EXPR:
3770 result = sgn0 >= sgn1;
3771 break;
3772 default:
3773 gcc_unreachable ();
3776 return constant_boolean_node (result, type);
3779 /* Given EXP, a logical expression, set the range it is testing into
3780 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3781 actually being tested. *PLOW and *PHIGH will be made of the same type
3782 as the returned expression. If EXP is not a comparison, we will most
3783 likely not be returning a useful value and range. */
3785 static tree
3786 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3788 enum tree_code code;
3789 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3790 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3791 int in_p, n_in_p;
3792 tree low, high, n_low, n_high;
3794 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3795 and see if we can refine the range. Some of the cases below may not
3796 happen, but it doesn't seem worth worrying about this. We "continue"
3797 the outer loop when we've changed something; otherwise we "break"
3798 the switch, which will "break" the while. */
3800 in_p = 0;
3801 low = high = build_int_cst (TREE_TYPE (exp), 0);
3803 while (1)
3805 code = TREE_CODE (exp);
3806 exp_type = TREE_TYPE (exp);
3808 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3810 if (TREE_CODE_LENGTH (code) > 0)
3811 arg0 = TREE_OPERAND (exp, 0);
3812 if (TREE_CODE_CLASS (code) == tcc_comparison
3813 || TREE_CODE_CLASS (code) == tcc_unary
3814 || TREE_CODE_CLASS (code) == tcc_binary)
3815 arg0_type = TREE_TYPE (arg0);
3816 if (TREE_CODE_CLASS (code) == tcc_binary
3817 || TREE_CODE_CLASS (code) == tcc_comparison
3818 || (TREE_CODE_CLASS (code) == tcc_expression
3819 && TREE_CODE_LENGTH (code) > 1))
3820 arg1 = TREE_OPERAND (exp, 1);
3823 switch (code)
3825 case TRUTH_NOT_EXPR:
3826 in_p = ! in_p, exp = arg0;
3827 continue;
3829 case EQ_EXPR: case NE_EXPR:
3830 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3831 /* We can only do something if the range is testing for zero
3832 and if the second operand is an integer constant. Note that
3833 saying something is "in" the range we make is done by
3834 complementing IN_P since it will set in the initial case of
3835 being not equal to zero; "out" is leaving it alone. */
3836 if (low == 0 || high == 0
3837 || ! integer_zerop (low) || ! integer_zerop (high)
3838 || TREE_CODE (arg1) != INTEGER_CST)
3839 break;
3841 switch (code)
3843 case NE_EXPR: /* - [c, c] */
3844 low = high = arg1;
3845 break;
3846 case EQ_EXPR: /* + [c, c] */
3847 in_p = ! in_p, low = high = arg1;
3848 break;
3849 case GT_EXPR: /* - [-, c] */
3850 low = 0, high = arg1;
3851 break;
3852 case GE_EXPR: /* + [c, -] */
3853 in_p = ! in_p, low = arg1, high = 0;
3854 break;
3855 case LT_EXPR: /* - [c, -] */
3856 low = arg1, high = 0;
3857 break;
3858 case LE_EXPR: /* + [-, c] */
3859 in_p = ! in_p, low = 0, high = arg1;
3860 break;
3861 default:
3862 gcc_unreachable ();
3865 /* If this is an unsigned comparison, we also know that EXP is
3866 greater than or equal to zero. We base the range tests we make
3867 on that fact, so we record it here so we can parse existing
3868 range tests. We test arg0_type since often the return type
3869 of, e.g. EQ_EXPR, is boolean. */
3870 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3872 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3873 in_p, low, high, 1,
3874 build_int_cst (arg0_type, 0),
3875 NULL_TREE))
3876 break;
3878 in_p = n_in_p, low = n_low, high = n_high;
3880 /* If the high bound is missing, but we have a nonzero low
3881 bound, reverse the range so it goes from zero to the low bound
3882 minus 1. */
3883 if (high == 0 && low && ! integer_zerop (low))
3885 in_p = ! in_p;
3886 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3887 integer_one_node, 0);
3888 low = build_int_cst (arg0_type, 0);
3892 exp = arg0;
3893 continue;
3895 case NEGATE_EXPR:
3896 /* (-x) IN [a,b] -> x in [-b, -a] */
3897 n_low = range_binop (MINUS_EXPR, exp_type,
3898 build_int_cst (exp_type, 0),
3899 0, high, 1);
3900 n_high = range_binop (MINUS_EXPR, exp_type,
3901 build_int_cst (exp_type, 0),
3902 0, low, 0);
3903 low = n_low, high = n_high;
3904 exp = arg0;
3905 continue;
3907 case BIT_NOT_EXPR:
3908 /* ~ X -> -X - 1 */
3909 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3910 build_int_cst (exp_type, 1));
3911 continue;
3913 case PLUS_EXPR: case MINUS_EXPR:
3914 if (TREE_CODE (arg1) != INTEGER_CST)
3915 break;
3917 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3918 move a constant to the other side. */
3919 if (flag_wrapv && !TYPE_UNSIGNED (arg0_type))
3920 break;
3922 /* If EXP is signed, any overflow in the computation is undefined,
3923 so we don't worry about it so long as our computations on
3924 the bounds don't overflow. For unsigned, overflow is defined
3925 and this is exactly the right thing. */
3926 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3927 arg0_type, low, 0, arg1, 0);
3928 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3929 arg0_type, high, 1, arg1, 0);
3930 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3931 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3932 break;
3934 /* Check for an unsigned range which has wrapped around the maximum
3935 value thus making n_high < n_low, and normalize it. */
3936 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3938 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3939 integer_one_node, 0);
3940 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3941 integer_one_node, 0);
3943 /* If the range is of the form +/- [ x+1, x ], we won't
3944 be able to normalize it. But then, it represents the
3945 whole range or the empty set, so make it
3946 +/- [ -, - ]. */
3947 if (tree_int_cst_equal (n_low, low)
3948 && tree_int_cst_equal (n_high, high))
3949 low = high = 0;
3950 else
3951 in_p = ! in_p;
3953 else
3954 low = n_low, high = n_high;
3956 exp = arg0;
3957 continue;
3959 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3960 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3961 break;
3963 if (! INTEGRAL_TYPE_P (arg0_type)
3964 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3965 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3966 break;
3968 n_low = low, n_high = high;
3970 if (n_low != 0)
3971 n_low = fold_convert (arg0_type, n_low);
3973 if (n_high != 0)
3974 n_high = fold_convert (arg0_type, n_high);
3977 /* If we're converting arg0 from an unsigned type, to exp,
3978 a signed type, we will be doing the comparison as unsigned.
3979 The tests above have already verified that LOW and HIGH
3980 are both positive.
3982 So we have to ensure that we will handle large unsigned
3983 values the same way that the current signed bounds treat
3984 negative values. */
3986 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3988 tree high_positive;
3989 tree equiv_type = lang_hooks.types.type_for_mode
3990 (TYPE_MODE (arg0_type), 1);
3992 /* A range without an upper bound is, naturally, unbounded.
3993 Since convert would have cropped a very large value, use
3994 the max value for the destination type. */
3995 high_positive
3996 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3997 : TYPE_MAX_VALUE (arg0_type);
3999 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4000 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4001 fold_convert (arg0_type,
4002 high_positive),
4003 fold_convert (arg0_type,
4004 integer_one_node));
4006 /* If the low bound is specified, "and" the range with the
4007 range for which the original unsigned value will be
4008 positive. */
4009 if (low != 0)
4011 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4012 1, n_low, n_high, 1,
4013 fold_convert (arg0_type,
4014 integer_zero_node),
4015 high_positive))
4016 break;
4018 in_p = (n_in_p == in_p);
4020 else
4022 /* Otherwise, "or" the range with the range of the input
4023 that will be interpreted as negative. */
4024 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4025 0, n_low, n_high, 1,
4026 fold_convert (arg0_type,
4027 integer_zero_node),
4028 high_positive))
4029 break;
4031 in_p = (in_p != n_in_p);
4035 exp = arg0;
4036 low = n_low, high = n_high;
4037 continue;
4039 default:
4040 break;
4043 break;
4046 /* If EXP is a constant, we can evaluate whether this is true or false. */
4047 if (TREE_CODE (exp) == INTEGER_CST)
4049 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4050 exp, 0, low, 0))
4051 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4052 exp, 1, high, 1)));
4053 low = high = 0;
4054 exp = 0;
4057 *pin_p = in_p, *plow = low, *phigh = high;
4058 return exp;
4061 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4062 type, TYPE, return an expression to test if EXP is in (or out of, depending
4063 on IN_P) the range. Return 0 if the test couldn't be created. */
4065 static tree
4066 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4068 tree etype = TREE_TYPE (exp);
4069 tree value;
4071 #ifdef HAVE_canonicalize_funcptr_for_compare
4072 /* Disable this optimization for function pointer expressions
4073 on targets that require function pointer canonicalization. */
4074 if (HAVE_canonicalize_funcptr_for_compare
4075 && TREE_CODE (etype) == POINTER_TYPE
4076 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4077 return NULL_TREE;
4078 #endif
4080 if (! in_p)
4082 value = build_range_check (type, exp, 1, low, high);
4083 if (value != 0)
4084 return invert_truthvalue (value);
4086 return 0;
4089 if (low == 0 && high == 0)
4090 return build_int_cst (type, 1);
4092 if (low == 0)
4093 return fold_build2 (LE_EXPR, type, exp,
4094 fold_convert (etype, high));
4096 if (high == 0)
4097 return fold_build2 (GE_EXPR, type, exp,
4098 fold_convert (etype, low));
4100 if (operand_equal_p (low, high, 0))
4101 return fold_build2 (EQ_EXPR, type, exp,
4102 fold_convert (etype, low));
4104 if (integer_zerop (low))
4106 if (! TYPE_UNSIGNED (etype))
4108 etype = lang_hooks.types.unsigned_type (etype);
4109 high = fold_convert (etype, high);
4110 exp = fold_convert (etype, exp);
4112 return build_range_check (type, exp, 1, 0, high);
4115 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4116 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4118 unsigned HOST_WIDE_INT lo;
4119 HOST_WIDE_INT hi;
4120 int prec;
4122 prec = TYPE_PRECISION (etype);
4123 if (prec <= HOST_BITS_PER_WIDE_INT)
4125 hi = 0;
4126 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4128 else
4130 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4131 lo = (unsigned HOST_WIDE_INT) -1;
4134 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4136 if (TYPE_UNSIGNED (etype))
4138 etype = lang_hooks.types.signed_type (etype);
4139 exp = fold_convert (etype, exp);
4141 return fold_build2 (GT_EXPR, type, exp,
4142 build_int_cst (etype, 0));
4146 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4147 This requires wrap-around arithmetics for the type of the expression. */
4148 switch (TREE_CODE (etype))
4150 case INTEGER_TYPE:
4151 /* There is no requirement that LOW be within the range of ETYPE
4152 if the latter is a subtype. It must, however, be within the base
4153 type of ETYPE. So be sure we do the subtraction in that type. */
4154 if (TREE_TYPE (etype))
4155 etype = TREE_TYPE (etype);
4156 break;
4158 case ENUMERAL_TYPE:
4159 case BOOLEAN_TYPE:
4160 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4161 TYPE_UNSIGNED (etype));
4162 break;
4164 default:
4165 break;
4168 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4169 if (TREE_CODE (etype) == INTEGER_TYPE
4170 && !TYPE_UNSIGNED (etype) && !flag_wrapv)
4172 tree utype, minv, maxv;
4174 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4175 for the type in question, as we rely on this here. */
4176 utype = lang_hooks.types.unsigned_type (etype);
4177 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4178 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4179 integer_one_node, 1);
4180 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4182 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4183 minv, 1, maxv, 1)))
4184 etype = utype;
4185 else
4186 return 0;
4189 high = fold_convert (etype, high);
4190 low = fold_convert (etype, low);
4191 exp = fold_convert (etype, exp);
4193 value = const_binop (MINUS_EXPR, high, low, 0);
4195 if (value != 0 && !TREE_OVERFLOW (value))
4196 return build_range_check (type,
4197 fold_build2 (MINUS_EXPR, etype, exp, low),
4198 1, build_int_cst (etype, 0), value);
4200 return 0;
4203 /* Return the predecessor of VAL in its type, handling the infinite case. */
4205 static tree
4206 range_predecessor (tree val)
4208 tree type = TREE_TYPE (val);
4210 if (INTEGRAL_TYPE_P (type)
4211 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4212 return 0;
4213 else
4214 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4217 /* Return the successor of VAL in its type, handling the infinite case. */
4219 static tree
4220 range_successor (tree val)
4222 tree type = TREE_TYPE (val);
4224 if (INTEGRAL_TYPE_P (type)
4225 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4226 return 0;
4227 else
4228 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4231 /* Given two ranges, see if we can merge them into one. Return 1 if we
4232 can, 0 if we can't. Set the output range into the specified parameters. */
4234 static int
4235 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4236 tree high0, int in1_p, tree low1, tree high1)
4238 int no_overlap;
4239 int subset;
4240 int temp;
4241 tree tem;
4242 int in_p;
4243 tree low, high;
4244 int lowequal = ((low0 == 0 && low1 == 0)
4245 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4246 low0, 0, low1, 0)));
4247 int highequal = ((high0 == 0 && high1 == 0)
4248 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4249 high0, 1, high1, 1)));
4251 /* Make range 0 be the range that starts first, or ends last if they
4252 start at the same value. Swap them if it isn't. */
4253 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4254 low0, 0, low1, 0))
4255 || (lowequal
4256 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4257 high1, 1, high0, 1))))
4259 temp = in0_p, in0_p = in1_p, in1_p = temp;
4260 tem = low0, low0 = low1, low1 = tem;
4261 tem = high0, high0 = high1, high1 = tem;
4264 /* Now flag two cases, whether the ranges are disjoint or whether the
4265 second range is totally subsumed in the first. Note that the tests
4266 below are simplified by the ones above. */
4267 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4268 high0, 1, low1, 0));
4269 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4270 high1, 1, high0, 1));
4272 /* We now have four cases, depending on whether we are including or
4273 excluding the two ranges. */
4274 if (in0_p && in1_p)
4276 /* If they don't overlap, the result is false. If the second range
4277 is a subset it is the result. Otherwise, the range is from the start
4278 of the second to the end of the first. */
4279 if (no_overlap)
4280 in_p = 0, low = high = 0;
4281 else if (subset)
4282 in_p = 1, low = low1, high = high1;
4283 else
4284 in_p = 1, low = low1, high = high0;
4287 else if (in0_p && ! in1_p)
4289 /* If they don't overlap, the result is the first range. If they are
4290 equal, the result is false. If the second range is a subset of the
4291 first, and the ranges begin at the same place, we go from just after
4292 the end of the second range to the end of the first. If the second
4293 range is not a subset of the first, or if it is a subset and both
4294 ranges end at the same place, the range starts at the start of the
4295 first range and ends just before the second range.
4296 Otherwise, we can't describe this as a single range. */
4297 if (no_overlap)
4298 in_p = 1, low = low0, high = high0;
4299 else if (lowequal && highequal)
4300 in_p = 0, low = high = 0;
4301 else if (subset && lowequal)
4303 low = range_successor (high1);
4304 high = high0;
4305 in_p = (low != 0);
4307 else if (! subset || highequal)
4309 low = low0;
4310 high = range_predecessor (low1);
4311 in_p = (high != 0);
4313 else
4314 return 0;
4317 else if (! in0_p && in1_p)
4319 /* If they don't overlap, the result is the second range. If the second
4320 is a subset of the first, the result is false. Otherwise,
4321 the range starts just after the first range and ends at the
4322 end of the second. */
4323 if (no_overlap)
4324 in_p = 1, low = low1, high = high1;
4325 else if (subset || highequal)
4326 in_p = 0, low = high = 0;
4327 else
4329 low = range_successor (high0);
4330 high = high1;
4331 in_p = (low != 0);
4335 else
4337 /* The case where we are excluding both ranges. Here the complex case
4338 is if they don't overlap. In that case, the only time we have a
4339 range is if they are adjacent. If the second is a subset of the
4340 first, the result is the first. Otherwise, the range to exclude
4341 starts at the beginning of the first range and ends at the end of the
4342 second. */
4343 if (no_overlap)
4345 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4346 range_successor (high0),
4347 1, low1, 0)))
4348 in_p = 0, low = low0, high = high1;
4349 else
4351 /* Canonicalize - [min, x] into - [-, x]. */
4352 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4353 switch (TREE_CODE (TREE_TYPE (low0)))
4355 case ENUMERAL_TYPE:
4356 if (TYPE_PRECISION (TREE_TYPE (low0))
4357 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4358 break;
4359 /* FALLTHROUGH */
4360 case INTEGER_TYPE:
4361 if (tree_int_cst_equal (low0,
4362 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4363 low0 = 0;
4364 break;
4365 case POINTER_TYPE:
4366 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4367 && integer_zerop (low0))
4368 low0 = 0;
4369 break;
4370 default:
4371 break;
4374 /* Canonicalize - [x, max] into - [x, -]. */
4375 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4376 switch (TREE_CODE (TREE_TYPE (high1)))
4378 case ENUMERAL_TYPE:
4379 if (TYPE_PRECISION (TREE_TYPE (high1))
4380 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4381 break;
4382 /* FALLTHROUGH */
4383 case INTEGER_TYPE:
4384 if (tree_int_cst_equal (high1,
4385 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4386 high1 = 0;
4387 break;
4388 case POINTER_TYPE:
4389 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4390 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4391 high1, 1,
4392 integer_one_node, 1)))
4393 high1 = 0;
4394 break;
4395 default:
4396 break;
4399 /* The ranges might be also adjacent between the maximum and
4400 minimum values of the given type. For
4401 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4402 return + [x + 1, y - 1]. */
4403 if (low0 == 0 && high1 == 0)
4405 low = range_successor (high0);
4406 high = range_predecessor (low1);
4407 if (low == 0 || high == 0)
4408 return 0;
4410 in_p = 1;
4412 else
4413 return 0;
4416 else if (subset)
4417 in_p = 0, low = low0, high = high0;
4418 else
4419 in_p = 0, low = low0, high = high1;
4422 *pin_p = in_p, *plow = low, *phigh = high;
4423 return 1;
4427 /* Subroutine of fold, looking inside expressions of the form
4428 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4429 of the COND_EXPR. This function is being used also to optimize
4430 A op B ? C : A, by reversing the comparison first.
4432 Return a folded expression whose code is not a COND_EXPR
4433 anymore, or NULL_TREE if no folding opportunity is found. */
4435 static tree
4436 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4438 enum tree_code comp_code = TREE_CODE (arg0);
4439 tree arg00 = TREE_OPERAND (arg0, 0);
4440 tree arg01 = TREE_OPERAND (arg0, 1);
4441 tree arg1_type = TREE_TYPE (arg1);
4442 tree tem;
4444 STRIP_NOPS (arg1);
4445 STRIP_NOPS (arg2);
4447 /* If we have A op 0 ? A : -A, consider applying the following
4448 transformations:
4450 A == 0? A : -A same as -A
4451 A != 0? A : -A same as A
4452 A >= 0? A : -A same as abs (A)
4453 A > 0? A : -A same as abs (A)
4454 A <= 0? A : -A same as -abs (A)
4455 A < 0? A : -A same as -abs (A)
4457 None of these transformations work for modes with signed
4458 zeros. If A is +/-0, the first two transformations will
4459 change the sign of the result (from +0 to -0, or vice
4460 versa). The last four will fix the sign of the result,
4461 even though the original expressions could be positive or
4462 negative, depending on the sign of A.
4464 Note that all these transformations are correct if A is
4465 NaN, since the two alternatives (A and -A) are also NaNs. */
4466 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4467 ? real_zerop (arg01)
4468 : integer_zerop (arg01))
4469 && ((TREE_CODE (arg2) == NEGATE_EXPR
4470 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4471 /* In the case that A is of the form X-Y, '-A' (arg2) may
4472 have already been folded to Y-X, check for that. */
4473 || (TREE_CODE (arg1) == MINUS_EXPR
4474 && TREE_CODE (arg2) == MINUS_EXPR
4475 && operand_equal_p (TREE_OPERAND (arg1, 0),
4476 TREE_OPERAND (arg2, 1), 0)
4477 && operand_equal_p (TREE_OPERAND (arg1, 1),
4478 TREE_OPERAND (arg2, 0), 0))))
4479 switch (comp_code)
4481 case EQ_EXPR:
4482 case UNEQ_EXPR:
4483 tem = fold_convert (arg1_type, arg1);
4484 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4485 case NE_EXPR:
4486 case LTGT_EXPR:
4487 return pedantic_non_lvalue (fold_convert (type, arg1));
4488 case UNGE_EXPR:
4489 case UNGT_EXPR:
4490 if (flag_trapping_math)
4491 break;
4492 /* Fall through. */
4493 case GE_EXPR:
4494 case GT_EXPR:
4495 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4496 arg1 = fold_convert (lang_hooks.types.signed_type
4497 (TREE_TYPE (arg1)), arg1);
4498 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4499 return pedantic_non_lvalue (fold_convert (type, tem));
4500 case UNLE_EXPR:
4501 case UNLT_EXPR:
4502 if (flag_trapping_math)
4503 break;
4504 case LE_EXPR:
4505 case LT_EXPR:
4506 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4507 arg1 = fold_convert (lang_hooks.types.signed_type
4508 (TREE_TYPE (arg1)), arg1);
4509 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4510 return negate_expr (fold_convert (type, tem));
4511 default:
4512 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4513 break;
4516 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4517 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4518 both transformations are correct when A is NaN: A != 0
4519 is then true, and A == 0 is false. */
4521 if (integer_zerop (arg01) && integer_zerop (arg2))
4523 if (comp_code == NE_EXPR)
4524 return pedantic_non_lvalue (fold_convert (type, arg1));
4525 else if (comp_code == EQ_EXPR)
4526 return build_int_cst (type, 0);
4529 /* Try some transformations of A op B ? A : B.
4531 A == B? A : B same as B
4532 A != B? A : B same as A
4533 A >= B? A : B same as max (A, B)
4534 A > B? A : B same as max (B, A)
4535 A <= B? A : B same as min (A, B)
4536 A < B? A : B same as min (B, A)
4538 As above, these transformations don't work in the presence
4539 of signed zeros. For example, if A and B are zeros of
4540 opposite sign, the first two transformations will change
4541 the sign of the result. In the last four, the original
4542 expressions give different results for (A=+0, B=-0) and
4543 (A=-0, B=+0), but the transformed expressions do not.
4545 The first two transformations are correct if either A or B
4546 is a NaN. In the first transformation, the condition will
4547 be false, and B will indeed be chosen. In the case of the
4548 second transformation, the condition A != B will be true,
4549 and A will be chosen.
4551 The conversions to max() and min() are not correct if B is
4552 a number and A is not. The conditions in the original
4553 expressions will be false, so all four give B. The min()
4554 and max() versions would give a NaN instead. */
4555 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
4556 /* Avoid these transformations if the COND_EXPR may be used
4557 as an lvalue in the C++ front-end. PR c++/19199. */
4558 && (in_gimple_form
4559 || (strcmp (lang_hooks.name, "GNU C++") != 0
4560 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4561 || ! maybe_lvalue_p (arg1)
4562 || ! maybe_lvalue_p (arg2)))
4564 tree comp_op0 = arg00;
4565 tree comp_op1 = arg01;
4566 tree comp_type = TREE_TYPE (comp_op0);
4568 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4569 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4571 comp_type = type;
4572 comp_op0 = arg1;
4573 comp_op1 = arg2;
4576 switch (comp_code)
4578 case EQ_EXPR:
4579 return pedantic_non_lvalue (fold_convert (type, arg2));
4580 case NE_EXPR:
4581 return pedantic_non_lvalue (fold_convert (type, arg1));
4582 case LE_EXPR:
4583 case LT_EXPR:
4584 case UNLE_EXPR:
4585 case UNLT_EXPR:
4586 /* In C++ a ?: expression can be an lvalue, so put the
4587 operand which will be used if they are equal first
4588 so that we can convert this back to the
4589 corresponding COND_EXPR. */
4590 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4592 comp_op0 = fold_convert (comp_type, comp_op0);
4593 comp_op1 = fold_convert (comp_type, comp_op1);
4594 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4595 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
4596 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
4597 return pedantic_non_lvalue (fold_convert (type, tem));
4599 break;
4600 case GE_EXPR:
4601 case GT_EXPR:
4602 case UNGE_EXPR:
4603 case UNGT_EXPR:
4604 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4606 comp_op0 = fold_convert (comp_type, comp_op0);
4607 comp_op1 = fold_convert (comp_type, comp_op1);
4608 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4609 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
4610 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
4611 return pedantic_non_lvalue (fold_convert (type, tem));
4613 break;
4614 case UNEQ_EXPR:
4615 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4616 return pedantic_non_lvalue (fold_convert (type, arg2));
4617 break;
4618 case LTGT_EXPR:
4619 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4620 return pedantic_non_lvalue (fold_convert (type, arg1));
4621 break;
4622 default:
4623 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4624 break;
4628 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4629 we might still be able to simplify this. For example,
4630 if C1 is one less or one more than C2, this might have started
4631 out as a MIN or MAX and been transformed by this function.
4632 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4634 if (INTEGRAL_TYPE_P (type)
4635 && TREE_CODE (arg01) == INTEGER_CST
4636 && TREE_CODE (arg2) == INTEGER_CST)
4637 switch (comp_code)
4639 case EQ_EXPR:
4640 /* We can replace A with C1 in this case. */
4641 arg1 = fold_convert (type, arg01);
4642 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
4644 case LT_EXPR:
4645 /* If C1 is C2 + 1, this is min(A, C2). */
4646 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4647 OEP_ONLY_CONST)
4648 && operand_equal_p (arg01,
4649 const_binop (PLUS_EXPR, arg2,
4650 integer_one_node, 0),
4651 OEP_ONLY_CONST))
4652 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4653 type, arg1, arg2));
4654 break;
4656 case LE_EXPR:
4657 /* If C1 is C2 - 1, this is min(A, C2). */
4658 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4659 OEP_ONLY_CONST)
4660 && operand_equal_p (arg01,
4661 const_binop (MINUS_EXPR, arg2,
4662 integer_one_node, 0),
4663 OEP_ONLY_CONST))
4664 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4665 type, arg1, arg2));
4666 break;
4668 case GT_EXPR:
4669 /* If C1 is C2 - 1, this is max(A, C2). */
4670 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4671 OEP_ONLY_CONST)
4672 && operand_equal_p (arg01,
4673 const_binop (MINUS_EXPR, arg2,
4674 integer_one_node, 0),
4675 OEP_ONLY_CONST))
4676 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4677 type, arg1, arg2));
4678 break;
4680 case GE_EXPR:
4681 /* If C1 is C2 + 1, this is max(A, C2). */
4682 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4683 OEP_ONLY_CONST)
4684 && operand_equal_p (arg01,
4685 const_binop (PLUS_EXPR, arg2,
4686 integer_one_node, 0),
4687 OEP_ONLY_CONST))
4688 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4689 type, arg1, arg2));
4690 break;
4691 case NE_EXPR:
4692 break;
4693 default:
4694 gcc_unreachable ();
4697 return NULL_TREE;
4702 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4703 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4704 #endif
4706 /* EXP is some logical combination of boolean tests. See if we can
4707 merge it into some range test. Return the new tree if so. */
4709 static tree
4710 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
4712 int or_op = (code == TRUTH_ORIF_EXPR
4713 || code == TRUTH_OR_EXPR);
4714 int in0_p, in1_p, in_p;
4715 tree low0, low1, low, high0, high1, high;
4716 tree lhs = make_range (op0, &in0_p, &low0, &high0);
4717 tree rhs = make_range (op1, &in1_p, &low1, &high1);
4718 tree tem;
4720 /* If this is an OR operation, invert both sides; we will invert
4721 again at the end. */
4722 if (or_op)
4723 in0_p = ! in0_p, in1_p = ! in1_p;
4725 /* If both expressions are the same, if we can merge the ranges, and we
4726 can build the range test, return it or it inverted. If one of the
4727 ranges is always true or always false, consider it to be the same
4728 expression as the other. */
4729 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4730 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4731 in1_p, low1, high1)
4732 && 0 != (tem = (build_range_check (type,
4733 lhs != 0 ? lhs
4734 : rhs != 0 ? rhs : integer_zero_node,
4735 in_p, low, high))))
4736 return or_op ? invert_truthvalue (tem) : tem;
4738 /* On machines where the branch cost is expensive, if this is a
4739 short-circuited branch and the underlying object on both sides
4740 is the same, make a non-short-circuit operation. */
4741 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4742 && lhs != 0 && rhs != 0
4743 && (code == TRUTH_ANDIF_EXPR
4744 || code == TRUTH_ORIF_EXPR)
4745 && operand_equal_p (lhs, rhs, 0))
4747 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4748 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4749 which cases we can't do this. */
4750 if (simple_operand_p (lhs))
4751 return build2 (code == TRUTH_ANDIF_EXPR
4752 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4753 type, op0, op1);
4755 else if (lang_hooks.decls.global_bindings_p () == 0
4756 && ! CONTAINS_PLACEHOLDER_P (lhs))
4758 tree common = save_expr (lhs);
4760 if (0 != (lhs = build_range_check (type, common,
4761 or_op ? ! in0_p : in0_p,
4762 low0, high0))
4763 && (0 != (rhs = build_range_check (type, common,
4764 or_op ? ! in1_p : in1_p,
4765 low1, high1))))
4766 return build2 (code == TRUTH_ANDIF_EXPR
4767 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4768 type, lhs, rhs);
4772 return 0;
4775 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4776 bit value. Arrange things so the extra bits will be set to zero if and
4777 only if C is signed-extended to its full width. If MASK is nonzero,
4778 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4780 static tree
4781 unextend (tree c, int p, int unsignedp, tree mask)
4783 tree type = TREE_TYPE (c);
4784 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4785 tree temp;
4787 if (p == modesize || unsignedp)
4788 return c;
4790 /* We work by getting just the sign bit into the low-order bit, then
4791 into the high-order bit, then sign-extend. We then XOR that value
4792 with C. */
4793 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4794 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4796 /* We must use a signed type in order to get an arithmetic right shift.
4797 However, we must also avoid introducing accidental overflows, so that
4798 a subsequent call to integer_zerop will work. Hence we must
4799 do the type conversion here. At this point, the constant is either
4800 zero or one, and the conversion to a signed type can never overflow.
4801 We could get an overflow if this conversion is done anywhere else. */
4802 if (TYPE_UNSIGNED (type))
4803 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4805 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4806 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4807 if (mask != 0)
4808 temp = const_binop (BIT_AND_EXPR, temp,
4809 fold_convert (TREE_TYPE (c), mask), 0);
4810 /* If necessary, convert the type back to match the type of C. */
4811 if (TYPE_UNSIGNED (type))
4812 temp = fold_convert (type, temp);
4814 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4817 /* Find ways of folding logical expressions of LHS and RHS:
4818 Try to merge two comparisons to the same innermost item.
4819 Look for range tests like "ch >= '0' && ch <= '9'".
4820 Look for combinations of simple terms on machines with expensive branches
4821 and evaluate the RHS unconditionally.
4823 For example, if we have p->a == 2 && p->b == 4 and we can make an
4824 object large enough to span both A and B, we can do this with a comparison
4825 against the object ANDed with the a mask.
4827 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4828 operations to do this with one comparison.
4830 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4831 function and the one above.
4833 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4834 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4836 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4837 two operands.
4839 We return the simplified tree or 0 if no optimization is possible. */
4841 static tree
4842 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4844 /* If this is the "or" of two comparisons, we can do something if
4845 the comparisons are NE_EXPR. If this is the "and", we can do something
4846 if the comparisons are EQ_EXPR. I.e.,
4847 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4849 WANTED_CODE is this operation code. For single bit fields, we can
4850 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4851 comparison for one-bit fields. */
4853 enum tree_code wanted_code;
4854 enum tree_code lcode, rcode;
4855 tree ll_arg, lr_arg, rl_arg, rr_arg;
4856 tree ll_inner, lr_inner, rl_inner, rr_inner;
4857 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4858 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4859 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4860 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4861 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4862 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4863 enum machine_mode lnmode, rnmode;
4864 tree ll_mask, lr_mask, rl_mask, rr_mask;
4865 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4866 tree l_const, r_const;
4867 tree lntype, rntype, result;
4868 int first_bit, end_bit;
4869 int volatilep;
4870 tree orig_lhs = lhs, orig_rhs = rhs;
4871 enum tree_code orig_code = code;
4873 /* Start by getting the comparison codes. Fail if anything is volatile.
4874 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4875 it were surrounded with a NE_EXPR. */
4877 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4878 return 0;
4880 lcode = TREE_CODE (lhs);
4881 rcode = TREE_CODE (rhs);
4883 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4885 lhs = build2 (NE_EXPR, truth_type, lhs,
4886 build_int_cst (TREE_TYPE (lhs), 0));
4887 lcode = NE_EXPR;
4890 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4892 rhs = build2 (NE_EXPR, truth_type, rhs,
4893 build_int_cst (TREE_TYPE (rhs), 0));
4894 rcode = NE_EXPR;
4897 if (TREE_CODE_CLASS (lcode) != tcc_comparison
4898 || TREE_CODE_CLASS (rcode) != tcc_comparison)
4899 return 0;
4901 ll_arg = TREE_OPERAND (lhs, 0);
4902 lr_arg = TREE_OPERAND (lhs, 1);
4903 rl_arg = TREE_OPERAND (rhs, 0);
4904 rr_arg = TREE_OPERAND (rhs, 1);
4906 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4907 if (simple_operand_p (ll_arg)
4908 && simple_operand_p (lr_arg))
4910 tree result;
4911 if (operand_equal_p (ll_arg, rl_arg, 0)
4912 && operand_equal_p (lr_arg, rr_arg, 0))
4914 result = combine_comparisons (code, lcode, rcode,
4915 truth_type, ll_arg, lr_arg);
4916 if (result)
4917 return result;
4919 else if (operand_equal_p (ll_arg, rr_arg, 0)
4920 && operand_equal_p (lr_arg, rl_arg, 0))
4922 result = combine_comparisons (code, lcode,
4923 swap_tree_comparison (rcode),
4924 truth_type, ll_arg, lr_arg);
4925 if (result)
4926 return result;
4930 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4931 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4933 /* If the RHS can be evaluated unconditionally and its operands are
4934 simple, it wins to evaluate the RHS unconditionally on machines
4935 with expensive branches. In this case, this isn't a comparison
4936 that can be merged. Avoid doing this if the RHS is a floating-point
4937 comparison since those can trap. */
4939 if (BRANCH_COST >= 2
4940 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4941 && simple_operand_p (rl_arg)
4942 && simple_operand_p (rr_arg))
4944 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4945 if (code == TRUTH_OR_EXPR
4946 && lcode == NE_EXPR && integer_zerop (lr_arg)
4947 && rcode == NE_EXPR && integer_zerop (rr_arg)
4948 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4949 return build2 (NE_EXPR, truth_type,
4950 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4951 ll_arg, rl_arg),
4952 build_int_cst (TREE_TYPE (ll_arg), 0));
4954 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4955 if (code == TRUTH_AND_EXPR
4956 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4957 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4958 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4959 return build2 (EQ_EXPR, truth_type,
4960 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4961 ll_arg, rl_arg),
4962 build_int_cst (TREE_TYPE (ll_arg), 0));
4964 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
4966 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
4967 return build2 (code, truth_type, lhs, rhs);
4968 return NULL_TREE;
4972 /* See if the comparisons can be merged. Then get all the parameters for
4973 each side. */
4975 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4976 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4977 return 0;
4979 volatilep = 0;
4980 ll_inner = decode_field_reference (ll_arg,
4981 &ll_bitsize, &ll_bitpos, &ll_mode,
4982 &ll_unsignedp, &volatilep, &ll_mask,
4983 &ll_and_mask);
4984 lr_inner = decode_field_reference (lr_arg,
4985 &lr_bitsize, &lr_bitpos, &lr_mode,
4986 &lr_unsignedp, &volatilep, &lr_mask,
4987 &lr_and_mask);
4988 rl_inner = decode_field_reference (rl_arg,
4989 &rl_bitsize, &rl_bitpos, &rl_mode,
4990 &rl_unsignedp, &volatilep, &rl_mask,
4991 &rl_and_mask);
4992 rr_inner = decode_field_reference (rr_arg,
4993 &rr_bitsize, &rr_bitpos, &rr_mode,
4994 &rr_unsignedp, &volatilep, &rr_mask,
4995 &rr_and_mask);
4997 /* It must be true that the inner operation on the lhs of each
4998 comparison must be the same if we are to be able to do anything.
4999 Then see if we have constants. If not, the same must be true for
5000 the rhs's. */
5001 if (volatilep || ll_inner == 0 || rl_inner == 0
5002 || ! operand_equal_p (ll_inner, rl_inner, 0))
5003 return 0;
5005 if (TREE_CODE (lr_arg) == INTEGER_CST
5006 && TREE_CODE (rr_arg) == INTEGER_CST)
5007 l_const = lr_arg, r_const = rr_arg;
5008 else if (lr_inner == 0 || rr_inner == 0
5009 || ! operand_equal_p (lr_inner, rr_inner, 0))
5010 return 0;
5011 else
5012 l_const = r_const = 0;
5014 /* If either comparison code is not correct for our logical operation,
5015 fail. However, we can convert a one-bit comparison against zero into
5016 the opposite comparison against that bit being set in the field. */
5018 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5019 if (lcode != wanted_code)
5021 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5023 /* Make the left operand unsigned, since we are only interested
5024 in the value of one bit. Otherwise we are doing the wrong
5025 thing below. */
5026 ll_unsignedp = 1;
5027 l_const = ll_mask;
5029 else
5030 return 0;
5033 /* This is analogous to the code for l_const above. */
5034 if (rcode != wanted_code)
5036 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5038 rl_unsignedp = 1;
5039 r_const = rl_mask;
5041 else
5042 return 0;
5045 /* After this point all optimizations will generate bit-field
5046 references, which we might not want. */
5047 if (! lang_hooks.can_use_bit_fields_p ())
5048 return 0;
5050 /* See if we can find a mode that contains both fields being compared on
5051 the left. If we can't, fail. Otherwise, update all constants and masks
5052 to be relative to a field of that size. */
5053 first_bit = MIN (ll_bitpos, rl_bitpos);
5054 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5055 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5056 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5057 volatilep);
5058 if (lnmode == VOIDmode)
5059 return 0;
5061 lnbitsize = GET_MODE_BITSIZE (lnmode);
5062 lnbitpos = first_bit & ~ (lnbitsize - 1);
5063 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5064 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5066 if (BYTES_BIG_ENDIAN)
5068 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5069 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5072 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5073 size_int (xll_bitpos), 0);
5074 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5075 size_int (xrl_bitpos), 0);
5077 if (l_const)
5079 l_const = fold_convert (lntype, l_const);
5080 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5081 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5082 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5083 fold_build1 (BIT_NOT_EXPR,
5084 lntype, ll_mask),
5085 0)))
5087 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5089 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5092 if (r_const)
5094 r_const = fold_convert (lntype, r_const);
5095 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5096 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5097 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5098 fold_build1 (BIT_NOT_EXPR,
5099 lntype, rl_mask),
5100 0)))
5102 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5104 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5108 /* If the right sides are not constant, do the same for it. Also,
5109 disallow this optimization if a size or signedness mismatch occurs
5110 between the left and right sides. */
5111 if (l_const == 0)
5113 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5114 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5115 /* Make sure the two fields on the right
5116 correspond to the left without being swapped. */
5117 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5118 return 0;
5120 first_bit = MIN (lr_bitpos, rr_bitpos);
5121 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5122 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5123 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5124 volatilep);
5125 if (rnmode == VOIDmode)
5126 return 0;
5128 rnbitsize = GET_MODE_BITSIZE (rnmode);
5129 rnbitpos = first_bit & ~ (rnbitsize - 1);
5130 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5131 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5133 if (BYTES_BIG_ENDIAN)
5135 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5136 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5139 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5140 size_int (xlr_bitpos), 0);
5141 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5142 size_int (xrr_bitpos), 0);
5144 /* Make a mask that corresponds to both fields being compared.
5145 Do this for both items being compared. If the operands are the
5146 same size and the bits being compared are in the same position
5147 then we can do this by masking both and comparing the masked
5148 results. */
5149 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5150 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5151 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5153 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5154 ll_unsignedp || rl_unsignedp);
5155 if (! all_ones_mask_p (ll_mask, lnbitsize))
5156 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5158 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5159 lr_unsignedp || rr_unsignedp);
5160 if (! all_ones_mask_p (lr_mask, rnbitsize))
5161 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5163 return build2 (wanted_code, truth_type, lhs, rhs);
5166 /* There is still another way we can do something: If both pairs of
5167 fields being compared are adjacent, we may be able to make a wider
5168 field containing them both.
5170 Note that we still must mask the lhs/rhs expressions. Furthermore,
5171 the mask must be shifted to account for the shift done by
5172 make_bit_field_ref. */
5173 if ((ll_bitsize + ll_bitpos == rl_bitpos
5174 && lr_bitsize + lr_bitpos == rr_bitpos)
5175 || (ll_bitpos == rl_bitpos + rl_bitsize
5176 && lr_bitpos == rr_bitpos + rr_bitsize))
5178 tree type;
5180 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5181 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5182 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5183 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5185 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5186 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5187 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5188 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5190 /* Convert to the smaller type before masking out unwanted bits. */
5191 type = lntype;
5192 if (lntype != rntype)
5194 if (lnbitsize > rnbitsize)
5196 lhs = fold_convert (rntype, lhs);
5197 ll_mask = fold_convert (rntype, ll_mask);
5198 type = rntype;
5200 else if (lnbitsize < rnbitsize)
5202 rhs = fold_convert (lntype, rhs);
5203 lr_mask = fold_convert (lntype, lr_mask);
5204 type = lntype;
5208 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5209 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5211 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5212 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5214 return build2 (wanted_code, truth_type, lhs, rhs);
5217 return 0;
5220 /* Handle the case of comparisons with constants. If there is something in
5221 common between the masks, those bits of the constants must be the same.
5222 If not, the condition is always false. Test for this to avoid generating
5223 incorrect code below. */
5224 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5225 if (! integer_zerop (result)
5226 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5227 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5229 if (wanted_code == NE_EXPR)
5231 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5232 return constant_boolean_node (true, truth_type);
5234 else
5236 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5237 return constant_boolean_node (false, truth_type);
5241 /* Construct the expression we will return. First get the component
5242 reference we will make. Unless the mask is all ones the width of
5243 that field, perform the mask operation. Then compare with the
5244 merged constant. */
5245 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5246 ll_unsignedp || rl_unsignedp);
5248 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5249 if (! all_ones_mask_p (ll_mask, lnbitsize))
5250 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5252 return build2 (wanted_code, truth_type, result,
5253 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5256 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5257 constant. */
5259 static tree
5260 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5262 tree arg0 = op0;
5263 enum tree_code op_code;
5264 tree comp_const = op1;
5265 tree minmax_const;
5266 int consts_equal, consts_lt;
5267 tree inner;
5269 STRIP_SIGN_NOPS (arg0);
5271 op_code = TREE_CODE (arg0);
5272 minmax_const = TREE_OPERAND (arg0, 1);
5273 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5274 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5275 inner = TREE_OPERAND (arg0, 0);
5277 /* If something does not permit us to optimize, return the original tree. */
5278 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5279 || TREE_CODE (comp_const) != INTEGER_CST
5280 || TREE_CONSTANT_OVERFLOW (comp_const)
5281 || TREE_CODE (minmax_const) != INTEGER_CST
5282 || TREE_CONSTANT_OVERFLOW (minmax_const))
5283 return NULL_TREE;
5285 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5286 and GT_EXPR, doing the rest with recursive calls using logical
5287 simplifications. */
5288 switch (code)
5290 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5292 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5293 type, op0, op1);
5294 if (tem)
5295 return invert_truthvalue (tem);
5296 return NULL_TREE;
5299 case GE_EXPR:
5300 return
5301 fold_build2 (TRUTH_ORIF_EXPR, type,
5302 optimize_minmax_comparison
5303 (EQ_EXPR, type, arg0, comp_const),
5304 optimize_minmax_comparison
5305 (GT_EXPR, type, arg0, comp_const));
5307 case EQ_EXPR:
5308 if (op_code == MAX_EXPR && consts_equal)
5309 /* MAX (X, 0) == 0 -> X <= 0 */
5310 return fold_build2 (LE_EXPR, type, inner, comp_const);
5312 else if (op_code == MAX_EXPR && consts_lt)
5313 /* MAX (X, 0) == 5 -> X == 5 */
5314 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5316 else if (op_code == MAX_EXPR)
5317 /* MAX (X, 0) == -1 -> false */
5318 return omit_one_operand (type, integer_zero_node, inner);
5320 else if (consts_equal)
5321 /* MIN (X, 0) == 0 -> X >= 0 */
5322 return fold_build2 (GE_EXPR, type, inner, comp_const);
5324 else if (consts_lt)
5325 /* MIN (X, 0) == 5 -> false */
5326 return omit_one_operand (type, integer_zero_node, inner);
5328 else
5329 /* MIN (X, 0) == -1 -> X == -1 */
5330 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5332 case GT_EXPR:
5333 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5334 /* MAX (X, 0) > 0 -> X > 0
5335 MAX (X, 0) > 5 -> X > 5 */
5336 return fold_build2 (GT_EXPR, type, inner, comp_const);
5338 else if (op_code == MAX_EXPR)
5339 /* MAX (X, 0) > -1 -> true */
5340 return omit_one_operand (type, integer_one_node, inner);
5342 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5343 /* MIN (X, 0) > 0 -> false
5344 MIN (X, 0) > 5 -> false */
5345 return omit_one_operand (type, integer_zero_node, inner);
5347 else
5348 /* MIN (X, 0) > -1 -> X > -1 */
5349 return fold_build2 (GT_EXPR, type, inner, comp_const);
5351 default:
5352 return NULL_TREE;
5356 /* T is an integer expression that is being multiplied, divided, or taken a
5357 modulus (CODE says which and what kind of divide or modulus) by a
5358 constant C. See if we can eliminate that operation by folding it with
5359 other operations already in T. WIDE_TYPE, if non-null, is a type that
5360 should be used for the computation if wider than our type.
5362 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5363 (X * 2) + (Y * 4). We must, however, be assured that either the original
5364 expression would not overflow or that overflow is undefined for the type
5365 in the language in question.
5367 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5368 the machine has a multiply-accumulate insn or that this is part of an
5369 addressing calculation.
5371 If we return a non-null expression, it is an equivalent form of the
5372 original computation, but need not be in the original type. */
5374 static tree
5375 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5377 /* To avoid exponential search depth, refuse to allow recursion past
5378 three levels. Beyond that (1) it's highly unlikely that we'll find
5379 something interesting and (2) we've probably processed it before
5380 when we built the inner expression. */
5382 static int depth;
5383 tree ret;
5385 if (depth > 3)
5386 return NULL;
5388 depth++;
5389 ret = extract_muldiv_1 (t, c, code, wide_type);
5390 depth--;
5392 return ret;
5395 static tree
5396 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5398 tree type = TREE_TYPE (t);
5399 enum tree_code tcode = TREE_CODE (t);
5400 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5401 > GET_MODE_SIZE (TYPE_MODE (type)))
5402 ? wide_type : type);
5403 tree t1, t2;
5404 int same_p = tcode == code;
5405 tree op0 = NULL_TREE, op1 = NULL_TREE;
5407 /* Don't deal with constants of zero here; they confuse the code below. */
5408 if (integer_zerop (c))
5409 return NULL_TREE;
5411 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5412 op0 = TREE_OPERAND (t, 0);
5414 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5415 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5417 /* Note that we need not handle conditional operations here since fold
5418 already handles those cases. So just do arithmetic here. */
5419 switch (tcode)
5421 case INTEGER_CST:
5422 /* For a constant, we can always simplify if we are a multiply
5423 or (for divide and modulus) if it is a multiple of our constant. */
5424 if (code == MULT_EXPR
5425 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5426 return const_binop (code, fold_convert (ctype, t),
5427 fold_convert (ctype, c), 0);
5428 break;
5430 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5431 /* If op0 is an expression ... */
5432 if ((COMPARISON_CLASS_P (op0)
5433 || UNARY_CLASS_P (op0)
5434 || BINARY_CLASS_P (op0)
5435 || EXPRESSION_CLASS_P (op0))
5436 /* ... and is unsigned, and its type is smaller than ctype,
5437 then we cannot pass through as widening. */
5438 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5439 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5440 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5441 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5442 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5443 /* ... or this is a truncation (t is narrower than op0),
5444 then we cannot pass through this narrowing. */
5445 || (GET_MODE_SIZE (TYPE_MODE (type))
5446 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5447 /* ... or signedness changes for division or modulus,
5448 then we cannot pass through this conversion. */
5449 || (code != MULT_EXPR
5450 && (TYPE_UNSIGNED (ctype)
5451 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5452 break;
5454 /* Pass the constant down and see if we can make a simplification. If
5455 we can, replace this expression with the inner simplification for
5456 possible later conversion to our or some other type. */
5457 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5458 && TREE_CODE (t2) == INTEGER_CST
5459 && ! TREE_CONSTANT_OVERFLOW (t2)
5460 && (0 != (t1 = extract_muldiv (op0, t2, code,
5461 code == MULT_EXPR
5462 ? ctype : NULL_TREE))))
5463 return t1;
5464 break;
5466 case ABS_EXPR:
5467 /* If widening the type changes it from signed to unsigned, then we
5468 must avoid building ABS_EXPR itself as unsigned. */
5469 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5471 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5472 if ((t1 = extract_muldiv (op0, c, code, cstype)) != 0)
5474 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5475 return fold_convert (ctype, t1);
5477 break;
5479 /* FALLTHROUGH */
5480 case NEGATE_EXPR:
5481 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5482 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5483 break;
5485 case MIN_EXPR: case MAX_EXPR:
5486 /* If widening the type changes the signedness, then we can't perform
5487 this optimization as that changes the result. */
5488 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5489 break;
5491 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5492 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5493 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5495 if (tree_int_cst_sgn (c) < 0)
5496 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5498 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5499 fold_convert (ctype, t2));
5501 break;
5503 case LSHIFT_EXPR: case RSHIFT_EXPR:
5504 /* If the second operand is constant, this is a multiplication
5505 or floor division, by a power of two, so we can treat it that
5506 way unless the multiplier or divisor overflows. Signed
5507 left-shift overflow is implementation-defined rather than
5508 undefined in C90, so do not convert signed left shift into
5509 multiplication. */
5510 if (TREE_CODE (op1) == INTEGER_CST
5511 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5512 /* const_binop may not detect overflow correctly,
5513 so check for it explicitly here. */
5514 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5515 && TREE_INT_CST_HIGH (op1) == 0
5516 && 0 != (t1 = fold_convert (ctype,
5517 const_binop (LSHIFT_EXPR,
5518 size_one_node,
5519 op1, 0)))
5520 && ! TREE_OVERFLOW (t1))
5521 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5522 ? MULT_EXPR : FLOOR_DIV_EXPR,
5523 ctype, fold_convert (ctype, op0), t1),
5524 c, code, wide_type);
5525 break;
5527 case PLUS_EXPR: case MINUS_EXPR:
5528 /* See if we can eliminate the operation on both sides. If we can, we
5529 can return a new PLUS or MINUS. If we can't, the only remaining
5530 cases where we can do anything are if the second operand is a
5531 constant. */
5532 t1 = extract_muldiv (op0, c, code, wide_type);
5533 t2 = extract_muldiv (op1, c, code, wide_type);
5534 if (t1 != 0 && t2 != 0
5535 && (code == MULT_EXPR
5536 /* If not multiplication, we can only do this if both operands
5537 are divisible by c. */
5538 || (multiple_of_p (ctype, op0, c)
5539 && multiple_of_p (ctype, op1, c))))
5540 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5541 fold_convert (ctype, t2));
5543 /* If this was a subtraction, negate OP1 and set it to be an addition.
5544 This simplifies the logic below. */
5545 if (tcode == MINUS_EXPR)
5546 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5548 if (TREE_CODE (op1) != INTEGER_CST)
5549 break;
5551 /* If either OP1 or C are negative, this optimization is not safe for
5552 some of the division and remainder types while for others we need
5553 to change the code. */
5554 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5556 if (code == CEIL_DIV_EXPR)
5557 code = FLOOR_DIV_EXPR;
5558 else if (code == FLOOR_DIV_EXPR)
5559 code = CEIL_DIV_EXPR;
5560 else if (code != MULT_EXPR
5561 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5562 break;
5565 /* If it's a multiply or a division/modulus operation of a multiple
5566 of our constant, do the operation and verify it doesn't overflow. */
5567 if (code == MULT_EXPR
5568 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5570 op1 = const_binop (code, fold_convert (ctype, op1),
5571 fold_convert (ctype, c), 0);
5572 /* We allow the constant to overflow with wrapping semantics. */
5573 if (op1 == 0
5574 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5575 break;
5577 else
5578 break;
5580 /* If we have an unsigned type is not a sizetype, we cannot widen
5581 the operation since it will change the result if the original
5582 computation overflowed. */
5583 if (TYPE_UNSIGNED (ctype)
5584 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5585 && ctype != type)
5586 break;
5588 /* If we were able to eliminate our operation from the first side,
5589 apply our operation to the second side and reform the PLUS. */
5590 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5591 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5593 /* The last case is if we are a multiply. In that case, we can
5594 apply the distributive law to commute the multiply and addition
5595 if the multiplication of the constants doesn't overflow. */
5596 if (code == MULT_EXPR)
5597 return fold_build2 (tcode, ctype,
5598 fold_build2 (code, ctype,
5599 fold_convert (ctype, op0),
5600 fold_convert (ctype, c)),
5601 op1);
5603 break;
5605 case MULT_EXPR:
5606 /* We have a special case here if we are doing something like
5607 (C * 8) % 4 since we know that's zero. */
5608 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5609 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5610 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5611 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5612 return omit_one_operand (type, integer_zero_node, op0);
5614 /* ... fall through ... */
5616 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5617 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5618 /* If we can extract our operation from the LHS, do so and return a
5619 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5620 do something only if the second operand is a constant. */
5621 if (same_p
5622 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5623 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5624 fold_convert (ctype, op1));
5625 else if (tcode == MULT_EXPR && code == MULT_EXPR
5626 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5627 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5628 fold_convert (ctype, t1));
5629 else if (TREE_CODE (op1) != INTEGER_CST)
5630 return 0;
5632 /* If these are the same operation types, we can associate them
5633 assuming no overflow. */
5634 if (tcode == code
5635 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5636 fold_convert (ctype, c), 0))
5637 && ! TREE_OVERFLOW (t1))
5638 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
5640 /* If these operations "cancel" each other, we have the main
5641 optimizations of this pass, which occur when either constant is a
5642 multiple of the other, in which case we replace this with either an
5643 operation or CODE or TCODE.
5645 If we have an unsigned type that is not a sizetype, we cannot do
5646 this since it will change the result if the original computation
5647 overflowed. */
5648 if ((! TYPE_UNSIGNED (ctype)
5649 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5650 && ! flag_wrapv
5651 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5652 || (tcode == MULT_EXPR
5653 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5654 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5656 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5657 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5658 fold_convert (ctype,
5659 const_binop (TRUNC_DIV_EXPR,
5660 op1, c, 0)));
5661 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5662 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5663 fold_convert (ctype,
5664 const_binop (TRUNC_DIV_EXPR,
5665 c, op1, 0)));
5667 break;
5669 default:
5670 break;
5673 return 0;
5676 /* Return a node which has the indicated constant VALUE (either 0 or
5677 1), and is of the indicated TYPE. */
5679 tree
5680 constant_boolean_node (int value, tree type)
5682 if (type == integer_type_node)
5683 return value ? integer_one_node : integer_zero_node;
5684 else if (type == boolean_type_node)
5685 return value ? boolean_true_node : boolean_false_node;
5686 else
5687 return build_int_cst (type, value);
5691 /* Return true if expr looks like an ARRAY_REF and set base and
5692 offset to the appropriate trees. If there is no offset,
5693 offset is set to NULL_TREE. Base will be canonicalized to
5694 something you can get the element type from using
5695 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
5696 in bytes to the base. */
5698 static bool
5699 extract_array_ref (tree expr, tree *base, tree *offset)
5701 /* One canonical form is a PLUS_EXPR with the first
5702 argument being an ADDR_EXPR with a possible NOP_EXPR
5703 attached. */
5704 if (TREE_CODE (expr) == PLUS_EXPR)
5706 tree op0 = TREE_OPERAND (expr, 0);
5707 tree inner_base, dummy1;
5708 /* Strip NOP_EXPRs here because the C frontends and/or
5709 folders present us (int *)&x.a + 4B possibly. */
5710 STRIP_NOPS (op0);
5711 if (extract_array_ref (op0, &inner_base, &dummy1))
5713 *base = inner_base;
5714 if (dummy1 == NULL_TREE)
5715 *offset = TREE_OPERAND (expr, 1);
5716 else
5717 *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
5718 dummy1, TREE_OPERAND (expr, 1));
5719 return true;
5722 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
5723 which we transform into an ADDR_EXPR with appropriate
5724 offset. For other arguments to the ADDR_EXPR we assume
5725 zero offset and as such do not care about the ADDR_EXPR
5726 type and strip possible nops from it. */
5727 else if (TREE_CODE (expr) == ADDR_EXPR)
5729 tree op0 = TREE_OPERAND (expr, 0);
5730 if (TREE_CODE (op0) == ARRAY_REF)
5732 tree idx = TREE_OPERAND (op0, 1);
5733 *base = TREE_OPERAND (op0, 0);
5734 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
5735 array_ref_element_size (op0));
5737 else
5739 /* Handle array-to-pointer decay as &a. */
5740 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
5741 *base = TREE_OPERAND (expr, 0);
5742 else
5743 *base = expr;
5744 *offset = NULL_TREE;
5746 return true;
5748 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
5749 else if (SSA_VAR_P (expr)
5750 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
5752 *base = expr;
5753 *offset = NULL_TREE;
5754 return true;
5757 return false;
5761 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5762 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5763 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5764 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5765 COND is the first argument to CODE; otherwise (as in the example
5766 given here), it is the second argument. TYPE is the type of the
5767 original expression. Return NULL_TREE if no simplification is
5768 possible. */
5770 static tree
5771 fold_binary_op_with_conditional_arg (enum tree_code code,
5772 tree type, tree op0, tree op1,
5773 tree cond, tree arg, int cond_first_p)
5775 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5776 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5777 tree test, true_value, false_value;
5778 tree lhs = NULL_TREE;
5779 tree rhs = NULL_TREE;
5781 /* This transformation is only worthwhile if we don't have to wrap
5782 arg in a SAVE_EXPR, and the operation can be simplified on at least
5783 one of the branches once its pushed inside the COND_EXPR. */
5784 if (!TREE_CONSTANT (arg))
5785 return NULL_TREE;
5787 if (TREE_CODE (cond) == COND_EXPR)
5789 test = TREE_OPERAND (cond, 0);
5790 true_value = TREE_OPERAND (cond, 1);
5791 false_value = TREE_OPERAND (cond, 2);
5792 /* If this operand throws an expression, then it does not make
5793 sense to try to perform a logical or arithmetic operation
5794 involving it. */
5795 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5796 lhs = true_value;
5797 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5798 rhs = false_value;
5800 else
5802 tree testtype = TREE_TYPE (cond);
5803 test = cond;
5804 true_value = constant_boolean_node (true, testtype);
5805 false_value = constant_boolean_node (false, testtype);
5808 arg = fold_convert (arg_type, arg);
5809 if (lhs == 0)
5811 true_value = fold_convert (cond_type, true_value);
5812 if (cond_first_p)
5813 lhs = fold_build2 (code, type, true_value, arg);
5814 else
5815 lhs = fold_build2 (code, type, arg, true_value);
5817 if (rhs == 0)
5819 false_value = fold_convert (cond_type, false_value);
5820 if (cond_first_p)
5821 rhs = fold_build2 (code, type, false_value, arg);
5822 else
5823 rhs = fold_build2 (code, type, arg, false_value);
5826 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
5827 return fold_convert (type, test);
5831 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5833 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5834 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5835 ADDEND is the same as X.
5837 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5838 and finite. The problematic cases are when X is zero, and its mode
5839 has signed zeros. In the case of rounding towards -infinity,
5840 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5841 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5843 static bool
5844 fold_real_zero_addition_p (tree type, tree addend, int negate)
5846 if (!real_zerop (addend))
5847 return false;
5849 /* Don't allow the fold with -fsignaling-nans. */
5850 if (HONOR_SNANS (TYPE_MODE (type)))
5851 return false;
5853 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5854 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5855 return true;
5857 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5858 if (TREE_CODE (addend) == REAL_CST
5859 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5860 negate = !negate;
5862 /* The mode has signed zeros, and we have to honor their sign.
5863 In this situation, there is only one case we can return true for.
5864 X - 0 is the same as X unless rounding towards -infinity is
5865 supported. */
5866 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5869 /* Subroutine of fold() that checks comparisons of built-in math
5870 functions against real constants.
5872 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5873 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5874 is the type of the result and ARG0 and ARG1 are the operands of the
5875 comparison. ARG1 must be a TREE_REAL_CST.
5877 The function returns the constant folded tree if a simplification
5878 can be made, and NULL_TREE otherwise. */
5880 static tree
5881 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5882 tree type, tree arg0, tree arg1)
5884 REAL_VALUE_TYPE c;
5886 if (BUILTIN_SQRT_P (fcode))
5888 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5889 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5891 c = TREE_REAL_CST (arg1);
5892 if (REAL_VALUE_NEGATIVE (c))
5894 /* sqrt(x) < y is always false, if y is negative. */
5895 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5896 return omit_one_operand (type, integer_zero_node, arg);
5898 /* sqrt(x) > y is always true, if y is negative and we
5899 don't care about NaNs, i.e. negative values of x. */
5900 if (code == NE_EXPR || !HONOR_NANS (mode))
5901 return omit_one_operand (type, integer_one_node, arg);
5903 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5904 return fold_build2 (GE_EXPR, type, arg,
5905 build_real (TREE_TYPE (arg), dconst0));
5907 else if (code == GT_EXPR || code == GE_EXPR)
5909 REAL_VALUE_TYPE c2;
5911 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5912 real_convert (&c2, mode, &c2);
5914 if (REAL_VALUE_ISINF (c2))
5916 /* sqrt(x) > y is x == +Inf, when y is very large. */
5917 if (HONOR_INFINITIES (mode))
5918 return fold_build2 (EQ_EXPR, type, arg,
5919 build_real (TREE_TYPE (arg), c2));
5921 /* sqrt(x) > y is always false, when y is very large
5922 and we don't care about infinities. */
5923 return omit_one_operand (type, integer_zero_node, arg);
5926 /* sqrt(x) > c is the same as x > c*c. */
5927 return fold_build2 (code, type, arg,
5928 build_real (TREE_TYPE (arg), c2));
5930 else if (code == LT_EXPR || code == LE_EXPR)
5932 REAL_VALUE_TYPE c2;
5934 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5935 real_convert (&c2, mode, &c2);
5937 if (REAL_VALUE_ISINF (c2))
5939 /* sqrt(x) < y is always true, when y is a very large
5940 value and we don't care about NaNs or Infinities. */
5941 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5942 return omit_one_operand (type, integer_one_node, arg);
5944 /* sqrt(x) < y is x != +Inf when y is very large and we
5945 don't care about NaNs. */
5946 if (! HONOR_NANS (mode))
5947 return fold_build2 (NE_EXPR, type, arg,
5948 build_real (TREE_TYPE (arg), c2));
5950 /* sqrt(x) < y is x >= 0 when y is very large and we
5951 don't care about Infinities. */
5952 if (! HONOR_INFINITIES (mode))
5953 return fold_build2 (GE_EXPR, type, arg,
5954 build_real (TREE_TYPE (arg), dconst0));
5956 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5957 if (lang_hooks.decls.global_bindings_p () != 0
5958 || CONTAINS_PLACEHOLDER_P (arg))
5959 return NULL_TREE;
5961 arg = save_expr (arg);
5962 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5963 fold_build2 (GE_EXPR, type, arg,
5964 build_real (TREE_TYPE (arg),
5965 dconst0)),
5966 fold_build2 (NE_EXPR, type, arg,
5967 build_real (TREE_TYPE (arg),
5968 c2)));
5971 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5972 if (! HONOR_NANS (mode))
5973 return fold_build2 (code, type, arg,
5974 build_real (TREE_TYPE (arg), c2));
5976 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5977 if (lang_hooks.decls.global_bindings_p () == 0
5978 && ! CONTAINS_PLACEHOLDER_P (arg))
5980 arg = save_expr (arg);
5981 return fold_build2 (TRUTH_ANDIF_EXPR, type,
5982 fold_build2 (GE_EXPR, type, arg,
5983 build_real (TREE_TYPE (arg),
5984 dconst0)),
5985 fold_build2 (code, type, arg,
5986 build_real (TREE_TYPE (arg),
5987 c2)));
5992 return NULL_TREE;
5995 /* Subroutine of fold() that optimizes comparisons against Infinities,
5996 either +Inf or -Inf.
5998 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5999 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6000 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6002 The function returns the constant folded tree if a simplification
6003 can be made, and NULL_TREE otherwise. */
6005 static tree
6006 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6008 enum machine_mode mode;
6009 REAL_VALUE_TYPE max;
6010 tree temp;
6011 bool neg;
6013 mode = TYPE_MODE (TREE_TYPE (arg0));
6015 /* For negative infinity swap the sense of the comparison. */
6016 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6017 if (neg)
6018 code = swap_tree_comparison (code);
6020 switch (code)
6022 case GT_EXPR:
6023 /* x > +Inf is always false, if with ignore sNANs. */
6024 if (HONOR_SNANS (mode))
6025 return NULL_TREE;
6026 return omit_one_operand (type, integer_zero_node, arg0);
6028 case LE_EXPR:
6029 /* x <= +Inf is always true, if we don't case about NaNs. */
6030 if (! HONOR_NANS (mode))
6031 return omit_one_operand (type, integer_one_node, arg0);
6033 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6034 if (lang_hooks.decls.global_bindings_p () == 0
6035 && ! CONTAINS_PLACEHOLDER_P (arg0))
6037 arg0 = save_expr (arg0);
6038 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6040 break;
6042 case EQ_EXPR:
6043 case GE_EXPR:
6044 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6045 real_maxval (&max, neg, mode);
6046 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6047 arg0, build_real (TREE_TYPE (arg0), max));
6049 case LT_EXPR:
6050 /* x < +Inf is always equal to x <= DBL_MAX. */
6051 real_maxval (&max, neg, mode);
6052 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6053 arg0, build_real (TREE_TYPE (arg0), max));
6055 case NE_EXPR:
6056 /* x != +Inf is always equal to !(x > DBL_MAX). */
6057 real_maxval (&max, neg, mode);
6058 if (! HONOR_NANS (mode))
6059 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6060 arg0, build_real (TREE_TYPE (arg0), max));
6062 /* The transformation below creates non-gimple code and thus is
6063 not appropriate if we are in gimple form. */
6064 if (in_gimple_form)
6065 return NULL_TREE;
6067 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6068 arg0, build_real (TREE_TYPE (arg0), max));
6069 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6071 default:
6072 break;
6075 return NULL_TREE;
6078 /* Subroutine of fold() that optimizes comparisons of a division by
6079 a nonzero integer constant against an integer constant, i.e.
6080 X/C1 op C2.
6082 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6083 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6084 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6086 The function returns the constant folded tree if a simplification
6087 can be made, and NULL_TREE otherwise. */
6089 static tree
6090 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6092 tree prod, tmp, hi, lo;
6093 tree arg00 = TREE_OPERAND (arg0, 0);
6094 tree arg01 = TREE_OPERAND (arg0, 1);
6095 unsigned HOST_WIDE_INT lpart;
6096 HOST_WIDE_INT hpart;
6097 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6098 bool neg_overflow;
6099 int overflow;
6101 /* We have to do this the hard way to detect unsigned overflow.
6102 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6103 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6104 TREE_INT_CST_HIGH (arg01),
6105 TREE_INT_CST_LOW (arg1),
6106 TREE_INT_CST_HIGH (arg1),
6107 &lpart, &hpart, unsigned_p);
6108 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6109 prod = force_fit_type (prod, -1, overflow, false);
6110 neg_overflow = false;
6112 if (unsigned_p)
6114 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6115 lo = prod;
6117 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6118 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6119 TREE_INT_CST_HIGH (prod),
6120 TREE_INT_CST_LOW (tmp),
6121 TREE_INT_CST_HIGH (tmp),
6122 &lpart, &hpart, unsigned_p);
6123 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
6124 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
6125 TREE_CONSTANT_OVERFLOW (prod));
6127 else if (tree_int_cst_sgn (arg01) >= 0)
6129 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
6130 switch (tree_int_cst_sgn (arg1))
6132 case -1:
6133 neg_overflow = true;
6134 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6135 hi = prod;
6136 break;
6138 case 0:
6139 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6140 hi = tmp;
6141 break;
6143 case 1:
6144 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6145 lo = prod;
6146 break;
6148 default:
6149 gcc_unreachable ();
6152 else
6154 /* A negative divisor reverses the relational operators. */
6155 code = swap_tree_comparison (code);
6157 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
6158 switch (tree_int_cst_sgn (arg1))
6160 case -1:
6161 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6162 lo = prod;
6163 break;
6165 case 0:
6166 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6167 lo = tmp;
6168 break;
6170 case 1:
6171 neg_overflow = true;
6172 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6173 hi = prod;
6174 break;
6176 default:
6177 gcc_unreachable ();
6181 switch (code)
6183 case EQ_EXPR:
6184 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6185 return omit_one_operand (type, integer_zero_node, arg00);
6186 if (TREE_OVERFLOW (hi))
6187 return fold_build2 (GE_EXPR, type, arg00, lo);
6188 if (TREE_OVERFLOW (lo))
6189 return fold_build2 (LE_EXPR, type, arg00, hi);
6190 return build_range_check (type, arg00, 1, lo, hi);
6192 case NE_EXPR:
6193 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6194 return omit_one_operand (type, integer_one_node, arg00);
6195 if (TREE_OVERFLOW (hi))
6196 return fold_build2 (LT_EXPR, type, arg00, lo);
6197 if (TREE_OVERFLOW (lo))
6198 return fold_build2 (GT_EXPR, type, arg00, hi);
6199 return build_range_check (type, arg00, 0, lo, hi);
6201 case LT_EXPR:
6202 if (TREE_OVERFLOW (lo))
6204 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6205 return omit_one_operand (type, tmp, arg00);
6207 return fold_build2 (LT_EXPR, type, arg00, lo);
6209 case LE_EXPR:
6210 if (TREE_OVERFLOW (hi))
6212 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6213 return omit_one_operand (type, tmp, arg00);
6215 return fold_build2 (LE_EXPR, type, arg00, hi);
6217 case GT_EXPR:
6218 if (TREE_OVERFLOW (hi))
6220 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6221 return omit_one_operand (type, tmp, arg00);
6223 return fold_build2 (GT_EXPR, type, arg00, hi);
6225 case GE_EXPR:
6226 if (TREE_OVERFLOW (lo))
6228 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6229 return omit_one_operand (type, tmp, arg00);
6231 return fold_build2 (GE_EXPR, type, arg00, lo);
6233 default:
6234 break;
6237 return NULL_TREE;
6241 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6242 equality/inequality test, then return a simplified form of the test
6243 using a sign testing. Otherwise return NULL. TYPE is the desired
6244 result type. */
6246 static tree
6247 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6248 tree result_type)
6250 /* If this is testing a single bit, we can optimize the test. */
6251 if ((code == NE_EXPR || code == EQ_EXPR)
6252 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6253 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6255 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6256 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6257 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6259 if (arg00 != NULL_TREE
6260 /* This is only a win if casting to a signed type is cheap,
6261 i.e. when arg00's type is not a partial mode. */
6262 && TYPE_PRECISION (TREE_TYPE (arg00))
6263 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6265 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
6266 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6267 result_type, fold_convert (stype, arg00),
6268 build_int_cst (stype, 0));
6272 return NULL_TREE;
6275 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6276 equality/inequality test, then return a simplified form of
6277 the test using shifts and logical operations. Otherwise return
6278 NULL. TYPE is the desired result type. */
6280 tree
6281 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6282 tree result_type)
6284 /* If this is testing a single bit, we can optimize the test. */
6285 if ((code == NE_EXPR || code == EQ_EXPR)
6286 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6287 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6289 tree inner = TREE_OPERAND (arg0, 0);
6290 tree type = TREE_TYPE (arg0);
6291 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6292 enum machine_mode operand_mode = TYPE_MODE (type);
6293 int ops_unsigned;
6294 tree signed_type, unsigned_type, intermediate_type;
6295 tree tem;
6297 /* First, see if we can fold the single bit test into a sign-bit
6298 test. */
6299 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6300 result_type);
6301 if (tem)
6302 return tem;
6304 /* Otherwise we have (A & C) != 0 where C is a single bit,
6305 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6306 Similarly for (A & C) == 0. */
6308 /* If INNER is a right shift of a constant and it plus BITNUM does
6309 not overflow, adjust BITNUM and INNER. */
6310 if (TREE_CODE (inner) == RSHIFT_EXPR
6311 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6312 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6313 && bitnum < TYPE_PRECISION (type)
6314 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6315 bitnum - TYPE_PRECISION (type)))
6317 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6318 inner = TREE_OPERAND (inner, 0);
6321 /* If we are going to be able to omit the AND below, we must do our
6322 operations as unsigned. If we must use the AND, we have a choice.
6323 Normally unsigned is faster, but for some machines signed is. */
6324 #ifdef LOAD_EXTEND_OP
6325 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6326 && !flag_syntax_only) ? 0 : 1;
6327 #else
6328 ops_unsigned = 1;
6329 #endif
6331 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6332 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6333 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6334 inner = fold_convert (intermediate_type, inner);
6336 if (bitnum != 0)
6337 inner = build2 (RSHIFT_EXPR, intermediate_type,
6338 inner, size_int (bitnum));
6340 if (code == EQ_EXPR)
6341 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type,
6342 inner, integer_one_node);
6344 /* Put the AND last so it can combine with more things. */
6345 inner = build2 (BIT_AND_EXPR, intermediate_type,
6346 inner, integer_one_node);
6348 /* Make sure to return the proper type. */
6349 inner = fold_convert (result_type, inner);
6351 return inner;
6353 return NULL_TREE;
6356 /* Check whether we are allowed to reorder operands arg0 and arg1,
6357 such that the evaluation of arg1 occurs before arg0. */
6359 static bool
6360 reorder_operands_p (tree arg0, tree arg1)
6362 if (! flag_evaluation_order)
6363 return true;
6364 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6365 return true;
6366 return ! TREE_SIDE_EFFECTS (arg0)
6367 && ! TREE_SIDE_EFFECTS (arg1);
6370 /* Test whether it is preferable two swap two operands, ARG0 and
6371 ARG1, for example because ARG0 is an integer constant and ARG1
6372 isn't. If REORDER is true, only recommend swapping if we can
6373 evaluate the operands in reverse order. */
6375 bool
6376 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
6378 STRIP_SIGN_NOPS (arg0);
6379 STRIP_SIGN_NOPS (arg1);
6381 if (TREE_CODE (arg1) == INTEGER_CST)
6382 return 0;
6383 if (TREE_CODE (arg0) == INTEGER_CST)
6384 return 1;
6386 if (TREE_CODE (arg1) == REAL_CST)
6387 return 0;
6388 if (TREE_CODE (arg0) == REAL_CST)
6389 return 1;
6391 if (TREE_CODE (arg1) == COMPLEX_CST)
6392 return 0;
6393 if (TREE_CODE (arg0) == COMPLEX_CST)
6394 return 1;
6396 if (TREE_CONSTANT (arg1))
6397 return 0;
6398 if (TREE_CONSTANT (arg0))
6399 return 1;
6401 if (optimize_size)
6402 return 0;
6404 if (reorder && flag_evaluation_order
6405 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6406 return 0;
6408 if (DECL_P (arg1))
6409 return 0;
6410 if (DECL_P (arg0))
6411 return 1;
6413 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6414 for commutative and comparison operators. Ensuring a canonical
6415 form allows the optimizers to find additional redundancies without
6416 having to explicitly check for both orderings. */
6417 if (TREE_CODE (arg0) == SSA_NAME
6418 && TREE_CODE (arg1) == SSA_NAME
6419 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6420 return 1;
6422 return 0;
6425 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6426 ARG0 is extended to a wider type. */
6428 static tree
6429 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
6431 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6432 tree arg1_unw;
6433 tree shorter_type, outer_type;
6434 tree min, max;
6435 bool above, below;
6437 if (arg0_unw == arg0)
6438 return NULL_TREE;
6439 shorter_type = TREE_TYPE (arg0_unw);
6441 #ifdef HAVE_canonicalize_funcptr_for_compare
6442 /* Disable this optimization if we're casting a function pointer
6443 type on targets that require function pointer canonicalization. */
6444 if (HAVE_canonicalize_funcptr_for_compare
6445 && TREE_CODE (shorter_type) == POINTER_TYPE
6446 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6447 return NULL_TREE;
6448 #endif
6450 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6451 return NULL_TREE;
6453 arg1_unw = get_unwidened (arg1, shorter_type);
6455 /* If possible, express the comparison in the shorter mode. */
6456 if ((code == EQ_EXPR || code == NE_EXPR
6457 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6458 && (TREE_TYPE (arg1_unw) == shorter_type
6459 || (TREE_CODE (arg1_unw) == INTEGER_CST
6460 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6461 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6462 && int_fits_type_p (arg1_unw, shorter_type))))
6463 return fold_build2 (code, type, arg0_unw,
6464 fold_convert (shorter_type, arg1_unw));
6466 if (TREE_CODE (arg1_unw) != INTEGER_CST
6467 || TREE_CODE (shorter_type) != INTEGER_TYPE
6468 || !int_fits_type_p (arg1_unw, shorter_type))
6469 return NULL_TREE;
6471 /* If we are comparing with the integer that does not fit into the range
6472 of the shorter type, the result is known. */
6473 outer_type = TREE_TYPE (arg1_unw);
6474 min = lower_bound_in_type (outer_type, shorter_type);
6475 max = upper_bound_in_type (outer_type, shorter_type);
6477 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6478 max, arg1_unw));
6479 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6480 arg1_unw, min));
6482 switch (code)
6484 case EQ_EXPR:
6485 if (above || below)
6486 return omit_one_operand (type, integer_zero_node, arg0);
6487 break;
6489 case NE_EXPR:
6490 if (above || below)
6491 return omit_one_operand (type, integer_one_node, arg0);
6492 break;
6494 case LT_EXPR:
6495 case LE_EXPR:
6496 if (above)
6497 return omit_one_operand (type, integer_one_node, arg0);
6498 else if (below)
6499 return omit_one_operand (type, integer_zero_node, arg0);
6501 case GT_EXPR:
6502 case GE_EXPR:
6503 if (above)
6504 return omit_one_operand (type, integer_zero_node, arg0);
6505 else if (below)
6506 return omit_one_operand (type, integer_one_node, arg0);
6508 default:
6509 break;
6512 return NULL_TREE;
6515 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6516 ARG0 just the signedness is changed. */
6518 static tree
6519 fold_sign_changed_comparison (enum tree_code code, tree type,
6520 tree arg0, tree arg1)
6522 tree arg0_inner, tmp;
6523 tree inner_type, outer_type;
6525 if (TREE_CODE (arg0) != NOP_EXPR
6526 && TREE_CODE (arg0) != CONVERT_EXPR)
6527 return NULL_TREE;
6529 outer_type = TREE_TYPE (arg0);
6530 arg0_inner = TREE_OPERAND (arg0, 0);
6531 inner_type = TREE_TYPE (arg0_inner);
6533 #ifdef HAVE_canonicalize_funcptr_for_compare
6534 /* Disable this optimization if we're casting a function pointer
6535 type on targets that require function pointer canonicalization. */
6536 if (HAVE_canonicalize_funcptr_for_compare
6537 && TREE_CODE (inner_type) == POINTER_TYPE
6538 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6539 return NULL_TREE;
6540 #endif
6542 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6543 return NULL_TREE;
6545 if (TREE_CODE (arg1) != INTEGER_CST
6546 && !((TREE_CODE (arg1) == NOP_EXPR
6547 || TREE_CODE (arg1) == CONVERT_EXPR)
6548 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6549 return NULL_TREE;
6551 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6552 && code != NE_EXPR
6553 && code != EQ_EXPR)
6554 return NULL_TREE;
6556 if (TREE_CODE (arg1) == INTEGER_CST)
6558 tmp = build_int_cst_wide (inner_type,
6559 TREE_INT_CST_LOW (arg1),
6560 TREE_INT_CST_HIGH (arg1));
6561 arg1 = force_fit_type (tmp, 0,
6562 TREE_OVERFLOW (arg1),
6563 TREE_CONSTANT_OVERFLOW (arg1));
6565 else
6566 arg1 = fold_convert (inner_type, arg1);
6568 return fold_build2 (code, type, arg0_inner, arg1);
6571 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6572 step of the array. Reconstructs s and delta in the case of s * delta
6573 being an integer constant (and thus already folded).
6574 ADDR is the address. MULT is the multiplicative expression.
6575 If the function succeeds, the new address expression is returned. Otherwise
6576 NULL_TREE is returned. */
6578 static tree
6579 try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
6581 tree s, delta, step;
6582 tree ref = TREE_OPERAND (addr, 0), pref;
6583 tree ret, pos;
6584 tree itype;
6586 /* Canonicalize op1 into a possibly non-constant delta
6587 and an INTEGER_CST s. */
6588 if (TREE_CODE (op1) == MULT_EXPR)
6590 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6592 STRIP_NOPS (arg0);
6593 STRIP_NOPS (arg1);
6595 if (TREE_CODE (arg0) == INTEGER_CST)
6597 s = arg0;
6598 delta = arg1;
6600 else if (TREE_CODE (arg1) == INTEGER_CST)
6602 s = arg1;
6603 delta = arg0;
6605 else
6606 return NULL_TREE;
6608 else if (TREE_CODE (op1) == INTEGER_CST)
6610 delta = op1;
6611 s = NULL_TREE;
6613 else
6615 /* Simulate we are delta * 1. */
6616 delta = op1;
6617 s = integer_one_node;
6620 for (;; ref = TREE_OPERAND (ref, 0))
6622 if (TREE_CODE (ref) == ARRAY_REF)
6624 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6625 if (! itype)
6626 continue;
6628 step = array_ref_element_size (ref);
6629 if (TREE_CODE (step) != INTEGER_CST)
6630 continue;
6632 if (s)
6634 if (! tree_int_cst_equal (step, s))
6635 continue;
6637 else
6639 /* Try if delta is a multiple of step. */
6640 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
6641 if (! tmp)
6642 continue;
6643 delta = tmp;
6646 break;
6649 if (!handled_component_p (ref))
6650 return NULL_TREE;
6653 /* We found the suitable array reference. So copy everything up to it,
6654 and replace the index. */
6656 pref = TREE_OPERAND (addr, 0);
6657 ret = copy_node (pref);
6658 pos = ret;
6660 while (pref != ref)
6662 pref = TREE_OPERAND (pref, 0);
6663 TREE_OPERAND (pos, 0) = copy_node (pref);
6664 pos = TREE_OPERAND (pos, 0);
6667 TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
6668 fold_convert (itype,
6669 TREE_OPERAND (pos, 1)),
6670 fold_convert (itype, delta));
6672 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
6676 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6677 means A >= Y && A != MAX, but in this case we know that
6678 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6680 static tree
6681 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6683 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6685 if (TREE_CODE (bound) == LT_EXPR)
6686 a = TREE_OPERAND (bound, 0);
6687 else if (TREE_CODE (bound) == GT_EXPR)
6688 a = TREE_OPERAND (bound, 1);
6689 else
6690 return NULL_TREE;
6692 typea = TREE_TYPE (a);
6693 if (!INTEGRAL_TYPE_P (typea)
6694 && !POINTER_TYPE_P (typea))
6695 return NULL_TREE;
6697 if (TREE_CODE (ineq) == LT_EXPR)
6699 a1 = TREE_OPERAND (ineq, 1);
6700 y = TREE_OPERAND (ineq, 0);
6702 else if (TREE_CODE (ineq) == GT_EXPR)
6704 a1 = TREE_OPERAND (ineq, 0);
6705 y = TREE_OPERAND (ineq, 1);
6707 else
6708 return NULL_TREE;
6710 if (TREE_TYPE (a1) != typea)
6711 return NULL_TREE;
6713 diff = fold_build2 (MINUS_EXPR, typea, a1, a);
6714 if (!integer_onep (diff))
6715 return NULL_TREE;
6717 return fold_build2 (GE_EXPR, type, a, y);
6720 /* Fold a sum or difference of at least one multiplication.
6721 Returns the folded tree or NULL if no simplification could be made. */
6723 static tree
6724 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
6726 tree arg00, arg01, arg10, arg11;
6727 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6729 /* (A * C) +- (B * C) -> (A+-B) * C.
6730 (A * C) +- A -> A * (C+-1).
6731 We are most concerned about the case where C is a constant,
6732 but other combinations show up during loop reduction. Since
6733 it is not difficult, try all four possibilities. */
6735 if (TREE_CODE (arg0) == MULT_EXPR)
6737 arg00 = TREE_OPERAND (arg0, 0);
6738 arg01 = TREE_OPERAND (arg0, 1);
6740 else
6742 arg00 = arg0;
6743 arg01 = build_one_cst (type);
6745 if (TREE_CODE (arg1) == MULT_EXPR)
6747 arg10 = TREE_OPERAND (arg1, 0);
6748 arg11 = TREE_OPERAND (arg1, 1);
6750 else
6752 arg10 = arg1;
6753 arg11 = build_one_cst (type);
6755 same = NULL_TREE;
6757 if (operand_equal_p (arg01, arg11, 0))
6758 same = arg01, alt0 = arg00, alt1 = arg10;
6759 else if (operand_equal_p (arg00, arg10, 0))
6760 same = arg00, alt0 = arg01, alt1 = arg11;
6761 else if (operand_equal_p (arg00, arg11, 0))
6762 same = arg00, alt0 = arg01, alt1 = arg10;
6763 else if (operand_equal_p (arg01, arg10, 0))
6764 same = arg01, alt0 = arg00, alt1 = arg11;
6766 /* No identical multiplicands; see if we can find a common
6767 power-of-two factor in non-power-of-two multiplies. This
6768 can help in multi-dimensional array access. */
6769 else if (host_integerp (arg01, 0)
6770 && host_integerp (arg11, 0))
6772 HOST_WIDE_INT int01, int11, tmp;
6773 bool swap = false;
6774 tree maybe_same;
6775 int01 = TREE_INT_CST_LOW (arg01);
6776 int11 = TREE_INT_CST_LOW (arg11);
6778 /* Move min of absolute values to int11. */
6779 if ((int01 >= 0 ? int01 : -int01)
6780 < (int11 >= 0 ? int11 : -int11))
6782 tmp = int01, int01 = int11, int11 = tmp;
6783 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6784 maybe_same = arg01;
6785 swap = true;
6787 else
6788 maybe_same = arg11;
6790 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
6792 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
6793 build_int_cst (TREE_TYPE (arg00),
6794 int01 / int11));
6795 alt1 = arg10;
6796 same = maybe_same;
6797 if (swap)
6798 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6802 if (same)
6803 return fold_build2 (MULT_EXPR, type,
6804 fold_build2 (code, type,
6805 fold_convert (type, alt0),
6806 fold_convert (type, alt1)),
6807 fold_convert (type, same));
6809 return NULL_TREE;
6812 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6813 specified by EXPR into the buffer PTR of length LEN bytes.
6814 Return the number of bytes placed in the buffer, or zero
6815 upon failure. */
6817 static int
6818 native_encode_int (tree expr, unsigned char *ptr, int len)
6820 tree type = TREE_TYPE (expr);
6821 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6822 int byte, offset, word, words;
6823 unsigned char value;
6825 if (total_bytes > len)
6826 return 0;
6827 words = total_bytes / UNITS_PER_WORD;
6829 for (byte = 0; byte < total_bytes; byte++)
6831 int bitpos = byte * BITS_PER_UNIT;
6832 if (bitpos < HOST_BITS_PER_WIDE_INT)
6833 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
6834 else
6835 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
6836 >> (bitpos - HOST_BITS_PER_WIDE_INT));
6838 if (total_bytes > UNITS_PER_WORD)
6840 word = byte / UNITS_PER_WORD;
6841 if (WORDS_BIG_ENDIAN)
6842 word = (words - 1) - word;
6843 offset = word * UNITS_PER_WORD;
6844 if (BYTES_BIG_ENDIAN)
6845 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6846 else
6847 offset += byte % UNITS_PER_WORD;
6849 else
6850 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6851 ptr[offset] = value;
6853 return total_bytes;
6857 /* Subroutine of native_encode_expr. Encode the REAL_CST
6858 specified by EXPR into the buffer PTR of length LEN bytes.
6859 Return the number of bytes placed in the buffer, or zero
6860 upon failure. */
6862 static int
6863 native_encode_real (tree expr, unsigned char *ptr, int len)
6865 tree type = TREE_TYPE (expr);
6866 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6867 int byte, offset, word, words;
6868 unsigned char value;
6870 /* There are always 32 bits in each long, no matter the size of
6871 the hosts long. We handle floating point representations with
6872 up to 192 bits. */
6873 long tmp[6];
6875 if (total_bytes > len)
6876 return 0;
6877 words = total_bytes / UNITS_PER_WORD;
6879 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6881 for (byte = 0; byte < total_bytes; byte++)
6883 int bitpos = byte * BITS_PER_UNIT;
6884 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6886 if (total_bytes > UNITS_PER_WORD)
6888 word = byte / UNITS_PER_WORD;
6889 if (FLOAT_WORDS_BIG_ENDIAN)
6890 word = (words - 1) - word;
6891 offset = word * UNITS_PER_WORD;
6892 if (BYTES_BIG_ENDIAN)
6893 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6894 else
6895 offset += byte % UNITS_PER_WORD;
6897 else
6898 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6899 ptr[offset] = value;
6901 return total_bytes;
6904 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6905 specified by EXPR into the buffer PTR of length LEN bytes.
6906 Return the number of bytes placed in the buffer, or zero
6907 upon failure. */
6909 static int
6910 native_encode_complex (tree expr, unsigned char *ptr, int len)
6912 int rsize, isize;
6913 tree part;
6915 part = TREE_REALPART (expr);
6916 rsize = native_encode_expr (part, ptr, len);
6917 if (rsize == 0)
6918 return 0;
6919 part = TREE_IMAGPART (expr);
6920 isize = native_encode_expr (part, ptr+rsize, len-rsize);
6921 if (isize != rsize)
6922 return 0;
6923 return rsize + isize;
6927 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
6928 specified by EXPR into the buffer PTR of length LEN bytes.
6929 Return the number of bytes placed in the buffer, or zero
6930 upon failure. */
6932 static int
6933 native_encode_vector (tree expr, unsigned char *ptr, int len)
6935 int i, size, offset, count;
6936 tree itype, elem, elements;
6938 offset = 0;
6939 elements = TREE_VECTOR_CST_ELTS (expr);
6940 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
6941 itype = TREE_TYPE (TREE_TYPE (expr));
6942 size = GET_MODE_SIZE (TYPE_MODE (itype));
6943 for (i = 0; i < count; i++)
6945 if (elements)
6947 elem = TREE_VALUE (elements);
6948 elements = TREE_CHAIN (elements);
6950 else
6951 elem = NULL_TREE;
6953 if (elem)
6955 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
6956 return 0;
6958 else
6960 if (offset + size > len)
6961 return 0;
6962 memset (ptr+offset, 0, size);
6964 offset += size;
6966 return offset;
6970 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
6971 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
6972 buffer PTR of length LEN bytes. Return the number of bytes
6973 placed in the buffer, or zero upon failure. */
6975 static int
6976 native_encode_expr (tree expr, unsigned char *ptr, int len)
6978 switch (TREE_CODE (expr))
6980 case INTEGER_CST:
6981 return native_encode_int (expr, ptr, len);
6983 case REAL_CST:
6984 return native_encode_real (expr, ptr, len);
6986 case COMPLEX_CST:
6987 return native_encode_complex (expr, ptr, len);
6989 case VECTOR_CST:
6990 return native_encode_vector (expr, ptr, len);
6992 default:
6993 return 0;
6998 /* Subroutine of native_interpret_expr. Interpret the contents of
6999 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7000 If the buffer cannot be interpreted, return NULL_TREE. */
7002 static tree
7003 native_interpret_int (tree type, unsigned char *ptr, int len)
7005 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7006 int byte, offset, word, words;
7007 unsigned char value;
7008 unsigned int HOST_WIDE_INT lo = 0;
7009 HOST_WIDE_INT hi = 0;
7011 if (total_bytes > len)
7012 return NULL_TREE;
7013 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7014 return NULL_TREE;
7015 words = total_bytes / UNITS_PER_WORD;
7017 for (byte = 0; byte < total_bytes; byte++)
7019 int bitpos = byte * BITS_PER_UNIT;
7020 if (total_bytes > UNITS_PER_WORD)
7022 word = byte / UNITS_PER_WORD;
7023 if (WORDS_BIG_ENDIAN)
7024 word = (words - 1) - word;
7025 offset = word * UNITS_PER_WORD;
7026 if (BYTES_BIG_ENDIAN)
7027 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7028 else
7029 offset += byte % UNITS_PER_WORD;
7031 else
7032 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7033 value = ptr[offset];
7035 if (bitpos < HOST_BITS_PER_WIDE_INT)
7036 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7037 else
7038 hi |= (unsigned HOST_WIDE_INT) value
7039 << (bitpos - HOST_BITS_PER_WIDE_INT);
7042 return force_fit_type (build_int_cst_wide (type, lo, hi),
7043 0, false, false);
7047 /* Subroutine of native_interpret_expr. Interpret the contents of
7048 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7049 If the buffer cannot be interpreted, return NULL_TREE. */
7051 static tree
7052 native_interpret_real (tree type, unsigned char *ptr, int len)
7054 enum machine_mode mode = TYPE_MODE (type);
7055 int total_bytes = GET_MODE_SIZE (mode);
7056 int byte, offset, word, words;
7057 unsigned char value;
7058 /* There are always 32 bits in each long, no matter the size of
7059 the hosts long. We handle floating point representations with
7060 up to 192 bits. */
7061 REAL_VALUE_TYPE r;
7062 long tmp[6];
7064 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7065 if (total_bytes > len || total_bytes > 24)
7066 return NULL_TREE;
7067 words = total_bytes / UNITS_PER_WORD;
7069 memset (tmp, 0, sizeof (tmp));
7070 for (byte = 0; byte < total_bytes; byte++)
7072 int bitpos = byte * BITS_PER_UNIT;
7073 if (total_bytes > UNITS_PER_WORD)
7075 word = byte / UNITS_PER_WORD;
7076 if (FLOAT_WORDS_BIG_ENDIAN)
7077 word = (words - 1) - word;
7078 offset = word * UNITS_PER_WORD;
7079 if (BYTES_BIG_ENDIAN)
7080 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7081 else
7082 offset += byte % UNITS_PER_WORD;
7084 else
7085 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7086 value = ptr[offset];
7088 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7091 real_from_target (&r, tmp, mode);
7092 return build_real (type, r);
7096 /* Subroutine of native_interpret_expr. Interpret the contents of
7097 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7098 If the buffer cannot be interpreted, return NULL_TREE. */
7100 static tree
7101 native_interpret_complex (tree type, unsigned char *ptr, int len)
7103 tree etype, rpart, ipart;
7104 int size;
7106 etype = TREE_TYPE (type);
7107 size = GET_MODE_SIZE (TYPE_MODE (etype));
7108 if (size * 2 > len)
7109 return NULL_TREE;
7110 rpart = native_interpret_expr (etype, ptr, size);
7111 if (!rpart)
7112 return NULL_TREE;
7113 ipart = native_interpret_expr (etype, ptr+size, size);
7114 if (!ipart)
7115 return NULL_TREE;
7116 return build_complex (type, rpart, ipart);
7120 /* Subroutine of native_interpret_expr. Interpret the contents of
7121 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7122 If the buffer cannot be interpreted, return NULL_TREE. */
7124 static tree
7125 native_interpret_vector (tree type, unsigned char *ptr, int len)
7127 tree etype, elem, elements;
7128 int i, size, count;
7130 etype = TREE_TYPE (type);
7131 size = GET_MODE_SIZE (TYPE_MODE (etype));
7132 count = TYPE_VECTOR_SUBPARTS (type);
7133 if (size * count > len)
7134 return NULL_TREE;
7136 elements = NULL_TREE;
7137 for (i = count - 1; i >= 0; i--)
7139 elem = native_interpret_expr (etype, ptr+(i*size), size);
7140 if (!elem)
7141 return NULL_TREE;
7142 elements = tree_cons (NULL_TREE, elem, elements);
7144 return build_vector (type, elements);
7148 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7149 the buffer PTR of length LEN as a constant of type TYPE. For
7150 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7151 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7152 return NULL_TREE. */
7154 static tree
7155 native_interpret_expr (tree type, unsigned char *ptr, int len)
7157 switch (TREE_CODE (type))
7159 case INTEGER_TYPE:
7160 case ENUMERAL_TYPE:
7161 case BOOLEAN_TYPE:
7162 return native_interpret_int (type, ptr, len);
7164 case REAL_TYPE:
7165 return native_interpret_real (type, ptr, len);
7167 case COMPLEX_TYPE:
7168 return native_interpret_complex (type, ptr, len);
7170 case VECTOR_TYPE:
7171 return native_interpret_vector (type, ptr, len);
7173 default:
7174 return NULL_TREE;
7179 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7180 TYPE at compile-time. If we're unable to perform the conversion
7181 return NULL_TREE. */
7183 static tree
7184 fold_view_convert_expr (tree type, tree expr)
7186 /* We support up to 512-bit values (for V8DFmode). */
7187 unsigned char buffer[64];
7188 int len;
7190 /* Check that the host and target are sane. */
7191 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7192 return NULL_TREE;
7194 len = native_encode_expr (expr, buffer, sizeof (buffer));
7195 if (len == 0)
7196 return NULL_TREE;
7198 return native_interpret_expr (type, buffer, len);
7202 /* Fold a unary expression of code CODE and type TYPE with operand
7203 OP0. Return the folded expression if folding is successful.
7204 Otherwise, return NULL_TREE. */
7206 tree
7207 fold_unary (enum tree_code code, tree type, tree op0)
7209 tree tem;
7210 tree arg0;
7211 enum tree_code_class kind = TREE_CODE_CLASS (code);
7213 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7214 && TREE_CODE_LENGTH (code) == 1);
7216 arg0 = op0;
7217 if (arg0)
7219 if (code == NOP_EXPR || code == CONVERT_EXPR
7220 || code == FLOAT_EXPR || code == ABS_EXPR)
7222 /* Don't use STRIP_NOPS, because signedness of argument type
7223 matters. */
7224 STRIP_SIGN_NOPS (arg0);
7226 else
7228 /* Strip any conversions that don't change the mode. This
7229 is safe for every expression, except for a comparison
7230 expression because its signedness is derived from its
7231 operands.
7233 Note that this is done as an internal manipulation within
7234 the constant folder, in order to find the simplest
7235 representation of the arguments so that their form can be
7236 studied. In any cases, the appropriate type conversions
7237 should be put back in the tree that will get out of the
7238 constant folder. */
7239 STRIP_NOPS (arg0);
7243 if (TREE_CODE_CLASS (code) == tcc_unary)
7245 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7246 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7247 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
7248 else if (TREE_CODE (arg0) == COND_EXPR)
7250 tree arg01 = TREE_OPERAND (arg0, 1);
7251 tree arg02 = TREE_OPERAND (arg0, 2);
7252 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7253 arg01 = fold_build1 (code, type, arg01);
7254 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7255 arg02 = fold_build1 (code, type, arg02);
7256 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
7257 arg01, arg02);
7259 /* If this was a conversion, and all we did was to move into
7260 inside the COND_EXPR, bring it back out. But leave it if
7261 it is a conversion from integer to integer and the
7262 result precision is no wider than a word since such a
7263 conversion is cheap and may be optimized away by combine,
7264 while it couldn't if it were outside the COND_EXPR. Then return
7265 so we don't get into an infinite recursion loop taking the
7266 conversion out and then back in. */
7268 if ((code == NOP_EXPR || code == CONVERT_EXPR
7269 || code == NON_LVALUE_EXPR)
7270 && TREE_CODE (tem) == COND_EXPR
7271 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7272 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7273 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7274 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7275 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7276 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7277 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7278 && (INTEGRAL_TYPE_P
7279 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7280 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7281 || flag_syntax_only))
7282 tem = build1 (code, type,
7283 build3 (COND_EXPR,
7284 TREE_TYPE (TREE_OPERAND
7285 (TREE_OPERAND (tem, 1), 0)),
7286 TREE_OPERAND (tem, 0),
7287 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7288 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
7289 return tem;
7291 else if (COMPARISON_CLASS_P (arg0))
7293 if (TREE_CODE (type) == BOOLEAN_TYPE)
7295 arg0 = copy_node (arg0);
7296 TREE_TYPE (arg0) = type;
7297 return arg0;
7299 else if (TREE_CODE (type) != INTEGER_TYPE)
7300 return fold_build3 (COND_EXPR, type, arg0,
7301 fold_build1 (code, type,
7302 integer_one_node),
7303 fold_build1 (code, type,
7304 integer_zero_node));
7308 switch (code)
7310 case NOP_EXPR:
7311 case FLOAT_EXPR:
7312 case CONVERT_EXPR:
7313 case FIX_TRUNC_EXPR:
7314 case FIX_CEIL_EXPR:
7315 case FIX_FLOOR_EXPR:
7316 case FIX_ROUND_EXPR:
7317 if (TREE_TYPE (op0) == type)
7318 return op0;
7320 /* If we have (type) (a CMP b) and type is an integral type, return
7321 new expression involving the new type. */
7322 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
7323 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
7324 TREE_OPERAND (op0, 1));
7326 /* Handle cases of two conversions in a row. */
7327 if (TREE_CODE (op0) == NOP_EXPR
7328 || TREE_CODE (op0) == CONVERT_EXPR)
7330 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7331 tree inter_type = TREE_TYPE (op0);
7332 int inside_int = INTEGRAL_TYPE_P (inside_type);
7333 int inside_ptr = POINTER_TYPE_P (inside_type);
7334 int inside_float = FLOAT_TYPE_P (inside_type);
7335 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7336 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7337 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7338 int inter_int = INTEGRAL_TYPE_P (inter_type);
7339 int inter_ptr = POINTER_TYPE_P (inter_type);
7340 int inter_float = FLOAT_TYPE_P (inter_type);
7341 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7342 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7343 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7344 int final_int = INTEGRAL_TYPE_P (type);
7345 int final_ptr = POINTER_TYPE_P (type);
7346 int final_float = FLOAT_TYPE_P (type);
7347 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7348 unsigned int final_prec = TYPE_PRECISION (type);
7349 int final_unsignedp = TYPE_UNSIGNED (type);
7351 /* In addition to the cases of two conversions in a row
7352 handled below, if we are converting something to its own
7353 type via an object of identical or wider precision, neither
7354 conversion is needed. */
7355 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7356 && (((inter_int || inter_ptr) && final_int)
7357 || (inter_float && final_float))
7358 && inter_prec >= final_prec)
7359 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7361 /* Likewise, if the intermediate and final types are either both
7362 float or both integer, we don't need the middle conversion if
7363 it is wider than the final type and doesn't change the signedness
7364 (for integers). Avoid this if the final type is a pointer
7365 since then we sometimes need the inner conversion. Likewise if
7366 the outer has a precision not equal to the size of its mode. */
7367 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
7368 || (inter_float && inside_float)
7369 || (inter_vec && inside_vec))
7370 && inter_prec >= inside_prec
7371 && (inter_float || inter_vec
7372 || inter_unsignedp == inside_unsignedp)
7373 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7374 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7375 && ! final_ptr
7376 && (! final_vec || inter_prec == inside_prec))
7377 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7379 /* If we have a sign-extension of a zero-extended value, we can
7380 replace that by a single zero-extension. */
7381 if (inside_int && inter_int && final_int
7382 && inside_prec < inter_prec && inter_prec < final_prec
7383 && inside_unsignedp && !inter_unsignedp)
7384 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7386 /* Two conversions in a row are not needed unless:
7387 - some conversion is floating-point (overstrict for now), or
7388 - some conversion is a vector (overstrict for now), or
7389 - the intermediate type is narrower than both initial and
7390 final, or
7391 - the intermediate type and innermost type differ in signedness,
7392 and the outermost type is wider than the intermediate, or
7393 - the initial type is a pointer type and the precisions of the
7394 intermediate and final types differ, or
7395 - the final type is a pointer type and the precisions of the
7396 initial and intermediate types differ.
7397 - the final type is a pointer type and the initial type not
7398 - the initial type is a pointer to an array and the final type
7399 not. */
7400 if (! inside_float && ! inter_float && ! final_float
7401 && ! inside_vec && ! inter_vec && ! final_vec
7402 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7403 && ! (inside_int && inter_int
7404 && inter_unsignedp != inside_unsignedp
7405 && inter_prec < final_prec)
7406 && ((inter_unsignedp && inter_prec > inside_prec)
7407 == (final_unsignedp && final_prec > inter_prec))
7408 && ! (inside_ptr && inter_prec != final_prec)
7409 && ! (final_ptr && inside_prec != inter_prec)
7410 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7411 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7412 && final_ptr == inside_ptr
7413 && ! (inside_ptr
7414 && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
7415 && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE))
7416 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7419 /* Handle (T *)&A.B.C for A being of type T and B and C
7420 living at offset zero. This occurs frequently in
7421 C++ upcasting and then accessing the base. */
7422 if (TREE_CODE (op0) == ADDR_EXPR
7423 && POINTER_TYPE_P (type)
7424 && handled_component_p (TREE_OPERAND (op0, 0)))
7426 HOST_WIDE_INT bitsize, bitpos;
7427 tree offset;
7428 enum machine_mode mode;
7429 int unsignedp, volatilep;
7430 tree base = TREE_OPERAND (op0, 0);
7431 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7432 &mode, &unsignedp, &volatilep, false);
7433 /* If the reference was to a (constant) zero offset, we can use
7434 the address of the base if it has the same base type
7435 as the result type. */
7436 if (! offset && bitpos == 0
7437 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
7438 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7439 return fold_convert (type, build_fold_addr_expr (base));
7442 if (TREE_CODE (op0) == MODIFY_EXPR
7443 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7444 /* Detect assigning a bitfield. */
7445 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7446 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7448 /* Don't leave an assignment inside a conversion
7449 unless assigning a bitfield. */
7450 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
7451 /* First do the assignment, then return converted constant. */
7452 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7453 TREE_NO_WARNING (tem) = 1;
7454 TREE_USED (tem) = 1;
7455 return tem;
7458 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7459 constants (if x has signed type, the sign bit cannot be set
7460 in c). This folds extension into the BIT_AND_EXPR. */
7461 if (INTEGRAL_TYPE_P (type)
7462 && TREE_CODE (type) != BOOLEAN_TYPE
7463 && TREE_CODE (op0) == BIT_AND_EXPR
7464 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7466 tree and = op0;
7467 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
7468 int change = 0;
7470 if (TYPE_UNSIGNED (TREE_TYPE (and))
7471 || (TYPE_PRECISION (type)
7472 <= TYPE_PRECISION (TREE_TYPE (and))))
7473 change = 1;
7474 else if (TYPE_PRECISION (TREE_TYPE (and1))
7475 <= HOST_BITS_PER_WIDE_INT
7476 && host_integerp (and1, 1))
7478 unsigned HOST_WIDE_INT cst;
7480 cst = tree_low_cst (and1, 1);
7481 cst &= (HOST_WIDE_INT) -1
7482 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7483 change = (cst == 0);
7484 #ifdef LOAD_EXTEND_OP
7485 if (change
7486 && !flag_syntax_only
7487 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7488 == ZERO_EXTEND))
7490 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
7491 and0 = fold_convert (uns, and0);
7492 and1 = fold_convert (uns, and1);
7494 #endif
7496 if (change)
7498 tem = build_int_cst_wide (type, TREE_INT_CST_LOW (and1),
7499 TREE_INT_CST_HIGH (and1));
7500 tem = force_fit_type (tem, 0, TREE_OVERFLOW (and1),
7501 TREE_CONSTANT_OVERFLOW (and1));
7502 return fold_build2 (BIT_AND_EXPR, type,
7503 fold_convert (type, and0), tem);
7507 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
7508 T2 being pointers to types of the same size. */
7509 if (POINTER_TYPE_P (type)
7510 && BINARY_CLASS_P (arg0)
7511 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7512 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7514 tree arg00 = TREE_OPERAND (arg0, 0);
7515 tree t0 = type;
7516 tree t1 = TREE_TYPE (arg00);
7517 tree tt0 = TREE_TYPE (t0);
7518 tree tt1 = TREE_TYPE (t1);
7519 tree s0 = TYPE_SIZE (tt0);
7520 tree s1 = TYPE_SIZE (tt1);
7522 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
7523 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
7524 TREE_OPERAND (arg0, 1));
7527 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7528 of the same precision, and X is a integer type not narrower than
7529 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7530 if (INTEGRAL_TYPE_P (type)
7531 && TREE_CODE (op0) == BIT_NOT_EXPR
7532 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7533 && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
7534 || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
7535 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7537 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7538 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7539 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7540 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
7543 tem = fold_convert_const (code, type, arg0);
7544 return tem ? tem : NULL_TREE;
7546 case VIEW_CONVERT_EXPR:
7547 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7548 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
7549 return fold_view_convert_expr (type, op0);
7551 case NEGATE_EXPR:
7552 tem = fold_negate_expr (arg0);
7553 if (tem)
7554 return fold_convert (type, tem);
7555 return NULL_TREE;
7557 case ABS_EXPR:
7558 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7559 return fold_abs_const (arg0, type);
7560 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7561 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7562 /* Convert fabs((double)float) into (double)fabsf(float). */
7563 else if (TREE_CODE (arg0) == NOP_EXPR
7564 && TREE_CODE (type) == REAL_TYPE)
7566 tree targ0 = strip_float_extensions (arg0);
7567 if (targ0 != arg0)
7568 return fold_convert (type, fold_build1 (ABS_EXPR,
7569 TREE_TYPE (targ0),
7570 targ0));
7572 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7573 else if (tree_expr_nonnegative_p (arg0) || TREE_CODE (arg0) == ABS_EXPR)
7574 return arg0;
7576 /* Strip sign ops from argument. */
7577 if (TREE_CODE (type) == REAL_TYPE)
7579 tem = fold_strip_sign_ops (arg0);
7580 if (tem)
7581 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
7583 return NULL_TREE;
7585 case CONJ_EXPR:
7586 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7587 return fold_convert (type, arg0);
7588 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7590 tree itype = TREE_TYPE (type);
7591 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
7592 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
7593 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
7595 if (TREE_CODE (arg0) == COMPLEX_CST)
7597 tree itype = TREE_TYPE (type);
7598 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
7599 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
7600 return build_complex (type, rpart, negate_expr (ipart));
7602 if (TREE_CODE (arg0) == CONJ_EXPR)
7603 return fold_convert (type, TREE_OPERAND (arg0, 0));
7604 return NULL_TREE;
7606 case BIT_NOT_EXPR:
7607 if (TREE_CODE (arg0) == INTEGER_CST)
7608 return fold_not_const (arg0, type);
7609 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
7610 return TREE_OPERAND (arg0, 0);
7611 /* Convert ~ (-A) to A - 1. */
7612 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
7613 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
7614 build_int_cst (type, 1));
7615 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
7616 else if (INTEGRAL_TYPE_P (type)
7617 && ((TREE_CODE (arg0) == MINUS_EXPR
7618 && integer_onep (TREE_OPERAND (arg0, 1)))
7619 || (TREE_CODE (arg0) == PLUS_EXPR
7620 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
7621 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7622 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7623 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7624 && (tem = fold_unary (BIT_NOT_EXPR, type,
7625 fold_convert (type,
7626 TREE_OPERAND (arg0, 0)))))
7627 return fold_build2 (BIT_XOR_EXPR, type, tem,
7628 fold_convert (type, TREE_OPERAND (arg0, 1)));
7629 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7630 && (tem = fold_unary (BIT_NOT_EXPR, type,
7631 fold_convert (type,
7632 TREE_OPERAND (arg0, 1)))))
7633 return fold_build2 (BIT_XOR_EXPR, type,
7634 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
7636 return NULL_TREE;
7638 case TRUTH_NOT_EXPR:
7639 /* The argument to invert_truthvalue must have Boolean type. */
7640 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7641 arg0 = fold_convert (boolean_type_node, arg0);
7643 /* Note that the operand of this must be an int
7644 and its values must be 0 or 1.
7645 ("true" is a fixed value perhaps depending on the language,
7646 but we don't handle values other than 1 correctly yet.) */
7647 tem = fold_truth_not_expr (arg0);
7648 if (!tem)
7649 return NULL_TREE;
7650 return fold_convert (type, tem);
7652 case REALPART_EXPR:
7653 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7654 return fold_convert (type, arg0);
7655 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7656 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7657 TREE_OPERAND (arg0, 1));
7658 if (TREE_CODE (arg0) == COMPLEX_CST)
7659 return fold_convert (type, TREE_REALPART (arg0));
7660 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7662 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7663 tem = fold_build2 (TREE_CODE (arg0), itype,
7664 fold_build1 (REALPART_EXPR, itype,
7665 TREE_OPERAND (arg0, 0)),
7666 fold_build1 (REALPART_EXPR, itype,
7667 TREE_OPERAND (arg0, 1)));
7668 return fold_convert (type, tem);
7670 if (TREE_CODE (arg0) == CONJ_EXPR)
7672 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7673 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7674 return fold_convert (type, tem);
7676 return NULL_TREE;
7678 case IMAGPART_EXPR:
7679 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7680 return fold_convert (type, integer_zero_node);
7681 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7682 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7683 TREE_OPERAND (arg0, 0));
7684 if (TREE_CODE (arg0) == COMPLEX_CST)
7685 return fold_convert (type, TREE_IMAGPART (arg0));
7686 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7688 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7689 tem = fold_build2 (TREE_CODE (arg0), itype,
7690 fold_build1 (IMAGPART_EXPR, itype,
7691 TREE_OPERAND (arg0, 0)),
7692 fold_build1 (IMAGPART_EXPR, itype,
7693 TREE_OPERAND (arg0, 1)));
7694 return fold_convert (type, tem);
7696 if (TREE_CODE (arg0) == CONJ_EXPR)
7698 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7699 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7700 return fold_convert (type, negate_expr (tem));
7702 return NULL_TREE;
7704 default:
7705 return NULL_TREE;
7706 } /* switch (code) */
7709 /* Fold a binary expression of code CODE and type TYPE with operands
7710 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
7711 Return the folded expression if folding is successful. Otherwise,
7712 return NULL_TREE. */
7714 static tree
7715 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
7717 enum tree_code compl_code;
7719 if (code == MIN_EXPR)
7720 compl_code = MAX_EXPR;
7721 else if (code == MAX_EXPR)
7722 compl_code = MIN_EXPR;
7723 else
7724 gcc_unreachable ();
7726 /* MIN (MAX (a, b), b) == b.  */
7727 if (TREE_CODE (op0) == compl_code
7728 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
7729 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
7731 /* MIN (MAX (b, a), b) == b.  */
7732 if (TREE_CODE (op0) == compl_code
7733 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
7734 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
7735 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
7737 /* MIN (a, MAX (a, b)) == a.  */
7738 if (TREE_CODE (op1) == compl_code
7739 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
7740 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
7741 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
7743 /* MIN (a, MAX (b, a)) == a.  */
7744 if (TREE_CODE (op1) == compl_code
7745 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
7746 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
7747 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
7749 return NULL_TREE;
7752 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
7753 by changing CODE to reduce the magnitude of constants involved in
7754 ARG0 of the comparison.
7755 Returns a canonicalized comparison tree if a simplification was
7756 possible, otherwise returns NULL_TREE. */
7758 static tree
7759 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
7760 tree arg0, tree arg1)
7762 enum tree_code code0 = TREE_CODE (arg0);
7763 tree t, cst0 = NULL_TREE;
7764 int sgn0;
7765 bool swap = false;
7767 /* Match A +- CST code arg1 and CST code arg1. */
7768 if (!(((code0 == MINUS_EXPR
7769 || code0 == PLUS_EXPR)
7770 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7771 || code0 == INTEGER_CST))
7772 return NULL_TREE;
7774 /* Identify the constant in arg0 and its sign. */
7775 if (code0 == INTEGER_CST)
7776 cst0 = arg0;
7777 else
7778 cst0 = TREE_OPERAND (arg0, 1);
7779 sgn0 = tree_int_cst_sgn (cst0);
7781 /* Overflowed constants and zero will cause problems. */
7782 if (integer_zerop (cst0)
7783 || TREE_OVERFLOW (cst0))
7784 return NULL_TREE;
7786 /* See if we can reduce the mangitude of the constant in
7787 arg0 by changing the comparison code. */
7788 if (code0 == INTEGER_CST)
7790 /* CST <= arg1 -> CST-1 < arg1. */
7791 if (code == LE_EXPR && sgn0 == 1)
7792 code = LT_EXPR;
7793 /* -CST < arg1 -> -CST-1 <= arg1. */
7794 else if (code == LT_EXPR && sgn0 == -1)
7795 code = LE_EXPR;
7796 /* CST > arg1 -> CST-1 >= arg1. */
7797 else if (code == GT_EXPR && sgn0 == 1)
7798 code = GE_EXPR;
7799 /* -CST >= arg1 -> -CST-1 > arg1. */
7800 else if (code == GE_EXPR && sgn0 == -1)
7801 code = GT_EXPR;
7802 else
7803 return NULL_TREE;
7804 /* arg1 code' CST' might be more canonical. */
7805 swap = true;
7807 else
7809 /* A - CST < arg1 -> A - CST-1 <= arg1. */
7810 if (code == LT_EXPR
7811 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
7812 code = LE_EXPR;
7813 /* A + CST > arg1 -> A + CST-1 >= arg1. */
7814 else if (code == GT_EXPR
7815 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
7816 code = GE_EXPR;
7817 /* A + CST <= arg1 -> A + CST-1 < arg1. */
7818 else if (code == LE_EXPR
7819 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
7820 code = LT_EXPR;
7821 /* A - CST >= arg1 -> A - CST-1 > arg1. */
7822 else if (code == GE_EXPR
7823 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
7824 code = GT_EXPR;
7825 else
7826 return NULL_TREE;
7829 /* Now build the constant reduced in magnitude. */
7830 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
7831 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
7832 if (code0 != INTEGER_CST)
7833 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
7835 /* If swapping might yield to a more canonical form, do so. */
7836 if (swap)
7837 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
7838 else
7839 return fold_build2 (code, type, t, arg1);
7842 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
7843 overflow further. Try to decrease the magnitude of constants involved
7844 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
7845 and put sole constants at the second argument position.
7846 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
7848 static tree
7849 maybe_canonicalize_comparison (enum tree_code code, tree type,
7850 tree arg0, tree arg1)
7852 tree t;
7854 /* In principle pointers also have undefined overflow behavior,
7855 but that causes problems elsewhere. */
7856 if ((flag_wrapv || flag_trapv)
7857 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
7858 || POINTER_TYPE_P (TREE_TYPE (arg0))))
7859 return NULL_TREE;
7861 /* Try canonicalization by simplifying arg0. */
7862 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1);
7863 if (t)
7864 return t;
7866 /* Try canonicalization by simplifying arg1 using the swapped
7867 comparsion. */
7868 code = swap_tree_comparison (code);
7869 return maybe_canonicalize_comparison_1 (code, type, arg1, arg0);
7872 /* Subroutine of fold_binary. This routine performs all of the
7873 transformations that are common to the equality/inequality
7874 operators (EQ_EXPR and NE_EXPR) and the ordering operators
7875 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
7876 fold_binary should call fold_binary. Fold a comparison with
7877 tree code CODE and type TYPE with operands OP0 and OP1. Return
7878 the folded comparison or NULL_TREE. */
7880 static tree
7881 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
7883 tree arg0, arg1, tem;
7885 arg0 = op0;
7886 arg1 = op1;
7888 STRIP_SIGN_NOPS (arg0);
7889 STRIP_SIGN_NOPS (arg1);
7891 tem = fold_relational_const (code, type, arg0, arg1);
7892 if (tem != NULL_TREE)
7893 return tem;
7895 /* If one arg is a real or integer constant, put it last. */
7896 if (tree_swap_operands_p (arg0, arg1, true))
7897 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
7899 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
7900 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7901 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7902 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
7903 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
7904 && !(flag_wrapv || flag_trapv))
7905 && (TREE_CODE (arg1) == INTEGER_CST
7906 && !TREE_OVERFLOW (arg1)))
7908 tree const1 = TREE_OPERAND (arg0, 1);
7909 tree const2 = arg1;
7910 tree variable = TREE_OPERAND (arg0, 0);
7911 tree lhs;
7912 int lhs_add;
7913 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
7915 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
7916 TREE_TYPE (arg1), const2, const1);
7917 if (TREE_CODE (lhs) == TREE_CODE (arg1)
7918 && (TREE_CODE (lhs) != INTEGER_CST
7919 || !TREE_OVERFLOW (lhs)))
7920 return fold_build2 (code, type, variable, lhs);
7923 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
7924 same object, then we can fold this to a comparison of the two offsets in
7925 signed size type. This is possible because pointer arithmetic is
7926 restricted to retain within an object and overflow on pointer differences
7927 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
7928 if (POINTER_TYPE_P (TREE_TYPE (arg0))
7929 && !flag_wrapv && !flag_trapv)
7931 tree base0, offset0, base1, offset1;
7933 if (extract_array_ref (arg0, &base0, &offset0)
7934 && extract_array_ref (arg1, &base1, &offset1)
7935 && operand_equal_p (base0, base1, 0))
7937 tree signed_size_type_node;
7938 signed_size_type_node = signed_type_for (size_type_node);
7940 /* By converting to signed size type we cover middle-end pointer
7941 arithmetic which operates on unsigned pointer types of size
7942 type size and ARRAY_REF offsets which are properly sign or
7943 zero extended from their type in case it is narrower than
7944 size type. */
7945 if (offset0 == NULL_TREE)
7946 offset0 = build_int_cst (signed_size_type_node, 0);
7947 else
7948 offset0 = fold_convert (signed_size_type_node, offset0);
7949 if (offset1 == NULL_TREE)
7950 offset1 = build_int_cst (signed_size_type_node, 0);
7951 else
7952 offset1 = fold_convert (signed_size_type_node, offset1);
7954 return fold_build2 (code, type, offset0, offset1);
7958 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
7959 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
7960 the resulting offset is smaller in absolute value than the
7961 original one. */
7962 if (!(flag_wrapv || flag_trapv)
7963 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
7964 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7965 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7966 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
7967 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
7968 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7969 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
7971 tree const1 = TREE_OPERAND (arg0, 1);
7972 tree const2 = TREE_OPERAND (arg1, 1);
7973 tree variable1 = TREE_OPERAND (arg0, 0);
7974 tree variable2 = TREE_OPERAND (arg1, 0);
7975 tree cst;
7977 /* Put the constant on the side where it doesn't overflow and is
7978 of lower absolute value than before. */
7979 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
7980 ? MINUS_EXPR : PLUS_EXPR,
7981 const2, const1, 0);
7982 if (!TREE_OVERFLOW (cst)
7983 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
7984 return fold_build2 (code, type,
7985 variable1,
7986 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
7987 variable2, cst));
7989 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
7990 ? MINUS_EXPR : PLUS_EXPR,
7991 const1, const2, 0);
7992 if (!TREE_OVERFLOW (cst)
7993 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
7994 return fold_build2 (code, type,
7995 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
7996 variable1, cst),
7997 variable2);
8000 tem = maybe_canonicalize_comparison (code, type, arg0, arg1);
8001 if (tem)
8002 return tem;
8004 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8006 tree targ0 = strip_float_extensions (arg0);
8007 tree targ1 = strip_float_extensions (arg1);
8008 tree newtype = TREE_TYPE (targ0);
8010 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8011 newtype = TREE_TYPE (targ1);
8013 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8014 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8015 return fold_build2 (code, type, fold_convert (newtype, targ0),
8016 fold_convert (newtype, targ1));
8018 /* (-a) CMP (-b) -> b CMP a */
8019 if (TREE_CODE (arg0) == NEGATE_EXPR
8020 && TREE_CODE (arg1) == NEGATE_EXPR)
8021 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
8022 TREE_OPERAND (arg0, 0));
8024 if (TREE_CODE (arg1) == REAL_CST)
8026 REAL_VALUE_TYPE cst;
8027 cst = TREE_REAL_CST (arg1);
8029 /* (-a) CMP CST -> a swap(CMP) (-CST) */
8030 if (TREE_CODE (arg0) == NEGATE_EXPR)
8031 return fold_build2 (swap_tree_comparison (code), type,
8032 TREE_OPERAND (arg0, 0),
8033 build_real (TREE_TYPE (arg1),
8034 REAL_VALUE_NEGATE (cst)));
8036 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
8037 /* a CMP (-0) -> a CMP 0 */
8038 if (REAL_VALUE_MINUS_ZERO (cst))
8039 return fold_build2 (code, type, arg0,
8040 build_real (TREE_TYPE (arg1), dconst0));
8042 /* x != NaN is always true, other ops are always false. */
8043 if (REAL_VALUE_ISNAN (cst)
8044 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
8046 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
8047 return omit_one_operand (type, tem, arg0);
8050 /* Fold comparisons against infinity. */
8051 if (REAL_VALUE_ISINF (cst))
8053 tem = fold_inf_compare (code, type, arg0, arg1);
8054 if (tem != NULL_TREE)
8055 return tem;
8059 /* If this is a comparison of a real constant with a PLUS_EXPR
8060 or a MINUS_EXPR of a real constant, we can convert it into a
8061 comparison with a revised real constant as long as no overflow
8062 occurs when unsafe_math_optimizations are enabled. */
8063 if (flag_unsafe_math_optimizations
8064 && TREE_CODE (arg1) == REAL_CST
8065 && (TREE_CODE (arg0) == PLUS_EXPR
8066 || TREE_CODE (arg0) == MINUS_EXPR)
8067 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8068 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8069 ? MINUS_EXPR : PLUS_EXPR,
8070 arg1, TREE_OPERAND (arg0, 1), 0))
8071 && ! TREE_CONSTANT_OVERFLOW (tem))
8072 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
8074 /* Likewise, we can simplify a comparison of a real constant with
8075 a MINUS_EXPR whose first operand is also a real constant, i.e.
8076 (c1 - x) < c2 becomes x > c1-c2. */
8077 if (flag_unsafe_math_optimizations
8078 && TREE_CODE (arg1) == REAL_CST
8079 && TREE_CODE (arg0) == MINUS_EXPR
8080 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8081 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8082 arg1, 0))
8083 && ! TREE_CONSTANT_OVERFLOW (tem))
8084 return fold_build2 (swap_tree_comparison (code), type,
8085 TREE_OPERAND (arg0, 1), tem);
8087 /* Fold comparisons against built-in math functions. */
8088 if (TREE_CODE (arg1) == REAL_CST
8089 && flag_unsafe_math_optimizations
8090 && ! flag_errno_math)
8092 enum built_in_function fcode = builtin_mathfn_code (arg0);
8094 if (fcode != END_BUILTINS)
8096 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
8097 if (tem != NULL_TREE)
8098 return tem;
8103 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
8104 if (TREE_CONSTANT (arg1)
8105 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
8106 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
8107 /* This optimization is invalid for ordered comparisons
8108 if CONST+INCR overflows or if foo+incr might overflow.
8109 This optimization is invalid for floating point due to rounding.
8110 For pointer types we assume overflow doesn't happen. */
8111 && (POINTER_TYPE_P (TREE_TYPE (arg0))
8112 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8113 && (code == EQ_EXPR || code == NE_EXPR))))
8115 tree varop, newconst;
8117 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
8119 newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
8120 arg1, TREE_OPERAND (arg0, 1));
8121 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
8122 TREE_OPERAND (arg0, 0),
8123 TREE_OPERAND (arg0, 1));
8125 else
8127 newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
8128 arg1, TREE_OPERAND (arg0, 1));
8129 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
8130 TREE_OPERAND (arg0, 0),
8131 TREE_OPERAND (arg0, 1));
8135 /* If VAROP is a reference to a bitfield, we must mask
8136 the constant by the width of the field. */
8137 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
8138 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
8139 && host_integerp (DECL_SIZE (TREE_OPERAND
8140 (TREE_OPERAND (varop, 0), 1)), 1))
8142 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
8143 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
8144 tree folded_compare, shift;
8146 /* First check whether the comparison would come out
8147 always the same. If we don't do that we would
8148 change the meaning with the masking. */
8149 folded_compare = fold_build2 (code, type,
8150 TREE_OPERAND (varop, 0), arg1);
8151 if (TREE_CODE (folded_compare) == INTEGER_CST)
8152 return omit_one_operand (type, folded_compare, varop);
8154 shift = build_int_cst (NULL_TREE,
8155 TYPE_PRECISION (TREE_TYPE (varop)) - size);
8156 shift = fold_convert (TREE_TYPE (varop), shift);
8157 newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
8158 newconst, shift);
8159 newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
8160 newconst, shift);
8163 return fold_build2 (code, type, varop, newconst);
8166 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8167 && (TREE_CODE (arg0) == NOP_EXPR
8168 || TREE_CODE (arg0) == CONVERT_EXPR))
8170 /* If we are widening one operand of an integer comparison,
8171 see if the other operand is similarly being widened. Perhaps we
8172 can do the comparison in the narrower type. */
8173 tem = fold_widened_comparison (code, type, arg0, arg1);
8174 if (tem)
8175 return tem;
8177 /* Or if we are changing signedness. */
8178 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
8179 if (tem)
8180 return tem;
8183 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8184 constant, we can simplify it. */
8185 if (TREE_CODE (arg1) == INTEGER_CST
8186 && (TREE_CODE (arg0) == MIN_EXPR
8187 || TREE_CODE (arg0) == MAX_EXPR)
8188 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8190 tem = optimize_minmax_comparison (code, type, op0, op1);
8191 if (tem)
8192 return tem;
8195 /* Simplify comparison of something with itself. (For IEEE
8196 floating-point, we can only do some of these simplifications.) */
8197 if (operand_equal_p (arg0, arg1, 0))
8199 switch (code)
8201 case EQ_EXPR:
8202 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8203 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8204 return constant_boolean_node (1, type);
8205 break;
8207 case GE_EXPR:
8208 case LE_EXPR:
8209 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8210 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8211 return constant_boolean_node (1, type);
8212 return fold_build2 (EQ_EXPR, type, arg0, arg1);
8214 case NE_EXPR:
8215 /* For NE, we can only do this simplification if integer
8216 or we don't honor IEEE floating point NaNs. */
8217 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
8218 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8219 break;
8220 /* ... fall through ... */
8221 case GT_EXPR:
8222 case LT_EXPR:
8223 return constant_boolean_node (0, type);
8224 default:
8225 gcc_unreachable ();
8229 /* If we are comparing an expression that just has comparisons
8230 of two integer values, arithmetic expressions of those comparisons,
8231 and constants, we can simplify it. There are only three cases
8232 to check: the two values can either be equal, the first can be
8233 greater, or the second can be greater. Fold the expression for
8234 those three values. Since each value must be 0 or 1, we have
8235 eight possibilities, each of which corresponds to the constant 0
8236 or 1 or one of the six possible comparisons.
8238 This handles common cases like (a > b) == 0 but also handles
8239 expressions like ((x > y) - (y > x)) > 0, which supposedly
8240 occur in macroized code. */
8242 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8244 tree cval1 = 0, cval2 = 0;
8245 int save_p = 0;
8247 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8248 /* Don't handle degenerate cases here; they should already
8249 have been handled anyway. */
8250 && cval1 != 0 && cval2 != 0
8251 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8252 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8253 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8254 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8255 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8256 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8257 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8259 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8260 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8262 /* We can't just pass T to eval_subst in case cval1 or cval2
8263 was the same as ARG1. */
8265 tree high_result
8266 = fold_build2 (code, type,
8267 eval_subst (arg0, cval1, maxval,
8268 cval2, minval),
8269 arg1);
8270 tree equal_result
8271 = fold_build2 (code, type,
8272 eval_subst (arg0, cval1, maxval,
8273 cval2, maxval),
8274 arg1);
8275 tree low_result
8276 = fold_build2 (code, type,
8277 eval_subst (arg0, cval1, minval,
8278 cval2, maxval),
8279 arg1);
8281 /* All three of these results should be 0 or 1. Confirm they are.
8282 Then use those values to select the proper code to use. */
8284 if (TREE_CODE (high_result) == INTEGER_CST
8285 && TREE_CODE (equal_result) == INTEGER_CST
8286 && TREE_CODE (low_result) == INTEGER_CST)
8288 /* Make a 3-bit mask with the high-order bit being the
8289 value for `>', the next for '=', and the low for '<'. */
8290 switch ((integer_onep (high_result) * 4)
8291 + (integer_onep (equal_result) * 2)
8292 + integer_onep (low_result))
8294 case 0:
8295 /* Always false. */
8296 return omit_one_operand (type, integer_zero_node, arg0);
8297 case 1:
8298 code = LT_EXPR;
8299 break;
8300 case 2:
8301 code = EQ_EXPR;
8302 break;
8303 case 3:
8304 code = LE_EXPR;
8305 break;
8306 case 4:
8307 code = GT_EXPR;
8308 break;
8309 case 5:
8310 code = NE_EXPR;
8311 break;
8312 case 6:
8313 code = GE_EXPR;
8314 break;
8315 case 7:
8316 /* Always true. */
8317 return omit_one_operand (type, integer_one_node, arg0);
8320 if (save_p)
8321 return save_expr (build2 (code, type, cval1, cval2));
8322 return fold_build2 (code, type, cval1, cval2);
8327 /* Fold a comparison of the address of COMPONENT_REFs with the same
8328 type and component to a comparison of the address of the base
8329 object. In short, &x->a OP &y->a to x OP y and
8330 &x->a OP &y.a to x OP &y */
8331 if (TREE_CODE (arg0) == ADDR_EXPR
8332 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
8333 && TREE_CODE (arg1) == ADDR_EXPR
8334 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
8336 tree cref0 = TREE_OPERAND (arg0, 0);
8337 tree cref1 = TREE_OPERAND (arg1, 0);
8338 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
8340 tree op0 = TREE_OPERAND (cref0, 0);
8341 tree op1 = TREE_OPERAND (cref1, 0);
8342 return fold_build2 (code, type,
8343 build_fold_addr_expr (op0),
8344 build_fold_addr_expr (op1));
8348 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8349 into a single range test. */
8350 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8351 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8352 && TREE_CODE (arg1) == INTEGER_CST
8353 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8354 && !integer_zerop (TREE_OPERAND (arg0, 1))
8355 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8356 && !TREE_OVERFLOW (arg1))
8358 tem = fold_div_compare (code, type, arg0, arg1);
8359 if (tem != NULL_TREE)
8360 return tem;
8363 /* Fold ~X op ~Y as Y op X. */
8364 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8365 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8366 return fold_build2 (code, type,
8367 TREE_OPERAND (arg1, 0),
8368 TREE_OPERAND (arg0, 0));
8370 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
8371 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8372 && TREE_CODE (arg1) == INTEGER_CST)
8373 return fold_build2 (swap_tree_comparison (code), type,
8374 TREE_OPERAND (arg0, 0),
8375 fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1));
8377 return NULL_TREE;
8381 /* Subroutine of fold_binary. Optimize complex multiplications of the
8382 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8383 argument EXPR represents the expression "z" of type TYPE. */
8385 static tree
8386 fold_mult_zconjz (tree type, tree expr)
8388 tree itype = TREE_TYPE (type);
8389 tree rpart, ipart, tem;
8391 if (TREE_CODE (expr) == COMPLEX_EXPR)
8393 rpart = TREE_OPERAND (expr, 0);
8394 ipart = TREE_OPERAND (expr, 1);
8396 else if (TREE_CODE (expr) == COMPLEX_CST)
8398 rpart = TREE_REALPART (expr);
8399 ipart = TREE_IMAGPART (expr);
8401 else
8403 expr = save_expr (expr);
8404 rpart = fold_build1 (REALPART_EXPR, itype, expr);
8405 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
8408 rpart = save_expr (rpart);
8409 ipart = save_expr (ipart);
8410 tem = fold_build2 (PLUS_EXPR, itype,
8411 fold_build2 (MULT_EXPR, itype, rpart, rpart),
8412 fold_build2 (MULT_EXPR, itype, ipart, ipart));
8413 return fold_build2 (COMPLEX_EXPR, type, tem,
8414 fold_convert (itype, integer_zero_node));
8418 /* Fold a binary expression of code CODE and type TYPE with operands
8419 OP0 and OP1. Return the folded expression if folding is
8420 successful. Otherwise, return NULL_TREE. */
8422 tree
8423 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
8425 enum tree_code_class kind = TREE_CODE_CLASS (code);
8426 tree arg0, arg1, tem;
8427 tree t1 = NULL_TREE;
8429 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8430 && TREE_CODE_LENGTH (code) == 2
8431 && op0 != NULL_TREE
8432 && op1 != NULL_TREE);
8434 arg0 = op0;
8435 arg1 = op1;
8437 /* Strip any conversions that don't change the mode. This is
8438 safe for every expression, except for a comparison expression
8439 because its signedness is derived from its operands. So, in
8440 the latter case, only strip conversions that don't change the
8441 signedness.
8443 Note that this is done as an internal manipulation within the
8444 constant folder, in order to find the simplest representation
8445 of the arguments so that their form can be studied. In any
8446 cases, the appropriate type conversions should be put back in
8447 the tree that will get out of the constant folder. */
8449 if (kind == tcc_comparison)
8451 STRIP_SIGN_NOPS (arg0);
8452 STRIP_SIGN_NOPS (arg1);
8454 else
8456 STRIP_NOPS (arg0);
8457 STRIP_NOPS (arg1);
8460 /* Note that TREE_CONSTANT isn't enough: static var addresses are
8461 constant but we can't do arithmetic on them. */
8462 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
8463 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
8464 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
8465 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
8467 if (kind == tcc_binary)
8468 tem = const_binop (code, arg0, arg1, 0);
8469 else if (kind == tcc_comparison)
8470 tem = fold_relational_const (code, type, arg0, arg1);
8471 else
8472 tem = NULL_TREE;
8474 if (tem != NULL_TREE)
8476 if (TREE_TYPE (tem) != type)
8477 tem = fold_convert (type, tem);
8478 return tem;
8482 /* If this is a commutative operation, and ARG0 is a constant, move it
8483 to ARG1 to reduce the number of tests below. */
8484 if (commutative_tree_code (code)
8485 && tree_swap_operands_p (arg0, arg1, true))
8486 return fold_build2 (code, type, op1, op0);
8488 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
8490 First check for cases where an arithmetic operation is applied to a
8491 compound, conditional, or comparison operation. Push the arithmetic
8492 operation inside the compound or conditional to see if any folding
8493 can then be done. Convert comparison to conditional for this purpose.
8494 The also optimizes non-constant cases that used to be done in
8495 expand_expr.
8497 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
8498 one of the operands is a comparison and the other is a comparison, a
8499 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
8500 code below would make the expression more complex. Change it to a
8501 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
8502 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
8504 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
8505 || code == EQ_EXPR || code == NE_EXPR)
8506 && ((truth_value_p (TREE_CODE (arg0))
8507 && (truth_value_p (TREE_CODE (arg1))
8508 || (TREE_CODE (arg1) == BIT_AND_EXPR
8509 && integer_onep (TREE_OPERAND (arg1, 1)))))
8510 || (truth_value_p (TREE_CODE (arg1))
8511 && (truth_value_p (TREE_CODE (arg0))
8512 || (TREE_CODE (arg0) == BIT_AND_EXPR
8513 && integer_onep (TREE_OPERAND (arg0, 1)))))))
8515 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
8516 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
8517 : TRUTH_XOR_EXPR,
8518 boolean_type_node,
8519 fold_convert (boolean_type_node, arg0),
8520 fold_convert (boolean_type_node, arg1));
8522 if (code == EQ_EXPR)
8523 tem = invert_truthvalue (tem);
8525 return fold_convert (type, tem);
8528 if (TREE_CODE_CLASS (code) == tcc_binary
8529 || TREE_CODE_CLASS (code) == tcc_comparison)
8531 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8532 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8533 fold_build2 (code, type,
8534 TREE_OPERAND (arg0, 1), op1));
8535 if (TREE_CODE (arg1) == COMPOUND_EXPR
8536 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
8537 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
8538 fold_build2 (code, type,
8539 op0, TREE_OPERAND (arg1, 1)));
8541 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
8543 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
8544 arg0, arg1,
8545 /*cond_first_p=*/1);
8546 if (tem != NULL_TREE)
8547 return tem;
8550 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
8552 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
8553 arg1, arg0,
8554 /*cond_first_p=*/0);
8555 if (tem != NULL_TREE)
8556 return tem;
8560 switch (code)
8562 case PLUS_EXPR:
8563 /* A + (-B) -> A - B */
8564 if (TREE_CODE (arg1) == NEGATE_EXPR)
8565 return fold_build2 (MINUS_EXPR, type,
8566 fold_convert (type, arg0),
8567 fold_convert (type, TREE_OPERAND (arg1, 0)));
8568 /* (-A) + B -> B - A */
8569 if (TREE_CODE (arg0) == NEGATE_EXPR
8570 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
8571 return fold_build2 (MINUS_EXPR, type,
8572 fold_convert (type, arg1),
8573 fold_convert (type, TREE_OPERAND (arg0, 0)));
8574 /* Convert ~A + 1 to -A. */
8575 if (INTEGRAL_TYPE_P (type)
8576 && TREE_CODE (arg0) == BIT_NOT_EXPR
8577 && integer_onep (arg1))
8578 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
8580 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
8581 same or one. */
8582 if ((TREE_CODE (arg0) == MULT_EXPR
8583 || TREE_CODE (arg1) == MULT_EXPR)
8584 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
8586 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
8587 if (tem)
8588 return tem;
8591 if (! FLOAT_TYPE_P (type))
8593 if (integer_zerop (arg1))
8594 return non_lvalue (fold_convert (type, arg0));
8596 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
8597 with a constant, and the two constants have no bits in common,
8598 we should treat this as a BIT_IOR_EXPR since this may produce more
8599 simplifications. */
8600 if (TREE_CODE (arg0) == BIT_AND_EXPR
8601 && TREE_CODE (arg1) == BIT_AND_EXPR
8602 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8603 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8604 && integer_zerop (const_binop (BIT_AND_EXPR,
8605 TREE_OPERAND (arg0, 1),
8606 TREE_OPERAND (arg1, 1), 0)))
8608 code = BIT_IOR_EXPR;
8609 goto bit_ior;
8612 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
8613 (plus (plus (mult) (mult)) (foo)) so that we can
8614 take advantage of the factoring cases below. */
8615 if (((TREE_CODE (arg0) == PLUS_EXPR
8616 || TREE_CODE (arg0) == MINUS_EXPR)
8617 && TREE_CODE (arg1) == MULT_EXPR)
8618 || ((TREE_CODE (arg1) == PLUS_EXPR
8619 || TREE_CODE (arg1) == MINUS_EXPR)
8620 && TREE_CODE (arg0) == MULT_EXPR))
8622 tree parg0, parg1, parg, marg;
8623 enum tree_code pcode;
8625 if (TREE_CODE (arg1) == MULT_EXPR)
8626 parg = arg0, marg = arg1;
8627 else
8628 parg = arg1, marg = arg0;
8629 pcode = TREE_CODE (parg);
8630 parg0 = TREE_OPERAND (parg, 0);
8631 parg1 = TREE_OPERAND (parg, 1);
8632 STRIP_NOPS (parg0);
8633 STRIP_NOPS (parg1);
8635 if (TREE_CODE (parg0) == MULT_EXPR
8636 && TREE_CODE (parg1) != MULT_EXPR)
8637 return fold_build2 (pcode, type,
8638 fold_build2 (PLUS_EXPR, type,
8639 fold_convert (type, parg0),
8640 fold_convert (type, marg)),
8641 fold_convert (type, parg1));
8642 if (TREE_CODE (parg0) != MULT_EXPR
8643 && TREE_CODE (parg1) == MULT_EXPR)
8644 return fold_build2 (PLUS_EXPR, type,
8645 fold_convert (type, parg0),
8646 fold_build2 (pcode, type,
8647 fold_convert (type, marg),
8648 fold_convert (type,
8649 parg1)));
8652 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
8653 of the array. Loop optimizer sometimes produce this type of
8654 expressions. */
8655 if (TREE_CODE (arg0) == ADDR_EXPR)
8657 tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
8658 if (tem)
8659 return fold_convert (type, tem);
8661 else if (TREE_CODE (arg1) == ADDR_EXPR)
8663 tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
8664 if (tem)
8665 return fold_convert (type, tem);
8668 else
8670 /* See if ARG1 is zero and X + ARG1 reduces to X. */
8671 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
8672 return non_lvalue (fold_convert (type, arg0));
8674 /* Likewise if the operands are reversed. */
8675 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
8676 return non_lvalue (fold_convert (type, arg1));
8678 /* Convert X + -C into X - C. */
8679 if (TREE_CODE (arg1) == REAL_CST
8680 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
8682 tem = fold_negate_const (arg1, type);
8683 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
8684 return fold_build2 (MINUS_EXPR, type,
8685 fold_convert (type, arg0),
8686 fold_convert (type, tem));
8689 if (flag_unsafe_math_optimizations
8690 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
8691 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
8692 && (tem = distribute_real_division (code, type, arg0, arg1)))
8693 return tem;
8695 /* Convert x+x into x*2.0. */
8696 if (operand_equal_p (arg0, arg1, 0)
8697 && SCALAR_FLOAT_TYPE_P (type))
8698 return fold_build2 (MULT_EXPR, type, arg0,
8699 build_real (type, dconst2));
8701 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
8702 if (flag_unsafe_math_optimizations
8703 && TREE_CODE (arg1) == PLUS_EXPR
8704 && TREE_CODE (arg0) != MULT_EXPR)
8706 tree tree10 = TREE_OPERAND (arg1, 0);
8707 tree tree11 = TREE_OPERAND (arg1, 1);
8708 if (TREE_CODE (tree11) == MULT_EXPR
8709 && TREE_CODE (tree10) == MULT_EXPR)
8711 tree tree0;
8712 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
8713 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
8716 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
8717 if (flag_unsafe_math_optimizations
8718 && TREE_CODE (arg0) == PLUS_EXPR
8719 && TREE_CODE (arg1) != MULT_EXPR)
8721 tree tree00 = TREE_OPERAND (arg0, 0);
8722 tree tree01 = TREE_OPERAND (arg0, 1);
8723 if (TREE_CODE (tree01) == MULT_EXPR
8724 && TREE_CODE (tree00) == MULT_EXPR)
8726 tree tree0;
8727 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
8728 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
8733 bit_rotate:
8734 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
8735 is a rotate of A by C1 bits. */
8736 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
8737 is a rotate of A by B bits. */
8739 enum tree_code code0, code1;
8740 code0 = TREE_CODE (arg0);
8741 code1 = TREE_CODE (arg1);
8742 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
8743 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
8744 && operand_equal_p (TREE_OPERAND (arg0, 0),
8745 TREE_OPERAND (arg1, 0), 0)
8746 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
8748 tree tree01, tree11;
8749 enum tree_code code01, code11;
8751 tree01 = TREE_OPERAND (arg0, 1);
8752 tree11 = TREE_OPERAND (arg1, 1);
8753 STRIP_NOPS (tree01);
8754 STRIP_NOPS (tree11);
8755 code01 = TREE_CODE (tree01);
8756 code11 = TREE_CODE (tree11);
8757 if (code01 == INTEGER_CST
8758 && code11 == INTEGER_CST
8759 && TREE_INT_CST_HIGH (tree01) == 0
8760 && TREE_INT_CST_HIGH (tree11) == 0
8761 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
8762 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
8763 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
8764 code0 == LSHIFT_EXPR ? tree01 : tree11);
8765 else if (code11 == MINUS_EXPR)
8767 tree tree110, tree111;
8768 tree110 = TREE_OPERAND (tree11, 0);
8769 tree111 = TREE_OPERAND (tree11, 1);
8770 STRIP_NOPS (tree110);
8771 STRIP_NOPS (tree111);
8772 if (TREE_CODE (tree110) == INTEGER_CST
8773 && 0 == compare_tree_int (tree110,
8774 TYPE_PRECISION
8775 (TREE_TYPE (TREE_OPERAND
8776 (arg0, 0))))
8777 && operand_equal_p (tree01, tree111, 0))
8778 return build2 ((code0 == LSHIFT_EXPR
8779 ? LROTATE_EXPR
8780 : RROTATE_EXPR),
8781 type, TREE_OPERAND (arg0, 0), tree01);
8783 else if (code01 == MINUS_EXPR)
8785 tree tree010, tree011;
8786 tree010 = TREE_OPERAND (tree01, 0);
8787 tree011 = TREE_OPERAND (tree01, 1);
8788 STRIP_NOPS (tree010);
8789 STRIP_NOPS (tree011);
8790 if (TREE_CODE (tree010) == INTEGER_CST
8791 && 0 == compare_tree_int (tree010,
8792 TYPE_PRECISION
8793 (TREE_TYPE (TREE_OPERAND
8794 (arg0, 0))))
8795 && operand_equal_p (tree11, tree011, 0))
8796 return build2 ((code0 != LSHIFT_EXPR
8797 ? LROTATE_EXPR
8798 : RROTATE_EXPR),
8799 type, TREE_OPERAND (arg0, 0), tree11);
8804 associate:
8805 /* In most languages, can't associate operations on floats through
8806 parentheses. Rather than remember where the parentheses were, we
8807 don't associate floats at all, unless the user has specified
8808 -funsafe-math-optimizations. */
8810 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
8812 tree var0, con0, lit0, minus_lit0;
8813 tree var1, con1, lit1, minus_lit1;
8815 /* Split both trees into variables, constants, and literals. Then
8816 associate each group together, the constants with literals,
8817 then the result with variables. This increases the chances of
8818 literals being recombined later and of generating relocatable
8819 expressions for the sum of a constant and literal. */
8820 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
8821 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
8822 code == MINUS_EXPR);
8824 /* Only do something if we found more than two objects. Otherwise,
8825 nothing has changed and we risk infinite recursion. */
8826 if (2 < ((var0 != 0) + (var1 != 0)
8827 + (con0 != 0) + (con1 != 0)
8828 + (lit0 != 0) + (lit1 != 0)
8829 + (minus_lit0 != 0) + (minus_lit1 != 0)))
8831 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
8832 if (code == MINUS_EXPR)
8833 code = PLUS_EXPR;
8835 var0 = associate_trees (var0, var1, code, type);
8836 con0 = associate_trees (con0, con1, code, type);
8837 lit0 = associate_trees (lit0, lit1, code, type);
8838 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
8840 /* Preserve the MINUS_EXPR if the negative part of the literal is
8841 greater than the positive part. Otherwise, the multiplicative
8842 folding code (i.e extract_muldiv) may be fooled in case
8843 unsigned constants are subtracted, like in the following
8844 example: ((X*2 + 4) - 8U)/2. */
8845 if (minus_lit0 && lit0)
8847 if (TREE_CODE (lit0) == INTEGER_CST
8848 && TREE_CODE (minus_lit0) == INTEGER_CST
8849 && tree_int_cst_lt (lit0, minus_lit0))
8851 minus_lit0 = associate_trees (minus_lit0, lit0,
8852 MINUS_EXPR, type);
8853 lit0 = 0;
8855 else
8857 lit0 = associate_trees (lit0, minus_lit0,
8858 MINUS_EXPR, type);
8859 minus_lit0 = 0;
8862 if (minus_lit0)
8864 if (con0 == 0)
8865 return fold_convert (type,
8866 associate_trees (var0, minus_lit0,
8867 MINUS_EXPR, type));
8868 else
8870 con0 = associate_trees (con0, minus_lit0,
8871 MINUS_EXPR, type);
8872 return fold_convert (type,
8873 associate_trees (var0, con0,
8874 PLUS_EXPR, type));
8878 con0 = associate_trees (con0, lit0, code, type);
8879 return fold_convert (type, associate_trees (var0, con0,
8880 code, type));
8884 return NULL_TREE;
8886 case MINUS_EXPR:
8887 /* A - (-B) -> A + B */
8888 if (TREE_CODE (arg1) == NEGATE_EXPR)
8889 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
8890 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
8891 if (TREE_CODE (arg0) == NEGATE_EXPR
8892 && (FLOAT_TYPE_P (type)
8893 || INTEGRAL_TYPE_P (type))
8894 && negate_expr_p (arg1)
8895 && reorder_operands_p (arg0, arg1))
8896 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
8897 TREE_OPERAND (arg0, 0));
8898 /* Convert -A - 1 to ~A. */
8899 if (INTEGRAL_TYPE_P (type)
8900 && TREE_CODE (arg0) == NEGATE_EXPR
8901 && integer_onep (arg1))
8902 return fold_build1 (BIT_NOT_EXPR, type,
8903 fold_convert (type, TREE_OPERAND (arg0, 0)));
8905 /* Convert -1 - A to ~A. */
8906 if (INTEGRAL_TYPE_P (type)
8907 && integer_all_onesp (arg0))
8908 return fold_build1 (BIT_NOT_EXPR, type, arg1);
8910 if (! FLOAT_TYPE_P (type))
8912 if (integer_zerop (arg0))
8913 return negate_expr (fold_convert (type, arg1));
8914 if (integer_zerop (arg1))
8915 return non_lvalue (fold_convert (type, arg0));
8917 /* Fold A - (A & B) into ~B & A. */
8918 if (!TREE_SIDE_EFFECTS (arg0)
8919 && TREE_CODE (arg1) == BIT_AND_EXPR)
8921 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
8922 return fold_build2 (BIT_AND_EXPR, type,
8923 fold_build1 (BIT_NOT_EXPR, type,
8924 TREE_OPERAND (arg1, 0)),
8925 arg0);
8926 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
8927 return fold_build2 (BIT_AND_EXPR, type,
8928 fold_build1 (BIT_NOT_EXPR, type,
8929 TREE_OPERAND (arg1, 1)),
8930 arg0);
8933 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
8934 any power of 2 minus 1. */
8935 if (TREE_CODE (arg0) == BIT_AND_EXPR
8936 && TREE_CODE (arg1) == BIT_AND_EXPR
8937 && operand_equal_p (TREE_OPERAND (arg0, 0),
8938 TREE_OPERAND (arg1, 0), 0))
8940 tree mask0 = TREE_OPERAND (arg0, 1);
8941 tree mask1 = TREE_OPERAND (arg1, 1);
8942 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
8944 if (operand_equal_p (tem, mask1, 0))
8946 tem = fold_build2 (BIT_XOR_EXPR, type,
8947 TREE_OPERAND (arg0, 0), mask1);
8948 return fold_build2 (MINUS_EXPR, type, tem, mask1);
8953 /* See if ARG1 is zero and X - ARG1 reduces to X. */
8954 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
8955 return non_lvalue (fold_convert (type, arg0));
8957 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
8958 ARG0 is zero and X + ARG0 reduces to X, since that would mean
8959 (-ARG1 + ARG0) reduces to -ARG1. */
8960 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
8961 return negate_expr (fold_convert (type, arg1));
8963 /* Fold &x - &x. This can happen from &x.foo - &x.
8964 This is unsafe for certain floats even in non-IEEE formats.
8965 In IEEE, it is unsafe because it does wrong for NaNs.
8966 Also note that operand_equal_p is always false if an operand
8967 is volatile. */
8969 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
8970 && operand_equal_p (arg0, arg1, 0))
8971 return fold_convert (type, integer_zero_node);
8973 /* A - B -> A + (-B) if B is easily negatable. */
8974 if (negate_expr_p (arg1)
8975 && ((FLOAT_TYPE_P (type)
8976 /* Avoid this transformation if B is a positive REAL_CST. */
8977 && (TREE_CODE (arg1) != REAL_CST
8978 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
8979 || INTEGRAL_TYPE_P (type)))
8980 return fold_build2 (PLUS_EXPR, type,
8981 fold_convert (type, arg0),
8982 fold_convert (type, negate_expr (arg1)));
8984 /* Try folding difference of addresses. */
8986 HOST_WIDE_INT diff;
8988 if ((TREE_CODE (arg0) == ADDR_EXPR
8989 || TREE_CODE (arg1) == ADDR_EXPR)
8990 && ptr_difference_const (arg0, arg1, &diff))
8991 return build_int_cst_type (type, diff);
8994 /* Fold &a[i] - &a[j] to i-j. */
8995 if (TREE_CODE (arg0) == ADDR_EXPR
8996 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
8997 && TREE_CODE (arg1) == ADDR_EXPR
8998 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9000 tree aref0 = TREE_OPERAND (arg0, 0);
9001 tree aref1 = TREE_OPERAND (arg1, 0);
9002 if (operand_equal_p (TREE_OPERAND (aref0, 0),
9003 TREE_OPERAND (aref1, 0), 0))
9005 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
9006 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
9007 tree esz = array_ref_element_size (aref0);
9008 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9009 return fold_build2 (MULT_EXPR, type, diff,
9010 fold_convert (type, esz));
9015 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
9016 of the array. Loop optimizer sometimes produce this type of
9017 expressions. */
9018 if (TREE_CODE (arg0) == ADDR_EXPR)
9020 tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
9021 if (tem)
9022 return fold_convert (type, tem);
9025 if (flag_unsafe_math_optimizations
9026 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9027 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9028 && (tem = distribute_real_division (code, type, arg0, arg1)))
9029 return tem;
9031 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
9032 same or one. */
9033 if ((TREE_CODE (arg0) == MULT_EXPR
9034 || TREE_CODE (arg1) == MULT_EXPR)
9035 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
9037 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9038 if (tem)
9039 return tem;
9042 goto associate;
9044 case MULT_EXPR:
9045 /* (-A) * (-B) -> A * B */
9046 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9047 return fold_build2 (MULT_EXPR, type,
9048 fold_convert (type, TREE_OPERAND (arg0, 0)),
9049 fold_convert (type, negate_expr (arg1)));
9050 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9051 return fold_build2 (MULT_EXPR, type,
9052 fold_convert (type, negate_expr (arg0)),
9053 fold_convert (type, TREE_OPERAND (arg1, 0)));
9055 if (! FLOAT_TYPE_P (type))
9057 if (integer_zerop (arg1))
9058 return omit_one_operand (type, arg1, arg0);
9059 if (integer_onep (arg1))
9060 return non_lvalue (fold_convert (type, arg0));
9061 /* Transform x * -1 into -x. */
9062 if (integer_all_onesp (arg1))
9063 return fold_convert (type, negate_expr (arg0));
9064 /* Transform x * -C into -x * C if x is easily negatable. */
9065 if (TREE_CODE (arg1) == INTEGER_CST
9066 && tree_int_cst_sgn (arg1) == -1
9067 && negate_expr_p (arg0)
9068 && (tem = negate_expr (arg1)) != arg1
9069 && !TREE_OVERFLOW (tem))
9070 return fold_build2 (MULT_EXPR, type,
9071 negate_expr (arg0), tem);
9073 /* (a * (1 << b)) is (a << b) */
9074 if (TREE_CODE (arg1) == LSHIFT_EXPR
9075 && integer_onep (TREE_OPERAND (arg1, 0)))
9076 return fold_build2 (LSHIFT_EXPR, type, arg0,
9077 TREE_OPERAND (arg1, 1));
9078 if (TREE_CODE (arg0) == LSHIFT_EXPR
9079 && integer_onep (TREE_OPERAND (arg0, 0)))
9080 return fold_build2 (LSHIFT_EXPR, type, arg1,
9081 TREE_OPERAND (arg0, 1));
9083 if (TREE_CODE (arg1) == INTEGER_CST
9084 && 0 != (tem = extract_muldiv (op0,
9085 fold_convert (type, arg1),
9086 code, NULL_TREE)))
9087 return fold_convert (type, tem);
9089 /* Optimize z * conj(z) for integer complex numbers. */
9090 if (TREE_CODE (arg0) == CONJ_EXPR
9091 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9092 return fold_mult_zconjz (type, arg1);
9093 if (TREE_CODE (arg1) == CONJ_EXPR
9094 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9095 return fold_mult_zconjz (type, arg0);
9097 else
9099 /* Maybe fold x * 0 to 0. The expressions aren't the same
9100 when x is NaN, since x * 0 is also NaN. Nor are they the
9101 same in modes with signed zeros, since multiplying a
9102 negative value by 0 gives -0, not +0. */
9103 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9104 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9105 && real_zerop (arg1))
9106 return omit_one_operand (type, arg1, arg0);
9107 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
9108 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9109 && real_onep (arg1))
9110 return non_lvalue (fold_convert (type, arg0));
9112 /* Transform x * -1.0 into -x. */
9113 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9114 && real_minus_onep (arg1))
9115 return fold_convert (type, negate_expr (arg0));
9117 /* Convert (C1/X)*C2 into (C1*C2)/X. */
9118 if (flag_unsafe_math_optimizations
9119 && TREE_CODE (arg0) == RDIV_EXPR
9120 && TREE_CODE (arg1) == REAL_CST
9121 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9123 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9124 arg1, 0);
9125 if (tem)
9126 return fold_build2 (RDIV_EXPR, type, tem,
9127 TREE_OPERAND (arg0, 1));
9130 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9131 if (operand_equal_p (arg0, arg1, 0))
9133 tree tem = fold_strip_sign_ops (arg0);
9134 if (tem != NULL_TREE)
9136 tem = fold_convert (type, tem);
9137 return fold_build2 (MULT_EXPR, type, tem, tem);
9141 /* Optimize z * conj(z) for floating point complex numbers.
9142 Guarded by flag_unsafe_math_optimizations as non-finite
9143 imaginary components don't produce scalar results. */
9144 if (flag_unsafe_math_optimizations
9145 && TREE_CODE (arg0) == CONJ_EXPR
9146 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9147 return fold_mult_zconjz (type, arg1);
9148 if (flag_unsafe_math_optimizations
9149 && TREE_CODE (arg1) == CONJ_EXPR
9150 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9151 return fold_mult_zconjz (type, arg0);
9153 if (flag_unsafe_math_optimizations)
9155 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9156 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9158 /* Optimizations of root(...)*root(...). */
9159 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
9161 tree rootfn, arg, arglist;
9162 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9163 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9165 /* Optimize sqrt(x)*sqrt(x) as x. */
9166 if (BUILTIN_SQRT_P (fcode0)
9167 && operand_equal_p (arg00, arg10, 0)
9168 && ! HONOR_SNANS (TYPE_MODE (type)))
9169 return arg00;
9171 /* Optimize root(x)*root(y) as root(x*y). */
9172 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9173 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9174 arglist = build_tree_list (NULL_TREE, arg);
9175 return build_function_call_expr (rootfn, arglist);
9178 /* Optimize expN(x)*expN(y) as expN(x+y). */
9179 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
9181 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9182 tree arg = fold_build2 (PLUS_EXPR, type,
9183 TREE_VALUE (TREE_OPERAND (arg0, 1)),
9184 TREE_VALUE (TREE_OPERAND (arg1, 1)));
9185 tree arglist = build_tree_list (NULL_TREE, arg);
9186 return build_function_call_expr (expfn, arglist);
9189 /* Optimizations of pow(...)*pow(...). */
9190 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
9191 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
9192 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
9194 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9195 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
9196 1)));
9197 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9198 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
9199 1)));
9201 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
9202 if (operand_equal_p (arg01, arg11, 0))
9204 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9205 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9206 tree arglist = tree_cons (NULL_TREE, arg,
9207 build_tree_list (NULL_TREE,
9208 arg01));
9209 return build_function_call_expr (powfn, arglist);
9212 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
9213 if (operand_equal_p (arg00, arg10, 0))
9215 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9216 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
9217 tree arglist = tree_cons (NULL_TREE, arg00,
9218 build_tree_list (NULL_TREE,
9219 arg));
9220 return build_function_call_expr (powfn, arglist);
9224 /* Optimize tan(x)*cos(x) as sin(x). */
9225 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
9226 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
9227 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
9228 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
9229 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
9230 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
9231 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9232 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9234 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
9236 if (sinfn != NULL_TREE)
9237 return build_function_call_expr (sinfn,
9238 TREE_OPERAND (arg0, 1));
9241 /* Optimize x*pow(x,c) as pow(x,c+1). */
9242 if (fcode1 == BUILT_IN_POW
9243 || fcode1 == BUILT_IN_POWF
9244 || fcode1 == BUILT_IN_POWL)
9246 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9247 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
9248 1)));
9249 if (TREE_CODE (arg11) == REAL_CST
9250 && ! TREE_CONSTANT_OVERFLOW (arg11)
9251 && operand_equal_p (arg0, arg10, 0))
9253 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9254 REAL_VALUE_TYPE c;
9255 tree arg, arglist;
9257 c = TREE_REAL_CST (arg11);
9258 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9259 arg = build_real (type, c);
9260 arglist = build_tree_list (NULL_TREE, arg);
9261 arglist = tree_cons (NULL_TREE, arg0, arglist);
9262 return build_function_call_expr (powfn, arglist);
9266 /* Optimize pow(x,c)*x as pow(x,c+1). */
9267 if (fcode0 == BUILT_IN_POW
9268 || fcode0 == BUILT_IN_POWF
9269 || fcode0 == BUILT_IN_POWL)
9271 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9272 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
9273 1)));
9274 if (TREE_CODE (arg01) == REAL_CST
9275 && ! TREE_CONSTANT_OVERFLOW (arg01)
9276 && operand_equal_p (arg1, arg00, 0))
9278 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9279 REAL_VALUE_TYPE c;
9280 tree arg, arglist;
9282 c = TREE_REAL_CST (arg01);
9283 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9284 arg = build_real (type, c);
9285 arglist = build_tree_list (NULL_TREE, arg);
9286 arglist = tree_cons (NULL_TREE, arg1, arglist);
9287 return build_function_call_expr (powfn, arglist);
9291 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
9292 if (! optimize_size
9293 && operand_equal_p (arg0, arg1, 0))
9295 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9297 if (powfn)
9299 tree arg = build_real (type, dconst2);
9300 tree arglist = build_tree_list (NULL_TREE, arg);
9301 arglist = tree_cons (NULL_TREE, arg0, arglist);
9302 return build_function_call_expr (powfn, arglist);
9307 goto associate;
9309 case BIT_IOR_EXPR:
9310 bit_ior:
9311 if (integer_all_onesp (arg1))
9312 return omit_one_operand (type, arg1, arg0);
9313 if (integer_zerop (arg1))
9314 return non_lvalue (fold_convert (type, arg0));
9315 if (operand_equal_p (arg0, arg1, 0))
9316 return non_lvalue (fold_convert (type, arg0));
9318 /* ~X | X is -1. */
9319 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9320 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9322 t1 = build_int_cst (type, -1);
9323 t1 = force_fit_type (t1, 0, false, false);
9324 return omit_one_operand (type, t1, arg1);
9327 /* X | ~X is -1. */
9328 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9329 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9331 t1 = build_int_cst (type, -1);
9332 t1 = force_fit_type (t1, 0, false, false);
9333 return omit_one_operand (type, t1, arg0);
9336 /* Canonicalize (X & C1) | C2. */
9337 if (TREE_CODE (arg0) == BIT_AND_EXPR
9338 && TREE_CODE (arg1) == INTEGER_CST
9339 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9341 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
9342 int width = TYPE_PRECISION (type);
9343 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
9344 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
9345 hi2 = TREE_INT_CST_HIGH (arg1);
9346 lo2 = TREE_INT_CST_LOW (arg1);
9348 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9349 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
9350 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9352 if (width > HOST_BITS_PER_WIDE_INT)
9354 mhi = (unsigned HOST_WIDE_INT) -1
9355 >> (2 * HOST_BITS_PER_WIDE_INT - width);
9356 mlo = -1;
9358 else
9360 mhi = 0;
9361 mlo = (unsigned HOST_WIDE_INT) -1
9362 >> (HOST_BITS_PER_WIDE_INT - width);
9365 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9366 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
9367 return fold_build2 (BIT_IOR_EXPR, type,
9368 TREE_OPERAND (arg0, 0), arg1);
9370 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
9371 hi1 &= mhi;
9372 lo1 &= mlo;
9373 if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
9374 return fold_build2 (BIT_IOR_EXPR, type,
9375 fold_build2 (BIT_AND_EXPR, type,
9376 TREE_OPERAND (arg0, 0),
9377 build_int_cst_wide (type,
9378 lo1 & ~lo2,
9379 hi1 & ~hi2)),
9380 arg1);
9383 /* (X & Y) | Y is (X, Y). */
9384 if (TREE_CODE (arg0) == BIT_AND_EXPR
9385 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9386 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9387 /* (X & Y) | X is (Y, X). */
9388 if (TREE_CODE (arg0) == BIT_AND_EXPR
9389 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9390 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9391 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
9392 /* X | (X & Y) is (Y, X). */
9393 if (TREE_CODE (arg1) == BIT_AND_EXPR
9394 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
9395 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
9396 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
9397 /* X | (Y & X) is (Y, X). */
9398 if (TREE_CODE (arg1) == BIT_AND_EXPR
9399 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9400 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9401 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
9403 t1 = distribute_bit_expr (code, type, arg0, arg1);
9404 if (t1 != NULL_TREE)
9405 return t1;
9407 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
9409 This results in more efficient code for machines without a NAND
9410 instruction. Combine will canonicalize to the first form
9411 which will allow use of NAND instructions provided by the
9412 backend if they exist. */
9413 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9414 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9416 return fold_build1 (BIT_NOT_EXPR, type,
9417 build2 (BIT_AND_EXPR, type,
9418 TREE_OPERAND (arg0, 0),
9419 TREE_OPERAND (arg1, 0)));
9422 /* See if this can be simplified into a rotate first. If that
9423 is unsuccessful continue in the association code. */
9424 goto bit_rotate;
9426 case BIT_XOR_EXPR:
9427 if (integer_zerop (arg1))
9428 return non_lvalue (fold_convert (type, arg0));
9429 if (integer_all_onesp (arg1))
9430 return fold_build1 (BIT_NOT_EXPR, type, arg0);
9431 if (operand_equal_p (arg0, arg1, 0))
9432 return omit_one_operand (type, integer_zero_node, arg0);
9434 /* ~X ^ X is -1. */
9435 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9436 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9438 t1 = build_int_cst (type, -1);
9439 t1 = force_fit_type (t1, 0, false, false);
9440 return omit_one_operand (type, t1, arg1);
9443 /* X ^ ~X is -1. */
9444 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9445 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9447 t1 = build_int_cst (type, -1);
9448 t1 = force_fit_type (t1, 0, false, false);
9449 return omit_one_operand (type, t1, arg0);
9452 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
9453 with a constant, and the two constants have no bits in common,
9454 we should treat this as a BIT_IOR_EXPR since this may produce more
9455 simplifications. */
9456 if (TREE_CODE (arg0) == BIT_AND_EXPR
9457 && TREE_CODE (arg1) == BIT_AND_EXPR
9458 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9459 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9460 && integer_zerop (const_binop (BIT_AND_EXPR,
9461 TREE_OPERAND (arg0, 1),
9462 TREE_OPERAND (arg1, 1), 0)))
9464 code = BIT_IOR_EXPR;
9465 goto bit_ior;
9468 /* (X | Y) ^ X -> Y & ~ X*/
9469 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9470 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9472 tree t2 = TREE_OPERAND (arg0, 1);
9473 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
9474 arg1);
9475 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9476 fold_convert (type, t1));
9477 return t1;
9480 /* (Y | X) ^ X -> Y & ~ X*/
9481 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9482 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9484 tree t2 = TREE_OPERAND (arg0, 0);
9485 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
9486 arg1);
9487 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9488 fold_convert (type, t1));
9489 return t1;
9492 /* X ^ (X | Y) -> Y & ~ X*/
9493 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9494 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
9496 tree t2 = TREE_OPERAND (arg1, 1);
9497 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
9498 arg0);
9499 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9500 fold_convert (type, t1));
9501 return t1;
9504 /* X ^ (Y | X) -> Y & ~ X*/
9505 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9506 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
9508 tree t2 = TREE_OPERAND (arg1, 0);
9509 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
9510 arg0);
9511 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
9512 fold_convert (type, t1));
9513 return t1;
9516 /* Convert ~X ^ ~Y to X ^ Y. */
9517 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9518 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9519 return fold_build2 (code, type,
9520 fold_convert (type, TREE_OPERAND (arg0, 0)),
9521 fold_convert (type, TREE_OPERAND (arg1, 0)));
9523 /* Convert ~X ^ C to X ^ ~C. */
9524 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9525 && TREE_CODE (arg1) == INTEGER_CST)
9526 return fold_build2 (code, type,
9527 fold_convert (type, TREE_OPERAND (arg0, 0)),
9528 fold_build1 (BIT_NOT_EXPR, type, arg1));
9530 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9531 if (TREE_CODE (arg0) == BIT_AND_EXPR
9532 && integer_onep (TREE_OPERAND (arg0, 1))
9533 && integer_onep (arg1))
9534 return fold_build2 (EQ_EXPR, type, arg0,
9535 build_int_cst (TREE_TYPE (arg0), 0));
9537 /* Fold (X & Y) ^ Y as ~X & Y. */
9538 if (TREE_CODE (arg0) == BIT_AND_EXPR
9539 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9541 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
9542 return fold_build2 (BIT_AND_EXPR, type,
9543 fold_build1 (BIT_NOT_EXPR, type, tem),
9544 fold_convert (type, arg1));
9546 /* Fold (X & Y) ^ X as ~Y & X. */
9547 if (TREE_CODE (arg0) == BIT_AND_EXPR
9548 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9549 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9551 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
9552 return fold_build2 (BIT_AND_EXPR, type,
9553 fold_build1 (BIT_NOT_EXPR, type, tem),
9554 fold_convert (type, arg1));
9556 /* Fold X ^ (X & Y) as X & ~Y. */
9557 if (TREE_CODE (arg1) == BIT_AND_EXPR
9558 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9560 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
9561 return fold_build2 (BIT_AND_EXPR, type,
9562 fold_convert (type, arg0),
9563 fold_build1 (BIT_NOT_EXPR, type, tem));
9565 /* Fold X ^ (Y & X) as ~Y & X. */
9566 if (TREE_CODE (arg1) == BIT_AND_EXPR
9567 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9568 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9570 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
9571 return fold_build2 (BIT_AND_EXPR, type,
9572 fold_build1 (BIT_NOT_EXPR, type, tem),
9573 fold_convert (type, arg0));
9576 /* See if this can be simplified into a rotate first. If that
9577 is unsuccessful continue in the association code. */
9578 goto bit_rotate;
9580 case BIT_AND_EXPR:
9581 if (integer_all_onesp (arg1))
9582 return non_lvalue (fold_convert (type, arg0));
9583 if (integer_zerop (arg1))
9584 return omit_one_operand (type, arg1, arg0);
9585 if (operand_equal_p (arg0, arg1, 0))
9586 return non_lvalue (fold_convert (type, arg0));
9588 /* ~X & X is always zero. */
9589 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9590 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9591 return omit_one_operand (type, integer_zero_node, arg1);
9593 /* X & ~X is always zero. */
9594 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9595 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9596 return omit_one_operand (type, integer_zero_node, arg0);
9598 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
9599 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9600 && TREE_CODE (arg1) == INTEGER_CST
9601 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9602 return fold_build2 (BIT_IOR_EXPR, type,
9603 fold_build2 (BIT_AND_EXPR, type,
9604 TREE_OPERAND (arg0, 0), arg1),
9605 fold_build2 (BIT_AND_EXPR, type,
9606 TREE_OPERAND (arg0, 1), arg1));
9608 /* (X | Y) & Y is (X, Y). */
9609 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9610 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9611 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
9612 /* (X | Y) & X is (Y, X). */
9613 if (TREE_CODE (arg0) == BIT_IOR_EXPR
9614 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9615 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9616 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
9617 /* X & (X | Y) is (Y, X). */
9618 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9619 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
9620 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
9621 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
9622 /* X & (Y | X) is (Y, X). */
9623 if (TREE_CODE (arg1) == BIT_IOR_EXPR
9624 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9625 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9626 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
9628 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9629 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9630 && integer_onep (TREE_OPERAND (arg0, 1))
9631 && integer_onep (arg1))
9633 tem = TREE_OPERAND (arg0, 0);
9634 return fold_build2 (EQ_EXPR, type,
9635 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
9636 build_int_cst (TREE_TYPE (tem), 1)),
9637 build_int_cst (TREE_TYPE (tem), 0));
9639 /* Fold ~X & 1 as (X & 1) == 0. */
9640 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9641 && integer_onep (arg1))
9643 tem = TREE_OPERAND (arg0, 0);
9644 return fold_build2 (EQ_EXPR, type,
9645 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
9646 build_int_cst (TREE_TYPE (tem), 1)),
9647 build_int_cst (TREE_TYPE (tem), 0));
9650 /* Fold (X ^ Y) & Y as ~X & Y. */
9651 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9652 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
9654 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
9655 return fold_build2 (BIT_AND_EXPR, type,
9656 fold_build1 (BIT_NOT_EXPR, type, tem),
9657 fold_convert (type, arg1));
9659 /* Fold (X ^ Y) & X as ~Y & X. */
9660 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9661 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9662 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
9664 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
9665 return fold_build2 (BIT_AND_EXPR, type,
9666 fold_build1 (BIT_NOT_EXPR, type, tem),
9667 fold_convert (type, arg1));
9669 /* Fold X & (X ^ Y) as X & ~Y. */
9670 if (TREE_CODE (arg1) == BIT_XOR_EXPR
9671 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9673 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
9674 return fold_build2 (BIT_AND_EXPR, type,
9675 fold_convert (type, arg0),
9676 fold_build1 (BIT_NOT_EXPR, type, tem));
9678 /* Fold X & (Y ^ X) as ~Y & X. */
9679 if (TREE_CODE (arg1) == BIT_XOR_EXPR
9680 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
9681 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9683 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
9684 return fold_build2 (BIT_AND_EXPR, type,
9685 fold_build1 (BIT_NOT_EXPR, type, tem),
9686 fold_convert (type, arg0));
9689 t1 = distribute_bit_expr (code, type, arg0, arg1);
9690 if (t1 != NULL_TREE)
9691 return t1;
9692 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
9693 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
9694 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
9696 unsigned int prec
9697 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
9699 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
9700 && (~TREE_INT_CST_LOW (arg1)
9701 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
9702 return fold_convert (type, TREE_OPERAND (arg0, 0));
9705 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
9707 This results in more efficient code for machines without a NOR
9708 instruction. Combine will canonicalize to the first form
9709 which will allow use of NOR instructions provided by the
9710 backend if they exist. */
9711 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9712 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9714 return fold_build1 (BIT_NOT_EXPR, type,
9715 build2 (BIT_IOR_EXPR, type,
9716 TREE_OPERAND (arg0, 0),
9717 TREE_OPERAND (arg1, 0)));
9720 goto associate;
9722 case RDIV_EXPR:
9723 /* Don't touch a floating-point divide by zero unless the mode
9724 of the constant can represent infinity. */
9725 if (TREE_CODE (arg1) == REAL_CST
9726 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
9727 && real_zerop (arg1))
9728 return NULL_TREE;
9730 /* Optimize A / A to 1.0 if we don't care about
9731 NaNs or Infinities. Skip the transformation
9732 for non-real operands. */
9733 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
9734 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9735 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
9736 && operand_equal_p (arg0, arg1, 0))
9738 tree r = build_real (TREE_TYPE (arg0), dconst1);
9740 return omit_two_operands (type, r, arg0, arg1);
9743 /* The complex version of the above A / A optimization. */
9744 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9745 && operand_equal_p (arg0, arg1, 0))
9747 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
9748 if (! HONOR_NANS (TYPE_MODE (elem_type))
9749 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
9751 tree r = build_real (elem_type, dconst1);
9752 /* omit_two_operands will call fold_convert for us. */
9753 return omit_two_operands (type, r, arg0, arg1);
9757 /* (-A) / (-B) -> A / B */
9758 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9759 return fold_build2 (RDIV_EXPR, type,
9760 TREE_OPERAND (arg0, 0),
9761 negate_expr (arg1));
9762 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9763 return fold_build2 (RDIV_EXPR, type,
9764 negate_expr (arg0),
9765 TREE_OPERAND (arg1, 0));
9767 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
9768 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9769 && real_onep (arg1))
9770 return non_lvalue (fold_convert (type, arg0));
9772 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
9773 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9774 && real_minus_onep (arg1))
9775 return non_lvalue (fold_convert (type, negate_expr (arg0)));
9777 /* If ARG1 is a constant, we can convert this to a multiply by the
9778 reciprocal. This does not have the same rounding properties,
9779 so only do this if -funsafe-math-optimizations. We can actually
9780 always safely do it if ARG1 is a power of two, but it's hard to
9781 tell if it is or not in a portable manner. */
9782 if (TREE_CODE (arg1) == REAL_CST)
9784 if (flag_unsafe_math_optimizations
9785 && 0 != (tem = const_binop (code, build_real (type, dconst1),
9786 arg1, 0)))
9787 return fold_build2 (MULT_EXPR, type, arg0, tem);
9788 /* Find the reciprocal if optimizing and the result is exact. */
9789 if (optimize)
9791 REAL_VALUE_TYPE r;
9792 r = TREE_REAL_CST (arg1);
9793 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
9795 tem = build_real (type, r);
9796 return fold_build2 (MULT_EXPR, type,
9797 fold_convert (type, arg0), tem);
9801 /* Convert A/B/C to A/(B*C). */
9802 if (flag_unsafe_math_optimizations
9803 && TREE_CODE (arg0) == RDIV_EXPR)
9804 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
9805 fold_build2 (MULT_EXPR, type,
9806 TREE_OPERAND (arg0, 1), arg1));
9808 /* Convert A/(B/C) to (A/B)*C. */
9809 if (flag_unsafe_math_optimizations
9810 && TREE_CODE (arg1) == RDIV_EXPR)
9811 return fold_build2 (MULT_EXPR, type,
9812 fold_build2 (RDIV_EXPR, type, arg0,
9813 TREE_OPERAND (arg1, 0)),
9814 TREE_OPERAND (arg1, 1));
9816 /* Convert C1/(X*C2) into (C1/C2)/X. */
9817 if (flag_unsafe_math_optimizations
9818 && TREE_CODE (arg1) == MULT_EXPR
9819 && TREE_CODE (arg0) == REAL_CST
9820 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
9822 tree tem = const_binop (RDIV_EXPR, arg0,
9823 TREE_OPERAND (arg1, 1), 0);
9824 if (tem)
9825 return fold_build2 (RDIV_EXPR, type, tem,
9826 TREE_OPERAND (arg1, 0));
9829 if (flag_unsafe_math_optimizations)
9831 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9832 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9834 /* Optimize sin(x)/cos(x) as tan(x). */
9835 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
9836 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
9837 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
9838 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9839 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9841 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
9843 if (tanfn != NULL_TREE)
9844 return build_function_call_expr (tanfn,
9845 TREE_OPERAND (arg0, 1));
9848 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
9849 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
9850 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
9851 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
9852 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
9853 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
9855 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
9857 if (tanfn != NULL_TREE)
9859 tree tmp = TREE_OPERAND (arg0, 1);
9860 tmp = build_function_call_expr (tanfn, tmp);
9861 return fold_build2 (RDIV_EXPR, type,
9862 build_real (type, dconst1), tmp);
9866 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
9867 NaNs or Infinities. */
9868 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
9869 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
9870 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
9872 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9873 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9875 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
9876 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
9877 && operand_equal_p (arg00, arg01, 0))
9879 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
9881 if (cosfn != NULL_TREE)
9882 return build_function_call_expr (cosfn,
9883 TREE_OPERAND (arg0, 1));
9887 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
9888 NaNs or Infinities. */
9889 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
9890 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
9891 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
9893 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9894 tree arg01 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9896 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
9897 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
9898 && operand_equal_p (arg00, arg01, 0))
9900 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
9902 if (cosfn != NULL_TREE)
9904 tree tmp = TREE_OPERAND (arg0, 1);
9905 tmp = build_function_call_expr (cosfn, tmp);
9906 return fold_build2 (RDIV_EXPR, type,
9907 build_real (type, dconst1),
9908 tmp);
9913 /* Optimize pow(x,c)/x as pow(x,c-1). */
9914 if (fcode0 == BUILT_IN_POW
9915 || fcode0 == BUILT_IN_POWF
9916 || fcode0 == BUILT_IN_POWL)
9918 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
9919 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
9920 if (TREE_CODE (arg01) == REAL_CST
9921 && ! TREE_CONSTANT_OVERFLOW (arg01)
9922 && operand_equal_p (arg1, arg00, 0))
9924 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
9925 REAL_VALUE_TYPE c;
9926 tree arg, arglist;
9928 c = TREE_REAL_CST (arg01);
9929 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
9930 arg = build_real (type, c);
9931 arglist = build_tree_list (NULL_TREE, arg);
9932 arglist = tree_cons (NULL_TREE, arg1, arglist);
9933 return build_function_call_expr (powfn, arglist);
9937 /* Optimize x/expN(y) into x*expN(-y). */
9938 if (BUILTIN_EXPONENT_P (fcode1))
9940 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9941 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
9942 tree arglist = build_tree_list (NULL_TREE,
9943 fold_convert (type, arg));
9944 arg1 = build_function_call_expr (expfn, arglist);
9945 return fold_build2 (MULT_EXPR, type, arg0, arg1);
9948 /* Optimize x/pow(y,z) into x*pow(y,-z). */
9949 if (fcode1 == BUILT_IN_POW
9950 || fcode1 == BUILT_IN_POWF
9951 || fcode1 == BUILT_IN_POWL)
9953 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
9954 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
9955 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
9956 tree neg11 = fold_convert (type, negate_expr (arg11));
9957 tree arglist = tree_cons(NULL_TREE, arg10,
9958 build_tree_list (NULL_TREE, neg11));
9959 arg1 = build_function_call_expr (powfn, arglist);
9960 return fold_build2 (MULT_EXPR, type, arg0, arg1);
9963 return NULL_TREE;
9965 case TRUNC_DIV_EXPR:
9966 case FLOOR_DIV_EXPR:
9967 /* Simplify A / (B << N) where A and B are positive and B is
9968 a power of 2, to A >> (N + log2(B)). */
9969 if (TREE_CODE (arg1) == LSHIFT_EXPR
9970 && (TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (arg0)))
9972 tree sval = TREE_OPERAND (arg1, 0);
9973 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
9975 tree sh_cnt = TREE_OPERAND (arg1, 1);
9976 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
9978 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
9979 sh_cnt, build_int_cst (NULL_TREE, pow2));
9980 return fold_build2 (RSHIFT_EXPR, type,
9981 fold_convert (type, arg0), sh_cnt);
9984 /* Fall thru */
9986 case ROUND_DIV_EXPR:
9987 case CEIL_DIV_EXPR:
9988 case EXACT_DIV_EXPR:
9989 if (integer_onep (arg1))
9990 return non_lvalue (fold_convert (type, arg0));
9991 if (integer_zerop (arg1))
9992 return NULL_TREE;
9993 /* X / -1 is -X. */
9994 if (!TYPE_UNSIGNED (type)
9995 && TREE_CODE (arg1) == INTEGER_CST
9996 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
9997 && TREE_INT_CST_HIGH (arg1) == -1)
9998 return fold_convert (type, negate_expr (arg0));
10000 /* Convert -A / -B to A / B when the type is signed and overflow is
10001 undefined. */
10002 if (!TYPE_UNSIGNED (type) && !flag_wrapv
10003 && TREE_CODE (arg0) == NEGATE_EXPR
10004 && negate_expr_p (arg1))
10005 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10006 negate_expr (arg1));
10007 if (!TYPE_UNSIGNED (type) && !flag_wrapv
10008 && TREE_CODE (arg1) == NEGATE_EXPR
10009 && negate_expr_p (arg0))
10010 return fold_build2 (code, type, negate_expr (arg0),
10011 TREE_OPERAND (arg1, 0));
10013 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10014 operation, EXACT_DIV_EXPR.
10016 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10017 At one time others generated faster code, it's not clear if they do
10018 after the last round to changes to the DIV code in expmed.c. */
10019 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10020 && multiple_of_p (type, arg0, arg1))
10021 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
10023 if (TREE_CODE (arg1) == INTEGER_CST
10024 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
10025 return fold_convert (type, tem);
10027 return NULL_TREE;
10029 case CEIL_MOD_EXPR:
10030 case FLOOR_MOD_EXPR:
10031 case ROUND_MOD_EXPR:
10032 case TRUNC_MOD_EXPR:
10033 /* X % 1 is always zero, but be sure to preserve any side
10034 effects in X. */
10035 if (integer_onep (arg1))
10036 return omit_one_operand (type, integer_zero_node, arg0);
10038 /* X % 0, return X % 0 unchanged so that we can get the
10039 proper warnings and errors. */
10040 if (integer_zerop (arg1))
10041 return NULL_TREE;
10043 /* 0 % X is always zero, but be sure to preserve any side
10044 effects in X. Place this after checking for X == 0. */
10045 if (integer_zerop (arg0))
10046 return omit_one_operand (type, integer_zero_node, arg1);
10048 /* X % -1 is zero. */
10049 if (!TYPE_UNSIGNED (type)
10050 && TREE_CODE (arg1) == INTEGER_CST
10051 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
10052 && TREE_INT_CST_HIGH (arg1) == -1)
10053 return omit_one_operand (type, integer_zero_node, arg0);
10055 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
10056 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
10057 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
10058 && (TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (arg0)))
10060 tree c = arg1;
10061 /* Also optimize A % (C << N) where C is a power of 2,
10062 to A & ((C << N) - 1). */
10063 if (TREE_CODE (arg1) == LSHIFT_EXPR)
10064 c = TREE_OPERAND (arg1, 0);
10066 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
10068 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1),
10069 arg1, integer_one_node);
10070 return fold_build2 (BIT_AND_EXPR, type,
10071 fold_convert (type, arg0),
10072 fold_convert (type, mask));
10076 /* X % -C is the same as X % C. */
10077 if (code == TRUNC_MOD_EXPR
10078 && !TYPE_UNSIGNED (type)
10079 && TREE_CODE (arg1) == INTEGER_CST
10080 && !TREE_CONSTANT_OVERFLOW (arg1)
10081 && TREE_INT_CST_HIGH (arg1) < 0
10082 && !flag_trapv
10083 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
10084 && !sign_bit_p (arg1, arg1))
10085 return fold_build2 (code, type, fold_convert (type, arg0),
10086 fold_convert (type, negate_expr (arg1)));
10088 /* X % -Y is the same as X % Y. */
10089 if (code == TRUNC_MOD_EXPR
10090 && !TYPE_UNSIGNED (type)
10091 && TREE_CODE (arg1) == NEGATE_EXPR
10092 && !flag_trapv)
10093 return fold_build2 (code, type, fold_convert (type, arg0),
10094 fold_convert (type, TREE_OPERAND (arg1, 0)));
10096 if (TREE_CODE (arg1) == INTEGER_CST
10097 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE)))
10098 return fold_convert (type, tem);
10100 return NULL_TREE;
10102 case LROTATE_EXPR:
10103 case RROTATE_EXPR:
10104 if (integer_all_onesp (arg0))
10105 return omit_one_operand (type, arg0, arg1);
10106 goto shift;
10108 case RSHIFT_EXPR:
10109 /* Optimize -1 >> x for arithmetic right shifts. */
10110 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
10111 return omit_one_operand (type, arg0, arg1);
10112 /* ... fall through ... */
10114 case LSHIFT_EXPR:
10115 shift:
10116 if (integer_zerop (arg1))
10117 return non_lvalue (fold_convert (type, arg0));
10118 if (integer_zerop (arg0))
10119 return omit_one_operand (type, arg0, arg1);
10121 /* Since negative shift count is not well-defined,
10122 don't try to compute it in the compiler. */
10123 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10124 return NULL_TREE;
10126 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
10127 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
10128 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
10129 && host_integerp (TREE_OPERAND (arg0, 1), false)
10130 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
10132 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
10133 + TREE_INT_CST_LOW (arg1));
10135 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
10136 being well defined. */
10137 if (low >= TYPE_PRECISION (type))
10139 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
10140 low = low % TYPE_PRECISION (type);
10141 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
10142 return build_int_cst (type, 0);
10143 else
10144 low = TYPE_PRECISION (type) - 1;
10147 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10148 build_int_cst (type, low));
10151 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10152 into x & ((unsigned)-1 >> c) for unsigned types. */
10153 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10154 || (TYPE_UNSIGNED (type)
10155 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10156 && host_integerp (arg1, false)
10157 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
10158 && host_integerp (TREE_OPERAND (arg0, 1), false)
10159 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
10161 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10162 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
10163 tree lshift;
10164 tree arg00;
10166 if (low0 == low1)
10168 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10170 lshift = build_int_cst (type, -1);
10171 lshift = int_const_binop (code, lshift, arg1, 0);
10173 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
10177 /* Rewrite an LROTATE_EXPR by a constant into an
10178 RROTATE_EXPR by a new constant. */
10179 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
10181 tree tem = build_int_cst (NULL_TREE,
10182 GET_MODE_BITSIZE (TYPE_MODE (type)));
10183 tem = fold_convert (TREE_TYPE (arg1), tem);
10184 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
10185 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
10188 /* If we have a rotate of a bit operation with the rotate count and
10189 the second operand of the bit operation both constant,
10190 permute the two operations. */
10191 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10192 && (TREE_CODE (arg0) == BIT_AND_EXPR
10193 || TREE_CODE (arg0) == BIT_IOR_EXPR
10194 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10195 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10196 return fold_build2 (TREE_CODE (arg0), type,
10197 fold_build2 (code, type,
10198 TREE_OPERAND (arg0, 0), arg1),
10199 fold_build2 (code, type,
10200 TREE_OPERAND (arg0, 1), arg1));
10202 /* Two consecutive rotates adding up to the width of the mode can
10203 be ignored. */
10204 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10205 && TREE_CODE (arg0) == RROTATE_EXPR
10206 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10207 && TREE_INT_CST_HIGH (arg1) == 0
10208 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
10209 && ((TREE_INT_CST_LOW (arg1)
10210 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
10211 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
10212 return TREE_OPERAND (arg0, 0);
10214 return NULL_TREE;
10216 case MIN_EXPR:
10217 if (operand_equal_p (arg0, arg1, 0))
10218 return omit_one_operand (type, arg0, arg1);
10219 if (INTEGRAL_TYPE_P (type)
10220 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
10221 return omit_one_operand (type, arg1, arg0);
10222 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
10223 if (tem)
10224 return tem;
10225 goto associate;
10227 case MAX_EXPR:
10228 if (operand_equal_p (arg0, arg1, 0))
10229 return omit_one_operand (type, arg0, arg1);
10230 if (INTEGRAL_TYPE_P (type)
10231 && TYPE_MAX_VALUE (type)
10232 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
10233 return omit_one_operand (type, arg1, arg0);
10234 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
10235 if (tem)
10236 return tem;
10237 goto associate;
10239 case TRUTH_ANDIF_EXPR:
10240 /* Note that the operands of this must be ints
10241 and their values must be 0 or 1.
10242 ("true" is a fixed value perhaps depending on the language.) */
10243 /* If first arg is constant zero, return it. */
10244 if (integer_zerop (arg0))
10245 return fold_convert (type, arg0);
10246 case TRUTH_AND_EXPR:
10247 /* If either arg is constant true, drop it. */
10248 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10249 return non_lvalue (fold_convert (type, arg1));
10250 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10251 /* Preserve sequence points. */
10252 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10253 return non_lvalue (fold_convert (type, arg0));
10254 /* If second arg is constant zero, result is zero, but first arg
10255 must be evaluated. */
10256 if (integer_zerop (arg1))
10257 return omit_one_operand (type, arg1, arg0);
10258 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10259 case will be handled here. */
10260 if (integer_zerop (arg0))
10261 return omit_one_operand (type, arg0, arg1);
10263 /* !X && X is always false. */
10264 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10265 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10266 return omit_one_operand (type, integer_zero_node, arg1);
10267 /* X && !X is always false. */
10268 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10269 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10270 return omit_one_operand (type, integer_zero_node, arg0);
10272 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10273 means A >= Y && A != MAX, but in this case we know that
10274 A < X <= MAX. */
10276 if (!TREE_SIDE_EFFECTS (arg0)
10277 && !TREE_SIDE_EFFECTS (arg1))
10279 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
10280 if (tem && !operand_equal_p (tem, arg0, 0))
10281 return fold_build2 (code, type, tem, arg1);
10283 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
10284 if (tem && !operand_equal_p (tem, arg1, 0))
10285 return fold_build2 (code, type, arg0, tem);
10288 truth_andor:
10289 /* We only do these simplifications if we are optimizing. */
10290 if (!optimize)
10291 return NULL_TREE;
10293 /* Check for things like (A || B) && (A || C). We can convert this
10294 to A || (B && C). Note that either operator can be any of the four
10295 truth and/or operations and the transformation will still be
10296 valid. Also note that we only care about order for the
10297 ANDIF and ORIF operators. If B contains side effects, this
10298 might change the truth-value of A. */
10299 if (TREE_CODE (arg0) == TREE_CODE (arg1)
10300 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
10301 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
10302 || TREE_CODE (arg0) == TRUTH_AND_EXPR
10303 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
10304 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
10306 tree a00 = TREE_OPERAND (arg0, 0);
10307 tree a01 = TREE_OPERAND (arg0, 1);
10308 tree a10 = TREE_OPERAND (arg1, 0);
10309 tree a11 = TREE_OPERAND (arg1, 1);
10310 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
10311 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
10312 && (code == TRUTH_AND_EXPR
10313 || code == TRUTH_OR_EXPR));
10315 if (operand_equal_p (a00, a10, 0))
10316 return fold_build2 (TREE_CODE (arg0), type, a00,
10317 fold_build2 (code, type, a01, a11));
10318 else if (commutative && operand_equal_p (a00, a11, 0))
10319 return fold_build2 (TREE_CODE (arg0), type, a00,
10320 fold_build2 (code, type, a01, a10));
10321 else if (commutative && operand_equal_p (a01, a10, 0))
10322 return fold_build2 (TREE_CODE (arg0), type, a01,
10323 fold_build2 (code, type, a00, a11));
10325 /* This case if tricky because we must either have commutative
10326 operators or else A10 must not have side-effects. */
10328 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
10329 && operand_equal_p (a01, a11, 0))
10330 return fold_build2 (TREE_CODE (arg0), type,
10331 fold_build2 (code, type, a00, a10),
10332 a01);
10335 /* See if we can build a range comparison. */
10336 if (0 != (tem = fold_range_test (code, type, op0, op1)))
10337 return tem;
10339 /* Check for the possibility of merging component references. If our
10340 lhs is another similar operation, try to merge its rhs with our
10341 rhs. Then try to merge our lhs and rhs. */
10342 if (TREE_CODE (arg0) == code
10343 && 0 != (tem = fold_truthop (code, type,
10344 TREE_OPERAND (arg0, 1), arg1)))
10345 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10347 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
10348 return tem;
10350 return NULL_TREE;
10352 case TRUTH_ORIF_EXPR:
10353 /* Note that the operands of this must be ints
10354 and their values must be 0 or true.
10355 ("true" is a fixed value perhaps depending on the language.) */
10356 /* If first arg is constant true, return it. */
10357 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10358 return fold_convert (type, arg0);
10359 case TRUTH_OR_EXPR:
10360 /* If either arg is constant zero, drop it. */
10361 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10362 return non_lvalue (fold_convert (type, arg1));
10363 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10364 /* Preserve sequence points. */
10365 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10366 return non_lvalue (fold_convert (type, arg0));
10367 /* If second arg is constant true, result is true, but we must
10368 evaluate first arg. */
10369 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10370 return omit_one_operand (type, arg1, arg0);
10371 /* Likewise for first arg, but note this only occurs here for
10372 TRUTH_OR_EXPR. */
10373 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10374 return omit_one_operand (type, arg0, arg1);
10376 /* !X || X is always true. */
10377 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10378 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10379 return omit_one_operand (type, integer_one_node, arg1);
10380 /* X || !X is always true. */
10381 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10382 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10383 return omit_one_operand (type, integer_one_node, arg0);
10385 goto truth_andor;
10387 case TRUTH_XOR_EXPR:
10388 /* If the second arg is constant zero, drop it. */
10389 if (integer_zerop (arg1))
10390 return non_lvalue (fold_convert (type, arg0));
10391 /* If the second arg is constant true, this is a logical inversion. */
10392 if (integer_onep (arg1))
10394 /* Only call invert_truthvalue if operand is a truth value. */
10395 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
10396 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
10397 else
10398 tem = invert_truthvalue (arg0);
10399 return non_lvalue (fold_convert (type, tem));
10401 /* Identical arguments cancel to zero. */
10402 if (operand_equal_p (arg0, arg1, 0))
10403 return omit_one_operand (type, integer_zero_node, arg0);
10405 /* !X ^ X is always true. */
10406 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10407 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10408 return omit_one_operand (type, integer_one_node, arg1);
10410 /* X ^ !X is always true. */
10411 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10412 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10413 return omit_one_operand (type, integer_one_node, arg0);
10415 return NULL_TREE;
10417 case EQ_EXPR:
10418 case NE_EXPR:
10419 tem = fold_comparison (code, type, op0, op1);
10420 if (tem != NULL_TREE)
10421 return tem;
10423 /* bool_var != 0 becomes bool_var. */
10424 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10425 && code == NE_EXPR)
10426 return non_lvalue (fold_convert (type, arg0));
10428 /* bool_var == 1 becomes bool_var. */
10429 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10430 && code == EQ_EXPR)
10431 return non_lvalue (fold_convert (type, arg0));
10433 /* bool_var != 1 becomes !bool_var. */
10434 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10435 && code == NE_EXPR)
10436 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
10438 /* bool_var == 0 becomes !bool_var. */
10439 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10440 && code == EQ_EXPR)
10441 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
10443 /* If this is an equality comparison of the address of a non-weak
10444 object against zero, then we know the result. */
10445 if (TREE_CODE (arg0) == ADDR_EXPR
10446 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
10447 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
10448 && integer_zerop (arg1))
10449 return constant_boolean_node (code != EQ_EXPR, type);
10451 /* If this is an equality comparison of the address of two non-weak,
10452 unaliased symbols neither of which are extern (since we do not
10453 have access to attributes for externs), then we know the result. */
10454 if (TREE_CODE (arg0) == ADDR_EXPR
10455 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
10456 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
10457 && ! lookup_attribute ("alias",
10458 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
10459 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
10460 && TREE_CODE (arg1) == ADDR_EXPR
10461 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
10462 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
10463 && ! lookup_attribute ("alias",
10464 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
10465 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
10467 /* We know that we're looking at the address of two
10468 non-weak, unaliased, static _DECL nodes.
10470 It is both wasteful and incorrect to call operand_equal_p
10471 to compare the two ADDR_EXPR nodes. It is wasteful in that
10472 all we need to do is test pointer equality for the arguments
10473 to the two ADDR_EXPR nodes. It is incorrect to use
10474 operand_equal_p as that function is NOT equivalent to a
10475 C equality test. It can in fact return false for two
10476 objects which would test as equal using the C equality
10477 operator. */
10478 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
10479 return constant_boolean_node (equal
10480 ? code == EQ_EXPR : code != EQ_EXPR,
10481 type);
10484 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
10485 a MINUS_EXPR of a constant, we can convert it into a comparison with
10486 a revised constant as long as no overflow occurs. */
10487 if (TREE_CODE (arg1) == INTEGER_CST
10488 && (TREE_CODE (arg0) == PLUS_EXPR
10489 || TREE_CODE (arg0) == MINUS_EXPR)
10490 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10491 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
10492 ? MINUS_EXPR : PLUS_EXPR,
10493 fold_convert (TREE_TYPE (arg0), arg1),
10494 TREE_OPERAND (arg0, 1), 0))
10495 && ! TREE_CONSTANT_OVERFLOW (tem))
10496 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10498 /* Similarly for a NEGATE_EXPR. */
10499 if (TREE_CODE (arg0) == NEGATE_EXPR
10500 && TREE_CODE (arg1) == INTEGER_CST
10501 && 0 != (tem = negate_expr (arg1))
10502 && TREE_CODE (tem) == INTEGER_CST
10503 && ! TREE_CONSTANT_OVERFLOW (tem))
10504 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
10506 /* If we have X - Y == 0, we can convert that to X == Y and similarly
10507 for !=. Don't do this for ordered comparisons due to overflow. */
10508 if (TREE_CODE (arg0) == MINUS_EXPR
10509 && integer_zerop (arg1))
10510 return fold_build2 (code, type,
10511 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
10513 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
10514 if (TREE_CODE (arg0) == ABS_EXPR
10515 && (integer_zerop (arg1) || real_zerop (arg1)))
10516 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
10518 /* If this is an EQ or NE comparison with zero and ARG0 is
10519 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10520 two operations, but the latter can be done in one less insn
10521 on machines that have only two-operand insns or on which a
10522 constant cannot be the first operand. */
10523 if (TREE_CODE (arg0) == BIT_AND_EXPR
10524 && integer_zerop (arg1))
10526 tree arg00 = TREE_OPERAND (arg0, 0);
10527 tree arg01 = TREE_OPERAND (arg0, 1);
10528 if (TREE_CODE (arg00) == LSHIFT_EXPR
10529 && integer_onep (TREE_OPERAND (arg00, 0)))
10530 return
10531 fold_build2 (code, type,
10532 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10533 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
10534 arg01, TREE_OPERAND (arg00, 1)),
10535 fold_convert (TREE_TYPE (arg0),
10536 integer_one_node)),
10537 arg1);
10538 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
10539 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
10540 return
10541 fold_build2 (code, type,
10542 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10543 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
10544 arg00, TREE_OPERAND (arg01, 1)),
10545 fold_convert (TREE_TYPE (arg0),
10546 integer_one_node)),
10547 arg1);
10550 /* If this is an NE or EQ comparison of zero against the result of a
10551 signed MOD operation whose second operand is a power of 2, make
10552 the MOD operation unsigned since it is simpler and equivalent. */
10553 if (integer_zerop (arg1)
10554 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10555 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10556 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10557 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10558 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10559 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10561 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
10562 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
10563 fold_convert (newtype,
10564 TREE_OPERAND (arg0, 0)),
10565 fold_convert (newtype,
10566 TREE_OPERAND (arg0, 1)));
10568 return fold_build2 (code, type, newmod,
10569 fold_convert (newtype, arg1));
10572 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10573 C1 is a valid shift constant, and C2 is a power of two, i.e.
10574 a single bit. */
10575 if (TREE_CODE (arg0) == BIT_AND_EXPR
10576 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10577 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10578 == INTEGER_CST
10579 && integer_pow2p (TREE_OPERAND (arg0, 1))
10580 && integer_zerop (arg1))
10582 tree itype = TREE_TYPE (arg0);
10583 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
10584 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10586 /* Check for a valid shift count. */
10587 if (TREE_INT_CST_HIGH (arg001) == 0
10588 && TREE_INT_CST_LOW (arg001) < prec)
10590 tree arg01 = TREE_OPERAND (arg0, 1);
10591 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10592 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10593 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10594 can be rewritten as (X & (C2 << C1)) != 0. */
10595 if ((log2 + TREE_INT_CST_LOW (arg01)) < prec)
10597 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
10598 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
10599 return fold_build2 (code, type, tem, arg1);
10601 /* Otherwise, for signed (arithmetic) shifts,
10602 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10603 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10604 else if (!TYPE_UNSIGNED (itype))
10605 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10606 arg000, build_int_cst (itype, 0));
10607 /* Otherwise, of unsigned (logical) shifts,
10608 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10609 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10610 else
10611 return omit_one_operand (type,
10612 code == EQ_EXPR ? integer_one_node
10613 : integer_zero_node,
10614 arg000);
10618 /* If this is an NE comparison of zero with an AND of one, remove the
10619 comparison since the AND will give the correct value. */
10620 if (code == NE_EXPR
10621 && integer_zerop (arg1)
10622 && TREE_CODE (arg0) == BIT_AND_EXPR
10623 && integer_onep (TREE_OPERAND (arg0, 1)))
10624 return fold_convert (type, arg0);
10626 /* If we have (A & C) == C where C is a power of 2, convert this into
10627 (A & C) != 0. Similarly for NE_EXPR. */
10628 if (TREE_CODE (arg0) == BIT_AND_EXPR
10629 && integer_pow2p (TREE_OPERAND (arg0, 1))
10630 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10631 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10632 arg0, fold_convert (TREE_TYPE (arg0),
10633 integer_zero_node));
10635 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
10636 bit, then fold the expression into A < 0 or A >= 0. */
10637 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
10638 if (tem)
10639 return tem;
10641 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10642 Similarly for NE_EXPR. */
10643 if (TREE_CODE (arg0) == BIT_AND_EXPR
10644 && TREE_CODE (arg1) == INTEGER_CST
10645 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10647 tree notc = fold_build1 (BIT_NOT_EXPR,
10648 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10649 TREE_OPERAND (arg0, 1));
10650 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10651 arg1, notc);
10652 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10653 if (integer_nonzerop (dandnotc))
10654 return omit_one_operand (type, rslt, arg0);
10657 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
10658 Similarly for NE_EXPR. */
10659 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10660 && TREE_CODE (arg1) == INTEGER_CST
10661 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10663 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
10664 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10665 TREE_OPERAND (arg0, 1), notd);
10666 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10667 if (integer_nonzerop (candnotd))
10668 return omit_one_operand (type, rslt, arg0);
10671 /* If this is a comparison of a field, we may be able to simplify it. */
10672 if (((TREE_CODE (arg0) == COMPONENT_REF
10673 && lang_hooks.can_use_bit_fields_p ())
10674 || TREE_CODE (arg0) == BIT_FIELD_REF)
10675 /* Handle the constant case even without -O
10676 to make sure the warnings are given. */
10677 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10679 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
10680 if (t1)
10681 return t1;
10684 /* Optimize comparisons of strlen vs zero to a compare of the
10685 first character of the string vs zero. To wit,
10686 strlen(ptr) == 0 => *ptr == 0
10687 strlen(ptr) != 0 => *ptr != 0
10688 Other cases should reduce to one of these two (or a constant)
10689 due to the return value of strlen being unsigned. */
10690 if (TREE_CODE (arg0) == CALL_EXPR
10691 && integer_zerop (arg1))
10693 tree fndecl = get_callee_fndecl (arg0);
10694 tree arglist;
10696 if (fndecl
10697 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10698 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10699 && (arglist = TREE_OPERAND (arg0, 1))
10700 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
10701 && ! TREE_CHAIN (arglist))
10703 tree iref = build_fold_indirect_ref (TREE_VALUE (arglist));
10704 return fold_build2 (code, type, iref,
10705 build_int_cst (TREE_TYPE (iref), 0));
10709 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10710 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10711 if (TREE_CODE (arg0) == RSHIFT_EXPR
10712 && integer_zerop (arg1)
10713 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10715 tree arg00 = TREE_OPERAND (arg0, 0);
10716 tree arg01 = TREE_OPERAND (arg0, 1);
10717 tree itype = TREE_TYPE (arg00);
10718 if (TREE_INT_CST_HIGH (arg01) == 0
10719 && TREE_INT_CST_LOW (arg01)
10720 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
10722 if (TYPE_UNSIGNED (itype))
10724 itype = lang_hooks.types.signed_type (itype);
10725 arg00 = fold_convert (itype, arg00);
10727 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10728 type, arg00, build_int_cst (itype, 0));
10732 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
10733 if (integer_zerop (arg1)
10734 && TREE_CODE (arg0) == BIT_XOR_EXPR)
10735 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10736 TREE_OPERAND (arg0, 1));
10738 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
10739 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10740 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10741 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10742 build_int_cst (TREE_TYPE (arg1), 0));
10743 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
10744 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10745 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10746 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10747 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
10748 build_int_cst (TREE_TYPE (arg1), 0));
10750 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
10751 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10752 && TREE_CODE (arg1) == INTEGER_CST
10753 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10754 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10755 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
10756 TREE_OPERAND (arg0, 1), arg1));
10758 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10759 (X & C) == 0 when C is a single bit. */
10760 if (TREE_CODE (arg0) == BIT_AND_EXPR
10761 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10762 && integer_zerop (arg1)
10763 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10765 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
10766 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10767 TREE_OPERAND (arg0, 1));
10768 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10769 type, tem, arg1);
10772 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10773 constant C is a power of two, i.e. a single bit. */
10774 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10775 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10776 && integer_zerop (arg1)
10777 && integer_pow2p (TREE_OPERAND (arg0, 1))
10778 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10779 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10781 tree arg00 = TREE_OPERAND (arg0, 0);
10782 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10783 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10786 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10787 when is C is a power of two, i.e. a single bit. */
10788 if (TREE_CODE (arg0) == BIT_AND_EXPR
10789 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10790 && integer_zerop (arg1)
10791 && integer_pow2p (TREE_OPERAND (arg0, 1))
10792 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10793 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10795 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10796 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
10797 arg000, TREE_OPERAND (arg0, 1));
10798 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10799 tem, build_int_cst (TREE_TYPE (tem), 0));
10802 if (integer_zerop (arg1)
10803 && tree_expr_nonzero_p (arg0))
10805 tree res = constant_boolean_node (code==NE_EXPR, type);
10806 return omit_one_operand (type, res, arg0);
10809 /* Fold -X op -Y as X op Y, where op is eq/ne. */
10810 if (TREE_CODE (arg0) == NEGATE_EXPR
10811 && TREE_CODE (arg1) == NEGATE_EXPR)
10812 return fold_build2 (code, type,
10813 TREE_OPERAND (arg0, 0),
10814 TREE_OPERAND (arg1, 0));
10816 return NULL_TREE;
10818 case LT_EXPR:
10819 case GT_EXPR:
10820 case LE_EXPR:
10821 case GE_EXPR:
10822 tem = fold_comparison (code, type, op0, op1);
10823 if (tem != NULL_TREE)
10824 return tem;
10826 /* Transform comparisons of the form X +- C CMP X. */
10827 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10828 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10829 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10830 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
10831 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10832 && !TYPE_UNSIGNED (TREE_TYPE (arg1))
10833 && !(flag_wrapv || flag_trapv))))
10835 tree arg01 = TREE_OPERAND (arg0, 1);
10836 enum tree_code code0 = TREE_CODE (arg0);
10837 int is_positive;
10839 if (TREE_CODE (arg01) == REAL_CST)
10840 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10841 else
10842 is_positive = tree_int_cst_sgn (arg01);
10844 /* (X - c) > X becomes false. */
10845 if (code == GT_EXPR
10846 && ((code0 == MINUS_EXPR && is_positive >= 0)
10847 || (code0 == PLUS_EXPR && is_positive <= 0)))
10848 return constant_boolean_node (0, type);
10850 /* Likewise (X + c) < X becomes false. */
10851 if (code == LT_EXPR
10852 && ((code0 == PLUS_EXPR && is_positive >= 0)
10853 || (code0 == MINUS_EXPR && is_positive <= 0)))
10854 return constant_boolean_node (0, type);
10856 /* Convert (X - c) <= X to true. */
10857 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
10858 && code == LE_EXPR
10859 && ((code0 == MINUS_EXPR && is_positive >= 0)
10860 || (code0 == PLUS_EXPR && is_positive <= 0)))
10861 return constant_boolean_node (1, type);
10863 /* Convert (X + c) >= X to true. */
10864 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
10865 && code == GE_EXPR
10866 && ((code0 == PLUS_EXPR && is_positive >= 0)
10867 || (code0 == MINUS_EXPR && is_positive <= 0)))
10868 return constant_boolean_node (1, type);
10870 if (TREE_CODE (arg01) == INTEGER_CST)
10872 /* Convert X + c > X and X - c < X to true for integers. */
10873 if (code == GT_EXPR
10874 && ((code0 == PLUS_EXPR && is_positive > 0)
10875 || (code0 == MINUS_EXPR && is_positive < 0)))
10876 return constant_boolean_node (1, type);
10878 if (code == LT_EXPR
10879 && ((code0 == MINUS_EXPR && is_positive > 0)
10880 || (code0 == PLUS_EXPR && is_positive < 0)))
10881 return constant_boolean_node (1, type);
10883 /* Convert X + c <= X and X - c >= X to false for integers. */
10884 if (code == LE_EXPR
10885 && ((code0 == PLUS_EXPR && is_positive > 0)
10886 || (code0 == MINUS_EXPR && is_positive < 0)))
10887 return constant_boolean_node (0, type);
10889 if (code == GE_EXPR
10890 && ((code0 == MINUS_EXPR && is_positive > 0)
10891 || (code0 == PLUS_EXPR && is_positive < 0)))
10892 return constant_boolean_node (0, type);
10896 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
10897 This transformation affects the cases which are handled in later
10898 optimizations involving comparisons with non-negative constants. */
10899 if (TREE_CODE (arg1) == INTEGER_CST
10900 && TREE_CODE (arg0) != INTEGER_CST
10901 && tree_int_cst_sgn (arg1) > 0)
10903 if (code == GE_EXPR)
10905 arg1 = const_binop (MINUS_EXPR, arg1,
10906 build_int_cst (TREE_TYPE (arg1), 1), 0);
10907 return fold_build2 (GT_EXPR, type, arg0,
10908 fold_convert (TREE_TYPE (arg0), arg1));
10910 if (code == LT_EXPR)
10912 arg1 = const_binop (MINUS_EXPR, arg1,
10913 build_int_cst (TREE_TYPE (arg1), 1), 0);
10914 return fold_build2 (LE_EXPR, type, arg0,
10915 fold_convert (TREE_TYPE (arg0), arg1));
10919 /* Comparisons with the highest or lowest possible integer of
10920 the specified size will have known values. */
10922 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
10924 if (TREE_CODE (arg1) == INTEGER_CST
10925 && ! TREE_CONSTANT_OVERFLOW (arg1)
10926 && width <= 2 * HOST_BITS_PER_WIDE_INT
10927 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10928 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10930 HOST_WIDE_INT signed_max_hi;
10931 unsigned HOST_WIDE_INT signed_max_lo;
10932 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
10934 if (width <= HOST_BITS_PER_WIDE_INT)
10936 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
10937 - 1;
10938 signed_max_hi = 0;
10939 max_hi = 0;
10941 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
10943 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
10944 min_lo = 0;
10945 min_hi = 0;
10947 else
10949 max_lo = signed_max_lo;
10950 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
10951 min_hi = -1;
10954 else
10956 width -= HOST_BITS_PER_WIDE_INT;
10957 signed_max_lo = -1;
10958 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
10959 - 1;
10960 max_lo = -1;
10961 min_lo = 0;
10963 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
10965 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
10966 min_hi = 0;
10968 else
10970 max_hi = signed_max_hi;
10971 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
10975 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
10976 && TREE_INT_CST_LOW (arg1) == max_lo)
10977 switch (code)
10979 case GT_EXPR:
10980 return omit_one_operand (type, integer_zero_node, arg0);
10982 case GE_EXPR:
10983 return fold_build2 (EQ_EXPR, type, arg0, arg1);
10985 case LE_EXPR:
10986 return omit_one_operand (type, integer_one_node, arg0);
10988 case LT_EXPR:
10989 return fold_build2 (NE_EXPR, type, arg0, arg1);
10991 /* The GE_EXPR and LT_EXPR cases above are not normally
10992 reached because of previous transformations. */
10994 default:
10995 break;
10997 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
10998 == max_hi
10999 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
11000 switch (code)
11002 case GT_EXPR:
11003 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
11004 return fold_build2 (EQ_EXPR, type, arg0, arg1);
11005 case LE_EXPR:
11006 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
11007 return fold_build2 (NE_EXPR, type, arg0, arg1);
11008 default:
11009 break;
11011 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
11012 == min_hi
11013 && TREE_INT_CST_LOW (arg1) == min_lo)
11014 switch (code)
11016 case LT_EXPR:
11017 return omit_one_operand (type, integer_zero_node, arg0);
11019 case LE_EXPR:
11020 return fold_build2 (EQ_EXPR, type, arg0, arg1);
11022 case GE_EXPR:
11023 return omit_one_operand (type, integer_one_node, arg0);
11025 case GT_EXPR:
11026 return fold_build2 (NE_EXPR, type, op0, op1);
11028 default:
11029 break;
11031 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
11032 == min_hi
11033 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
11034 switch (code)
11036 case GE_EXPR:
11037 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
11038 return fold_build2 (NE_EXPR, type, arg0, arg1);
11039 case LT_EXPR:
11040 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
11041 return fold_build2 (EQ_EXPR, type, arg0, arg1);
11042 default:
11043 break;
11046 else if (!in_gimple_form
11047 && TREE_INT_CST_HIGH (arg1) == signed_max_hi
11048 && TREE_INT_CST_LOW (arg1) == signed_max_lo
11049 && TYPE_UNSIGNED (TREE_TYPE (arg1))
11050 /* signed_type does not work on pointer types. */
11051 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
11053 /* The following case also applies to X < signed_max+1
11054 and X >= signed_max+1 because previous transformations. */
11055 if (code == LE_EXPR || code == GT_EXPR)
11057 tree st0, st1;
11058 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
11059 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
11060 return fold_build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
11061 type, fold_convert (st0, arg0),
11062 build_int_cst (st1, 0));
11068 /* If we are comparing an ABS_EXPR with a constant, we can
11069 convert all the cases into explicit comparisons, but they may
11070 well not be faster than doing the ABS and one comparison.
11071 But ABS (X) <= C is a range comparison, which becomes a subtraction
11072 and a comparison, and is probably faster. */
11073 if (code == LE_EXPR
11074 && TREE_CODE (arg1) == INTEGER_CST
11075 && TREE_CODE (arg0) == ABS_EXPR
11076 && ! TREE_SIDE_EFFECTS (arg0)
11077 && (0 != (tem = negate_expr (arg1)))
11078 && TREE_CODE (tem) == INTEGER_CST
11079 && ! TREE_CONSTANT_OVERFLOW (tem))
11080 return fold_build2 (TRUTH_ANDIF_EXPR, type,
11081 build2 (GE_EXPR, type,
11082 TREE_OPERAND (arg0, 0), tem),
11083 build2 (LE_EXPR, type,
11084 TREE_OPERAND (arg0, 0), arg1));
11086 /* Convert ABS_EXPR<x> >= 0 to true. */
11087 if (code == GE_EXPR
11088 && tree_expr_nonnegative_p (arg0)
11089 && (integer_zerop (arg1)
11090 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11091 && real_zerop (arg1))))
11092 return omit_one_operand (type, integer_one_node, arg0);
11094 /* Convert ABS_EXPR<x> < 0 to false. */
11095 if (code == LT_EXPR
11096 && tree_expr_nonnegative_p (arg0)
11097 && (integer_zerop (arg1) || real_zerop (arg1)))
11098 return omit_one_operand (type, integer_zero_node, arg0);
11100 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11101 and similarly for >= into !=. */
11102 if ((code == LT_EXPR || code == GE_EXPR)
11103 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11104 && TREE_CODE (arg1) == LSHIFT_EXPR
11105 && integer_onep (TREE_OPERAND (arg1, 0)))
11106 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11107 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11108 TREE_OPERAND (arg1, 1)),
11109 build_int_cst (TREE_TYPE (arg0), 0));
11111 if ((code == LT_EXPR || code == GE_EXPR)
11112 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11113 && (TREE_CODE (arg1) == NOP_EXPR
11114 || TREE_CODE (arg1) == CONVERT_EXPR)
11115 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11116 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11117 return
11118 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11119 fold_convert (TREE_TYPE (arg0),
11120 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11121 TREE_OPERAND (TREE_OPERAND (arg1, 0),
11122 1))),
11123 build_int_cst (TREE_TYPE (arg0), 0));
11125 return NULL_TREE;
11127 case UNORDERED_EXPR:
11128 case ORDERED_EXPR:
11129 case UNLT_EXPR:
11130 case UNLE_EXPR:
11131 case UNGT_EXPR:
11132 case UNGE_EXPR:
11133 case UNEQ_EXPR:
11134 case LTGT_EXPR:
11135 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
11137 t1 = fold_relational_const (code, type, arg0, arg1);
11138 if (t1 != NULL_TREE)
11139 return t1;
11142 /* If the first operand is NaN, the result is constant. */
11143 if (TREE_CODE (arg0) == REAL_CST
11144 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
11145 && (code != LTGT_EXPR || ! flag_trapping_math))
11147 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11148 ? integer_zero_node
11149 : integer_one_node;
11150 return omit_one_operand (type, t1, arg1);
11153 /* If the second operand is NaN, the result is constant. */
11154 if (TREE_CODE (arg1) == REAL_CST
11155 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
11156 && (code != LTGT_EXPR || ! flag_trapping_math))
11158 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
11159 ? integer_zero_node
11160 : integer_one_node;
11161 return omit_one_operand (type, t1, arg0);
11164 /* Simplify unordered comparison of something with itself. */
11165 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
11166 && operand_equal_p (arg0, arg1, 0))
11167 return constant_boolean_node (1, type);
11169 if (code == LTGT_EXPR
11170 && !flag_trapping_math
11171 && operand_equal_p (arg0, arg1, 0))
11172 return constant_boolean_node (0, type);
11174 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11176 tree targ0 = strip_float_extensions (arg0);
11177 tree targ1 = strip_float_extensions (arg1);
11178 tree newtype = TREE_TYPE (targ0);
11180 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11181 newtype = TREE_TYPE (targ1);
11183 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11184 return fold_build2 (code, type, fold_convert (newtype, targ0),
11185 fold_convert (newtype, targ1));
11188 return NULL_TREE;
11190 case COMPOUND_EXPR:
11191 /* When pedantic, a compound expression can be neither an lvalue
11192 nor an integer constant expression. */
11193 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11194 return NULL_TREE;
11195 /* Don't let (0, 0) be null pointer constant. */
11196 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11197 : fold_convert (type, arg1);
11198 return pedantic_non_lvalue (tem);
11200 case COMPLEX_EXPR:
11201 if ((TREE_CODE (arg0) == REAL_CST
11202 && TREE_CODE (arg1) == REAL_CST)
11203 || (TREE_CODE (arg0) == INTEGER_CST
11204 && TREE_CODE (arg1) == INTEGER_CST))
11205 return build_complex (type, arg0, arg1);
11206 return NULL_TREE;
11208 case ASSERT_EXPR:
11209 /* An ASSERT_EXPR should never be passed to fold_binary. */
11210 gcc_unreachable ();
11212 default:
11213 return NULL_TREE;
11214 } /* switch (code) */
11217 /* Callback for walk_tree, looking for LABEL_EXPR.
11218 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
11219 Do not check the sub-tree of GOTO_EXPR. */
11221 static tree
11222 contains_label_1 (tree *tp,
11223 int *walk_subtrees,
11224 void *data ATTRIBUTE_UNUSED)
11226 switch (TREE_CODE (*tp))
11228 case LABEL_EXPR:
11229 return *tp;
11230 case GOTO_EXPR:
11231 *walk_subtrees = 0;
11232 /* no break */
11233 default:
11234 return NULL_TREE;
11238 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
11239 accessible from outside the sub-tree. Returns NULL_TREE if no
11240 addressable label is found. */
11242 static bool
11243 contains_label_p (tree st)
11245 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
11248 /* Fold a ternary expression of code CODE and type TYPE with operands
11249 OP0, OP1, and OP2. Return the folded expression if folding is
11250 successful. Otherwise, return NULL_TREE. */
11252 tree
11253 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
11255 tree tem;
11256 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
11257 enum tree_code_class kind = TREE_CODE_CLASS (code);
11259 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11260 && TREE_CODE_LENGTH (code) == 3);
11262 /* Strip any conversions that don't change the mode. This is safe
11263 for every expression, except for a comparison expression because
11264 its signedness is derived from its operands. So, in the latter
11265 case, only strip conversions that don't change the signedness.
11267 Note that this is done as an internal manipulation within the
11268 constant folder, in order to find the simplest representation of
11269 the arguments so that their form can be studied. In any cases,
11270 the appropriate type conversions should be put back in the tree
11271 that will get out of the constant folder. */
11272 if (op0)
11274 arg0 = op0;
11275 STRIP_NOPS (arg0);
11278 if (op1)
11280 arg1 = op1;
11281 STRIP_NOPS (arg1);
11284 switch (code)
11286 case COMPONENT_REF:
11287 if (TREE_CODE (arg0) == CONSTRUCTOR
11288 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11290 unsigned HOST_WIDE_INT idx;
11291 tree field, value;
11292 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11293 if (field == arg1)
11294 return value;
11296 return NULL_TREE;
11298 case COND_EXPR:
11299 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11300 so all simple results must be passed through pedantic_non_lvalue. */
11301 if (TREE_CODE (arg0) == INTEGER_CST)
11303 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11304 tem = integer_zerop (arg0) ? op2 : op1;
11305 /* Only optimize constant conditions when the selected branch
11306 has the same type as the COND_EXPR. This avoids optimizing
11307 away "c ? x : throw", where the throw has a void type.
11308 Avoid throwing away that operand which contains label. */
11309 if ((!TREE_SIDE_EFFECTS (unused_op)
11310 || !contains_label_p (unused_op))
11311 && (! VOID_TYPE_P (TREE_TYPE (tem))
11312 || VOID_TYPE_P (type)))
11313 return pedantic_non_lvalue (tem);
11314 return NULL_TREE;
11316 if (operand_equal_p (arg1, op2, 0))
11317 return pedantic_omit_one_operand (type, arg1, arg0);
11319 /* If we have A op B ? A : C, we may be able to convert this to a
11320 simpler expression, depending on the operation and the values
11321 of B and C. Signed zeros prevent all of these transformations,
11322 for reasons given above each one.
11324 Also try swapping the arguments and inverting the conditional. */
11325 if (COMPARISON_CLASS_P (arg0)
11326 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11327 arg1, TREE_OPERAND (arg0, 1))
11328 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
11330 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
11331 if (tem)
11332 return tem;
11335 if (COMPARISON_CLASS_P (arg0)
11336 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11337 op2,
11338 TREE_OPERAND (arg0, 1))
11339 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
11341 tem = fold_truth_not_expr (arg0);
11342 if (tem && COMPARISON_CLASS_P (tem))
11344 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
11345 if (tem)
11346 return tem;
11350 /* If the second operand is simpler than the third, swap them
11351 since that produces better jump optimization results. */
11352 if (truth_value_p (TREE_CODE (arg0))
11353 && tree_swap_operands_p (op1, op2, false))
11355 /* See if this can be inverted. If it can't, possibly because
11356 it was a floating-point inequality comparison, don't do
11357 anything. */
11358 tem = fold_truth_not_expr (arg0);
11359 if (tem)
11360 return fold_build3 (code, type, tem, op2, op1);
11363 /* Convert A ? 1 : 0 to simply A. */
11364 if (integer_onep (op1)
11365 && integer_zerop (op2)
11366 /* If we try to convert OP0 to our type, the
11367 call to fold will try to move the conversion inside
11368 a COND, which will recurse. In that case, the COND_EXPR
11369 is probably the best choice, so leave it alone. */
11370 && type == TREE_TYPE (arg0))
11371 return pedantic_non_lvalue (arg0);
11373 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11374 over COND_EXPR in cases such as floating point comparisons. */
11375 if (integer_zerop (op1)
11376 && integer_onep (op2)
11377 && truth_value_p (TREE_CODE (arg0)))
11378 return pedantic_non_lvalue (fold_convert (type,
11379 invert_truthvalue (arg0)));
11381 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11382 if (TREE_CODE (arg0) == LT_EXPR
11383 && integer_zerop (TREE_OPERAND (arg0, 1))
11384 && integer_zerop (op2)
11385 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11386 return fold_convert (type,
11387 fold_build2 (BIT_AND_EXPR,
11388 TREE_TYPE (tem), tem,
11389 fold_convert (TREE_TYPE (tem), arg1)));
11391 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11392 already handled above. */
11393 if (TREE_CODE (arg0) == BIT_AND_EXPR
11394 && integer_onep (TREE_OPERAND (arg0, 1))
11395 && integer_zerop (op2)
11396 && integer_pow2p (arg1))
11398 tree tem = TREE_OPERAND (arg0, 0);
11399 STRIP_NOPS (tem);
11400 if (TREE_CODE (tem) == RSHIFT_EXPR
11401 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
11402 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11403 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
11404 return fold_build2 (BIT_AND_EXPR, type,
11405 TREE_OPERAND (tem, 0), arg1);
11408 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11409 is probably obsolete because the first operand should be a
11410 truth value (that's why we have the two cases above), but let's
11411 leave it in until we can confirm this for all front-ends. */
11412 if (integer_zerop (op2)
11413 && TREE_CODE (arg0) == NE_EXPR
11414 && integer_zerop (TREE_OPERAND (arg0, 1))
11415 && integer_pow2p (arg1)
11416 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11417 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11418 arg1, OEP_ONLY_CONST))
11419 return pedantic_non_lvalue (fold_convert (type,
11420 TREE_OPERAND (arg0, 0)));
11422 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11423 if (integer_zerop (op2)
11424 && truth_value_p (TREE_CODE (arg0))
11425 && truth_value_p (TREE_CODE (arg1)))
11426 return fold_build2 (TRUTH_ANDIF_EXPR, type,
11427 fold_convert (type, arg0),
11428 arg1);
11430 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11431 if (integer_onep (op2)
11432 && truth_value_p (TREE_CODE (arg0))
11433 && truth_value_p (TREE_CODE (arg1)))
11435 /* Only perform transformation if ARG0 is easily inverted. */
11436 tem = fold_truth_not_expr (arg0);
11437 if (tem)
11438 return fold_build2 (TRUTH_ORIF_EXPR, type,
11439 fold_convert (type, tem),
11440 arg1);
11443 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11444 if (integer_zerop (arg1)
11445 && truth_value_p (TREE_CODE (arg0))
11446 && truth_value_p (TREE_CODE (op2)))
11448 /* Only perform transformation if ARG0 is easily inverted. */
11449 tem = fold_truth_not_expr (arg0);
11450 if (tem)
11451 return fold_build2 (TRUTH_ANDIF_EXPR, type,
11452 fold_convert (type, tem),
11453 op2);
11456 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11457 if (integer_onep (arg1)
11458 && truth_value_p (TREE_CODE (arg0))
11459 && truth_value_p (TREE_CODE (op2)))
11460 return fold_build2 (TRUTH_ORIF_EXPR, type,
11461 fold_convert (type, arg0),
11462 op2);
11464 return NULL_TREE;
11466 case CALL_EXPR:
11467 /* Check for a built-in function. */
11468 if (TREE_CODE (op0) == ADDR_EXPR
11469 && TREE_CODE (TREE_OPERAND (op0, 0)) == FUNCTION_DECL
11470 && DECL_BUILT_IN (TREE_OPERAND (op0, 0)))
11471 return fold_builtin (TREE_OPERAND (op0, 0), op1, false);
11472 return NULL_TREE;
11474 case BIT_FIELD_REF:
11475 if (TREE_CODE (arg0) == VECTOR_CST
11476 && type == TREE_TYPE (TREE_TYPE (arg0))
11477 && host_integerp (arg1, 1)
11478 && host_integerp (op2, 1))
11480 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
11481 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
11483 if (width != 0
11484 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
11485 && (idx % width) == 0
11486 && (idx = idx / width)
11487 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11489 tree elements = TREE_VECTOR_CST_ELTS (arg0);
11490 while (idx-- > 0 && elements)
11491 elements = TREE_CHAIN (elements);
11492 if (elements)
11493 return TREE_VALUE (elements);
11494 else
11495 return fold_convert (type, integer_zero_node);
11498 return NULL_TREE;
11500 default:
11501 return NULL_TREE;
11502 } /* switch (code) */
11505 /* Perform constant folding and related simplification of EXPR.
11506 The related simplifications include x*1 => x, x*0 => 0, etc.,
11507 and application of the associative law.
11508 NOP_EXPR conversions may be removed freely (as long as we
11509 are careful not to change the type of the overall expression).
11510 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11511 but we can constant-fold them if they have constant operands. */
11513 #ifdef ENABLE_FOLD_CHECKING
11514 # define fold(x) fold_1 (x)
11515 static tree fold_1 (tree);
11516 static
11517 #endif
11518 tree
11519 fold (tree expr)
11521 const tree t = expr;
11522 enum tree_code code = TREE_CODE (t);
11523 enum tree_code_class kind = TREE_CODE_CLASS (code);
11524 tree tem;
11526 /* Return right away if a constant. */
11527 if (kind == tcc_constant)
11528 return t;
11530 if (IS_EXPR_CODE_CLASS (kind))
11532 tree type = TREE_TYPE (t);
11533 tree op0, op1, op2;
11535 switch (TREE_CODE_LENGTH (code))
11537 case 1:
11538 op0 = TREE_OPERAND (t, 0);
11539 tem = fold_unary (code, type, op0);
11540 return tem ? tem : expr;
11541 case 2:
11542 op0 = TREE_OPERAND (t, 0);
11543 op1 = TREE_OPERAND (t, 1);
11544 tem = fold_binary (code, type, op0, op1);
11545 return tem ? tem : expr;
11546 case 3:
11547 op0 = TREE_OPERAND (t, 0);
11548 op1 = TREE_OPERAND (t, 1);
11549 op2 = TREE_OPERAND (t, 2);
11550 tem = fold_ternary (code, type, op0, op1, op2);
11551 return tem ? tem : expr;
11552 default:
11553 break;
11557 switch (code)
11559 case CONST_DECL:
11560 return fold (DECL_INITIAL (t));
11562 default:
11563 return t;
11564 } /* switch (code) */
11567 #ifdef ENABLE_FOLD_CHECKING
11568 #undef fold
11570 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
11571 static void fold_check_failed (tree, tree);
11572 void print_fold_checksum (tree);
11574 /* When --enable-checking=fold, compute a digest of expr before
11575 and after actual fold call to see if fold did not accidentally
11576 change original expr. */
11578 tree
11579 fold (tree expr)
11581 tree ret;
11582 struct md5_ctx ctx;
11583 unsigned char checksum_before[16], checksum_after[16];
11584 htab_t ht;
11586 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11587 md5_init_ctx (&ctx);
11588 fold_checksum_tree (expr, &ctx, ht);
11589 md5_finish_ctx (&ctx, checksum_before);
11590 htab_empty (ht);
11592 ret = fold_1 (expr);
11594 md5_init_ctx (&ctx);
11595 fold_checksum_tree (expr, &ctx, ht);
11596 md5_finish_ctx (&ctx, checksum_after);
11597 htab_delete (ht);
11599 if (memcmp (checksum_before, checksum_after, 16))
11600 fold_check_failed (expr, ret);
11602 return ret;
11605 void
11606 print_fold_checksum (tree expr)
11608 struct md5_ctx ctx;
11609 unsigned char checksum[16], cnt;
11610 htab_t ht;
11612 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11613 md5_init_ctx (&ctx);
11614 fold_checksum_tree (expr, &ctx, ht);
11615 md5_finish_ctx (&ctx, checksum);
11616 htab_delete (ht);
11617 for (cnt = 0; cnt < 16; ++cnt)
11618 fprintf (stderr, "%02x", checksum[cnt]);
11619 putc ('\n', stderr);
11622 static void
11623 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
11625 internal_error ("fold check: original tree changed by fold");
11628 static void
11629 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
11631 void **slot;
11632 enum tree_code code;
11633 struct tree_function_decl buf;
11634 int i, len;
11636 recursive_label:
11638 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
11639 <= sizeof (struct tree_function_decl))
11640 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
11641 if (expr == NULL)
11642 return;
11643 slot = htab_find_slot (ht, expr, INSERT);
11644 if (*slot != NULL)
11645 return;
11646 *slot = expr;
11647 code = TREE_CODE (expr);
11648 if (TREE_CODE_CLASS (code) == tcc_declaration
11649 && DECL_ASSEMBLER_NAME_SET_P (expr))
11651 /* Allow DECL_ASSEMBLER_NAME to be modified. */
11652 memcpy ((char *) &buf, expr, tree_size (expr));
11653 expr = (tree) &buf;
11654 SET_DECL_ASSEMBLER_NAME (expr, NULL);
11656 else if (TREE_CODE_CLASS (code) == tcc_type
11657 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
11658 || TYPE_CACHED_VALUES_P (expr)
11659 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
11661 /* Allow these fields to be modified. */
11662 memcpy ((char *) &buf, expr, tree_size (expr));
11663 expr = (tree) &buf;
11664 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
11665 TYPE_POINTER_TO (expr) = NULL;
11666 TYPE_REFERENCE_TO (expr) = NULL;
11667 if (TYPE_CACHED_VALUES_P (expr))
11669 TYPE_CACHED_VALUES_P (expr) = 0;
11670 TYPE_CACHED_VALUES (expr) = NULL;
11673 md5_process_bytes (expr, tree_size (expr), ctx);
11674 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
11675 if (TREE_CODE_CLASS (code) != tcc_type
11676 && TREE_CODE_CLASS (code) != tcc_declaration
11677 && code != TREE_LIST)
11678 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
11679 switch (TREE_CODE_CLASS (code))
11681 case tcc_constant:
11682 switch (code)
11684 case STRING_CST:
11685 md5_process_bytes (TREE_STRING_POINTER (expr),
11686 TREE_STRING_LENGTH (expr), ctx);
11687 break;
11688 case COMPLEX_CST:
11689 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
11690 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
11691 break;
11692 case VECTOR_CST:
11693 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
11694 break;
11695 default:
11696 break;
11698 break;
11699 case tcc_exceptional:
11700 switch (code)
11702 case TREE_LIST:
11703 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
11704 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
11705 expr = TREE_CHAIN (expr);
11706 goto recursive_label;
11707 break;
11708 case TREE_VEC:
11709 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
11710 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
11711 break;
11712 default:
11713 break;
11715 break;
11716 case tcc_expression:
11717 case tcc_reference:
11718 case tcc_comparison:
11719 case tcc_unary:
11720 case tcc_binary:
11721 case tcc_statement:
11722 len = TREE_CODE_LENGTH (code);
11723 for (i = 0; i < len; ++i)
11724 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
11725 break;
11726 case tcc_declaration:
11727 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
11728 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
11729 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
11731 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
11732 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
11733 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
11734 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
11735 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
11737 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
11738 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
11740 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
11742 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
11743 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
11744 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
11746 break;
11747 case tcc_type:
11748 if (TREE_CODE (expr) == ENUMERAL_TYPE)
11749 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
11750 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
11751 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
11752 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
11753 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
11754 if (INTEGRAL_TYPE_P (expr)
11755 || SCALAR_FLOAT_TYPE_P (expr))
11757 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
11758 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
11760 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
11761 if (TREE_CODE (expr) == RECORD_TYPE
11762 || TREE_CODE (expr) == UNION_TYPE
11763 || TREE_CODE (expr) == QUAL_UNION_TYPE)
11764 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
11765 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
11766 break;
11767 default:
11768 break;
11772 #endif
11774 /* Fold a unary tree expression with code CODE of type TYPE with an
11775 operand OP0. Return a folded expression if successful. Otherwise,
11776 return a tree expression with code CODE of type TYPE with an
11777 operand OP0. */
11779 tree
11780 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
11782 tree tem;
11783 #ifdef ENABLE_FOLD_CHECKING
11784 unsigned char checksum_before[16], checksum_after[16];
11785 struct md5_ctx ctx;
11786 htab_t ht;
11788 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11789 md5_init_ctx (&ctx);
11790 fold_checksum_tree (op0, &ctx, ht);
11791 md5_finish_ctx (&ctx, checksum_before);
11792 htab_empty (ht);
11793 #endif
11795 tem = fold_unary (code, type, op0);
11796 if (!tem)
11797 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
11799 #ifdef ENABLE_FOLD_CHECKING
11800 md5_init_ctx (&ctx);
11801 fold_checksum_tree (op0, &ctx, ht);
11802 md5_finish_ctx (&ctx, checksum_after);
11803 htab_delete (ht);
11805 if (memcmp (checksum_before, checksum_after, 16))
11806 fold_check_failed (op0, tem);
11807 #endif
11808 return tem;
11811 /* Fold a binary tree expression with code CODE of type TYPE with
11812 operands OP0 and OP1. Return a folded expression if successful.
11813 Otherwise, return a tree expression with code CODE of type TYPE
11814 with operands OP0 and OP1. */
11816 tree
11817 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
11818 MEM_STAT_DECL)
11820 tree tem;
11821 #ifdef ENABLE_FOLD_CHECKING
11822 unsigned char checksum_before_op0[16],
11823 checksum_before_op1[16],
11824 checksum_after_op0[16],
11825 checksum_after_op1[16];
11826 struct md5_ctx ctx;
11827 htab_t ht;
11829 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11830 md5_init_ctx (&ctx);
11831 fold_checksum_tree (op0, &ctx, ht);
11832 md5_finish_ctx (&ctx, checksum_before_op0);
11833 htab_empty (ht);
11835 md5_init_ctx (&ctx);
11836 fold_checksum_tree (op1, &ctx, ht);
11837 md5_finish_ctx (&ctx, checksum_before_op1);
11838 htab_empty (ht);
11839 #endif
11841 tem = fold_binary (code, type, op0, op1);
11842 if (!tem)
11843 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
11845 #ifdef ENABLE_FOLD_CHECKING
11846 md5_init_ctx (&ctx);
11847 fold_checksum_tree (op0, &ctx, ht);
11848 md5_finish_ctx (&ctx, checksum_after_op0);
11849 htab_empty (ht);
11851 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
11852 fold_check_failed (op0, tem);
11854 md5_init_ctx (&ctx);
11855 fold_checksum_tree (op1, &ctx, ht);
11856 md5_finish_ctx (&ctx, checksum_after_op1);
11857 htab_delete (ht);
11859 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
11860 fold_check_failed (op1, tem);
11861 #endif
11862 return tem;
11865 /* Fold a ternary tree expression with code CODE of type TYPE with
11866 operands OP0, OP1, and OP2. Return a folded expression if
11867 successful. Otherwise, return a tree expression with code CODE of
11868 type TYPE with operands OP0, OP1, and OP2. */
11870 tree
11871 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
11872 MEM_STAT_DECL)
11874 tree tem;
11875 #ifdef ENABLE_FOLD_CHECKING
11876 unsigned char checksum_before_op0[16],
11877 checksum_before_op1[16],
11878 checksum_before_op2[16],
11879 checksum_after_op0[16],
11880 checksum_after_op1[16],
11881 checksum_after_op2[16];
11882 struct md5_ctx ctx;
11883 htab_t ht;
11885 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
11886 md5_init_ctx (&ctx);
11887 fold_checksum_tree (op0, &ctx, ht);
11888 md5_finish_ctx (&ctx, checksum_before_op0);
11889 htab_empty (ht);
11891 md5_init_ctx (&ctx);
11892 fold_checksum_tree (op1, &ctx, ht);
11893 md5_finish_ctx (&ctx, checksum_before_op1);
11894 htab_empty (ht);
11896 md5_init_ctx (&ctx);
11897 fold_checksum_tree (op2, &ctx, ht);
11898 md5_finish_ctx (&ctx, checksum_before_op2);
11899 htab_empty (ht);
11900 #endif
11902 tem = fold_ternary (code, type, op0, op1, op2);
11903 if (!tem)
11904 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
11906 #ifdef ENABLE_FOLD_CHECKING
11907 md5_init_ctx (&ctx);
11908 fold_checksum_tree (op0, &ctx, ht);
11909 md5_finish_ctx (&ctx, checksum_after_op0);
11910 htab_empty (ht);
11912 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
11913 fold_check_failed (op0, tem);
11915 md5_init_ctx (&ctx);
11916 fold_checksum_tree (op1, &ctx, ht);
11917 md5_finish_ctx (&ctx, checksum_after_op1);
11918 htab_empty (ht);
11920 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
11921 fold_check_failed (op1, tem);
11923 md5_init_ctx (&ctx);
11924 fold_checksum_tree (op2, &ctx, ht);
11925 md5_finish_ctx (&ctx, checksum_after_op2);
11926 htab_delete (ht);
11928 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
11929 fold_check_failed (op2, tem);
11930 #endif
11931 return tem;
11934 /* Perform constant folding and related simplification of initializer
11935 expression EXPR. These behave identically to "fold_buildN" but ignore
11936 potential run-time traps and exceptions that fold must preserve. */
11938 #define START_FOLD_INIT \
11939 int saved_signaling_nans = flag_signaling_nans;\
11940 int saved_trapping_math = flag_trapping_math;\
11941 int saved_rounding_math = flag_rounding_math;\
11942 int saved_trapv = flag_trapv;\
11943 int saved_folding_initializer = folding_initializer;\
11944 flag_signaling_nans = 0;\
11945 flag_trapping_math = 0;\
11946 flag_rounding_math = 0;\
11947 flag_trapv = 0;\
11948 folding_initializer = 1;
11950 #define END_FOLD_INIT \
11951 flag_signaling_nans = saved_signaling_nans;\
11952 flag_trapping_math = saved_trapping_math;\
11953 flag_rounding_math = saved_rounding_math;\
11954 flag_trapv = saved_trapv;\
11955 folding_initializer = saved_folding_initializer;
11957 tree
11958 fold_build1_initializer (enum tree_code code, tree type, tree op)
11960 tree result;
11961 START_FOLD_INIT;
11963 result = fold_build1 (code, type, op);
11965 END_FOLD_INIT;
11966 return result;
11969 tree
11970 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
11972 tree result;
11973 START_FOLD_INIT;
11975 result = fold_build2 (code, type, op0, op1);
11977 END_FOLD_INIT;
11978 return result;
11981 tree
11982 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
11983 tree op2)
11985 tree result;
11986 START_FOLD_INIT;
11988 result = fold_build3 (code, type, op0, op1, op2);
11990 END_FOLD_INIT;
11991 return result;
11994 #undef START_FOLD_INIT
11995 #undef END_FOLD_INIT
11997 /* Determine if first argument is a multiple of second argument. Return 0 if
11998 it is not, or we cannot easily determined it to be.
12000 An example of the sort of thing we care about (at this point; this routine
12001 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12002 fold cases do now) is discovering that
12004 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12006 is a multiple of
12008 SAVE_EXPR (J * 8)
12010 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12012 This code also handles discovering that
12014 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12016 is a multiple of 8 so we don't have to worry about dealing with a
12017 possible remainder.
12019 Note that we *look* inside a SAVE_EXPR only to determine how it was
12020 calculated; it is not safe for fold to do much of anything else with the
12021 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12022 at run time. For example, the latter example above *cannot* be implemented
12023 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12024 evaluation time of the original SAVE_EXPR is not necessarily the same at
12025 the time the new expression is evaluated. The only optimization of this
12026 sort that would be valid is changing
12028 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12030 divided by 8 to
12032 SAVE_EXPR (I) * SAVE_EXPR (J)
12034 (where the same SAVE_EXPR (J) is used in the original and the
12035 transformed version). */
12037 static int
12038 multiple_of_p (tree type, tree top, tree bottom)
12040 if (operand_equal_p (top, bottom, 0))
12041 return 1;
12043 if (TREE_CODE (type) != INTEGER_TYPE)
12044 return 0;
12046 switch (TREE_CODE (top))
12048 case BIT_AND_EXPR:
12049 /* Bitwise and provides a power of two multiple. If the mask is
12050 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12051 if (!integer_pow2p (bottom))
12052 return 0;
12053 /* FALLTHRU */
12055 case MULT_EXPR:
12056 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12057 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12059 case PLUS_EXPR:
12060 case MINUS_EXPR:
12061 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12062 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12064 case LSHIFT_EXPR:
12065 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12067 tree op1, t1;
12069 op1 = TREE_OPERAND (top, 1);
12070 /* const_binop may not detect overflow correctly,
12071 so check for it explicitly here. */
12072 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
12073 > TREE_INT_CST_LOW (op1)
12074 && TREE_INT_CST_HIGH (op1) == 0
12075 && 0 != (t1 = fold_convert (type,
12076 const_binop (LSHIFT_EXPR,
12077 size_one_node,
12078 op1, 0)))
12079 && ! TREE_OVERFLOW (t1))
12080 return multiple_of_p (type, t1, bottom);
12082 return 0;
12084 case NOP_EXPR:
12085 /* Can't handle conversions from non-integral or wider integral type. */
12086 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12087 || (TYPE_PRECISION (type)
12088 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12089 return 0;
12091 /* .. fall through ... */
12093 case SAVE_EXPR:
12094 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12096 case INTEGER_CST:
12097 if (TREE_CODE (bottom) != INTEGER_CST
12098 || (TYPE_UNSIGNED (type)
12099 && (tree_int_cst_sgn (top) < 0
12100 || tree_int_cst_sgn (bottom) < 0)))
12101 return 0;
12102 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
12103 top, bottom, 0));
12105 default:
12106 return 0;
12110 /* Return true if `t' is known to be non-negative. */
12112 bool
12113 tree_expr_nonnegative_p (tree t)
12115 if (t == error_mark_node)
12116 return false;
12118 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12119 return true;
12121 switch (TREE_CODE (t))
12123 case SSA_NAME:
12124 /* Query VRP to see if it has recorded any information about
12125 the range of this object. */
12126 return ssa_name_nonnegative_p (t);
12128 case ABS_EXPR:
12129 /* We can't return 1 if flag_wrapv is set because
12130 ABS_EXPR<INT_MIN> = INT_MIN. */
12131 if (!(flag_wrapv && INTEGRAL_TYPE_P (TREE_TYPE (t))))
12132 return true;
12133 break;
12135 case INTEGER_CST:
12136 return tree_int_cst_sgn (t) >= 0;
12138 case REAL_CST:
12139 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12141 case PLUS_EXPR:
12142 if (FLOAT_TYPE_P (TREE_TYPE (t)))
12143 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12144 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12146 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12147 both unsigned and at least 2 bits shorter than the result. */
12148 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
12149 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
12150 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
12152 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
12153 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
12154 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12155 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12157 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12158 TYPE_PRECISION (inner2)) + 1;
12159 return prec < TYPE_PRECISION (TREE_TYPE (t));
12162 break;
12164 case MULT_EXPR:
12165 if (FLOAT_TYPE_P (TREE_TYPE (t)))
12167 /* x * x for floating point x is always non-negative. */
12168 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
12169 return true;
12170 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12171 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12174 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12175 both unsigned and their total bits is shorter than the result. */
12176 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
12177 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
12178 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
12180 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
12181 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
12182 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12183 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12184 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
12185 < TYPE_PRECISION (TREE_TYPE (t));
12187 return false;
12189 case BIT_AND_EXPR:
12190 case MAX_EXPR:
12191 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12192 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12194 case BIT_IOR_EXPR:
12195 case BIT_XOR_EXPR:
12196 case MIN_EXPR:
12197 case RDIV_EXPR:
12198 case TRUNC_DIV_EXPR:
12199 case CEIL_DIV_EXPR:
12200 case FLOOR_DIV_EXPR:
12201 case ROUND_DIV_EXPR:
12202 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12203 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12205 case TRUNC_MOD_EXPR:
12206 case CEIL_MOD_EXPR:
12207 case FLOOR_MOD_EXPR:
12208 case ROUND_MOD_EXPR:
12209 case SAVE_EXPR:
12210 case NON_LVALUE_EXPR:
12211 case FLOAT_EXPR:
12212 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12214 case COMPOUND_EXPR:
12215 case MODIFY_EXPR:
12216 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12218 case BIND_EXPR:
12219 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
12221 case COND_EXPR:
12222 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
12223 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
12225 case NOP_EXPR:
12227 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
12228 tree outer_type = TREE_TYPE (t);
12230 if (TREE_CODE (outer_type) == REAL_TYPE)
12232 if (TREE_CODE (inner_type) == REAL_TYPE)
12233 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12234 if (TREE_CODE (inner_type) == INTEGER_TYPE)
12236 if (TYPE_UNSIGNED (inner_type))
12237 return true;
12238 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12241 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
12243 if (TREE_CODE (inner_type) == REAL_TYPE)
12244 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
12245 if (TREE_CODE (inner_type) == INTEGER_TYPE)
12246 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12247 && TYPE_UNSIGNED (inner_type);
12250 break;
12252 case TARGET_EXPR:
12254 tree temp = TARGET_EXPR_SLOT (t);
12255 t = TARGET_EXPR_INITIAL (t);
12257 /* If the initializer is non-void, then it's a normal expression
12258 that will be assigned to the slot. */
12259 if (!VOID_TYPE_P (t))
12260 return tree_expr_nonnegative_p (t);
12262 /* Otherwise, the initializer sets the slot in some way. One common
12263 way is an assignment statement at the end of the initializer. */
12264 while (1)
12266 if (TREE_CODE (t) == BIND_EXPR)
12267 t = expr_last (BIND_EXPR_BODY (t));
12268 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
12269 || TREE_CODE (t) == TRY_CATCH_EXPR)
12270 t = expr_last (TREE_OPERAND (t, 0));
12271 else if (TREE_CODE (t) == STATEMENT_LIST)
12272 t = expr_last (t);
12273 else
12274 break;
12276 if (TREE_CODE (t) == MODIFY_EXPR
12277 && TREE_OPERAND (t, 0) == temp)
12278 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
12280 return false;
12283 case CALL_EXPR:
12285 tree fndecl = get_callee_fndecl (t);
12286 tree arglist = TREE_OPERAND (t, 1);
12287 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
12288 switch (DECL_FUNCTION_CODE (fndecl))
12290 CASE_FLT_FN (BUILT_IN_ACOS):
12291 CASE_FLT_FN (BUILT_IN_ACOSH):
12292 CASE_FLT_FN (BUILT_IN_CABS):
12293 CASE_FLT_FN (BUILT_IN_COSH):
12294 CASE_FLT_FN (BUILT_IN_ERFC):
12295 CASE_FLT_FN (BUILT_IN_EXP):
12296 CASE_FLT_FN (BUILT_IN_EXP10):
12297 CASE_FLT_FN (BUILT_IN_EXP2):
12298 CASE_FLT_FN (BUILT_IN_FABS):
12299 CASE_FLT_FN (BUILT_IN_FDIM):
12300 CASE_FLT_FN (BUILT_IN_HYPOT):
12301 CASE_FLT_FN (BUILT_IN_POW10):
12302 CASE_INT_FN (BUILT_IN_FFS):
12303 CASE_INT_FN (BUILT_IN_PARITY):
12304 CASE_INT_FN (BUILT_IN_POPCOUNT):
12305 case BUILT_IN_BSWAP32:
12306 case BUILT_IN_BSWAP64:
12307 /* Always true. */
12308 return true;
12310 CASE_FLT_FN (BUILT_IN_SQRT):
12311 /* sqrt(-0.0) is -0.0. */
12312 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
12313 return true;
12314 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12316 CASE_FLT_FN (BUILT_IN_ASINH):
12317 CASE_FLT_FN (BUILT_IN_ATAN):
12318 CASE_FLT_FN (BUILT_IN_ATANH):
12319 CASE_FLT_FN (BUILT_IN_CBRT):
12320 CASE_FLT_FN (BUILT_IN_CEIL):
12321 CASE_FLT_FN (BUILT_IN_ERF):
12322 CASE_FLT_FN (BUILT_IN_EXPM1):
12323 CASE_FLT_FN (BUILT_IN_FLOOR):
12324 CASE_FLT_FN (BUILT_IN_FMOD):
12325 CASE_FLT_FN (BUILT_IN_FREXP):
12326 CASE_FLT_FN (BUILT_IN_LCEIL):
12327 CASE_FLT_FN (BUILT_IN_LDEXP):
12328 CASE_FLT_FN (BUILT_IN_LFLOOR):
12329 CASE_FLT_FN (BUILT_IN_LLCEIL):
12330 CASE_FLT_FN (BUILT_IN_LLFLOOR):
12331 CASE_FLT_FN (BUILT_IN_LLRINT):
12332 CASE_FLT_FN (BUILT_IN_LLROUND):
12333 CASE_FLT_FN (BUILT_IN_LRINT):
12334 CASE_FLT_FN (BUILT_IN_LROUND):
12335 CASE_FLT_FN (BUILT_IN_MODF):
12336 CASE_FLT_FN (BUILT_IN_NEARBYINT):
12337 CASE_FLT_FN (BUILT_IN_RINT):
12338 CASE_FLT_FN (BUILT_IN_ROUND):
12339 CASE_FLT_FN (BUILT_IN_SIGNBIT):
12340 CASE_FLT_FN (BUILT_IN_SINH):
12341 CASE_FLT_FN (BUILT_IN_TANH):
12342 CASE_FLT_FN (BUILT_IN_TRUNC):
12343 /* True if the 1st argument is nonnegative. */
12344 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12346 CASE_FLT_FN (BUILT_IN_FMAX):
12347 /* True if the 1st OR 2nd arguments are nonnegative. */
12348 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
12349 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12351 CASE_FLT_FN (BUILT_IN_FMIN):
12352 /* True if the 1st AND 2nd arguments are nonnegative. */
12353 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
12354 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12356 CASE_FLT_FN (BUILT_IN_COPYSIGN):
12357 /* True if the 2nd argument is nonnegative. */
12358 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
12360 CASE_FLT_FN (BUILT_IN_POWI):
12361 /* True if the 1st argument is nonnegative or the second
12362 argument is an even integer. */
12363 if (TREE_CODE (TREE_VALUE (TREE_CHAIN (arglist))) == INTEGER_CST)
12365 tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12366 if ((TREE_INT_CST_LOW (arg1) & 1) == 0)
12367 return true;
12369 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12371 CASE_FLT_FN (BUILT_IN_POW):
12372 /* True if the 1st argument is nonnegative or the second
12373 argument is an even integer valued real. */
12374 if (TREE_CODE (TREE_VALUE (TREE_CHAIN (arglist))) == REAL_CST)
12376 REAL_VALUE_TYPE c;
12377 HOST_WIDE_INT n;
12379 c = TREE_REAL_CST (TREE_VALUE (TREE_CHAIN (arglist)));
12380 n = real_to_integer (&c);
12381 if ((n & 1) == 0)
12383 REAL_VALUE_TYPE cint;
12384 real_from_integer (&cint, VOIDmode, n,
12385 n < 0 ? -1 : 0, 0);
12386 if (real_identical (&c, &cint))
12387 return true;
12390 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
12392 default:
12393 break;
12397 /* ... fall through ... */
12399 default:
12400 if (truth_value_p (TREE_CODE (t)))
12401 /* Truth values evaluate to 0 or 1, which is nonnegative. */
12402 return true;
12405 /* We don't know sign of `t', so be conservative and return false. */
12406 return false;
12409 /* Return true when T is an address and is known to be nonzero.
12410 For floating point we further ensure that T is not denormal.
12411 Similar logic is present in nonzero_address in rtlanal.h. */
12413 bool
12414 tree_expr_nonzero_p (tree t)
12416 tree type = TREE_TYPE (t);
12418 /* Doing something useful for floating point would need more work. */
12419 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
12420 return false;
12422 switch (TREE_CODE (t))
12424 case SSA_NAME:
12425 /* Query VRP to see if it has recorded any information about
12426 the range of this object. */
12427 return ssa_name_nonzero_p (t);
12429 case ABS_EXPR:
12430 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12432 case INTEGER_CST:
12433 /* We used to test for !integer_zerop here. This does not work correctly
12434 if TREE_CONSTANT_OVERFLOW (t). */
12435 return (TREE_INT_CST_LOW (t) != 0
12436 || TREE_INT_CST_HIGH (t) != 0);
12438 case PLUS_EXPR:
12439 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
12441 /* With the presence of negative values it is hard
12442 to say something. */
12443 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
12444 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
12445 return false;
12446 /* One of operands must be positive and the other non-negative. */
12447 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12448 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12450 break;
12452 case MULT_EXPR:
12453 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
12455 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12456 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12458 break;
12460 case NOP_EXPR:
12462 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
12463 tree outer_type = TREE_TYPE (t);
12465 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
12466 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
12468 break;
12470 case ADDR_EXPR:
12472 tree base = get_base_address (TREE_OPERAND (t, 0));
12474 if (!base)
12475 return false;
12477 /* Weak declarations may link to NULL. */
12478 if (VAR_OR_FUNCTION_DECL_P (base))
12479 return !DECL_WEAK (base);
12481 /* Constants are never weak. */
12482 if (CONSTANT_CLASS_P (base))
12483 return true;
12485 return false;
12488 case COND_EXPR:
12489 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12490 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
12492 case MIN_EXPR:
12493 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
12494 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
12496 case MAX_EXPR:
12497 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
12499 /* When both operands are nonzero, then MAX must be too. */
12500 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
12501 return true;
12503 /* MAX where operand 0 is positive is positive. */
12504 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
12506 /* MAX where operand 1 is positive is positive. */
12507 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12508 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
12509 return true;
12510 break;
12512 case COMPOUND_EXPR:
12513 case MODIFY_EXPR:
12514 case BIND_EXPR:
12515 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
12517 case SAVE_EXPR:
12518 case NON_LVALUE_EXPR:
12519 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12521 case BIT_IOR_EXPR:
12522 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
12523 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
12525 case CALL_EXPR:
12526 return alloca_call_p (t);
12528 default:
12529 break;
12531 return false;
12534 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
12535 attempt to fold the expression to a constant without modifying TYPE,
12536 OP0 or OP1.
12538 If the expression could be simplified to a constant, then return
12539 the constant. If the expression would not be simplified to a
12540 constant, then return NULL_TREE. */
12542 tree
12543 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
12545 tree tem = fold_binary (code, type, op0, op1);
12546 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
12549 /* Given the components of a unary expression CODE, TYPE and OP0,
12550 attempt to fold the expression to a constant without modifying
12551 TYPE or OP0.
12553 If the expression could be simplified to a constant, then return
12554 the constant. If the expression would not be simplified to a
12555 constant, then return NULL_TREE. */
12557 tree
12558 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
12560 tree tem = fold_unary (code, type, op0);
12561 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
12564 /* If EXP represents referencing an element in a constant string
12565 (either via pointer arithmetic or array indexing), return the
12566 tree representing the value accessed, otherwise return NULL. */
12568 tree
12569 fold_read_from_constant_string (tree exp)
12571 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
12573 tree exp1 = TREE_OPERAND (exp, 0);
12574 tree index;
12575 tree string;
12577 if (TREE_CODE (exp) == INDIRECT_REF)
12578 string = string_constant (exp1, &index);
12579 else
12581 tree low_bound = array_ref_low_bound (exp);
12582 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
12584 /* Optimize the special-case of a zero lower bound.
12586 We convert the low_bound to sizetype to avoid some problems
12587 with constant folding. (E.g. suppose the lower bound is 1,
12588 and its mode is QI. Without the conversion,l (ARRAY
12589 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
12590 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
12591 if (! integer_zerop (low_bound))
12592 index = size_diffop (index, fold_convert (sizetype, low_bound));
12594 string = exp1;
12597 if (string
12598 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
12599 && TREE_CODE (string) == STRING_CST
12600 && TREE_CODE (index) == INTEGER_CST
12601 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
12602 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
12603 == MODE_INT)
12604 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
12605 return fold_convert (TREE_TYPE (exp),
12606 build_int_cst (NULL_TREE,
12607 (TREE_STRING_POINTER (string)
12608 [TREE_INT_CST_LOW (index)])));
12610 return NULL;
12613 /* Return the tree for neg (ARG0) when ARG0 is known to be either
12614 an integer constant or real constant.
12616 TYPE is the type of the result. */
12618 static tree
12619 fold_negate_const (tree arg0, tree type)
12621 tree t = NULL_TREE;
12623 switch (TREE_CODE (arg0))
12625 case INTEGER_CST:
12627 unsigned HOST_WIDE_INT low;
12628 HOST_WIDE_INT high;
12629 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
12630 TREE_INT_CST_HIGH (arg0),
12631 &low, &high);
12632 t = build_int_cst_wide (type, low, high);
12633 t = force_fit_type (t, 1,
12634 (overflow | TREE_OVERFLOW (arg0))
12635 && !TYPE_UNSIGNED (type),
12636 TREE_CONSTANT_OVERFLOW (arg0));
12637 break;
12640 case REAL_CST:
12641 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
12642 break;
12644 default:
12645 gcc_unreachable ();
12648 return t;
12651 /* Return the tree for abs (ARG0) when ARG0 is known to be either
12652 an integer constant or real constant.
12654 TYPE is the type of the result. */
12656 tree
12657 fold_abs_const (tree arg0, tree type)
12659 tree t = NULL_TREE;
12661 switch (TREE_CODE (arg0))
12663 case INTEGER_CST:
12664 /* If the value is unsigned, then the absolute value is
12665 the same as the ordinary value. */
12666 if (TYPE_UNSIGNED (type))
12667 t = arg0;
12668 /* Similarly, if the value is non-negative. */
12669 else if (INT_CST_LT (integer_minus_one_node, arg0))
12670 t = arg0;
12671 /* If the value is negative, then the absolute value is
12672 its negation. */
12673 else
12675 unsigned HOST_WIDE_INT low;
12676 HOST_WIDE_INT high;
12677 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
12678 TREE_INT_CST_HIGH (arg0),
12679 &low, &high);
12680 t = build_int_cst_wide (type, low, high);
12681 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
12682 TREE_CONSTANT_OVERFLOW (arg0));
12684 break;
12686 case REAL_CST:
12687 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
12688 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
12689 else
12690 t = arg0;
12691 break;
12693 default:
12694 gcc_unreachable ();
12697 return t;
12700 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
12701 constant. TYPE is the type of the result. */
12703 static tree
12704 fold_not_const (tree arg0, tree type)
12706 tree t = NULL_TREE;
12708 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
12710 t = build_int_cst_wide (type,
12711 ~ TREE_INT_CST_LOW (arg0),
12712 ~ TREE_INT_CST_HIGH (arg0));
12713 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
12714 TREE_CONSTANT_OVERFLOW (arg0));
12716 return t;
12719 /* Given CODE, a relational operator, the target type, TYPE and two
12720 constant operands OP0 and OP1, return the result of the
12721 relational operation. If the result is not a compile time
12722 constant, then return NULL_TREE. */
12724 static tree
12725 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
12727 int result, invert;
12729 /* From here on, the only cases we handle are when the result is
12730 known to be a constant. */
12732 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
12734 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
12735 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
12737 /* Handle the cases where either operand is a NaN. */
12738 if (real_isnan (c0) || real_isnan (c1))
12740 switch (code)
12742 case EQ_EXPR:
12743 case ORDERED_EXPR:
12744 result = 0;
12745 break;
12747 case NE_EXPR:
12748 case UNORDERED_EXPR:
12749 case UNLT_EXPR:
12750 case UNLE_EXPR:
12751 case UNGT_EXPR:
12752 case UNGE_EXPR:
12753 case UNEQ_EXPR:
12754 result = 1;
12755 break;
12757 case LT_EXPR:
12758 case LE_EXPR:
12759 case GT_EXPR:
12760 case GE_EXPR:
12761 case LTGT_EXPR:
12762 if (flag_trapping_math)
12763 return NULL_TREE;
12764 result = 0;
12765 break;
12767 default:
12768 gcc_unreachable ();
12771 return constant_boolean_node (result, type);
12774 return constant_boolean_node (real_compare (code, c0, c1), type);
12777 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
12779 To compute GT, swap the arguments and do LT.
12780 To compute GE, do LT and invert the result.
12781 To compute LE, swap the arguments, do LT and invert the result.
12782 To compute NE, do EQ and invert the result.
12784 Therefore, the code below must handle only EQ and LT. */
12786 if (code == LE_EXPR || code == GT_EXPR)
12788 tree tem = op0;
12789 op0 = op1;
12790 op1 = tem;
12791 code = swap_tree_comparison (code);
12794 /* Note that it is safe to invert for real values here because we
12795 have already handled the one case that it matters. */
12797 invert = 0;
12798 if (code == NE_EXPR || code == GE_EXPR)
12800 invert = 1;
12801 code = invert_tree_comparison (code, false);
12804 /* Compute a result for LT or EQ if args permit;
12805 Otherwise return T. */
12806 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
12808 if (code == EQ_EXPR)
12809 result = tree_int_cst_equal (op0, op1);
12810 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
12811 result = INT_CST_LT_UNSIGNED (op0, op1);
12812 else
12813 result = INT_CST_LT (op0, op1);
12815 else
12816 return NULL_TREE;
12818 if (invert)
12819 result ^= 1;
12820 return constant_boolean_node (result, type);
12823 /* Build an expression for the a clean point containing EXPR with type TYPE.
12824 Don't build a cleanup point expression for EXPR which don't have side
12825 effects. */
12827 tree
12828 fold_build_cleanup_point_expr (tree type, tree expr)
12830 /* If the expression does not have side effects then we don't have to wrap
12831 it with a cleanup point expression. */
12832 if (!TREE_SIDE_EFFECTS (expr))
12833 return expr;
12835 /* If the expression is a return, check to see if the expression inside the
12836 return has no side effects or the right hand side of the modify expression
12837 inside the return. If either don't have side effects set we don't need to
12838 wrap the expression in a cleanup point expression. Note we don't check the
12839 left hand side of the modify because it should always be a return decl. */
12840 if (TREE_CODE (expr) == RETURN_EXPR)
12842 tree op = TREE_OPERAND (expr, 0);
12843 if (!op || !TREE_SIDE_EFFECTS (op))
12844 return expr;
12845 op = TREE_OPERAND (op, 1);
12846 if (!TREE_SIDE_EFFECTS (op))
12847 return expr;
12850 return build1 (CLEANUP_POINT_EXPR, type, expr);
12853 /* Build an expression for the address of T. Folds away INDIRECT_REF to
12854 avoid confusing the gimplify process. */
12856 tree
12857 build_fold_addr_expr_with_type (tree t, tree ptrtype)
12859 /* The size of the object is not relevant when talking about its address. */
12860 if (TREE_CODE (t) == WITH_SIZE_EXPR)
12861 t = TREE_OPERAND (t, 0);
12863 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
12864 if (TREE_CODE (t) == INDIRECT_REF
12865 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
12867 t = TREE_OPERAND (t, 0);
12868 if (TREE_TYPE (t) != ptrtype)
12869 t = build1 (NOP_EXPR, ptrtype, t);
12871 else
12873 tree base = t;
12875 while (handled_component_p (base))
12876 base = TREE_OPERAND (base, 0);
12877 if (DECL_P (base))
12878 TREE_ADDRESSABLE (base) = 1;
12880 t = build1 (ADDR_EXPR, ptrtype, t);
12883 return t;
12886 tree
12887 build_fold_addr_expr (tree t)
12889 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
12892 /* Given a pointer value OP0 and a type TYPE, return a simplified version
12893 of an indirection through OP0, or NULL_TREE if no simplification is
12894 possible. */
12896 tree
12897 fold_indirect_ref_1 (tree type, tree op0)
12899 tree sub = op0;
12900 tree subtype;
12902 STRIP_NOPS (sub);
12903 subtype = TREE_TYPE (sub);
12904 if (!POINTER_TYPE_P (subtype))
12905 return NULL_TREE;
12907 if (TREE_CODE (sub) == ADDR_EXPR)
12909 tree op = TREE_OPERAND (sub, 0);
12910 tree optype = TREE_TYPE (op);
12911 /* *&p => p; make sure to handle *&"str"[cst] here. */
12912 if (type == optype)
12914 tree fop = fold_read_from_constant_string (op);
12915 if (fop)
12916 return fop;
12917 else
12918 return op;
12920 /* *(foo *)&fooarray => fooarray[0] */
12921 else if (TREE_CODE (optype) == ARRAY_TYPE
12922 && type == TREE_TYPE (optype))
12924 tree type_domain = TYPE_DOMAIN (optype);
12925 tree min_val = size_zero_node;
12926 if (type_domain && TYPE_MIN_VALUE (type_domain))
12927 min_val = TYPE_MIN_VALUE (type_domain);
12928 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
12930 /* *(foo *)&complexfoo => __real__ complexfoo */
12931 else if (TREE_CODE (optype) == COMPLEX_TYPE
12932 && type == TREE_TYPE (optype))
12933 return fold_build1 (REALPART_EXPR, type, op);
12936 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
12937 if (TREE_CODE (sub) == PLUS_EXPR
12938 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
12940 tree op00 = TREE_OPERAND (sub, 0);
12941 tree op01 = TREE_OPERAND (sub, 1);
12942 tree op00type;
12944 STRIP_NOPS (op00);
12945 op00type = TREE_TYPE (op00);
12946 if (TREE_CODE (op00) == ADDR_EXPR
12947 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
12948 && type == TREE_TYPE (TREE_TYPE (op00type)))
12950 tree size = TYPE_SIZE_UNIT (type);
12951 if (tree_int_cst_equal (size, op01))
12952 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
12956 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
12957 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
12958 && type == TREE_TYPE (TREE_TYPE (subtype)))
12960 tree type_domain;
12961 tree min_val = size_zero_node;
12962 sub = build_fold_indirect_ref (sub);
12963 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
12964 if (type_domain && TYPE_MIN_VALUE (type_domain))
12965 min_val = TYPE_MIN_VALUE (type_domain);
12966 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
12969 return NULL_TREE;
12972 /* Builds an expression for an indirection through T, simplifying some
12973 cases. */
12975 tree
12976 build_fold_indirect_ref (tree t)
12978 tree type = TREE_TYPE (TREE_TYPE (t));
12979 tree sub = fold_indirect_ref_1 (type, t);
12981 if (sub)
12982 return sub;
12983 else
12984 return build1 (INDIRECT_REF, type, t);
12987 /* Given an INDIRECT_REF T, return either T or a simplified version. */
12989 tree
12990 fold_indirect_ref (tree t)
12992 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
12994 if (sub)
12995 return sub;
12996 else
12997 return t;
13000 /* Strip non-trapping, non-side-effecting tree nodes from an expression
13001 whose result is ignored. The type of the returned tree need not be
13002 the same as the original expression. */
13004 tree
13005 fold_ignored_result (tree t)
13007 if (!TREE_SIDE_EFFECTS (t))
13008 return integer_zero_node;
13010 for (;;)
13011 switch (TREE_CODE_CLASS (TREE_CODE (t)))
13013 case tcc_unary:
13014 t = TREE_OPERAND (t, 0);
13015 break;
13017 case tcc_binary:
13018 case tcc_comparison:
13019 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
13020 t = TREE_OPERAND (t, 0);
13021 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
13022 t = TREE_OPERAND (t, 1);
13023 else
13024 return t;
13025 break;
13027 case tcc_expression:
13028 switch (TREE_CODE (t))
13030 case COMPOUND_EXPR:
13031 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
13032 return t;
13033 t = TREE_OPERAND (t, 0);
13034 break;
13036 case COND_EXPR:
13037 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
13038 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
13039 return t;
13040 t = TREE_OPERAND (t, 0);
13041 break;
13043 default:
13044 return t;
13046 break;
13048 default:
13049 return t;
13053 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
13054 This can only be applied to objects of a sizetype. */
13056 tree
13057 round_up (tree value, int divisor)
13059 tree div = NULL_TREE;
13061 gcc_assert (divisor > 0);
13062 if (divisor == 1)
13063 return value;
13065 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
13066 have to do anything. Only do this when we are not given a const,
13067 because in that case, this check is more expensive than just
13068 doing it. */
13069 if (TREE_CODE (value) != INTEGER_CST)
13071 div = build_int_cst (TREE_TYPE (value), divisor);
13073 if (multiple_of_p (TREE_TYPE (value), value, div))
13074 return value;
13077 /* If divisor is a power of two, simplify this to bit manipulation. */
13078 if (divisor == (divisor & -divisor))
13080 tree t;
13082 t = build_int_cst (TREE_TYPE (value), divisor - 1);
13083 value = size_binop (PLUS_EXPR, value, t);
13084 t = build_int_cst (TREE_TYPE (value), -divisor);
13085 value = size_binop (BIT_AND_EXPR, value, t);
13087 else
13089 if (!div)
13090 div = build_int_cst (TREE_TYPE (value), divisor);
13091 value = size_binop (CEIL_DIV_EXPR, value, div);
13092 value = size_binop (MULT_EXPR, value, div);
13095 return value;
13098 /* Likewise, but round down. */
13100 tree
13101 round_down (tree value, int divisor)
13103 tree div = NULL_TREE;
13105 gcc_assert (divisor > 0);
13106 if (divisor == 1)
13107 return value;
13109 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
13110 have to do anything. Only do this when we are not given a const,
13111 because in that case, this check is more expensive than just
13112 doing it. */
13113 if (TREE_CODE (value) != INTEGER_CST)
13115 div = build_int_cst (TREE_TYPE (value), divisor);
13117 if (multiple_of_p (TREE_TYPE (value), value, div))
13118 return value;
13121 /* If divisor is a power of two, simplify this to bit manipulation. */
13122 if (divisor == (divisor & -divisor))
13124 tree t;
13126 t = build_int_cst (TREE_TYPE (value), -divisor);
13127 value = size_binop (BIT_AND_EXPR, value, t);
13129 else
13131 if (!div)
13132 div = build_int_cst (TREE_TYPE (value), divisor);
13133 value = size_binop (FLOOR_DIV_EXPR, value, div);
13134 value = size_binop (MULT_EXPR, value, div);
13137 return value;
13140 /* Returns the pointer to the base of the object addressed by EXP and
13141 extracts the information about the offset of the access, storing it
13142 to PBITPOS and POFFSET. */
13144 static tree
13145 split_address_to_core_and_offset (tree exp,
13146 HOST_WIDE_INT *pbitpos, tree *poffset)
13148 tree core;
13149 enum machine_mode mode;
13150 int unsignedp, volatilep;
13151 HOST_WIDE_INT bitsize;
13153 if (TREE_CODE (exp) == ADDR_EXPR)
13155 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
13156 poffset, &mode, &unsignedp, &volatilep,
13157 false);
13158 core = build_fold_addr_expr (core);
13160 else
13162 core = exp;
13163 *pbitpos = 0;
13164 *poffset = NULL_TREE;
13167 return core;
13170 /* Returns true if addresses of E1 and E2 differ by a constant, false
13171 otherwise. If they do, E1 - E2 is stored in *DIFF. */
13173 bool
13174 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
13176 tree core1, core2;
13177 HOST_WIDE_INT bitpos1, bitpos2;
13178 tree toffset1, toffset2, tdiff, type;
13180 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
13181 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
13183 if (bitpos1 % BITS_PER_UNIT != 0
13184 || bitpos2 % BITS_PER_UNIT != 0
13185 || !operand_equal_p (core1, core2, 0))
13186 return false;
13188 if (toffset1 && toffset2)
13190 type = TREE_TYPE (toffset1);
13191 if (type != TREE_TYPE (toffset2))
13192 toffset2 = fold_convert (type, toffset2);
13194 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
13195 if (!cst_and_fits_in_hwi (tdiff))
13196 return false;
13198 *diff = int_cst_value (tdiff);
13200 else if (toffset1 || toffset2)
13202 /* If only one of the offsets is non-constant, the difference cannot
13203 be a constant. */
13204 return false;
13206 else
13207 *diff = 0;
13209 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
13210 return true;
13213 /* Simplify the floating point expression EXP when the sign of the
13214 result is not significant. Return NULL_TREE if no simplification
13215 is possible. */
13217 tree
13218 fold_strip_sign_ops (tree exp)
13220 tree arg0, arg1;
13222 switch (TREE_CODE (exp))
13224 case ABS_EXPR:
13225 case NEGATE_EXPR:
13226 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
13227 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
13229 case MULT_EXPR:
13230 case RDIV_EXPR:
13231 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
13232 return NULL_TREE;
13233 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
13234 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
13235 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
13236 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
13237 arg0 ? arg0 : TREE_OPERAND (exp, 0),
13238 arg1 ? arg1 : TREE_OPERAND (exp, 1));
13239 break;
13241 default:
13242 break;
13244 return NULL_TREE;